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Streszczenie

Woda, jako jeden z najcenniejszych zasobów naturalnych, jest poddawana sta-

łemu monitorowaniu ze względu na jej kluczową rolę w życiu na Ziemi oraz progno-

zowanie ekstremalnych zjawisk pogodowych jak susze czy powodzie. Monitoring ten

jest integralnym elementem i wpisuje się w podstawowe cele programu GGOS (ang.

Global Geodetic Observing System). Wielopoziomowość sytemu obiegu wody w przy-

rodzie prowadzi do wielowymiarowej złożoności prowadzenia pomiarów zmienności

zawartości wody w glebie. Z tego względu rejestracja tego sygnału z pułapu sateli-

tarnego stanowi znaczące wyzwanie dla badaczy z całego świata.

Praca doktorska skupia się na analizie synergii między danymi uzyskanymi z róż-

nych sensorów grawimetrycznych i teledetekcyjnych w kontekście monitorowania

zmian zasobów wodnych na Ziemi określanych jako ∆TWS (ang. Total Water Sto-

rage changes). Przeprowadzone badania naukowe dotyczą analizy istotności czynni-

ków wpływających na rejestrację zmian poziomu wód gruntowych obserwowanych

przez satelity grawimetryczne GRACE (ang. Gravity Recovery And Climate Experi-

ment) i GRACE-FO (ang. Grace Follow on) i zbadania w jakich warunkach możliwe

by było synergiczne wykorzystanie obserwacji dostarczanych do modeli hydrologicz-

nych za pomocą satelitarnych sensorów o odmiennej charakterystyce. Kluczowym

pytaniem postawionym w pracy jest, czy możliwe jest wykorzystanie informacji za-

wartych w danych zebranych przez czujniki charakteryzujące się większym szumem

i wariancją sygnału, takimi jak dane dotyczace wilgotności gleby (SM, ang. Soil

Moisture) pochodzące z misji AMSR-E (ang. Advanced Microwave Scanning Ra-

diometer), w globalnej analizie zmienności ∆TWS z satelitów GRACE i GRACE-

FO. W pracy zdefiniowano także szereg aspektów badawczych, obejmujących m.in.

analizę przestrzennych i czasowych zależności pomiędzy danymi teledetekcyjnymi

a grawimetrycznymi, ocenę wpływu metody filtracji danych, wykorzystanie technik

uczenia maszynowego w rekonstrukcji sygnału oraz wyznaczenie czynników umożli-

wiających większą zgodność sygnałów z tych dwóch źródeł danych.

Przeprowadzone badania obejmują zarówno analizy regionalne, jak i globalne, co

pozwala na pełniejsze zrozumienie dynamiki zmian wód na Ziemi i dostarcza pod-

staw dla skuteczniejszych działań zarządczych w obszarze monitorowania środowiska

naturalnego. Badania wykazały, że satelitarne sensory grawimetryczne są skutecz-

nym narzędziem do analizy ekstremalnych zjawisk klimatycznych, takich jak susze

i powodzie, pod warunkiem odpowiedniej filtracji przestrzennej sygnału. Modelo-

wanie lokalnych czynników hydrologicznych oraz antropogenicznych jest kluczowe

dla dokładności obserwacji naziemnych i satelitarnych, zwłaszcza w przypadku ob-

serwacji warunków hydrologicznych. Wykorzystanie nowoczesnych technik uczenia

maszynowego pozwala na skuteczną rekonstrukcję sygnału ∆TWS na podstawie da-

nych z modeli GLDAS (ang. Global Land Data Assimilation System) oraz danych

dotyczących SM. Praca stanowi wkład w rozwój naukowego zrozumienia procesów
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hydrologicznych na Ziemi oraz wskazuje kierunki dalszych badań w zakresie analizy

danych grawimetrycznych i teledetekcyjnych.

słowa kluczowe: grawimetria, teledetekcja, GRACE, AMSR-E, zmiany zasobów

wody
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Abstract

Water, one of the most valuable natural resources, undergoes constant monito-

ring due to its crucial role in Earth’s life and the forecasting of extreme weather

phenomena such as droughts and floods. This monitoring aligns with the fundamen-

tal goals of the GGOS (Global Geodetic Observing System) program. The multi-level

nature of the Earth’s water cycle leads to multidimensional complexity in measu-

ring soil water content variability. Consequently, recording this signal from a satellite

perspective poses a significant challenge for researchers worldwide.

The doctoral thesis analyzes the synergy between data obtained from various

gravimetric and remote sensing sensors in the context of monitoring changes in

Earth’s water resources, referred to as Total Water Storage (∆TWS) changes. The

scientific research conducted pertains to the analysis of the significance of factors

influencing the registration of groundwater level changes recorded by gravimetric

satellites GRACE (Gravity Recovery And Climate Experiment) and GRACE-FO

(Grace Follow-on) and the investigation of under what conditions synergistic use

of observations delivered to hydrological models via satellite sensors with different

characteristics would be possible. A key question posed in the thesis is whether it

is possible to utilize information contained in data collected by sensors characteri-

zed by higher noise and signal variance, such as soil moisture (SM) data from the

AMSR-E mission (Advanced Microwave Scanning Radiometer), in a global analy-

sis of ∆TWS variability from GRACE and GRACE-FO satellites. The thesis also

defines several research aspects, including the analysis of spatial and temporal de-

pendencies between remote sensing and gravimetric data, assessment of the impact

of data filtering methods, utilization of machine learning techniques in signal recon-

struction, and determination of factors enabling greater alignment of signals from

these two data sources.

The conducted research encompasses regional and global analyses, allowing for

a fuller understanding of water dynamics on Earth and providing the basis for more

effective environmental monitoring management. The studies have shown that gra-

vimetric satellite sensors are practical tools for analyzing extreme climatic pheno-

mena, such as droughts and floods, provided spatial signal filtering is adequate.

Modeling local hydrological and anthropogenic factors is crucial for the accuracy

of ground-based and satellite observations, especially regarding hydrological con-

ditions. Modern machine learning techniques enable effective signal reconstruction

based on the GLDAS (Global Land Data Assimilation System) model and SM data.

The thesis contributes to advancing scientific understanding of hydrological pro-

cesses on Earth and sets directions for further research in gravimetric and remote

sensing data analysis.

keywords: gravimetry, remote sensing, GRACE, AMSR-E, water storage changes

5



Spis treści

1 Forma rozprawy doktorskiej 8

2 Motywacja, cele i hipotezy badawcze 10

3 Wstęp 14

4 Podstawy teoretyczne 17

4.1 Grawimetria satelitarna jako unikalna technika pomiarów zmiany przyspie-

szenia siły ciężkości związanej ze śledzeniem zmian mas . . . . . . . . . . . 17

4.2 Zmiany przyspieszenia wynikające ze zmian wilgotności gruntu, wyrażanej

jako ∆TWS - opis zjawiska . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 Grawimetryczne misje satelitarne GRACE i GRACE-FO . . . . . . . . . . 18

4.4 Zastosowania satelitarnych danych grawimetrycznych . . . . . . . . . . . . 21

4.5 Charakterystyka pomiarów teledetekcyjnych zorientowanych na badanie

zmian wilgotności (AMSR-E) . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.6 Wyznaczenie wilgotności gleby wyrażonej jako SM za pomocą mikrofalo-

wych sensorów AMSR-E . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.7 Przegląd dotychczasowych badań opublikowanych w literaturze naukowej . 25

5 Metodyka badań 30

5.1 Przetwarzanie danych GRACE oraz GRACE-FO . . . . . . . . . . . . . . 31

5.2 Przetwarzanie danych AMSR-E . . . . . . . . . . . . . . . . . . . . . . . . 34

5.3 Opis wykorzystanych danych . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4 Normalizacja i skalowanie czasowo-przestrzennych danych dotyczących ∆TWS 38

5.5 Konieczność i sposoby filtracji obserwacji GRACE i GRACE-FO . . . . . . 39

5.6 Metody dekompozycji sygnału LSSA i STL . . . . . . . . . . . . . . . . . 40

5.7 Określenie metod i kryteriów porównawczych oraz miar jakości pomiędzy

analizowanymi zbiorami danych . . . . . . . . . . . . . . . . . . . . . . . . 41

5.8 Transformacje liniowe sygnału ∆TWS za pomocą EOF . . . . . . . . . . . 45

5.9 Analiza maksymalnej kowariancji . . . . . . . . . . . . . . . . . . . . . . . 46

5.10 Metody rekonstrukcji sygnału ∆TWS przy użyciu metod bazujących na

uczeniu maszynowym . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6 Syntetyczny opis wyników badań 52

6.1 Publikacja [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Publikacja [2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 Publikacja [3] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6



6.4 Publikacja [4] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.5 Publikacja [5] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Podsumowanie 65

8 Wykaz użytych skrótów i akronimów 69

9 Bibliografia 73

10 Załaczniki 94

10.1 Lista załączników . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

10.2 Załączniki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7



1 Forma rozprawy doktorskiej

Niniejsza rozprawa doktorska została przygotowana w formie spójnego tematycznie zbioru

pięciu prac opublikowanych w czasopismach naukowych oznaczonych numerami [1-5].

[1] Kuczynska-Siehien, J., Piretzidis, D., Sideris, M. G., Olszak, T. and Szabó, V. (2019)

‘Monitoring of extreme land hydrology events in central Poland using GRACE, land

surface models and absolute gravity data’, Journal of Applied Geodesy, Vol. 13, No.

3, pp.229–243, doi: 10.1515/jag-2019-0003.

100 pkt MEiN; IF: 1.30

[2] Szabó, V. and Marjańska, D. (2020) ‘Accuracy analysis of gravity field changes from

GRACE RL06 and RL05 data compared to in situ gravimetric measurements in the

context of choosing optimal filtering type’, Artificial Satellites: Journal of Planetary

Geodesy, Vol. 55, No. 3, pp.100–117, doi: 10.2478/arsa-2020-0008.

70 pkt MEiN; IF: 0.90

[3] Szabó, V. (2023) ‘Comparison features importance for temporal and spatial-temporal

approaches in GRACE and GRACE-FO signal reconstruction based on GLDAS

data’, International Journal of Hydrology Science and Technology,

doi: 10.1504/IJHST.2023.134623

100 pkt MEiN; IF: 1.80

[4] Szabó, V. and Osińska-Skotak, K. (2023) ’Similarities and differences in the Earth’s

water variations signal provided by GRACE and AMSR-E observations using Maxi-

mum Covariance Analysis at various Land Cover data backgrounds’,Artificial Satel-

lites: Journal of Planetary Geodesy, Vol. 58, No. 2 - 2023, doi: 10.2478/arsa-2023-

0006

70 pkt MEiN; IF: 0.90

[5] Szabó, V., Osińska-Skotak, K. and Olszak, T. (2024) ’Using machine learning tech-

niques to reconstruct the signal observed by the GRACE mission based on AMSR-E

microwave data’, Miscellanea Geographica - Regional Studies on Development, Vol.

28, No. 2 - 2024, doi: 10.2478/mgrsd-2023-0033

100 pkt MEiN; IF: 0.80

Suma punktów MEiN: 440
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Mój udział w poszczególnych publikacjach był następujący:

[1] Przygotowanie danych z misji GRACE, napisanie skryptu umożliwiającego filtro-

wanie danych współczynników sferycznych harmonicznych poziomu 2 filtrami nie-

izotropowymi DDK1-8. Jednostkowy udział: 10%

[2] Przygotowanie danych, praca nad koncepcją i metodyką badań, przeprocesowanie

i analiza rozwiązań, przegląd literatury, przygotowanie całej treści artykułu w języku

polskim. Jednostkowy udział: 80%

[3] Przygotowanie koncepcji i metodyki badań, przegląd literatury, napisanie kodu

umożlwiającego analizę rozwiązań, opracowanie danych, analiza wyników, ich dys-

kusja i wnioski. Przygotowanie oryginalnej wersji artykułu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udział: 100%

[4] Przygotowanie koncepcji i metodyki badań, przegląd literatury, napisanie kodu

umożlwiającego analizę rozwiązań, opracowanie danych, analiza wyników, ich dys-

kusja i wnioski. Przygotowanie oryginalnej wersji artykułu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udział: 85%

[5] Przygotowanie koncepcji i metodyki badań, przegląd literatury, napisanie kodu

umożlwiającego analizę rozwiązań, opracowanie danych, analiza wyników, ich dys-

kusja i wnioski. Przygotowanie oryginalnej wersji artykułu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udział: 80%

Oświadczenia współautorów publikacji określające indywidualny wkład każdego autora

w powstanie poszczególnych publikacji zamieszczono rozdziale (10) w poszczególnych za-

łącznikach.
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2 Motywacja, cele i hipotezy badawcze

Globalne pomiary geodezyjne pełnią dwie istotne funkcje w dziedzinie obserwacji Ziemi:

dostarczają ram odniesienia niezbędnych do wszystkich obserwacji zależnych od lokali-

zacji, co stanowi fundament większości obserwacji ziemskich oraz dostarczają obserwacji

dotyczących zmieniającego się w czasie kształtu, pola grawitacyjnego i rotacji Ziemi. Po-

nieważ Ziemia jest ciągle deformowana przez wewnętrzne procesy geodynamiczne oraz

przez transport masy i energii w płynnej powłoce astenosfery, zdolność do zrozumienia

i modelowania tych procesów niesie znaczące korzyści przy tworzeniu stabilnych rozwią-

zań i projektowaniu systemów (ITRS, ang. International Terrestrial Reference System)

i układów (ITRF, ang. International Terrestrial Reference Frame) odniesień przestrzen-

nych.

