
WARSAW UNIVERSITY OF TECHNOLOGY
DISCIPLINE OF SCIENCE INFORMATION
AND COMMUNICATION TECHNOLOGY

FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis
Łukasz Lepak, MSc.

Task automation using artificial intelligence methods

Supervisor
Paweł Wawrzyński, PhD DSc

WARSAW 2024

Acknowledgements

I would like to thank my PhD advisor, family, friends and coworkers, without
whom the beautiful, exceptional journey presented in this dissertation would not be
possible.

3

Task automation using artificial intelligence methods
This dissertation presents a series of five publications focusing on task automation
with artificial intelligence methods.

We present automation of four different tasks based on artificial intelligence
methods. For day-ahead energy trading, we use reinforcement learning to create
an automatic bidding strategy that outputs a collection of bids based on available
information relevant to the trading process. This strategy allows the trading agent
to maximize its profits. Also, it can be used in real-life scenarios. For keyword
spotting in audio recordings, we test several similarity matching architectures
on various datasets and show that creating a keyword detector for low-resource
languages is possible. For on-line hyperparameter optimization in neural network
learning methods, we propose a novel algorithm that optimizes hyperparameters on
the fly during the training process, with experiments presenting its effectiveness
against other popular learning algorithms. For simultaneous machine translation,
we propose an architecture learned with reinforcement that automatically controls
the translation delay while maintaining high translation quality. We compare it
with state-of-the-art neural machine translation architectures, achieving similar
results with limited context.

Based on the observations from the translation task, we also present a novel
recurrent cell that allows for a deep transformation of its state and is safe from
gradient propagation issues. Conducted experiments show that the proposed cell
achieves comparable, often better results than popular recurrent cells while using
fewer parameters.

Overall, we introduce four artificial intelligence-based automations, showcasing
their generality and usability in various tasks and fields, and a novel recurrent unit
that can be used as a part of such automations.

Keywords: reinforcement learning, neural networks, task automation, artificial
intelligence applications

5

Automatyzacja zadań z wykorzystaniem metod sztucznej
inteligencji

Niniejsza rozprawa doktorska przedstawia serię pięciu publikacji dotyczących au-
tomatyzacji zadań z wykorzystaniem metod sztucznej inteligencji.

Przedstawiamy sposoby automatyzacji czterech różnych zadań oparte na meto-
dach sztucznej inteligencji. W handlu energią elektryczną na rynku dnia następnego
wykorzystujemy uczenie ze wzmocnieniem do stworzenia automatycznej strategii
handlu, która generuje zbiór ofert w oparciu o dostępne informacje istotne z punktu
widzenia handlu. Pokazujemy, że strategia ta pozwala agentowi maksymalizować
zyski. Ponadto, może być ona stosowana w rzeczywistych zastosowaniach. W przy-
padku wykrywania słów kluczowych w nagraniach audio testujemy kilka architek-
tur dopasowywania podobnych obiektów na różnych zbiorach danych i pokazujemy,
że możliwe jest stworzenie detektora słów kluczowych dla języków z małą ilością
dostępnych danych. W przypadku optymalizacji hiperparametrów on-line w meto-
dach uczenia sieci neuronowych, proponujemy nowy algorytm, który optymalizuje
wartości hiperparametrów podczas procesu uczenia się; eksperymenty prezentują
jego skuteczność w porównaniu z innymi popularnymi algorytmami uczenia. W
przypadku symultanicznego tłumaczenia maszynowego proponujemy architekturę
uczoną ze wzmocnieniem, która automatycznie kontroluje opóźnienie tłumaczenia
przy zachowaniu jego wysokiej jakości. Porównujemy ją z najnowocześniejszymi
architekturami neuronowego tłumaczenia maszynowego, osiągając podobne wyniki
przy ograniczonym kontekście.

Bazując na obserwacjach z zadania tłumaczenia maszynowego, prezentujemy
także nową komórkę rekurencyjną, która pozwala na głęboką transformację stanu
i jest odporna na problemy związane z propagacją gradientu. Przeprowadzone
eksperymenty pokazują, że proponowana komórka osiąga porównywalne, a często
lepsze wyniki niż popularne komórki rekurencyjne przy użyciu mniejszej liczby
parametrów.

Podsumowując, przedstawiamy cztery automatyzacje oparte na sztucznej in-
teligencji, co potwierdza ich ogólność i użyteczność w różnych zadaniach i dziedzinach,
a także nową jednostkę rekurencyjną, która może być używana jako część takich
automatyzacji.

Słowa kluczowe: uczenie ze wzmocnieniem, sieci neuronowe, automatyzacja zadań,
zastosowania sztucznej inteligencji

6

Contents

Acknowledgements . 3

1. Introduction 9
1.1. Contributions . 10

1.1.1. Dissertation structure . 12
1.2. List of publications . 13

1.2.1. Publications in the series . 13
1.2.2. Publications not in the series . 14

2. Background 15
2.1. Reinforcement learning . 15
2.2. Neural architectures . 18

2.2.1. Feed-forward architectures . 18
2.2.2. Recurrent architectures . 19
2.2.3. Sequence-to-sequence architectures 20
2.2.4. Similarity ranking architectures . 21

2.3. Neural network learning . 23
2.3.1. Classic learning methods . 24
2.3.2. Adaptive gradient methods . 25

3. Day-ahead automated energy trading 29
3.1. Proposed solution . 30

4. Polish keyword spotting in audio recordings 35
4.1. Research project results . 36

5. On-line hyperparameter tuning in neural network learning
algorithms 39
5.1. Proposed approach . 39

6. Simultaneous machine translation 43
6.1. Proposed solution . 43

7

7. Deep state transformation in recurrent neural networks 47

8. Final remarks 49

9. Other achievements 51

Bibliography 53

Appendices 59

A. List of Abbreviations 60

B. List of Publications 61
B.1. Reinforcement learning meets microeconomics: Learning to

designate price-dependent supply and demand for automated
trading . 62

B.2.Generalisation gap of keyword spotters in a cross-speaker
low-resource scenario . 97

B.3.Automatic hyperparameter tuning in on-line learning: Classic
Momentum and ADAM . 124

B.4.Reinforcement Learning for on-line Sequence Transformation 133
B.5.Least Redundant Gated Recurrent Neural Network 141

8

1. Introduction

The popularity of artificial intelligence (AI) has grown significantly over the
last few years. The number of solutions and applications based on AI methods is
steadily increasing across various industries, with their market value and research
and development spending larger than ever (Bharadiya et al., 2023). Many of these
solutions focus on automating tasks and processes.

We interact with various automated processes daily. When driving a car or
crossing the street, we go through traffic lights, which automatically control the
traffic flow. In some buildings, like shopping malls, doors open automatically when
someone approaches them. Elevators automatically maintain the order of floors
they are supposed to stop at based on the requests they receive. Smartphones create
personalized recommendations based on the user’s preferences and observe their
usage patterns, adapting to them by optimizing various operations like battery
charging. While checking e-mail, spam messages are filtered not to clutter the
inboxes.

Some tasks are always expected to do the same actions and produce the same
result whenever their preconditions are met. For instance, when someone approaches
automatic doors, they are expected to open. The main difficulty of automating
such processes is preparing and connecting the components needed to make them
operational.

On the other hand, some tasks require different actions based on circumstances,
and different results may be produced. A good example is the previously mentioned
e-mail spam filter - whether the email lands in the main inbox or the spam folder
depends on the contents of the analyzed message. Here, the automation difficulty
starts with creating its logic so that expected results are achieved. The rules for
such automations may be based on some criteria, and the result of their operation
depends on the fulfillment of these criteria. Not all automations, however, may be
covered by a set of explicit rules, thus requiring different, approximate methods to
achieve expected results.

Automations for many tasks can be created using artificial intelligence meth-
ods, ranging from classic machine learning methods like support vector machines
(SVM) (Cortes and Vapnik, 1995), or gradient boosting (Friedman, 2001), to modern
architectures like Transformers (Vaswani et al., 2017) or large language models

(LLMs) (Achiam et al., 2023; Anil et al., 2023; Touvron et al., 2023). The choice of
an appropriate approach depends on the automated task. For example, the e-mail
spam filter can be implemented by processing the message using natural language
processing (NLP) techniques and classifying the result using a chosen classification
approach, like neural networks. Nowadays, customer support services are often
implemented using AI-based chatbots (Adam et al., 2021) for faster response times
and quick resolution of simple cases. Artificial intelligence is also widely used in
recommender systems (Zhang et al., 2021), which are used to create personalized
content based on the users’ preferences.

1.1. Contributions

This dissertation, based on a series of publications listed in Section 1.2.1, focuses
on task automation using artificial intelligence methods. We automate the following
tasks:

• day-ahead energy market trading,
• simultaneous machine translation (SMT),
• Polish keyword spotting in audio recordings,
• on-line hyperparameter tuning in neural network learning algorithms.

Based on our observations regarding the SMT task, we also introduce a novel
recurrent neural module, which can be used to automate various sequential data
tasks like sequence classification (i.e., deciding whether the review is positive or
negative), machine translation, or language modeling.

Energy trading. For the day-ahead energy market trading task, we formulate the
following hypothesis:

Hypothesis 1. Utilizing information relevant to the day-ahead energy market trading
process to automate bid creation increases the trading agent’s profits and allows the
strategy to be used in real-life scenarios.

To verify Hypothesis 1, we designed a parametric trading strategy that outputs a
collection of bids (multiple buy and sell bids for every hour, representing the supply
and demand curves of the trading agent). We used reinforcement learning to train a
policy, which translates relevant information - market, weather forecast, battery,
and time data - into parameters of the aforementioned strategy. Our experiments
show that the proposed strategy achieves the best profits compared to the trading
strategy that outputs only one bid of each type and a simple parametric strategy that
uses no external information and creates bids at statistically beneficial hours. The

10

proposed strategy also efficiently manages its battery storage, never being forced to
make unwanted transactions, and can be used in real-life scenarios.

Keyword spotting. Keyword spotting in audio recordings involves finding frag-
ments of provided audio data at which words from the provided list of words, known
as keywords, are spoken. The hypothesis for this task is:

Hypothesis 2. Finding keywords in call center recordings in a low-resource language
is possible using audio similarity matching models.

To verify Hypothesis 2, we presented the research project results, done for a Polish
bank, to spot keywords in call center recordings. We prepared and evaluated different
similarity ranking models on various datasets in English and Polish. Despite a
significant performance gap between English and Polish detectors, we created a
Polish keyword detector with good results on some words, which can be useful in
time-consuming call center audio verification.

On-line hyperparameter tuning. The task of finding the best hyperparameter
combination for the neural network learning algorithms is often time-consuming
and requires significant computing power. Even if the default values are provided,
they are not enough in most cases, and major performance improvements can be
achieved by tuning them. Also, the optimal hyperparameter values can change as
the training process progresses. Based on these observations, we set the hypothesis:

Hypothesis 3. The short- and long-term influence of the learning algorithm’s hyper-
parameters on the training process can be used to optimize these hyperparameters on
the fly without prior knowledge of the solved problem, thus improving the learning
performance.

For the validation of Hypothesis 3, we introduced Autonomous Stochastic De-
scent with Momentum, version 2 (ASDM2) method, which automatically tunes the
hyperparameters of classic momentum (CM) (Polyak, 1964) and ADAM (Kingma
and Ba, 2014) learning algorithms while they are running. Experiments on shallow
classifiers and deep autoencoders show that the proposed method achieves the best
results across popular state-of-the-art learning algorithms, beating base methods’
results with their hyperparameters optimized manually.

Simultaneous machine translation. The simultaneous machine translation task
can be defined as transforming the input sequence into the output sequence, creating
output tokens while input tokens are still being read. An important factor of such
translation is the delay between reading the input and generating the translated
output. Here, we set the hypothesis:

11

Hypothesis 4. The translation delay in a simultaneous machine translation can be
automatically controlled while maintaining high translation quality for sequences of
arbitrary length.

For Hypothesis 4, we introduced an architecture that learns with reinforce-
ment and can control the translation delay automatically. We compared it with
state-of-the-art neural machine translation (NMT) architectures on machine trans-
lation tasks. While the NMT architectures generate the output sequence after
reading the whole input sequence, our solution produces output tokens during the
processing of the input sequence, with the delay being controlled automatically.
The results show that the proposed architecture achieves similar results to the
NMT architectures, with stronger performance on longer sequences, preserving the
context of long sequences.

Recurrent neural module. Recurrent neural networks (RNNs) are the main
components of many systems processing sequential data. However, most of them
do not allow deep state transformations due to their structure, which limits the
capabilities of capturing state relations. We experienced such limitations while
creating the SMT system from the previous paragraph. Based on this, we formulate
the hypothesis:

Hypothesis 5. Deep, arbitrary transformation of states in a recurrent neural network
allows to achieve results comparable with state-of-the-art methods while mitigating
training problems and being memory-efficient.

To test Hypothesis 5, we introduced a recurrent neural architecture called Deep
Memory Update (DMU), allowing any feed-forward neural network to model the
state transformation. It also includes mechanisms to cope with gradient vanishing
and exploding during training, a common issue for RNNs (Bengio et al., 1994).
Conducted experiments show that the DMU module surpasses or at least matches
the results of state-of-the-art RNNs on various synthetic and real data-based tasks.

1.1.1. Dissertation structure

The structure of this dissertation is as follows:
• Chapter 2 presents AI methods used in this dissertation - reinforcement learn-

ing, neural architectures, and neural network learning algorithms,
• Chapters 3-6 details tasks introduced in Section 1.1 and introduces our methods

of automating them,
• Chapter 7 describes the novel recurrent neural unit, which addresses the

problems encountered during automating sequence-based tasks,

12

• Chapter 8 briefly discusses the obtained results and concludes the dissertation.

1.2. List of publications

1.2.1. Publications in the series

This dissertation is based on five papers (four published, one accepted for publi-
cation):

• [P1] Łukasz Lepak, Paweł Wawrzyński. “Reinforcement learning meets
microeconomics: Learning to designate price-dependent supply and demand
for automated trading”, European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases 2024 (accepted for
publication)
Contribution:
The PhD candidate gathered the required data, designed, developed, tested,
and analyzed the proposed trading strategy, and prepared the manuscript.
Ministerial score: 140
Percentage of contribution: 75%

• [P2] Łukasz Lepak, Kacper Radzikowski, Robert Nowak, Karol J. Piczak.
“Generalisation gap of keyword spotters in a cross-speaker low-resource sce-
nario”, Sensors, MDPI, 2021
Contribution:
The PhD candidate developed, tested and analyzed created solutions, gathered
the required data, and prepared the manuscript.
Ministerial score: 100
Impact factor: 3.4
Percentage of contribution: 40%

• [P3] Paweł Wawrzyński, Paweł Zawistowski, Łukasz Lepak. “Automatic
hyperparameter tuning in on-line learning: Classic Momentum and ADAM”,
2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020
Contribution:
The PhD candidate developed, tested, and analyzed different versions of the
proposed algorithm.
Ministerial score: 140
Percentage of contribution: 40%

• [P4] Grzegorz Rypeść, Łukasz Lepak, Paweł Wawrzyński. “Reinforcement
Learning for on-line Sequence Transformation”, 2022 17th Conference on Com-
puter Science and Intelligence Systems (FedCSIS), IEEE, 2022

13

Contribution:
The PhD candidate assisted in developing, testing, and analyzing the proposed
system, reviewed the literature, prepared the manuscript, and presented the
method at the conference.
Ministerial score: 70
Percentage of contribution: 50%

• [P5] Łukasz Neumann, Łukasz Lepak, Paweł Wawrzyński. “Least Redundant
Gated Recurrent Neural Network”, 2023 International Joint Conference on
Neural Networks (IJCNN), IEEE, 2023
Contribution:
The PhD candidate developed models to which the proposed solution was
compared, and conducted part of the experiments.
Ministerial score: 140
Percentage of contribution: 20%

1.2.2. Publications not in the series

• Łukasz Lepak, Paweł Wawrzyński. “Sztuczna inteligencja handlująca energią
na rynku dnia następnego”, Raport Otwarcia IV Kongresu Elektryki Polskiej,
Stowarzyszenie Elektryków Polskich, 2024

• Bogdan Bednarski, Łukasz Lepak, Jakub Łyskawa, Paweł Pieńczuk, Maciej
Rosoł, Ryszard Romaniuk. “Influence of IQT on research in ICT”, International
Journal of Electronics and Telecommunications, 2022

• Kacper Radzikowski, Karol Chęciński, Mateusz Forc, Łukasz Lepak, Michał
Jabłoński, Wiktor Kuśmirek, Bartłomiej Twardowski, Paweł Wawrzyński,
Robert M. Nowak. “Widget detection on screenshots using computer vision
and machine learning algorithms”, Photonics Applications in Astronomy, Com-
munications, Industry, and High-Energy Physics Experiments 2019, SPIE,
2019

• Paweł Wawrzyński, Paweł Zawistowski, Łukasz Lepak. “On the develop-
ment of the ASDM method”, Polskie Porozumienie na rzecz Rozwoju Sztucznej
Inteligencji, Politechnika Wrocławska, 2019

14

2. Background

2.1. Reinforcement learning

Reinforcement learning (Sutton and Barto, 2018) is one of the machine learning
paradigms, alongside supervised and unsupervised learning. It describes an agent’s
learning to take optimal actions based on interactions with the dynamic environment
over time. This framework is known as Markov Decision Processes (MDPs) (Howard,
1960). The properties of the MDP are:

• time, t = 1,2 . . .

• the state space, st ∈ S, defines the possible states of the environment,
• the action space, at ∈ A, defines the actions the agent can take,
• the state transition distribution, Ps(st+1|st,at), defines the probability of the

environment going into state st+1 from state st after the agent takes the action
at,

• the reward function, r t = R(st, st+1,at), r t ∈R, quantifies the quality of the chosen
action,

• the initial state distribution, P0, defines the distribution of the environment’s
initial states,

• the terminal states set, ST , contains the states after which the interactions
cannot continue.

The interactions are divided into episodes, an episode being a sequence of states
from the initial to the terminal state.

MDPs, in which an agent can access full environmental information, are called
Fully Observable Markov Decision Processes (FOMDPs). MDPs, in which the infor-
mation available to an agent is transformed by a certain function of an environment’s
state, are called Partially Observable Markov Decision Processes (POMDPs).

The agent chooses the action in the current state based on the distribution π(a|s)

called the policy. The policy defines the probability of choosing an action a in a
state s. Reinforcement learning methods aim to find an optimal policy based on
environmental interactions. The optimal policy π∗ is the one that maximizes the

15

expected discounted future rewards sum:

π∗ = argmax
π

E(
∞∑

i=0
γir t+i|π)

where γ ∈ [0,1] is called the discount factor. The higher the discount factor, the longer
the horizon of important future rewards.

The value function Vπ of the policy π is defined as:

Vπ(s)= E(
∞∑

i=0
γir t+i|st = s;π)= E(r t +γVπ(st+1)|st = s;π)

The value function is the expected discounted rewards sum starting from state s

and taking actions according to the policy π. With the optimal policy, this function
should have the maximum possible value for every possible state, as the optimal
policy chooses optimal actions, resulting in the highest rewards (Bellman, 1952).

The action-value function Qπ of the policy π is defined as:

Qπ(s,a)= E(
∞∑

i=0
γir t+i|st = s,at = a;π)= E(r t +γVπ(st+1)|st = s,at = a;π)

The action-value function is the expected discounted rewards sum by taking action
a at the state s and later taking actions according to the policy π. This allows for
the action to be assessed in the context of the current state.

The policy of an agent can be represented in various ways. For example, in
the simple Q-Learning algorithm (Watkins, 1989), the Q-function can be stored as
a table for discrete and low-dimensional state and action spaces. The resulting
policy, defined as π= argmaxa Q(st,a), is fully represented by such a table. However,
the tabular approach becomes infeasible when the spaces are high-dimensional or
continuous. In that case, approximators, like neural networks, can be used, and the
policy becomes parametrized.

The major issue in reinforcement learning is the exploration versus exploitation
trade-off. While learning, the agent needs to explore the outcomes of different actions,
which would be impossible if it were to always choose the currently optimal action.
To enable such exploration, the agent randomly gets an action different from the
currently considered optimal one during the learning process. Many methods exist
to control the exploration process, including the ε-greedy exploration for discrete
action spaces and different parametrized noise distributions for continuous action
spaces.

Reinforcement learning algorithms can be divided into categories based on dif-
ferent criteria:

16

• interaction with the environment - during training (on-line) or based on regis-
tered interactions (off-line),

• number of agents to control in the environment - one (single-agent) or many
(multi-agent),

• modeling of the environment behavior - no modeling of the environment behav-
ior (model-free) or creating a model of the environment and using it as part of
learning (model-based),

• base of learning - direct learning of the policy function (policy-based), learning
the value function and deriving policy from it (value-based), or a combination
of both (actor-critic),

• experience usage - using only interactions from the current policy (on-policy)
or gathering and reusing interactions from different policies (off-policy).

Common RL algorithms include:
• Q-Learning [on-line, single-agent, model-free, value-based, off-policy] (Watkins,

1989),
• SARSA [on-line, single-agent, model-free, value-based, on-policy] (Rummery

and Niranjan, 1994),
• REINFORCE [on-line, single-agent, model-free, policy-based, off-policy] (Williams,

1992),
• Deep Q-Network (DQN) [on-line, single-agent, model-free, value-based, off-policy]

(Mnih et al., 2013),
• Advantage Actor-Critic (A2C) [on-line, single-agent, model-free, actor-critic,

on-policy] (Mnih et al., 2016),
• Proximal Policy Optimization (PPO) [on-line, single-agent, model-free, actor-critic,

on-policy] (Schulman et al., 2017),
• Deep Deterministic Policy Gradient (DDPG) [on-line, single-agent, model-free,

actor-critic, off-policy] (Lillicrap et al., 2015),
• Twin Delayed Deep Deterministic Policy Gradient (TD3) [on-line, single-agent,

model-free, actor-critic, off-policy] (Fujimoto et al., 2018),
• Soft Actor-Critic (SAC) [on-line, single-agent, model-free, actor-critic, off-policy]

(Haarnoja et al., 2018),
• Value Decomposition Networks [on-line, multi-agent, model-free, value-based,

off-policy] (Sunehag et al., 2017),
• QMIX [on-line, multi-agent, model-free, value-based, off-policy] (Rashid et al.,

2020).

17

2.2. Neural architectures

2.2.1. Feed-forward architectures

Dense neural networks. One of the basic neural architectures are dense neural
networks (also called fully-connected neural networks). They consist of dense layers,
which perform the following operation:

y=φ(Wx+b)

where x is an input vector, y is an output vector, the matrix W and the vector b are
the layer’s trainable parameters, and φ is the activation function. The activation
function introduces non-linearity into the otherwise linear operation, allowing for
usage in non-linear approximation problems. Example activation functions include
the logistic function, hyperbolic tangent, or rectified linear unit function (ReLU)
defined as φ(z)=max{0, z}.

The two-layer perceptron is a dense neural network with one typically non-linear
layer (called the hidden layer) and one output layer. Assuming the activation function
is non-constant, bounded, and continuous, this architecture satisfies the universal
approximation conditions (Hornik et al., 1989). This means that, for every function,
it is possible to find a two-layer perceptron approximating this function with an
arbitrary accuracy. However, a universal method for finding such a combination of
neurons and their weights is unknown.

Two-layer perceptrons are a specific example of multi-layer perceptrons, consist-
ing of several hidden layers and one output layer. As long as at least one hidden
layer is non-linear, they satisfy the universal approximation conditions.

Multi-layer perceptrons can be used for many approximation tasks, most notably
supervised learning tasks like classification or regression.

Autoencoders. Autoencoders are architectures used to learn encodings from the
input data without labels, which fits the unsupervised learning paradigm. In general,
autoencoders learn to reconstruct the provided input data. They consist of two main
parts. The encoder is composed of layers with a decreasing number of neurons. It
transforms the input vector into the vector called the encoding. The encoding is
usually a lot smaller than the original input. The decoder reconstructs the input
vector from the encoding. Its layer structure is usually reversed from the encoder
structure, with further layers usually having an increasing number of neurons.

There are several different autoencoder architectures. Dense autoencoders con-
sist of dense (non-linear) layers. Convolutional autoencoders include dense, convo-

18

lution, and pooling layers in the encoder, and dense, transposed convolution, and
upsampling layers in the decoder. They are useful when the input data consists
of multi-dimensional structured data like color images. Variational autoencoders
(VAEs) (Kingma and Welling, 2013) encode input data as a distribution over the
latent space. This allows for better generative properties.

2.2.2. Recurrent architectures

Recurrent neural networks process the data one step at a time, passing the state
of transformations between each input sequence element. This makes it a useful
tool for processing variable-length sequences.

Base recurrent architecture. The base recurrent architecture (Jordan, 1986;
Elman, 1990) follows the equation:

ht =φ(Wxxt +Whht−1 +bh)

where xt is the input vector at time t, ht is called the hidden state, and it is also the
output vector at time t, matrices Wx,Wh and vector bh are the trainable parameters,
and φ is the activation function. Leveraging the hidden state allows this architecture
to gather information from previously processed inputs.

The main issue with learning base RNNs is the problem of gradient vanishing
and gradient exploding (Bengio et al., 1994). This results from the method used
to calculate gradients in such networks, Backpropagation Through Time (BPTT)
(Robinson and Fallside, 1987). This approach represents the recurrent structure as
a graph of networks connected through hidden states, each having its input and the
weights shared between them. For this graph, the gradient for the weights can be
calculated, accumulated, and applied using the chosen learning method. However,
due to this representation, even a slight change in network parameters may cause
the gradients to vanish or explode, making the learning process fail.

Long Short-Term Memory. Hochreiter and Schmidhuber (1997) introduced the
Long Short-Term Memory (LSTM) network to address the gradient vanishing and
exploding problem. Compared to base RNNs, it adds another state vector, called the
cell state, and operates based on three gates:

• forget gate - decides what information from the cell state should be kept,
• input gate - decides what information from the current input should be included

in the cell state,

19

• output gate - decides what information should be output from the cell state.
The LSTM cell follows the equations:

f t =σ(Wf xt +U f ht−1 +b f)

i t =σ(Wixt +Uiht−1 +bi)

ot =σ(Woxt +Uoht−1 +bo)

ĉt = tanh(Wcxt +Ucht−1 +bc)

ct = f t ⊙ ct−1 + i t ⊙ ĉt

ht = ot ⊙σ(ct)

where ct is the cell state, W∗,U∗,b∗ are the trainable parameters, f t is the forget gate
activation vector, i t is the input gate activation vector, ot is the output gate activation
vector, ĉt is the cell input activation vector, σ is the logistic activation function, tanh is
the hyperbolic tangent activation function, and ⊙ denotes the element-wise product.
Due to its structure, LSTM significantly reduces gradient vanishing and exploding.
However, it is more memory- and time-consuming due to more parameters and
complex calculations.

Gated Recurrent Unit. Cho et al. (2014) proposed another approach with the
Gated Recurrent Unit (GRU) network. Instead of three gates, this architecture
uses the update gate (matching the input gate from LSTM) and the reset gate
(matching the forget gate from LSTM). This simplified structure reduces the memory
consumption of the network while still achieving results comparable to those of
LSTM.

The GRU cell follows the equations:

zt =σ(Wzxt +Uzht−1 +bz)

r t =σ(Wrxt +Urht−1 +br)

ĥt = tanh(Whxt +Uh(r t ⊙ht−1)+bh)

ht = (1− zt)⊙ht−1 + zt ⊙ ĥt

where zt is the update gate activation vector, r t is the reset gate activation vector,
and ĥt is the candidate for the new hidden state.

2.2.3. Sequence-to-sequence architectures

Sequence-to-sequence (Seq2Seq) architectures are used to create output se-
quences based on input sequences. These can be, for example, translating the

20

text from one language to another or converting words from audio recordings into
text.

Encoder-Decoder. The basic Encoder-Decoder architecture (Sutskever et al., 2014;
Cho et al., 2014) consists of two titular parts. The encoder is a neural network that
transforms tokens from the input sequence into a fixed-sized vector. The decoder is a
neural network that takes this fixed-sized vector and produces tokens that create the
output sequence. The generation of output tokens ends when the network produces
a special token, often called an End-of-Sequence (EOS) token. Both Sutskever et al.
(2014) and Cho et al. (2014) used LSTMs as encoder and decoder networks.

The basic Encoder-Decoder architectures suffer from the bottleneck problem,
as their encoders produce fixed-length vectors, which make storing all relevant
information for decoding output sequences increasingly difficult with rising input
sequence length. This was alleviated by introducing the attention mechanism
(Bahdanau et al., 2014), allowing the model to focus on more relevant input tokens
when generating the output sequence. This is achieved by calculating the weight
coefficients of all the input hidden states, considering the previous output token or
decoder state with the separate alignment model (learned together with encoder
and decoder), and using those weights during decoding to highlight more important
parts of the input sequence.

Transformer. As recurrent models often take a long time to train, another approach
was proposed by Vaswani et al. (2017), known as the Transformer architecture. It is
not a recurrent architecture, relying on attention and non-recurrent operations. It is
currently the state-of-the-art architecture with the most widespread use in natural
language processing tasks. It is also the base architecture for various LLM models,
including the GPT architectures (Achiam et al., 2023). Beyond NLP, Transformers
achieve great results in many other fields, including computer vision (Ramachandran
et al., 2019) and reinforcement learning (Chen et al., 2021).

2.2.4. Similarity ranking architectures

Metric learning involves optimizing the fixed-length vector representations of
objects, called embeddings, based on a distance metric like Euclidean or Manhattan
distances. One of the applications of metric learning is similarity learning, which
aims to minimize the distance between similar objects (i.e., belonging to the same
category) and maximize the distance between non-similar objects (i.e., from different
categories).

21

Siamese networks. Siamese neural networks (Bromley et al., 1993) are one of
the most common similarity ranking architectures. They consist of an embedder,
a neural network that produces embeddings for objects. However, at least two
embeddings must be prepared for comparison, hence the “Siamese” part. What sets
apart the Siamese neural networks from other architectures is the loss function.

Contrastive loss minimizes the distance if the objects are similar and maximizes
the distance up to a defined margin if the objects are non-similar. It is defined as
follows:

l i, j(θ)= si, j ·d(n(xi;θ),n(x j;θ))+ (1− si, j) ·max{0,m−d(n(xi;θ),n(x j;θ))}

where xi, x j are input objects, n is the embedder parametrized with weights θ, d is
the chosen distance metric, si, j = 1 for similar objects and 0 for non-similar objects,
m is a margin defining the minimum desired distance between non-similar objects,
and l i, j(θ) is the loss function.

Triplet loss utilizes three different objects and is calculated as follows:

l i, j,k(θ)=max{0,d(n(xi;θ),n(x j;θ))−d(n(xi;θ),n(xk;θ))+m}

where xi is called anchor input, x j is called positive input, xk is called negative input,
and m is a margin defining the minimum desired distance between a positive and a
negative pair. Through the triplet loss, the distance between the anchor and positive
inputs is minimized, and at the same time, the distance between the anchor and
negative inputs is maximized.

Prototypical networks. Prototypical networks (Snell et al., 2017) propose a differ-
ent approach to similarity learning by introducing class prototypes. The training
data is split randomly into two subsets for each training episode - support and query.
For every class in the support subset, a class prototype is calculated as a mean vector
of several support embeddings from this class:

pc = 1
k

k∑
i=1

n(sc
i ;θ)

where c is one of the classes, pc is the class prototype, k is the number of objects
used and sc

i are the support objects from class c, and n is the embedder parametrized
with weights θ.

22

The class prototypes are later used as a comparison point for all query embeddings.
The loss function for one episode of training is defined as:

L(θ)= 1
C|Q|

C∑
c=1

|Q|∑
i=1

r(qi, c) ·d(n(qi;θ), pc)+ (1− r(qi, c)) ·max{0,m−d(n(qi;θ), pc)}

where C is the number of support classes, Q is the query subset, qi is the i-th
query object, r(qi, c) = 1 if the i-th query object is of class c, 0 otherwise, d is the
chosen distance metric, and m is the margin defining the minimum desired distance
between the query objects and class prototypes from different classes. One epoch of
prototype network training consists of several episodes with different support and
query subsets.

2.3. Neural network learning

Neural network training aims to minimize the quality index:

q̂(θ)= 1
n

n∑
i=1

qi(θ)

where q̂ is the global loss function (i.e. mean square error, cross-entropy, contrastive
loss), θ are the network weights, qi is the loss function value for the i-th data sample,
and n is the number of samples.

Commonly used learning algorithms utilize the gradient of the loss function
with respect to the network parameters to update the weights. They are known as
first-order methods. With a small enough dataset and network, calculating ∇θ q̂(θ) is
possible in a reasonable time, and a simple gradient descent method can be used.
However, gradient calculation over the whole dataset in one step is infeasible in
most cases.

On-line learning. In on-line learning, the gradient is calculated based on a small
subset of a dataset called a mini-batch. It is assumed that:

q̂(θ)= Eqξ(θ)

∇θ q̂(θ)= E∇θqξ(θ)

where ξ is the mini-batch, and qξ is the loss function calculated on that mini-batch.
This makes the gradient calculated on a mini-batch an unbiased estimator of the
global gradient, which can be used to optimize the weights of the learned network.

Mini-batches should be created to make them cover most of the data samples. A

23

single pass through all mini-batches is called an epoch. On-line learning is usually
finished when the sufficient value of the loss function is reached (usually on a
separate validation dataset), there is no significant improvement in loss value (also
usually on the validation dataset), or the amount of training epochs has reached the
defined limit.

2.3.1. Classic learning methods

Stochastic gradient descent. The simplest on-line learning algorithm is the
stochastic gradient descent (Rosenblatt, 1958). It is defined as follows:

θt+1 = θt −β∇θt qξt(θt)

where β is the learning rate (also called the step size). The learning rate defines how
much of the gradient should be used to update the weights. Low learning rates result
in slow learning, while high learning rates can result in instability of the learning
process and its failure. SGD convergence criteria exist for the learning rate (Robbins
and Siegmund, 1971). However, using them yields low learning rates, so in most
cases, it has to be optimized by the user, as no default value exists. The SGD method
is prone to gradient fluctuation, as it stores no information on previous gradients.
That is, with subsequent mini-batch gradients pointing in different directions, the
network weights may jump from one part of the parameter space to another, causing
spikes in the loss function values and potential instability.

Momentum methods. SGD algorithm can be easily improved by introducing mo-
mentum, which is responsible for gathering gradient changes:

mt =λmt−1 −βgt

θt+1 = θt +mt
(2.1)

where gt is the gradient, mt is the momentum component, and λ is the momentum
decay factor, which dictates the strength of diminishing previous gradient changes
influence on the current weight change. Momentum methods significantly reduce
the gradient fluctuation issue from the SGD method, maintaining the trajectory of
parameter changes through the momentum component.

Two main momentum methods differ in gradient calculation. The classic momen-
tum algorithm (Polyak, 1964) calculates the gradient with respect to the current
parameters:

gt =∇θt qξt(θt)

24

The second method, Nesterov accelerated gradient (NAG) (Nesterov, 1983), calculates
the gradient after shifting the parameters with the momentum component:

gt =∇θt+λmt−1 qξt(θt +λmt−1)

This can be useful in situations when the learning process approaches instability.
In that case, the NAG algorithm can react to it faster, as the gradient calculated
with respect to shifted parameters will take the original parameters away from the
instability.

2.3.2. Adaptive gradient methods

Current state-of-the-art gradient learning methods utilize various gradient adap-
tation techniques to improve the learning process in terms of performance and
stability.

For notation clarity, algebraic operations on vectors in this subsection work in
an element-wise way. For example, x2 produces a vector with squared elements of
vector x.

AdaGrad. AdaGrad (Duchi et al., 2011) collects the sum of all squared gradients
and uses this to adjust the set learning rate, making it different for every network
parameter:

G t =G t−1 + (∇θt qξt(θt))2

θt+1 = θt − β√
G t +ε

∇θt qξt(θt)

where β is the global learning rate, G t is the all square gradients sum, and ε is a
small constant preventing division by zero. With non-growing individual learning
rates, AdaGrad usually ensures a stable training process. However, this sometimes
results in bad training results due to a fast learning rate decrease, thus limiting
network parameter changes.

RMSprop. To prevent an aggressive learning rate decrease, the RMSprop algo-
rithm (Tieleman, 2012) replaced the sum of the squared gradients with exponential
smoothing:

ḡt = γ ḡt−1 + (1−γ)(∇θt qξt(θt))2

θt+1 = θt − βp
ḡt +ε

∇θt qξt(θt)

25

where ḡt is the exponential moving average of squared gradients, and γ is the
smoothing factor. This allows the individual learning rates to change in any direction
based on the received gradients, lowering the learning rate for higher gradients and
increasing it for lower ones, making the training process stable and efficient.

Adadelta. Around the same time as RMSprop, Adadelta was introduced (Zeiler,
2012), also aiming at limiting Adagrad’s aggressive learning rate decrease mecha-
nism:

ḡt = γ ḡt−1 + (1−γ)(∇θt qξt(θt))2

∆θt =−
√
θ̄t−1 +εp
ḡt +ε

∇θt qξt(θt)

θ̄t = γθ̄t−1 + (1−γ)∆θ2
t

θt+1 = θt +∆θt

where ∆θt is the current parameter change, and θ̄t is the exponential moving average
of squared parameter changes. Adadelta used exponential smoothing similar to the
RMSprop algorithm while also including a way of approximating the base learning
rate.

Adam. Another adaptive gradient method is Adam, introduced by Kingma and Ba
(2014). With all previously mentioned adaptive methods based on SGD, Adam is
based on the CM algorithm:

mt = γ1mt−1 + (1−γ1)∇θt qξt(θt)

vt = γ2vt−1 + (1−γ2)(∇θt qξt(θt))2

m̂t = mt

1−γt
1

v̂t = vt

1−γt
2

θt+1 = θt − βp
v̂t +ε

m̂t

(2.2)

where mt,vt are exponentially smoothed gradients and their squares, m̂t, v̂t are their
corrections, and γ1,γ2 are smoothing factors for mt,vt, respectively. mt represents
an estimate of gradient averages, while vt estimates gradient uncentered variance.
Their corrections are mostly needed in early training parts, as both are initialized
with zeros. The influence of these corrections diminishes over time. As with previous
adaptive methods, Adam utilizes individual learning rates, but its updates are based
on momentum rather than single gradients.

26

Adam is one of the most commonly used neural network learning algorithms,
considered state-of-the-art, thanks to its efficient operation compared to other algo-
rithms, even on default hyperparameter values, and fast convergence.

Many modifications of the Adam algorithm are available. The authors of Adam
also introduced AdaMax (Kingma and Ba, 2014), which replaces v calculation with
the infinity norm and skips correction steps. Dozat (2016) introduced Nadam, which
is based on the NAG method, adding similar modifications. Reddi et al. (2019) showed
that methods utilizing squared roots of the exponential moving average of squared
gradients (RMSprop, Adadelta, Adam, Nadam) do not converge on certain tasks,
and proposed an AMSGRAD method, which uses m̂t = mt and v̂t =max{v̂t−1,vt}.

27

3. Day-ahead automated energy trading

Day-ahead energy markets allow their participants to buy and sell energy the day
before the actual energy exchange happens. Their main goal is to balance energy
demand and generation, especially with the volatile renewable energy generation
share rapidly growing in recent years (Çam, 2024). Participants of such markets can
place buy and sell bids for every hour of the next day. In its Polish instance, these
bids must be placed before 10.30 am the day preceding the energy exchange. Also,
the Polish day-ahead energy market sets the minimum volume for bids at 0.1 MWh.

The single bid is defined as:

< type, hour, price, volume>

where type ∈ {buy, sell} is the type of the bid, hour ∈ {0, ...,23} is the hour for which
the bid is placed, price denotes the highest (for buy bid) or lowest (for sell bid) price
for the bid to be realized and volume sets the amount of energy to be transferred
when the bid is executed. The bids are placed without knowing the price of energy at
each hour. After receiving all the bids, the market aggregator sorts them based on
price, determines the hourly supply and demand equilibrium, and sets the market
clearing price for each hour. Buy bids with prices not lower than the market price
and sell bids with prices not higher than the market price are accepted and executed
the next day at market prices.

We assume the trading agent to be a medium-sized entity (like a group of house-
holds or a small power plant) with battery energy storage, optional energy consump-
tion, and optional renewable energy generation capabilities. The goal of this agent
is to generate buy and sell bids for the day-ahead energy market that maximize its
profits (or minimize its costs) by participation in day-ahead trading.

By the bidding strategy, we understand a method of creating bids for the market.
An example of a simple parametric strategy is “buy x MWh of energy at 2 am, sell y

MWh of energy at 4 pm”, as the energy is generally cheap at night and expensive
in the afternoon. The parameters in such strategies can be optimized with various
optimization techniques, including linear programming (Bakirtzis et al., 2007),
genetic (Wen and David, 2001; Changsong et al., 2009) and evolutionary algorithms
(Attaviriyanupap et al., 2005), or stochastic optimization (Liu et al., 2015). While

useful for simple strategies, these optimization techniques utilize little to no external
information and cannot transform it into more meaningful bids. Instead, they rely
on simple parameter optimization to maximize their efficiency on historical data.

For information transformation into bids, we can use reinforcement learning.
There are various applications of reinforcement learning in energy systems (Jogunola
et al., 2020; Yang et al., 2020; Perera and Kamalaruban, 2021), including on-line
energy trading on local energy markets (Jogunola et al., 2021; Okwuibe et al., 2022;
May and Huang, 2023) and bidding in day-ahead energy markets (Dong et al., 2021).

Dong et al. (2021) models trading on both day-ahead and hour-ahead energy
markets as a Markov Decision Process, using RL to optimize the bidding strategy
for profit maximization while managing a system of battery energy storages. They
use a modified Q-Learning approach with Q-function approximation. However, they
use very little external information for their strategy, which limits its ability to
place meaningful bids. They treat one day as an episode, with hours as steps, so
the between-day dynamics of the trading process are not accounted for. They place
only a single bid each hour, with discrete actions, limiting possible volumes and
prices. Because of this, such an approach could not be used in real-life scenarios,
with uncertainty regarding energy prices and volatile energy generation.

3.1. Proposed solution

In publication P1, we proposed a bidding strategy that places a collection of buy
and sell bids for every hour. These collections represent the trading agent’s demand
and supply curves, allowing it to exchange more energy when the price is beneficial.
This would not be possible with a single buy and sell bid, as in this case, the bids
get fully executed or not executed at all.

We define collections of buy and sell bids for every hour. The collection of sell
bids for the hour h = 0, . . . ,23 is defined as

nh
s = ⌊cq exp(ceah)/q0 +1/2⌋

ph,i
s = ch

p exp(ah+24)
(
1+exp(a96)

(
−(2a98 +4)−1 + (i/nh

s)2a98+3
)) (3.1)

The collection of buy bids for the hour h = 0, . . . ,23 is defined as

nh
d = ⌊cq exp(ceah+48)/q0 +1/2⌋

ph,i
d = ch

p exp(ah+72)
(
1+exp(a97)

(
(2a99 +4)−1 − (i/nh

d)2a99+3
)) (3.2)

Here, ak denotes k-th coordinate of the action a, and

30

• ah/ah+48 defines the width of the supply/demand curve, i.e., the number of
sell/buy bids for the hour h,

• ah+24/ah+72 defines the average height at which the supply/demand curve is
located,

• ah+24 +a96 / ah+72 +a97 defines vertical span of the supply/demand curve,
• a98/a99 defines convexity/concavity of the supply/demand curve,
• cq is the quantity scaling factor (we assume its value to be equal to the maximum

hourly production of the installed sources),
• ch

p is the price scaling factor (we assume its value to be equal to the median
price for hour h over the last 28 trading days),

• ce is the quantity exponent scaling factor (we assume ce = 3).
The representation of supply and demand curves defined by Equations 3.1 and 3.2
is presented in Figure 1.

quantity quantity

un
it

pr
ic

e

un
it

pr
ic

e

supply curve

demand curve

c
p exp(a

h+
24 +

a
96)

h

(cqexp(ceah), cpexp(ah+24))h

(cqexp(ceah+48), cpexp(ah+72))h

c
p exp(a

h+
72 +

a
97)

h

Figure 1. Supply and demand defined by the proposed collections of bids approach.