GGOS (ang. Global Geodetic Observing System) (Plag et al., 2009, Rothacher et al.,

2009) stanowi fundamentalną infrastrukturę dla badań nad dynamicznymi zmianami w ob-

rębie naszej planety oraz dostarcza kluczowe produkty dla zrozumienia procesów związa-

nych z deformacją globalną i wymianą masy zachodzącą w litosferze, hydrosferze, atmos-

ferze i kriosferze. W obliczu coraz potężniejszych skutków zmian pochodzenia zarówno

naturalnego jak i antropogenicznego, świadome zarządzanie naszym środowiskiem staje

się kluczowym wyzwaniem. W celu zminimalizowania negatywnego wpływu działalności

człowieka na ekosystem i równowagę naszej planety oraz zachowania zasobów naturalnych

dla przyszłych pokoleń, niezbędne jest pogłębione zrozumienie procesów zachodzących na

Ziemi. Wymaga to kompleksowych badań, modelowania, prognozowania oraz podejmowa-

nia decyzji politycznych opartych na wszechstronnych obserwacjach systemu Ziemi. Zja-

wiska takie jak susze, powodzie, trzęsienia ziemi, tsunami czy erupcje wulkanów stanowią

jedynie wierzchołek góry lodowej, obrazując niepokojącą dynamikę zmian na Ziemi. Ob-

serwacje te są nie tylko istotne dla naukowego poznania naszej planety, ale również mają

fundamentalne znaczenie dla wielu sektorów gospodarki oraz społeczeństwa jako całości.

Pomiar zmiennego w czasie kształtu, pola grawitacyjnego i rotacji Ziemi to elementy ce-

lów GGOS oraz ich implementacji przy pomocy GEOSS (ang. Global Earth Observation

System of Systems) (Lautenbacher, 2006). GEOSS to zestaw skoordynowanych, niezależ-

nych systemów pozyskiwania obserwacji, informacji i przetwarzania danych dotyczących

Ziemi, które współdziałają i zapewniają dostęp do różnorodnych informacji szerokiemu

gronu użytkowników zarówno z sektora publicznego, jak i prywatnego. GEOSS łączy te

systemy w celu wzmocnienia komplementarności monitorowania stanu Ziemi.

Woda jest jednym z najcenniejszych zasobów naturalnych na Ziemi (De Villiers,

2001, Lvovich, 1979). Stały monitoring tych zasobów, obiegu wody i cyklu hydrologicznego

daje niezwykłe korzyści w postaci nie tylko zrozumienia procesów zachodzących na naszej

planecie, ale również predykcji ekstremalnych zjawisk pogodowych, takich jak susze czy
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powodzie. Naukowcy stosują w swoich pracach badawczych dane dotyczące zmian ekwi-

walentu wodnego. Badania te znajdują swoje praktyczne zastosowanie w rolnictwie, moni-

toringu zmian klimatu lub chociażby przewidywaniu katastrof naturalnych (Foroumandi

et al., 2023, Hao et al., 2018, Rashid et al., 2020). Wykorzystanie danych z modeli hydro-

logicznych, danych teledetekcyjnych lub grawimetrycznych na stałe zagościło w dziedzinie

badań związanych z klimatem. Ze względu na znaczną liczbę badań, w których przetwarza

się, łączy i analizuje dane z sensorów grawimetrycznych w połączeniu z innymi danymi

o różnej rozdzielczości czasowo-przestrzennej (Dee et al., 2011, Döll et al., 2014, Eicker

et al., 2014, Jackson et al., 1981) motywacją do badań stała się potrzeba przeprowadzenia

prac, które pozwoliłby na określenie przypadków, dla których wymienne wykorzystanie

danych wielosensorowych jest możliwe. Tego rodzaju synergiczne użycie danych umoż-

liwiłoby monitorowanie zmian hydrologicznych na powierzchni Ziemi w sposób bardziej

operacyjny. Ważnym elementem badań było stwierdzenie czy możliwa jest minimalizacja

wpływu błędów spowodowanych sposobem przetwarzania danych lub wpływem elemen-

tów środowiskowych, które powodują, że dane pochodzące z różnych czujników opisujące

analogiczne zjawiska dają nie koherentne wyniki.

Istotność wyżej wymienionych warunków oraz ich bezpośredni wpływ na klimat

i życie ludzi na Ziemi, stanowiły dodatkową motywację do powstania tejże rozprawy dok-

torskiej.

W pracy postawiono następującą tezę badawczą:

Istnieją uwarunkowania, dla których występuje duża zgodność rejestracji zmian

zawartości wód przypowierzchniowych obserwowanych za pomocą mikrofalowych technik

teledetekcyjnych w zestawieniu ze zmianami całkowitego ekwiwalentu wodnego obserwo-

wanymi przez satelitarne misje grawimetryczne.

Głównymi celami badawczymi rozprawy były:

(a) Analiza możliwości synergii obserwacji teledetekcyjnych z grawimetrycznymi pod

kątem uzyskania informacji i rozkładu zawartości wody w glebie.

(b) Analiza istotności czynników wpływających na rejestrację zmian poziomu wód grun-

towych rejestrowanych przez satelity GRACE i GRACE-FO.

Zdefiniowano kilka następujących aspektów badawczych:

1. Zbadanie zależności pomiędzy danymi uzyskiwanymi za pomocą sensorów grawime-

trycznych dalekiego zasięgu oraz bliskiego (pomiary satelitarne i naziemne) w kon-

tekście obserwacji ekstremalnych zjawisk pogodowych takich, jak susze czy powo-

dzie. Publikacje [1][2][5]
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2. Ocena wpływu metody filtracji danych poziomu 2 wynikających z specyfikacji in-

klinacji orbity misji GRACE w zależności od rozdzielczości przestrzennej badanych

zjawisk geofizycznych w kontekście dokładności obserwowanego zjawiska. Publikacja

[1][2]

3. Analiza możliwości łączenia danych z pomiarami/danymi o innym spektrum cza-

sowym i przestrzennym wraz ze wskazaniem istotności poszczególnych parametrów

fizycznych zawartych w modelach hydrologicznych przy użyciu współczesnych tech-

nik rekonstrukcji sygnału. Publikacje [3][4][5]

4. Zbadanie przestrzennych i czasowych zależności pomiędzy danymi z sensorów gra-

wimetrycznych i teledetekcyjnych w kontekście badanie różnic w wyznaczaniu wil-

gotności potrzebnej do modelowania zasobów wód podziemnych poprzez odjęcie

wierzchniej warstwy wodnej. Publikacje [4][5]

5. Wyznaczenie czynników pozwalające na uchwycenie większej zgodności sygnałów

teledetekcyjnych (o dużej rozdzielczości czasowo-przestrzennej) z satelitarnymi po-

miarami grawimetrycznymi (o słabszej rozdzielczości czasowo-przestrzennej) w celu

wyodrębnienia obszarów i warunków, dla których możliwe jest dokładne interpo-

lowanie obserwacji GRACE oraz takich warunków, dla których należy opracować

bardziej wyrafinowane modele zależności. Publikacje [3][4][5]

Publikacje [1][2] dotyczą regionalnych badań na szeregu obserwacyjnym grawime-

trycznych pomiarów absolutnych w Obserwatorium Astronomiczno-Geodezyjnym w Jó-

zefosławiu. Prace [3][4] obejmują analizy globalne dla obserwacji i modeli globalnych.

Podzielenie badań na dwa podejścia (lokalne i globalne) umożliwia uzyskanie pełnego

obrazu i poprawnego wnioskowania w zakresie przetwarzania danych grawimetrycznych

z misji GRACE i GRACE-FO. Publikacja [5] podsumowuje prace z zakresu badań regio-

nalnych i globalnych. Najważniejsze wyniki z przeprowadzonych badań zostały przedsta-

wione w rozdziale (6).

Schemat ilustrujący przebieg prac badawczych oraz relacje między publikacjami

tworzącymi cykl przedstawiono na rysunku (1).
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Rysunek 1: Uproszczony schemat prac badawczych oraz relacje między publikacjami

tworzącymi cykl. Żródło: Opracowanie własne

13



3 Wstęp

Grawimetria satelitarna jest unikalną techniką pomiarów zmiany przyspieszenia siły cięż-

kości. Umożliwia obserwacje transportu mas i procesów zachodzących na Ziemi w global-

nej skali. Jedną z takich misji satelitarnych jest misja GRACE (ang. Gravity Recovery

And Climate Experiment) (Tapley et al., 2004b, Wahr et al., 1998). Znalazła ona swoje

zastosowania w hydrologii, badaniach atmosfery, zmian klimatycznych, monitoringu geo-

zagrożeń, zmian poziomu mórz, oceanów oraz skorupy ziemskiej. Na przestrzeni ostatnich

15 lat pogłębiła wiedzę ludzkości na temat naszej planety i zmian zachodzących na jej

powierzchni. Niezliczone korzyści płynące z prowadzenia satelitarnych obserwacji grawi-

metrycznych doprowadziły do wysłania kolejnej misji GRACE-FO (ang. Grace Follow

on) (Flechtner et al., 2016), która będzie kontynuować pozyskiwanie danych, umożliwia-

jąc dalsze pogłębianie wiedzy dotyczącej naszej planety. Jednak metodyka opracowania

satelitarnych danych grawimetrycznych oraz sposób korzystania z tych danych w zależ-

ności od przeprowadzanego eksperymentu naukowego są kluczowe, aby móc wyciągać

poprawne wnioski i doskonalić prognozy dotyczące zmian klimatu (Pail et al., 2015, Ta-

pley et al., 2019). Problematyka związana z koniecznością filtracji zaszumionych danych

GRACE, powstałych na skutek okołobiegunowej inklinacji orbity, jest niezwykle istotna

ze względu na stosunkowo niewielką rozdzielczość przestrzenną obserwacji (Swenson and

Wahr, 2006). Zbyt intensywne wygładzanie sygnału prowadzi do utraty istotnych infor-

macji geofizycznych, które w zależności o konkretnych warunków i kryteriów badań mogą

być pożądane w danym eksperymencie naukowym. Istnieje znaczny potencjał w wykorzy-

staniu łączenia danych GRACE z innymi obserwacjami z sensorów zarówno o większej

częstotliwości obserwacji, jak i wyższej rozdzielczości przestrzennej. Kluczowe jest jed-

nak zbadanie i wyznaczanie warunków sprzyjających odzyskiwaniu jak największej części

informacji zawartej w obserwowanym sygnale grawitacyjnym.

Zmiany w dystrybucji masy na Ziemi wynikają w znacznym stopniu ze zmian cał-

kowitego ekwiwalentu wody wyrażanej jako ∆TWS (ang. Total Water Storage changes).

Misja GRACE umożliwia obserwację zmian dystrybucji wody z około miesięczną często-

tliwoścą pomiarów, zwykle przedstawianej jako łączna miesięczna średnia zmiana maga-

zynowanej wody poprzez usunięcie średniej długoterminowej podzielonej przez odchylenie

standardowe, znane jako anomalia TWS (TWSA). TWSA odpowiada sumie wszystkich

zasobów wód powierzchniowych nad i pod powierzchnią, w tym wilgoci w glebie, wód

powierzchniowych, jezior, rzek i wód gruntowych. Jest to z perspektywy hydrologicznej

ważny parametr i element badań naukowców szczególnie na terenach niedostępnych lub

nie objętych monitoringiem hydrologicznym (Kusche et al., 2016, Rodell et al., 2018). Ba-

danie zbieżności obserwacji hydrologicznych z różnych zbiorów danych i warunków, przy

których są uzyskiwane pozwala na lepsze zrozumienie procesów zachodzących na Ziemi
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i podejmowanie decyzji na obszarach dotkniętych takimi wydarzeniami jak chociażby su-

sze czy powodzie (Chen et al., 2007, Liu et al., 2020, Zhao et al., 2017a).

Prawie roczna przerwa między funkcjonowaniem GRACE i GRACE-FO zrodziła

pytania o przyszłość obserwacji GRACE-FO, a co za tym idzie zrozumienie ciągłych zmian

klimatu. Wykazywane przez naukowców korzyści płynące z monitoringu globalnych pro-

cesów zmian zarówno naturalnych, jak i tych spowodowanych czynnikami antropogenicz-

nymi stawiają cel ciągłości pomiarów na wysokim miejscu listy priorytetów i założeń

GGOS. Fakt ten przyczynia się do konieczności prowadzenia badań naukowych mających

na celu stworzenie najwyższej jakości rozwiązań umożliwiających dostarczanie danych

oraz modelowanie zmian w obrębie ziemskiego pola siły ciężkości (Kusche et al., 2016,

Rodell et al., 2018). Do tego zadania konieczne jest połączenie pomiarów różnych senso-

rów, a także wielowymiarowa analiza związana z czynnikami wpływającymi bezpośrednio

na zmiany obserwowane w polu siły ciężkości Ziemi.

Wilgotność gleby wyrażona jako SM (ang. Soil Moisture) to istotna zmienna hy-

drologicznego stanu gleby, będąca głównym składnikiem ∆TWS (Robinson et al., 2008).

Aktywne i pasywne obserwacje mikrofalowe umożliwiają analizę wilgotności gleby na

skalę globalną i regionalną (Babaeian et al., 2019). Ze względu na ograniczenia związane

z rozdzielczością czasowo-przestrzenną danych GRACE istotnym czynnikiem przy analizie

możliwości synergii danych z innymi sensorami o wyższej częstotliwości pomiarów i roz-

dzielczości przestrzennej jest zachowanie istotności statycznej dla podtrzymania wszelkich

wyprowadzonych wniosków z badań naukowych (Ioannidis, 2005). Z tego powodu wybór

sensorów podyktowany jest długością i ciągłością prowadzonych obserwacji, tak by możli-

wie jak najlepiej pokrywał część wspólną z okresem pomiarów prowadzonych przez misje

GRACE i GRACE-FO. Jednym z kluczowych sensorów teledetekcyjnych dostarczających

danych o wilgotności gleby była misja AMSR-E (ang. Advanced Microwave Scanning Ra-

diometer). AMSR-E to zaawansowany skanujący radiometr mikrofalowy, który stanowi

element systemu obserwacyjnego Ziemi (Njoku et al., 2005). Urządzenie to zostało za-

projektowane do pomiaru elektromagnetycznego promieniowania mikrofalowego w celu

uzyskania informacji o parametrach związanych z cyklem wodnym i klimatem. AMSR-E

zbiera dane dotyczące wilgotności gleby, opadów atmosferycznych, pokrywy śnieżnej i in-

nych istotnych aspektów związanych z obiegiem wody w środowisku. Wykorzystuje on

mikrofale, które są emitowane, absorbowane i rozpraszane przez różne formy wody, takie

jak chmury, opady atmosferyczne i pokrywa śnieżna. Dzięki tym pomiarom, AMSR-E

dostarcza wartościowe dane naukowe, które są istotne dla analizy i monitorowania zmian

w środowisku naturalnym na naszej planecie. Sensor ten dostarczał dane obejmujące okres

od czerwca 2002 r. do początku października 2011 r., pokrywając w ten sposób znaczącą

część okresu obserwacji z misji GRACE. Doczekał się też swojej kontynuacji w postaci mi-
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sji AMSR-2 oraz AMSR-3, będących częścią planowanej na marzec 2024 r. misji GOSAT-

GW (ang. Global Observing SATellite for Greenhouse gases and Water cycle), tym samym

dając najdłuższy spójny szereg obserwacji SM (Kasahara et al., 2020).