To optimize the collection of bids strategy with RL, we parametrize it with pa-
rameters set by the trading agent’s policy. The policy is in the form of a feed-forward
neural network. The policy translates the available information (observations) into
strategy parameters (actions). We provide the trading agent with relevant energy
trading process information:

• prices of energy at the current day for every hour (24 values) – these are the
prices for the current day, for which the bids were created the day before; the
agent does not know energy prices for the bids currently submitted. This gives
an agent information about the price level at all hours.

31

• one-hot encoded information about the current month (12 values) and the
current day of the week (7 values), giving the agent information about the
current season and the week’s progress.

• cloudiness, wind speed, and temperature forecasts for each hour of the next day
(72 values). They allow the trading agent to estimate its production capabilities,
which can be used to place better bids.

• current relative battery charge (1 value), informing the agent about his current
battery state of charge.

• estimated relative battery charge at midnight (1 value), an estimation of the
battery state of charge at midnight. This estimation is quite accurate, as we
know which bids are accepted for the current day (they were placed on the
previous day), and with weather forecasts, we can estimate the renewable
energy generation.

The reward is defined as r t = 10−3 (
pt − p̄t −ρt

)
, where t represent a single day of

trading operations, pt is the achieved daily balance, p̄t is the reference balance, and
ρt is the regularization penalty. The reference balance p̄t is a daily balance that
would be achieved if the difference between daily produced and consumed energy
was sold or bought at the average market price from that day. The regularization
penalty p̄t prevents the strategy parameters from saturating at their bounds.

We can use any on-line RL algorithms that support continuous observations and
actions to optimize the trading agent’s policy. Through preliminary experiments, we
chose A2C as the best-performing and most stable algorithm.

The assumption of the trading agent’s size means it does not influence mar-
ket prices through his operations, allowing us to utilize historical market data to
represent the trading process in the simulation accurately.

We compare our proposed collection of bids strategy optimized with RL with its
simpler form, also optimized with RL, where only a pair of one buy and sell bid is
placed every hour, and with a simple parametric strategy buying and selling energy
at statistically beneficial hours, optimized with the CMA-ES algorithm (Hansen,
2016). The experiments are run on a simulator of Polish day-ahead energy market
operations. We test these strategies on four scenarios:

• an agent with battery energy storage only,
• an agent with battery energy storage and production capabilities,
• an agent with battery energy storage and consumption capabilities,
• an agent with battery energy storage, production, and consumption capabilities.
The results show that our proposed collection of bids strategy achieves the best

results across all tested strategies in all scenarios. We also present the reasonable

32

behavior of the trained agent, with efficient battery storage control and no need
to make sudden purchases due to bad control. Both the collection and pair of bids
strategies achieve significantly better results than the simple parametric strategy,
which uses no external information. This shows that a bidding strategy powered by
information relevant to the trading process allows it to create better bids, resulting
in higher returns or fewer losses.

Our proposed strategy can be deployed in real-life scenarios due to its generality
and adaptability to the data. We are currently in advanced talks with business
and industry partners about implementing our strategy in real operations. Also,
the solution got the attention of the Polish electricians’ community, being featured
during the annual Polish Electrics Congress (Cieślik, 2024).

33

4. Polish keyword spotting in audio
recordings

Keyword spotting in audio recordings involves finding the occurrences of certain
phrases in audio recordings. This can be useful for faster processing of recordings
in call centers, where the recorded calls are often checked later by independent
auditors.

There are two main approaches to keyword spotting - speech-to-text conversion
and similarity matching. The first one converts the audio recording into text, on
which the keywords are found. While text availability makes keyword spotting much
easier, it requires a significant amount of data (Amodei et al., 2016), which is not
always possible. Also, any conversion errors done on a speech-to-text part cannot be
fixed during keyword spotting. With Polish being a low-resource language, having
significantly fewer data sources available than English, and the research project
oriented towards call center recordings, which are often of low quality and hard to
transcribe, we focus on the second approach.

In audio similarity matching, the audio recording is split into small, possibly
overlapping fragments with a rolling window of set size. These fragments are later
compared with representative examples of the keywords, and if the fragment is
considered similar by a model, a timestamp of its beginning is returned. For audio
similarity models, the data amount requirements are considerably lower, and we can
use few-shot similarity models like Siamese (Bromley et al., 1993) and prototypical
(Snell et al., 2017) networks.

Dataset availability for audio data varies between languages. For English, which
is a high-resource language, there is an abundance of datasets, including word
utterances (Warden, 2018), read sentences (Panayotov et al., 2015; Ardila et al., 2019),
or whole Wikipedia articles (Baumann et al., 2019). For low-resource languages like
Polish, data availability is very limited. For example, as of now, the Common Voice
dataset (Ardila et al., 2019) contains around 16 times fewer hours recorded for the
Polish language than English. In 2020, when the research project was conducted,
this difference was even more significant. While the availability of Polish audio data
sources increases over time, there is still not enough labeled data, especially of word
utterances, to enable the creation of the whole keyword spotting system.

35

4.1. Research project results

In publication P2, we described the keyword spotting research project results.
We utilized various English and Polish datasets. We created most of the Polish audio
data, with both actual and text-to-speech synthetic recordings. Access to the final
keyword spotting evaluation dataset was strictly limited due to the bank’s security
policies, so we tested our solutions on the gathered datasets and tested only the best
promising ones on the bank dataset.

The general keyword spotting pipeline based on audio similarity matching is
presented in Figure 2. We used Siamese (Bromley et al., 1993) and prototypical
(Snell et al., 2017) networks on monolingual and cross-language scenarios with
different training, pattern, and evaluation datasets. We also used the pre-trained
speech embedding model from Google (Lin et al., 2020), with and without fine-tuning
with our datasets and with or without results post-processing. The post-processing
procedure involved standardizing similarity values between keywords and filtering
out excessively spotted keywords.

Input recording

(rolling window)

Fragment

Keyword patterns

Similarity detector
(e.g. Siamese model)

Similar
(occurrence)

Different
(no occurrence)

Model output

Figure 2. The general pipeline of keyword spotting based on audio similarity matching.

The results show that all the tested models can achieve good results in the
monolingual English case, with performance differing mostly based on the training
dataset. In general, smaller training datasets that were more related to the keywords
searched improved the results. The results of the Polish monolingual training were
less than satisfactory, with models failing to detect most of the keywords’ utterances.
In cross-language scenarios, with English training data and Polish pattern and
evaluation data, results improved, although they were still unsatisfactory. The best
results for the Polish datasets were achieved by the pre-trained speech embedding
model, without fine-tuning and with results post-processing, with 0.69 f-score.

The best-performing model on Polish evaluation was chosen to be tested on a
bank evaluation dataset. Here, the performance was disappointing but expected,
with very little precision and less than desired recall, both with and without result
post-processing. However, on keywords with more syllables, like “transakcja” or

36

“reklamacja”, the model achieved performance of around 75% precision, 10−20%

recall. While not enough to fully automate the detection process, creating an audio
similarity matching detector for low-resource language is possible, with it being a
helpful tool for an auditor.

37

5. On-line hyperparameter tuning in
neural network learning algorithms

In neural network learning, hyperparameter tuning is often one of the steps in
improving the network’s performance on a given task. The number of hyperparame-
ters to be optimized varies between the learning algorithms. While some algorithms
provide default values for these hyperparameters, they do not always guarantee good
enough results and must be tuned. In most cases, the most important parameter to
optimize is the learning rate, but others may also significantly influence the resulting
performance of the network.

Most algorithms can be used with hyperparameter schedulers, allowing their
values to change based on a given formula or a set of rules. However, these schedulers
do not account for inside training information, mostly relying on simple measures and
rules. Common learning rate schedules decrease their value over time, depending
on epochs passed or mini-batches processed.

Adaptive gradient methods, presented in Section 2.3.2, can be considered algo-
rithms tuning their base methods’ hyperparameters on a per-weight basis. However,
they require defining base learning rate and smoothing parameters, with their
performance depending on the values of these hyperparameters.

Hyperparameter values can be optimized on preliminary runs using various
approaches, including random search, grid search, and evolutionary algorithms.
However, optimal hyperparameter values can also change during training, requiring
an on-line optimization approach.

5.1. Proposed approach

In publication P3, we introduced Autonomous Stochastic Descent with Momen-
tum, version 2 (ASDM2), a neural network learning algorithm based on the CM
or Adam algorithm, depending on a chosen variant. The proposed method opti-
mizes the base algorithm’s hyperparameters (β and λ in Equation 2.1, β and γ1 in
Equation 2.2) on the fly during the training process. This algorithm refines the
method presented by Wawrzyński (2017). It utilizes various estimators to capture
these hyperparameters’ short-term and long-term influence on the learning process

39

by measuring their impact on the weights and the exponential moving average of
weights. The exponential smoothing of weights represents their trend, with the
smoothing coefficient also optimized on the fly. Hence, this long-term influence can
be measured. Based on these estimators, a quality measure is defined to optimize the
hyperparameters. Training stability and initialization formulas are also provided for
the optimized hyperparameters. The ASDM2 algorithm requires several coefficients
to operate. However, their values do not have to be optimized.

To optimize hyperparameters from Equations 2.1 and 2.2 while maintaining
the desired short-term and long-term trend of network trainable parameters, the
following quality index is proposed

Qt = qξt(θ̄t)+ rT
t (θt −θt−1) (5.1)

where q is the loss function, ξt is the mini-batch, θt are network trainable parameters,
θ̄t =µθ̄t−1 + (1−µ)θt−1 are the network smoothed parameters, with µ ∈ [0,1) optimized
to minimize qξt(θ̄t), and r t =∇θ̄t

qξt(θ̄t) is treated as a constant.
The first term in Equation 5.1 is responsible for loss minimization for the smoothed

parameters. The second term prevents the current network weights from fluctuating
too much, preventing training instability. The ASDM2 algorithm minimizes the
quality index from Equation 5.1 with respect to the optimized hyperparameters from
Equations 2.1 and 2.2 by adjusting their values on the fly.

We compared the proposed algorithm to the popular learning algorithms - CM,
NAG, Adadelta, AdaGrad, and Adam. We ran many hyperparameter settings for the
momentum and adaptive gradient algorithms, and we also included results for the
hyperparameter default values if the method implementation provided them. We
tested the algorithms across ten different shallow neural network classifiers, three
deep dense autoencoders, and a deep convolutional autoencoder. We were interested
in the optimization capabilities of tested algorithms, so we focused on the training
losses they achieved.

The results show that in almost all tested problems, any variant of ASDM2
achieved the best results. Both variants of ASDM2 generally achieved better results
than their base algorithms, performing especially well on deep autoencoders. It can
also be noted that tuning adaptive gradient methods’ hyperparameters significantly
improves their performance over default values, with their optimal values being
orders of magnitude different from each other, depending on the architecture and
task.

As the ASDM2 algorithm utilizes many estimators, its time and memory usage
is higher than its base methods. The proposed method requires around 4 times more

40

memory than the CM method, and its one iteration is around 3-3.5 slower. However,
it can be run only once, without prior hyperparameter optimization, saving much
time. Also, the ASDM2 algorithm, through its recognition of the short-term and
long-term influence of hyperparameters on the learning process, can adapt their
values accordingly, improving the obtained optimization results.

41

6. Simultaneous machine translation

Simultaneous machine translation is a special case of a sequence-to-sequence
transformation. Unlike NMT, which produces translated sequences after going
through the whole input sequence, SMT methods create translated tokens while
going through the input sequence, similar to human interpreters translating on
the fly. This makes neural machine translation architectures like Encoder-Decoder
(Bahdanau et al., 2014) or Transformers (Vaswani et al., 2017) not applicable without
significant modifications. Also, a trade-off exists in SMT between delay and quality -
the more input tokens we process, the more accurate output tokens become, at the
cost of a longer generation delay. This trade-off needs to be optimized, usually with
hyperparameters defining the usually constant delay between reading and writing
tokens.

Ma et al. (2018) and Dalvi et al. (2018) propose modifications to NMT architectures
for SMT tasks. Many SMT methods use reinforcement learning. Imitation learning
is used in Grissom II et al. (2014) and Zheng et al. (2019). Gu et al. (2016) introduced
a two-action framework where an interpreter agent can either read an input token
or write an output token. The framework’s simplicity and generality make it a good
baseline for SMT methods. Alinejad et al. (2018) expanded this framework with the
third action, allowing the agent to predict the next input token instead of reading it.

A delay-quality trade-off in SMT methods is usually controlled through hyper-
parameters. This necessitates finding the right values for such parameters with
different types of sequences.

6.1. Proposed solution

In publication P4, we introduced a two-action SMT system called Reinforcement
Learning for on-line Sequence Transformation (RLST). We model the simultaneous
translation task as POMDP, with the agent receiving only the last read token or the
last written token, depending on the previous action. The policy of this agent is a
recurrent neural network (in the experiments, we used the GRU network, but other
recurrent architectures can also be used). Its input consists of a read token and
a written token from the previous step, with one of them set to the special NULL
value, as only one action can be taken at any time. It produces the potential output

43

token and estimates of discounted rewards sum (returns) for read and write actions.
We specify the training details of our proposed architecture, including optimization
of translation quality and return estimates and weighting their losses, as their
nominal values are of different scales. Including return estimates allows the RLST
agent to control the delay-quality trade-off automatically, as it chooses the action
that gives it the highest return during normal operation.

The architecture of the proposed system is presented in Figure 3. There, RNN

denotes a policy of the agent in the form of the recurrent neural network, xi is the
i-th input token, z j is the j-th output token created from the potential output token
N p

t , NR
t and NW

t are expected returns for READ and WRITE actions, respectively,
and at is the chosen action (READ or WRITE). If at = READ, xi is read, and if at =
WRITE, the token z j is created from N p

t .

xi

RNN

zj

N p
t N R

t N
W
t

at

argmax
delay

Figure 3. Architecture of the RLST system. The black squares represent passing/delaying
xi and outputting/skipping N p

t depending on the action at.

We compare our proposed SMT architecture against NMT architectures, the
Encoder-Decoder (Sutskever et al., 2014; Cho et al., 2014) and the Transformer
(Vaswani et al., 2017), on machine learning task with several language pairs from
Tatoeba and IWSLT2014 English-German pair. The comparison is done using the
BLEU metric (Papineni et al., 2002) on a test subset, with the model to test chosen
based on the highest BLEU score on the validation subset.

The results show that the proposed RLST approach achieves similar results
to state-of-the-art NMT architectures, with significantly better performance on
longer sequences, which implies it can store the context of longer sequences better
than the other architectures. It is worth mentioning that RLST does this while
controlling the delay and with limited input context. This proves that it can create

44

high-quality on-line translations comparable to state-of-the-art NMT solutions while
automatically managing the delay-quality trade-off.

45

7. Deep state transformation in recurrent
neural networks

While creating an SMT system described in publication P4, we noticed the shallow
transformations of its recurrent unit state limited its performance. By enabling the
translating agent to make any non-linear state transformation between each time
step, the context of the already read and written tokens could be better registered,
allowing the agent to achieve even better translation results.

Both LSTM and GRU cells allow only for a shallow, one-layer transformation of
their states from one time step to another. While there are approaches to mitigate
this issue, they either allow only a deep transformation of parts of the network
(Graves, 2013), exhibit gradient propagation problems (Pascanu et al., 2013), or are
very memory-consuming (Zilly et al., 2017).

In publication P5, we introduced the Deep Memory Update cell, which allows
for its state’s arbitrary transformation between time steps. The cell follows the
equations:

< zt, h̄t >= FNN(xt,ht−1)

ht = ht−1 ⊙σ(zt)+φ(h̄t)⊙ (1−σ(zt))

where zt is the memory preservation vector, h̄t is the hidden state change direction
vector, FNN is the feed-forward neural network, σ is the unipolar soft step function
(i.e. the logistic function), and φ is the activation function (i.e. hyperbolic tangent)
Using a feed-forward neural network that satisfies the universal approximation
theorem (i.e., the two-layer perceptron from Section 2.2.1) allows the state to undergo
arbitrary, non-linear transformation at any time.

The DMU cell structure makes it safe from gradient vanishing and exploding
issues, which we proved mathematically. Also, the proposed cell has fewer parame-
ters in its basic configuration than other recurrent architectures, as it only uses one
gate.

To make the training process more stable, we proposed including a positive bias
in the weight initialization of the DMU module to allow it to mostly preserve the
memory state at the beginning of the training. We also introduced a learning rate

scaling method when the module is part of a larger network with the following
equation:

βDMU = β

2n
where β is the learning rate of the whole network, n is the number of layers in
the FNN part of the cell and βDMU is the learning rate for the DMU module. This
scaling makes the DMU module learn slower but more stable as its depth increases,
allowing the rest of the network to learn faster and improving the convergence time.

We test the DMU on several problems, including synthetic tasks from Hochreiter
and Schmidhuber (1997) and problems with real-life data available, including neural
machine translation. The results show that the proposed cell achieved comparable
results to the other state-of-the-art recurrent modules, outmatching them in many
cases. We also provide the learning rate ablation, showing that using our learning
rate scaling method improves the results.

The DMU cell matches the performance of state-of-the-art recurrent architectures
in various problems. In doing so, it is safe from gradient propagation problems, and
its representation is memory-efficient, making it suitable for automating various
tasks that utilize sequential data.

48

8. Final remarks

In this dissertation, we focused on task automation using artificial intelligence
methods. We discussed four different tasks and presented approaches to automating
them, and we also described a novel recurrent cell that can be used as a part of many
task automations.

We used reinforcement learning to automate the trading process on a day-ahead
energy market, enabling the trading agent to submit the collection of buy and sell
bids every hour, allowing it to leverage price fluctuations and maximize its profits.
The resulting bidding strategy can be used in real-life scenarios.

We proposed an SMT architecture learned with reinforcement, that is able to
automatically control the delay of translation to maximize the translation quality
without consuming the whole input sequence. We showed that it is able to match
the performance of the state-of-the-art NMT architectures.

We prepared and tested various audio similarity matching systems for keyword
spotting on a variety of datasets. We showed their strong performance in English
and weak performance in Polish, with longer Polish words able to be identified more
accurately.

We introduced a neural network learning algorithm that optimizes the learning
hyperparameters on the fly by measuring their short-term and long-term influence on
the learning process. The proposed method outperforms popular learning algorithms
on the majority of tested problems.

Lastly, we designed a novel recurrent cell that is able to transform its state in an
arbitrary way. This cell is also not susceptible to gradient propagation issues. We
showed the performance of this cell to often outperform other recurrent networks
while requiring fewer parameters.

In conclusion, we show that artificial intelligence methods can be used in tasks
from various fields, often with very efficient operation and results.

9. Other achievements

Other achievements of the PhD candidate:

Conference presentations
• “Reinforcement Learning for on-line Sequence Transformation”, 2022 17th

Conference on Computer Science and Intelligence Systems (FedCSIS 2022).
• “Widget detection on screenshots using computer vision and machine learning

algorithms”, Photonics Applications in Astronomy, Communications, Industry,
and High-Energy Physics Experiments 2019.

Projects
• Artificial intelligence applications in the energy sector

IX 2023 - currently
Company: IDEAS NCBR
PhD candidate scope of work: Research and development of different AI-based
methods for the energy sector as part of the Learning in Control, Graphs and
Networks team.

• Complete coverage path algorithms for the cleaning robot
II 2023 - XII 2023
Company: United Robots
PhD candidate scope of work: Research and development of complete coverage
path algorithms for the cleaning robot powered by machine learning methods.

• AI-powered fashion stylist
II 2022 - II 2023
Company: QuarticOn
PhD candidate scope of work: Research and development on methods for
AI-powered fashion stylist, technical advisory.

• Recurrent neural networks for processing of sequential and graph
data
I 2021 - XII 2023
Project leader: Paweł Wawrzyński, PhD DSc.

PhD candidate scope of work: Development of a novel method for simultaneous
machine translation and custom recurrent module, manuscript preparation
(publications P2 and P5).

• Simulating and analyzing methods of logistics networks for postal
operators (LAS)
II 2020 - XII 2020
Project leader: Rafał Biedrzycki, PhD DSc.
PhD candidate scope of work: Development of benchmark applications and sim-
ulators, code refactoring and optimization, code results unification in various
programming languages, and benchmark reports.

• Detection of words from a given list of terms in voice recordings to-
gether with an indication of the exact time stamp in order to improve
the complaint handling process
XI 2019 - XI 2020
Project leader: Robert Nowak, PhD DSc.
PhD candidate scope of work: Research and development of keyword spotting
pipeline, preparation of a manuscript (publication P3) based on the project’s
outcome.

• Identification of the GUI input-controls in the computer screenshots
and movies
XII 2018 - XII 2019
Project leader: Robert Nowak, PhD DSc.
PhD candidate scope of work: Research and development of widget detection
methods based on computer vision and machine learning, manuscript prepara-
tion, and presentation.

Social activity
• Presentation for AI science club “Golem” on applications of artificial intelligence

in the energy sector. 09.05.2024

52

Bibliography

Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I., Aleman, F. L., Almeida,
D., Altenschmidt, J., Altman, S., Anadkat, S., et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Adam, M., Wessel, M., and Benlian, A. (2021). Ai-based chatbots in customer service
and their effects on user compliance. Electronic Markets, 31(2):427–445.

Alinejad, A., Siahbani, M., and Sarkar, A. (2018). Prediction improves simultaneous
neural machine translation. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, pages 3022–3027.

Amodei, D., Ananthanarayanan, S., Anubhai, R., Bai, J., Battenberg, E., Case,
C., Casper, J., Catanzaro, B., Cheng, Q., Chen, G., et al. (2016). Deep speech
2: End-to-end speech recognition in english and mandarin. In International
Conference on Machine Learning, pages 173–182. PMLR.

Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R., Schalkwyk, J., Dai,
A. M., Hauth, A., Millican, K., et al. (2023). Gemini: A family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 1.

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais,
R., Saunders, L., Tyers, F. M., and Weber, G. (2019). Common voice: A
massively-multilingual speech corpus. arXiv preprint arXiv:1912.06670.

Attaviriyanupap, P., Kita, H., Tanaka, E., and Hasegawa, J. (2005). New bidding
strategy formulation for day-ahead energy and reserve markets based on evolution-
ary programming. International Journal of Electrical Power & Energy Systems,
27(3):157–167.

Bahdanau, D., Cho, K., and Bengio, Y. (2014). Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473.

Bakirtzis, A. G., Ziogos, N. P., Tellidou, A. C., and Bakirtzis, G. A. (2007). Electricity
producer offering strategies in day-ahead energy market with step-wise offers.
IEEE Transactions on Power Systems, 22(4):1804–1818.

Baumann, T., Köhn, A., and Hennig, F. (2019). The spoken wikipedia corpus col-
lection: Harvesting, alignment and an application to hyperlistening. Language
Resources and Evaluation, 53:303–329.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the
National Academy of Sciences, 38(8):716–719.

Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependen-
cies with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2):157–166.

Bharadiya, J. P., Thomas, R. K., and Ahmed, F. (2023). Rise of artificial intelligence in
business and industry. Journal of Engineering Research and Reports, 25(3):85–103.

Bromley, J., Guyon, I., LeCun, Y., Säckinger, E., and Shah, R. (1993). Signature
verification using a" siamese" time delay neural network. Advances in Neural
Information Processing Systems, 6.

Changsong, C., Shanxu, D., Tao, C., Bangyin, L., and Jinjun, Y. (2009). Energy
trading model for optimal microgrid scheduling based on genetic algorithm. In
2009 IEEE 6th International Power Electronics and Motion Control Conference,
pages 2136–2139. IEEE.

Chen, L., Lu, K., Rajeswaran, A., Lee, K., Grover, A., Laskin, M., Abbeel, P., Srini-
vas, A., and Mordatch, I. (2021). Decision transformer: Reinforcement learning
via sequence modeling. Advances in Neural Information Processing Systems,
34:15084–15097.

Cho, K., Van Merriënboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk, H.,
and Bengio, Y. (2014). Learning phrase representations using rnn encoder-decoder
for statistical machine translation. arXiv preprint arXiv:1406.1078.

Cieślik, S. (2024). Raport Otwarcia IV Kongresu Elektryki Polskiej. Stowarzyszenie
Elektryków Polskich.

Cortes, C. and Vapnik, V. (1995). Support-vector networks. Machine Learning,
20:273–297.

Dalvi, F., Durrani, N., Sajjad, H., and Vogel, S. (2018). Incremental decoding and
training methods for simultaneous translation in neural machine translation.
arXiv preprint arXiv:1806.03661.

Dong, Y., Dong, Z., Zhao, T., and Ding, Z. (2021). A strategic day-ahead bidding
strategy and operation for battery energy storage system by reinforcement learning.
Electric Power Systems Research, 196:107229.

Dozat, T. (2016). Incorporating nesterov momentum into adam.
Duchi, J., Hazan, E., and Singer, Y. (2011). Adaptive subgradient methods for online

learning and stochastic optimization. Journal of Machine Learning Research,
12(7).

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14(2):179–211.
Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of Statistics, pages 1189–1232.
Fujimoto, S., Hoof, H., and Meger, D. (2018). Addressing function approximation

error in actor-critic methods. In International Conference on Machine Learning,

54

pages 1587–1596. PMLR.
Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.
Grissom II, A., He, H., Boyd-Graber, J., Morgan, J., and Daumé III, H. (2014).

Don’t until the final verb wait: Reinforcement learning for simultaneous machine
translation. In Proceedings of the 2014 Conference on empirical methods in natural
language processing (EMNLP), pages 1342–1352.

Gu, J., Neubig, G., Cho, K., and Li, V. O. (2016). Learning to translate in real-time
with neural machine translation. arXiv preprint arXiv:1610.00388.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Inter-
national Conference on Machine Learning, pages 1861–1870. PMLR.

Hansen, N. (2016). The cma evolution strategy: A tutorial. arXiv preprint
arXiv:1604.00772.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
Computation, 9(8):1735–1780.

Hornik, K., Stinchcombe, M., and White, H. (1989). Multilayer feedforward networks
are universal approximators. Neural Networks, 2(5):359–366.

Howard, R. A. (1960). Dynamic Programming and Markov Processes. John Wiley.
Jogunola, O., Adebisi, B., Ikpehai, A., Popoola, S. I., Gui, G., Gačanin, H., and Ci, S.

(2020). Consensus algorithms and deep reinforcement learning in energy market:
A review. IEEE Internet of Things Journal, 8(6):4211–4227.

Jogunola, O., Tsado, Y., Adebisi, B., and Nawaz, R. (2021). Trading strategy in
a local energy market, a deep reinforcement learning approach. In 2021 IEEE
Electrical Power and Energy Conference (EPEC), pages 347–352. IEEE.

Jordan, M. (1986). Serial order: a parallel distributed processing approach. Technical
report, California Univ., San Diego, La Jolla (USA). Inst. for Cognitive Science.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv
preprint arXiv:1312.6114.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D., and
Wierstra, D. (2015). Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971.

Lin, J., Kilgour, K., Roblek, D., and Sharifi, M. (2020). Training keyword spotters
with limited and synthesized speech data. In ICASSP 2020-2020 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing (ICASSP), pages
7474–7478. IEEE.

55

Liu, G., Xu, Y., and Tomsovic, K. (2015). Bidding strategy for microgrid in day-ahead
market based on hybrid stochastic/robust optimization. IEEE Transactions on
Smart Grid, 7(1):227–237.

Ma, M., Huang, L., Xiong, H., Zheng, R., Liu, K., Zheng, B., Zhang, C., He, Z., Liu,
H., Li, X., et al. (2018). Stacl: Simultaneous translation with implicit anticipa-
tion and controllable latency using prefix-to-prefix framework. arXiv preprint
arXiv:1810.08398.

May, R. and Huang, P. (2023). A multi-agent reinforcement learning approach
for investigating and optimising peer-to-peer prosumer energy markets. Applied
Energy, 334:120705.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., and
Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning.
In International Conference on Machine Learning, pages 1928–1937. PMLR.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv
preprint arXiv:1312.5602.

Nesterov, Y. (1983). A method for solving the convex programming problem with
convergence rate o (1/k2). In Dokl. akad. nauk Sssr, volume 269, page 543.

Okwuibe, G. C., Bhalodia, J., Gazafroudi, A. S., Brenner, T., Tzscheutschler, P., and
Hamacher, T. (2022). Intelligent bidding strategies for prosumers in local energy
markets based on reinforcement learning. IEEE Access, 10:113275–113293.

Panayotov, V., Chen, G., Povey, D., and Khudanpur, S. (2015). Librispeech: an asr
corpus based on public domain audio books. In 2015 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), pages 5206–5210. IEEE.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002). Bleu: a method for
automatic evaluation of machine translation. In Proceedings of the 40th annual
meeting of the Association for Computational Linguistics, pages 311–318.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recur-
rent neural networks. In International Conference on Machine Learning, pages
1310–1318. Pmlr.

Perera, A. and Kamalaruban, P. (2021). Applications of reinforcement learning in
energy systems. Renewable and Sustainable Energy Reviews, 137:110618.

Polyak, B. (1964). Some methods of speeding up the convergence of iteration methods.
USSR Computational Mathematics and Mathematical Physics, 4(5):1–17.

Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., and Shlens, J.
(2019). Stand-alone self-attention in vision models. Advances in Neural Informa-
tion Processing Systems, 32.

Rashid, T., Samvelyan, M., De Witt, C. S., Farquhar, G., Foerster, J., and Whiteson, S.

56

(2020). Monotonic value function factorisation for deep multi-agent reinforcement
learning. Journal of Machine Learning Research, 21(178):1–51.

Reddi, S. J., Kale, S., and Kumar, S. (2019). On the convergence of adam and beyond.
arXiv preprint arXiv:1904.09237.

Robbins, H. and Siegmund, D. (1971). A convergence theorem for non negative almost
supermartingales and some applications. In Optimizing Methods in Statistics,
pages 233–257. Elsevier.

Robinson, A. J. and Fallside, F. (1987). The utility driven dynamic error propaga-
tion network, volume 11. University of Cambridge Department of Engineering
Cambridge.

Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386.

Rummery, G. A. and Niranjan, M. (1994). On-line Q-learning using connectionist sys-
tems, volume 37. University of Cambridge, Department of Engineering Cambridge,
UK.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Snell, J., Swersky, K., and Zemel, R. (2017). Prototypical networks for few-shot
learning. Advances in Neural Information Processing Systems, 30.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V., Jaderberg, M.,
Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., et al. (2017). Value-decomposition
networks for cooperative multi-agent learning. arXiv preprint arXiv:1706.05296.

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to sequence learning with
neural networks. Advances in Neural Information Processing Systems, 27.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Tieleman, T. (2012). Lecture 6.5-rmsprop: Divide the gradient by a running average
of its recent magnitude. COURSERA: Neural networks for machine learning,
4(2):26.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M.-A., Lacroix, T., Rozière,
B., Goyal, N., Hambro, E., Azhar, F., et al. (2023). Llama: Open and efficient
foundation language models. arXiv preprint arXiv:2302.13971.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
Ł., and Polosukhin, I. (2017). Attention is all you need. Advances in Neural
Information Processing Systems, 30.

Warden, P. (2018). Speech commands: A dataset for limited-vocabulary speech
recognition. arXiv preprint arXiv:1804.03209.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s

57

College, Cambridge, United Kingdom.
Wawrzyński, P. (2017). Asd+ m: Automatic parameter tuning in stochastic optimiza-

tion and on-line learning. Neural Networks, 96:1–10.
Wen, F. and David, A. (2001). Strategic bidding for electricity supply in a day-ahead

energy market. Electric Power Systems Research, 59(3):197–206.
Williams, R. J. (1992). Simple statistical gradient-following algorithms for connec-

tionist reinforcement learning. Machine Learning, 8:229–256.
Yang, T., Zhao, L., Li, W., and Zomaya, A. Y. (2020). Reinforcement learning in

sustainable energy and electric systems: A survey. Annual Reviews in Control,
49:145–163.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint
arXiv:1212.5701.

Zhang, Q., Lu, J., and Jin, Y. (2021). Artificial intelligence in recommender systems.
Complex & Intelligent Systems, 7(1):439–457.

Zheng, B., Zheng, R., Ma, M., and Huang, L. (2019). Simpler and faster learning of
adaptive policies for simultaneous translation. arXiv preprint arXiv:1909.01559.

Zilly, J. G., Srivastava, R. K., Koutnık, J., and Schmidhuber, J. (2017). Recurrent
highway networks. In International Conference on Machine Learning, pages
4189–4198. PMLR.

Çam, E. (2024). Electricity 2024 – analysis and forecast to 2026. Technical report,
International Energy Agency.

58

Appendices

59

A. List of Abbreviations

A2C – Advantage Actor-Critic
AI – Artificial Intelligence
ASDM2 – Autonomous Stochastic Descent with Momentum, version 2
BPTT – Backpropagation Through Time
CM – Classic Momentum
DDPG – Deep Deterministic Policy Gradient
DMU – Deep Memory Update
DQN – Deep Q-Network
EOS – End of Sequence
FNN – Fully-connected neural network
FOMDP – Fully Observable Markov Decision Process
GPT – Generative Pre-trained Transformer
GRU – Gated Recurrent Unit
LLM – Large Language Model
LSTM – Long Short-Term Memory
MDP – Markov Decision Process
NAG – Nesterov Accelerated Gradient
NLP – Natural Language Processing
NMT – Neural Machine Translation
POMDP – Partially Observable Markov Decision Process
PPO – Proximal Policy Optimization
ReLU – Rectified Linear Unit
RL – Reinforcement Learning
RLST – Reinforcement Learning for on-line Sequence Transformation
RNN – Recurrent Neural Network
SAC – Soft Actor-Critic
Seq2seq – Sequence-to-sequence
SGD – Stochastic Gradient Descent
SMT – Simultaneous Machine Translation
SVM – Support Vector Machine
TD3 – Twin Delayed Deep Deterministic Policy Gradient
VAE – Variational Autoencoder

B. List of Publications

B.1. Reinforcement learning meets
microeconomics: Learning to designate
price-dependent supply and demand for
automated trading

Title Reinforcement learning meets microeconomics:
Learning to designate price-dependent supply and demand for automated trading

Authors Łukasz Lepak, Paweł Wawrzyński

Conference
(accepted for publication)

European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases 2024

(ECML PKDD 2024)

Year 2024

Ministerial score 140

62

Reinforcement learning meets microeconomics:
Learning to designate price-dependent

supply and demand for automated trading

Łukasz Lepak1,2 (�) and Paweł Wawrzyński2

1 Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
lukasz.lepak.dokt@pw.edu.pl

2 IDEAS NCBR, Chmielna 69, 00-801 Warsaw, Poland
{lukasz.lepak,pawel.wawrzynski}@ideas-ncbr.pl

Abstract. The ongoing energy transition towards renewable sources increases
the importance of energy exchanges and creates demand for automated trading
tools on these exchanges. Day-ahead exchanges play a prominent role in this
area. Participants in these exchanges place buy/sell bids collections before each
trading day. However, machine learning-based approaches to automated trading
are based on placing a single bid for each time instant. The bid is either executed
or not, depending on the relation between the market price and the bid price. This
is contrary to economic rationality, which usually requires buying more when
the market price is lower and selling more when it is higher. Single bids do not
allow the expression of such preferences. In this paper, we fill this gap and de-
sign a policy that translates the information available to the trading agent into
price-dependent supply and demand curves. Also, we demonstrate how to train
this policy with reinforcement learning and real-life data. Our proposed method
is now being deployed in a real system for energy storage management. Here,
we demonstrate how it performs in four data-driven simulations. The proposed
method outperforms alternatives in all cases.

Keywords: Automated trading · Reinforcement learning · Energy market.

1 Introduction

In 2023, wind and solar energy represented 14.26% of global electricity generation,
after these shares doubled in 5 preceding years [42]. The power of wind and sunlight
reaching the Earth’s surface is, to some extent, random. Therefore, while the rise of
renewable energy sources presents the prospect of cheap and clean energy, it also exac-
erbates the problem of balancing power supply and demand.

In many countries, the main institution that balances volatile electricity supply and
demand is a day-ahead energy market [13,14,27,30]. Every day, agents participating in
this market place their buy and sell bids separately for every hour between 0 am and 11
pm the next day. Market clearing prices are then designated for each of these hours, and
the bids are consequently executed or not, depending on the proposed prices.

Here, we consider an agent that (i) consumes electricity, (ii) produces electricity,
and (iii) has electricity storage. What is of main interest here is a strategy for automated
trading on a day-ahead energy market on behalf of this agent.

63

2 Ł. Lepak and P. Wawrzyński

Reinforcement learning (RL) [32] is a natural tool to optimize a policy of sequen-
tial decision-making in dynamical, stochastic systems that elude modeling. RL has
been applied to optimize strategies of on-line energy trading within local energy mar-
kets [4,15,20,21,24,28], real-time bidding for internet ads [6], stock market trading
[18,41,10,38], power grid control [25,14,1], trading on the day-ahead energy market
[8,9].

In existing studies on RL for automated trading, an action either selects a bid from
a predefined set or directly defines parameters (type, price, and quantity) of a single bid
or a pair (sell and buy) of bids.

The fact that for each bidding, the agent is able to submit only one or two bids is
a serious limitation. Most electronic markets allow their participants to define many bids
for each time interval. By submitting a collection of bids, the participant can define how
much of the commodity he wishes to sell and/or buy, depending on the market price.
The actual trading agents usually take advantage of this possibility since buying more
when the price is low and selling more when the price is high usually results from
economic rationality.

In this paper, we design a strategy that translates the information available to the
trading agent into parameters of the supply and demand curves. These parameters are
then translated into a collection of bids. The number of bids within the collection is vari-
able. This strategy enables the trading agent to behave rationally in an economic sense,
which is not possible when the strategy only produces single bids. We have designed
our strategy with the day-ahead electricity market. However, it can also be applied to
other electronic markets

In this paper, we demonstrate the performance of our proposed automated trading
strategy in several real data-based scenarios of the day-ahead electricity market trading.
The strategy is currently being deployed in a real system for energy storage manage-
ment.

The paper contributes as follows:

– We design a parametric automated trading strategy suitable for electronic markets
with significant lags between bidding and its corresponding transaction. This strat-
egy produces supply and demand curves by means of bid collections of variable
sizes, thereby enabling the trading agent to behave rationally.

– We formalize a framework in which on-line RL can be applied to optimize a policy
on the basis of recorded observations of the external environment without data on
earlier decision-making.

– We apply reinforcement learning to optimize the above strategy and select the best
algorithm for this purpose. The resulting strategy is fitted to the data and ready to
use in real life.

2 Related Work

Automated trading on the electricity market. Research on automated trading on the
electricity market covers various approaches. Some works introduce theoretical frame-
works of bidding strategies [17,5,36]. Many authors propose various forms of paramet-
ric bidding strategies. These strategies are optimized with methods like linear program-

64

Reinforcement learning meets microeconomics 3

ming [3], genetic and evolutionary algorithms [37,2] or stochastic optimization [13,19].
However, as a more complex bidding strategy is expected and a more complex transfor-
mation of observations into bids is required, these techniques become less effective.

With the advent of electricity prosumers, energy microgrids, energy cooperatives,
and flexible price-driven energy consumption, there is an increasing need for automated
decision-making and control in various activities undertaken by the energy market par-
ticipants. Strategies for these agents can be optimized with reinforcement learning. Var-
ious applications of RL in power systems are reviewed in [14,39,26]. The authors of
[23] analyze bidding on a DA energy market as a zero-sum stochastic game played
by energy producers willing to exercise their market power and keep their generators
productive. RL is used there to optimize their bidding strategy. In [35], bidding on a
DA energy market from the point of view of a flexible buyer (who charges a fleet of
electric vehicles) is analyzed. His strategy is optimized with RL. A number of papers is
devoted to peer-to-peer trading with electricity on a local, event-driven energy market,
with RL applied to optimize the behavior of such peers [7,8,4,15,28]. RL and neural
price predictions are used in [20] to optimize the scheduling of home appliances of pri-
vate users. The authors assume that the electricity prices are changing and are known
one hour ahead. The work [4] analyzes a similar setting in which the users also trade
energy with each other. This setting is used in [28] to optimize the user strategies with
multi-agent RL. The authors of [21] optimize peer-to-peer energy microgrid operations
with multi-agent reinforcement learning, with their method generating higher net profits
than simple fixed price biddings. Q-Learning and SARSA algorithms are used in [24]
to create simple bidding strategies and test them on German real-life data.

The authors of [9] consider simultaneous trading on a DA and hour-ahead energy
markets by an energy storage operator as a Markov Decision Process (MDP). The au-
thors use RL to optimize a strategy of bidding on a DA energy market by a battery
energy storage system. They use RL to optimize a strategy of bidding on a DA energy
market by a battery energy storage system (BESS). However, the authors address the dy-
namics of that process only to a limited extent. Consecutive days are separate episodes,
so the between-day dynamics of the market are not accounted for. Discrete actions de-
fine the parameters of the bids. They are not based on external observations such as
weather forecasts. Also, only a single bid can be placed each hour. In the current paper,
we address all of these limitations, which leads to significantly better performance of
our proposed strategy and allows it to be deployed in real-life scenarios.

Automated stock market trading. In this area, the trading agent observes a set of time
series of prices of different assets. The agent makes on-line decisions on buying these
assets at the current prices in anticipation of their price increase or selling them in
anticipation of their price decrease. Because the problem is formalized as an MDP, it is
addressed with RL [10,40].

Additional related works are discussed in Appendix A of the supplementary mate-
rial.

65

4 Ł. Lepak and P. Wawrzyński

3 Problem definition

In this paper, we consider automated trading on the commodity markets with lags be-
tween biddings and their corresponding transactions. We specifically focus on the day-
ahead energy market, understanding that other commodity markets could be approached
alike, with some minor variations.

3.1 Day-ahead electricity market

A trading agent is an entity such as a small- or medium-sized consumer of electricity
e.g., a group of households connected together to the power network. We assume that it
may consume electricity randomly, produce electricity with weather-dependent sources
such as solar panels and windmills, and store energy in batteries.

The trading agent participates in the day-ahead energy market. Every day before
10.30 am3 the agent submits bids for 24 separate biddings: for hours 0 am, 1 am, . . . ,
11 pm of the following day. Each bid is defined by the hour, type (sell/buy), price
(per 1 kWh), and quantity (in kWhs). Any number of bids for each hour is acceptable.
Right after the biddings close at 10.30 am, market prices are designated for each hour.
The buy bids with prices higher than or equal to the market price will be executed at
the market price. Likewise, the sell bids with prices lower than or equal to the market
price will be executed at the market price. On the next day, at each hour, the agent
consumes, produces, and transmits the energy to/from the power network according to
its bids being executed. The net energy is transmitted to or released from the energy
storage. When the agent tries to get energy from empty storage or put the energy into
full storage, it actually exchanges it with the market and pays a special fine for that.

The problem is to designate the bids on behalf of the trading agent to maximize the
profit gained (or minimize the cost incurred) from participation in the market.

3.2 Reinforcement learning to bid

We adopt the general framework of reinforcement learning [32]. The objective is to
optimize a policy that translates relevant available information into bids. The said infor-
mation defines the state of the environment. It is relevant for future market prices, e.g.,
weather forecasts or the day of the week. Also, it is relevant to the current situation of
the trading agent and its potential to produce and consume energy, e.g., battery charge
and, again, weather forecasts.

Every day, the trading agent is receives a reward equal to the financial net result of
its bids (and fines). The goal is to optimize the policy to yield the largest possible sums
of future discounted rewards in each environmental state the trading agent encounters.

4 Method

4.1 Analysis

Within traditional microeconomics, we analyze the relation between the amount of
goods the agent sells or buys and the unit price of these goods. If the agent is only able

3 We take details from the specific DA market considered in the experimental study.

66

Reinforcement learning meets microeconomics 5

quantity quantity

un
it

 p
ri

ce

un
it

 p
ri

ce

market price, pm

(qs, ps)
(qd, pd)

supply
curve demand

curve

(qs, pm)

quantity quantity

un
it

 p
ri

ce

un
it

 p
ri

ce

market price, pm

supply

curve demand
curve

(qs, pm)

quantity quantity

un
it

 p
ri

ce

un
it

 p
ri

ce

market price, pm

1(q0, ps)

2(2q0, ps)
3(3q0, ps)

4(4q0, ps)

1(q0, pd) 2(2q0, pd) 3(3q0, pd)

4(4q0, pd)

supply curve

(qs, pm)

demand curve

Fig. 1: Top: Supply and demand defined by a pair of bids; the agents sells qs units at the unit
price of pm. Middle: Nondecreasing supply and nonincreasing demand. Bottom: Nondecreasing
supply and nonincreasing demand as defined by a collection of bids.

67

6 Ł. Lepak and P. Wawrzyński

to express its offered supply and demand in a pair of bids, the agent either sells/buys its
defined quantity or not, depending on whether the market price is lower/higher than its
defined threshold. The supply/demand curves that visualize these relations can be seen
in the top part of Figure 1. To the best of our knowledge, placing a single bid, or a sell-
and-buy pair of bids, at a time has only been considered in the literature of automated
trading.

However, it is folklore of microeconomics [16] that a rational economic agent is
most often willing to sell a higher quantity of commodity when its market price is
higher. Also, the economic agent most likely is willing to buy a higher quantity of com-
modity when its market price is lower. For our considered trading agent, both the above
cases create a lucrative opportunity to sell high and buy cheap. These typical prefer-
ences are depicted in the middle part of Figure 1, in the form of increasing supply curve
and decreasing demand curve. How can the trading agent express such preferences with
bids?

4.2 Price-dependent supply and demand in bids

Let us consider, for a given hour h, a collection of sell bids

⟨sell, h, ph,is , q0⟩, i = 1, . . . , nh
s , ph,is ≤ ph,i+1

s , (1)

where q0 > 0 is a certain constant quantity, nh
s is the number of bids, and ph,is are unit

prices. Let phm be a market price, and integer j be such that

ph,js ≤ phm < ph,j+1
s . (2)

Then, only the first j bids are executed and the bidding agent sells a quantity of jq0 at
the market price phm. The above collection of bids (1) can thus be represented as a non-
decreasing supply curve, similar to that depicted on the left-bottom part of Figure 1.

Any nondecreasing function can be approximated by a piecewise constant step func-
tion. Consequently, any reasonable preferences of selling can be approximately repre-
sented by the collection of bids (1). Moreover, for technical reasons, in most electronic
markets, quantities can only be defined in bids as integer numbers (or as integer mul-
tiples of the minimum tradable quantity). Consequently, any supply curves feasible in
the electronic market is a piecewise constant step function, and it can be represented in
the form (1).

The above reasoning can be repeated, with similar conclusions, for demand. It can
effectively be represented as a collection of bids in the form

⟨buy, h, ph,id , q0⟩, i = 1, . . . , nh
d , ph,id ≥ ph,i+1

d , (3)

where nh
d is the number of bids, and ph,id are unit prices.

4.3 Parametric representation of a collection of bids

In order to apply reinforcement learning to learn to designate collections of bids in the
form (1) and (3), we need a way to translate vectors of predefined dimension into bid

68

Reinforcement learning meets microeconomics 7

collections of variable size. We design this translation as follows. Let the action space
be 100-dimensional, a ∈ [−1, 1]100. Coordinates of a single action define all bids for
the whole day. The collection of sell bids for the hour h = 0, . . . , 23 is given by (1)
with

nh
s = ⌊cq exp(ceah)/q0 + 1/2⌋ (4)

ph,is = chp exp(ah+24)

(
1 + exp(a96)

(
−(2a98 + 4)−1 + (i/nh

s)
2a98+3

))
(5)

The collection of buy bids for the hour h = 0, . . . , 23 is given by (3) with

nh
d = ⌊cq exp(ceah+48)/q0 + 1/2⌋ (6)

ph,id = chp exp(ah+72)

(
1 + exp(a97)

(
(2a99 + 4)−1 − (i/nh

d)
2a99+3

))
(7)

where ak denotes k-th coordinate of the action a, and

– ah/ah+48 defines the width of the supply/demand curve, i.e., the number of sell/buy
bids for the hour h,

– ah+24/ah+72 defines the average height at which the supply/demand curve is lo-
cated,

– ah+24 + a96 / ah+72 + a97 defines vertical span of the supply/demand curve,
– a98/a99 defines convexity/concavity of the supply/demand curve,
– cq — quantity scaling factor (we assume its value equal to the maximum hourly

production of the installed sources),
– chp — price scaling factor (we assume its value equal to the median price for hour

h over the last 28 days),
– ce — quantity exponent scaling factor (we assume ce = 3).

The resulting supply and demand curves are depicted in Figure 2. Note that the above
symbols, except q0, cq, ce, depend on t, but we skip this dependence in the notation.

The supply and demand curves above are designed symmetrically. Thus, let us only
analyze ph,is (5). The term

−(2a98 + 4)−1 + (i/nh
d)

2a98+3 (8)

makes the supply curve an increasing power function with the exponent 2a98 + 3 con-
trolling the convexity/concavity of the curve; for a98 ∈ [−1, 1] the exponent is in the
[1, 5] interval. The component−(2a98+4)−1 makes the average of (8) over i ∈ [0, nh

d]
equal to zero. The term exp(a96) controls a vertical span of the supply curve. The val-
ues of a96 and a98 do not impact the average height at which the supply curve is located,
which is designated only by the term chp exp(ah+24).

The widths and vertical locations of the curves are specified separately for different
hours by their corresponding action coordinates. However, the vertical span of these
curves and their convexity/concavity are specified for all hours by the same action
coordinates a96 . . . a99. This parameter sharing is intended to maintain a low enough
dimensionality of the action space.

69

8 Ł. Lepak and P. Wawrzyński

quantity quantity

un
it

pr
ic

e

un
it

pr
ic

e

supply curve

demand curve
c

p exp(a
h+

24 +
a

96)
h

(cqexp(ceah), cpexp(ah+24))h

(cqexp(ceah+48), cpexp(ah+72))h

c
p exp(a

h+
72 +

a
97)

h

Fig. 2: Supply and demand defined by our proposed collections of bids.

4.4 Bidding policy

In general in reinforcement learning, a policy, π, is a probability distribution of actions
conditioned on states:

at ∼ π(·|st), (9)

where st and at are, respectively, the state and the action at the instant t of discrete
time.4 We adopt a policy in the form

at = g1(st; θ) + ξt ◦ exp(g2(st; θ)), ξt ∼ N (0, I), (10)

where g1 and g2 are two vectors produced by the g neural network which is fed with the
state st and parameterized by the vector θ of trained weights; “◦” denotes the Hadamard
(elementwise) product; ξt denotes random normal noise.

4.5 Bidding policy optimization with reinforcement learning

Participation in the day-ahead market can be naturally modeled as a Markov Decision
Process in which the state, st, of the environment at time t = 1, 2, . . . is a vector
composed of two sub-vectors, uncontrollable variables sut , and controllable variables
sct . The uncontrollable state variables denote external conditions like weather forecasts.
They evolve according to an unknown stationary conditional probability

sut+1 ∼ P (·|sut). (11)

The controllable variables sct are directly determined by the actions at taken and the
uncontrollable state coordinates that is

sct+1 = f(sct , at, s
u
t , s

u
t+1), (12)

4 In Section 4.3, ak denoted k-th coordinate of action and here at denotes action at the time t.

70

Reinforcement learning meets microeconomics 9

where f is known. The key controllable state variable is the power storage charge.
It trivially results from the agent’s bids (actions) and uncontrollable variables: market
prices and the agent’s own energy production and consumption.

The critical assumption that allows us to distinguish uncontrollable and controllable
variables is that the trading agent is small enough not to impact the market prices.
Therefore, we may simulate its bidding and determine whether the bids are executed
based on the recorded market prices. If the agent was large enough to actually impact the
market prices, then this simulation would not be realistic, at least without an elaborate
model of the impact of this agent on the market prices.

Note that the above-defined division of state variables into controllable and uncon-
trollable is unusual. In a typical MDP, we assume that the state changes according to

st+1 ∼ Ps(·|st, at), (13)

where the conditional probability Ps may be quite difficult to analyze and estimate.
Therefore, a strategy of choosing actions cannot be evaluated without bias within a sim-
ulation based on a model of Ps.

Based on a recorded trajectory of uncontrollable states, (sut : t = 1, . . . , T), we
can designate a strategy of selecting actions at based on states st and evaluate this
strategy in a simulation with the record (sut : t = 1, . . . , T) replayed. This valuation
will be an unbiased estimate of the performance of this strategy deployed in reality.
Furthermore, we can replay this record repeatedly and simulate episodes of on-line RL
just using f (12) to designate consecutive values of sct .

In order to optimize the strategy (10), we may use any algorithm of on-line rein-
forcement learning [33] e.g., A2C [22], PPO [31] or SAC [11]. In the experiments be-
low, we used the A2C algorithm, which showed the best stability by far. Our comparison
of RL algorithms is presented in Appendix G of the supplementary material. A training
consists of a sequence of simulated trials in which the trajectory of uncontrollable states
is just replayed from the data, and the corresponding trajectory of controllable states is
designated based on the uncontrollable states, the actions selected, and the function f
(12).

4.6 Alternative bidding strategies

In order to verify our proposed bidding strategy, we compare it to two more intuitive
ones.

Simple arbitrage strategy. Perhaps the simplest conceivable bidding strategy is to buy
energy when it is cheap, keep it in the battery, and sell it when it is expensive. On most
days, the market value of electricity is the lowest at 2 am, and it is the highest at 10 am.
Therefore, our reference simple arbitrage strategy assumes placing the two bids:

⟨buy, 2am,+∞, θ1 − l̂⟩, ⟨sell, 10am,−∞, θ2⟩, (14)

where l̂ is an estimated storage state of charge at 0 am, and θ1, θ2 are optimized param-
eters. We apply the CMA-ES evolutionary algorithm [12] for their optimization.

71

10 Ł. Lepak and P. Wawrzyński

Pair of bids strategy. A simple approach to bidding on the day-ahead electricity market,
which also involves reinforcement learning, is to present just two bids for each hour
h = 0am, . . . , 11pm, namely

⟨buy, h, phd , n
h
dq0⟩, ⟨sell, h, phs , n

h
s q0⟩, (15)

where phd , nh
d , phs and nh

s are defined by an action, a ∈ [−1, 1]96, as follows:

nh
d = ⌊cq exp(ceah+48)/q0 + 1/2⌋, ph,id = chp exp(ah+72), (16)

nh
s = ⌊cq exp(ceah)/q0 + 1/2⌋, ph,is = chp exp(ah+24). (17)

For comparison, see nh
d (6), ph,id (7), nh

s (4), ph,is (5). The collection of bids strategy
introduced in Section 4.2 would be equivalent to (16) and (17), if all buy bids for a
given hour had equal price and all sell bids for a given hour had equal price. In our
simulations, we use the same reinforcement learning setup to train strategies that place
the above pairs of bids and the collections of bids introduced in Section 4.3.

5 Simulations

5.1 Simulation environment

Experiments are conducted using a custom environment simulating day-ahead energy
market operations. This simulator is based on real-life data from the Polish market. It
allows for customization of various market settings, such as a bid creation time, a scale
of the trading agent (defined by the number of households), or its solar and wind en-
ergy generation capabilities. The environment is based on the Gymnasium environment
interface [34], making it compatible with popular reinforcement learning libraries, in-
cluding Stable-Baselines3 [29], which we use as our source of RL algorithms.

We provide details and parameters on the simulation environment, the trading agent’s
energy consumption and production profile, and weather forecast randomization in Ap-
pendices B-E of the supplementary material.

We run our experiments by replaying the events that occurred in the years 2016-
2019. We selected this period as preceding the COVID-19 pandemic, which destabilized
markets. The runs involve replaying original price data and weather data. In order to
diversify every replay and thus avoid overfitting to the data, we randomize weather
forecasts and electricity demand according to their statistical profile.

During the simulation, the trading agent may be forced to buy missing energy or
sell excess energy immediately. It happens when the agent sells or uses energy it does
not have or buys energy it does not have room for. The agent is being penalized for such
events. Immediate buying is realized for double the current market price, and immediate
selling is realized for half the current market price so that the agent has the incentive to
better plan its bids instead of relying on instant buys or sells. Also, we do not include
market entry and transaction fees, as they are fixed costs independent of the bidding
strategy.

72

Reinforcement learning meets microeconomics 11

5.2 Experiments

Reinforcement learning is used to optimize the bidding policy for a collection of bids
parameterized as in Section 4.3, later referred to as COLLECTION. It utilizes data
from 2016 to the third quarter of 2018 as the training set, data from the fourth quarter
of 2018 as the validation set, and data from 2019 as the testing set. The training is done
in randomly generated intervals from the training set, which are 90 days long. Periodi-
cally, evaluation is done on a single validation interval 90 days long. After the training
timesteps budget is depleted, the model for which the highest reward on validation in-
terval was achieved is evaluated on the single testing interval 365 days long. Common
parameters used for the RL experiments are available in Table 2 of the supplementary
material.

The observation of the environment’s state (117 values) is passed to the agent at bid
placing time and contains the following information:

– prices of energy at the current day for every hour (24 values) – these are the prices
for the current day, for which the bids were created the day before; the agent does
not know energy prices for the bids currently submitted,

– current relative battery charge (1 value),
– estimated relative battery charge at midnight (1 value),
– one-hot encoded information about the current month (12 values),
– one-hot encoded information about the current day of the week (7 values),
– cloudiness, wind speed, and temperature forecasts for each hour of the next day (72

values).

Rewards are computed as

rt = 10−3 (pt − p̄t − ρt) , (18)

where pt is the daily profit from selling and buying energy, p̄t is a reference profit,
and ρt is a regularizing penalty. The reference profit p̄t is a daily profit that would be
achieved if the difference between daily produced and consumed energy was sold or
bought at the average market price from that day. The reference profit is not trivial to
achieve since the agent mostly consumes energy when it is expensive and produces
energy when it is cheap. The regularizing penalty

ρt =

dim(at)∑

i=1

[|at,i| > 0.99] (19)

where [condition] equals 1 if the condition is true, else 0, prevents the action coordi-
nates from saturating at their bounds. The effect of regularization on the performance
of tested strategies is presented and discussed in Appendix I of the supplementary ma-
terial.

We compare the collection of bids strategy to the strategy to the alternative strate-
gies presented in Section 4.6. The simple arbitrage strategy is later referred to as AR-
BITRAGE, and the pair of bids strategy is later referred to as PAIR.

We also applied the algorithm from [9], later referred to as FARL, which is a con-
ceptually different approach to optimize a bidding strategy. FARL considers each day

73

12 Ł. Lepak and P. Wawrzyński

a 24-step episode and places a single sell/buy bid at each hour. FARL is based on the
assumption that each bid is placed when market prices for preceding hours are known.
This assumption is wrong for any day-ahead electricity market we are aware of. We
used this algorithm to produce bids for consecutive hours without access to the mar-
ket prices of previous biddings. We fed it with the same training, evaluation, and test
data as discussed above. However, when used this way, it was unable to produce even
remotely reasonable strategy. Implementation details, parameters, and discussion about
the FARL algorithm are provided in Appendix F of the supplementary material.

5.3 Different operation scenarios

We tested the proposed collection of bids strategy in comparison to the alternatives from
Section 4.6 in the following scenarios:

– an agent has an energy storage only (BES),
– an agent has an energy storage and production capabilities (BES+PROD),
– an agent has an energy storage and consumes energy (BES+CON),
– an agent has an energy storage, produces and consumes electricity (ALL).

5.4 Results

Scenario \ strategy ARBITRAGE PAIR COLLECTION Reference
BES 13251.29 ± 6238.36 30791.40 ± 851.31 32826.71 ± 1127.88 0.00
BES+PROD 17578.67 ± 8039.00 28388.18 ± 765.45 29170.47 ± 1630.18 37470.07
BES+CON 3446.76 ± 7042.91 28485.64 ± 667.74 28547.43 ± 1154.93 -45089.87
ALL 16217.54 ± 6677.35 30203.35 ± 644.51 31036.12 ± 1310.28 -7619.80

Table 1: Differences between achieved balances and the reference profit for the tested strategies
in different scenarios; last column contains the reference.

Table 1 presents differences between total profits achieved by tested strategies and
the total reference profit described above; the last column contains the reference. It is
seen that depending on the scenario, the reference varies a lot because the trading agent
either sells the energy produced, buys the energy consumed or does both or neither. The
proposed collection of bids strategy achieved the best profits, beating the pair of bids
strategy in all tested scenarios. The pair of bids strategy achieved reasonable results but
slightly worse than the proposed strategy.

Of all tested scenarios, the collection of bids achieved the best advantage over the
pair of bids strategy in the battery-only scenario. Here, the agent earns money solely
based on bids created, without any production or consumption to include in the bids. It
is noticeable that the collection of bids strategy is able to adapt to these circumstances,
making the biggest buys when the energy price is low and the biggest sells when the
energy price is high, with some additional smaller transactions also happening in benefi-
cial hours. This means that the collection of bids strategy is able to recognize significant
price fluctuations, allowing it to capitalize on occasional prices.

74

Reinforcement learning meets microeconomics 13

In all of the tested scenarios, both strategies were able to adapt to the circumstances,
buying enough energy when only consumption was active and selling surpluses of en-
ergy when only production was active. Immediate transactions due to lack or excess of
energy were, in fact, very rare.

0 23
0.0

1.0

Fig. 3: Mean hourly relative battery charge. Strategy: COLLECTION. Scenario: ALL.

In Figure 3, the mean hourly relative charge for the battery is presented. These were
calculated for the COLLECTION strategy based on the test run that achieved the best
profit. The proposed strategy is able to make the best use of its available capacities, with
smooth transitions between hours, indicative of reasonable bid creation. It is seen that
the battery is charged at night, which means that the agent buys energy when it is cheap.
The battery is discharged at about 10 am, which means that the agent sells energy when
it is the most expensive. The PAIR strategy is generally able to leverage that regularity
and achieve reasonable profits. However, our proposed COLLECTION strategy is also
able to leverage unpredictable variations of prices to the agent’s benefit: It buys more
when the prices are unexpectedly low and sells more when the prices are unexpectedly
high.

The supplementary material attached to this paper contains the following:

– Appendix A - additional related works
– Appendix B - details and parameters of the simulation environment
– Appendix C - model of the trading agent’s energy consumption
– Appendix D - model of the trading agent’s energy production
– Appendix E - model for creating weather forecasts from real weather data
– Appendix F - description of adapting the FARL algorithm [9] to our simulation

environment
– Appendix G - comparison of other RL algorithms (PPO, SAC, TD3) together with

their hyperparameters
– Appendix H - detailed results for the pair of bids strategy
– Appendix I - study of using regularization in the collection of bids and the pair of

bids strategies
– Plots for the collection of bids and the pair of bids strategies with different scenar-

ios.

75

14 Ł. Lepak and P. Wawrzyński

6 Conclusions

In this paper, we have proposed a parametrization of supply and demand curves, which
allows for multiple sell and buy bids at each time, thus introducing increased flexi-
bility and efficiency to automated trading on electronic markets. We have described a
framework for optimization of this parametrized bidding strategy on a day-ahead energy
market based on simulations and real-life data. We have used reinforcement learning to
optimize this strategy and have compared it with different strategies. The proposed col-
lection of bids strategy achieved the best results, getting the highest financial profit
while showing reasonable behavior with battery management and bid placement.

The proposed strategy’s generality and adaptability to data allow it to be deployed
in real life. Indeed, the strategy is now being deployed in a system for energy storage
management.

Data availability. Data resources are available at the following link:
https://github.com/Bestest96/ecml24_rl4trade.

Disclosure of Interests. The authors have no competing interests to declare that are relevant to
the content of this article.

References

1. Antonopoulos, I., Robu, V., Couraud, B., Kirli, D., Norbu, S., Kiprakis, A., Flynn, D.,
Elizondo-Gonzalez, S., Wattam, S.: Artificial intelligence and machine learning approaches
to energy demand-side response: A systematic review. Renewable and Sustainable Energy
Reviews 130, 109899 (2020)

2. Attaviriyanupap, P., Kita, H., Tanaka, E., Hasegawa, J.: New bidding strategy formulation
for day-ahead energy and reserve markets based on evolutionary programming. International
Journal of Electrical Power & Energy Systems 27(3), 157–167 (2005)

3. Bakirtzis, A.G., Ziogos, N.P., Tellidou, A.C., Bakirtzis, G.A.: Electricity producer offering
strategies in day-ahead energy market with step-wise offers. IEEE Transactions on Power
Systems 22(4), 1804–1818 (2007)

4. Bose, S., Kremers, E., Mengelkamp, E.M., Eberbach, J., Weinhardt, C.: Reinforcement learn-
ing in local energy markets. Energy Informatics 4(1), 1–21 (2021)

5. Castellini, M., Di Corato, L., Moretto, M., Vergalli, S.: Energy exchange among heteroge-
neous prosumers under price uncertainty. Energy Economics 104, 105647 (2021)

6. Chen, S., Xu, Q., Zhang, L., Jin, Y., Li, W., Mo, L.: Model-based reinforcement learning
for auto-bidding in display advertising. In: Autonomous Agents and Multiagent Systems
(AAMAS) (2023)

7. Chen, T., Su, W.: Indirect customer-to-customer energy trading with reinforcement learning.
IEEE Transactions on Smart Grid 10(4), 4338–4348 (2018)

8. Chen, T., Su, W.: Local energy trading behavior modeling with deep reinforcement learning.
IEEE access 6, 62806–62814 (2018)

9. Dong, Y., Dong, Z., Zhao, T., Ding, Z.: A strategic day-ahead bidding strategy and opera-
tion for battery energy storage system by reinforcement learning. Electric Power Systems
Research 196, 107229 (2021)

76

Reinforcement learning meets microeconomics 15

10. Gao, S., Wang, Y., Yang, X.: Stockformer: Learning hybrid trading machines with predictive
coding. In: International Joint Conference on Artificial Intelligence (IJCAI). pp. 4766–4774
(2023)

11. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In: International Conference on Machine
Learning (ICML). pp. 1861–1870 (2018)

12. Hansen, N.: The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772 (2016)
13. Iria, J.P., Soares, F.J., Matos, M.A.: Trading small prosumers flexibility in the day-ahead

energy market. In: 2017 IEEE Power & Energy Society General Meeting. pp. 1–5. IEEE
(2017)

14. Jogunola, O., Adebisi, B., Ikpehai, A., Popoola, S.I., Gui, G., Gačanin, H., Ci, S.: Consensus
algorithms and deep reinforcement learning in energy market: A review. IEEE Internet of
Things Journal 8(6), 4211–4227 (2020)

15. Jogunola, O., Tsado, Y., Adebisi, B., Nawaz, R.: Trading strategy in a local energy mar-
ket, a deep reinforcement learning approach. In: 2021 IEEE Electrical Power and Energy
Conference (EPEC). pp. 347–352. IEEE (2021)

16. Kolmar, M.: Principles of Microeconomics. Springer Nature Switzerland AG (2021)
17. Lamont, J.W., Rajan, S.: Strategic bidding in an energy brokerage. IEEE transactions on

power systems 12(4), 1729–1733 (1997)
18. Lee, N., Moon, J.: Transformer actor-critic with regularization: Automated stock trading

using reinforcement learning. In: Autonomous Agents and Multiagent Systems (AAMAS)
(2023)

19. Liu, G., Xu, Y., Tomsovic, K.: Bidding strategy for microgrid in day-ahead market based
on hybrid stochastic/robust optimization. IEEE Transactions on Smart Grid 7(1), 227–237
(2015)

20. Lu, R., Hong, S.H., Yu, M.: Demand response for home energy management using rein-
forcement learning and artificial neural network. IEEE Transactions on Smart Grid 10(6),
6629–6639 (2019)

21. May, R., Huang, P.: A multi-agent reinforcement learning approach for investigating and
optimising peer-to-peer prosumer energy markets. Applied Energy 334, 120705 (2023)

22. Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T.P., Harley, T., Silver,
D., Kavukcuoglu, K.: Asynchronous methods for deep reinforcement learning (2016),
arXiv:1602.01783

23. Nanduri, V., Das, T.K.: A reinforcement learning model to assess market power under
auction-based energy pricing. IEEE transactions on Power Systems 22(1), 85–95 (2007)

24. Okwuibe, G.C., Bhalodia, J., Gazafroudi, A.S., Brenner, T., Tzscheutschler, P., Hamacher, T.:
Intelligent bidding strategies for prosumers in local energy markets based on reinforcement
learning. IEEE Access 10, 113275–113293 (2022)

25. Orfanoudakis, S., Chalkiadakis, G.: A novel aggregation framework for the efficient integra-
tion of distributed energy resources in the smart grid. In: Autonomous Agents and Multiagent
Systems (AAMAS) (2023)

26. Perera, A., Kamalaruban, P.: Applications of reinforcement learning in energy systems. Re-
newable and Sustainable Energy Reviews 137, 110618 (2021)

27. Prabavathi, M., Gnanadass, R.: Energy bidding strategies for restructured electricity market.
International Journal of Electrical Power & Energy Systems 64, 956–966 (2015)

28. Qiu, D., Wang, J., Wang, J., Strbac, G.: Multi-agent reinforcement learning for automated
peer-to-peer energy trading in double-side auction market. In: International Joint Conference
on Artificial Intelligence (IJCAI). pp. 2913–2920 (2021)

29. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-
baselines3: Reliable reinforcement learning implementations. Journal of Machine Learning
Research 22(268), 1–8 (2021)

77

16 Ł. Lepak and P. Wawrzyński

30. Rahimiyan, M., Baringo, L.: Strategic bidding for a virtual power plant in the day-ahead and
real-time markets: A price-taker robust optimization approach. IEEE Transactions on Power
Systems 31(4), 2676–2687 (2015)

31. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy optimiza-
tion algorithms (2017), arXiv:1707.06347

32. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Second edition. The
MIT Press (2018)

33. Sutton, R.S., Singh, S.P., McAllester, D.A.: Comparing policy-gradient algorithms (2001)
34. Towers, M., Terry, J.K., Kwiatkowski, A., Balis, J.U., Cola, G.d., Deleu, T., Goulão, M.,

Kallinteris, A., KG, A., Krimmel, M., Perez-Vicente, R., Pierré, A., Schulhoff, S., Tai, J.J.,
Shen, A.T.J., Younis, O.G.: Gymnasium (Mar 2023). https://doi.org/10.5281/
zenodo.8127026, https://zenodo.org/record/8127025

35. Vandael, S., Claessens, B., Ernst, D., Holvoet, T., Deconinck, G.: Reinforcement learning
of heuristic ev fleet charging in a day-ahead electricity market. IEEE Transactions on Smart
Grid 6(4), 1795–1805 (2015)

36. Vytelingum, P., Ramchurn, S.D., Voice, T.D., Rogers, A., Jennings, N.R.: Trading agents for
the smart electricity grid. In: The Ninth International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2010) (10/05/10 - 14/05/10). pp. 897–904 (2010), https:
//eprints.soton.ac.uk/268361/, event Dates: May 10-14, 2010

37. Wen, F., David, A.: Strategic bidding for electricity supply in a day-ahead energy market.
Electric Power Systems Research 59(3), 197–206 (2001)

38. Yang, M., Zhu, M., Liang, Q., Zheng, X., Wang, M.: Spotlight news driven quantitative
trading based on trajectory optimization. In: International Joint Conference on Artificial In-
telligence (IJCAI). pp. 4930–4939 (2023)

39. Yang, T., Zhao, L., Li, W., Zomaya, A.Y.: Reinforcement learning in sustainable energy and
electric systems: A survey. Annual Reviews in Control 49, 145–163 (2020)

40. Zhong, Y., Bergstrom, Y., Ward, A.: Data-driven market-making via model-free learning. In:
International Joint Conference on Artificial Intelligence (IJCAI). pp. 4461–4468 (2020)

41. Ziyi Xu, Xue Cheng, Y.H.: Performance of deep reinforcement learning for high frequency
market making on actual tick data. In: Autonomous Agents and Multiagent Systems (AA-
MAS) (2022)

42. Çam, E.: Electricity 2024 – analysis and forecast to 2026. Tech. rep., International Energy
Agency (2024)

78

Reinforcement learning meets microeconomics:
Learning to designate price-dependent

supply and demand for automated trading
Supplementary material

Łukasz Lepak1,2 (�) and Paweł Wawrzyński2

1 Warsaw University of Technology, Pl. Politechniki 1, 00-661 Warsaw, Poland
lukasz.lepak.dokt@pw.edu.pl

2 IDEAS NCBR, Chmielna 69, 00-801 Warsaw, Poland
{lukasz.lepak,pawel.wawrzynski}@ideas-ncbr.pl

A Other related work

Automated stock market trading. As asset prices are driven by market news, the trans-
former may be applied to handle this news and impact the transactions [6]. However,
on the energy market, the asset (energy) can not be bought or sold at the current price.
Prices for a whole day are only revealed at the same time after the bidding.

Online auto-bidding on advertising markets. In this area, trading agents are repeatedly
offered an opportunity to show an advertisement to a defined internet user [3,1,4]. The
agents bid, and then the user is presented with the advertisement of the agent that bid
the highest. The problem is for the agent to translate the user’s features into the bidding
price to maximize the expected net utility of the advertising. However, on the energy
market, the agent needs to place a collection of bids at each time, which are interdepen-
dent within each collection and between consecutive collections.

B Simulation environment

Table 1 depicts common environment settings used in our experiments. We set the ac-
tion scheduling time to match the Polish day-ahead energy market. Battery and solar
panel efficiencies reflect the efficiencies of real-life batteries and solar panels. Wind
energy and solar energy limits are tuned so that daily energy production in the envi-
ronment averages around 1 MWh. The number of households is set to 100 to scale the
simulation for a medium-sized manufacturing facility, an energy cooperative, or a small
power plant.

In our experiments, we use real historical data from the following sources:

– energy prices – Polish day-ahead energy market (Fixing I),
– weather data – Polish Meteorology and Water Management Institute,
– average energy consumption – Polish Central Statistical Office.

Common parameters used for the experiments with RL strategies are presented in
Table 2.

79

2 Ł. Lepak and P. Wawrzyński

Action scheduling time 10.30 am
Battery capacity 2 MWh
Battery efficiency 90%
Maximum solar panels’ power 120 kW
Maximum wind turbine power 50 kW
Maximum wind turbine operation speed 11 m/s
Mean household power consumption 224 W
Number of households 100

Table 1: Parameters of the simulation environment used for experiments.

C Energy consumption

Energy consumption for the given hour (Eh
c) is calculated as follows:

Eh
c = n · Eh

c_avg · |1 + ρ| (1)

where Eh
c_avg is the average energy consumption per one household for the given hour,

n is the number of households, and ρ ∼ N (0, 0.03) allows the resulting energy con-
sumption to differ each day while maintaining the average value. Equation (1) is pre-
pared to scale well with the changing number of households.

D Energy production

Solar energy production for the given hour (Eh
s) is based on cloudiness value from the

actual weather data and is calculated as follows:

Eh
s = smax · (2/3)max{− cos(2πh/24)− 0.5 cos(2πd/365), 0} · (1− c/8) (2)

where smax is the maximum solar energy generation, c ∈ {0, 1, ..., 7, 8} is the cloudi-
ness value in Oktas (0 - clear sky, 8 - heavy overcast) taken from the weather data and
d is the day of the year.

Wind energy production for the given hour (Eh
w) is based on the actual wind speed

value from the weather data and is calculated as follows:

Eh
w = wmax ·

ws

wsmax
· [ws ≤ wsmax] (3)

where wmax is the maximum wind energy generation, ws is the wind speed, wsmax is
the maximum wind speed for which the wind turbines are still operational, and [cond] =
1 when cond is true, else 0.

E Weather forecasts model generation

We start each day at 10 am of the previous day in the actual data. For every hour from
11 am of the previous day to 11 pm of the currently forecasted day, we generate the

80

Reinforcement learning meets microeconomics: Supplementary material 3

Algorithm A2C
Timesteps 4 500 000
Evaluation frequency 9 000
Episode length 90
Action space [−1, 1]100

Observation space 117
normalized

Reward space (−∞,∞)

Learning rate (learning_rate) 0.0001
Number of update steps (n_steps) 90
Discount (gamma) 0.9
GAE coefficient (gae_lambda) 0.9
Entropy coefficient (ent_coef) 0.0
Value function coefficient (vf_coef) 0.5
RMSprop as optimizer (use_rms_prop) True
RMSprop epsilon (rms_prop_eps) 0.00001
Use gSDE (use_sde) False
Hidden layers neurons (net_arch) 300
Log standard deviation init (log_std_init) -1
Normalize input (normalize_images) False
Activation function (activation_fn) tanh
Orthogonal initialization (ortho_init) True

Table 2: Parameters of the A2C algorithm used for experiments. Names in brackets are taken
from the Stable-Baselines3 library [5]. Parameters not present in this table use default values.
Neural network architecture is the same for actor and critic networks.

81

4 Ł. Lepak and P. Wawrzyński

forecasts as follows:

ϵt ∼ N (0, σ2/24)

dt =
t∑

i=1

ϵi

xforecast
t = xactual

t + dt

(4)

where σ is an accuracy of a 24-hour forecast, dt is a deviation for index t and xactual
t ,

xforecast
t are actual and forecasted weather for index t, respectively. For cloudiness, we

assume σ = 2 Oktas; for wind speed, we assume σ = 1 m/s, and for temperature we
assume σ = 2 ◦C. Here, t = 0 denotes 10 am of the previous day, and we are interested
in t ∈ [14, 37], i.e., next-day forecasts. Cloudiness forecasts are clipped and projected
to the nearest integers, while wind speed forecasts are clipped to be at least zero.

F FARL

The FARL algorithm from [2] optimizes discrete actions. Thus, in order to use it with
our environment, we performed action discretization in the following way:

– six capacity levels ({0, 1, 2, 3, 4, 5}, denoting the number of batteries we want to

load (for buy bids) or unload (for sell bids)), seven price levels ({0,
chp
3 ,

2chp
3 ,

3chp
3 ,

4chp
3 ,

5chp
3 ,+∞}, where chp is the price scaling factor, equal to the median price for hour h

over the last 28 days), separate bids for buying and selling, which gives 6 ·7 ·2 = 84
different actions. Note that many actions refer to doing nothing, e.g., selling/buying
zero capacity at different prices.

We used observations matching the original paper, which are:

– price from the same hour of the previous day (pp, normalized to range [−1, 1])
– action from the previous hour (at−1, volume normalized to range [−1, 1] (+ for buy

bid, - for sell bid), price normalized to range [−1, 1])
– relative battery states’ estimates at 0 am of the trading day (bt, range [0, 1] for each

battery)
– current hour (t, provided as a one-hot vector with 1 on the current hour index (0−

23), else 0)

Note that in order to produce bids for each hour of the trading day, this algorithm is
run in a 24-step episode. Also, this algorithm does not take into account any external
information, such as weather forecasts. We have also prepared a wrapper for our original
environment, which converts actions and observations and allows the FARL algorithm
to be executed with timesteps representing one hour instead of one day.

Parameters of the FARL algorithm are presented in Table 3. The discount is set
to 1 to match it with the original paper. The number of timesteps is set to match the
number of days seen throughout the training, as the environment for FARL uses hours
as timesteps instead of days.

82

Reinforcement learning meets microeconomics: Supplementary material 5

Timesteps 108 000 000
Evaluation frequency 2400
Episode length 24
Action space 84, discrete
Observation space 32, normalized
Reward space (−∞,∞)

Learning rates (α, β) 0.0001
Discount (γ) 1.0

Exploration rate (ε)
1.0 - 0.1, linear decrease during
10% of timesteps, later constant

Table 3: Parameters of the FARL algorithm used for experiments.

G Comparison of RL algorithms

We tested four RL algorithms: A2C, PPO, SAC, and TD3. Parameters for the A2C
algorithm are in Table 2, and the rest of the algorithms’ parameters are presented in
Tables 4-6. We tested them on the collection of bids strategy on the ALL scenario.
Table 7 presents the results of all tested algorithms. The A2C algorithm achieved the
best results, with PPO being behind but still over the reference profit described in the
main part of the paper. SAC and TD3 algorithms achieved disappointing results, failing
to learn how to bid efficiently on the simulated market. The TD3 algorithm performed
very poorly, resulting in significant money loss.

We interpret the above results as follows. A2C and PPO are based on n-step re-
turns, while SAC and TD3 are based on 1-step returns. n-step returns compensate for
non-Markovian characteristics of the market environment. Also, action is highly multi-
dimensional in the considered problem. Being a purely on-line algorithm, A2C worked
better with such actions than PPO. The latter algorithm performs more than one policy
optimization step based on the collected experience. It is, therefore, not a purely on-line
algorithm.

H Pair of bids strategy

Figure 3 presents the mean hourly relative battery charges from the best run of the pair
of bids strategy. The strategy works reasonably well, buying the energy when it is cheap
and selling it when it is expensive. In that regard, it behaves similarly to the collection
of bids strategy. However, it is not able to benefit from random price variations. This
may be seen in Figure 4, where strategy usually places similar buy and sell thresholds
and amounts at given hours. Because of this, when the price change is significant, the
strategy will either sell or buy the whole requested volume at the beneficial price or do
nothing at all. That is why the collection of bids strategy improves on this approach,
being able to place multiple bids at the same hour and profit from the good price at least
partially.

83

6 Ł. Lepak and P. Wawrzyński

Learning rate (learning_rate) 0.0001
Number of update steps (n_steps) 900
Discount (gamma) 0.9
GAE coefficient (gae_lambda) 0.9
Entropy coefficient (ent_coef) 0.0
Batch size (batch_size) 128
Number of epochs (n_epochs) 10
Clipping parameter (clip_range) 0.2
Advantage normalization (normalize_advantage) True
Use gSDE (use_sde) False
Hidden layers neurons (net_arch) 300
Log standard deviation init (log_std_init) -1
Normalize input (normalize_images) False
Activation function (activation_fn) tanh
Orthogonal initialization (ortho_init) True

Table 4: Parameters of the PPO algorithm used for experiments. Names in brackets are taken
from the Stable-Baselines3 library [5]. Parameters not present in this table use default values.

Learning rate (learning_rate) 0.0001
Discount (gamma) 0.9
Buffer size (buffer_size) 1 000 000
Learning start (learning_starts) 9000
Batch size (batch_size) 256
Polyak coefficient (tau) 0.01
Training frequency (train_freq) 1
Gradient steps (gradient_steps) 1
Entropy coefficient (ent_coef) auto
Target entropy (target_entropy) auto
Use gSDE (use_sde) False
Hidden layers neurons (net_arch) 300
Log standard deviation init (log_std_init) -1
Normalize input (normalize_images) False
Activation function (activation_fn) ReLU

Table 5: Parameters of the SAC algorithm used for experiments. Names in brackets are taken
from the Stable-Baselines3 library [5]. Parameters not present in this table use default values.

84

Reinforcement learning meets microeconomics: Supplementary material 7

Learning rate (learning_rate) 0.0001
Discount (gamma) 0.9
Buffer size (buffer_size) 1 000 000
Learning start (learning_starts) 900
Batch size (batch_size) 256
Polyak coefficient (tau) 0.001
Training frequency (train_freq) 90
Gradient steps (gradient_steps) -1
Policy delay (policy_delay) 2
Target policy noise (target_policy_noise) 0.2
Target noise clip (target_noise_clip) 0.5
Hidden layers neurons (net_arch) 300
Normalize input (normalize_images) False
Activation function (activation_fn) ReLU

Table 6: Parameters of the TD3 algorithm used for experiments. Names in brackets are taken
from the Stable-Baselines3 library [5]. Parameters not present in this table use default values.

A2C 31036.12 ± 1310.28
PPO 24689.69 ± 1454.73
SAC -17677.83 ± 4642.92
TD3 -116953.57 ± 28423.53

Table 7: Differences between achieved balances and the reference profit for all tested RL algo-
rithms on the collection of bids strategy.

I Regularization

In the reward function, we’ve introduced the regularization penalty to prevent the ac-
tion coordinates from saturating at their bounds. If, at a certain learning stage, the agent
learns that a certain coordinate of its action should be as small/large as possible, then
the agent starts to produce its limit value with decreasing amount of exploratory noise.
If, in another learning stage, this limit value is not optimal anymore, the agent is un-
able to find it out. This phenomenon is well known; different environments suffer from
it, more or less. We have adopted regularization as a technique to cope with this phe-
nomenon. Table 8 presents the results of tested strategies with and without this regu-
larization penalty. The performance of the collection of bids strategy degrades slightly,
with bigger uncertainty, while the pair of bids strategy achieves very similar results. The
pair of bids strategy mostly produces sell bids with minimal prices and buy bids with
maximal prices to ensure these bids will be realized. The minimal/maximal prices natu-
rally correspond to saturated action coordinates. Therefore, the strategy does not suffer
from such saturation. However, the collection of bids strategy actually approximates
supply and demand curves, and saturation of some of their determinants degenerates
the curves. This is especially harmful when one of the parameters a96 . . . a99 saturates
since they are shared by each hour of the trading day.

Figure 5 presents the mean hourly relative battery charge from the best run of the
collection of bids strategy without regularization, and Figure 6 presents the parameters

85

8 Ł. Lepak and P. Wawrzyński

of created bids. We can clearly see that the collection of bids strategy without regular-
ization is less stable, however still viable. Figures 7 and 8 present the same data for the
pair of bids strategy without regularization.

COLLECTION_ALL 31036.12 ± 1310.28
COLLECTION_ALL_NOREG 29301.68 ± 2216.16
PAIR_ALL 30203.35 ± 644.51
PAIR_ALL_NOREG 30445.04 ± 1145.73

Table 8: Differences between achieved balances and the reference profit for the collection of bids
strategy and the pair of bids strategy, with and without regularization, for the ALL scenario.