Synergia obserwacji teledetekcyjnych z grawimetrycznymi pod kątem uzyskania in-

formacji o rozkładzie zawartości wody w glebie ma znaczny potencjał badawczy. Osiąganie

lepszych wyników poprzez połączenie lub współdziałanie różnych zbiorów danych w celu

dokładniejszego oszacowania tempa ubytku wody w danym obszarze, miejsc zagrożonych

suszą i predykcja zachodzących zmian, stanowi ważny element badań naukowych doty-

czący bezpośrednio wszystkich ludzi zamieszkujących Ziemię. Wykorzystanie różnorod-

nych danych teledetekcjnych i pomiarów grawimetrycznych pozwoli podejmować bardziej

skuteczne działania zarządzania zasobami wodnymi naszej planety zarówno w skali lokal-

nej, jak i globalnej, co ma bezpośredni wpływ na jakość życia i zrównoważony rozwój.

Idea ta niesie też ze sobą ogromną korzyść w postaci zastosowania danych o większej

rozdzielczości czasowo–przestrzennej do wzbogacania i skalowania danych grawimetrycz-

nych (Dee et al., 2011, Döll et al., 2014, Eicker et al., 2014). Wykorzystanie potencjału

tych danych oraz narzędzi statystycznych umożliwia otrzymanie szczegółowych informacji

w skali lokalnej na temat stanu różnych obszarów. Umożliwia także na uzyskanie bardziej

szczegółowych danych o zmianach ilości wody w analizach regionalnych, co ma duże zna-

czenie w badaniach klimatycznych, analizie zasobów wodnych i monitoringu suszy oraz

powodzi.

Wielopoziomowość sytemu obiegu wody w przyrodzie prowadzi do wielowymia-

rowej złożoności prowadzenia pomiarów zmienności zawartości wody w glebie. Z tego

względu rejestracja tego sygnału z pułapu satelitarnego stanowi nie lada wyzwanie dla

badaczy z całego świata. Powstaje zatem konieczność prowadzenia analizy istotności czyn-

ników wpływających na rejestrację zmian poziomu wód gruntowych przez satelity GRACE

i GRACE-FO, która to umożliwia wyodrębnienie głównych składowych bez utraty sygnału

geofizycznego podczas opracowywania tychże danych.
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4 Podstawy teoretyczne

4.1 Grawimetria satelitarna jako unikalna technika pomiarów

zmiany przyspieszenia siły ciężkości związanej ze śledzeniem

zmian mas

Globalne satelitarne pomiary przyspieszenia siły ciężkości dostarczają unikalnych danych

o rozkładzie masy i procesach transportu masy w systemie ziemskim, związanych ze zmia-

nami i procesami dynamicznymi zachodzącymi w hydrosferze, kriosferze, oceanach, at-

mosferze i statycznej części Ziemi. Dedykowane misje grawimetryczne, takie jak CHAMP

(ang. Challenging Minisatellite Payload) (Reigber et al., 2002), GRACE (Tapley et al.,

2004b, Wahr et al., 1998), GRACE-FO (Flechtner et al., 2016) i GOCE (ang. Gravity

field and steady-state Ocean Circulation Explorer) (Tscherning et al., 2001) zainicjowały

rewolucję w zrozumieniu procesów transportu masy wewnątrz Ziemi. Dzięki temu stało

się możliwe osiągnięcie spektakularnych wyników naukowych i nowego spojrzenia na za-

chodzące procesy wewnątrz Ziemi i ich wzajemne oddziaływanie (Pail et al., 2015). Bez-

dyskusyjną sprawą jest konieczność walidacji tych rozwiązań, zwłaszcza gdy dostarczają

ważnych informacji dotyczących prognoz zmian wód podpowierzchniowych. Aby zacho-

wana była zrównoważona gospodarka wodna i aby możliwa była wczesna rekcja ludzkości

na terenach, gdzie wzrasta ryzyko wystąpienia susz należy zwrócić uwagę na dokładność

podawanych trendów i prognoz. W ostatnich latach misje GRACE i GRACE-FO i two-

rzone dzięki nim rozwiązania stały się głównym dostarczycielem ilościowych danych na

temat obserwacji zmienności pola grawitacyjnego Ziemi oraz zjawisk z tym związanych.

4.2 Zmiany przyspieszenia wynikające ze zmian wilgotności gruntu,

wyrażanej jako ∆TWS - opis zjawiska

Obserwowane miesięczne zmiany grawitacji są spowodowane miesięcznymi zmianami masy.

Zmiany masy można uznać za skoncentrowane w bardzo cienkiej warstwie zmian poziomu

wody w pobliżu powierzchni Ziemi (tj. w warstwie o grubości do kilku kilometrów). W

rzeczywistości większość comiesięcznych zmian grawitacji jest spowodowana zmianami

w magazynowaniu wody w zbiornikach hydrologicznych, przemieszczającymi się masami

oceanicznymi, atmosferycznymi i lądowymi oraz wymianami masy między tymi kompo-

nentami systemu ziemskiego. Ich zasięg pionowy mierzy się w centymetrach równoważnej

warstwy wody - ∆TWS. Niektóre zmiany grawitacji są spowodowane masową redystrybu-

cją w „stałej” Ziemi, na przykład po dużym trzęsieniu ziemi lub w wyniku dostosowania

izostatycznego post-lodowcowego. W takich przypadkach interpretacja zmian grawitacji

w kategoriach „równoważnej warstwy wody” jest nieprawidłowa, nawet jeśli nadal można
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obliczyć tę ilość (tj. przez usunięcie stałych efektów Ziemi w celu odizolowania zmian

masy związanych z wodą). Podstawową metodę wznaczania wartości ∆TWS wyjaśniono

w (Wahr et al., 1998). Dane dotyczące zmienności pola grawitacyjnego są przechowywane

w zharmonizowanej formie współczynników sferycznych harmonicznych. Wykorzystując

ten sposób możliwe jest przeliczenie danych funkcjonałów zmian pola siły ciężkości w re-

gularnej siatce (ang. grid) o zadanej rozdzielczości przestrzennej. Wielkość „oczek” siatki,

tj. rozdzielczość przestrzenna, zależy od stopnia rozwinięcia funkcji sferycznych harmo-

nicznych. Sprzężone jest to bezpośrednio z częstotliwością pomiarów misji satelitarnych

i w przypadku misji GRACE i GRACE-FO dla około miesięcznych rozwiązań maksymalny

stopień rozwinięcia wynosić będzie 96. Dla dłuższego okresu obserwacji możliwe jest osią-

gnięcie wyższego maksymalnego stopnia rozwinięcia, ale wiąże się to z utratą obserwacji

dynamiki zmian w polu siły ciężkości Ziemi i uśredniania obserwacji w dłuższych okresach.

Siatki lądowe i oceaniczne są przetwarzane za pomocą różnych filtrów, które są dostrojone

tak, aby jak najlepiej odfiltrowywać szum przy jednoczesnym zachowaniu prawdziwych

sygnałów geofizycznych. Wzór umożliwiający wyznaczenie całkowitego ekwiwalentu wod-

nego przedstawia się następująco:

∆TWS(θ,λ) =
ρeR

3

nmax∑
n=0

2n+ 1
1 + k′

n∑
m=0

(Cmn · cos(mλ) + Smn · sin(mλ)) · Pmncos(θ) (1)

gdzie θ, λ to współrzędne sferyczne punktu, w którym wyznaczany jest potencjał, R to pro-

mień Ziemi zdefiniowany w Międzynarodowej Konwencji dotyczącej Rotacji Ziemi i Sys-

temów Referencyjnych (IERS2010, ang. International Earth Rotation and Reference Sys-

tems Service Convention) (Luzum and Petit, 2012), Cmn, Smn to znormalizowane współ-

czynniki harmoniczne rozwinięcia potencjału siły ciężkości (współczynniki Stokesa) stop-

nia n i rzędu m, Pmn to znormalizowane funkcje Legendre’a stopnia n i rzędu m , k′

oznacza parametr Ziemi elastycznej, określany mianem liczb Love’a uwzględniającymi

deformację Ziemi spowodowaną efektami obciążenia, ρe to średnia gęstość Ziemi (Seo

et al., 2006, Wahr et al., 1998).

4.3 Grawimetryczne misje satelitarne GRACE i GRACE-FO

Głównym celem naukowym misji GRACE był pomiar ziemskiego pola grawitacyjnego

i jego zmienności w czasie z niespotykaną wcześniej dokładnością. Wykonanie zadania

okazało się możliwe dzięki propozycji wystrzelenia dwóch satelitów (a nie jednego), które

znajdują się obok siebie na tej samej ścieżce orbitalnej. Aby uwzględnić precyzyjnie po-

łożenie i siły niegrawitacyjne, oba satelity zostały wyposażone w kamery gwiazd i akce-

lerometry. Położenie i prędkość satelitów zmierzono za pomocą pokładowych anten GPS

(ang. Global Positioning System) i (do celów walidacji) satelitarnych pomiarów laserowych

(SLR, ang. satellite laser ranging). Koncepcja pomiarów satelitarnych między dwoma
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satelitami na niskiej orbicie znana jest jako LL-SST (ang. low–low satellite-to-satellite

tracking), podczas gdy śledzenie wysoko-niskie (HL, ang. high–low) odnosi się do pomia-

rów odległości między satelitami GPS umieszczonymi na wysokiej orbicie a segmentem

kosmicznym GRACE na niskiej orbicie okołoziemskiej w celu dokłądnego śledzenia aktu-

alnej pozycji tej misji grawimetrycznej. Dodatkowo bliźniacze satelity (potocznie zwane

Tom i Jerry) zostały połączone za pomocą łącza mikrofalowego w paśmie K, w celu

zmierzenia dokładnej odległości separacji i szybkości jej zmian z dokładnością lepszą niż

0.1 µm/s. Pomiary te są bezpośrednio powiązane z sezonowymi zmianami w kontynen-

talnym cyklu hydrologicznym, utratą masy lodowej w dużych systemach lodowców na

Grenlandii lub Antarktydzie, wzrostem poziomu mórz, procesami cyrkulacji oceanów lub

wzrostem temperatury oceanów w kierunku biegunów Ziemi. Przez ponad dekadę opera-

cyjnego działania GRACE zasadniczo przyczyniła się do lepszego zrozumienia systemu

ziemskiego. Projekt GRACE działał trzy razy dłużej niż pierwotnie planowano, ale za-

kończył się w październiku 2017 r. ze względu na problemy z akumulatorem i brak paliwa.

Misja GRACE powstała dzięki współpracy amerykańskich i niemieckich agencji kosmicz-

nych (NASA (ang. National Aeronautics and Space Administration) i DLR (ger. Deutsches

Zentrum für Luft-und Raumfahrt)). Operacje segmentu naziemnego GRACE są obecnie

współfinansowane przez Niemieckie Centrum Geo-nauk (GFZ, ger. GeoForschungsZen-

trum) i Europejską Agencję Kosmiczną (ESA, ang. European Space Agency). NASA,

ESA, GFZ i DLR wspierają kontynuację pomiarów przemieszczania się mas ziemskich

na naszej planecie. Kluczowymi partnerami w projektowaniu, budowie i uruchomieniu

misji były Laboratorium napędów odrzutowych JPL, (ang. Jet Propulsion Laboratory),

CSR (ang. Center for Sapce Research), GFZ, a także konsorcja Astrium GmBH, Space

Systems Loral, Onera i Eurockot GmBH. Wystrzelone 17 marca 2002 r. bliźniacze sate-

lity GRACE przez 15 lat dokonywały szczegółowych pomiarów zmian pola grawitacyjnego

Ziemi, rewolucjonizując badania dotyczące zmienności lądowych, podziemnych i oceanicz-

nych zasobów wodnych, a także trzęsień ziemi i deformacji skorupy ziemskiej. Korzyści

płynące z ciągłego obserwowania naszej planety przez satelity GRACE doprowadziły do

kontynuacji projektu pod nazwą GRACE-FO. Będzie on utrzymywać niezwykle udaną

pracę swojego poprzednika, testując nową technologię zaprojektowaną w celu poprawie-

nia i tak niezwykłej precyzji systemu pomiarowego swojego poprzednika. GRACE-FO,

który został uruchomiony 22 maja 2018 r. monitoruje śledzenie obiegu wody na Ziemi

w celu badania zmian podziemnych zasobów wodnych, ilości wody w dużych jeziorach

i rzekach, wilgotności gleby, pokrywy lodowej i lodowców oraz wahania poziomu morza.

Badania te zapewniają unikalny obraz klimatu Ziemi i przynoszą daleko idące korzyści

ekonomiczno-gospodarcze ludności świata (Flechtner et al., 2016, Tapley et al., 2004b,

Wahr et al., 1998).
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Satelity GRACE wyposażone są w szereg przyrządów umożliwiających precyzyjne

wyznaczanie pola siły ciężkości. Są to między innymi:

• K-band Ranging System (KBR) - zapewnia precyzyjne (w granicach 10 µm) po-
miary zmiany odległości między dwoma satelitami potrzebnej do pomiaru fluktuacji

grawitacji. Ideę pomiaru zaprezentowano na rysunku (2).

• Ultra Stable Oscillator (USO) - zapewnia generowanie częstotliwości dla systemu
określania zakresu w paśmie K.