References

1. Chen, S., Xu, Q., Zhang, L., Jin, Y., Li, W., Mo, L.: Model-based reinforcement learning for
auto-bidding in display advertising. In: Autonomous Agents and Multiagent Systems (AA-
MAS) (2023)

2. Dong, Y., Dong, Z., Zhao, T., Ding, Z.: A strategic day-ahead bidding strategy and operation
for battery energy storage system by reinforcement learning. Electric Power Systems Research
196, 107229 (2021)

3. Liu, X., Shen, W.: Auto-bidding with budget and roi constrained buyers. In: International Joint
Conference on Artificial Intelligence (IJCAI). pp. 2817–2825 (2023)

4. Mehta, A.: Auction design in an autobidding setting: Randomization improves efficiency be-
yond vcg. In: ACM Web Conference. pp. 173–181 (2022)

5. Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M., Dormann, N.: Stable-baselines3:
Reliable reinforcement learning implementations. Journal of Machine Learning Research
22(268), 1–8 (2021)

6. Yang, M., Zhu, M., Liang, Q., Zheng, X., Wang, M.: Spotlight news driven quantitative trading
based on trajectory optimization. In: International Joint Conference on Artificial Intelligence
(IJCAI). pp. 4930–4939 (2023)

86

Reinforcement learning meets microeconomics: Supplementary material 9

0 23
0.0

1.0

Fig. 1: Mean hourly relative battery charges in the simulation for the collection of bids strategy.

200004081216200004081216200004081216200004081216200004081216200004
Hour

600

400

200

0

200

400

600

800

1000

Pr
ice

 [P
LN

]

Bids thresholds, COLLECTION_ALL
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

2000040812162000040812162000040812162000040812162000040812162000
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

Vo
lu

m
e

[M
W

h]

Successful bids volumes, COLLECTION_ALL
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 2: The collection of bids strategy. Data was gathered from the test run with the best profit.
Up: Price thresholds. Down: Volumes for successful bids.

87

10 Ł. Lepak and P. Wawrzyński

0 23
0.0

1.0

Fig. 3: Mean hourly relative battery charges in the simulation for the pair of bids strategy.

200004081216200004081216200004081216200004081216200004081216200004
Hour

100

200

300

400

500

600

Pr
ice

 [P
LN

]

Bids thresholds, PAIR_ALL
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6

Vo
lu

m
e

[M
W

h]

Successful bids volumes, PAIR_ALL
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 4: The pair of bids strategy. Data was gathered from the test run with the best profit. Up:
Price thresholds. Down: Volumes for successful bids.

88

Reinforcement learning meets microeconomics: Supplementary material 11

0 23
0.0

1.0

Fig. 5: Mean hourly relative battery charges in the simulation for the collection of bids strategy
without regularization.

200004081216200004081216200004081216200004081216200004081216200004
Hour

600

400

200

0

200

400

600

800

Pr
ice

 [P
LN

]

Bids thresholds, COLLECTION_ALL_NOREG
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

Vo
lu

m
e

[M
W

h]

Successful bids volumes, COLLECTION_ALL_NOREG
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 6: The collection of bids strategy without regularization. Data was gathered from the test run
with the best profit. Up: Price thresholds. Down: Volumes for successful bids.

89

12 Ł. Lepak and P. Wawrzyński

0 23
0.0

1.0

Fig. 7: Mean hourly relative battery charges in the simulation for the pair of bids strategy without
regularization.

200004081216200004081216200004081216200004081216200004081216200004
Hour

0

100

200

300

400

500

600

700

800

Pr
ice

 [P
LN

]

Bids thresholds, PAIR_ALL_NOREG
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1

Vo
lu

m
e

[M
W

h]

Successful bids volumes, PAIR_ALL_NOREG
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 8: The pair of bids strategy without regularization. Data was gathered from the test run with
the best profit. Up: Price thresholds. Down: Volumes for successful bids.

90

Reinforcement learning meets microeconomics: Supplementary material 13

0 23
0.0

1.0

Fig. 9: Mean hourly relative battery charges in the simulation for the collection of bids strategy
with battery, without production and consumption.

200004081216200004081216200004081216200004081216200004081216200004
Hour

400

200

0

200

400

600

800

Pr
ice

 [P
LN

]

Bids thresholds, COLLECTION_BES
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

Vo
lu

m
e

[M
W

h]

Successful bids volumes, COLLECTION_BES
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 10: The collection of bids strategy with battery, without production and consumption. Data
was gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for
successful bids.

91

14 Ł. Lepak and P. Wawrzyński

0 23
0.0

1.0

Fig. 11: Mean hourly relative battery charges in the simulation for the pair of bids strategy with
battery, without production and consumption.

200004081216200004081216200004081216200004081216200004081216200004
Hour

0

100

200

300

400

500

600

700

Pr
ice

 [P
LN

]

Bids thresholds, PAIR_BES
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

2000040812162000040812162000040812162000040812162000040812162000
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Vo
lu

m
e

[M
W

h]

Successful bids volumes, PAIR_BES
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 12: The pair of bids strategy with battery, without production and consumption. Data was
gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for success-
ful bids.

92

Reinforcement learning meets microeconomics: Supplementary material 15

0 23
0.0

1.0

Fig. 13: Mean hourly relative battery charges in the simulation for the collection of bids strategy
with battery and production, without consumption.

200004081216200004081216200004081216200004081216200004081216200004
Hour

400

200

0

200

400

600

800

1000

Pr
ice

 [P
LN

]

Bids thresholds, COLLECTION_BES+PROD
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2

Vo
lu

m
e

[M
W

h]

Successful bids volumes, COLLECTION_BES+PROD
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 14: The collection of bids strategy with battery and production, without consumption. Data
was gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for
successful bids.

93

16 Ł. Lepak and P. Wawrzyński

0 23
0.0

1.0

Fig. 15: Mean hourly relative battery charges in the simulation for the pair of bids strategy with
battery and production, without consumption.

200004081216200004081216200004081216200004081216200004081216200004
Hour

0

100

200

300

400

500

600

Pr
ice

 [P
LN

]

Bids thresholds, PAIR_BES+PROD
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

Vo
lu

m
e

[M
W

h]

Successful bids volumes, PAIR_BES+PROD
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 16: The pair of bids strategy with battery and production, without consumption. Data was
gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for success-
ful bids.

94

Reinforcement learning meets microeconomics: Supplementary material 17

0 23
0.0

1.0

Fig. 17: Mean hourly relative battery charges in the simulation for the collection of bids strategy
with battery and consumption, without production.

200004081216200004081216200004081216200004081216200004081216200004
Hour

400

200

0

200

400

600

800

Pr
ice

 [P
LN

]

Bids thresholds, COLLECTION_BES+CON
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

2000040812162000040812162000040812162000040812162000040812162000
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4

Vo
lu

m
e

[M
W

h]

Successful bids volumes, COLLECTION_BES+CON
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 18: The collection of bids strategy with battery and consumption, without production. Data
was gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for
successful bids.

95

18 Ł. Lepak and P. Wawrzyński

0 23
0.0

1.0

Fig. 19: Mean hourly relative battery charges in the simulation for the pair of bids strategy with
battery and consumption, without production.

200004081216200004081216200004081216200004081216200004081216200004
Hour

0

100

200

300

400

500

600

700

800

900

Pr
ice

 [P
LN

]

Bids thresholds, PAIR_BES+CON
Period: 2019-06-30 - 2019-07-04

Market price
Sell bids prices
Buy bids prices

20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16 20 00 04 08 12 16
Hour

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

Vo
lu

m
e

[M
W

h]

Successful bids volumes, PAIR_BES+CON
Period: 2019-06-30 - 2019-07-04

Sell bids volumes
Buy bids volumes

Fig. 20: The pair of bids strategy with battery and consumption, without production. Data was
gathered from the test run with the best profit. Up: Price thresholds. Down: Volumes for success-
ful bids.

96

B.2. Generalisation gap of keyword spotters in a
cross-speaker low-resource scenario

Title Generalisation gap of keyword spotters in a cross-speaker low-resource scenario

Authors Łukasz Lepak, Kacper Radzikowski, Robert Nowak, Karol J. Piczak

Journal MDPI Sensors

Volume(Issue) 21(24)

Pages 8313

Year 2021

DOI 10.3390/s21248313

Ministerial score 100

97

https://doi.org/10.3390/s21248313

sensors

Article

Generalisation Gap of Keyword Spotters in a Cross-Speaker
Low-Resource Scenario

Łukasz Lepak 1,* , Kacper Radzikowski 1,2, Robert Nowak 1 and Karol J. Piczak 3,*

����������
�������

Citation: Lepak, Ł.; Radzikowski, K.;

Nowak, R.; Piczak, K.J. Generalisation

Gap of Keyword Spotters in

a Cross-Speaker Low-Resource

Scenario. Sensors 2021, 21, 8313.

https://doi.org/10.3390/s21248313

Academic Editors: Leon Rothkrantz

and Chiman Kwan

Received: 20 October 2021

Accepted: 10 December 2021

Published: 12 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Computer Science, Faculty of Electronics and Information Technology, Warsaw University of
Technology, 00-665 Warsaw, Poland; kradziko@fuji.waseda.jp (K.R.); robert.nowak@pw.edu.pl (R.N.)

2 Graduate School of Information, Production and Systems, Waseda University, Tokyo 808-0135, Japan
3 Institute of Computer Science and Computational Mathematics, Jagiellonian University,

30-348 Krakow, Poland
* Correspondence: lukasz.lepak.dokt@pw.edu.pl (Ł.L.); karol.piczak@uj.edu.pl (K.J.P.)

Abstract: Models for keyword spotting in continuous recordings can significantly improve the
experience of navigating vast libraries of audio recordings. In this paper, we describe the development
of such a keyword spotting system detecting regions of interest in Polish call centre conversations.
Unfortunately, in spite of recent advancements in automatic speech recognition systems, human-level
transcription accuracy reported on English benchmarks does not reflect the performance achievable
in low-resource languages, such as Polish. Therefore, in this work, we shift our focus from complete
speech-to-text conversion to acoustic similarity matching in the hope of reducing the demand for
data annotation. As our primary approach, we evaluate Siamese and prototypical neural networks
trained on several datasets of English and Polish recordings. While we obtain usable results in
English, our models’ performance remains unsatisfactory when applied to Polish speech, both after
mono- and cross-lingual training. This performance gap shows that generalisation with limited
training resources is a significant obstacle for actual deployments in low-resource languages. As
a potential countermeasure, we implement a detector using audio embeddings generated with
a generic pre-trained model provided by Google. It has a much more favourable profile when applied
in a cross-lingual setup to detect Polish audio patterns. Nevertheless, despite these promising results,
its performance on out-of-distribution data are still far from stellar. It would indicate that, in spite of
the richness of internal representations created by more generic models, such speech embeddings are
not entirely malleable to cross-language transfer.

Keywords: keyword spotting; speech embedding; siamese networks; automatic speech recognition

1. Introduction
1.1. Keyword Spotting

The goal of a keyword spotter is to detect words of interest in continuous audio
recordings. These recordings can be provided either as prerecorded files of considerable
length (offline processing) or real-time streaming data (online processing). Nowadays,
keyword spotting is more often associated with the latter scenario. The purpose of such a
real-time detector is to catch utterances of a specific wake word provided by the user and
activate a fully functional conversation with a personal digital assistant.

However, offline usage of keyword spotting can be of great help when navigating
vast libraries of audio recordings, pinpointing short regions of interest without the need to
listen through the entire conversation. This feature is especially applicable to the mundane
task of reviewing lengthy call centre recordings.

Sensors 2021, 21, 8313. https://doi.org/10.3390/s21248313 https://www.mdpi.com/journal/sensors

98

Sensors 2021, 21, 8313 2 of 26

1.2. Paper Overview

In this paper, we describe a case study of developing such a proof-of-concept solution
for spotting keywords in call centre recordings of a Polish bank. The system’s goal was
to provide rapid localisation of predefined words of interest when reviewing call centre
conversations with the client, which would help bank employees process clients’ complaints
more efficiently.

1.3. Contributions

Our main contributions in this work can be summarised as follows:

• We create a number of experimental protocols (mono- and cross-lingual) for keyword
spotting in continuous audio recordings.

• We prepare additional Polish datasets for training and evaluation purposes. The
recordings sourced from YouTube clips are available on request.

• We evaluate similarity ranking models (Siamese and prototypical networks) in practi-
cal keyword detection tasks.

• We report the results on using the Google speech embedder on Polish data.
• We compare the embedding spaces generated by different combinations of the models

and training data.
• We highlight the gap between popular keyword classification benchmarks and perfor-

mance in more practical tasks (analysing authentic call centre recordings).

1.4. Approaches to Keyword Spotting

In general, there are two main approaches that we can utilise for creating keyword
spotters: speech-to-text conversion or audio similarity matching. Both of them have their
strengths and weaknesses.

1.4.1. Speech-to-Text Conversion

The first approach consists of a full-scale automatic speech recognition (ASR) system
transforming incoming audio streams into a textual representation. In this way, searching
for regions of interest is converted to a trivial problem of finding words in a text stream.
This approach has several advantages.

First of all, the generated output has a much more desirable form. Instead of only
locating particular keywords, the system provides the user with a complete transcription
of the reviewed conversation. Such an output form can then be utilised for numerous
additional purposes.

A textual representation also helps when extending the dictionary of the system. As
long as the speech recogniser generates a high-quality transcription, localising completely
new keywords is trivial and can be performed ex-post.

Typical ASR systems have another advantage over audio content similarity matching,
as they combine acoustic and language modelling information. Processing whole sentences
enables the model to refine its predictions and eliminate implausible responses based on
the probability estimate of the generated word sequence. Language modelling can thus
help lower the word error rate (WER) in comparison to the processing of words in isolation.

Unfortunately, the ASR-based approach has several drawbacks. For instance, any
errors introduced during the transcription phase are final and cannot be fixed in post hoc
analysis by adjusting the detection threshold. Another considerable drawback of training
a complete ASR system is the data intensity of this process. Various estimates place the
requirements on training data availability at 2000 h of transcribed recordings for a viable
system [1] and as much as 10,000 h for production-quality results [2].

While the high cost of model training on such a scale [2] effectively prohibits any
further experimentation with the baseline systems, it is not the most problematic factor.
Unfortunately, in mid-2021, there were no publicly available resources of transcribed Polish
speech that would remotely meet the required scope of such a project. Consequently, using

99

Sensors 2021, 21, 8313 3 of 26

a complete ASR system is still not a viable option when processing Polish speech, despite
the numerous advantages of this approach.

1.4.2. Audio Similarity Matching

Due to the aforementioned problems with data availability, we have opted for the
second option, i.e., developing a keyword detection system based on the perceptual simi-
larity of acoustic fragments. Figure 1 presents a schematic depiction of this approach. The
main principle of such a system lies in sequentially processing small fragments of an input
recording. Each extracted fragment is then compared to a set of predefined exemplary
patterns representing specific keywords. If a significant similarity is found, the system
reports detection of a given keyword at a particular point in time.

Input recording

(rolling window)

Fragment

Keyword patterns

Similarity detector
(e.g. Siamese model)

Similar
(occurrence)

Different
(no occurrence)

Model output

Figure 1. Keyword detection based on audio similarity matching. This schematic depicts a typical
pipeline. An input recording is processed sequentially with a short rolling window (e.g., 800 ms).
The system compares each extracted fragment to a set of exemplary patterns predefined for each
keyword. The model then outputs a decision based on the distance between the fragment and each
pattern. If the distance is sufficiently small, a keyword occurrence is emitted for a given timestamp.

As our similarity detector, we employ a Siamese neural network model. It is a metric-
learning model that has been widely used in similarity ranking problems and is specifically
tailored to problems where examples of new classes are scarce, i.e., to few-shot learning [3].
We also compare Siamese models with prototypical networks [4], another solution popular
in the domain of few-shot learning.

The main advantage of such similarity-based approaches lies in more moderate data
requirements, both in terms of quantity and quality of annotation. Instead of using de-
tailed transcripts that are costly to procure, we can train detectors by providing pairs of
word utterances with a binary “match”/“no match” label, a much more convenient data
acquisition setup.

Additionally, focusing on acoustic similarity allows for recognition of proper names
that language modelling might filter out due to their rareness. The patterns might even
represent data other than voice, as shown by Wang et al. [5]. By computing similarity in
the domain much closer to the raw data representation, it would be also possible to search
for fragments based on information usually lost during conversion, such as emotion, the
rhythm of speech, and tone of voice. However, in this work, we focus solely on phonetic
matching of keywords.

1.5. Research Hypothesis

Our research hypothesis is that keyword spotting models that employ acoustic sim-
ilarity matching should allow for keyword retrieval from call centre conversations in a
low-resource language setting.

1.6. Research Outcome

Our experiments show that, with a relatively diverse pool of examples used to train the
acoustic embedding model, the performance of acoustic similarity matching is satisfactory
when evaluated on synthetic benchmarks. Unfortunately, while such training resources
are obtainable for the English language, we were unsuccessful in creating an equivalently

100

Sensors 2021, 21, 8313 4 of 26

robust model for Polish speech. This performance gap underlines how problematic it is to
create keyword spotting systems for low-resource languages.

However, as the pattern matching in such systems relies solely on acoustic similarity
metrics, it should be, at least partially, language-agnostic—as evidenced by the results
of Wang et al. [5]. Therefore, a plausible solution would be to train a model on a high-
resource language and use it directly on the low-resource language, hoping that such
perceptual matching will be sufficiently accurate, despite the language difference. To this
end, we perform several experiments by initially training models on various standard
English datasets and using Polish patterns in further detection steps. Unfortunately,
such models exhibit weak generalisation when switching between languages, even when
augmented with additional Polish data during training. This problem could indicate that
the internal representation created by these models is highly specialised and attuned to the
particular dataset.

As a way to potentially overcome this issue, we also evaluate an approach that utilises
more generic speech embeddings created with a model provided by Google [6] that was
pre-trained on 200 million English audio clips from YouTube. Our analysis shows that
this embedder creates a more nuanced internal representation of the keyword classes,
capturing additional variability factors present in the dataset. It is also better at detecting
Polish patterns, despite being trained on non-Polish speech. Although the handicap of an
enormous training dataset definitely helps in the few-shot cross-language setup, the results
are still far from stellar. A final evaluation on out-of-distribution target recordings shows
viability only for a very limited subset of potential Polish keywords.

1.7. Related Works
1.7.1. Keyword Spotting

Since the advent of deep learning models in speech processing, researchers have
proposed numerous variants of such approaches for keyword spotting. Many of these
models have been smaller-footprint versions of typical video and audio processing solu-
tions. Unfortunately, most initial evaluations of models employing convolutional neural
networks [7] and recurrent neural networks [8] used proprietary recordings for training
and validation. More recently, by introducing the Speech Commands dataset [9], Warden
established a popular public framework for benchmarking keyword spotting systems.

The most prevalent evaluation protocol for Speech Commands v1 employs an 80:10:10
split between training, validation, and testing data, selecting 10 of the 30 words in the
dataset as target commands. The remaining 20 words create a single negative category
(“unknown word”), while additional ambient recordings serve as a silent class, resulting in
12 classification options. Standard training data augmentation consists of random shifts
and noise injection.

The baseline method provided by the author [9] attains a top-1 classification accuracy
of 85.4% with a simple convolutional architecture [7] operating on 40-dimensional log-mel
filter bank features. Slightly better performance is achievable with convolutional neural
networks using 40-dimensional MFCC features [10]. By combining a broad hyperparameter
sweep with depthwise separable convolutions, Zhang et al. were able to bring the accuracy
up to 95% even with resource-constrained architectures [11].

In a similar vein, de Andrade et al. [12] applied a recurrent neural attention model to
the task of speech command recognition achieving an accuracy of 94.1% on Speech Com-
mands v1 with 80-band mel spectrograms. Zeng and Xiao [13] reported similar levels for
baseline LSTM/CNN architectures, which they were able to improve up to 96.2% through
the application of BiLSTM layers to a DenseNet model. What is even more noteworthy,
these kinds of results are attainable even with low-footprint models suitable for speech
recognition at the edge with less than 100,000 parameters (96.3% with EdgeSpeechNets [14],
96.1% reported for CNNs with temporal convolution over spectrograms [15], 96.4% with
parametrized sinc-convolutions [16], and 97.5% with a bigger version of MatchboxNet [17]).
When the number of parameters is not an issue, current state-of-the-art approaches can

101

Sensors 2021, 21, 8313 5 of 26

achieve even higher accuracy levels with MoEx (moment exchange) feature regularisation on
wide ResNet models (98.0% with WRN-28-10 consisting of 36.5 million parameters) [18].

Considering these stellar results, it might seem that keyword spotting is a solved
problem. However, the accuracy of classifying isolated excerpts from the Speech Com-
mands dataset might not translate to actual performance when working on continuous
audio streams. Real scenarios involve unknown word boundaries, more variance in noisy
conditions, and a highly imbalanced class distribution between trigger words and back-
ground information. This fact was brought up even in the original Speech Commands
paper [9]. It has shown that a baseline model, with 88.2% accuracy of classifying isolated
words from version 2 of the dataset, detects keywords with a 46.0% true positive rate when
applied to a synthetically generated one-hour audio stream. While some papers were able
to report much more promising results in this area of streaming keyword spotting, they
were either limited to a detection of a single wake-word [19] or used proprietary datasets
of unprecedented scope, e.g., 1 million training utterances of “OK/Hey Google” [20,21]
and recordings of several hundred thousand subjects interacting with Alexa devices [22].

1.7.2. Speech Recognition in Low-Resource Settings

Over the years, many successful approaches to English ASR [2,23–29] have been
proposed in the form of various deep learning models. Unfortunately, these models were
trained on datasets containing hundreds or even thousands of hours of transcribed English
speech. Simple adoption of these techniques to Polish ASR systems is thus impossible.

There were some previous attempts to create speech recognition systems specifically
for the Polish language. However, they are mostly several years old and based on non-
neural network methods. Some examples include systems based on hidden Markov mod-
els [30], k-nearest neighbours [31], and speech n-grams [32]. Results achieved with these
methods are not satisfactory; therefore, they were not considered further in our project.

A recent development in global ASR research is the introduction of models trained
on large amounts of unlabelled data. These methods swap the effort in data collection for
computational time. By analysing vast collections of raw recordings, they can create more
robust and powerful speech representations that can also facilitate knowledge transfer to
low-resource languages.

An example of this approach is the wav2vec 2.0 framework introduced by Face-
book [33]. It uses a contrastive self-supervised learning procedure to create latent speech
representations. After pre-training on unlabelled data, the connectionist temporal classifi-
cation (CTC) loss is used to refine the model further on downstream tasks with labelled
data. The main advantage of this approach is the tremendous drop in the requirements for
data annotation. Wav2vec 2.0 can achieve a WER of 2.9% on LibriSpeech test-clean with
as little as one hour of labelled data. For such an outcome to occur, a high price has to be
paid when training the model. The most performant variant consisting of 24 transformer
blocks needs the equivalent of roughly two GPU years of training on a V100 to process the
53,200 h of LibriVox recordings.

An extension of this concept has led to the introduction of XLSR-53 [34], a large model
pre-trained on 56,000 h of recordings in 53 languages. It has shown remarkable reductions
in phone error rates when evaluated on various languages of the Common Voice dataset,
with as little as one hour of labelled data required for fine-tuning the final model. Based on
these results, XLSR-53 seems to be the most promising approach for speech recognition in
low-resource languages to date. Due to its complexity, recreating such a model requires a
considerable implementation effort and access to a GPU cluster. Unfortunately, Facebook
released the pre-trained model only near the very end of 2020, after the conclusion of
our project’s development. Nevertheless, for future endeavours in Polish ASR, it is an
interesting possibility to explore.

However, in our work, we have opted for the help of a different pre-trained solution.
In 2020, a team from Google Research released a speech embedding model trained on
200 million 2-s audio clips from YouTube [6]. This convolutional model aims to convert an

102

Sensors 2021, 21, 8313 6 of 26

audio stream into a stream of 96-dimensional feature vectors. Each generated embedding
vector encodes speech content in windows of approximately 800 ms, every 80 ms. To ensure
the reusability of these embeddings, the model was pre-trained on an arbitrary set of 5000
keywords split randomly over 125 keyword spotters sharing the embedder backbone. After
40 GPU days of training, the embedding backbone has been released on TensorFlow Hub
for reuse. The authors have shown that these generic embeddings could limit the amount
of data needed for creating a robust Speech Commands keyword classifier. They were also
successful in partially substituting real training data with synthesised speech. Therefore,
we have chosen this approach as a potential solution for our data availability problem.

1.7.3. Voice Datasets

Various voice datasets suitable for speech recognition and keyword spotting tasks
are used for training neural network models. While many datasets are strictly proprietary,
a handful of them are distributed with more permissive licenses.

One of the most popular in this area is the already mentioned Speech Commands
by Google [9]. Its second version consists of 35 different words in English, spoken by
2618 different speakers, totalling 105,829 utterances. The Speech Commands dataset is
available for download from the TensorFlow Datasets catalogue.

Common Voice [35], an initiative of the Mozilla Foundation, is on the way to become
the most significant publicly available dataset of voice recordings. It contains various
sentences read by volunteers in many languages and is freely distributed under the Creative
Commons Zero license. Everyone can contribute to the development of this dataset by
recording their voice through a browser or a mobile phone. The quantity of sentences
varies between languages, with English having the most significant share.

Initially, the dataset incorporated new languages when a sufficient number of record-
ings was amassed. Hence, the Polish version was publicly distributed for the first time only
in Common Voice Corpus 5.1, in the later stages of our project’s timeline. Nevertheless, the
total length of validated recordings, reaching approximately 100 h, would be insufficient
for training a complete ASR system either way. In mid-2021, more than 70 languages are
publicly available. However, the distribution of recordings between languages remains
very uneven.

Common Voice Single Word Target Segment was a spin-off dataset published alongside
Corpus 5.1, resembling an extension of the Speech Commands concept across multiple
languages. It contains recordings of spoken digits, as well as the words yes, no, hey and
Firefox. The number of speakers varies greatly by language.

Another popular voice dataset is LibriSpeech [36]. It is a collection of around 1000 h
of sentences in English. Recordings are annotated on a sentence rather than word level,
making it more suitable for speech recognition tasks than keyword spotting.

The Spoken Wikipedia Corpus [37] is a collection of Wikipedia articles read by volun-
teers. It contains 182 h of word-aligned transcriptions in English, 249 h in German, and 79 h
in Dutch. Based on this dataset, Wang et al. [5] have successfully employed prototypical
networks for few-shot keyword detection, also in a cross-language evaluation. However,
their problem formulation assumed that, in the detection phase, the keyword spotter is
provided with exemplary patterns belonging to the same speaker as the speaker in the
analysed recording. This availability of very similar patterns is in contrast to our project’s
assumptions. We expect keyword searching to function equally well in a cross-speaker
regime, generalising to completely new speakers not encountered in the training set.

When deploying speech recognition models, some problematic aspects concerning
voice datasets have to be considered. For instance, although the datasets described in this
section use permissive licenses, many other datasets may come with limits on their research
and commercial usage.

Another very significant problem is language availability. Numerous datasets are
available in English. However, finding a good dataset in other languages is often not easy,
as they tend to have much less data or insufficient quality. This deficiency makes speech

103

Sensors 2021, 21, 8313 7 of 26

recognition and keyword spotting tasks outside English very difficult. Although several
authors, apart from the Common Voice project [35], have prepared Polish voice corpora,
they are either limited in recording length [38–40], not easily downloadable for offline
use [41,42] or proprietary [43]. A potentially interesting dataset is SNUV (Spelling and
NUmbers Voice database) [44] that contains 220 h of Polish speakers reading numbers and
spelling words. However, due to the lack of complete word utterances (only spelling), its
usability in training keyword spotters might be limited.

2. Materials and Methods

During the development of our keyword spotting system, we have conducted several
experiments with various training and evaluation datasets, both in English and Polish. All
the experiments in keyword detection adhere to the same pattern.

First, we prepare the datasets by preprocessing the recordings into mel spectrograms
and dividing the data into three parts, described in Section 2.1:

• training data—single-word utterances used for training the acoustic similarity model,
• search patterns—keyword examples used as templates for comparison with fragments

of the analysed evaluation recording,
• evaluation recordings—longer recordings used to assess how well the model de-

tects keywords.

Following this step, we train the acoustic similarity model on single-word utterances.
In our work, we consider two different types of models that we train from scratch: a Siamese
convolutional neural network (Siamese) and a prototypical network (Prototypical). We also
use a pre-trained speech embedder (Google) for comparison. Section 2.2 describes in more
detail the architectures of these models and the training procedure.

After training, the similarity models work by calculating distances between a provided
recording fragment and predefined keyword patterns. For each time step, this mode of
operation provides distinct similarity values for each of the analysed keywords.

Therefore, as the last step, we use a detector to aggregate all this information into
actual detection decisions based on the configured similarity threshold level. In this phase,
we also introduce some temporal smoothing and filtering to make the predictions more
robust. We provide more detailed detector configurations in Section 2.3.

2.1. Datasets and Data Preprocessing

The main goal of our system was to detect 22 pre-selected keywords in Polish call
centre recordings provided by our industrial partner. These recordings came as an unla-
belled collection of couple hundred conversations of differing lengths (from minutes to
more than an hour) registered with standard call centre equipment at 8 kHz. Unfortunately,
privacy concerns with this dataset resulted in stringent local access policies that proved to
be problematic in combination with the ongoing pandemic restrictions. Therefore, we could
effectively use this dataset only to evaluate the final system, with potentially significant
domain shift.

In this less than ideal scenario, we had to resort to several other datasets, with different
characteristics, for training and interim validation. Some of the datasets contain real audio
recordings, while others are generated as synthetic mixtures. The original sampling rates of
the datasets are varied, but we initially downsample all data to 8 kHz, which is the sample
rate of the target recordings. We provide specific parameters of spectrogram preprocessing
for each of the model types in Table 1.

104

Sensors 2021, 21, 8313 8 of 26

Table 1. Parameters of mel spectrogram preprocessing for each model type.

Siamese Prototypical Google

Sample rate 8 kHz 8 kHz 16 kHz
Segment duration 0.8 s 0.8 s 0.775 s
Mel bands 40 40 32
FFT window 512 512 400
Hop length 160 160 160
Centring false false false

It is worth noting that the Google model has its processing sample rate set to 16 kHz.
This setting aims to match the original training configuration [6]. However, as all our
source recordings are initially downsampled to 8 kHz, the available information is the same
for all models. Moreover, this discrepancy is also negligible as, effectively, the pre-trained
speech embedder only uses log-mel features up to 3.8 kHz [6].

2.1.1. Training Data

This section provides short descriptions of the training datasets. We use training folds
for creating the similarity model and validation data for interim monitoring. Test folds
either serve as the basis for evaluation mixtures or are discarded. We initially downsample
all recordings to 8 kHz. Where needed, we also refactor the datasets for the purpose of
prototypical training by further splitting the data into query and support subsets by selecting
speakers with a 75:25 ratio. Table 2 presents the aggregated statistics for the datasets.

Table 2. Statistics of the training datasets.

Dataset Language Samples Classes Speakers Acronym

Speech Commands v1 English 64,727 30 1881 SC 1EN
Speech Commands v2 English 105,829 35 2618 SC 2EN
Speech Commands “delta” English 7967 5 663 ∆SCEN
Common Voice Single Word English 26,070 14 3519 CVEN
Common Voice Single Word Polish 898 14 86 CVPL
Spoken Wikipedia Corpus English 429,354 4657 372 SWCEN
Warsaw University of Technology Polish 1058 36 29 WUTPL
Text-to-Speech Polish 39,809 5687 7 TTSPL

Speech Commands (SC 1EN, SC 2EN, ∆SCEN)

Speech Commands datasets [9] are defined as follows: SC 1 contains words from
30 classes, SC 2 is a superset of SC 1 extended to 35 classes, while ∆SC contains words from
the five classes that are present exclusively in SC 2. All recordings contain an utterance
of a single word. We follow the original structure of the dataset by using the pre-defined
data splits.

Common Voice Single Word (CVEN, CVPL)

Common Voice Single Word datasets [35] are available both in English and Polish.
Each recording contains a single word. We prepare the dataset by splitting it into train,
validation, and test folds with a 80:10:10 ratio.

Spoken Wikipedia Corpus (SWCEN)

Spoken Wikipedia Corpus [37] contains English Wikipedia articles read by volunteers.
Based on the provided annotations, we extract single word fragments that fit our constraints:
they have a sample duration between 200 and 1000 ms, a keyword length of at least three
characters, at least five unique speakers for a given keyword, and at least ten samples in
total. We limit the number of samples per single keyword/speaker combination to five
occurrences. We then split the created collection into 80:20 training and validation folds.

105

Sensors 2021, 21, 8313 9 of 26

Warsaw University of Technology (WUTPL)

The Warsaw University of Technology dataset is a small collection of single word
utterances based on our list of target Polish keywords extended with 14 classes with high
acoustic similarity. The word examples are recorded with personal devices by employees
of the Artificial Intelligence Division at the Warsaw University of Technology and the
personnel of mBank SA. The dataset is used exclusively for training purposes.

Text-to-Speech (TTSPL)

The Text-to-Speech keywords dataset contains Polish spoken words generated with
Azure and Google text-to-speech services. We use two forms of this dataset. For pattern
matching, we limit the keywords to the 22 classes of the target evaluation. For training
purposes, we extend the vocabulary with additional words found while scraping the bank’s
website. This process results in a total of 5687 classes generated with seven TTS voices.

Combined Datasets (ALLEN, ALLPL)

Combined datasets, as the name suggests, are composed from the datasets described
earlier. For the English language, we merge Speech Commands v2 (SC 2EN), English
Common Voice Single Word (CVEN) and Spoken Wikipedia Corpus (SWCEN). For the
Polish language, the combined dataset consists of the Polish Common Voice Single Word
(CVPL), Warsaw University of Technology (WUTPL) and Text-to-Speech recordings (TTSPL).

2.1.2. Search Patterns

Herein, we briefly describe the collections of recordings that we use in our experiments
as keyword templates in the matching process. For each keyword, we use 10 recordings
as templates.

Speech Commands (SC 1EN, ∆SCEN)

Speech Commands search patterns are generated directly from the respective SC 1
and ∆SC datasets. For each keyword, we select ten random examples from the datasets’
merged training and validation folds. The datasets consist of 30 and 5 classes, respectively.

Target Keywords (KWPL)

We create these search patterns based on the Warsaw University of Technology and
Text-to-Speech recordings. The dataset contains ten examples for each of the 22 target
keywords, although only 19 keywords are actually present in the evaluation recordings.

2.1.3. Evaluation Recordings

This section describes the datasets we use for evaluation purposes.

Synthetic Mixtures (SC 1EN,mix, ∆SCEN,mix, KWPL,mix)

We create synthetic evaluation recordings by combining the utterances from the
Speech Commands datasets (SC 1EN and ∆SCEN) as a single continuous audio stream. The
utterances come from the respective test folds. In each case, we place 20 keyword samples
per recording with random delays between each occurrence. We generate 50 random
evaluation mixtures in this way. For the Polish language, we generate these mixtures
based on 1136 hand-annotated keyword examples from YouTube audio clips. All these
synthetic mixtures contain only keywords detected in a given scenario, and are merged
into a continuous audio stream by us.

Speech Commands Overlay on VoxCeleb (Semi-Synthetic) (SC 1EN,Vox)

This evaluation dataset consists of Speech Commands keywords overlaid on various
backgrounds in the form of VoxCeleb [45] conversations. For each evaluation recording,
we use a single keyword occurrence and two conversation fragments with a total length of
approximately 15 s. We generate 20 recordings for each keyword.

106

Sensors 2021, 21, 8313 10 of 26

Target Keywords in YouTube Recordings (Authentic) (KWPL,real)

As our most realistic evaluation protocol, we use authentic fragments of continuous
speech extracted from various YouTube audio clips. Each fragment contains at least one tar-
get keyword and lasts from a couple of seconds to more than a minute. We annotated these
fragments by hand. The recordings are separate from the synthetic mixtures (KWPL,mix).
These recordings are real and contain numerous background words which are not the
keywords we wish to detect. In total, we use 344 recordings with 511 keyword occurrences.

Call Centre Target Keywords (CCPL,real)

This dataset was provided by our industrial partner. It consists of several hundred
recordings from the bank’s call centre, with conversation lengths varying from seconds
to hours, sparsely distributed occurrences of keywords and noise typical for call centre
recordings. The recordings are provided in a typical call centre quality, an 8 kHz sample
rate, and are unlabelled. During the project’s time frame, the keyword labelling was
performed for about 20% of the provided recordings. The availability of the dataset was
strictly limited due to stringent privacy regulations, so we only tested our final approaches
on it, as it required much coordination and effort to launch it on the bank’s infrastructure.

2.2. Similarity Ranking Models

In this part, we briefly provide the specifications for our model and training procedures.

2.2.1. Siamese Convolutional Neural Network

As our primary similarity ranking model, we use a Siamese neural network. The
goal of this model is to map pairs of examples into pairs of embedding vectors. During
optimisation, embeddings of examples belonging to the same class are placed close together
in the embedding space.

The network consists of two identical convolutional branches serving as a speech
embedder. In practice, we employ only one instantiation of the convolutional embedder as
both branches are identical clones, with shared parameters. The convolutional embedder
uses a VGG-like architecture, depicted in Figure 2, with four convolutional blocks, two
dense layers, and a linear embedding. Each block combines 3× 3 padded convolutions
with batch normalisation, Leaky ReLU activations, max pooling, and 10% dropout. We
use 32–64–128–64 filters, accordingly. After each dense layer (128 and 256 neurons), we
add batch normalisation, Leaky ReLU, and 10% dropout. The final embedding has an
output size of 128 features. We normalise the input recordings with 10% dropout and
single-channel batch normalisation.

X1

X2

D:
10
%

BN

C:
3×
3,
32

BN
+
LR
eL
U

M
P:
2×
2

D:
10
%

C:
3×
3,
64

BN
+
LR
eL
U

M
P:
2×
2

D:
10
%

C:
3×
3,
12
8

BN
+
LR
eL
U

M
P:
2×
2

D:
10
%

C:
3×
3,
64

BN
+
LR
eL
U

M
P:
2×
2

D:
10
%

Li
ne
ar
:1
28

BN
+
LR
eL
U

D:
10
%

Li
ne
ar
:2
56

BN
+
LR
eL
U

D:
10
%

Li
ne
ar
:1
28

G(X1)

G(X2)

Input EmbeddingsConvolutional blocks Linear blocks

Co
nt
ra
st
iv
e
lo
ss

Figure 2. The architecture of the embedding model. Layer types denoted as: D—dropout, BN—batch
normalisation, C—convolutional, MP—max-pooling, LReLU—LeakyReLU. Both the Siamese and
prototypical models use the same embedder architecture, albeit with different loss functions and
input formulation.

The Siamese model training is based on the contrastive loss, i.e., for pairs of training
examples

〈
Xi, Xj

〉
created with a given selection strategy (〈i, j〉 ∈ P), we calculate the loss

value according to the following formula:

L(W, X, Y) =
1
|P| ∑
〈i,j〉∈P

(
(1−Y〈i,j〉) · DW(Xi, Xj) + Y〈i,j〉 ·max

(
0, m−

√
DW(Xi, Xj)

)2
)

(1)

107

Sensors 2021, 21, 8313 11 of 26

where W specifies the weights of the embedder, Y〈i,j〉 term defines if the examples (Xi, Xj)
are similar (Y〈i,j〉 = 0) or dissimilar (Y〈i,j〉 = 1), DW is the similarity (distance) function
defined for the embeddings

〈
GW(Xi), GW(Xj)

〉
, and m is the margin value. In our case, we

use squared Euclidean distances, i.e.,:

DW(Xi, Xj) =
∥∥GW(Xi)− GW(Xj)

∥∥2
2 (2)

This loss formulation keeps the embeddings of the same class closer together. On the
other hand, the embeddings of different keyword classes are pushed away, so that they do
not fall inside the margin, as illustrated in Figure 3.

margin

Siamese training

X i same class different class

Prototypical training

class prototype support example same class query different class query

Figure 3. Overview of the Siamese and prototypical training approaches. Siamese networks use
a contrastive loss to make pairwise comparisons between examples from the dataset X. Examples
from the same class are attracted to each other, while the examples from different classes are pushed
back if their distance is lower than the defined margin m. The prototypical approach uses additional
support examples S. Their mean vector defines the class prototype. Query examples Q of the same
class are attracted to this prototype, while queries of different classes are pushed back in the same
way as with Siamese training.

We train the model for 100 epochs, using the Adam optimiser with default hyper-
parameters and a learning rate of 0.001, with a contrastive loss margin of 1.0. We use
50,000 training examples per epoch. In each epoch, we generate 200 training episodes,
consisting of 25 classes per episode and 10 samples per class. Our pair selection procedure
uses the hard negative variant, i.e., we first create all possible positive pairs (matching
keywords) from the samples in the current episode, and then we generate an equal number
of negative pairs selecting examples with the smallest distances.

2.2.2. Prototypical Network

In prototypical network experiments, we use the same embedder architecture as in
Section 2.2.1. The main difference between the Siamese and prototypical approaches lies
in the introduction of class prototypes. In Siamese models, we calculate the distances for
similar/dissimilar pairs of individual examples from the dataset, whereas prototypical
networks divide the training data into support (S) and query (Q) subsets. In each episode of
training, a class prototype is created for each of the C selected classes by computing the
mean value of the K vectors from the support subset:

Sc =
1
K

K

∑
i=1

Sci , (3)

where Sc denotes support examples of class c. The pair comparison is then performed
between such class prototypes and all query examples selected in the given episode,
resulting in a loss function:

L(W, S, Q, Y, C) =
1

C|Q|
C

∑
c=1

|Q|
∑
i=1

(
(1−Yci) · DW(Sc, Qi) + Yci ·max

(
0, m−

√
DW(Sc, Qi)

)2
)

,

(4)
where Yci defines if the query example Qi is of the same class c as the prototype Sc (Yci = 0)
or different (Yci = 1). A more intuitive depiction of this procedure is presented in Figure 3.

108

Sensors 2021, 21, 8313 12 of 26

Using this loss formulation, we train the prototypical model for 200 epochs comprising
100 episodes each, by optimising the prototypical loss with squared Euclidean distances
and a margin of 1.0. In each prototypical training episode, we take 5 support samples and
15 query samples per class. Each episode consists of 25 classes. This setup results in the
same total number of parameter updates for the Siamese and prototypical approaches.

2.2.3. Google Speech Embedder

In the experiments involving the Google speech embedder, we use the pre-trained
model provided as version 1 on the TensorFlow Hub (https://tfhub.dev/google/speech_
embedding/1, accessed on 10 December 2021). When fine-tuning the network, we use the
same training approach as in Section 2.2.1, but with 50 epochs and 10 classes per episode.

2.3. Detector Settings

Using the similarity models described in Section 2.2, we generate distances between
consecutive fragments of the analysed recording and each of the provided keyword tem-
plates (we use 10 templates per keyword class). This way, we obtain multiple values for
each single time step, telling us how closely the current fragment resembles these various
patterns. To aggregate such data into more meaningful detection decisions, we use various
detection policies that we briefly describe in this section.

2.3.1. Common Detection Pipeline

In most of the experiments, we use the same detection pipeline. We analyse each frame
of the recording, i.e., we employ a step size of 1. The actual frame size in milliseconds is
determined by the spectrogram processing settings defined in Table 1. We then transform
the generated distances with a median filter with a window length of 5 frames, obtaining
smoothed similarity scores for each search pattern.

Based on these scores, we find the lowest average across all the analysed classes. If the
average score falls below the threshold value defined for a given policy, we emit a detection
marker for a given keyword at this particular time step. These marker emissions are then
smoothed with a median filter applied across 15 frames.