• Super STAR Accelorometers (ACC) - dokładnie mierzy przyspieszenia niegrawita-
cyjne działające na satelitę.

• Star Camera Assembly (SCA) - precyzyjnie określa orientację dwóch satelitów, śle-
dząc je względem położenia gwiazd.

• Coarse Earth and Sun Sensor (CES) - zapewnia ogólne, niezawodne i solidne, ale
dość zgrubne śledzenie Ziemi i Słońca. Używany podczas początkowej fazy pomiarów

i zawsze, gdy GRACE działa w trybie awaryjnym.

• Center of Mass Trim Assembly (CMTA) - precyzyjnie mierzy przesunięcie między
środkiem masy satelity a „odporną na przyspieszenie” masą i dostosowuje środek

masy w razie potrzeby podczas lotu.

• Black-Jack GPS Receiver and Instrument Processing Unit (GPS) - zapewnia cyfrowe
przetwarzanie sygnału; mierzy zmianę odległości względem konstelacji satelity GPS.

• Globalstar Silicon Solar Cell Arrays (GSA) - obejmuje zewnętrzną powłokę statku
kosmicznego i generuje moc.

Rysunek 2: Idea pomiaru odległości pomiędzy bliźniaczymi satelitami GRACE-FO. Źró-

dło: https://gracefo.jpl.nasa.gov/.
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W porównaniu do misji GRACE, misja GRACE-FO wyposażona została w interfero-

metryczny laserowy system pomiaru odległości LRI (ang. Laser Range Interferometry).

Umożliwiło to określenie odległości pomiędzy satelitami ze zwiększoną dokładnością do

2000% w porównaniu do zastosowania KBR (Sheard et al., 2012).

4.4 Zastosowania satelitarnych danych grawimetrycznych

Tylko w USA (ang. United States of America), powodzie na terenach wewnętrznych powo-

dują średnio 133 ofiary i straty w wysokości 4 miliardów dolarów rocznie. Poprawa prognoz

długookresowych mogłaby znacznie zminimalizować straty związane z powodziami, jednak

wymaga to dokładnych informacji na temat stanu hydrologicznego całego obszaru zlewni

rzeki, czyli całkowitej zasobności wody. Misja satelitarna GRACE umożliwia obserwację

miesięcznych zmian w całkowitej zasobności wody w dużych zlewniach rzecznych (o po-

wierzchni > 200000km2) z wykorzystaniem pomiarów zmian w polu grawitacyjnym Ziemi.

Sygnał składowania wody na lądzie określa, zmienną w czasie, zdolność terenu do maga-

zynowania i przetwarzania wody oraz uwzględnia wodę znajdującą się pod powierzchnią

ziemi. Może zatem być wykorzystany zarówno do monitorowania i prognozowania zjawisk

powodziowych, jak i susz. Charakterystyka suszy obejmuje wiele elementów, takich jak

typ, częstotliwość, czas trwania, wielkość, nasilenie oraz rozmiar występowania zjawiska.

Metoda oszacowania deficytu zasobów za pomocą danych z misji GRACE może być wyko-

rzystana w połączeniu z tradycyjnymi metodami prognozowania opadów do oceny ryzyka

powodzi, a także może przynieść dodatkowe korzyści w globalnym modelowaniu poprzez

uwzględnienie efektywnej pojemności magazynowania (Zaitchik et al., 2008). Obserwacje

zjawisk naturalnych i ciągły ich monitoring są niezwykle ważne pod kątem bezpieczeń-

stwa. Obserwacje ekstremalnych zjawisk takich, jak susze oraz powodzie ma ogromne

znaczenie dla ludzi. Dostępne rozwiązanie w postaci misji GRACE umożliwia śledzenie

tych ekstremalnych hydrologicznych zdarzeń na świecie.

Dane grawimetryczne znajdują zastosowanie przede wszystkim w następujących

obszarach tematycznych:

• Monitorowanie zmian ilości wody na Ziemi - misja GRACE umożliwia pomiar zmian
w ilości wody na Ziemi, w tym akumulacji i deficytów wód gruntowych, zbiorników

wodnych, lodowców i pokrywy śnieżnej (Kusche et al., 2016, Rodell et al., 2018).

• Badanie zmian poziomiu morza - GRACE jest używane do monitorowania zmian
w poziomie oceanów, co pozwala naukowcom na analizę globalnych zmian klima-

tycznych i zrozumienie ich wpływu na poziom mórz i oceanów (Reager et al., 2016,

Rietbroek et al., 2016).
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• Monitorowanie zmian w lodowcach i pokrywie lodowej: misje grawimetryczne umoż-
liwiają pomiar zmian objętości i masy lodowców oraz pokrywy lodowej na Antarkty-

dzie i Grenlandii, co jest kluczowe dla monitorowania zmian klimatycznych i oceny

ich wpływu na podnoszenie poziomu morza (Sasgen et al., 2013, Wouters et al.,

2019).

• Zrozumienie ruchów mas ziemskich - GRACE pomaga w badaniu ruchów mas ziem-
skich, takich jak pływy, tektoniczne przesunięcia, zmiany w masie lądowej i migracji

cieczy w płaszczu ziemskim lub zmiany ciśnienia na dnie oceanów (Landerer et al.,

2015, Poropat et al., 2018).

• Prognozowanie ekstremalnych zjawisk atmosferycznych i klęsk żywiołowych - sate-
litarne dane grawimetryczne są wykorzystywane do prognozowania ekstremalnych

zjawisk atmosferycznych i klimatycznych, takich jak susze i powodzie, poprzez mo-

nitorowanie zmian w ilości wody w różnych regionach (Chen et al., 2007, Liu et al.,

2020, Zhao et al., 2017a).

• Wspieranie badań naukowych i nauk o klimacie - misja GRACE dostarcza cenne
dane naukowe i pomaga w zrozumieniu globalnych zmian klimatycznych, bilansów

masy lądowej i innych zjawisk geofizycznych (Tapley et al., 2019).

Już ta syntetyczna analiza wskazuje, że większość zastosowań związana jest z ana-

lizą zmian zasobów wody i ich dystrybucją w czasie i przestrzeni. W Polsce prowadzono

prace w temacie wykorzystania danych GRACE w kontekście wyznaczania wariancji pod-

powierzchniowych zasobów wodnych (GWS, ang. groundwater storage variations) przez

(Birylo and Rzepecka, 2023, Birylo et al., 2018, Rzepecka et al., 2016, Śliwińska et al.,

2019), w dziedzinie deformacji (Kermarrec et al., 2023, Lenczuk et al., 2023, 2020, Rajner

and Liwosz, 2017), ruchu bieguna (Nastula and Śliwińska, 2020, Nastula et al., 2022, Śli-

wińska et al., 2020a, 2021a, 2020b, 2021b) oraz dynamicznych systemach wysokościowych

(Godah et al., 2017, 2020, Szelachowska et al., 2022, 2017). Prace badawcze zrealizowane

w ramach niniejszej rozprawy doktorskiej stanowią nowatorskie podejście do wykorzysta-

nia grawimetrycznych misji satelitarnych na tle badań prowadzonych dotychczas w Polsce.

4.5 Charakterystyka pomiarów teledetekcyjnych zorientowanych

na badanie zmian wilgotności (AMSR-E)

Wilgotność gleby wyrażona jako SM to istotna zmienna hydrologicznego stanu gleby,

która znajduje się w kręgu zainteresowania różnorodnych dyscyplin naukowych, o istot-

nym znaczeniu dla wielu zastosowań w meteorologii, hydrologii, klimatologii i ekologii
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(Robinson et al., 2008). Metody teledetekcyjne do szacowania SM są stosowane od lat 70.

XX wieku. Aktywna i pasywna teledetekcja mikrofalowa zapewnia obserwację SM w skali

globalnej i regionalnej (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr

et al., 2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013).

Rozwój technik teledetkcyjnych zaowocował możliwością prowadzenia badań związanych

z SM w skali globalnej z subdobową częstotliwością. Do wyznaczania SM z powodzeniem

wykorzystano mikrofalowe pomiary teledetekcyjne (Babaeian et al., 2019).

Jednym z urządzeń stosowanych do pomiaru zawartości wody w glebie jest sen-

sor AMSR-E, czyli pasywny wielopasmowy czujnik satelitarny umieszczony na satelitcie

Aqua programu NASA o nazwie EOS (ang. Earth Observing System). AMSR-E wykorzy-

stuje pasma X i C do pomiaru obiegu wody i określania zawartości SM odpowiadającej

głębokości odpowiednio (2.5–3.75 cm) i (3.75–7.5 cm). Ze względu na fakt znacznych

zakłóceń częstotliwości radiowych, oznaczanych jako RFI (ang. radio frequency interfe-

rence), w paśmie C (6.9 i 10.7 GHz), to pasmo X było szeroko stosowane do wyznaczania

SM (Njoku et al., 2005). We wszystkich pasmach sensor wykonuje pomiary w pionowej

i poziomej polaryzacji. Promieniowanie mikrofalowe emitowane przez Ziemię jest zbierane

przez reflektor paraboliczny o średnicy 1.6 metra, który skanuje Ziemię wzdłuż powierzchni

stożkowej, utrzymując stały kąt padania na powierzchnię Ziemi wynoszący 55°. System
ten wykorzystuje sześć stopni swobody, które przekazują promieniowanie do radiometrów

w celu pomiaru. Do kalibracji wykorzystuje się obserwacje promieniowania kosmicznego

tła oraz obiektu referencyjnego znajdującego się na pokładzie satelity. Rozdzielczość prze-

strzenna pojedynczych pomiarów różni się od 5.4 km przy 89.0 GHz do 56 km przy 6.9

GHz.

Woda istnieje w naturze w różnych formach i stanach, takich jak chmury, para

wodna i deszcz w atmosferze, woda morska i lód morski, rzeki, gleba, roślinność i po-

krywa śnieżna. Związana jest bezpośrednio z wymianą energii w przyrodzie. Cząsteczka

wody H2O, która odgrywa kluczową rolę w takim obiegu wody, ma unikalne właściwości

w paśmie mikrofalowym i emituje słabe fale mikrofalowe w zależności od swojego stanu,

kształtu i temperatury. AMSR-E mierzy te słabe sygnały mikrofalowe emitowane przez

świat przyrody. Mikrofale emitowane z powierzchni ziemi są absorbowane i rozpraszane

przez deszcz, chmury i parę wodną, gdy przechodzą przez atmosferę, co powoduje ich

osłabienie. Jednocześnie, mikrofale są również emitowane przez deszcz, chmury i parę

wodną. Ponadto podlegają rozpraszanu przez krople deszczu i cząsteczki chmur w kie-

runku AMSR-E z innych stron.

Możliwości pomiarowe sensorów AMSR-E dają szeroki zakres zastosowań. System

ten mierzy opady atmosferyczne, ilość wody w chmurach, parę wodną, prędkość wia-

tru na powierzchni morza, temperaturę powierzchni morza, lód, śnieg i wilgotność gleby.
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Dzięki temu możliwe jest przeprowadzanie pomiarów w różnych warunkach pogodowych,

co wspiera badania naukowe oraz monitorowanie globalnych zmian klimatycznych.

4.6 Wyznaczenie wilgotności gleby wyrażonej jako SM za po-

mocą mikrofalowych sensorów AMSR-E

Produkt udostępniany z misji AMSR-E to zawartość wilgoci gleby oznaczanej jako SMC

(ang. Soil Moisture Content). Reprezentuje to wilgotność gleby blisko powierzchni gruntu.

Pokrycie tego produktu obejmuje tylko obszary lądowe, a jednostką jest zawartość objęto-

ściowa wody podawana w procentach (Njoku et al., 2003). Pasywne czujniki mikrofalowe

(radiometry), jak już wspomniano, rejestrują naturalną emisję mikrofalową oznaczaną

jako Tb (temperaturę jasnościową), która zależy od emisyjności i fizycznej temperatury

emitującego ciała. W przypadku pasywnego szacowania wilgotności gleby, konieczna jest

znajomość fizycznej temperatury powierzchni ziemi. Równania odbicia Fresnela opisują

emisyjność gładkiej powierzchni odkrytego gruntu w zależności od kąta padania promie-

niowania i założonej stałej dielektrycznej gruntu. W uproszczeniu wzór dla wyznaczania

zawartości wilgotności gleby na podstawie pomiarów AMSR-E kształtuje się następująco:

SMC = a · Tb
Tbmax

+ b (2)

gdzie Tb to obserwowana temperatura jasności mikrofalowej, Tbmax to maksymalna tem-

peratura jasności mikrofalowej dla suchej gleby, a i b to współczynniki kalibracyjne, które

są dostosowywane na podstawie danych referencyjnych. Ukształtowanie powierzchni gleby,

jej struktura oraz pokrycie roślinnością na powierzchni gleby wpływają na emisję mikrofa-

lową, dodając swoje własne sygnały do emisji powierzchni gleby. Aby symulować te efekty,

naukowcy opracowali model τ - ω, który bierze pod uwagę grubość optyczną (τ) i albedo

pojedynczego rozpraszania roślinności (ω) jako parametrów wejściowych (Mo et al., 1982).

Model ten jest podstawą dla wielu innych modeli pasywnego szacowania wilgotności gleby

mikrofalowej, takich jak SCA (ang. Soil Canopy Atmosphere), model L-MEB (ang. Land

Microwave Emission Model for Brightness Temperature), CMEM (ang. Community Mi-

crowave Emission Model) i LPRM (ang. Land Parameter Retrieval Model) (Drusch et al.,

2009, Mladenova et al., 2014, Wigneron et al., 2007).