Finally, if any keyword generates a continuous sequence of markers exceeding our
minimum length of 25 consecutive frames, we return a detection at a given time step. We
also introduce a minimal distance of 10 frames between two consecutive occurrences of the
same keyword.

When evaluating the results of the system, we count the detection as a true positive if
it falls at a time step representing the middle of the keyword occurrence, with a collar of 1 s.
We adjust the policy threshold values based on the specifics of each model. For instance,
for the Siamese model, we evaluate all values from 0 to 1 with a step size of 0.05, as this
range allows us to generate a complete precision–recall curve.

2.3.2. Additional Post-Processing for the Google Speech Embedder

In standard experiments with the pre-trained embedder model, we use the same
approach as described in Section 2.3.1, albeit with a minimum length of consecutive matches
reduced to 10 frames. However, our experiments show that the similarity scores returned
by direct distance calculations on speech embeddings generated by the Google model have
a different scale and are less uniformly distributed across the different keyword classes.

Therefore, we introduce an additional post-processing step to our detection pipeline
in the form of an exciter module. The role of this module is to make the similarity values
more uniform across different keywords and filter out superfluous detections. To achieve
this goal, we perform several operations.

First, we standardise the values of the distances in the detection matrix, visualised as
input data in Figure 4. We perform this standardisation per each of the 10 patterns (rows).
Then, we filter out all the values above the 5th percentile, leaving only the responses for the

109

Sensors 2021, 21, 8313 13 of 26

time steps with the closest matches. This way, we obtain several time series representing
filtered and standardised similarity scores for single patterns.

Input

Excitation
filtering

Figure 4. Post-processing of the similarity scores generated by the pre-trained embedder. The first
matrix, denoted as input, shows an example of raw distances between the embeddings of keyword
patterns and recording fragments. Each row corresponds to a single pattern, while each column
represents a single time step. Brighter colours indicate smaller distances (closer matches). The second
matrix shows the same values after row-wise standardisation and filtering through the exciter module.

After that, we use an envelope follower to perform excitation filtering on each of the
time series. Therefore, after encountering a distance value below our threshold (signifying
a potentially close match for a given template), we sustain this information in time with
a decaying impulse response for up to 50 steps. When we find another close match, the
decaying response is restarted. The result of this process is depicted in Figure 4.

2.4. Statistical Analysis of the Results

After running the experiments, we conduct a statistical analysis of the obtained results.
For every experiment, we report training, patterns and evaluation datasets that were used.
As the performance metrics, we use the Area Under Precision-Recall Curve (AUPRC) and
F-score. The AUPRC is calculated based on the precision and recall values for different
detection thresholds. Precision tells us how many of the reported keyword detections are
correct, while recall shows us how many of the actual keyword utterances are retrieved.
The AUPRC is provided with both micro- and macro-averaging. Micro-averaging takes
into account the sizes of every keyword class we wish to detect by averaging over all the
examples as a whole. This approach might be better suited to our problem, as we mainly
deal with imbalanced datasets. On the other hand, macro-averaging, which aggregates
the AUPRC values by first calculating them separately for each class, may also be helpful
when interpreting the results. The F-score is defined as F =

precision + recall
2 , and it combines

the precision and recall results into one metric, with higher values considered better.

3. Results
3.1. Isolated Words Classification Benchmark

Before proceeding with the actual keyword detection experiments, we performed
a baseline verification to make sure that our embedder architecture (Siamese), described
in Section 2.2.1, is sufficiently performant when processing audio data. To this end, we
recreate the Speech Commands evaluation protocol [9] of classifying single-word utterances
as one of the 12 possible classes. This is the only experiment where we do not downsample
the input recordings. Instead, we maintain the original 16 kHz sampling rate, adjusting the
spectrogram preprocessing settings accordingly.

Our convolutional model achieves a 94.5% top-1 classification accuracy on the Speech
Commands v1 dataset. This performance is on par with similar models processing mel
spectrograms, as presented in Table 3. While more sophisticated models can achieve better
classification results, we deemed the differences not significant enough to warrant the
trade-off these models introduce in terms of complexity and training time.

110

Sensors 2021, 21, 8313 14 of 26

Table 3. Top-1 classification accuracy for isolated words of Speech Commands v1.

Authors Method Accuracy

Warden [9] Baseline CNN model 85.4%
Tang et al. [10] CNN with MFCC features 90.2%
de Andrade et al. [12] CNN with 80-band mel spectrograms 94.1%
Zhang et al. [11] Depthwise separable CNN 95.4%
Choi et al. [15] CNN with temporal convolution 96.1%
Zeng et al. [13] DenseNet with BiLSTM layers 96.2%
Lin et al. [14] EdgeSpeechNets 96.3%
Mittermaier et al. [16] Parametrized sinc-convolutions 96.4%
Majumdar et al. [17] MatchboxNet 97.5%
Li et al. [18] Wide-ResNet with MoEx 98.0%

Ours (Siamese) CNN with dropout, 40-band mel spectrograms 94.5%
Ours (Siamese), 8 kHz Same as above, downsampled recordings 92.0%

We also verify the same architecture on a downsampled version of the Speech Com-
mands recordings. As expected, this impairs the accuracy of the evaluated model. How-
ever, the results show that 8 kHz recordings can still provide sufficient information for
proper classification.

3.2. Keyword Detection in a Monolingual Setup

As a first step in evaluating keyword detectors on continuous audio data streams, we
analyse our Siamese approach in monolingual scenarios, i.e., by training and validating
the model on recordings of the same language. For selected experiments, we also compare
its performance to a prototypical network.

In each evaluation setting, we create a separate precision-recall curve (PRC) for each
of the analysed keywords. The PRC shows detection performance at different values of
the similarity threshold. We aggregate this information across classes using either micro-
(instance) or macro- (class) averaging, a common approach in multi-class problems [46].

To summarise the performance of a model with a single value, we report the Area
Under Precision–Recall Curve (AUPRC). We also highlight the best F-score achieved by
the model across different threshold values. Table 4 presents the results obtained in the
analysed monolingual scenarios.

Our initial verification, described in Section 3.1, has shown that a Siamese convolu-
tional neural network can effectively differentiate between utterances of different keywords
of the Speech Commands dataset. We also confirm this capability in a streaming evalu-
ation by employing the Siamese model with standard detection settings on a synthetic
mixture of Speech Commands keywords (SC 1EN,mix). When the vocabulary present in
the target recording consists solely of the expected keywords, the model can achieve
an outstanding performance of 91.3% micro-AUPRC and an F-score of 0.94. This result
shows that our detection approach allows for properly recognising keywords with shifted
word boundaries.

To measure the robustness of the detector to background distractors, we evaluate it
on Speech Commands keywords mixed into fragments of conversations of the VoxCeleb
dataset (SC 1EN,Vox). In this case, the detection accuracy drops to a level of 60.4% micro-
AUPRC. Nevertheless, the performance is satisfactory for a cross-speaker keyword spotter as
the system can correctly highlight more than 2⁄3 of keyword occurrences while maintaining
a precision of 55%. Results at this level would be usable for prospective users of such
a tool. Unfortunately, we have to admit that the semi-synthetic nature of this evaluation
oversimplifies the task presented to the detector, making it an upper bound on achievable
accuracy. Due to the lack of adequate data, we could not verify how such detectors would
cope with more natural keyword occurrences and diverse recording conditions.

111

Sensors 2021, 21, 8313 15 of 26

Table 4. Keyword detection performance for models trained and evaluated in monolingual scenarios.
The Area Under Precision–Recall Curve is based on the keyword classes present in the search patterns.
We report it either with micro- or macro-averaging. The F-score column represents the best result
achieved by the model across different settings of the detection threshold. All models use the default
detector configuration.

Model Training 1
(# KW) Patterns 2 Evaluation 3

(# KW)
AUPRC

F-Score
Micro Macro

English→ English

Siamese SC 1EN (30) SC 1EN SC 1EN,mix (30) 91.3% 91.3% 0.94
Siamese SC 2EN, CVEN (37) SC 1EN SC 1EN,mix (30) 87.9% 88.0% 0.92
Siamese SC 1EN, SWCEN (4K+) SC 1EN SC 1EN,mix (30) 69.4% 65.6% 0.79
Siamese ALLEN (4K+) SC 1EN SC 1EN,mix (30) 70.8% 67.4% 0.81
Prototypical SC 1EN (30) SC 1EN SC 1EN,mix (30) 80.2% 81.5% 0.88
Siamese SC 1EN (30) SC 1EN SC 1EN,Vox (30) 60.4% 65.0% 0.62
Siamese SC 2EN, CVEN (37) SC 1EN SC 1EN,Vox (30) 55.2% 62.4% 0.57
Siamese SC 1EN, SWCEN (4K+) SC 1EN SC 1EN,Vox (30) 38.0% 43.4% 0.47
Siamese ALLEN (4K+) SC 1EN SC 1EN,Vox (30) 43.7% 46.9% 0.50
Prototypical SC 1EN (30) SC 1EN SC 1EN,Vox (30) 40.8% 50.2% 0.54
Siamese SC 1EN (30) ∆SCEN ∆SCEN,mix (5) 48.3% 53.1% 0.65
Prototypical SC 1EN (30) ∆SCEN ∆SCEN,mix (5) 39.6% 42.3% 0.59

Polish→ Polish

Siamese ALLPL (5K+) KWPL KWPL,mix (22) 8.8% 1.3% 0.20
Prototypical ALLPL (5K+) KWPL KWPL,mix (22) 5.9% 1.9% 0.22
Siamese ALLPL (5K+) KWPL KWPL,real (22) 0.0% 0.0% 0.02
Prototypical ALLPL (5K+) KWPL KWPL,real (22) 0.0% 0.0% 0.01

1: Training data consists of utterances from Speech Commands (SC 1EN, SC 2EN), Common Voice (CVEN), and
Spoken Wikipedia Corpus (SWCEN). We also use a combined dataset (ALLEN). For the Polish language, we use all
accessible training data (ALLPL), i.e.,: CVPL, WUTPL and TTSPL. Number of keyword classes (# KW) is denoted
with a subscript. 2: English search patterns are extracted from Speech Commands training data (SC 1EN) or from
the subset present only in the second version of the dataset (∆SCEN). Polish templates come from the target
keywords dataset (KWPL). We use 10 examples for each keyword class. 3: English models are evaluated with
30 keyword classes, either on fully synthetic mixtures of Speech Commands utterances (SC 1EN,mix) or Speech
Commands keywords overlaid on VoxCeleb recordings (SC 1EN,Vox). We also show the performance on the “delta”
dataset mixtures (∆SCEN,mix, i.e., 5 classes). Polish evaluations assess 22 keywords either in synthetic mixtures
(KWPL,mix) or actual YouTube audio streams (KWPL,real).

On the other hand, our problem setting assumes that the detector can only be trained
on copious amounts of generic keywords. After that, it should cope well with limited
examples of target keywords, especially since the end-user can extend the vocabulary after
the system’s deployment. We assess this aspect with an experiment using keywords not
occurring in the original training data, isolated from the second version of the Speech
Commands dataset (∆SCEN,mix). This evaluation scenario confirms that few-shot learning
is quite difficult. A drop of the F-score to 0.65 on synthetic mixtures indicates that, when
combined with more natural evaluation settings, detection of completely new keywords
might be problematic. A more reasonable approach would require at least some retraining
with the extended vocabulary.

Interestingly, across all the experiments, the extension of the Speech Commands train-
ing data with other datasets proves detrimental to the model’s performance. We analyse
this phenomenon more closely in Figure 5 by visualising the embedding space created with
Siamese models trained solely on the Speech Commands data and in combination with
the Spoken Wikipedia Corpus recordings. The model trained only on Speech Commands
utterances maps the examples from this dataset to groups with much clearer separability
between the particular keywords. Apart from some stray confusions, the only intermixing
of keywords happens for the “three–tree” pair, showing that the model is indeed focusing
on the acoustic similarity of the provided samples. The inclusion of more diverse training
examples from the Spoken Wikipedia Corpus prohibits the model from learning an equally

112

Sensors 2021, 21, 8313 16 of 26

discriminative mapping for the Speech Commands keywords. The created groups of
examples show much more bleed between keywords. Unfortunately, we were unable to
devise a simple mitigation technique for this issue. It is possible that a more nuanced
training procedure could create a more robust representation using all of the available data.

Embeddings of SC 1EN training examples

(a) Training data: SC 1EN (b) Training data: SC 1EN, SWCEN

Figure 5. Comparison of the UMAP visualisations of the Speech Commands training examples
(SC 1EN) processed through the Siamese embedder: (a) embeddings generated with a model trained
only on the Speech Commands data; (b) embeddings generated with a model trained on recordings
both from the Speech Commands and the Spoken Wikipedia Corpus datasets. (We employ a zero
minimum distance between embedded points. Other visualisation settings use standard values of
the umap-learn Python package, i.e., 15 neighbours with a Euclidean metric for Uniform Manifold
Approximation and Projection.)

We also extend our investigation with additional experiments employing a prototypi-
cal network model instead of the Siamese embedder. In the analysed monolingual settings,
this approach proves to be less performant than the Siamese counterpart. In Table 4, we
report only the results for training with Speech Commands data, but the tendency remains
unchanged with different dataset setups.

Finally, we conclude with evaluations performed on Polish datasets. Unfortunately,
the experiments confirm our initial concerns. Models trained solely on such limited datasets
are entirely unusable in detecting keywords in continuous recordings.

3.3. Keyword Detection in a Cross-Lingual Setup

Following the expected failure of models trained exclusively on Polish recordings, we
try to approach the problem of detecting Polish keywords with models trained on English
datasets, i.e., in a cross-lingual mode. We hope that the general audio processing capabilities
acquired by training on more extensive English datasets will allow for a successful transfer
of knowledge to Polish recognition tasks, despite the inherent differences between acoustic
features of the languages.

Table 5 summarises our findings in cross-lingual scenarios. When trained solely on the
Speech Commands recordings, both Siamese and prototypical models are better in detecting
Polish keywords than their counterparts trained on limited Polish data. Nevertheless, this
improvement is still insufficient to achieve satisfactory performance. The Siamese model,
which outperforms the prototypical approach, achieves a micro-AUPRC of only 20.3% on
synthetic mixtures of Polish keywords (KWPL,mix). In practical terms, this result means
that we can roughly achieve a precision of 70% at a 25% recall rate. However, the outcomes

113

Sensors 2021, 21, 8313 17 of 26

for individual keywords vary widely. For instance, the best performing one, umowa, has
a recall of 67% with 96% precision. Unfortunately, although we can find several other
classes with potentially usable results, many keywords have a near-zero detection rate.

Table 5. Keyword detection performance for models trained and evaluated in cross-lingual scenarios.
Metric values are reported in the same manner as in Table 4.

Model Training 1
(# KW) Patterns 2 Evaluation 3

(# KW)
AUPRC

F-Score
Micro Macro

English→ Polish

Siamese SC 1EN (30) KWPL KWPL,mix (22) 20.3% 10.6% 0.39
Siamese SC 2EN, CVEN (37) KWPL KWPL,mix (22) 10.3% 8.9% 0.31
Siamese SC 1EN, SWCEN (4K+) KWPL KWPL,mix (22) 15.5% 11.6% 0.34
Siamese ALLEN (4K+) KWPL KWPL,mix (22) 7.3% 10.7% 0.26
Prototypical SC 1EN (30) KWPL KWPL,mix (22) 13.4% 2.6% 0.27
Siamese SC 1EN (30) KWPL KWPL,real (22) 0.2% 0.2% 0.03
Siamese SC 2EN, CVEN (37) KWPL KWPL,real (22) 0.1% 0.2% 0.02
Siamese SC 1EN, SWCEN (4K+) KWPL KWPL,real (22) 0.1% 0.1% 0.02
Siamese ALLEN (4K+) KWPL KWPL,real (22) 0.1% 0.1% 0.01
Prototypical SC 1EN (30) KWPL KWPL,real (22) 0.3% 0.2% 0.04

Combined (English + Polish)→ Polish

Siamese ALLEN, ALLPL (9K+) KWPL KWPL,mix (22) 6.5% 7.2% 0.23
Prototypical ALLEN, ALLPL (9K+) KWPL KWPL,mix (22) 7.6% 2.7% 0.22
Siamese ALLEN, ALLPL (9K+) KWPL KWPL,real (22) 0.1% 0.1% 0.02
Prototypical ALLEN, ALLPL (9K+) KWPL KWPL,real (22) 0.2% 0.0% 0.04

1: Training data are denoted in the same way as in Table 4. 2: All search patterns come from the Polish
target keywords dataset (KWPL). 3: Evaluation is performed on Polish mixtures (KWPL,mix) and real recordings
(KWPL,real) with 22 keywords.

When looking at possible training dataset extensions, we observe a similar situation
as with monolingual models. Training solely on the Speech Commands dataset proves to
be the most efficient way to achieve acoustically discriminative embedders. Additional
recordings are similarly detrimental in creating an embedding space appropriate for cross-
lingual transfer to Polish patterns.

This observation also holds for further extensions with Polish training recordings,
though not without some caveats. Initially, we hoped to fill potential gaps in the generated
embedding space by introducing additional training examples more closely resembling
the phonetic structure of the target patterns. However, the outcome of this process was
somewhat ambiguous.

On the one hand, if we compare the 2D representations of the embedding space
presented in Figure 6, the second model, supplied with extended training data, groups
Polish keywords into much tighter clusters. Although low-dimensionality mappings of
complex embedding spaces might be misleading at times, this visual difference most
probably indicates that the second model can more effectively discriminate between the
keyword classes.

On the other hand, this capability does not translate to an advantage when comparing
the detection performance of both models. While we do not have a definite explanation
for this phenomenon, we hypothesise that a more dispersed representation might be
actually beneficial in our scenario. In contrast to the evaluation on Speech Commands
keywords, where the evaluation and search patterns come from the same distribution,
Polish patterns used as keyword templates differ in the recording conditions from the
YouTube evaluation fragments. Therefore, a broader, less regularised representation might
expose more potential points of contact to find close neighbours that could match actual
keyword occurrences in audio streams. Such an increased coverage could be significant
since the data manifold of Polish search patterns is quite limited to begin with.

114

Sensors 2021, 21, 8313 18 of 26

Embeddings of KWPL,mix examples

(a) Training data: SC 1EN (b) Training data: ALLEN, ALLPL

Figure 6. Comparison of the UMAP visualisations of Polish keywords processed through the Siamese
embedder: (a) embeddings generated with a model trained only on the Speech Commands data;
(b) embeddings generated with a model trained on all the available data (both English and Polish);
Polish keywords are extracted directly from YouTube videos. Synthetic mixtures of these keywords
are denoted as KWPL,mix throughout the results section.

This representational problem is accentuated by evaluations performed on longer,
authentic Polish audio streams (KWPL,real). In this scenario, all systems fail to provide any
hint of usable results. We can devise a two-fold explanation for this behaviour.

First of all, the embedding space learnt by our models does not capture the acoustic
differences at a detailed enough level. Therefore, these models cannot handle utterances
outside of their limited vocabulary. Non-keyword audio content easily derails the detectors,
which is confirmed by numerous false positives.

The second factor is associated with the difficulty of the problem itself. In contrast to
our English setups, the evaluation performed on Polish recordings uses longer fragments
of naturally sounding speech from diverse recording conditions, thus being the closest to
an actual environment in which these kinds of systems might be deployed. Consequently,
many keyword occurrences are less perceptible than in semi-synthetic mixtures.

Based on all these observations, we suspect that a self-supervised approach to training
acoustic models could be promising in solving similar problems as described in this paper.
Self-supervision should help create rich representations, more robustly capturing the
differences between various words present in the recording—all without the need for extra
hand-labelling. Unfortunately, devising a sensible self-supervised approach is not a trivial
task, and each iteration of such an experiment requires a significant computational effort to
train the actual model. Therefore, due to the constrained timeline of our project, we were
unable to explore this option further.

3.4. Keyword Detection with Generic Speech Embeddings

Instead of investigating self-supervised techniques, in this last experimental section,
we concentrate on models trained traditionally, in a fully supervised manner, but on much
bigger datasets. Based on our assumption that the main factor limiting the performance
of our models is the lack of a more generic and robust internal speech representation, we
replace our previously analysed similarity models with a pre-trained speech embedding
model provided by Google [6]. It has been trained on more than 100,000 h of English

115

Sensors 2021, 21, 8313 19 of 26

audio clips, which we expect should cover a big part of possible recording conditions and
variants of speech. We present the results of applying this model in Table 6, divided into
four different approaches.

Table 6. Keyword detection performance for the pre-trained speech embedder. We use it either with
default detection settings or with an additional post-processing procedure. We also compare the
embeddings generated directly from the pre-trained model and from a model fine-tuned on selected
datasets. Metric values are reported in the same manner as in Table 4.

Model Training 1
(# KW) Patterns 2 Evaluation 3

(# KW)
AUPRC

F-Score
Micro Macro

Speech embedder (English), pre-trained

Google — SC 1EN SC 1EN,mix (30) 15.3% 71.5% 0.41
Google — SC 1EN SC 1EN,Vox (30) 3.7% 38.5% 0.07
Google — ∆SCEN ∆SCEN,mix (5) 4.6% 4.3% 0.65
Google — KWPL KWPL,mix (22) 27.2% 62.5% 0.41
Google — KWPL KWPL,real (22) 3.4% 21.0% 0.05

Speech embedder (English), pre-trained, with post-processing

Google — SC 1EN SC 1EN,mix (30) 84.8% 87.7% 0.84
Google — SC 1EN SC 1EN,Vox (30) 40.6% 49.8% 0.48
Google — ∆SCEN ∆SCEN,mix (5) 86.5% 87.8% 0.85
Google — KWPL KWPL,mix (22) 46.2% 53.9% 0.69
Google — KWPL KWPL,real (22) 6.6% 9.2% 0.17

Speech embedder (English), fine-tuning

Google SC 1EN (30) SC 1EN SC 1EN,mix (30) 15.0% 30.1% 0.30
Google SC 1EN (30) SC 1EN SC 1EN,Vox (30) 1.2% 1.8% 0.03
Google WUTPL (36) KWPL KWPL,mix (22) 18.4% 19.9% 0.36
Google WUTPL (36) KWPL KWPL,real (22) 0.7% 2.8% 0.02

Speech embedder (English), fine-tuning, with post-processing

Google SC 1EN (30) SC 1EN SC 1EN,mix (30) 24.4% 25.7% 0.42
Google SC 1EN (30) SC 1EN SC 1EN,Vox (30) 1.3% 1.8% 0.04
Google WUTPL (36) KWPL KWPL,mix (22) 15.5% 16.0% 0.37
Google WUTPL (36) KWPL KWPL,real (22) 1.3% 1.5% 0.05

1: The speech embedding model [6] is pre-trained on English YouTube audio clips. In most experiments, we use
the generated embeddings directly, without any further training of the model. In fine-tuning experiments, we use
utterances from the Speech Commands dataset (SC 1EN) or our own recordings (WUTPL). 2,3: Search patterns
and evaluation recordings are denoted in the same way as in Table 4.

First, we use the pre-trained embedder directly, without any fine-tuning, with the
standard detector. This setup means that the pre-trained model returns coordinates in the
embedding space for each analysed fragment of the evaluation recording and the keyword
patterns. We then compute the distances to each provided keyword example and use
properly adjusted thresholds with our primary detection approach involving aggregation
and filtering. The macro-results of this system are good on the Speech Commands dataset
(SC 1EN,mix), although not as good as the specifically trained models. However, the system
incorporating the pre-trained embedder is much better with Polish keywords (KWPL,mix).
It is also the first system to obtain non-zero results on the most interesting, authentic Polish
evaluation (KWPL,real).

Comparing Figures 5a and 7a, we can observe some significant changes in the embed-
ding space generated for the Speech Commands examples. The Google speech embedder
mapping of keyword classes is more complex than in the Siamese model’s case. Instead of
densely packed clusters, the pre-trained model distributes the encountered examples across
more elongated shapes. This change indicates that the speech embedder captures more
variability factors in the data, apart from the keyword class, creating a more nuanced repre-
sentation. Concurrently, it still creates a distinct separation between the classes, although

116

Sensors 2021, 21, 8313 20 of 26

with some overlap in the middle of the plot. The behaviour in this central region might
explain why the raw performance of the pre-trained embedder on Speech Commands data
might be slightly worse in direct comparison to a Siamese model.

Embeddings of SC 1EN training examples

(a) Training data: — (b) Training data: SC 1EN

Figure 7. Comparison of the UMAP visualisations of the Speech Commands training examples
(SC 1EN) processed through the Google speech embedder: (a) embeddings generated with a pre-
trained model without fine-tuning; (b) embeddings generated with a pre-trained model fine-tuned
on the Speech Commands dataset.

Despite this robust representation of speech fragments generated by the Google model,
a direct application of the returned similarity distances proves to be relatively ineffective
in a detection setting. While most keywords produce pretty accurate results, a select few
(eight, off, and up) create a tremendous number of false positives. These errors drive down
the model’s average performance, indicated by the significant discrepancy between the
micro- and macro-values of the reported metrics. This problem is presented more explicitly
in Figure A1, in Appendix A.

We mitigate this issue by introducing the post-processing approach described in
Section 2.3.2. By adjusting the detector setting in this way, we can almost entirely filter out
these massive false detections reported by the model, as shown in Figure A2. This modifica-
tion comes at a small cost of slightly worse outcomes on some of the high-quality keywords,
but on the whole, it creates a detection system with a much more practical behaviour.

The performance of the post-processing version of the system on Speech Commands
data (SC 1EN,mix) is comparable to our Siamese and prototypical models trained from
scratch. The results for semi-synthetic evaluation with SC 1EN,Vox are slightly worse, but
the performance on the “delta” classes (∆SCEN,mix) is on par with the original Speech
Commands keywords. This improvement shows that the Google speech embedder has
been exposed to an extensive range of potential English keywords, making it easier to
adjust the operating vocabulary on the fly.

The most important change from our perspective is the improvement in Polish key-
word detection. A good representation of the Polish keywords, as depicted in Figure 8a,
allows the model to approach much more sensible levels even with the baseline detector.
However, the post-processing variant brings the best F-score on the KWPL,mix dataset
up to 0.69, significantly outperforming all the other approaches analysed in this paper.
The macro-AUPRC values on authentic Polish recordings (KWPL,real) are better with the
standard detector, but post-processing improves both the micro-AUPRC and the F-score
value. Unfortunately, it is still somewhat discouraging, achieving a level of 0.17.

117

Sensors 2021, 21, 8313 21 of 26

Embeddings of KWPL,mix examples

(a) Training data: — (b) Training data: WUTPL

Figure 8. Comparison of the UMAP visualisations of Polish keywords processed through the
Google speech embedder: (a) embeddings generated with a pre-trained model without fine-tuning;
(b) embeddings generated with a pre-trained model fine-tuned on WUTPL training examples.

Finally, we also evaluate fine-tuned versions of the Google speech embedder, hoping
to combine the advantages of both worlds—pre-trained generic representations and dataset-
specific mapping. The fine-tuning procedure is described in Section 2.2.3. Unfortunately,
our efforts very swiftly prove to be destructible to the intricate representational capabilities
of the original model. As evidenced by Figure 7b, fine-tuning on the Speech Commands
dataset creates embeddings with some tightly packed clusters, similar to the behaviour of
the Siamese model. Still, most of the keywords become intermixed after this procedure.
This degradation is also confirmed quantitatively, as the results for the fine-tuned models
are comparatively worse across the board. This drop in performance also pertains to
fine-tuning on Polish data, although the embedding space shown in Figure 8b seems to be
less impacted.

3.5. Final Evaluation

As a final step in evaluating our keyword detection systems, we analyse their be-
haviour on the actual target recordings of call centre conversations (CCPL,real). Due to
organisational impediments, we could perform this procedure only once, with a limited
number of systems. Therefore, we employ the pre-trained embedder solution with our
Polish keyword patterns, as such a combination presents the most promising results on
continuous Polish recordings. We choose both variants of the system, with the standard
detection pipeline and post-processing. The pre-trained embedder is used directly, without
fine-tuning.

Table 7 summarises the findings of our final evaluation. The detection pipeline was
executed only once with a predetermined detection threshold. Therefore, instead of full
AUPRC numbers, we present actual metric values obtained at this sensitivity point.

118

Sensors 2021, 21, 8313 22 of 26

Table 7. Keyword detection performance on the final evaluation dataset (CCPL,real).

Model (Detector)
Micro Macro

Precision Recall F-Score Precision Recall F-Score

Google 0.4% 18.5% 0.01 14.2% 25.6% 0.18
Google (post) 3.6% 17.0% 0.06 8.2% 22.2% 0.12

Both models perform poorly, especially when looking at the micro-aggregation scheme.
As the results of our interim validations on Polish datasets were relatively poor, we did
not expect a much better outcome, especially since we had to cope with a domain shift on
entirely unseen data.

A more detailed analysis shows that the Google model returns a very high number
of false positives for two short keywords, “blik” and “link”. As the utterances of these
keywords contain only one syllable, it is understandable that matching based only on
acoustic features might be unsuccessful. Although our post-processing method can cor-
rectly suppress these erroneous detections, it introduces its own biases, keeping the final
performance still at a low level.

Concluding our evaluation, we must admit that the quality of predictions generated by
the system with the pre-trained embedder proved to be disappointing. This approach was
insufficient in creating a general robust keyword spotter for the Polish language. However,
there can still be a small added value of such a system when employed as a support tool to
highlight specific keywords. Although it will not recall all the occurrences, it can still help
people performing the reviewing work if its precision is sufficiently high. We were able to
find a couple of characteristic multi-syllable keywords that exhibited promising results in
this regard. For instance, words such as “reklamacja” and “transakcja” had a precision of
over 75% combined with a recall rate of 10–20%. While it is not exactly what we have hoped
for when devising the system, our proof-of-concept solution has shown that the main focus
when creating robust Polish keyword spotting systems should lie on the mundane task of
data annotation.

4. Discussion
4.1. Summary of Findings

In this paper, we have explored the problem of cross-speaker keyword spotting for
the low-resource setting of the Polish language.

Our options were limited by the lack of publicly available datasets suitable for training
production-quality Polish speech-to-text systems. Therefore, we have focused on spotting
keywords with detectors based on acoustic similarity. These approaches are generally less
demanding on the data annotation side.

We evaluated two similarity ranking models, i.e., Siamese and prototypical networks.
Our experiments with English datasets have shown that these methods can create acous-
tically discriminative representations of processed recordings when provided with suf-
ficiently diverse training examples. Unfortunately, due to the data scarcity problem, we
could not create robust keyword spotters solely on Polish data.

Although the perceptual principles of comparing two audio fragments remain the
same on the fundamental level, our acoustic similarity models were unable to gener-
alise from English to Polish. The acoustic differences between languages and recording
conditions proved to be too big for such a cross-lingual transfer to succeed.

Therefore, we have evaluated a different approach by utilising a generic speech
embedding model provided by Google, extensively trained on thousands of hours of
English speech. The advantage provided by a very comprehensive training dataset could be
seen in more complex representations of the speech samples and much better adaptability
to cross-lingual transfer. Although the evaluation on Polish synthetic recordings was quite
promising, even with this pre-trained embedder, we still could not create a system that

119

Sensors 2021, 21, 8313 23 of 26

would be fully functioning in realistic scenarios and could effectively process naturally
sounding continuous audio streams.

4.2. Future Work

Based on our research findings, we reckon that acoustic similarity comparisons can
be a viable approach in various audio matching problems. Nevertheless, the task of
creating a robust generic embedding space for speech recordings is not easy, especially
when no datasets of considerable size are available for the target domain, as shown by our
negative results. This outcome hints at a number of approaches that could be evaluated in
future works.

First of all, our evaluations show that simply extending the scope of training data
with out-of-domain examples is not always profitable. However, it is possible that we were
unsuccessful in finding more effective training methods, better suited for mixed datasets.
Techniques, such as domain adaptation of embeddings that have proved successful in
NLP tasks [47], could help bridge the gap between models trained on generic datasets and
evaluation on target recordings with different characteristics or even across languages.

Looking at the visualisations of the generated embeddings, we see that similarity
models can usually maintain correct separation between various classes. Therefore, we
expect that, with some careful adjustments to the post-processing schemes, we could
improve the quality of the final system. Better ways to discard background noises and
erroneous detections in continuous recordings could help utilise the whole potential of the
similarity classifiers, which exhibit a good performance in more isolated settings.

However, to achieve these goals, more robust validation procedures and datasets
would be needed. This problem is particularly relevant since the disparity between the
performance of keyword classifiers and keyword detectors is striking. In fact, during
our work, we could not verify the performance of our systems on representative English
audio streams. We think that establishing new, more realistic evaluation protocols for
keyword spotters would be an interesting extension for future work, and it would be
valuable for a broad research community. Our research highlights that the task of searching
for individual words in an audio stream is much more challenging to solve than the
classification of separated words, which most current methods are benchmarked against.

Additionally, recent developments in self-supervised training of audio representations
create exciting opportunities for low-resource languages, such as Polish. We expect that
solutions such as XLSR-53 [34] could prove helpful in bridging the generalisation gap that
we encounter in low-resource scenarios.

In the end, if no practical improvements can be achieved other than by increasing the
sheer amount of data, we think that the introduction of more resource-efficient annotation
procedures based on active learning could make such efforts realisable with lower budgets.
For instance, one approach that could be employed is the clustering of unlabelled data. The
K-medoids technique was shown to reduce labelling budgets by half in sound classification
tasks [48]. When combined with the feedback of a continuously retrained model, we expect
that such solutions could greatly improve the annotation workflow.

5. Conclusions

The goal of our work was to create a proof-of-concept solution that could effectively
detect Polish keywords in low-quality call centre recordings. Based on our research hypoth-
esis, we developed keyword detectors employing few-shot acoustic similarity models. The
models have a satisfactory accuracy in English and for selected Polish keywords, but they
fail for many shorter Polish utterances. Effectively, the created software system enables
navigation in call centre recordings only for a limited subset of Polish keywords. However,
such functionality can still reduce the processing time in the complaint processes.

120

Sensors 2021, 21, 8313 24 of 26

Author Contributions: Conceptualisation, K.J.P. and R.N.; methodology, K.J.P., Ł.L. and K.R.; soft-
ware, Ł.L., K.J.P. and K.R.; validation, K.J.P. and Ł.L.; formal analysis, K.J.P. and Ł.L.; investigation,
K.J.P., Ł.L. and K.R.; resources, Ł.L., K.J.P., K.R. and R.N.; data curation, K.J.P., Ł.L. and K.R.; writing—
original draft preparation, K.J.P., Ł.L. and K.R.; writing—review and editing, K.J.P., Ł.L., K.R. and
R.N.; visualisation, K.J.P.; supervision, K.J.P. and R.N.; project administration, K.J.P. and R.N.; funding
acquisition, R.N. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Warsaw University of Technology statutory research grant
in 2021 and by the mBank SA research project in 2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Publicly available datasets: Speech Commands v1: http://download.
tensorflow.org/data/speech_commands_v0.01.tar.gz (accessed on 10 December 2021); Speech Com-
mands v2: http://download.tensorflow.org/data/speech_commands_v0.02.tar.gz (accessed on 10
December 2021); Mozilla Common Voice: https://commonvoice.mozilla.org/en/datasets (accessed on
10 December 2021); Spoken Wikipedia Corpus: https://nats.gitlab.io/swc (accessed on 10 December
2021); The YouTube fragments with Polish keywords are available on request for research purposes.

Acknowledgments: We would like to thank Karol Chęciński, Piotr Gawrysiak and Kamil Żbikowski
for their support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Figure A1. Example of a detection report for the Google speech embedding model with standard
detection settings, without post-processing. The upper part shows a timeline of the Speech Commands
mixture file with a corresponding spectrogram visualisation. The lower part contains an excerpt from
the detection reports for three selected keywords. Blue regions indicate actual keyword occurrences
with an acceptable detection collar. The main lanes below each keyword show similarity values for
each of the provided keyword patterns (i.e., multiple rows per keyword). Darker values correspond
to closer matches. Desaturated parts indicate discarded fragments with distances above the threshold.
Orange markers denote possible detections. If a sufficiently long streak of detections is generated, actual
occurrences are emitted—denoted either by a dot (correct detection) or a cross sign (incorrect).

121

Sensors 2021, 21, 8313 25 of 26

Figure A2. Same detection report for the Google speech embedding model, with post-processing
applied to the similarity values.

References
1. Thomas, S.; Suzuki, M.; Huang, Y.; Kurata, G.; Tuske, Z.; Saon, G.; Kingsbury, B.; Picheny, M.; Dibert, T.; Kaiser-Schatzlein, A.;

et al. English broadcast news speech recognition by humans and machines. In Proceedings of the ICASSP 2019—2019 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 6455–6459.

2. Amodei, D.; Ananthanarayanan, S.; Anubhai, R.; Bai, J.; Battenberg, E.; Case, C.; Casper, J.; Catanzaro, B.; Cheng, Q.; Chen, G.; et
al. Deep Speech 2: End-to-end speech recognition in English and Mandarin. In Proceedings of the International Conference on
Machine Learning, New York, NY, USA, 19–24 June 2016; pp. 173–182.

3. Koch, G.; Zemel, R.; Salakhutdinov, R. Siamese neural networks for one-shot image recognition. In Proceedings of the ICML
Deep Learning Workshop, Lille, France, 10–11 July 2015; Volume 2.

4. Snell, J.; Swersky, K.; Zemel, R.S. Prototypical networks for few-shot learning. arXiv 2017, arXiv:1703.05175.
5. Wang, Y.; Salamon, J.; Bryan, N.J.; Bello, J.P. Few-shot sound event detection. In Proceedings of the ICASSP 2020-2020 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 81–85.
6. Lin, J.; Kilgour, K.; Roblek, D.; Sharifi, M. Training keyword spotters with limited and synthesized speech data. In Proceedings of

the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8
May 2020; pp. 7474–7478.

7. Sainath, T.N.; Parada, C. Convolutional neural networks for small-footprint keyword spotting. In Proceedings of the Sixteenth
Annual Conference of the International Speech Communication Association, Dresden, Germany, 6–10 September 2015.

8. Lengerich, C.; Hannun, A. An end-to-end architecture for keyword spotting and voice activity detection. arXiv 2016, arXiv:1611.09405.
9. Warden, P. Speech commands: A dataset for limited-vocabulary speech recognition. arXiv 2018, arXiv:1804.03209.
10. Tang, R.; Lin, J. Honk: A pytorch reimplementation of convolutional neural networks for keyword spotting. arXiv 2017,

arXiv:1710.06554.
11. Zhang, Y.; Suda, N.; Lai, L.; Chandra, V. Hello edge: Keyword spotting on microcontrollers. arXiv 2017, arXiv:1711.07128.
12. de Andrade, D.C.; Leo, S.; Viana, M.L.D.S.; Bernkopf, C. A neural attention model for speech command recognition. arXiv 2018,

arXiv:1808.08929.
13. Zeng, M.; Xiao, N. Effective combination of DenseNet and BiLSTM for keyword spotting. IEEE Access 2019, 7, 10767–10775.

[CrossRef]
14. Lin, Z.Q.; Chung, A.G.; Wong, A. Edgespeechnets: Highly efficient deep neural networks for speech recognition on the edge.

arXiv 2018, arXiv:1810.08559.
15. Choi, S.; Seo, S.; Shin, B.; Byun, H.; Kersner, M.; Kim, B.; Kim, D.; Ha, S. Temporal convolution for real-time keyword spotting on

mobile devices. arXiv 2019, arXiv:1904.03814.
16. Mittermaier, S.; Kürzinger, L.; Waschneck, B.; Rigoll, G. Small-footprint keyword spotting on raw audio data with sinc-

convolutions. In Proceedings of the ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 7454–7458.

17. Majumdar, S.; Ginsburg, B. MatchboxNet–1D Time-Channel Separable Convolutional Neural Network Architecture for Speech
Commands Recognition. arXiv 2020, arXiv:2004.08531.

18. Li, B.; Wu, F.; Lim, S.N.; Belongie, S.; Weinberger, K.Q. On feature normalization and data augmentation. arXiv 2020, arXiv:2002.11102.
19. Coucke, A.; Chlieh, M.; Gisselbrecht, T.; Leroy, D.; Poumeyrol, M.; Lavril, T. Efficient keyword spotting using dilated convolutions

and gating. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Brighton, UK, 12–17 May 2019; pp. 6351–6355.

20. Raziel, A.; Hyun-Jin, P. End-to-end streaming keyword spotting. arXiv 2018, arXiv:1812.02802.
21. Mazzawi, H.; Gonzalvo, X.; Kracun, A.; Sridhar, P.; Subrahmanya, N.; Lopez-Moreno, I.; Park, H.J.; Violette, P. Improving Keyword

Spotting and Language Identification via Neural Architecture Search at Scale; INTERSPEECH: Graz, Austria, 2019; pp. 1278–1282.

122

Sensors 2021, 21, 8313 26 of 26

22. Guo, J.; Kumatani, K.; Sun, M.; Wu, M.; Raju, A.; Ström, N.; Mandal, A. Time-delayed bottleneck highway networks using a
DFT feature for keyword spotting. In Proceedings of the 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018; pp. 5489–5493.

23. Hannun, A.; Case, C.; Casper, J.; Catanzaro, B.; Diamos, G.; Elsen, E.; Prenger, R.; Satheesh, S.; Sengupta, S.; Coates, A.; et al.
Deep Speech: Scaling up End-To-End Speech Recognition. arXiv 2014, arXiv:1412.5567.

24. Battenberg, E.; Chen, J.; Child, R.; Coates, A.; Li, Y.G.Y.; Liu, H.; Satheesh, S.; Sriram, A.; Zhu, Z. Exploring neural transducers for
end-to-end speech recognition. In Proceedings of the 2017 IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Okinawa, Japan, 16–12 December 2017; pp. 206–213.

25. van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.; Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; Kavukcuoglu, K.
WaveNet: A Generative Model for Raw Audio. arXiv 2016, arXiv:1609.03499.

26. Xiong, W.; Wu, L.; Alleva, F.; Droppo, J.; Huang, X.; Stolcke, A. The Microsoft 2017 Conversational Speech Recognition System.
arXiv 2017, arXiv:1708.06073.

27. Li, J.; Lavrukhin, V.; Ginsburg, B.; Leary, R.; Kuchaiev, O.; Cohen, J.M.; Nguyen, H.; Gadde, R.T. Jasper: An end-to-end
convolutional neural acoustic model. arXiv 2019, arXiv:1904.03288.

28. Kriman, S.; Beliaev, S.; Ginsburg, B.; Huang, J.; Kuchaiev, O.; Lavrukhin, V.; Leary, R.; Li, J.; Zhang, Y. Quartznet: Deep automatic
speech recognition with 1d time-channel separable convolutions. In Proceedings of the ICASSP 2020-2020 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 6124–6128.

29. Gulati, A.; Qin, J.; Chiu, C.C.; Parmar, N.; Zhang, Y.; Yu, J.; Han, W.; Wang, S.; Zhang, Z.; Wu, Y.; et al. Conformer: Convolution-
augmented Transformer for Speech Recognition. arXiv 2020, arXiv:2005.08100.

30. Kubanek, M. Method of speech recognition and speaker identification using audio-visual of polish speech and hidden markov
models. In Biometrics, Computer Security Systems and Artificial Intelligence Applications; Springer: Berlin/Heidelberg, Germany,
2006; pp. 45–55.