Prawidłowe oszacowanie wilgotności gleby w pobliżu linii brzegowej, wokół dużych

jezior i bagien oraz na obszarach z dużymi przestrzeniami gęstego lasu, na podstawie pa-

sywnej techniki mikrofalowej jest utrudnione. Na styku powierzchni lądu oraz mórz/jezior

obserwowany sygnał charakteryzuje się znaczną wariancją i niepewnością przez bliskość

różnych ośrodków. W obszarach o charakterystyce gęstego pokrycia roślinnością obecność

skomplikowanej struktury roślinnej wpływa na oddziaływanie fal mikrofalowych z po-

wierzchnią gleby, co również utrudnia precyzyjne pozyskiwanie danych dotycząch SM.
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Ponieważ radiometry mikrofalowe mogą rejestrować dane regularnie z dużą częstością, ten

produkt jest wykorzystywany do monitorowania dużych obszarów uprawnych na konty-

nentach. Dostępne są dwa rodzaje produktów: produkt badawczy i produkt standardowy.

Algorytm obliczania wilgotności gleby wykorzystuje dane o pokryciu roślinnością z MO-

DIS (ang. Moderate Resolution Imaging Spectroradiometer) w celu uwzględnienia wpływu

roślinności. Przy czym w przypadku produktu badawczego wykorzystywane są aktualne

dane MODIS, podczas gdy produkt standardowy opiera się na wartościach dla tzw. nor-

malnego roku. W związku z tym, produkt badawczy powinien być stosowany w obszarach

o dużych międzyrocznych zmianach w pokryciu roślinności, takich jak obszary uprawne.

Należy jednak zauważyć, że publikowanie produktu badawczego jest opóźnione o około

jeden miesiąc w porównaniu do produktu standardowego. Proces wyznaczania wilgotno-

ści jest realizowany w kilku etapach. Pierwszym krokiem jest przeprowadzenie korekcji

atmosferycznej, aby uwzględnić wpływ atmosfery na sygnały mikrofalowe. W tym celu

wykorzystuje się informacje o temperaturze atmosfery i zawartości pary wodnej. Następ-

nie algorytm uwzględnia wpływ roślinności na sygnały mikrofalowe. Wykorzystuje się

do tego dane o pokryciu roślinności, które mogą pochodzić z różnych źródeł, takich jak

wspomniane dane z sensora MODIS. Dalej w algorytmie stosowana jest analiza wielo-

obszarowa, która bierze pod uwagę różnice w sygnałach mikrofalowych między różnymi

obszarami, co może wskazywać na różnice w wilgotności gleby. Ostatecznie wyznaczone

wartości produktu dotyczącego SM są kalibrowane i weryfikowane przy użyciu danych

referencyjnych, takich jak pomiary terenowe wilgotności gleby, aby zapewnić pożądaną

dokładność wyników.

4.7 Przegląd dotychczasowych badań opublikowanych w litera-

turze naukowej

Dokumentacja nagłych zmian środowiskowych była wielokrotnie prowadzona na całym

świecie. W Azji badania przeprowadzone były w Indiach (Rodell et al., 2009, Tiwari

et al., 2009), Chinach (Chao et al., 2016, Feng et al., 2013, Tang et al., 2014), na Bliskim

Wschodzie (Forootan et al., 2014, Joodaki et al., 2014, Voss et al., 2013). W pracy (Gou-

weleeuw et al., 2017) zastosowano jednodniowe rozwiązania GRACE do monitorowania

zdarzeń powodziowych w delcie Gangesu-Brahmaputry w 2004 i 2007 r. W badaniach

opublikowanych w (Jain et al., 2013) naukowcy zbadali możliwości zastosowania GRACE

w wykrywaniu powodzi o ograniczonym zasięgu czasoprzestrzennym. W Ameryce Pół-

nocnej także prowadzono badania, gdzie na przykładzie Kalifornii można obserwować

znaczące zmiany ∆TWS w czasie (Scanlon et al., 2012a,b). W Ameryce Południowej

Chen et al. (2010) przeanalizowali zmiany EWH otrzymane dzięki GRACE, aby zbadać
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przebieg ogromnej powodzi na terenach Puszczy Amazońskiej w 2009 r. W Afryce zastoso-

wania misji GRACE w porównaniu do globalnych i regionalnych modeli hydrologicznych

miało szczególne znaczenie z uwagi na niezwykle cenne zasoby wody pitnej (Klees et al.,

2008), i wskazywały na korzyści płynace z satelitarnych pomiarów grawimetrycznych do

szacowania zasobów wód podziemnych. Potencjał misji GRACE został również ukazany

na podstawie analizy głównych zbiorników wodnych w Afryce, gdzie dzięki kombinacji

z lokalnymi pomiarami in situ wyestymowano wariancje podpowierzchniowych zasobów

wodnych (Ramillien et al., 2014). Na starym kontynencie również tematyka związana

z zastosowaniem grawimetrii satelitarnej była podejmowana. Andersen et al. (2005) prze-

analizowali na podstawie danych GRACE suszę w 2003r., widoczną również w pomiarach

prowadzonych przez grawimetry SG. Wpływ ekstremalnych zdarzeń pogodowych w Eu-

ropie został zbadany w (Seitz et al., 2008), gdzie przedstawiono wysoką korelację modeli

GRACE z danymi atmosferycznymi i hydrologicznymi. W Australii studium przypadku

przeprowadzono w (Tregoning et al., 2012), gdzie autorzy dokonali oceny wiarygodności

i użyteczności wykorzystania wyznaczenia całkowitego ekwiwalentu wodnego za pomocą

danych z misji GRACE na podstawie danych lokalnych.

Podczas pracy z danymi GRACE niezwykle ważnym czynnikiem wpływającym

na ostatecznie wyznaczone wartości funkcjonałów jest odpowiednie opracowanie danych.

W literaturze wielokrotnie poruszany był problem filtracji danych GRACE jednakże ze

względu na ograniczoną liczbę jednorodnych i spójnych szeregów czasowych nadal istnieje

duży potencjał badawczy w kontekście oceny wpływu czynników zarówno lokalnych, jak

i ekstremalnych wydarzeń klimatycznych na ostateczne wartości dostarczane przez misje

GRACE. Pojawiające się też kolejne wersje reprocessingu danych GRACE wymagały po-

nownego sprawdzenie warunków, dla których można obserwować większą zbieżność sygna-

łów GRACE do wartości rzeczywiście zmierzonych na powierzchni Ziemi i oszacowywać

błąd pomiaru. Prace w tym temacie prowadzone były przez (Bhanja et al., 2016, Böning

et al., 2008, Dahle et al., 2019, Macrander et al., 2010, Poropat et al., 2018, Syed et al.,

2008) i obejmowały estymację budżetu błędów na podstawie danych z modeli hydrolo-

gicznych, pomiarów in-situ pozioumu wód podpowierzchniowych oraz anomalii ciśnienia

dna oceanicznego. Prace dotyczące porównania grawimetrycznych pomiarów satelitarnych

z naziemnymi w rejonie centralnej Europy dokonano w (Abe et al., 2012, Crossley et al.,

2012, Godah et al., 2015, Neumeyer et al., 2008) wskazując na trudności w określeniu

poziomu rozmycia danych a stopniem straty sygnału geofizycznego. Dane GRACE cha-

rakteryzują się dużą zależnością dokładności wyznaczanych funkcjonałów od odpowied-

niego sposobu ich opracowania. Istniejąca mnogość sposobów filtracji danych GRACE

oraz idąca w parze zależność od czynników przestrzennych globalnych, jak: odległość od

mórz i oceanów, ukształtowanie terenu, trendy globalne zmian zasobu wód podziemnych,
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oraz lokalnych, takich jak: czynniki urbanistyczne, lokalne efekty hydrogeologiczne, głębo-

kość warstw wodonośnych sprawiają, że istnieje potencjał badawczy w zrozumieniu tychże

współzależności mających wpływ na wyznaczenie zmian w polu siły ciężkości Ziemi.

Wpływ oceny przestrzennych i czasowych zmian wilgotności gleby na zmiany kli-

matyczne został opisany w wielu badaniach naukowych (Betts et al., 1994, Engman, 1992,

Entekhabi et al., 1994, Fast and McCorcle, 1991, Jackson et al., 1987, Petropoulos et al.,

2014, Saha, 1995, Topp et al., 1980). Przestrzenne i czasowe zmienności w ilości wody

w glebie zostały solidnie udokumentowane we wcześniejszych badaniach dotyczących wil-

gotności gleby (Crow et al., 2012, Famiglietti et al., 2008, Vereecken et al., 2014) oraz

∆TWS (Landerer and Swenson, 2012, Tapley et al., 2004a, Zhao et al., 2017b). Z per-

spektywy hydrologii, badanie wzorców przestrzennych i czasowych obserwacji wilgotności

gleby oraz ∆TWS jest kluczowe dla zrozumienia zachowania tych zmiennych. W literatu-

rze można znaleźć metody, które analizują jedynie zmienność w przestrzeni (Haining et al.,

2010, Khaki et al., 2017), jak i takie, które koncentrują się tylko na analizie w czasie, opie-

rając się na badaniu szeregów czasowych (Fu, 2011, Sprott and Sprott, 2003, Vishwakarma

et al., 2021a). Istnieją również techniki, które biorą pod uwagę zarówno przestrzenne, jak

i czasowe aspekty danych ∆TWS i wilgotności gleby, na przykład TSA (ang. temporal

stability analysis) (Mart́ınez-Fernández and Ceballos, 2005, Wang et al., 2018), TC (ang.

triple collocation) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin

and Park, 2021) oraz empiryczne funkcje ortogonalne (EOF, (ang. Empirical Orthogonal

Functions)) (Eom et al., 2017, Lei et al., 2012, Navarra and Simoncini, 2010, Schrama

et al., 2007, Yoo and Kim, 2004). W każdym przypadku, bez względu na to, czy analiza

jest przeprowadzana w kontekście czasowym czy przestrzenno-czasowym, ważnym wnio-

skiem badaczy jest znaczenie wilgotności gleby jako czynnika wpływającego na sygnał

∆TWS.

Teledetekcyjne obserwacje również były z powodzeniem wykorzystywane do okre-

ślenia wilgotności gleby (Babaeian et al., 2019, Balenzano et al., 2021, Peng et al., 2021).

Aktywne i pasywne obserwacje mikrofalowe umożliwiają analizę wilgotności gleby na skalę

globalną i regionalną (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr

et al., 2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013). Te

technologie są szeroko wykorzystywane w badaniach hydrologii i klimatu, pozwalając na

zrozumienie zmian środowiskowych (Njoku and Entekhabi, 1996). Jednym z kluczowych

sensorów teledetekcyjnych dostarczających danych o wilgotności gleby była misja AMSR-

E. Badania porównawcze między SM z misji AMSR-E a sygnałami ∆TWS z misji GRACE

wykazały silne korelacje w poszczególnych regionach na świecie, co potwierdza znaczenie

danych mikrofalowych w monitoringu hydrologicznym. Przeprowadzone analizy skupiają

się na zmienności zarówno przestrzennej, jak i czasowej, z wykorzystaniem różnych me-
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tod takich, jak analiza korelacji, przesunięcia czasowe i analiza głównych składowych.

Uzyskane wyniki są istotne dla zrozumienia dynamiki zmian warunków hydrologicznych

w różnych obszarach i mogą być pomocne w monitorowaniu suszy i innych zmian środo-

wiskowych (Abelen et al., 2015, 2011, Chen et al., 2012, 2013, Du et al., 2019, Seo et al.,

2010, Wang and Forman, 2020, Wang et al., 2021). Praca z danymi AMSR-E wymaga

wysokich umiejętności pracy na dużych zbiorach danych. Ilość danych niezbędna do prze-

tworzenia często przekracza możliwości komputerów o przeciętnej mocy obliczeniowej, co

z jednej strony jest wyzwaniem, ale z drugiej pozostawiło nie poruszną przez naukowców

w dostatecznym stopniu tematykę badawczą. Mimo że istnieją badania przeprowadzone

w celu oceny ekstremalnych zjawisk hydrologicznych za pomocą danych z misji GRACE

i AMSR-E, pozostaje pewna luka w opublikowanej literaturze dotycząca zbieżności sy-

gnałów ∆TWS i SM w kontekście danych o pokryciu terenu, takich jak warunki glebowe,

pokrycie roślinności, stopień urbanizacji i użytkowania rolniczego. Ze względu na to, że

dane zbierane przez czujniki grawimetryczne mają mniejszą częstotliwość pomiarów i roz-

dzielczość przestrzenną niż pomiary mikrofalowe, istotne jest zbadanie zbieżności tych

sygnałów. Kluczowe jest znalezienie odpowiedzi na pytanie: czy możliwe jest

wykorzystanie informacji zawartych w danych zebranych przez czujniki cha-

rakteryzujące się większym szumem i wariancją sygnału, takimi jak AMSR-E,

w globalnej analizie zmienności ∆TWS z satelitów GRACE.

Prawie roczna przerwa między GRACE i GRACE-FO zrodziła pytania o przyszłość

obserwacji GRACE-FO, a co za tym idzie możliwości ciągłego monitorowania i zmian

klimatu. Wraz z rosnącymi możliwościami obliczeniowymi komputerów rośnie znaczenie

metod uczenia maszynowego w rozwiązywaniu problemów związanych z rekonstrukcją sy-

gnału. Po zakończeniu misji GRACE-FO dalej będzie istnieć potrzeba kartowania różnych

zjawisk i ich zmian na podstawie istniejących danych oraz prowadzenia dalszych badań

w obszarze modelowania hydrologicznego. Rosnące zainteresowanie wykorzystaniem mo-

deli stosujących algorytmy sztucznej inteligencji w zastosowaniach hydrologicznych daje

nowe możliwości rozwiązywania tradycyjnie złożonych problemów, w tym rekonstrukcji

danych (Hamshaw et al., 2018). W wielu istniejących pracach naukowych przedstawiono

zastosowanie modeli uczenia maszynowego. Pierwsze próby z wykorzystaniem EOF opi-

sano w pracy (Becker et al., 2011), gdzie użyto historycznych danych z dorzecza Amazonki.

Sun et al. (2020b) zaprezentowali rekonstrukcję szeregów czasowych związanych z ∆TWS

dla 60 wybranych dorzeczy rzecznych. W tej publikacji dokonano kompleksowego porów-

nania rekonstrukcji ∆TWS za pomocą głębokiej sieci neuronowej (DNN, ang. deep neural

network), sezonowego autoregresyjnego modelu ruchomej średniej (SARIMAX, ang. se-

asonal autoregressive integrated moving average model) oraz algorytmów uczenia maszy-

nowego (ML, ang. machine learning) w podejściu czasowym. Seyoum et al. (2019) zasto-
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sowali drzewa decyzyjne do odtworzenia anomalii poziomu wód gruntowych o wysokiej

rozdzielczości, poprawiając dane pochodzące z modelu GLDAS (ang. Global Land Data

Assimilation System) za pomocą obserwacji terenowych. Jing et al. (2020) zastosowali

podejście przestrzenno-czasowe w badaniu przypadku dorzecza Nilu. W ich algorytmach

wykorzystano metody las losowy (ang. random forest), ekstremalne wzmacnianie gra-

dientu (XGBoost, ang. extreme gradient boosting) oraz regresję logistyczną, ustanawiając

standardy dla wysoce dokładnej rekonstrukcji parametrów hydrologicznych na podstawie

zbioru danych GLDAS-2. Sun et al. (2021) zaprezentowali rekonstrukcję TWS, używając

danych NOAH i CLSM dla największych dorzeczy w USA, a także określili znaczenie

predyktorów. Seyoum and Milewski (2017) wykorzystali z kolei sztuczne sieci neuronowe

(ANN, ang. artificial neural networks). Irrgang et al. (2020) oraz Mo et al. (2021) zapre-

zentowali natomiast wydajność konwolucyjnych sieci neuronowych (CNN, ang. convolu-

tional neural network) w kontekście wypłeniania luki danych ∆TWS pomiędzy misjami

GRACE i GRACE-FO. Ahmed et al. (2019) przeprowadzili badania dotyczące dorzeczy

afrykańskich, także z zastosowaniem CNN. Sun (2013) użył wielowarstwowych perceptro-

nów (MLP, ang. multilayer perceptron) oraz architektur ANN do prognozowania zmian

poziomu wód gruntowych. Sun et al. (2019) wykorzystali model CNN o architekturach

VGG16, Unet i Segnet do obszaru Indii, dowodząc skuteczności sieci typu enkoder-dekoder

w rekonstrukcji ∆TWS.

Metody wytłumaczalnej sztucznej inteligencji XAI (ang. explainable artificial in-

telligence) (Arrieta et al., 2020) wprowadzają benefity w postaci interpretacji głębokich

zależności pomiędzy parametrami wejściowymi (cechami) a przewidywanymi wartościami.

W dotychczasowych pracach naukowych można znaleźć przykłady użycia z powodzeniem

zaawansowanych metod dotyczących rekonstrukcji sygnału ∆TWS na podstawie danych

z modelu GLDAS. Niewiele natomiast jest prac dotyczących badania istotności użytych

cech. Brakuje też wskazania na różnice w podejściach czasowych i czasowo-przestrzennych

do rekonstrukcji sygnału ∆TWS. Podążając za tym tokiem rozumowania powstała

przestrzeń do przeprowadzenia prac badawczych dotyczących analizy istotno-

ści czynników wpływających na rejestrację zmian zawartości wody w glebie

rejestrowanych przez satelity GRACE i GRACE-FO i zbadania w jakich wa-

runkach możliwe by było synergiczne wykorzystanie obserwacji dostarczanych

do modeli hydrologicznych za pomocą satelitarnych sensorów o odmiennej

charakterystyce.
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5 Metodyka badań

W tejże rozprawie doktorskiej wprowadzono strukturalny plan działania, który umoż-

liwia systematyczne zbieranie, analizowanie i interpretowanie danych w celu uzyskania

odpowiedzi na postawione pytania badawcze oraz weryfikacji hipotez. Niniejszy rozdział

przedstawia metodykę badań naukowych, czyli zebrany zbiór zasad, technik, procedur oraz

zastosowanych narzędzi. Na podstawie istniejącej literatury i zebranych doświadczeń wy-

znaczono odpowiednie cele badawcze, a dalej zaprojektowano badania, które obejmowały:

zebranie i opracowanie danych (rozdziały: (5.1 - 5.3)), wyselekcjonowanie i zastosowanie

metod przetwarzania (rozdziały: (5.4 - 5.6), określenie kryteriów porównawczych (rozdział:

(5.7)) oraz metod potrzebnych do przeprowadzenia analizy i interpretacji (rozdziały: (5.8 -

5.10). Wszelkie prace obliczeniowe wykonano przy pomocy własnych skryptów napisanych

w językach programowania Matlab i Python.

Uproszczony przebieg oraz strukturę prac badawczych przedstawiono na rysunku (3).

Rysunek 3: Schemat ideowy metodyki badań oraz struktura prac. Żródło: Opracowanie

własne.
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5.1 Przetwarzanie danych GRACE oraz GRACE-FO

W celu przedstawienia ziemskiego pola siły ciężkości, najczęściej stosuje się rozwinięcie

funkcji reprezentującej potencjał siły grawitacyjnej w szereg funkcji harmonicznych sfe-

rycznych. Potencjał grawitacyjny (potencjał siły przyciągania) V w dowolnym punkcie na

powierzchni Ziemi można zapisać w funkcji współrzędnych sferycznych jako:

V(r,θ,λ) =
GM

R

nmax∑
n=0

(
a

r
)n

n∑
m=0

(Cmn · cos(mλ) + Smn · sin(mλ)) · Pmncos(θ) (3)

gdzie θ, λ, R, Cmn, Smn, n , m, Pmn są zgodne z oznaczeniami i objaśnieniami występu-

jącymi we wzorze (1), r - to promień wodzący, GM to geocentryczna stała grawitacyjna,

czyli iloczyn stałej grawitacji i masy ziemi, a to dłuższa półoś referencyjnej elipsoidy

ziemskiej zdefiniowanej w IERS2010

Modele geopotencjału zostały opracowane na podstawie satelitarnych obserwacji

zmian pola siły ciężkości Ziemi. Stworzenie globalnego modelu geopotencjału sprowadza

się do wyznaczenia znormalizowanych współczynników Cmn, Smn. Pozycje satelity w po-

szczególnych epokach oraz wartości potencjału grawitacyjnego pozyskane z misji GRACE

pozwalają, wykorzystując metodę Gaussa-Markova, dokonać estymacji współczynników

harmonicznych sferycznych.

Współczynniki mają swoją interpretację fizyczną. Przykładowo C10, C11, S11 ozna-

czają centrum masy, C20 - spłaszczenie grawimetryczne Ziemi, C21, S21 - ruch bieguna.

Współczynnik C20 znany jest również jako „J2”, czyli współczynnik opisujący spłaszcze-

nie statyczne, czyli w momencie bezwładności traktującym Ziemię jako bryłę sztywną.

Aby współczynniki J2 i C20 były tożsame należy skorzystać z zależności J2 = −C20 ∗
√
5

(Chen et al., 2016, Sun et al., 2016a,b). Od 1979r. satelity obserwują stały spadek J2. Ten

długoterminowy spadek wynika głównie z wypiętrzania izostatycznego post-lodowcowego.

Stały spadek jest modulowany przez redystrybucję masy oceanu i lodu (Cox and Chao,

2002). Przyspieszona utrata masy lodowej z pokrywy lodowej Grenlandii i Antarktydy

wydaje się w coraz większym stopniu mieć znaczenie w obserwowanym od lat sygnale wy-

piętrzania polodowcowego (GIA, ang. Glacial isostatic adjustment) (Cheng et al., 2013).

Ponieważ otrzymywane wartości współczynników niskiego rzędu na podstawie danych

z misji GRACE są niewystarczająco dokładne, należyte oszacowania C20, C21, S21, C20
i S21 są uzyskiwane z analizy obserwacji SLR z pięciu satelitów geodezyjnych: LAGEOS-1

i 2 (ang. Laser Geodynamics Satellite), Starlette, Stella i Ajisai.

Dane z misji GRACE przetwarzane są w określony sposób według zasad opisanych

na poziomach 1 do 3.

• Poziom 0 - Dane poziomu 0 są wynikiem gromadzenia surowych danych przez cen-
trum operacji (MOS) w Neustrelitz / Niemcy. Wykorzystując anteny śledzące Weil-

heim (WHM) i Neustrelitz (NST), MOS otrzymuje z każdego satelity GRACE dwa
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razy dziennie dane, które są przechowywane w dwóch plikach w archiwum RDC po-

ziomu 0. Dodatkowo, przede wszystkim w celu analizy danych operacyjnych sygnału

radiowego, surowe dane są również odbierane podczas każdego przejścia w polarnej

satelitarnej stacji odbiorczej GFZ (SRS) w Nowym Alesund (NYA) i przekazywane

do GFZ w Poczdamie.

• Poziom 1 - Udostępniany jest w dwóch wariantach. Produkty danych poziomu 1A
są wynikiem przetwarzania zastosowanego do danych poziomu 0. Przeprowadzona

zostaje kalibracja, przekształcająca dane w postaci binarnej na dane w jednostkach

użytkowych dzięki zastosowanym współczynnikom kalibracyjnym. Tam, gdzie to ko-

nieczne, rozwiązuje się drugą niejednoznaczność całkowitą znacznika czasu, a dane

są oznaczane czasowo względem odpowiedniego czasu zegara odbiornika satelitar-

nego. Produkty danych poziomu 1B są wynikiem potencjalnie nieodwracalnego prze-

twarzania stosowanego zarówno do danych poziomu 1A, jak i poziomu 0. Dane są

ponownie oznakowane lub próbkowane do czasu GPS, filtrowane, przefiltrowane na

niższą częstotliwość próbkowania i/lub przekształcane na ilości używane w przetwa-

rzaniu poziomu 2. Dane poziomu 1B obejmują pomiary mikrofalowe pasm K/Ka,

obserwacje akcelerometru, pozycji wyznaczanej poprzez odbiorniki GPS i kamery

śledzącej gwiazdy, a dla misji GRACE-FO również pomiary interferometru lasero-

wego LRI (Wen et al., 2019).

• Poziom 2 (Dane wykorzystane w publikacjach [1][2][3]) - Dane pochodzące
z tego poziomu to wyestymowane współczynniki harmonicznych sferycznych ziem-

skiego potencjału grawitacyjnego. Są one usostępniane publicznie dla wszytkich

użytkowników w ciągu 60 dni od pozyskania danych. Dane poziomu 2 obejmują

dynamiczne (miesięczne i tygodniowe) i statyczne pole grawitacyjne pochodzące ze

skalibrowanych i zatwierdzonych produktów danych GRACE poziomu 1B. Poziom

ten obejmuje również pomocnicze zestawy danych (np. średnie zmiany masy atmos-

fery i oceanów), które są niezbędne do interpretacji zmienności czasowej w rozwią-

zaniach pola grawitacyjnego. Oprogramowanie do przetwarzania poziomu 2 zostało

opracowane niezależnie przez wszystkie trzy centra przetwarzania. Rutynowe prze-

twarzanie odbywa się w UTCSR (ang. University of Texas at Austin - Center for

Space Research) i GFZ, podczas gdy JPL generuje produkty poziomu 2 do celów

weryfikacji (Yuan, 2018).

• Poziom 3 (Dane wykorzystane w publikacjach [4][5]) - Na tym poziomie
dostępne są gotowe siatki, przyjazne użytkownikowi do jego własnych opracowań.

Transformacja potencjału grawitacyjnego na zmiany mas ziemskich wymaga prze-

prowadzenia obliczeń w kilku krokach. Trzeba usunąć błędy systematyczne i przy-
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padkowe, efekt wypiętrzania izostatycznego GIA, błędy wynikające z falowania mórz

i oceanów (wpływ atmosfery jest usuwany w przetwarzaniu produktu na poziomie

2), wykonać rozmycie filtrem o promieniu 300 km dla lądów i 500 km dla oceanów

w celu usunięcia artefaktów związanych z inklinacją orbity (ang. destriping) oraz

wprowadzić poprawkę ze względu na oddzielny wpływ sygnału oceanów i lądów

(Cooley, 2021).

Ponieważ wraz z upływem czasu zmieniają się pewne parametry opisujące model

statyczny geopotencjału, wedle którego są tworzone rozwiązania miesięczne GRACE na-

leży więc zadać sobie pytanie czy raz przyjęte rozwiązanie jest właściwe? Twórcy misji

ciągle starają się ulepszać swoje dzieło i dzięki temu możemy mówić o kolejnych wer-

sjach przeprocesowanych danych, oznaczonych jako RL01-06. Wczesne produkty RL01-04

zostały zastąpione przez najpierw RL05, a w ostatnim czasie RL06 ze względu na zna-

czącą redukcję szumów tła. Serie czasowe GFZ RL05 są publikowane od 17 marca 2012

r. i zastąpiły wersję RL04. Modele RL05 zawierają zmiany grawitacyjne spowodowane

przez hydrosferę, kriosferę, zdarzenia epizodyczne takie jak duże trzęsienia ziemi, GIA

oraz błędy lub niemodelowane efekty zastosowanych modeli tła. Główna różnica w sto-

sunku do RL04 jest taka, że nie zmieniono żadnych współczynników sferycznych har-

monicznych C20, C30, C40, C21 i S21. Liczba obserwacji i ich spójność spowodowała, że

wymienione powyżej współczynniki podczas przeliczania danych RL05 są dokładniejsze

niż te same współczynniki wyznaczane alternatywnymi metodami dla RL04. Maksymalny

stopień i rozwinięcie współczynników sferycznych harmonicznych n i m dla modeli RL05

został zmniejszony do 90 × 90 podczas gdy dla (RL04: 120 × 120). W porównaniu z RL04,
obecne szeregi czasowe RL05 wykazują około 2-krotnną poprawę pod względem redukcji

szumów (Bettadpur, 2007). Rozdzielczość przestrzenna wyznaczenia poszczególnych funk-

cjonałów na podstawie współczynników sferycznych harmonicznych wzrosła z ok. 525 km

(RL04) do ok. 350 km (RL05) (Dahle et al., 2014). Zawartość informacji w plikach GSM

RL06 jest taka sama jak w poprzednich plikach GSM RL05. Zmienione zostały model

statyczny geopotencjału z GIF48 na GGM05C oraz model pływów z IERS-2003 na IERS-

2010. Produkty RL06 GSM mogą być nadal używane w taki sam sposób jak produkty

RL05 GSM (Dahle et al., 2013). Misje GRACE/-FO charakteryzują się dużą regularnością

dostępności danych. Jednakże wraz z trwaniem pierwszej misji, ze względu na problemy

z instrumentami pomiarowymi, pojawiały zaburzenia ciągłości dostarczania danych. Dla

misji GRACE brakuje 3 na 105 epok pomiarowych w latach 2002-2010 i 17 z 78 epok

w latach 2011-2017. Kolejnym istotnym problemem jest 13 miesięczna przerwa pomię-

dzy misjami GRACE i GRACE-FO.W związku z tymi wydarzeniami istotne jest

zaproponowanie metod umożliwiających zapewnienie ciągłości modelowania

zmienności pola grawitacyjnego na podstawie innych dostępnych obserwacji
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o charakterze globalnym ale opartych na sensoryce nie ilościowej.