31. Ziółko, M.; Gałka, J.; Ziółko, B.; Jadczyk, T.; Skurzok, D.; Masior, M. Automatic speech recognition system dedicated for Polish.
In Proceedings of the Twelfth Annual Conference of the International Speech Communication Association, Florence, Italy, 28–31
August 2011.

32. Pohl, A.; Ziółko, B. Using part of speech n-grams for improving automatic speech recognition of Polish. In Proceedings of the
International Workshop on Machine Learning and Data Mining in Pattern Recognition, New York, NY, USA, 19–25 July 2013;
pp. 492–504.

33. Baevski, A.; Zhou, H.; Mohamed, A.; Auli, M. wav2vec 2.0: A framework for self-supervised learning of speech representations.
arXiv 2020, arXiv:2006.11477.

34. Conneau, A.; Baevski, A.; Collobert, R.; Mohamed, A.; Auli, M. Unsupervised cross-lingual representation learning for speech
recognition. arXiv 2020, arXiv:2006.13979.

35. Ardila, R.; Branson, M.; Davis, K.; Henretty, M.; Kohler, M.; Meyer, J.; Morais, R.; Saunders, L.; Tyers, F.M.; Weber, G. Common
voice: A massively-multilingual speech corpus. arXiv 2019, arXiv:1912.06670.

36. Panayotov, V.; Chen, G.; Povey, D.; Khudanpur, S. Librispeech: An asr corpus based on public domain audio books. In
Proceedings of the 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane,
QLD, Australia, 19–24 April 2015; pp. 5206–5210.

37. Baumann, T.; Köhn, A.; Hennig, F. The Spoken Wikipedia Corpus collection: Harvesting, alignment and an application to
hyperlistening. Lang. Resour. Eval. 2019, 53, 303–329. [CrossRef]

38. Żelasko, P.; Ziółko, B.; Jadczyk, T.; Skurzok, D. AGH corpus of Polish speech. Lang. Resour. Eval. 2016, 50, 585–601. [CrossRef]
39. Koržinek, D.; Marasek, K.; Brocki, Ł.; Wołk, K. Polish read speech corpus for speech tools and services. arXiv 2017, arXiv:1706.00245.
40. Pęzik, P. Increasing the Accessibility of Time-Aligned Speech Corpora with Spokes Mix. In Proceedings of the Eleventh

International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018.
41. Pęzik, P. Spokes-a search and exploration service for conversational corpus data. In Proceedings of the Selected Papers from the

CLARIN 2014 Conference, Soesterberg, The Netherlands, 23–25 October 2014; pp. 99–109.
42. Demenko, G.; Grocholewski, S.; Klessa, K.; Ogórkiewicz, J.; Wagner, A.; Lange, M.; Śledziński, D.; Cylwik, N. Jurisdic: Polish

speech database for taking dictation of legal texts. In Proceedings of the Sixth International Conference on Language Resources
and Evaluation (LREC’08), Marrakech, Morocco, 28–30 May 2008.

43. Szwelnik, T.; Kawalec, J.; Gutowska, D. Polish Speech Database LDC2019S19; Linguistic Data Consortium: Philadelphia, PA, USA,
2019. [CrossRef]

44. Polish & English Language Corpora for Research & Applications. Available online: http://pelcra.pl/new/snuv (accessed on 7
October 2021).

45. Nagrani, A.; Chung, J.S.; Xie, W.; Zisserman, A. Voxceleb: Large-scale speaker verification in the wild. Comput. Sci. Lang. 2020,
60, 101027. [CrossRef]

46. Mesaros, A.; Heittola, T.; Virtanen, T. Metrics for polyphonic sound event detection. Appl. Sci. 2016, 6, 162. [CrossRef]
47. Kruspe, A. A simple method for domain adaptation of sentence embeddings. arXiv 2020, arXiv:2008.11228.
48. Shuyang, Z.; Heittola, T.; Virtanen, T. Active learning for sound event classification by clustering unlabeled data. In Proceedings

of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017; pp. 751–755.

123

B.3. Automatic hyperparameter tuning in on-line
learning: Classic Momentum and ADAM

Title Automatic hyperparameter tuning in on-line learning: Classic Momentum and ADAM

Authors Paweł Wawrzyński, Paweł Zawistowski, Łukasz Lepak

Conference 2020 International Joint Conference on Neural Networks (IJCNN 2020)

Year 2020

DOI 10.1109/IJCNN48605.2020.9207204

Ministerial score 140

124

https://doi.org/10.1109/IJCNN48605.2020.9207204

Automatic hyperparameter tuning in on-line
learning: Classic Momentum and ADAM

Paweł Wawrzyński, Paweł Zawistowski, Łukasz Lepak
Institute of Computer Science

Warsaw University of Technology
Nowowiejska 15/19, 00-665 Warsaw, Poland

pawel.wawrzynski@pw.edu.pl, pawel.zawistowski@pw.edu.pl, lukasz.lepak.stud@pw.edu.pl

Abstract—We propose a method that adapts hyperparameters,
namely step-sizes and momentum decay factors, in on-line
learning with classic momentum and ADAM. The approach is
based on the estimation of the short- and long-term influence of
these hyperparameters on the loss value. In the experimental
study, our approach is applied to on-line learning in small
neural networks and deep autoencoders. Automatically tuned
coefficients surpass or roughly match the best ones selected
manually in terms of learning speed. As a result, on-line learning
can be a fully automatic process, producing results from the
first run, without preliminary experiments aimed at manual
hyperparameter tuning.

Index Terms—online optimization, Stochastic Gradient De-
scent, hyperparameter tuning, neural networks, Classic Momen-
tum, ADAM

I. INTRODUCTION

In this paper, we consider the typical setting for on-line
learning: we wish to optimize a parameter, θ ∈ Rd, of
a learning system. For each time step, there exists a known
(momentary) loss function J(θ, ξ), where ξ denotes a ran-
domly generated data sample. The goal of learning is to find
the point θ∗ ∈ Rd for which the global loss function

J̄(θ) = EJ(θ, ξ) (1)

attains its minimum. We assume that only the gradient of the
momentary loss function, ∇θJ(θ, ξ), is available, which is
an unbiased estimate of the (unavailable) global loss gradient
∇J̄(θ).

Most fundamental methods of on-line learning, like stochas-
tic gradient descent [1] (SGD) and classic momentum [2]
(CM) require hyperparameters called step-sizes and momen-
tum decay factors that generally depend on the problem and
process stage.

In practice, on-line learning is usually conducted by se-
lecting the aforementioned parameters using trial-and-error,
which is time consuming and not satisfying. There have
been attempts, like AdaGrad [3] or ADAM [4], to design
an algorithm that does not depend on any manually tuned
hyperparameters, or at least works well with the defaults. How-
ever, these algorithms also require step-sizes and momentum
decay factors, and their default values do not guarantee good
performance for all learning problems.

In this paper, we design an algorithm that optimizes the
step-size and the momentum decay factor in CM and ADAM
while these methods are running. The algorithm presented here
extends and refines the ASDM method presented by Wawrzyn-
ski [5]. The focus is put on a novel method of analyzing the
long-term influence of the parameters on the momentary loss
value. This method overcomes important ASDM deficiencies.

In addition, the analysis of the short-term influence of the
step-size and the momentum decay factor on a momentary
value of θ introduced in the previous paper for CM is here
extended to ADAM. The resulting learning algorithm has been
analyzed experimentally and compared in simulations with
CM, accelerated gradient, ADAM, AdaGrad, and AdaDelta.
All algorithms are applied to 14 different learning problems
and two parameter settings.

The main contributions of this paper are thus as follows:
• we propose to estimate the initial step-size in ASDM us-

ing the estimate of the largest eigenvalue of the Hessian,
• we propose to define a quality measure for the algorithm’s

hyperparameters’ adjustments based on their influence on
the long-term performance of the learning process,

• we introduce indicators of optimization instability and
propose heuristics to ensure that the process remains
stable,

• we conduct extensive experiments to test the approach
against current state-of-the art methods.

The paper is organized as follows. The next section presents
related work. In Sec. III, the formal definition of the consid-
ered problem is given. In Sec. IV, the influence of hyperparam-
eters on the learning process is derived, while Sec. V presents
the resulting algorithm. Sec. VI reports the experimental study
with on-line learning in feedforward neural networks. The last
section concludes the paper.

II. RELATED WORK

The earliest methods of on-line learning include SGD,
which has its roots in the aforementioned works of Robbins
and Monro [1] and Kiefer et al. [6]. Two other classic
approaches, which build upon the concepts of SGD and are
directly related to this paper, are classic momentum [2, 7]
(CM) and accelerated gradient [8] (AG). Both CM and AG
are based on the concept of extracting a velocity component

978-1-7281-6926-2/20/$31.00 ©2020 IEEE

125

from the iterative update procedure utilized by SGD; they only
differ in the way this component gets updated.

The CM approach, which is formally defined in Sec. III of
this paper, has been thoroughly analyzed by Qian [9], where
the convergence bounds for the learning rate and momentum
parameters have been analyzed. Bhaya and Kaszkurewicz [10]
present a view on CM from the control perspective on the
conjugate gradient algorithm [11] and perform an analysis in
terms of Lyapunov stability to choose the learning rate and
momentum parameters.

There have been multiple attempts to create algorithms
which adapt the momentum term to improve CM performance.
These include using one dimensional minimisation to estimate
this term [12].

Swanston et al. [13] propose to use the angle between the
previous update steps and the current one to determine the
magnitude of the momentum term.

Graepel and Schraudolph [14] utilize a curvature matrix
connected with a forgetting factor to formulate the Stable
Adaptive Momentum approach.

The back-propagation Gradient Descent Adaptive Momen-
tum Algorithm [15] (GDAM) adapts the momentum while
maintaining a fixed learning rate.

Hameed et al. [16] utilize eigenvalues of the autocorrelation
matrix of the optimized model’s inputs to adapt momentum in
a back-propagation algorithm.

YellowFin [17] is an approach that adapts the learning rate
and momentum term by approximating the curvature using
single-dimensional noisy quadratic models.

In order to get rid of free parameters, the classic methods
have also been combined with gradient normalization in mul-
tiple approaches. AdaGrad [3] scales the gradient descent step
at time t with an inversed diagonal matrix constructed using
a cumulative sum of gradient products from times 1, . . . , t.
However, it requires setting a global learning rate manually
and results in a decay of learning rates as the optimization
progresses. The AdaDelta method [18] addresses these issues
by restricting the cumulative sum to a time window of fixed
size and utilizing a diagonal Hessian approximation to obtain
correct units for the parameter update vectors. A similar
remedy to the decaying learning rates problem present in Ada-
Grad was suggested for RMSProp [19], which also suggests
applying a running average of the gradient magnitude to scale
the global learning rate.

ADAM and ADAMAX [4] are currently among the most
widely used optimization algorithms that utilize first and
second-order moment corrections in their parameter update
rules. A version incorporating Nesterov momentum into
ADAM is introduced by Dozat [20] and called NADAM.

Although ADAM is a robust and widely used approach in
the field of deep learning models, there exist cases in which
it is not able to converge [21]. This has been tackled by
the AMSGRAD [21] approach. Furthermore, AdaBound and
AmsBound methods [22] try to address the problem (signalled
by Wilson et al. [23]) of extreme learning rates which occurs

in, respectively, ADAM and AMSGRAD and slows down the
optimization process in the long run.

To the best of our knowledge, the only method that adjusts
the momentum decay factor on-line in CM was introduced by
Schraudolph and Graepel [24], where a stochastic version of
the conjugate gradient algorithm is presented.

In recent years, tremendous progress has been made in
the field of online convex optimization, which considers
a simplified version of the problem analyzed here in which
J̄ is convex. One interesting branch of relevant research
is connected with meta-descent methods like the stochastic
meta-descent algorithm [25] (SMD) which adapts the learning
rates in successive iterations using an exponentiated gradient
descent controlled by a global learning rate.

The hypergradient descent method [26] (HD) applies gra-
dient descent directly on the learning rate parameters in an
online fashion. The L4 adaptation scheme [27] is a meta-
algorithm which calculates step size at every iteration using
a lineariztion of the loss function (inspired by root-finding
Newton’s method).

The limitations of current meta-optimization approaches are
explored by Wu et al. [28]. The authors argue that short
time horizons typically used in meta-optimization settings lead
to using too small learning rates — this poses a significant
challenge in that area of research.

III. NOTATION AND PROBLEM FORMULATION

In the below equations, t denotes discrete time, θt ∈ Rd is
the optimized vector, mt ∈ Rd is an auxiliary vector called
momentum, βt > 0 is the step-size, λt ∈ (0, 1) denotes the
momentum decay factor, the symbol ◦ denotes the Hadamard
(elementwise) product, and st ∈ Rd is a vector that normalizes
different coordinates of θ.

Additionally, we denote g(θ, ξ) = ∇θJ(θ, ξ). In the context
of feedforward neural network training, θ is a vector of
neural weights, ξt is a data sample (an input–output pair or
a minibatch of these), and g(θ, ξ) is computed by means of
gradient backpropagation.

We wish to find the minimum of J̄ (1) using the following
procedure:

mt = λtmt−1 − βtg(θt, ξt) ◦ st
θt+1 = θt +mt, t = 1, 2, . . .

(2)

In original CM, the elements of st are uniformly equal to 1.
The ADAM algorithm implements (2) with st containing the
inverses of square roots of average squares of elements of
g(θt−i, ξt−i), i ≥ 0.

The problem considered here is how to tune βt and λt on
the run of procedure (2) to make it most efficient.

IV. QUALITY INDEX FOR OPTIMIZATION OF β AND λ

The approach to β and λ optimization in the course of
learning can be summarized as follows:
• the influence of previous values of β and λ on the

current θt and the exponentially smoothed θt, denoted

126

by θ̄t, is analyzed; the parameters of smoothing also
undergo constant optimization,

• the values of β and λ are being incrementally adjusted
in the direction, that if these parameters had been pushed
before, then current positions of θt and θ̄t would be better.

The idea of optimization of the current loss, J(θt, ξt), by
manipulating previous values of β and λ is not new. However,
when applied directly, it yields small β and λ, since their small
values are the best way to suppress random fluctuations of θt
thereby minimizing the current loss. But small β and λ lead to
slow learning in the long term. Therefore, we analyze how β
and λ influence θ̄t, whose improvement rate roughly reflects
the long-term speed of learning.

Technically the aggregation of the impact of βi and λi on
future values of θt is done by means of an operator, Sγ , which
is defined for γ ∈ (0, 1] as follows

Sγ
dv

dαk
=
∑

i≤k
γk−i

dv
dαi

. (3)

It is a discounted sum of derivatives of the same value v with
respect to parameters αi, in which the weight of a specific
derivative decreases with growing k − i. Short-term influence
of βk, λk on mt, θt+1, t ≥ k can be expressed in the following
recursive equations:

Sγ dmt

dλt
= mt−1 + λtγSγ dmt−1

dλt−1
− βtγ ∂gt

∂θt
Sγ dθt

dλt−1
◦ st (4)

Sγ
dθt+1

dλt
= γSγ

dθt
dλt−1

+ Sγ
dmt

dλt
, (5)

Sγ dmt

dβt
= λtγSγ dmt−1

dβt−1
− gt ◦ st − βtγ ∂gt

∂θt
Sγ dθt

dβt−1
◦ st (6)

Sγ
dθt+1

dβt
= γSγ

dθt
dβt−1

+ Sγ
dmt

dβt
. (7)

For brevity, gt is written in here in place of g(θt, ξt). The
above equations can be derived following the original work of
Wawrzynski [5].

A. Influence of β and λ on the trend in θt

Here we analyze the influence of β and λ on the long-term
movement of θt. In this order, we define θ̄t as a smoothed θt,
namely

θ̄1 = θ1, θ̄t+1 = µθ̄t + (1− µ)θt, (8)

where µ ∈ [0, 1) is optimized to minimize J(θ̄t, ξt).
Let us visualize the optimization process as a descent down

a multidimensional valley between steep slopes. The goal is
to descend in the direction of the bottom of this valley and θ̄t
plays the role of the projection of θt onto its bottom. We
will optimize βt and λt to approximately minimize a linear
combination of J(θt, ξt) and J(θ̄t, ξt). For this purpose we
analyze how fast θ̄t is moving depending on β and λ.

Using the Sγ operator, it is easy to quantify the influence
of β and λ on θ̄t (8), namely

Sγ
dθ̄t+1

dβt
= µγSγ

dθ̄t
dβt−1

+ (1− µ)γSγ
dθt

dβt−1
, (9)

Sγ
dθ̄t+1

dλt
= µγSγ

dθ̄t
dλt−1

+ (1− µ)γSγ
dθt

dλt−1
. (10)

For θ̄t to play its role in the projection of θt on the
valley’s bottom, J̄(θ̄t) needs to be minimized with respect
to µ. In order to adjust µ in the course of learning with CM,
we notice that from (8) we have

dθ̄t+1

dµ
= θ̄t − θt + µ

dθ̄t
dµ

, (11)

and then
dJ(θ̄t, ξt)

dµ
=

dJ(θ̄t, ξt)

dθ̄t

dθ̄t
dµ

. (12)

The above derivative will indicate the direction of incremental
adjustments of µ. In order to compute θ̄t − θt in (11) conve-
niently we define

φ1 = 0, φt+1 = mt + µφt. (13)

A simple induction combining (8) and (13) reveals that θ̄t −
θt = −φt.

B. Optimization of β and λ

In order to maintain the desired trend in θt both in the short
and long-term we propose here to minimize (with respect to
β and λ) the following quality index

Qt = J(θ̄t, ξt) + rTt (θt − θt−1). (14)

where rt = g(θ̄t, ξt) is treated as a constant.
The first term of the sum in (14) is crucial as it directly

leads to decreasing the loss value observed for θ̄t. However,
a second term needs to be included in order to penalize the
fluctuations of consecutive θt values. This penalty is for the
increment θt along the gradient of the loss function, thereby
increasing the loss.

Then, we propose recognizing how infinitesimal changes of
βk, λk for k < t would influence (14), which can be quantified
as, respectively,

Sγ
dQt

dβt−1
=g(θ̄t, ξt)

T

(
Sγ

dθ̄t
dβt−1

+ Sγ
dmt−1

dβt−1

)
, (15)

Sγ
dQt

dλt−1
=g(θ̄t, ξt)

T

(
Sγ

dθ̄t
dλt−1

+ Sγ
dmt−1

dλt−1

)
. (16)

Next, β and λ are adjusted in the directions opposite to the
above derivatives.

V. ALGORITHM ASDM2

Algorithm 1 is based on pillars presented in the previous
sections. When the symbol “←” is used, the full assignment is
given on the right side of the symbol. The notation introduced
above is generally preserved in the algorithm but simplified
e.g., the subscript t is omitted. The algorithm has two versions:

127

1 Assign 0 to all estimators
2 Initialize θ
3 Assign t← 1, set any β 6= 0
4 (If needed) Update s
5 dQ

dβ ← g(θ̄, ξt)
T
(
Sγ dθ̄

dβ + Sγ dm
dβ

)

6 dQ
dλ ← g(θ̄, ξt)

T
(
Sγ dθ̄

dλ + Sγ dm
dλ

)

7 dJ̄
dµ ← g(θ̄, ξt)

T dθ̄
dµ

8 if t ≤ t0 then

9 β ← 1
2

(
t−1
t

1
2β
−1 + 1

t

∥∥∥∂g(θ,ξt)
∂θ gt

∥∥∥ /‖gt‖
)−1

10 α← lnβ
11 λ← 0.5
12 η ← − ln(1− λ)
13 else
14 α← α− δ dQ

dβ /
√
A(dQ

dβ)2

15 β ← exp(α)

16 η ← η − δ dQ
dλ /
√
A(dQ

dλ)2

17 η ← max{− ln(1−λmin), η}
18 λ← 1− exp(−η)

19 ν ← ν − δ dJ̄
dµ/
√
A(dJ̄

dµ)2

20 µ← 1− exp(−ν)

21 Sγ dg
dβ ←

dg(θ,ξt)
dθ Sγ dθ

dβ

22 Sγ dg
dλ ←

dg(θ,ξt)
dθ Sγ dθ

dλ
23 if t > 1 then
24 α0 ← ln

(
1
2 min

{
‖Sγdθ/dβ‖
‖Sγdg/dβ‖ ,

‖Sγdθ/dλ‖
‖Sγdg/dλ‖

})

25 if α > α0 then
26 α← α− 2δ
27 β ← exp(α0)

28 γ ← min

{
1, C A‖g‖2

‖Sγ dθ
dβ ‖2

, C A‖m‖2
‖Sγ dθ

dλ‖2

}

29 if λ > γ then
30 η ← η − 2δ
31 λ← γ

32 Update θ̄ with (8)
33 Update Sγ dθ̄

dβ with (9)
34 Update Sγ dθ̄

dλ with (10)
35 Update dθ̄

dµ with (11)
36 Update Sγ dm

dβ with (6)
37 Update Sγ dm

dλ with (4)
38 Update m and θ with (2)
39 Update φ with (13)
40 Update Sγ dθ

dβ with (7)
41 Update Sγ dθ

dλ with (5)
42 A(dQ

dβ)2 ← wρtA(dQ
dβ)2 + (1− wρt)(dQ

dβ)2

43 A(dQ
dλ)2 ← wρtA(dQ

dλ)2 + (1− wρt)(dQ
dλ)2

44 A(dJ̄
dµ)2 ← wρtA(dJ̄

dµ)2 + (1− wρt)(dJ̄
dµ)2

45 A‖g‖2 ← wρtA‖g‖2 + (1− wρt)‖gt‖2
46 A‖m‖2 ← wρtA‖m‖2 + (1− wρt)‖m‖2
47 Increment t and go to Line 4

Algorithm 1: Autonomous stochastic descent with mo-
mentum version 2: ASDM2.

• ASDM2/b is based on CM and applies no gradient
normalization: st is the vector of 1s (“/b” stands for
“bare”),

• ASDM2/n is based on ADAM i.e., CM with gradient
normalization (hence “/n”).

The core of the algorithm is Line 38, where the basic ad-
justment of m and θ is done. The algorithm utilizes several
technicalities such as (i) initialization of β based on a rough
estimate of the inverse of the largest eigenvalue of the Hessian
∇2J̄ (Lines 3 and 9), (ii) re-parameterization of β, λ, and
µ (Lines 10, 12, 15, 18, 20, 27) (iii) keeping β, λ, and γ
small enough to prevent abnormal operation of the algorithm
(Lines 25–28), and (iv) exponential smoothing of some esti-
mates (Lines 42–46). All the aforementioned technicalities are
discussed below.

A. Initialization of β and λ

According to [5], a good initial β would be the inverse of
the largest eigenvalue of the global loss function Hessian i.e.,

β ≈
(

max
v∈Rd

‖∇2J̄(θ)v‖/‖v‖
)−1

. (17)

As it is not possible to determine that value, we notice that

∇2J̄(θ) = E∇2J(θ, ξ) = E
∂g(θ, ξ)

∂θ
(18)

and set βt equal to half the inverse of the average of values
maximized in (17) with v = gi, namely

βt =
1

2

(
1

t

t∑

i=1

∥∥∥∥
∂g(θi, ξi)

∂θi
gi

∥∥∥∥ /‖gi‖
)−1

(19)

for t ≤ t0, where t0 > 0 determines how long the initial stage
of learning lasts. For t ≤ t0, we set λt ≡ 0.5. See Lines 8–
12, where βt is calculated recursively on the basis of βt−1

and (19).

B. Re-parameterization and adjusting β, λ, and µ

We want to adjust β, λ, and µ with increments of controlled
magnitude, regardless of the actual scale of β, 1−λ, and 1−µ.
In this order, the parameters α, η, and ν are introduced and
the following equivalence is established

β = exp(α), α = ln(β), (20)
λ = 1− exp(−η), η = − ln(1− λ), (21)
µ = 1− exp(−ν), ν = − ln(1− µ). (22)

Technically, these are α, η, and ν that are incrementally
adjusted. Since the updates are normalized, α, η, and ν are
updated on average ±δ, thus β, 1− λ, and 1− µ are updated
by factor (1 ± δ), where δ is a meta-stepsize. See Lines 10,
12, 15, 18, 20, and 27.

Effectively, the step-size β and the momentum decay factor
λ are adjusted according to the discussion in Sec. IV-B. The
main steps of these operations are in Lines 5, 6, 14, and 16.
The supplementary steps are in Lines 32–34, 35–37, 40–41.

Additionally, in order to locate θ̄t properly, the µ parameter
needs to be adjusted. That happens in Lines 7, 19, and 35.

128

C. Keeping β, λ, and γ small enough

As discussed above, the learning becomes unstable when
the step-size β becomes significantly larger than

‖v‖/‖∇2J̄(θt)v‖ (23)

for a certain v ∈ Rd. We utilize the fact that ∇2J(θt, ξt) is
multiplied by a vector in (6) and (4). Namely, early signs of
instability are detected when β is larger than

β0 =
1

2
min

∥∥∥Sγ dθt
dβt−1

∥∥∥
∥∥∥ ∂gt∂θt

Sγ dθt
dβt−1

∥∥∥
,

∥∥∥Sγ dθt
dλt−1

∥∥∥
∥∥∥ ∂gt∂θt

Sγ dθt
dλt−1

∥∥∥

 . (24)

When that happens (Line 25), β0 is used instead of β (Line
27), and β is decreased (Line 26).

Both γ and λ are exponential decay factors that deter-
mine the memory lengths of certain estimators. The term
Sγ(dθt+1/dλt) captures the influence of the previous values
of λi on θt+1. The memory length defined by γ should be at
least as large as the memory length defined by λ. Therefore,
whenever γ < λ, λ is being decreased (Lines 29, 30). Also,
λ is kept equal to at least λmin, as very small values of this
parameter hardly ever work well in practice.

It can be seen from (7) and (5) that Sγ(dθt+1/dλt) and
Sγ(dθt+1/dβt) are adjusted additively by gt and mt, re-
spectively. Considering the limited precision of floating point
numbers, ‖Sγ(dθt+1/dλt)‖ and ‖Sγ(dθt+1/dβt)‖ can not be
too many orders of magnitude larger than average ‖gt‖ and
‖mt‖, respectively.

We apply γ small enough to assure

‖Sγ(dθt+1/dλt)‖2 ≤ C · average‖gt‖2
‖Sγ(dθt+1/dβt)‖2 ≤ C · average‖mt‖2,

where C is a large constant depending on the representation
of numbers. It expresses how many times one number can be
larger than another with their addition still being effective. In
our experiments, we set C = 108.

D. Exponential smoothing

Let xt, t = 1, 2, 3, ... be a sequence. Let Axt be the
exponentially moving average of (xt), namely

Axt =

∑t−1
i=0 ρ

ixt−i∑t−1
i=0 ρ

i
(25)

for ρ ∈ (0, 1]. Elementary transformations reveal that

Axt = wρtAxt−1 + (1− wρt)xt (26)

for wρt = ρ(1 − ρt−1)/(1 − ρt). Exponential smoothing
is applied in Lines 42–46 of ASDM2. The terms A(dQ

dβ)2,
A(dQ

dλ)2, and A(dJ̄
dµ)2 play the role of scalar variables in the

algorithm.

E. Gradient normalization

If the algorithm applies gradient normalization (Line 4), the
normalization takes the following form

A(g ◦ g)i ← wρtA(g ◦ g)i + (1− wρt)gi(θt, ξt)
2, (27)

si ← 1/
√
A(g ◦ g)i + ε, , (28)

where ε > 0 is a coefficient that prevents division by zero, ρ
is a decay factor (like ρ = 0.999), and subscript i denotes the
i-th coordinate of the vector.

F. Coefficients

The algorithm requires several coefficients to be provided.
Their values applied in the experiments discussed below are
based mainly on common-sense, and are as follows: ε = 10−8,
δ = 0.0005, λmin = 0.5, ρ = 0.999, t0 = 10, and C = 108.
On several occasions, a certain value is set below a certain
threshold (Line 24) or above a certain value (Line 26, 30). In
all such cases, “below” is twice smaller, and “above” is twice
larger.

The initial µ is set equal to 0.99.
While all these coefficients may undergo some optimization,

their default values give good performance over diverse testbed
learning tasks.

VI. EXPERIMENTAL STUDY

This section reports experiments with the algorithms pre-
sented in the previous section. The algorithms are tested in
three settings: firstly, training shallow neural classifiers for
10 arbitrary classification problems from the UCI Machine
Learning Repository [29], secondly, creating three classic
deep dense autoencoders [30], and thirdly a convolutional
autoencoder for CIFAR-10 dataset, taken from [31].

The two new algorithms, namely ASDM2/b and ASDM2/n,
are compared with the following known ones: CM, AG,
ADAM, AdaGrad, and AdaDelta. The known algorithms are
considered in two settings: with optimized parameters e.g.,
CM/o, and with default parameters e.g., ADAM/d. The op-
timized parameters are the momentum decay factor and the
step-size selected from the Cartesian product {0.9, 0.99} ×
{. . . , 0.1, 0.05, 0.02, 0.01, . . . } such that they give the smallest
ultimate loss. The default parameters are ones applied by
Tensorflow when their values are not provided when calling
the algorithm.

A. Optimization tasks’ details

In case of the shallow neural classifiers, we take 10 arbi-
trary classification problems from the UCI Machine Learning
Repository [29]. They are listed in the first part of Tab. I.
For each, we build a neural classifier with a single hidden,
logistic sigmoidal layer, and a linear output layer. The number
of neurons in the output layer is equal to the number of classes,
and the number of hidden neurons is roughly optimized in
preliminary experiments aiming to minimize the test error.
Initial weights of the hidden neurons are drawn from normal
distribution N(0, σ2), where σ = 1/

√
dim(input). Networks

inputs are scaled with their means and standard deviations.

129

TABLE I
BASIC PARAMETERS OF ANALYZED LEARNING PROBLEMS. ABR —

PROBLEM NAME ABBREVIATION, SIZE — NUMBER OF SAMPLES, IDIM —
INPUT DIMENSION, ODIM — OUTPUT DIMENSION, NCNT — HIDDEN

LAYER SIZE, MBS — MINI-BATCH SIZE, LEN — NUMBER OF SAMPLES
PROCESSED BEFORE TERMINATION (I.E., A RUN TAKES LEN/MBS STEPS).

Problem Abr Size Idim Odim Ncnt Mbs Len
Credit card defaults CCard 30000 32 2 21 200 107

Dota2 games results Dota2 102944 116 2 55 200 107

HTRU2 Htru2 17898 8 2 34 200 107

Sensorless drive Motor 58509 48 11 89 200 107

Poker hand Poker 1025010 10 10 89 200 107

Robot navigation Robot 5456 24 4 34 200 107

Statlog shuttle Shuttle 58000 9 7 34 200 107

Skin segmentation Skin 245057 3 2 21 200 107

Spambase Spam 4601 57 2 34 200 107

Theorem proving Theo 6118 51 6 89 200 107

Curves Curves 20000 784 784 — 200 108

Handwritten Digits MNIST 60000 784 784 — 200 108

Olivetti Faces Faces 165600 625 625 — 200 108

CIFAR10 autoencoder CF10ae 50000 3072 3072 — 200 2·107

Required outputs are one-hot vectors. The loss reported is
mean-square error.

Experiments connected with deep autoencoders are based
on three datasets containing grayscale images. They are fed to
a dense autoencoder neural network. The task for the network
is to produce output equal to input. Hidden layers of the
networks have the following sizes:

• Curves: 400, 200, 100, 50, 25, 6, 25, 50, 100, 200, 400,
• MNIST: 1000, 500, 250, 30, 250, 500, 1000,
• Faces: 2000, 1000, 500, 30, 500, 1000, 2000.

All layers in the networks are logistic sigmoidal, with the
exception of bottleneck layers and the output layer in Faces,
which are linear. Sparse weights initialization is applied.
Details of the experimental setting are adopted from [32] and
[33]. The loss reported is mean-square error.

Images from CIFAR10 dataset are fed to a convolutional
autoencoder. All details of the network and training procedure
are taken from [31].

Table II shows how optimal step-sizes for CM, AG, ADAM,
AdaGrad, and AdaDelta may differ for various problems. The
differences reach four orders of magnitude.

B. Software and computational complexity

Our experimental software has been written in two
versions: in C++ with CUDA, and in Python with
Tensorflow. The Python version is freely available on
https://github.com/Bestest96/ASDM2-TF. The most computa-
tionally expensive operations in Algorithm 1 are gradient back-
propagation performed twice in each loop step and Hessian—
vector multiplication, also performed twice. The latter opera-
tion is slightly more expensive than the first one. Consequently,
ASDM2 needs 3-3.5 times more real time per loop step than
CM applied to the same problem.

TABLE II
STEP-SIZES AND MOMENTUM DECAY FACTORS OPTIMAL FOR EACH
PROBLEM. SS — STEP-SIZE, MDF — MOMENTUM DECAY FACTOR.

Alg. CM AG ADAM AGrad ADelta
Problem ss mdf ss mdf ss mdf ss ss mdf
CCard 0.5 0.9 0.02 0.99 0.05 0.9 0.2 1 0.99
Dota2 0.05 0.99 0.05 0.99 0.002 0.99 0.2 1 0.99
Htru2 0.02 0.99 0.05 0.99 0.05 0.9 0.2 1 0.99
Motor 0.02 0.99 0.05 0.99 0.002 0.99 0.05 1 0.9
Poker 0.01 0.99 0.05 0.99 0.005 0.9 0.2 1 0.99
Robot 0.2 0.99 0.1 0.99 0.05 0.9 0.2 1 0.99
Shuttle 0.2 0.99 0.1 0.99 0.02 0.9 0.2 1 0.99
Skin 0.05 0.99 0.1 0.99 0.05 0.9 0.5 1 0.99
Spam 0.2 0.99 0.1 0.99 0.02 0.9 0.2 1 0.99
Theo 0.01 0.99 0.02 0.99 0.01 0.9 0.2 1 0.99
Curves 0.01 0.9 0.002 0.9 0.002 0.9 0.02 0.5 0.99
MNIST 0.02 0.9 0.02 0.9 0.002 0.9 0.02 1 0.99
Faces 0.001 0.99 0.001 0.99 0.0002 0.99 0.01 0.5 0.99
CF10ae 10−5 0.99 10−5 0.99 0.001 0.9 0.005 0.5 0.99

C. Results

The results are depicted in Tab. III in the form of average
losses attained at the end of training. The table also presents
the accuracy of errors in the form of standard deviations. Only
training losses are reported, as here we focus on optimization
rather than the quality of models that could be demonstrated by
test losses. The smallest losses for each problem are indicated
by bold face font. The observations made are summarized
below.

1) In most cases (12 cases out of 14) the winner is either
form of ASDM2.

2) In most cases (12/14), the manual optimization of the
parameters of ADAM yield significant improvement of
its behavior. However, its default parameters make that
algorithm perform well in comparison to others, except
all variants of ASDM2.

3) ASDM2/n may be understood as ADAM with β and
λ tuned on-the-fly by the method introduced here. In
(13/14) cases, ASDM2/n outperformed ADAM/d (with
default parameters). In (12/14) cases, ASDM2/n also
outperformed ADAM/o (with optimized parameters).

4) The performance of AdaGrad and AdaDelta is especially
disappointing. Those algorithms were presented as a way
to optimize the step-size on-the-fly in SGD and CM,
respectively. That does not check out in our experiments.

Table IV presents parameters β, λ, γ, and µ that ASDM2
was using in the middle of training. Note that these parameters
were being constantly adjusted. The β and λ parameters
determined by the algorithm may be compared to those
optimized manually, which are depicted in Tab. II. Analogies
are rather vague, but do exist. ASDM2 adjusts the parameters
to the current stage of the learning process, and what is seen
in Tabs. IV are points in certain trajectories. The γ and µ
parameters are close to 1, as was expected.

In general, the ASDM2 algorithm in its various forms
yields encouraging results. Usually it reaches its goal, which is

130

TABLE III
FINAL LOSS ESTIMATES OBTAINED BY AVERAGING 10 INDEPENDENT RUNS AND REPORTING THE MEAN LOSS VALUE. THE ACCURACY IS DEFINED AS

THE STANDARD DEVIATION OF THE SAMPLE MEAN. /D — DEFAULT STEP-SIZE AND MOMENTUM DECAY FACTOR, /O — OPTIMIZED ONES. THE
ACCURACY IS PRESENTED WITH THE SAME NUMBER OF DIGITS AFTER THE DECIMAL POINT BUT WITHOUT LEADING ZEROS E.G., 15.35 ±31 DENOTES

15.35 ±0.31, AND 0.0055 ±4 DENOTES 0.0055±0.0004.

Alg. CM AG ADAM AdaGrad AdaDelta ASDM2
Problem /d /o /d /o /b /n
CCard 0.262 ±1 0.264 ±1 0.262 ±1 0.260 ±1 0.266 ±1 0.342 ±2 0.265 ±1 0.257 ±1 0.256 ±1
Dota2 0.422 ±1 0.418 ±1 0.412 ±1 0.394 ±1 0.405 ±1 0.500 ±1 0.423 ±1 0.414 ±1 0.379 ±1
Htru2 0.0326±7 0.0300±3 0.0313±5 0.0293±5 0.0294±4 0.1033±16 0.0321±5 0.0307±2 0.0291±4
Motor 0.0642±10 0.0480±8 0.0668±90 0.0415±5 0.0829±9 0.802 ±16 0.0956±13 0.0614±24 0.0413±7
Poker 0.451 ±10 0.315 ±13 0.448 ±15 0.327 ±3 0.477 ±7 0.569 ±1 0.524 ±3 0.499 ±6 0.302 ±3
Robot 0.0642±21 0.0908±23 0.1198±14 0.1064±12 0.1270±13 0.6178±19 0.1251±17 0.0843±32 0.0925±44
Shuttle 0.0064±7 0.0045±3 0.0084±3 0.0038±2 0.0093±3 0.2768±41 0.0135±4 0.0100±3 0.0059±2
Skin 0.0062±2 0.0055±1 0.0074±1 0.0043±2 0.0074±2 0.2573±75 0.0089±2 0.0053±1 0.0037±2
Spam 0.0245±10 0.0230±3 0.0279±3 0.0172±4 0.0257±3 0.4270±56 0.0390±5 0.0243±3 0.0171±3
Theo 0.442 ±2 0.409 ±1 0.430 ±2 0.393 ±1 0.440 ±1 0.720 ±1 0.454 ±1 0.408 ±1 0.381 ±2
Curves 0.178 ±2 0.312 ±16 0.158 ±4 0.157 ±3 0.444 ±8 15.930±1 0.303 ±5 0.129 ±1 0.109 ±1
MNIST 1.03 ±1 1.03 ±1 1.27 ±6 1.12 ±1 2.11 ±1 15.35 ±31 1.31 ±1 0.90 ±1 0.92 ±1
Faces 15.99 ±3 16.81 ±38 15.32 ±25 14.61 ±2 39.63 ±32 103.26±9 19.73 ±3 14.45 ±5 15.76 ±8
CF10ae 5.11 ±12 3.75 ±8 2.29 ±2 2.29 ±2 4.98 ±9 23.75 ±7 2.69 ±4 3.73 ±10 2.22 ±2

TABLE IV
AVERAGE (OVER TRAINING RUNS) VALUES OF β , λ, γ , AND µ IN THE

MIDDLE OF TRAINING.

Alg. ASDM2/b ASDM2/n
Problem β λ γ µ β λ γ µ
CCard 0.33 0.92 1 0.997 0.0024 0.81 1 0.997
Dota2 0.24 0.93 0.9999 0.998 0.0024 0.74 0.9994 0.9994
Htru2 0.19 0.96 0.9998 0.995 0.0025 0.89 0.9999 0.995
Motor 0.11 0.93 0.998 0.995 0.0011 0.76 0.995 0.996
Poker 0.076 0.93 1 0.997 0.00022 0.97 0.9997 0.996
Robot 0.26 0.97 0.9998 0.997 0.0033 0.84 1 0.996
Shuttle 0.20 0.86 0.9999 0.990 0.00048 0.89 0.998 0.985
Skin 0.31 0.98 0.9992 0.993 0.0028 0.96 0.9994 0.994
Spam 0.22 0.97 0.9996 0.997 0.0019 0.78 0.9999 0.996
Theo 0.11 0.94 1 0.997 0.0013 0.71 0.9992 0.996
Curves 0.001 0.996 0.9995 0.998 3.2e-5 0.97 0.9998 0.9991
MNIST 0.016 0.91 0.9999 0.9995 7.5e-5 0.87 1 0.9994
Faces 0.004 0.94 1 0.9996 3.4e-5 0.84 0.9998 0.9996
CF10ae 4.2e-5 0.94 0.997 0.97 2.5e-5 0.98 0.994 0.998

approximate optimization on-the-fly of the β and λ parameters
for CM, AG, and ADAM. Consequently, ASDM2 yields good
speed of learning from the first run. However, in some cases,
the algorithm does not provide optimal β or λ, and those cases
are especially interesting. Such cases are Robot and Shuttle.

What is conspicuous about those problematic cases in
Tab. IV are the relatively small values of γ. While for the
sake of numeric accuracy (see Sec. V-C), it does not make
sense to set γ equal to 1, there is a systematic reason why
the larger that parameter is, the better. Rough interpretation of
the terms SγdJ(θ̄t, ξt)/dβt−1 and SγdJ(θ̄t, ξt)/dλt−1 is as
follows: ASDM2 at each t looks at what would happen with
J(θ̄t, ξt) if βi and λi had been larger in preceding (1− γ)−1

steps. Therefore, if the algorithm is forced to set small γ, it
has only a myopic view on the influence of β and λ on the
learning process. That, in turn, leads to suboptimal values of
β and λ. How to enable large γ for all problems and learning

stages is a curious research topic.

VII. CONCLUSIONS

The manual tuning of hyperparameters in on-line learning
slows research down since it requires a whole process to be
repeated many times. It also makes many potential applications
of machine learning unavailable, since in most cases one can
not tell the user to go pick the right hyperparameters by trial
and error.

In this paper, a step has been made to get rid of “pesky”
hyperparameters such as step-size and momentum decay fac-
tor, and to be able to get results of on-line learning after
a single run. A method was introduced that adjusts those
hyperparameters in CM and ADAM. The method is based
on the recognition of the short- and long-term influence of the
hyperparaemters on the learning process. The hyperparameters
are tuned to make the process fast yet stable. The method
does not depend on any preliminary knowledge of the learning
problem, thereby making on-line learning a process that needs
to be run only once. In the experimental study, the method
was applied to shallow neural networks, as well as deep auto-
encoders, and in most cases it performed better than any
manually selected hyperparameters.

ACKNOWLEDGMENT

We gratefully acknowledge the support of NVIDIA Corpo-
ration with the donation of the Titan X Pascal GPU used for
this research.

REFERENCES

[1] H. Robbins and S. Monro, “A stochastic approximation
method,” Annals of Matchematical Statistics, vol. 22, pp.
400–407, 1951.

[2] B. T. Polyak, “Some methods of speeding up the con-
vergence of iteration methods,” USSR Computational

131

Mathematics and Mathematical Physics, vol. 4, pp. 1–
17, 1964.

[3] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient
methods for online learning and stochastic optimization,”
Journal of Machine Learning Research, vol. 12, pp.
2121–2159, 2011.

[4] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in CoRR, vol. abs/1412.6980, 2014.

[5] P. Wawrzynski, “ASD+M: Automatic parameter tuning
in stochastic optimization and on-line learning,” Neural
Networks, vol. 96, pp. 1–10, 2017.