Mascon solution to rozwiązanie miesięcznych serii danych z GRACE zapropono-

wane przez CSR jako alternatywa dla reprezentacji danych poprzez harmoniczne sferyczne.

Rozwiązanie ma charakter regularnej siatki, gdzie każdy element to tzw. maskon o pro-

mieniu 120km. Maskony są estymowane wedle tych samych standardów co rozwiązanie

CSR RL05 rozwinięcia w szereg harmonicznych sferycznych z danych poziomu-1 pozyska-

nych z misji GRACE. Korzyścią tego rozwiązania jest brak konieczności filtracji sygnału

w celu pozbycia się artefaktów (pasków) powstałych ze względu na inklinację orbity sate-

litów GRACE. Podejście Mascon pozwala również na lepszą separację sygnałów lądowych

i oceanicznych (Watkins et al., 2015).

5.2 Przetwarzanie danych AMSR-E

Jak już wspomniano w rozdziale (4.5) instrumenty AMSR są pasywnymi radiometrami

mikrofalowymi o podwójnej polaryzacji i skanowaniu stożkowym. Każdy z nich znajduje

się na niemal biegunowej orbicie, co umożliwia rejestrację danych w danej lokalizacji na

Ziemi nawet dwa razy dziennie. Istotną cechą tych instrumentów AMSR jest zdolność

do penetracji chmur, co umożliwia nieprzerwane obserwacje pomiarów, np. oceanu. Pro-

dukty poziomu 1 (L1) dla instrumentu AMSR-E są generowane przez Japońską Agencję

Badań Kosmicznych (JAXA, ang. Japan Aerospace Exploration Agency) i przekazywane

do SIPS-RSS (ang. Science Investigator-led Processing Systems - Remote Sensing System)

w celu przetworzenia na poziom 2A (L2A). Następnie przesyłane są do NASA, do jednostki

GHRC DAAC (ang. Global Hydrometeorology Resource Center Distributed Active Archive

Center), która jest wspólnie zarządzana przez NASA’s Marshall Space Flight Center oraz

University of Alabama w Huntsville, w celu przetworzenia na poziom 2B (L2B) oraz na

poziom 3, zgodnie ze standardem EOS. Te produkty, wraz z metadanymi i powiązaną do-

kumentacją, są archiwizowane i dystrybuowane przez jednostkę NASA znaną jako NSIDC

(ang. National Snow and Ice Data Center) (Kawanishi et al., 2003, Njoku et al., 2005,

2003).

Typy udostępnionych danych obejmują dobowe, tygodniowe i miesięczne produkty

danych poziomu 1A, poziomu 2A, poziomu 2B i poziomu 3 obejmujące okres od czerwca

2002 r. do początku października 2011 r (Spreen et al., 2008).

• Poziom 1B (L1B) - Produkt zawiera dane dotyczące temperatury jasności prze-
liczonej z temperatury anteny poziomu 1A przy użyciu współczynników konwersji,

informacje geometryczne, informacje radiometryczne, rozróżnienie na dane lądowe

oraz morskie i dane uzupełniające (GCOM-MAS-100045A, 2013).

• Poziom 1R (L1R) - Produkt to ponownie próbkowane dane temperatury jasności
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przestrzennie wyznaczone z poziomu 1B, aby dopasować się do środkowej pozycji

i rozmiaru pola widzenia każdego pasma częstotliwości w danym pikselu. Tempera-

tura jasności resamplingu jest przetwarzana w celu dopasowania do różnicy rozdziel-

czości w każdej z zadanych częstotliwości(GCOM-SGC-120011, 2013, Takashi Ma-

eda, 2013).

• Poziom 2 (L2) - obejmuje dane fizyczne odtworzone na podstawie temperatury
jasności w każdym pikselu. Produkt AMSR-E poziomu 2 przechowuje wielkość geo-

fizyczną obliczoną na podstawie temperatury jasności produktu poziomu 1 oraz

informacje geometryczne jako pliki w formacie HDF5. Produkt AMSR-E poziomu

2 to osiem rodzajów geofizycznych danych ilościowych zawierających informacje na

temat: całkowitej wody opadowej, chmurowej wody w stanie ciekłym, opadów, tem-

peratury powierzchni morza, prędkości wiatru przy powierzchni morza, koncentracji

lodu morskiego, głębokości śniegu, zawartości wilgoci w glebie (GCOM-SGC-120011,

2013, Shibata et al., 2003).

• Poziom 3 (L3) (Dane wykorzystane w publikacjach [4][5]) - Produkt po-
ziomu 3 zawiera dane globalne, które są dobowymi lub miesięcznymi wartościami

średnimi każdej wielkości geofizycznej, takimi jak temperatura jasności w produkcie

poziomu 1B i produkcie poziomu 2. Dane na poziomie 3 są obliczane jako śred-

nia dobowa lub miesięczna w każdym kierunku (rosnącym lub malejącym) orbity,

a następnie przechowywane w formacie regularnej siatki grid o zdefiniowanej roz-

dzielczości przestrzennej (Shibata et al., 2003).

Dane pasma L1, L2 to zestawione są w formacie, w którym dane dla każdego śladu orbity

przechowywane są w dwuwymiarowej tablicy (punkty obserwacji w kierunku skanowania

× liczba linii skanowania) zgodnie z kolejnością czasu obserwacji. Oprócz danych takich
jak temperatura jasności i wartość geofizyczna, w formacie pasma przechowywane są in-

formacje o jakości obserwacji, szerokości geograficznej i długości geograficznej. Standar-

dowe produkty L1B, L1R i L2 przechowywane są w pojedynczym pliku, który obejmuje

scenę pokrywającą połowę obwodu Ziemi. Istnieją dwa rodzaje scen: rejestrowana z orbity,

wznoszącej od południa do północy i orbity opadającej od północy do południa.

5.3 Opis wykorzystanych danych

W pracy wykorzystano dane pochodzące z pomiarów naziemnych, satelitarnych oraz mo-

deli mieszanych wyszczególnionych w następujących punktach:

Dane pomiary absolutne g (wykorzystane w publikacjach [1][2][5]) - ze

stacji grawimetrycznej JOZE znajdującej się w podziemiach budynku Obserwatorium
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Astronomiczno - Geodezyjnego w Józefosławiu (Polska), tj. 5.7 m pod ziemią, na beto-

nowym słupie o wymiarach 2 × 2 m. Pomiary bezwzględne prowadzono w przybliżeniu
co miesiąc od maja 2005 r. do listopada 2016 r. grawimetrem FG-5 nr 230. Jest to naj-

dłuższy i jednorodny (zarówno pod względem dokładności, jak i rozdzielczości czasowej)

szereg czasowy wartości grawimetrycznych w Polsce. Całkowita niepewność wyznacza-

nia przyspieszenia siły ciężkości wynosiła ±2 µGal. Wyniki pomiarów bezwzględnych są
korygowane o efekty związane z pływami ziemskimi (model Wenzela).

i pływami oceanicznymi (model FES2004), zmianami ciśnienia atmosferycznego

i ruchem biegunów. Ponadto wartości grawitacji są korygowane w rezultacie międzynaro-

dowych kampanii porównawczych. Uwzględniono również czynniki metrologiczne (wynika-

jące ze zmian częstotliwości zegara i lasera). Całość opracowania spełnia wymogi realizacji

międzynarodowego układuodniesienia grawimetrycznego (ITGRF, ang. International Ter-

restrial Gravity Reference Frame).

Dane δg GRACE (wykorzystane w publikacjach [1][2]) - do analizy wyko-

rzystano szeregi czasowe dla wybranych miesięcznych rozwiązań misji GRACE opracowa-

nych przez GFZ, CSR i JPL. Dane obejmujące współczynniki sferycznych harmonicznych

z rozwiązania RL06 (Dahle et al., 2013) od kwietnia 2002 do marca 2016 roku zostały

użyte przy maksymalnym stopniu/rozwinięcia równym 96. Dla danych RL05a wartości

wykorzystanych współczynników to: CSR - stopień/rozwinięciu 96, GFZ - 90 i JPL -

90, a dla niektórych rozwiązań aż 60. Na podstawie współczynników sferycznych har-

monicznych wyznaczone zostało zaburzenie grawitacyjne oznaczane jako δg. Zaburzenie

grawitacyjne rozumiane jest jako różnica między rzeczywistym a normalnym (odnoszącym

się do elipsoidy) przyspieszeniem grawitacyjnym na fizycznej powierzchni Ziemi. Zostało

to określone na podstawie danych z misji GRACE, uwzględniając elastyczną deformację

Ziemi w wyniku obciążenia (Crossley et al., 2012) zgodnie z poniższym wzorem:

δg(θ,λ) =
GM

R2

nmax∑
n=0

(n+ 1− 2hn
1 + kn

)
n∑
m=0

(Cmn · cos(mλ) + Smn · sin(mλ)) · Pmncos(θ) (4)

gdzie θ, λ to współrzędne sferyczne, hnn i knn to liczby Love’a odpowiadające całkowi-

tej elastycznej odpowiedzi Ziemi z wykorzystaniem modelu referencyjnego PREM (ang.

Preliminary Earth Model. Ze względu na korektę parametrów geocentrum na podstawie

danych GRACE dla współczynników C10, C11 i S11, odpowiadająca wartość k1 została

zmieniona na 0.021. Wartości zaburzenia grawitacyjnego zostały także ustalone za po-

mocą współczynnika wzmocnienia (Landerer and Swenson, 2012) dla badanego obszaru,

który wynosił 1.06. W obszarze przeprowadzonych badań nie zaobserwowano trzęsienia

ziemi o magnitudzie powyżej 8.5. Ponadto efekt wynoszenia post lodowcowego jest sto-

sunkowo niewielki. Z tego powodu zdecydowano się nie dokonywać związanych z tym

korekt.
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Dane TWS (wykorzystane w publikacjach [3][4][5]) - przetworzone dane

z misji GRACE, reprezentujące ∆TWS, są dostępne na stronie https://podaac-tools.

jpl.nasa.gov/ i są dystrybuowane przez Centrum Badań Kosmicznych (CSR) w Teksa-

sie. Rozdzielczość przestrzenna danych GRACE użytych w niniejszych badaniach wynosi

około 300 km × 300 km. Dane dotyczące zmian masy na powierzchni i w podpowierzchni
opierają się na standardzie RL06 (Dahle et al., 2013) na poziomie przetwarzania danych

L2. W trakcie przetwarzania danych GRACE współczynnik C20 reprezentujący spłaszcze-

nie grawimetryczne Ziemi (Swenson et al., 2008a) został zastąpiony obserwacjami z uży-

ciem techniki Satellite Laser Ranging (SLR) (Cheng and Tapley, 2004), a błąd związany

z pasami N-S powstałymi w wyniki inklinacji orbity z został usunięty przy użyciu zmody-

fikowanego filtra de-korelacji (Chen et al., 2007) (Swenson and Wahr, 2006). Przy prze-

twarzaniu danych GRACE została również uwzględniona korekcja statycznej części pola

grawitacyjnego za pomocą modelu GGM05C (Ries et al., 2016). Podczas przetwarzania

danych GRACE współczynniki stopnia 1 (ang. Geocenter) były szacowane za pomocą me-

tod przedstawionych w pracach Sun et al. (2016b) i Swenson et al. (2008b) polegających

na połączeniu danych GRACE z modelowanym komponentem oceanicznego geocentrum.

Korekta spowodowana podnoszeniem izostatycznym lodowców (GIA) została uwzględ-

niona na podstawie modelu ICE6G-D przedstawionego w pracy Peltier et al. (2018).

Dane GLDAS (wykorzystane w publikacjach [1][3]) - Global Land Data As-

similation System to zaawansowany system globalnej asymilacji danych lądowych, który

integruje dane meteorologiczne i hydrologiczne z różnych źródeł i modeli w celu genero-

wania kompleksowych zbiorów danych dotyczących cyklu wodnego i innych zjawisk zwią-

zanych z powierzchnią lądową na całym świecie. GLDAS jest inicjatywą wspólną wielu

organizacji, w tym NASA, NOAA, Departamentu Obrony USA oraz Uniwersytetu Ma-

ryland, i ma na celu zapewnienie spójnych i dogłębnych danych do badań naukowych

dotyczących powierzchni lądowych i klimatu. Modele GLDAS dostarczają wielu istotnych

zmiennych hydrologicznych dla terenów lądowych o różnych skalach przestrzennych i cza-

sowych w formie globalnych siatek. Porównania danych z misji GRACE i GLDAS wyka-

zują wysokie zgodności czasowe i niewielkie różnice w amplitudach, co sprzyja korzystaniu

z tych danych w globalnych badaniach hydrologicznych (Rodell et al., 2004a,b, Scanlon

et al., 2018). Modele GLDAS zapewniają globalne siatki wielu parametrów hydrologicz-

nych lądów w różnych skalach przestrzennych i czasowych. GLDAS obejmuje cztery różne

modele powierzchni terenu (LSM, ang. land surface models), a mianowicie CLM (ang.