[6] J. Kiefer, J. Wolfowitz et al., “Stochastic estimation of
the maximum of a regression function,” The Annals of
Mathematical Statistics, vol. 23, no. 3, pp. 462–466,
1952.

[7] D. E. Rumelhart, G. E. Hinton, and R. J. Williams,
“Learning representations by back-propagating errors,”
Nature, no. 323, pp. 533–536, 1986.

[8] Y. Nesterov, “A method of solving a convex program-
ming problem with convergence rate o(1/sqr(k)),” Soviet
Mathematics Doklady, vol. 27, pp. 372–376, 1983.

[9] N. Qian, “On the momentum term in gradient descent
learning algorithms,” Neural Networks, vol. 12, 1999.

[10] A. Bhaya and E. Kaszkurewicz, “Steepest descent with
momentum for quadratic functions is a version of the
conjugate gradient method,” Neural Networks, vol. 17,
pp. 65–71, 2004.

[11] T. A. Straeter, “On the extension of the davidon-broyden
class of rank one, quasi-newton minimization methods to
an infinite dimensional hilbert space with applications to
optimal control problems,” 1971.

[12] G. Qiu, M. Varley, and T. Terrell, “Accelerated training of
backpropagation networks by using adaptive momentum
step,” Electronics letters, vol. 28, no. 4, pp. 377–379,
1992.

[13] D. Swanston, J. Bishop, and R. J. Mitchell, “Simple
adaptive momentum: new algorithm for training multi-
layer perceptrons,” Electronics Letters, vol. 30, no. 18,
pp. 1498–1500, 1994.

[14] T. Graepel and N. N. Schraudolph, “Stable adaptive
momentum for rapid online learning in nonlinear sys-
tems,” in International Conference on Artificial Neural
Networks. Springer, 2002, pp. 450–455.

[15] M. Z. Rehman and N. M. Nawi, “The effect of adaptive
momentum in improving the accuracy of gradient descent
back propagation algorithm on classification problems,”
in International Conference on Software Engineering and
Computer Systems. Springer, 2011, pp. 380–390.

[16] A. A. Hameed, B. Karlik, and M. S. Salman, “Back-
propagation algorithm with variable adaptive momen-
tum,” Knowledge-Based Systems, vol. 114, pp. 79–87,
2016.

[17] J. Zhang and I. Mitliagkas, “Yellowfin and the art of
momentum tuning,” arXiv preprint arXiv:1706.03471,
2017.

[18] M. D. Zeiler, “Adadelta: An adaptive learning rate

method,” in arXiv:1212.5701, 2012.
[19] T. Tieleman and G. Hinton, “Lecture 6.5-rmsprop: Divide

the gradient by a running average of its recent magni-
tude,” 2012.

[20] T. Dozat, “Incorporating Nesterov momentum into
Adam,” in ICLR, 2016.

[21] L. Luo, Y. Xiong, and Y. Liu, “Adaptive
gradient methods with dynamic bound of
learning rate,” in International Conference on
Learning Representations, 2019. [Online]. Available:
https://openreview.net/forum?id=Bkg3g2R9FX

[22] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient
methods with dynamic bound of learning rate,” arXiv
preprint arXiv:1902.09843, 2019.

[23] A. C. Wilson, R. Roelofs, M. Stern, N. Srebro, and
B. Recht, “The marginal value of adaptive gradient
methods in machine learning,” in Advances in Neural
Information Processing Systems, 2017, pp. 4148–4158.

[24] N. Schraudolph and T. Graepel, “Towards stochastic
conjugate gradient methods,” in Proceedings of the 9th
International Conference on Neural Information Process-
ing, 2002, pp. 853–856.

[25] N. N. Schraudolph, “Local gain adaptation in stochastic
gradient descent,” 1999.

[26] A. G. Baydin, R. Cornish, D. M. Rubio, M. Schmidt,
and F. Wood, “Online learning rate adaptation with hy-
pergradient descent,” arXiv preprint arXiv:1703.04782,
2017.

[27] M. Rolinek and G. Martius, “L4: Practical loss-based
stepsize adaptation for deep learning,” in Advances in
Neural Information Processing Systems, 2018, pp. 6433–
6443.

[28] Y. Wu, M. Ren, R. Liao, and R. Grosse.,
“Understanding short-horizon bias in stochastic
meta-optimization,” in International Conference on
Learning Representations, 2018. [Online]. Available:
https://openreview.net/forum?id=H1MczcgR-

[29] A. Frank and A. Asuncion, “UCI machine
learning repository,” 2010. [Online]. Available:
http://archive.ics.uci.edu/ml

[30] A. P. George and W. B. Powell, “Adaptive stepsizes
for recursive estimation with applications in approximate
dynamic programming,” Machine Learning, vol. 65, pp.
167–198, 2006.

[31] P. Wawrzynski, “Efcient on-line learning with diagonal
approximation of loss function hessian,” in IJCNN, 2019.

[32] G. E. Hinton and R. R. Salakhutdinov, “Reducing the
dimensionality of data with neural networks,” Science,
vol. 313, pp. 504–507, 2006.

[33] I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On
the importance of initialization and momentum in deep
learning,” in ICML, vol. 28, no. 3. JMLR Workshop
and Conference Proceedings, 2013, pp. 1139–1147.

132

B.4. Reinforcement Learning for on-line Sequence
Transformation

Title Reinforcement Learning for on-line Sequence Transformation

Authors Grzegorz Rypeść, Łukasz Lepak, Paweł Wawrzyński

Conference 17th Conference on Computer Science and Intelligence Systems (FedCSIS 2022)

Year 2022

DOI 10.15439/2022F70

Ministerial score 70

133

https://doi.org/10.15439/2022F70

Reinforcement Learning for
on-line Sequence Transformation

Grzegorz Rypeść, Łukasz Lepak, Paweł Wawrzyński
Warsaw University of Technology, Institute of Computer Science, Warsaw, Poland

{grzegorz.rypesc.stud, lukasz.lepak.dokt, pawel.wawrzynski}@pw.edu.pl

Abstract—In simultaneous machine translation (SMT), an
output sequence should be produced as soon as possible, without
reading the whole input sequence. This requirement creates a
trade-off between translation delay and quality because less
context may be known during translation. In most SMT methods,
this trade-off is controlled with parameters whose values need
to be tuned. In this paper, we introduce an SMT system that
learns with reinforcement and is able to find the optimal delay in
training. We conduct experiments on Tatoeba and IWSLT2014
datasets against state-of-the-art translation architectures. Our
method achieves comparable results on the former dataset, with
better results on long sentences and worse but comparable results
on the latter dataset.

I. INTRODUCTION

S IMULTANEOUS machine translation (SMT) can be de-
fined as producing output sequence tokens while reading

input sequence tokens in an on-line fashion. These tokens may
represent words in given languages, chunks of audio streams,
or any other sequential data. The main difference between
SMT and more general neural machine translation (NMT) is
how the input and output sequences are processed. Most NMT
methods read all input tokens and then generate the output
sequence. Because of this, even though efficient state-of-the-art
NMT methods exist, they cannot be used in SMT applications.
Also, SMT methods need to consider the trade-off between
delay and quality, as faster translation implies less context from
the input. In most cases, this trade-off has to be optimized by
checking various parameter settings, which is resource- and
time-consuming.

SMT can be decomposed into a sequence of readings of the
input tokens and writings of the output tokens. Reinforcement
learning (RL) [1] is often applied to train SMT systems that
sequentially choose between these actions and/or choose the
written token. In this paper, we present an RL-based method
with self-learning delay. Unlike in other approaches, we apply
bootstrapping in training, which means that the sequences
translated can be in principle infinite. We conduct experiments
on Tatoeba and IWSLT2014 datasets against state-of-the-art
translation architectures. Our method achieves comparable
results on the former dataset, with better results on long
sentences and worse but comparable results on the latter dataset.

The paper is organized as follows. Section II overviews
literature related to neural machine translation, reinforcement
learning, and simultaneous machine translation. Section III
formally defines the problem considered in this paper. Sec-
tion IV presents our method. Section V describes simulations

evaluating the presented architecture. Section VI discusses
the experimental results and limitations of our approach.
Section VII concludes the paper.

II. RELATED WORK

a) Neural machine translation (NMT): A basic architec-
ture for neural machine translation includes an encoder that
is fed with the input sequence; its final state becomes the
initial state of a decoder that produces the output sequence [2].
In order to produce the right output, attention must be paid
to significant input tokens. Attention was introduced to the
encoder-decoder architecture in [3] and [4]. An architecture
for NMT that is based solely on attention is Transformer [5].
Recurrent neural networks (RNN) were applied to capture
short-term dependencies in input sequences and combined with
multilayer attention in R-Transformer [6]. However, all these
architectures only produce output when given the whole input
sequence and hence are not applicable to on-line translation.

b) Reinforcement learning (RL): RL is a general frame-
work for adaptation in the context of sequential decision making
under uncertainty [1]. In this framework, an agent operates
in discrete time, at each instant observing the state of its
environment and taking action. Subsequently, the environment
state changes, and the agent receives a numeric reward. Both
the next state and the reward result from the previous state and
action. By repeatedly facing the sequential decision problem
in the same environment, the agent learns to designate actions
in current environment states to be able to expect the highest
future rewards.

In the context of this paper, especially interesting is the case
where the agent cannot observe its state but only the value
of a certain function of the state. This case is modeled as the
Partially Observable Markov Decision Process (POMDP) [7]. In
this model, the agent needs to collect subsequent observations
to be able to recognize its current situation at any specific time.
This can be done effectively with an RNN. Deep Recurrent
Q-Learning [8] is an RL method for POMDP, which applies
an RNN for that purpose.

RL has been applied to neural machine translation to
optimize a policy, which, given an input sentence, assigned
maximum probability to the corresponding output sentence.
RL was applied this way to optimize the translation quality
expressed in BLEU [9] which is not directly differentiable. RL
has also been applied to train a random generator of sentences in

Proceedings of the of the 17th Conference on Computer
Science and Intelligence Systems pp. 133–139

DOI: 10.15439/2022F70
ISSN 2300-5963 ACSIS, Vol. 30

IEEE Catalog Number: CFP2285N-ART ©2022, PTI 133

134

a generative adversarial architecture [10]. A similar architecture
has been applied for the sequential generation of graphs [11].

c) Simultaneous Machine Translation (SMT): A number
of SMT methods use reinforcement learning. One of the first
examples of using RL for SMT was presented in [12]. It uses
imitation learning from the optimal sequence of actions to
learn a policy for the system. In [13], a two-action framework
was introduced, where the agent can read an input token,
named READ, or write a new output token, named WRITE.
This framework serves as a baseline for many new SMT
methods, with authors extending and modifying it to achieve
better results. The proposed reward function is based on the
achieved BLEU score [14] and the translation delay metrics
proposed by the authors, with the trade-off between delay and
translation quality controlled by setting appropriate parameter
values. In [15], a third action was added, named PREDICT,
which works similarly to READ, but instead of reading an
input token, it predicts this token. The reward function was also
changed to include predictions’ quality, with delay-quality trade-
off still controlled by parameters. In [16], a commonly used
NMT encoder-decoder structure was modified to work with
SMT by making encoder, and attention dynamically change
after every READ and adding an incremental decoder, which
outputs a token from them after every WRITE. In [17], a
method was proposed for extracting action sequences from
NMT architectures, which were later used with sentence pairs
in imitation learning to learn an optimal policy. Recently,
reinforcement learning was used in multimodal translation
[18], utilizing text and visual data to improve the quality of
translations.

Not every SMT method uses reinforcement learning. In [19],
the ”wait-k” strategy was proposed, which produces a new
output token with a fixed delay equal to k. It can be easily
implemented in commonly used NMT architectures, shown
by modifying the original Transformer. In [20], the ”wait-k”
strategy was used in speech-to-text task, showing it is efficient
in applications other than machine translation.

III. PROBLEM DEFINITION

We consider input sequences, x = (xi)
|x|21
i=0 , that contain

tokens, xi ∈ Rd, d ∈ N. The input sequences correspond
to target sequences, y = (yj)

|y|21
j=0 , yj ∈ Rd2

, d2 ∈ N. The
sequences are of variable lengths presented by the | · | function.
An interpreter agent is fed with subsequent tokens from x and
produces tokens of an output sequence, (zj)

|z|21
j=0 , zj ∈ Rd2

on
the basis of x.

Three special tokens playing various roles exist in both the
input and the output space. They are:

" NULL — a missing element,
" EOS — denotes the last element of each sequence,
" PAD — an element concatenated to sequences after EOS

for technical reasons.

For brevity, we will assume xi=PAD, yj=PAD, zj=PAD for,
respectively, i ≥ |x|, j ≥ |y|, j ≥ |z|.

Given x, the agent should produce z that minimizes the qual-
ity index in the form

J(y, z) =
K21�

j=0

L(yj , zj). (1)

The loss L penalizes mistranslation; L(PAD, PAD) = 0; K is
a number larger than any |y|. The sequence z that minimizes
(1) is of length |y|, contains tokens equal to those in y, and
ends with EOS.

We also require the interpreter agent to be of limited capacity
but handle sequences of arbitrarily large lengths. In other words,
we require the agent to operate on-line, i.e., it is fed with
subsequent tokens of the input sequence and simultaneously
produces subsequent tokens of the output sequence.

IV. METHOD

A. Reinforcement learning to transform sequences

We formalize the transformation of one sequence into another
as an iterative decision process. At each of its instants, an agent
reads a subsequent token from the input sequence or writes
a subsequent token of the output sequence, similarly to [13].
That is, at each instant, the agent executes one of two actions:

" READ — another input token is read. This action is
useful when it is (still) unclear what output token should
be produced.

" WRITE — a subsequent output token is produced. This
action is useful when a certain comprehensive portion of
input tokens have been read, and a subsequent part of its
interpretation can be presented.

A policy is a method of selecting actions and producing output
tokens based on tokens read and those produced so far.

After execution of some of the actions, the agent receives
numerical rewards. Let the rewards received during the process
be denoted by r = (rk)

|r|21
k=0 . A reward, rk, is emitted at the

following times:
" An output token, zj , has just been written. Then rk is the

negative cost of mistranslation, i.e.

rk = −L(yj , zj). (2)

" A whole input sequence has been read, and the READ
action is taken. This action does not make sense at this
time. Therefore, for a certain constant M > 0, we have

rk = −M. (3)

Let n(t) be the number of rewards emitted before the t-th
action. The quality criterion for the policy is maximization of
future discounted rewards. That is, at each time t the expected
value of the return

Rt =

|r|21�

k=n(t)

γk2n(t)rk (4)

should be maximized, where γ ∈ (0, 1) is a discount factor.
In one episode of its operation, the agent transforms a single

134 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

135

xi

RNN

zj

N p
t N R

t N
W
t

at
argmax

delay

Fig. 1: Proposed architecture for on-line sequence transfor-
mation. The black squares represent passing/delaying xi and
outputting/skipping Np

t depending on the action at.

sequence. It stops producing additional output tokens when it
has outputted EOS.

In training, the agent, not having learned how to finish
sequences, must be prevented from producing them infinitely
long. Here we assume that an episode of training is terminated
when the agent has produced as many tokens as in the target
sequence y. The last target token is EOS, which is enough for
the agent to learn to finish the output sequences.

Usually, in reinforcement learning [1] a reward comes after
each action. However, here we want the agent to be rewarded
only for the tokens it produces, bearing in mind that it does
not produce them with READ actions. Rewards equal to
zero for such actions do not make sense here because they
could encourage the agent to maximize the sum of discounted
rewards by postponing the production of output. Therefore,
here we admit actions that are not immediately followed by
rewards. Those emitted rewards have their own indices and are
discounted according to them.

At each instant of its operation, a state of the agent’s
environment consists of the tokens the agent has read so far
and the tokens it has written so far. However, before taking
another action, it is only fed with the next input token and
with the last written token. Therefore, the agent’s environment
is partially observable.

B. Architecture

We propose an architecture that learns to make the actions
discussed above. The policy has the form of a recurrent neural
network. Its input size is d+ d2. In an instant of its operation
it is fed with a subsequent input token concatenated with
a preceding output token. Specifically, the first input to the
network is the pair (x0,NULL). Let us assume that the agent
has already read i input tokens and produced j output tokens.
Thus, after the READ action, the network input is (xi,NULL).
After the WRITE action, the network input is (NULL, zj21).

In training teacher forcing can also be applied: The agent is
fed not with the tokens it has already outputted but with target
tokens.

Output of the network is of size d2+2. The network produces
a d2-dimensional potential output token and 2 scalar return

estimates that approximate returns (4) expected if actions
WRITE and READ, respectively, were taken.

Let Nt be the d2 + 2-dimensional output of the network at
t-th instant. It is composed as

Nt = [Np
t , N

W
t , NR

t],

where Np
t ∈ Rd2

is the potential output token, and NW
t , NR

t ∈
R are the return estimates for the WRITE and READ actions,
respectively. The architecture is depicted in Fig. 1.

The network output that estimates the return corresponding to
the just taken action at is trained to approximate the conditional
expected value

Qt(at) = E(Rt|Ct), (5)

where the condition Ct includes the following:
1) The action just taken is at.
2) Subsequently, those actions are selected, which corre-

spond to the network return estimates with maximum
values.

3) Input tokens read so far, and output tokens produced so
far. At the time t, the rest of the tokens are unknown,
thereby remaining random vectors.

The actions actually taken are usually selected as those
maximizing the return estimates given by the network. However,
with a small probability, the agent chooses the other action since
it needs to explore different actions to learn their consequences.
Therefore, we will not estimate Qt(at) based on the actual
return, but on a recursion instead. Specifically, let us denote by
j the number of output tokens produced before the analyzed
action is taken. A simple analysis reveals that Qt(at) (5)
satisfies the following recursive equation:

Qt(at) = E

ù
üüüüüüüüüüú
üüüüüüüüüüû

−M + γmaxb Qt+1(b)
if at = READ, fin(x)

maxb Qt+1(b)
if at = READ,¬fin(x)
−L(yj , zj) + γmaxb Qt+1(b)

if at = WRITE, j < |y| − 1
−L(yj , zj)

if at = WRITE, j = |y| − 1

����������������

at

ü
üüüüüüüüüüý
üüüüüüüüüüþ

(6)

where fin(x) means that all x tokens have been read. The
condition for the above expectation is that the action actually
taken is at.

Target values for the network will be based on the
above recursive equation and the fact that Qt+1(READ) and
Qt+1(WRITE) are estimated by NR

t+1 and NW
t+1, respectively.

Therefore, the network outputs at time t are trained as follows.1

After the READ action, when x is not finished yet, NR
t is

adjusted:
NR

t ← max{NR
t+1, N

W
t+1}. (7)

1We apply the notation:

[predicate] =

�
1 if predicate is true
0 otherwise.

GRZEGORZ RYPEŚĆ ET AL.: REINFORCEMENT LEARNING FOR ON-LINE SEQUENCE TRANSFORMATION 135

136

After the READ action, when x is already finished:

NR
t ← −M + γmax{NR

t+1, N
W
t+1}. (8)

After a WRITE action, the return estimate for the WRITE
action is adjusted as

NW
t ← −L(Np, zj)+ [j < |y| − 1]γmax{NR

t+1, N
W
t+1}, (9)

Also, the potential output is adjusted

Np
t ← yj . (10)

C. Weighting losses due to mistranslation and return estimation

The network produces outputs of two qualitatively different
kinds: the potential output tokens and the return estimates. The
network training requires minimization of an aggregated loss
that combines a loss due to mistranslation and a loss due to
return estimation. We propose to normalize these losses with
their averages defined below.

Let n = 1, 2, . . . be a training minibatch index. We average
original mistranslation losses, LM

n , and original estimation
losses, LE

n , according to

L̄M
n = wnL̄

M
n21 + (1− wn)L

M
n , (11)

L̄E
n = wnL̄

E
n21 + (1− wn)L

E
n (12)

where L̄M
0 = L̄E

0 = 0, and

wn = ρ(1− ρn21)/(1− ρn), (13)

where ρ ∈ (0, 1) is the decay factor, e.g. ρ = 0.99. The
terms (11,12) approximate arithmetic means for small n, and
exponential moving average for larger n.

Training the network aims at minimizing the aggregated loss
in the form

Ln = LM
n /L̄M

n + η(n, n0)L
E
n /L̄

E
n . (14)

The term η(n, n0) is a relative weight of the estimation loss
for the current minibatch/epoch index n and the (expected)
total number n0 of minibatches/epochs in the whole training.
For small n this weight should be small: η(n, n0) ≈ ηmin,
since high accuracy of future rewards is pointless when quality
of outputted tokens is poor. η(n, n0) is gradually growing
with n to a certain asymptote, ηmax. ηmin and ηmax are
hyperparameters of the training process, e.g. 1/50 and 1/5,
respectively. The η function may have the form

η(n, n0) = ηmax − (ηmax − ηmin) exp(−3n/n0). (15)

V. EXPERIMENTAL STUDY

In this section, we demonstrate the effectiveness of our
proposed architecture, henceforth called RLST (Reinforcement
Learning for on-line Sequence Transformation). We perform
experiments with seven machine translation tasks. They are
based on datasets taken from Tatoeba [21] and dataset taken
from IWSLT2014 [22].

In our machine translation tasks, the input sequence consists
of tokens representing words of a sentence in a source
language. The aim is to generate a sequence of tokens with

the same sentence meaning as the source sequence. We
conduct experiments on datasets presented in Table I which
contains basic statistics on the source and target languages
datasets, sizes of source and target dictionaries, and numbers
of sentences in each data split. For Tatoeba datasets, we also
separate long test splits, where source sentences have more
than 22 tokens. The long test split allows us to compare how
models deal with longer input sentences. For all datasets, we
compare our proposed RLST architecture with state-of-the-art
machine translation architectures, namely encoder-decoder with
attention [3] and Transformer [5]. For both encoder-decoder and
Transformer, the minimized loss is cross-entropy. For RLST,
we quantify LM

n and LE
n in (14) as cross-entropy and mean

square error, respectively.
In our experiments, we employed the following procedure

to optimize hyperparameters of the compared architectures.
For Tatoeba datasets, we optimized the hyperparameters
manually for all three architectures to obtain their best BLEU
score [14] on the En-Es language pair and applied these
values to all language pairs. For IWSLT2014 datasets, we
optimized the hyperparameters of RLST manually and took
the hyperparameters for the Transformer from [5] and for the
encoder-decoder with attention from [23].

Our simulation experiments have been performed on a PC
equipped with AMD Ryzen™Threadripper™1920X, 64GB
RAM, 4×NVIDIA™GeForce™RTX 2070 Super™.

A. Tatoeba

Tatoeba datasets [21] contain various, mostly unrelated,
sentences and their translations provided by the community.
We preprocess them using spaCy tokenizer [24] and replace
tokens that appear in training corpora less than three times
with a unique token representing an unknown word. We also
remove duplicated source sentences.

Experiments on Tatoeba for all architectures are run for 50
epochs, with a batch size of 128 and gradient clipping norm
set to 10.0. Encoder-decoder and RLST have weight decay
set to 1025, while Transformer has weight decay set to 1024.
Source and target tokens are converted to trainable vectors of
length 256 initialized with N (0, 1). There is a dropout applied
to them with a probability of 0.2. We use Adam optimizer
with default parameters and a constant learning rate equal
to 0.0003. The reference encoder-decoder is presented in [3].
Its encoder is a bidirectional GRU recurrent layer with 256
hidden neurons followed by a linear attention layer with 64
neurons. The decoder is a GRU recurrent layer with 256 hidden
neurons followed by a dropout with 0.5 probability and a linear
output layer with a number of neurons equal to the target’s
vocabulary size. The teacher forcing ratio for encoder-decoder
during training is set to 1.0. For the Transformer, we use
the following parameters: the number of expected features in
the encoder and decoder inputs is 256, the number of heads
in multiattention is 8, the number of encoder and decoder
layers is 6, the dimension of feedforward layers is 512, the
dropout probability is 0.25 and the teacher forcing ratio to
1.0. For RLST, we use the following approximator. Input and

136 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

137

Dataset Abbr Src. Trg. Train Valid. Test Long
dict. dict. set set set test

Tatoeba Spanish-English Tat Es-En 13 288 8 960 124 179 41 393 41 394 2 387
Tatoeba French-English Tat Fr-En 13 792 10 056 161 283 53 761 53 762 2 613
Tatoeba English-Spanish Tat En-Es 8 690 12 698 115 026 38 342 38 342 2 325
Tatoeba English-Russian Tat En-Ru 10 009 21 820 241 785 80 595 80 595 1 756
Tatoeba English-German Tat En-De 10 504 15 276 170 347 56 782 56 783 3 805
IWSLT2014- IWSLT-
German-English De-En 8 848 6 632 160 239 7 283 6 750 —
IWSLT2014- IWSLT-
English-German En-De 6 632 8 848 160 239 7 283 6 750 —

TABLE I: Basic statistics of machine translation datasets.

previous output embeddings with a dimension of 256 are passed
to a dense layer with 512 neurons, Leaky ReLU activation
with negative slope set to 0.01 and dropout probability of 0.2.
Its output is processed by four GRU layers with the hidden
dimension of 512 and residual connections between them. The
output of the last recurrent layer is passed to a dense layer with
512 neurons, Leaky ReLU activation with a negative slope set
to 0.01, and a dropout probability of 0.5. The output of the last
dense layer is passed to the output linear layer with number of
neurons equal to the target’s vocabulary size and additional 2
neurons representing Q-values of actions. We also set γ = 0.9,
ε = 0.3, M = 3, N = 50000, ηmin = 0.02, ηmax = 0.2,
ρ = 0.99 and teacher forcing ratio to 1.0.

B. IWSLT2014
We conduct experiments on IWSLT2014 German-English

and English-German datasets using the fairseq framework
[22]. Data is preprocessed using the script provided by the
benchmark, which utilizes byte-pair encoding (BPE) [25]. For
every architecture, the training lasts for 100 epochs with varying
batch sizes to ensure that the maximum number of tokens
in a batch equals 4096 and the gradient clipping norm is
set to 10.0. The encoder-decoder and RLST architectures are
trained using Adam optimizer with default parameters and
constant learning rate scheduling with weight decay of 1025.
The Transformer is also trained using Adam optimizer, with
parameters and a learning rate scheduler described in [5].
For the encoder-decoder and the Transformer, we use the
lstm_wiseman_iwslt_de_en architecture (based on [23]) and
transformer_iwslt_de_en (based on [5] with some changes),
respectively. The encoder-decoder model has trainable source
and target embeddings dimensions of 256 without dropout.
Its encoder is an LSTM layer with 256 hidden neurons,
and its decoder was also an LSTM layer with 256 hidden
neurons followed by an output layer with the number of
neurons equal to the target’s vocabulary size. The decoder
uses the attention mechanism. The encoder and decoder
layers have a dropout probability of 0.1. The Transformer
has the following parameters: The trainable source and target
embeddings dimensions are 512 without dropout, the number
of neurons in feedforward layers is 1024, the number of
multiattention heads is 4, the number of encoder and decoder
layers is 6 and a dropout probability of 0.1. For RLST, we set
trainable source and target embedding dimensions to 256 with
a dropout of 0.2 probability. In the case of IWSLT-En-De, we

use the same approximator as in Tatoeba. For IWSLT-De-En,
we changed the dimensions of dense and GRU layers from 512
to 768. We also set γ = 0.9, ε = 0.30, M = 7, N = 100000,
ρ = 0.99, ηmin = 0.02, ηmax = 0.2 and teacher forcing ratio
to 1.0. For encoder-decoder and Transformer, we set beam
search width to 1 and teacher forcing ratio to 1.0.

C. Results

The results are presented in Table II. For each dataset and
architecture, we show BLEU values computed on a test split
from checkpoints for which the BLEU value on a validation
split was the highest. We also show the number of parameters
for each model. The highest values of BLEU for each dataset
are bolded. On the Tatoeba test confined to sentences of
length up to 22 words, all three architectures achieved similar
BLEU. However, in the test confined to longer sentences, RLST
outperforms the other architectures in 4 language pairs out of
5, usually by a large margin. The architecture to achieve the
best results on fairseq datasets is the Transformer. RLST and
the encoder-decoder with attention achieve similar BLEU on
this benchmark.

In order to gain an additional insight into the operation of
the RLST interpreter agent we present in Figure 2 the timing
of taking the READ and WRITE actions. As one may expect,
initially, the agent is mostly reading, then reading and writing
ratios are roughly equal, and finally, the agent is mostly writing.
It appears that the agent has read about five more words than
it has written for most of the time. That seems to correspond
to a common intuition: A human interpreter also needs to be
delayed a few words in producing an accurate translation of
a speech.

VI. DISCUSSION

Our proposed interpreter agent RLST is designed to trans-
form arbitrarily long sequences on-line. In each cycle of its
operation, it performs the same number of computations in
which it reads an input token or writes an output token. The
agent has only limited memory space to store information
about recently read tokens, a context of these tokens defined
by previous ones, and recently written tokens. Therefore, the
agent is not a method of choice for translating sentences of
moderate length without any context.

The RLST architecture outperformed others in the test on
long sentences (longer than 22 words) taken from Tatoeba. The
memory state of the interpreter agent preserved the context

GRZEGORZ RYPEŚĆ ET AL.: REINFORCEMENT LEARNING FOR ON-LINE SEQUENCE TRANSFORMATION 137

138

Architecture → Encoder-decoder Transformer RLST
Dataset ↓ BLEU Num. params BLEU Num. params BLEU Num. params
Tat Es-En 50.33 16 637 504 50.19 15 906 560 50.02 17 122 050

Tat Es-En (L) 16.52 16 637 504 13.42 15 906 560 20.57 17 122 050
Tat Fr-En 53.95 18 170 504 53.89 16 597 832 53.05 18 093 898

Tat Fr-En (L) 13.49 18 170 504 10.03 16 597 832 16.42 18 093 898
Tat En-Es 45.14 20 248 794 44.63 16 647 066 45.09 18 819 484

Tat En-Es (L) 16.1 20 248 794 12.39 16 647 066 21.07 18 819 484
Tat En-Ru 47.71 32 271 740 47.11 21 664 316 47.37 26 171 966

Tat En-Ru (L) 10.06 32 271 740 5.66 21 664 316 11.28 26 171 966
Tat En-De 41.98 24 015 596 41.63 18 433 964 40.62 21 266 350

Tat En-De (L) 10.95 24 015 596 9.5 18 433 964 10.2 21 266 350
IWSLT De-En 24.13 7 178 728 32.17 42 864 640 23.28 24 223 210
IWSLT En-De 19.01 7 748 240 26.13 43 999 232 18.32 15 331 986

TABLE II: BLEU scores on test splits and number of parameters for tested architectures. (L) on Tatoeba datasets denotes scores
from long test split.

Fig. 2: Processing of 1089 source sentences of length 15 from
the Tat En-Ru test dataset by the RLST interpreter agent. The
graph shows when the READ and WRITE actions are taken.

of the outputted words better than the attention mechanism
managed to do in the reference architectures. We hypothesize
that the sequential nature of human language makes it possible
to translate properly separate parts of a speech, but in order
to do that, the end of each part must be identified. It appears
that RLST manages to do it better in long sentences than the
reference architectures.

The goal of a large fraction of algorithms developed in
computer science is to transform input data into output data
whose size is unknown in advance. For some data types, it is
natural to process them sequentially. These types include natural
language, sound, video, and bioinformatic data, e.g., genetic.
The experiments in Section V confirm that our introduced
RLST architecture is very well adapted to such data.

VII. CONCLUSIONS

In this paper, we have presented the RLST architecture that
transforms on-line sequences of arbitrary length without the
need to define the trade-off between delay and quality. In the
transformation process, it makes sequential decisions about

whether to read an input token or write an output token. The
architecture learns to make these decisions with reinforcement.
The experimental study compared the architecture with state-of-
the-art machine translation methods, namely the Transformer
and the encoder-decoder with attention. Benchmark datasets
taken from Tatoeba and IWSLT with seven language pairs were
employed in the experiments. The RLST architecture solved
a more complex problem of on-line transformation than the
reference methods, which produced output tokens knowing the
entire source sequence. Even so, RLST produced translations of
comparable quality. It also outperformed reference architectures
in tests with long sentences (longer than 22 words) taken from
Tatoeba. That confirms that it is particularly well suited to
applications in which transformation of sequences of arbitrary
lengths and/or on-line is required.

ACKNOWLEDGMENTS

The project was funded by POB Research Centre for
Artificial Intelligence and Robotics of Warsaw University of
Technology within the Excellence Initiative Program – Research
University (ID-UB).

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning:
An Introduction, 2nd ed. The MIT Press, 2018. doi:
https://dx.doi.org/10.1109/TNN.1998.712192

[2] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence
to sequence learning with neural networks,” 2014,
arXiv:1409.3215. doi: https://dx.doi.org/10.48550/arXiv.
1409.3215

[3] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine
translation by jointly learning to align and translate,” 2015.
doi: https://dx.doi.org/10.48550/arXiv.1409.0473

[4] T. Luong, H. Pham, and C. D. Manning, “Effective
approaches to attention-based neural machine translation,”
in Conference on Empirical Methods in Natural Language
Processing, 2015. doi: https://dx.doi.org/10.18653/v1/
D15-1166 pp. 1412–1421.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is
all you need,” in NIPS, 2017.

138 PROCEEDINGS OF THE FEDCSIS. SOFIA, BULGARIA, 2022

139

[6] Z. Wang, Y. Ma, Z. Liu, and J. Tang, “R-transformer:
Recurrent neural network enhanced transformer,” 2019,
arXiv:1907.05572. doi: https://dx.doi.org/10.48550/arXiv.
1907.05572

[7] S. Kapturowski, G. Ostrovski, J. Quan, R. Munos, and
W. Dabney, “Recurrent experience replay in distributed
reinforcement learning,” in International Conference on
Learning Representations, 2019.

[8] M. Hausknecht and P. Stone, “Deep recurrent q-learning
for partially observable mdps,” 2015, arXiv:1507.06527.
doi: https://dx.doi.org/10.48550/arXiv.1507.06527

[9] L. Wu, F. Tian, T. Qin, J. Lai, and T.-Y. Liu, “A study
of reinforcement learning for neural machine translation,”
in Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018. doi: https:
//dx.doi.org/10.18653/v1/D18-1397 pp. 3612–3621.

[10] L. Yu, W. Zhang, J. Wang, and Y. Yu, “Seqgan: Sequence
generative adversarial nets with policy gradient,” in AAAI,
2017.

[11] G. L. Guimaraes, B. Sanchez-Lengeling, P. L. C. Farias,
and A. Aspuru-Guzik, “Objective-reinforced generative
adversarial networks (organ) for sequence generation
models,” 2017, arXiv:1705.10843. doi: https://dx.doi.org/
10.48550/arXiv.1705.10843

[12] A. Grissom II, H. He, J. Boyd-Graber, J. Morgan, and
H. Daumé III, “Don’t until the final verb wait: Rein-
forcement learning for simultaneous machine translation,”
in Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP), 2014.
doi: https://dx.doi.org/10.3115/v1/D14-1140 pp. 1342–
1352.

[13] J. Gu, G. Neubig, K. Cho, and V. O. Li, “Learning to
translate in real-time with neural machine translation,”
in Proceedings of the 15th Conference of the European
Chapter of the Association for Computational Linguistics:
Volume 1, Long Papers, 2017. doi: https://dx.doi.org/10.
18653/v1/E17-1099 pp. 1053–1062.

[14] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a
method for automatic evaluation of machine translation,”
in 40th annual meeting on association for computational
linguistics, 2002. doi: https://dx.doi.org/10.3115/1073083.
1073135 pp. 311–318.

[15] A. Alinejad, M. Siahbani, and A. Sarkar, “Prediction
improves simultaneous neural machine translation,” in
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, Brussels, Belgium,
2018. doi: https://dx.doi.org/10.18653/v1/D18-1337 pp.
3022–3027.

[16] F. Dalvi, N. Durrani, H. Sajjad, and S. Vogel, “Incre-
mental decoding and training methods for simultaneous

translation in neural machine translation,” in Proceedings
of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, Volume 2 (Short Papers), 2018.
doi: https://dx.doi.org/10.18653/v1/N18-2079 pp. 493–
499.

[17] B. Zheng, R. Zheng, M. Ma, and L. Huang, “Simpler
and faster learning of adaptive policies for simultaneous
translation,” in Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), 2019. doi:
https://dx.doi.org/10.18653/v1/D19-1137 pp. 1349–1354.

[18] J. Ive, A. M. Li, Y. Miao, O. Caglayan, P. Madhyastha, and
L. Specia, “Exploiting multimodal reinforcement learning
for simultaneous machine translation,” in Proceedings
of the 16th Conference of the European Chapter of the
Association for Computational Linguistics: Main Volume,
2021. doi: https://dx.doi.org/10.18653/v1/2021.eacl-main.
281 pp. 3222–3233.

[19] M. Ma, L. Huang, H. Xiong, R. Zheng, K. Liu, B. Zheng,
C. Zhang, Z. He, H. Liu, X. Li, H. Wu, and H. Wang,
“STACL: Simultaneous translation with implicit antic-
ipation and controllable latency using prefix-to-prefix
framework,” in Proceedings of the 57th Annual Meeting of
the Association for Computational Linguistics, 2019. doi:
https://dx.doi.org/10.18653/v1/P19-1289 pp. 3025–3036.

[20] Y. Ren, J. Liu, X. Tan, C. Zhang, T. Qin, Z. Zhao, and
T.-Y. Liu, “SimulSpeech: End-to-end simultaneous speech
to text translation,” in Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics,
2020. doi: https://dx.doi.org/10.18653/v1/2020.acl-main.
350 pp. 3787–3796.

[21] Tatoeba, “https://tatoeba.org,” 2020, retrieved 2020-05-05.
[22] M. Ott, S. Edunov, A. Baevski, A. Fan, S. Gross, N. Ng,

D. Grangier, and M. Auli, “fairseq: A fast, extensible
toolkit for sequence modeling,” in Proceedings of NAACL-
HLT 2019: Demonstrations, 2019. doi: https://dx.doi.org/
10.18653/v1/N19-4009

[23] S. Wiseman and A. M. Rush, “Sequence-to-sequence
learning as beam-search optimization,” arXiv preprint
arXiv:1606.02960, 2016. doi: https://dx.doi.org/10.48550/
arXiv.1606.02960

[24] M. Honnibal, I. Montani, S. Van Landeghem, and A. Boyd,
“spaCy: Industrial-strength Natural Language Processing
in Python,” 2020. doi: https://dx.doi.org/10.5281/zenodo.
1212303

[25] R. Sennrich, B. Haddow, and A. Birch, “Neural machine
translation of rare words with subword units,” arXiv
preprint arXiv:1508.07909, 2015. doi: https://dx.doi.org/
10.48550/arXiv.1508.07909

GRZEGORZ RYPEŚĆ ET AL.: REINFORCEMENT LEARNING FOR ON-LINE SEQUENCE TRANSFORMATION 139

140

B.5. Least Redundant Gated Recurrent Neural
Network

Title Least Redundant Gated Recurrent Neural Network

Authors Łukasz Neumann, Łukasz Lepak, Paweł Wawrzyński

Conference 2023 International Joint Conference on Neural Networks (IJCNN 2023)

Year 2023

DOI 10.1109/IJCNN54540.2023.10191895

Ministerial score 140

141

https://doi.org/10.1109/IJCNN54540.2023.10191895

Least Redundant Gated Recurrent Neural Network
1st Łukasz Neumann

Institute of Computer Science
Warsaw University of Technology

Warsaw, Poland
lukasz.neumann@pw.edu.pl

2nd Łukasz Lepak
Institute of Computer Science

Warsaw University of Technology
Warsaw, Poland

lukasz.lepak.dokt@pw.edu.pl

3rd Paweł Wawrzyński
Ideas NCBR

Warsaw, Poland
pawel.wawrzynski@ideas-ncbr.pl

Abstract—Recurrent neural networks are important tools for
sequential data processing. However, they are notorious for
problems regarding their training. Challenges include capturing
complex relations between consecutive states and stability and
efficiency of training. In this paper, we introduce a recurrent
neural architecture called Deep Memory Update (DMU). It is
based on updating the previous memory state with a deep
transformation of the lagged state and the network input. The
architecture is able to learn to transform its internal state using
any nonlinear function. Its training is stable and fast due to
relating its learning rate to the size of the module. Even though
DMU is based on standard components, experimental results
presented here confirm that it can compete with and often
outperform state-of-the-art architectures such as Long Short-
Term Memory, Gated Recurrent Units, and Recurrent Highway
Networks.

Index Terms—recurrent neural networks, universal approxi-
mation

I. INTRODUCTION

Recurrent Neural Networks (Recurrent NNs, RNNs) are
designed to process sequential data and are vital components
of systems that perform speech recognition [1], machine
translation [2], handwritten text recognition [3], and other
tasks [4].

An intuitively designed RNN is prone to gradient explosions
or vanishing [5] due to its recurrent nature. The impact of
a given input on future outputs of the RNN may vanish or
explode with time. Specialized architectures with gates, namely
Long Short-Term Memory (LSTM) networks [6] and Gated
Recurrent Unit (GRU) networks [7], are designed to overcome
this problem at the level of a single neuron. While these
networks are widely successful, they come with a cost — their
memory state undergoes only single-layer transformation from
one time instant to another.

Several recurrent architectures apply deep processing of
their internal states [8]–[10]. However, they are complex or
challenging to train.

This paper addresses the above shortcomings by introducing
a neural module designed to prevent the previously mentioned
gradient problems while allowing the state transformation
to be modelled by an arbitrary feedforward neural network.
We call this module Deep Memory Update (DMU). 1. As
a result, state transformation can easily be shaped in DMU.
Additionally, the architecture is resistant to problems of gradient

1We make the code available at https://github.com/fuine/dmu

exploding/vanishing. Experimental results presented in the
paper confirm that DMU performs well in comparison to its
state-of-the-art counterparts.

RNNs are often outperformed by feedforward networks with
attention, especially by the transformer [11]. However, the
computational complexity of these techniques excludes them
from some applications [12], [13]. It is also likely that some
combination of attention and RNNs, such as R-Transformer
[14], ASRNN [15] and others [16], will outperform both.
Therefore, in this paper, we focus solely on RNNs.

II. RELATED WORK

Early RNNs [17]–[20] suffered from the problem of gradient
vanishing/exploding, defined by [5]: A small change in the
RNN’s weights causes its future output’s change that is
vanishing or exploding in time. As a result, the impact of
RNN’s weights on its performance is either close to zero or
infinity. In either case, it is impossible to train such a network.
A gradient norm clipping strategy proposed in [8] may mitigate
this problem to some extent. [21] used orthogonal matrices of
weights in shallow RNNs to stabilize the gradient successfully.

The gradient vanishing/exploding problem was alleviated at
a cell level with Long Short-Term Memory (LSTM) networks
[6]. A neuron in such a network is a state machine with
several so-called gates. The neuron generally preserves its state
from one time to another but may also change it. The change
depends on the dot product of the neuron inputs and its weights
computed in its gates. LSTMs have been enhanced with batch
normalization of a recurrent signal [22].

[7] proposed an architecture based on neurons simpler than
those in LSTMs, called Gated Recurrent Units (GRUs). Despite
its simplicity, it generally preserved the favourable properties
of LSTM. [23] proposed a unit whose state was only computed
based on its previous state and the outputs of the preceding
neural layer. Networks based on such units, Independently
Recurrent Neural Networks (IndRNNs), tend to outperform
LSTMs and GRUs.

Capturing long-term dependencies in input sequences is
a crucial challenge that RNNs face. [24] proposed to increase
the lag of recurrent connections in higher network layers
geometrically. [25] introduced SkipRNN that learns to skip
state updates and shorten the effective size of the computational
graph. [26] prove that RNNs operate via transformations

142

of time, and the gates in LSTM and GRU networks are
a straightforward way to perform these transformations.

LSTMs and GRUs are usually organized in several layers
stacked on top of one another [27]. Input to each neuron
within a layer includes the previous states of all the neurons
in the layer. This way, at each time instant, the network
input undergoes a deep transformation. However, the internal
state of the network undergoes only a shallow, single-layer
transformation.

Being able to apply an arbitrary nonlinear, deep transfor-
mation to its internal state is a valuable feature of a recurrent
neural network. [28] proposed to increase the recurrence
depth by adding multiple nonlinear layers to the recurrent
transition, resulting in Deep Transition RNNs (DT-RNNs)
and Deep Transition RNNs with Skip connections (DT(S)-
RNNs). Gradient propagation issues are exacerbated in these
architectures due to long credit assignment paths. [9] added
extra connections between all states across consecutive time
steps in a stacked RNN, which also increases recurrence depth.
However, their model requires additional connections with
increasing depth, gives only a fraction of state cells access to
the deepest layers, and faces gradient propagation issues along
the longest paths.

[10] introduced Recurrent Highway Networks (RHNs), which
can be understood as LSTMs with specialized multilayer gates.
These networks apply deep processing to their internal state
while successfully coping with gradient vanishing/exploding.
However, our proposed architecture requires only two state-
processing gates as opposed to LSTM’s three. Additionally,
DMU allows for an arbitrary feedforward network to process
the state.

A number of concepts may facilitate the performance of
RNNs. [29] proposed a scheme of initialization of weights
in these networks. RNNs are usually trained with Stochastic
Gradient Descent with gradient estimates computed with
backpropagation through time. However, recent work of [30]
on forward propagation through time calls this practice into
question. An interesting alternative to gated recurrent neural
networks is network simulators of continuous dynamical
systems [31]–[34].

III. METHOD

In this section, we introduce the Deep Memory Update
(DMU) module. It is a neural module with memory designed
to have the following properties:

1) Its memory state can undergo an arbitrary nonlinear
transformation from one moment to another.

2) The module can easily preserve its memory state from
one moment of time to another.

3) Its learning is relatively fast and stable.

A. General structure

We present the structure of the Deep Memory Update (DMU)
module in Fig. 1. The module operates in discrete time t =
1, 2, At each time, the module is fed with the input xt ∈

Fig. 1. Structure of Deep Memory Update module. The module comprises
the feedforward neural network, which can arbitrarily process the state and a
memory layer. The output of the module is also its hidden state.

Rm and produces the vector ht ∈ Rd, which is both its memory
state and its output.

A lagged memory state, ht−1, together with an input of the
block, xt, are fed to a feedforward neural network, FNN. The
network’s output layer is linear with 2d neurons. It produces
two vectors: zt ∈ Rd determines to what extent the memory
state should be preserved, and ĥt ∈ Rd determines the direction
in which the state should change.

A pair of i-th elements of zt and ĥt are fed to a i-th memory
cell. The new cell state is a weighted, with zt, average of the
old state, ht−1, and ĥt. The memory state update takes the
form

〈zt, ĥt〉 = FNN(ht−1, xt) (1)

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt)), (2)

where “◦” denotes the elementwise product, 1 is a vector of
ones, σ is a unipolar soft step function, e.g. the logistic sigmoid,

σi(z) =
ezi

1 + ezi
for zi ∈ R, (3)

and f is an activation function, e.g.

fi(z) = tanh(zi) for zi ∈ R. (4)

Our proposed recurrent architecture is compared with GRU
[7] in the supplementary material.

Let us consider how the required properties of DMU are
achieved.

1) Since a feedforward neural network with at least two
dense layers is a universal function approximator, the
network state can undergo the arbitrary nonlinear trans-
formation from one time moment to another.

2) The block preserves its memory state for large values of
zt. In particular, for zt = +∞ we have ht = ht−1.

3) For efficient and stable training of the network, it is
enough that the learning rate of the module is sufficiently
lower than that of the rest of the network, as discussed
in Section III-C.

143

B. Initialization
The FNN block should be a universal approximator. It can

be a multilayer perceptron with at least two layers, including
a linear output layer. This layer needs to be linear because its
output should not be limited. It should be possible that zt � 1
which causes the memory state to be preserved, ht ∼= ht−1.

We recommend using the standard ways of initializing neural
weight matrices in the FNN block, with one exception. Namely,
upon weights’ initialization, we recommend adding a positive
scalar to the biases of the neurons that produce zt values, e.g.,
3. With positive elements of zt, the memory state of the DMU
module will be, by default, largely preserved from one moment
t to another. This addition is optional in most of the tasks,
however if the network initialized in the standard way fails to
converge, the positive bias usually helps.

We use Xavier initialization [35] in all of the experiments.
Additionally, in synthetic tasks, we use the positive bias with
a value of 3.

C. Training
Training of DMU may be based on gradient backpropagation

through time and using the gradient with a method of stochastic
optimization such as Stochastic Gradient Descent or ADAM
[36]. These methods apply a learning rate to each trained weight.
In turn, the learning rate defines a speed of optimization along
derivatives with respect to this weight. Typically, the learning
rates are equal for all weights.

Let us consider DMU as a module in a feedforward
architecture. Its learning speed and stability can be noticeably
improved by distinguishing a module’s learning rate and setting
its value smaller than that of the rest of the architecture. The
learning of recurrent modules is exposed to instability, which
naturally limits its learning speed. Nevertheless, it does not
need to limit the learning speed of the surrounding feedforward
modules, which are less exposed to instability, and thus may
learn faster.

In our experiments in Sec. IV, we combine n-layer DMU
modules with n′-layer feedforward output subnetworks. For
β > 0 being a learning rate for the output subnetwork we use
a learning rate of the DMU module, βDMU, equal to

βDMU =
β

2n
. (5)

The deeper the DMU module, the lower its learning rate.
Additionally, when weight decay is used in the network training,
its strength in the DMU module is reduced 2n times.

D. Gradient propagation in DMU
In order to analyze gradient propagation in DMU, we adopt

the following further assumptions and notation:
• The detailed structure of the FNN inside DMU is presented

in Fig. 2, with Ai, B,C,D denoting weight matrices,
ai, b, c denoting bias vectors and fi denoting activation
functions.

• Activation functions in hidden layers of FNN are bipolar
sigmoids with derivatives and absolute values covering
the intervals (0, 1] and (−1, 1), respectively.

• σ takes the form (3). Therefore, σ′(z) = σ(z)(1−σ(z)) <
1− σ(z).

• Vectors considered are in row form.

Fig. 2. Structure of the feedforward module inside DMU. Ai, B, C and D
denote weight matrices, ai, b and c denote vectors of biases and fi denotes
activation functions.

Note that ht are in fact weighted averages, over i ≥ 0, of
f(ĥt−i) never exceeding (−1, 1). Therefore, the elements of
ht also never exceed (−1, 1).

Let us analyze how the loss Lt′ resulting from the network
output at time t′ propagates back to time t− 1 < t′. We have
the following recursion:

dLt′

dht−1
=

dLt′

dht

dht
dht−1

=
dLt′

dht

d
dht−1

(
ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))

)

=
dLt′

dht

(
diag (σ(zt)) + [ht−1] ◦

dzt
dht−1

◦ [σ′(zt)] +
dĥt

dht−1
◦

◦
[
f ′(ĥt)

]
◦ [1− σ(zt)]−

[
f(ĥt)

]
◦ dzt

dht−1
◦ [σ′(zt)]

)

=
dLt′

dht

(
diag (σ(zt)) +

[
ht−1 − f(ĥt)

]
◦ dzt

dht−1
◦ [σ′(zt)]

+
dĥt

dht−1
◦
[
f ′(ĥt)

]
◦ [1− σ(zt)]

)
,

(6)

where diag (v) denotes the diagonal matrix with the vector v
on its diagonal and [v] denotes the matrix with the same vector
vT in each column.

By neglecting activation functions inside the FNN block, we
reduce it to a cascade of linear transformations and obtain the
following approximations of the Jacobi matrices in (6):

dzt
dht−1

∼= BT

(
n−2∏

i=1

Ai

)T

,
dĥt

dht−1
∼= CT

(
n−2∏

i=1

Ai

)T

.

(7)
Considering that σ(zt) ∈ (0, 1), ht−1 − f(ĥt) ∈ (−2, 2),
σ′(zt) ∈ (0, 1−σ(zt)), f ′(ĥt) ∈ (0, 1), we obtain the following
condition on non-increasing gradient:

? Eigenvalues of the matrices BT
(∏n−2

i=1 Ai

)T
and

CT
(∏n−2

i=1 Ai

)T
remain in the intervals (−1/2, 1/2) and

(−1, 1), respectively.
Essentially, that means that the components of the weight
matrices in the FNN block should not be too large.

When the above condition (?) is satisfied, the gradient de-
creases when propagated back according to the first component
of (6), that is, by a factor of σ(zt). Intuitively, when the memory

144

state ht−1 is preserved to another time-step proportionally to
σ(zt), the impact of this memory state on future performance
is preserved likewise.

IV. EXPERIMENTAL STUDY

To evaluate the DMU architecture, we test it on three
synthetic problems and three modern problems based on real-
life data. The synthetic problems are taken from [6], and are
noisy sequences, adding, and temporal order. The modern data-
based problems are polyphonic music modelling [37], natural
language modelling [38], and Spanish/German/Portuguese to
English machine translation tasks [39], [40].

We compare our DMU module using shallow architectures
with ordinary recurrent neural networks (RNNs), GRU, LSTM,
and RHN in the synthetic problems. We also compare DMU in
its deep version with RHN in the data-based problems. To make
the comparison fair, we embed a recursive subnetwork within
the same neural architecture. That subnetwork is a layer or a few
layers of recurrent units or a DMU module or RNH. Moreover,
for each depth of RNNs, we compare different architectures
of similar sizes measured by the number of weights.

A reader may find details of our experimental setting,
hyperparameters of architectures and their training in the
supplementary material.

A. Adding problem

The first task will be called “Adding”. It is taken from [6,
sec. 5.4].

a) Results.: We present the results for the adding problem
in Fig. 3. We conclude that DMU significantly outperforms all
other modules, and GRU scores better than LSTM. RNN and
RHN are not able to reach any threshold within 100 training
epochs for any hyperparameters.

B. Temporal order

The next task, referred to as “TempOrd”, is taken from [6,
sec. 5.6, Task 6b].

a) Results.: The results for the TempOrd task are depicted
in Fig. 4. We note that DMU has faster convergence than GRU
and maintains similar results for high thresholds (up to 10−4).
For lower thresholds, DMU outperforms GRU. LSTM reaches
partial success on higher thresholds but fails for lower ones.
RNN and RHN fail for all thresholds without a single successful
100 epoch run.

C. Noise-free and noisy sequences

We call this task “NoiseSeq”. It is taken from [6, sec. 5.2].
a) Results.: Figure 5 contains the results for the NoiseSeq

task. We observe that GRU and DMU obtain similar results, in
most cases reaching all the loss thresholds, with GRU training
faster. RHN in about half of the cases does not reach any
threshold, and in the other half, it reaches all of them. RNN
performs worse than RHN, and LSTM performs worse than
RNN.

D. Polyphonic music modelling

In this subsection, we evaluate modules on the polyphonic
music modelling task, referred to as “PolyMusic”, based on
the Nottingham music dataset [37].

a) Results.: The results of the polyphonic music mod-
elling can be found in Table I. In this problem, DMU
outperforms RHN at 3 out of 4 depths with regard to test
mean loss.

TABLE I
POLYMUSIC: RESULTS — LOSS. N DENOTES THE NUMBER OF HIDDEN

LAYERS.

train test
N model best µ σ best µ σ

1 RHN 3.34 3.38 0.08 3.552 3.598 0.037
DMU 2.94 2.96 0.04 3.57 3.63 0.05

2 RHN 3.39 3.41 0.10 3.55 3.61 0.06
DMU 3.02 3.09 0.07 3.49 3.55 0.04

5 RHN 3.44 3.68 0.16 3.73 3.85 0.11
DMU 3.22 3.21 0.06 3.63 3.69 0.03

10 RHN 3.70 3.93 0.14 3.90 4.08 0.12
DMU 3.52 3.54 0.15 3.95 4.04 0.09

E. Natural language modelling

The task called “NatLang” is based on the Penn Treebank
corpus of English [41].

a) Results.: Table II shows the results. DMU achieves
consistently better results than RHN, often by a large margin.
Only for a depth of 2 RHN performs slightly better than DMU
with respect to the mean test perplexity.

TABLE II
NATLANG: RESULTS — PERPLEXITY (LOWER = BETTER). N IS THE DEPTH

OF THE NETWORK.

train test
N model best µ σ best µ σ

1 RHN 61.10 66.53 6.07 106.11 110.39 4.36
DMU 56.63 59.42 3.14 105.35 106.13 0.48

2 RHN 62.90 66.32 4.23 104.89 109.83 4.04
DMU 64.42 64.86 1.43 109.60 110.13 0.47

5 RHN 82.33 86.10 3.83 123.16 124.97 1.92
DMU 92.40 94.06 1.11 117.92 120.37 1.46

10 RHN 85.97 149.43 86.87 124.46 171.60 60.38
DMU 118.20 119.48 1.53 130.05 131.83 1.44

F. Machine translation

Next, we test the modules in the context of machine transla-
tion using recurrent architectures. The task is based on datasets
of pairs of corresponding Spanish/Portuguese/German and
English sentences [39], [40]. We will call experiments based
on subsequent pairs “Spa2Eng”, “Por2Eng”, and “Ger2Eng”.

a) Results.: Table III contains the results. DMU achieves
a better perplexity score than RHN for all three language pairs
at each depth of both networks except for Portuguese at depth 1.
Additionally, both networks achieve the best results for a depth
of 1 or 2. Performance generally deteriorates with growing
depth, significantly faster for RHN than for DMU.

145

Fig. 3. Adding: Results of 51 runs, five graphs for different loss thresholds, a curve presents how many runs reach a given loss threshold at a given training
epoch.

Fig. 4. TempOrd: Results of 51 runs, five graphs for different loss thresholds.

Fig. 5. NoiseSeq: Results of 51 runs, five graphs for different loss thresholds.

G. Ordered and permuted MNIST

Finally, we compare DMU to selected state-of-the-art
modules on the pixel-by-pixel MNIST image classification
problem [29]. Each image is represented as a flattened array
of pixels, and the module processes it one after another. Such
setup allows us to evaluate the internal state drift on long
inputs, as each image contains 784 pixels. The task comes in
two flavors - sequential, in which each image is flattened in a
row-wise manner and permuted, in which we apply the same
random permutation to each image after flattening.

a) Results.: Table IV contains the results.

H. Learning rate ablation

We verify how a reduction of a DMU learning rate according
to (5) impacts the performance of the neural architecture with

this module. In this order, we register the performance of each
architecture with approximately optimized, with a grid search,
learning rate. In one variant, the learning rate is constant for
the whole architecture. In the other, the learning rate of the
DMU module and the learning rate for the rest are bound
with (5). Numerical results of this ablation are presented in
Tables. V–VII. Note that this ablation does not make sense for
the analyzed synthetic problems because the recurrent module
is the entire architecture in these cases. The results confirm
that efficiency benefits from reducing the learning rate of the
DMU module.

V. DISCUSSION

Since the seminal paper of [6] the development of recurrent
neural networks has been stimulated by the need to avoid

146

TABLE III
TRANSLATION: RESULTS — PERPLEXITY (LOWER = BETTER). L. –

LANGUAGE PAIR.

train test
l. N model best µ σ best µ σ

Sp
a2

E
ng

1 RHN 8.26 7.72 0.29 5.80 6.31 0.36
DMU 7.13 7.24 0.17 5.89 6.05 0.14

2 RHN 8.82 8.50 0.22 6.53 7.10 0.36
DMU 9.07 8.52 0.38 6.91 7.18 0.32

5 RHN 12.38 24.68 12.48 12.34 47.60 41.68
DMU 7.74 7.91 0.35 7.50 8.02 0.35

10 RHN 58.74 58.73 0.92 110.54 141.77 56.01
DMU 8.78 8.84 0.26 7.99 8.40 0.23

Po
r2

E
ng

1 RHN 3.95 3.98 0.09 3.65 3.80 0.16
DMU 3.91 3.93 0.11 3.54 3.68 0.10

2 RHN 4.29 4.33 0.06 3.67 3.93 0.18
DMU 4.63 4.45 0.14 3.74 3.97 0.14

5 RHN 6.25 7.50 0.83 6.55 7.62 0.85
DMU 4.65 4.74 0.09 4.56 4.69 0.10

10 RHN 48.58 48.35 0.37 79.10 99.86 23.80
DMU 5.12 5.29 0.18 4.92 5.06 0.12

G
er

2E
ng

1 RHN 4.66 4.63 0.16 4.27 4.35 0.06
DMU 4.28 4.50 0.12 4.10 4.21 0.08

2 RHN 5.26 5.10 0.11 4.41 4.59 0.10
DMU 5.38 5.28 0.07 4.56 4.79 0.19

5 RHN 8.13 9.24 1.24 7.93 9.18 1.28
DMU 5.33 5.42 0.12 5.21 5.33 0.12

10 RHN 47.99 48.41 0.29 83.47 134.79 92.37
DMU 5.91 5.82 0.23 5.63 5.74 0.07

gradient exploding or vanishing in backpropagation through
time. Indeed, these phenomena are likely to occur in neural
networks with feedback loops. In LSTM and GRU architectures,
they were eliminated at the cell level.

The DMU neural module introduced in this paper is based on
memory cells whose state is updated with the weighted average
of their previous content and new values proposed for them.
Both the weights and the new proposed values come from
a feedforward subnetwork whose inputs include the previous

TABLE IV
TEST ACCURACY ON ORDERED AND PERMUTED PIXEL-BY-PIXEL MNIST.

Name ordered permuted N # params

LSTM baseline by [21] 97.3% 92.7% 128 ≈68K
MomentumLSTM [42] 99.1% 94.7% 256 ≈270K
Unitary RNN [21] 95.1% 91.4% 512 ≈9K
Full Capacity Unitary RNN [43] 96.9% 94.1% 512 ≈270K
Soft orth. RNN [44] 94.1% 91.4% 128 ≈18K
Kronecker RNN [45] 96.4% 94.5% 512 ≈11K
Antisymmteric RNN [33] 98.0% 95.8% 128 ≈10K
Incremental RNN [31] 98.1% 95.6% 128 ≈4K/8K
Exponential RNN [46] 98.4% 96.2% 360 ≈69K
Sequential NAIS-Net [34] 94.3% 90.8% 128 ≈18K
Lipschitz RNN [32] 99.4% 96.3% 128 ≈34K

DMU (ours) 98.5% 93.4% 96 ≈20K
DMU (ours) 98.7% 93.4% 128 ≈34K

TABLE V
POLYMUSIC: VARIED LEARNING RATE ABLATION RESULTS — LOSS.

DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
N model best µ σ best µ σ

1 DMU-C 2.72 2.81 0.08 3.34 3.38 0.04
DMU 2.94 2.96 0.04 3.57 3.63 0.05

2 DMU-C 2.99 3.03 0.20 3.43 3.49 0.04
DMU 3.02 3.09 0.07 3.49 3.55 0.04

5 DMU-C 3.25 3.31 0.24 3.90 3.99 0.11
DMU 3.22 3.21 0.06 3.63 3.69 0.03

10 DMU-C 3.75 nan nan 4.26 5.03 0.63
DMU 3.52 3.54 0.15 3.95 4.04 0.09

TABLE VI
NATLANG: VARIED LEARNING RATE ABLATION RESULTS — PERPLEXITY.
DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
N model best µ σ best µ σ

1 DMU-C 68.99 71.12 1.78 109.23 111.20 1.42
DMU 56.63 59.42 3.14 105.35 106.13 0.48

2 DMU-C 81.31 81.01 1.69 117.56 118.17 0.65
DMU 64.42 64.86 1.43 109.60 110.13 0.47

5 DMU-C 108.90 579.68 235.39 138.13 542.20 202.04
DMU 92.40 94.06 1.11 117.92 120.37 1.46

10 DMU-C 696.30 697.57 0.69 642.18 642.91 0.44
DMU 118.20 119.48 1.53 130.05 131.83 1.44

TABLE VII
TRANSLATION: VARIED LEARNING RATE ABLATION RESULTS — ACCURACY.

DMU-C — DMU WITH AN EQUAL LEARNING RATE FOR ALL MODULES.

train test
l. N model best µ σ best µ σ

Sp
a2

E
ng

1 DMU-C 0.91 0.85 0.14 0.70 0.67 0.04
DMU 0.93 0.93 0.00 0.70 0.69 0.01

2 DMU-C 0.84 0.76 0.20 0.66 0.60 0.11
DMU 0.94 0.94 0.01 0.69 0.69 0.01

5 DMU-C 0.71 0.66 0.06 0.62 0.59 0.03
DMU 0.84 0.83 0.01 0.66 0.65 0.01

10 DMU-C 0.34 0.30 0.02 0.35 0.31 0.02
DMU 0.76 0.75 0.01 0.63 0.63 0.00

Po
r2

E
ng

1 DMU-C 0.94 0.93 0.02 0.78 0.77 0.01
DMU 0.93 0.94 0.01 0.78 0.77 0.00

2 DMU-C 0.94 0.93 0.02 0.75 0.75 0.01
DMU 0.96 0.95 0.01 0.78 0.77 0.00

5 DMU-C 0.77 0.63 0.20 0.70 0.59 0.16
DMU 0.86 0.86 0.00 0.73 0.73 0.01

10 DMU-C 0.32 0.32 0.00 0.32 0.32 0.00
DMU 0.81 0.80 0.01 0.71 0.71 0.00

G
er

2E
ng

1 DMU-C 0.92 0.92 0.02 0.75 0.75 0.00
DMU 0.92 0.93 0.01 0.75 0.75 0.00

2 DMU-C 0.88 0.90 0.01 0.73 0.72 0.01
DMU 0.94 0.94 0.01 0.75 0.74 0.00

5 DMU-C 0.72 0.70 0.02 0.66 0.65 0.01
DMU 0.85 0.84 0.01 0.71 0.70 0.01

10 DMU-C 0.44 0.34 0.06 0.45 0.34 0.05
DMU 0.80 0.78 0.01 0.68 0.68 0.00

state of the memory cells. Architectures based on the DMU

147

module compete with and often outperform those based on
LSTM or GRU. The gradient vanishing/exploding problem is
solved in DMU at the module level.

In some applications, deep transformation of the network
state is necessary. However, then the effective length of
the gradient path increases, which may destabilize training.
RHN successfully coped with this problem at the expense of
the complexity of its architecture. DMU applies a typical
feedforward block of any depth for state transformation.
Training stability is ensured by appropriately reducing the
learning rate of the DMU module. As a result, DMU performed
better than RHN of the same depth in all three analyzed data-
based problems with a handful of exceptions.

Interestingly, contrary to [10] we note that depth-scaling of
the model did not yield better results. We speculate that it can
be explained by the lack of regularization other than weight
decay. This was a deliberate choice to compare RHN and DMU
modules without any unnecessary architectural additions.

In the future, we want to further investigate DMU’s fast
convergence rate on synthetic tasks. A greater understanding of
the model’s behaviour could help us improve the architecture
and provide additional insight into the state drift problem of
RNNs in general.

VI. CONCLUSIONS

In this paper, we propose DMU — a recurrent neural
module that can perform an arbitrary nonlinear transformation
of its memory state. Three experiments with synthetic data
(Adding, Temporal order, Noisy sequence) presented here
compare neural architectures based on DMU with those based
on RNN, LSTM, and GRU. DMU yields the best results in
two of them while having results comparable to the best
module in the third one. Three experiments with real-life
data (Polyphonic music, Natural language modelling, Machine
translation) compare neural architectures based on DMU with
those based on Recurrent Highway Networks of the same depth.
The architecture based on DMU outperformed RHN in 15 out
of 20 analyzed mean test score cases while staying competitive
in the other five cases.

ACKNOWLEDGMENTS

The project was funded by POB Research Centre for
Artificial Intelligence and Robotics of Warsaw University
of Technology within the Excellence Initiative Program –
Research University (ID-UB). We gratefully acknowledge the
contribution of Aleksander Zamojski, Lidia Wojciechowska
and Monika Berlińska to the code of DMU.

REFERENCES

[1] A. Graves, A. Mohamed, and G. Hinton, Speech
recognition with deep recurrent neural networks,
arXiv:1303.5778, 2013.

[2] Y. Wu, M. Schuster, et al., Google’s neural machine
translation system: Bridging the gap between human
and machine translation, arXiv:1609.08144, 2016.

[3] T. Capes, P. Coles, et al., “Siri on-device deep learning-
guided unit selection text-to-speech system,” in Inter-
speech, 2017, pp. 4011–4015.

[4] J. Schmidhuber, “Deep learning in neural networks: An
overview,” Neural Networks, vol. 61, pp. 85–117, 2015.

[5] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-
term dependencies with gradient descent is difficult,”
IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 157–166, 1994.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term
memory,” Neural Computation, vol. 9, no. 8, pp. 1735–
1780, 1997.

[7] K. Cho, B. V. Merriënboer, et al., “Learning phrase
representations using rnn encoder-decoder for statistical
machine translation,” in EMNLP, 2014.

[8] R. Pascanu, T. Mikolov, and Y. Bengio, “On the difficulty
of training recurrent neural networks,” in ICML, 2013,
pp. 1310–1318.

[9] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Gated
feedback recurrent neural networks,” in ICML, 2015,
pp. 2067–2075.

[10] J. G. Zilly, R. K. Srivastava, J. Koutník, and J. Schmid-
huber, “Recurrent highway networks,” in ICML, 2017.

[11] A. Vaswani, N. Shazeer, et al., “Attention is all you
need,” in NIPS, 2017.

[12] Z. Jia, Y. Lin, et al., “Hetemotionnet: Two-stream
heterogeneous graph recurrent neural network for multi-
modal emotion recognition,” in ACM Int. Conf. on
Multimedia, 2021, pp. 1047–1056.

[13] C. Hansen, C. Hansen, et al., “Contextual and sequential
user embeddings for large-scale music recommendation,”
in ACM Conf. on Recommender Systems, 2020, pp. 53–
62.

[14] Z. Wang, Y. Ma, Z. Liu, and J. Tang, R-transformer:
Recurrent neural network enhanced transformer,
arXiv:1907.05572, 2019.

[15] J. C.-W. Lin, Y. Shao, Y. Djenouri, and U. Yun, “Asrnn:
A recurrent neural network with an attention model for
sequence labeling,” Knowledge-Based Systems, vol. 212,
p. 106 548, 2021.

[16] Z. Liu, C. Lu, H. Huang, S. Lyu, and Z. Tao, “Hierar-
chical multi-granularity attention- based hybrid neural
network for text classification,” IEEE Access, vol. 8,
pp. 149 362–149 371, 2020.

[17] M. I. Jordan, “Serial order: A parallel, distributed
processing approach,” Advances in Connectionist Theory
Speech, vol. 121(ICS-8604), pp. 471–495, 1986.

[18] J. L. Elman, “Finding structure in time,” Cognitive
science, vol. 14, no. 2, pp. 179–211, 1990.

[19] A. J. Robinson and F. Fallside, “The utility driven
dynamic error propagation network,” Cambridge Uni-
versity, Engineering Department, Tech. Rep. CUED/F-
INFENG/TR.1, 1987.

[20] P. J. Werbos, “Generalization of backpropagation with
application to a recurrent gas market model,” Neural
Networks, vol. 1, no. 4, pp. 339–356, 1988.

148

[21] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution
recurrent neural networks,” in ICML, 2016, pp. 1120–
1128.

[22] T. Cooijmans, N. Ballas, C. Laurent, Çağlar Gülçehre,
and A. Courville, “Recurrent batch normalization,” in
ICLR, 2017.

[23] S. Li, W. Li, C. Cook, C. Zhu, and Y. Gao, “Indepen-
dently recurrent neural network (indrnn): Building a
longer and deeper rnn,” in CVPR, 2018.

[24] S. Chang, Y. Zhang, et al., “Dilated recurrent neural
networks,” in NIPS, 2017.

[25] V. Campos, B. Jou, X. G. i Nieto, J. Torres, and S.-F.
Chang, “Skip rnn: Learning to skip state updates in
recurrent neural networks,” in ICLR, 2018.

[26] C. Tallec and Y. Ollivier, “Can recurrent neural networks
warp time?” In ICLR, 2018.

[27] A. Graves, Generating sequences with recurrent neural
networks, arXiv:1308.0850, 2013.

[28] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio, “How
to construct deep recurrent neural networks,” in ICLR,
2014.

[29] Q. V. Le, N. Jaitly, and G. E. Hinton, “A simple way
to initialize recurrent networks of rectified linear units,”
arXiv preprint arXiv:1504.00941, 2015.

[30] A. Kag and V. Saligrama, “Training recurrent neural
networks via forward propagation through time,” in
ICML, 2021, pp. 5189–5200.

[31] A. Kag, Z. Zhang, and V. Saligrama, “RNNs incremen-
tally evolving on an equilibrium manifold: A panacea
for vanishing and exploding gradients?” In ICLR, 2020.

[32] N. B. Erichson, O. Azencot, A. Queiruga, L. Hodgkin-
son, and M. W. Mahoney, “Lipschitz recurrent neural
networks,” arXiv preprint arXiv:2006.12070, 2020.

[33] B. Chang, M. Chen, E. Haber, and E. Chi, “Antisymmet-
ricRNN: A dynamical system view on recurrent neural
networks,” in ICLR, 2019.

[34] M. Ciccone, M. Gallieri, J. Masci, C. Osendorfer,
and F. Gomez, “Nais-net: Stable deep networks from
non-autonomous differential equations,” in NIPS, 2018,
pp. 3025–3035.

[35] X. Glorot and Y. Bengio, “Understanding the difficulty
of training deep feedforward neural networks,” in Pro-
ceedings of the thirteenth international conference on
artificial intelligence and statistics, JMLR Workshop
and Conference Proceedings, 2010, pp. 249–256.

[36] D. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” in ICLR, 2014.

[37] N. Boulanger-Lewandowski, Y. Bengio, and P. Vincent,
“Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation
and transcription,” in ICML, 2012.

[38] W. Zaremba, I. Sutskever, and O. Vinyals, Recurrent
neural network regularization, arXiv:1409.2329, 2014.

[39] Tatoeba, Https://tatoeba.org, Retrieved 2020-05-05,
2020.

[40] ManyThings, Http://www.manythings.org/anki/, Re-
trieved 2020-05-05, 2020.

[41] M. Marcus, B. Santorini, and M. A. Marcinkiewicz,
“Building a large annotated corpus of english: The penn
treebank,” Computational Linguistics, vol. 19, no. 2,
pp. 313–330, 1993.

[42] T. M. Nguyen, R. G. Baraniuk, A. L. Bertozzi, S. J.
Osher, and B. Wang, “Momentumrnn: Integrating mo-
mentum into recurrent neural networks,” arXiv preprint
arXiv:2006.06919, 2020.

[43] S. Wisdom, T. Powers, J. Hershey, J. Le Roux, and L.
Atlas, “Full-capacity unitary recurrent neural networks,”
in NIPS, 2016, pp. 4880–4888.

[44] E. Vorontsov, C. Trabelsi, S. Kadoury, and C. Pal, “On
orthogonality and learning recurrent networks with long
term dependencies,” in ICML, 2017, pp. 3570–3578.

[45] C. Jose, M. Cisse, and F. Fleuret, “Kronecker recurrent
units,” in ICML, 2018, pp. 2380–2389.

[46] M. Lezcano-Casado and D. Martinez-Rubio, “Cheap
orthogonal constraints in neural networks: A simple
parametrization of the orthogonal and unitary group,” in
ICML, 2019, pp. 3794–3803.

[47] K. Cho, B. van Merrienboer, D. Bahdanau, and Y.
Bengio, On the properties of neural machine translation:
Encoder-decoder approaches, arXiv:1409.1259, 2014.

[48] I. Sutskever, O. Vinyals, and Q. V. Le, Sequence to se-
quence learning with neural networks, arXiv:1409.3215,
2014.

APPENDIX A
COMPARISION OF DMU AND GRU

In the notation applied in this paper operation of a GRU [7]
layer can be expressed as

rt =Wrxt + Urht−1 + br

ĥt =Whxt + Uh(σ(rt) ◦ ht−1) + bh

zt =Wzxt + Uzht−1 + bz

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))

where Wr, Ur,Wh, Uh,Wz, Uz and br, bh, bz are matrices and
vectors of weights. The operation of DMU is presented in
eqs. (1) and (2). In the most straightforward configuration, this
network is a layer of linear units. Then

ĥt =Whxt + Uhht−1 + bh

zt =Wxxt + Uxht−1 + bx

ht = ht−1 ◦ σ(zt) + f(ĥt) ◦ (1− σ(zt))
(A.1)

Therefore, DMU is simpler in this basic configuration, thus
having fewer weights per memory cell than a layer of GRUs,
as it does not have the reset gate. In the general configuration,
DMU can apply an arbitrary nonlinear transformation to its
state, which GRU is unable to do. In practice, GRU layers are
often stacked on one another which improves its performance
on tasks that require complex nonlinear transformation of state.
However, the state of the stacked GRU layers still can not be

149

TABLE VIII
ARCHITECTURES USED THE FOR THE COMPARISON OF DIFFERENT NEURAL

MODULES IN SYNTHETIC EXPERIMENTS.1RECURRENT BLOCK.

experiment RNN LSTM GRU RHN DMU

NoiseSeq rc. blk1 (5, 5) (2, 2) (2, 3) ((3, 3)) ((5, 4))
weights no. 595 880 687 672 573

Adding rc. blk1 (5, 5) (2, 2) (3, 2) ((4, 3)) ((5, 5))
weights no. 111 99 108 136 106

TempOrd rc. blk1 (6, 6) (2, 3) (2, 4) ((4, 3)) ((5, 6))
weights no. 236 212 208 224 203

TABLE IX
ARCHITECTURES USED FOR THE COMPARISON OF RHN AND DMU. WE

REPORT THE NUMBER OF NEURONS IN FEEDFORWARD LAYERS. THE LAST
LAYER OF THE DMU’S FNN ON THE TRANSLATION TASK ALWAYS HAS 200

NEURONS. FOR THE TRANSLATION TASK, WEIGHTS’ NUMBERS ARE
PROVIDED FOR SPA2ENG, GER2ENG, AND POR2ENG, RESPECTIVELY.

experiment depth RHN DMU weights no.

PolyMusic

1 100 100 46.7K
2 100 122 66.9K
5 100 131 127K
10 100 136 228K

NatLang

1 100 100 1.7M
2 100 122 1.7M
5 100 131 1.8M
10 100 136 1.9M

Translation

1 200 200 27.8M/36.6M/24.5M
2 200 340 28.0M/36.8M/24.7M
5 200 300 28.4M/37.3M/25.2M
10 200 300 29.2M/38.1M/26.0M

arbitrarily transformed in a single time instant since parts of
this state are transformed within single layers.

LSTM [6] and RHN [10] are based on different, much more
complex equations with even more weights. LSTM has twice
more weights per memory cell than DMU has in the basic
configuration.

APPENDIX B
EXPERIMENTS

A. Architectures

We present architectures for each problem in Table VIII
and Table IX. Corresponding hyperparameters can be found
in Table VIII. The recurrent subnetwork is characterized by
the number of units in subsequent layers. For example, a GRU
subnetwork with two layers of 10 and 20 neurons will be
briefly denoted by (10, 20). A DMU block with two FNN
layers of 10 and 20 neurons will be denoted by (10, 20, 10)
to account for the layer of memory cells within the block. In
the data-based problems, we evaluate each module at varying
depths. In all cases, the compared architectures have matching
numbers of trained parameters. Hyperparameters for the models
were selected based on the random and grid searches and
then fine-tuned manually. The metric used to evaluate the
hyperparameters was calculated on the validation subset in
each case.

B. Training

The data is split into training, validation, and testing set. On
synthetic problems, training continues until the loss reaches a

specified threshold (10−6) on the validation set or the training
budget is depleted. The error is then registered on the testing
set and presented here. We follow a similar procedure for real-
life problems, except the training process is stopped once the
optimizer reaches the final epoch. All metrics are calculated
using the model from the epoch with the best metric score on
the validation set.

We run the experiment five times for each modern
task/model/depth combination and aggregate the results. Stan-
dard result aggregation, such as averaging loss over time, would
not be interpretable in the synthetic tasks since training is often
unstable in these experiments. Therefore, the results for each
synthetic problem are presented for multiple thresholds of the
loss value. We plot the number of experiment runs that have
reached the threshold in or before the specific epoch for each
threshold. These thresholds allow us to assess how fast and
how likely the module converges to a specific loss value. Thus,
we can gain an insight into the quality of the module. Faster
attainment of a specific threshold and convergence to lower
thresholds are both desirable for the algorithm.

Hyperparameters used for each experiment/neural module are
presented in Table X and Table XI. We use ADAM optimizer
to train all architectures.

TABLE X
HYPERPARAMETERS USED FOR SYNTHETIC TASKS.

experiment hyperpameter RNN LSTM GRU RHN DMU

NoiseSeq

learning rate 0.01 0.002 0.05 0.05 0.02
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

Adding

learning rate 0.01 0.001 0.05 0.02 0.02
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

TempOrd

learning rate 0.01 0.005 0.02 0.02 0.05
seq. per epoch 200 200 200 200 200
min seq. length 100 100 100 100 100
max epochs 100 100 100 100 100

C. Hardware

Our experiments have been performed on a PC equipped
with AMD™Ryzen 1920X, 64GB RAM, 4×NVidia™RTX
2070 Super.

D. Testing strategy

To evaluate synthetic tasks, we run an experiment for each
module 51 times and aggregate the results. On real-life data
tasks, we aggregate results over five runs for each recurrent
module. We report metrics obtained in the best runs. These
runs are selected based solely on their performance on the test
set. Therefore, in some cases, metrics reported in the best
column for the training dataset are worse than those in the
mean column.

150

TABLE XI
HYPERPARAMETERS USED FOR EACH EXPERIMENT AND EACH NEURAL

MODULE.

experiment depth hyperpameter RHN DMU

PolyMusic

all max epochs 500 500

1
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

2
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

5
learning rate 0.005 0.005
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

10
learning rate 0.005 0.002
weight decay 0.001 0.0001
scheduler gamma 1.0 1.0

NatLang

all max epochs 40 40

1
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

2
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

5
learning rate 0.02 0.01
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.98

10
learning rate 0.02 0.02
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.98

Spa2Eng/
Por2Eng/
Deu2Eng

all teacher forcing ratio 1.0 1.0
max epochs 50 50

1
learning rate 0.01 0.005
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

2
learning rate 0.01 0.01
weight decay 0.0001 0.0001
scheduler gamma 0.9 0.9

5
learning rate 0.01 0.003
weight decay 0.0001 0.0001
scheduler gamma 0.9 1.0

10
learning rate 0.01 0.003
weight decay 0.0001 0.0001
scheduler gamma 0.9 1.0

E. Adding problem

In this problem, the network is fed with two-dimensional
vectors [a, b], where a is randomly chosen from the interval
[−1, 1], and b ∈ {−1, 0, 1} is a marker: −1 denotes the first
and last element of the sequence, there are two pairs marked
by 1, the rest are marked by 0. The task of the network is to
output the sum of a-s accompanied by b-s equal to 1 at the
end of the sequence. Each network analyzed is composed of
a recurrent block and a layer with softmax activation.

F. Temporal order

This task evaluates network’s ability to model temporal
ordering of data. The input and the output are both 8-

dimensional. They represent one of 8 symbols by one-hot
encoding. The input symbols are: E (start), B (end), X or Y .
X or Y occur at time t1, t2, t3. In all three of these occurrences
the choice of X or Y is random, the rest of a sequence is
filled with symbols a, b, c, d also selected at random. Sequence
length is chosen randomly between 100 and 110. t1, t2, t3
are selected randomly for each sequence, respectively between
10-20, 33-43 and 66-76. The output desired at the end of
a sequence is either Q,R, S, U, V,A,B,C, depending on the
combination of symbols that has occurred at times t1, t2 and
t3. Each network analyzed is composed of a recurrent block
and a layer with softmax activation.

G. NoiseSeq

We use noisy sequences to test the modules on the long time
lag problems. The network is fed with symbols one-hot encoded
in n-dimensional vectors. An input sequence is, with equal
probability 0.5, either (x, a1, . . . , an−2) or (y, a1, . . . , an−2),
where x, y, a1, . . . , an−1 are selected on random prior to an
experiment. The task of the network is to output the first symbol
in the input sequence when at n − 1-st step. Each analyzed
neural network is composed of a recurrent block and a layer
with softmax activation.

H. PolyMusic

Inputs and outputs are 88-dimensional. They represent the
binary encoding of possible piano-rolls at a current timestep (in
MIDI note numbers, between 21 and 108 inclusive). Sequences
vary in length. The task of the model is to predict the next time
step in the sequence (i.e., output at time t is equal to input
at time t+ 1). The loss function is a negative log-likelihood
averaged over all time steps in the dataset/batch. The neural
network is composed of a recurrent block and a layer with the
sigmoid activation.

I. NatLang

Inputs and outputs are single number representations of
the most frequent words in English and special tokens such
as “unknown” or “end of sequence”. Sequences include 100
words. The goal of the network is to predict another word
within the current sequence. The loss function is perplexity
(categorical cross-entropy exponent). See [38] for details. The
whole neural network comprises a recurrent block, followed by
a 100-neurons dense layer and an output layer with the softmax
activation. For this experiment, the input word embedding is
set to a small size (64) on purpose to limit overfitting.

J. Machine Translation

We use tokens representing words, punctuation marks,
sentence start, and sentence end in all languages. Each
token is encoded as a single, unique number. The goal is
to translate Spanish/Portuguese/German sentences into English
ones using a system with encoder-decoder architecture [7],
[47], [48]. A whole translator has encoder-decoder architecture.
An encoder is a recurrent block. A decoder is composed of
a recurrent block and a layer with the softmax activation.
Additionally, we use input and output embeddings of size 650.

151

	Acknowledgements
	Introduction
	Contributions
	Dissertation structure

	List of publications
	Publications in the series
	Publications not in the series

	Background
	Reinforcement learning
	Neural architectures
	Feed-forward architectures
	Recurrent architectures
	Sequence-to-sequence architectures
	Similarity ranking architectures

	Neural network learning
	Classic learning methods
	Adaptive gradient methods

	Day-ahead automated energy trading
	Proposed solution

	Polish keyword spotting in audio recordings
	Research project results

	On-line hyperparameter tuning in neural network learning algorithms
	Proposed approach

	Simultaneous machine translation
	Proposed solution

	Deep state transformation in recurrent neural networks
	Final remarks
	Other achievements
	Bibliography
	Appendices
	List of Abbreviations
	List of Publications
	Reinforcement learning meets microeconomics: Learning to designate price-dependent supply and demand for automated trading
	Generalisation gap of keyword spotters in a cross-speaker low-resource scenario
	Automatic hyperparameter tuning in on-line learning: Classic Momentum and ADAM
	Reinforcement Learning for on-line Sequence Transformation
	Least Redundant Gated Recurrent Neural Network