Community Land Model), Mosaic, Noah oraz VIC (ang. Variable Infltration Capacity)

o zmiennej pojemności infiltracyjnej. W pracy [1] wykorzystano cztery modele GLDAS

obejmujące okres od stycznia 2002 r. do grudnia 2016 r. Na podstawie tych danych wy-

znaczono globalne siatki ∆TWS, które są obliczane przy użyciu składników wyjściowych
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dotyczących średniej wilgotności warstwy gleby, całkowitego ekwiwalentu wody w koronie

drzew i ekwiwalentu wody w pokrywie śnieżnej z każdego LSM. Zmiany TWS uzyskuje

się przez usunięcie długookresowej średniej z każdej miesięcznej siatki ∆TWS. Następnie

zmiany ∆TWS są przeliczane na współczynniki zmiany masy ∆Ĉhydrn,m ,∆Ŝ
hydr
n,m używając

analizy harmonik sferycznych i dalej współczynników Stokes’a za pomocą wzorów (Wahr

et al., 1998): ∆C
hydr
n,m

∆Shydrn,m

 = 3ρwρave 1 + k
′

2n+ 1

∆Ĉ
hydr
n,m

∆Ŝhydrn,m

 (5)

gdzie ρw i ρave oznaczają odpowiednio przeciętną gęstość wody i Ziemi. Bazując na wy-

nikach z pracy [1] w pracy [3] miesięczne rozwiązania GLDAS-Noah (v2.1) o rozdziel-

czości przestrzennej wynoszącej 1°× 1°(zbiór danych: GLDAS-NOAH10-M) zostały po-
brane z witryny Earth Data NASA https://disc.gsfc.nasa.gov/ i obejmowały okres

od stycznia 2002 do stycznia 2021 roku. Do badań wykorzystano 34 parametry opisane

w dokładnie w pracy [3].

Dane SM (wykorzystane w publikacjach [4][5]) - zbiór danych AMSR-E jest

dostępny jako pliki o charakterystyce dobowych pomiarów na https://disc.gsfc.nasa.

gov/. AMSR-E/Aqua surface SM descending V002 to zestaw danych poziomu 3 (w formie

siatki) z dobową częstotliwością i rozdzielczością przestrzenną około 25 km na 25 km. Po-

miary SM powierzchni lądu pochodzą z pasywnych danych z teledetekcji mikrofalowej i są

obliczane przy użyciu modelu LPRM. LPRM opiera się na modelu transferu promienio-

wania w przód, aby uzyskać SM przypowierzchniowej warstwy gleby i głębokość optyczną

penetracji sygnału. AMSR-E na satelicie NASA EOS Aqua zaprzestał dostarczania da-

nych w październiku 2011 z powodu problemu z obrotem jego anteny (van der Vliet et al.,

2020), co uniemożliwiło dostarczanie dłuższgo ciągu pomiarowego. W przeprowadzonych

badaniach wykorzystano tylko orbity opadające ze względu na znacznie lepszą stabilność

nocnej temperatury gleby, pokrycia roślinnością i powietrza (De Jeu et al., 2008, Draper

et al., 2009, Liu et al., 2012, 2011, Owe et al., 2001). Przepływ danych został wskazany

na rysunku (6)

5.4 Normalizacja i skalowanie czasowo-przestrzennych danych

dotyczących ∆TWS

Dane miesięczne rozwiązania pochodzące z misji GRAE ograniczone są przez stosunkowo

niską rozdzielczość przestrzenną. W celu uzyskania bardziej szczegółowych i lokalnych

informacji o zmianach ilości wody, naukowcy stosują techniki skalowania (ang. downsca-

ling). Te techniki wykorzystują dodatkowe dane i modele matematyczne, aby rozszerzyć

możliwość wykorzystania danych z misji GRACE na mniejszą skalę przestrzenną. W ten

sposób można uzyskać bardziej szczegółowe dane o zmianach ilości wody na mniejszych
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obszarach. (Miro and Famiglietti, 2018, Seyoum et al., 2019, Vishwakarma et al., 2021b,

Wilby et al., 1998, Wilby and Wigley, 1997, Yin et al., 2018).

Możemy wyszczególnić kilka podejść do tego zagadnienia, takich jak:

• Modelowanie hydrologiczne (Publikacje [1][2]), w którym wykorzystuje się modele
hydrologiczne, które integrują dane o opadach, parowaniu, odpływie powierzchnio-

wym i zasobach wód podziemnych, aby uzyskać bardziej szczegółowe informacje

w skali lokalnej. Modele te wykorzystują dane z GRACE do skalowania i dostoso-

wania wyników do lokalnych warunków (Döll et al., 2014).

• Metody interpolacji (Publikacje [3][4][5]), które wykorzystują dodatkowe dane
przestrzenne, takie jak dane z czujników glebowych, stacji meteorologicznych, ob-

serwacji hydrologicznych, aby interpolować dane z GRACE na obszary wymagające

większej szczegółowości stosując przykładowo metody krigingu, metody wielomia-

nowe czy wzmocniony filtr Kalmana (Eicker et al., 2014).

• Synergia danych wielosensorowych (Publikacje [4][5]) - możliwe jest wykorzysta-
nie danych z innych źródeł, takich jak dane z sensorów teledetekcjnych, danych

z sondowania glebowego, aby wzbogacić dane z GRACE i uzyskać bardziej szczegó-

łowe informacje w przypadku mniejszych obszarów (Dee et al., 2011, Jackson et al.,

1981).

• Metody uczenia maszynowego (Publikacja [3][5]) - wykorzystanie technik uczenia
maszynowego, takich jak sieci neuronowe, algorytmy regresji, może pomóc w do-

kładniejszym przekształceniu danych z GRACE na dane o większej szegółowości

i zrozumieniu lokalnych wzorców zmian ilości wody (Long et al., 2014, Seyoum and

Milewski, 2017).

5.5 Konieczność i sposoby filtracji obserwacji GRACE i GRACE-

FO

Źródło błędu, którego charakterystyczną sygnaturą są paski N-S, jest obecne w danych

GRACE i GRACE-FO na niższych poziomach przetwarzania. Przykład zaszumionych

i odfiltrowanych danych przedstawiono na rysunku (4). Swenson i Wahr zaobserwowali

szczególną właściwość sferycznych współczynników harmonicznych związanych z rozkła-

dem przestrzennym i zaprojektowali klasę filtrów, aby usunąć problem (Swenson and

Wahr, 2006). W celu redukcji szumów obserwacyjnych stosuje się wygładzanie prze-

strzenne w postaci filtru Gaussa (Publikacje [1][2]). Nie jest to jednak idealna metoda.

Zaproponowana przez J.Kusche dekorelacja bazująca na założeniu a’pori dotyczącym bu-

dżetu błędów została sprawdzona na podstawie walidacji modeli hydrologicznych (Kusche
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et al., 2009). Podobne rozwiązanie zaproponowano ostatnio przy użyciu pełnej informa-

cji kowariancyjnej (Horvath et al., 2018). Dobrym rozwiązaniem okazały się filtry nie-

izotropowe (Chen et al., 2006, Kusche, 2007) (Publikacje [2][3][4][5]), które umożliwiły

stosowanie produktów poziomu 2 z jak najwierniej zachowaną informacją geofizyczną. Z

biegiem czasu filtry DDK1-8 stały się podstawowym narzędziem stosowanym przy opra-

cowywaniu danych. Problemem jest jednak to, że nie określono, który spisuje się najlepiej.

Jakość stosowanego rozwiązania będzie zależała od szerokości geograficznej obszaru opra-

cowania oraz mocy danego filtru. Im niższy numer, tym większa siła filtracji. Pojawiały

się także próby optymalizacji efektu związanego z filtracją i gubieniem sygnału geofizycz-

nego (Dutt Vishwakarma et al., 2016), jednakże dobór filtru na danym obszarze nadal ma

charakter empiryczny i zależny od prowadzonego badania.

Rysunek 4: Przykład zaszumionych (a) i odfiltrowanych (b) danych GRACE. Zmiana un-

dulacji geoidy w mm, policzona dla danych GRACE z marca 2002 r. na podstawie danych

RL06 opublikowanych przez CSR dla stopnia rozwinięcia n = 90. Żródło: Opracowanie

własne.

5.6 Metody dekompozycji sygnału LSSA i STL

W literaturze opisywane są różne podejścia i metody dotyczące dekompozycji sygnału

szeregów czasowych. Można wyróżnić najpopularniejsze metody takie, jak: metody śred-

niej ruchomej, procedury X-11, dekompozycja sygnału bazująca na falkach (ang. Wavelet

Transform), empiryczna dekompozycja modalna - EMD (ang. Empirical Mode Decompo-

sition), dekompozycja na składowe harmoniczne wykorzystujące transformację Fouriera,

SEATS (ang. Seasonal Extraction in ARIMA Time Series) czy też redukcja wymiarów za

pomocą analizy głównych składowych PCA (ang. Principal Component Analysis) (Cleve-

land and Tiao, 1976, Singh et al., 2017, West, 1997). LSSA (ang. Least-Squares Spectral

Analysis)(Vańıček, 1969, 1971) (Publikacje [1][2]) jest metodą estymacji widma, która
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polega na dopasowywaniu sinusoid o znanych okresach do obserwowanych danych. Me-

toda ta pozwala na identyfikację dominujących częstotliwości w sygnale czasowym. Klu-

czowym punktem metody LSSA jest dopasowanie sinusoid o znanych okresach do danych

przy użyciu technik najmniejszych kwadratów. Metoda ta pozwala na estymację amplitud

i faz tych sinusoid, które najlepiej dopasowują się do sygnału.

Ys(t) = a + bt+ cscos((
2πt
Ts
)) + dssin((

2πt
Ts
)) (6)

gdzie: a jest wyrazem wolnym, b trendem długoterminowym Cs i ds to współczynniki wag

składowych cosinusowych i sinusowch, a Ts odpowiada za użytą okresowość. Ze względu

na cykliczny charakter obserwacji zmian pola siły ciężkości Ziemi, w badaniach wyko-

rzystane zostały składowe fal rocznych i półrocznych do dekompozycji sygnału. Wartości

współczynników wyznaczono za pomocą metody najmniejszych kwadratów:

x̂ = (ATA)−1ATy (7)

gdzie: x̂ to wektor poszukiwanych parametrów wpasowania funkcji okresowych, y to wy-

korzytane obserwacje funkcji celu w zależności od jednostki czasu, a macierz A to układ

równań składowych okresowych dla danych jednostek czasu.

STL (ang. seasonal trend decomposition) (Cleveland et al., 1990) (Publikacja [1])

jest nieparametryczną metodą dekompozycji szeregów czasowych na składnik sezonowy

S(t), składnik trendu T (t) i składnik reszty R(t) opisywaną wedle wzoru:

Ys(t) = S(t) + T (t) +R(t) (8)

STL wykonuje się iteracyjnie w kolejnych krokach, usówając długookresowy trend lin-

niowy, wyznaczając na podstawie lokalnej regresji komponenty sezonowe. Następnie obli-

cza się zrekonstrułowany i wygładzony sygnał sezonowy przy użyciu filtrowania dolnoprze-

pustowego. W kolejnym kroku wykonuje się różnicę wyznaczonych sygnałów sezonowych

względem obserowanego i powtarza procedurę do uzyskania kryterium dla zbieżności kom-

ponentów sezonowych S(t) i składnika trendu T (t). STL ma potencjał identyfikowania

możliwych wartości odstających w danych poprzez włączenie wag odporności dla każdego

pomiaru do procedury opartej na filtrowaniu regresji ważonej lokalnie (He et al., 2022,

Theodosiou, 2011).

5.7 Określenie metod i kryteriów porównawczych oraz miar ja-

kości pomiędzy analizowanymi zbiorami danych

Analizy porównawcze wymagają dobrania odpowiednich miar jakości, pozwalających oce-

nić, jak dobrze model lub zbiór danych odzwierciedla rzeczywiste dane. Wybór odpowied-

nich miar zależy od rodzaju analizy i charakterystyki danych, które są porównywane.
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W pracy zostały zastosowane miary jakości takie, jak: efektywność Nasha-Sutcliffe’a

(NSE) (Nash, 1970), współczynnik korelacji Pearsona (CC) (Cohen et al., 2009), test

Kolmogorova-Smirnova (KS) (Hodges Jr, 1958), błąd średniokwadratowy (RMSE, RMSE

(ang. root mean square error)) (Chai and Draxler, 2014) oraz znormalizowany błąd śred-

niokwadratowy (NRMSE), a także korelacja krzyżowa (xcorr) i współczynnik determi-

nacji (R2) (Nagelkerke et al., 1991).

NSE (Publikacja [3][5]) jest znormalizowaną statystyką określającą względną

wielkość resztkowej wariancji (szumu) w porównaniu do wariancji danych pomiarowych

(informacji). NSE jest obliczany za pomocą następującego wzoru:

NSE = 1−
∑n
i=1(yi − ŷi,sim)2∑n
i=1(yi − ȳ)2

(9)

gdzie: n oznacza liczbę obserwacji, yi to wartość rzeczywista obserwacji i, ŷi,sim to wartość

przewidywana przez model dla obserwacji i, ȳ to średnia wartość ze wszystkich obserwacji.

Test KS (Publikacja [3]) sprawdza, czy dwie próbki pochodzą z tego samej roz-

kładu. Ta statystyka mierzy maksymalną odległość (supremum) między dystrybuantami

kumulacyjnymi (CDF , (ang. Cumulative Distribution Function)) dwóch próbek. Rozkład

jest zakładany jako ciągły. Jeśli statystyka KS jest mała lub wartość p jest wysoka, nie

możemy odrzucić hipotezy, że rozkłady dwóch próbek są takie same. Współczynnik KS

jest obliczany za pomocą następującego wzoru:

KS = sup |F (x)−G(x)| (10)

gdzie: F (x) to dystrybuanta kumulacyjna dla jednej z próbek, G(x) to dystrybuanta

kumulacyjna dla drugiej próbki, sup oznacza supremum, czyli maksymalną wartość bez-

względną różnicy między dystrybuantami F (x) i G(x) w całym zakresie zmiennej x.

Wartość KS wskazuje na największą odległość między dystrybuantami kumulacyj-

nymi próbek F (x) iG(x). Im większa wartośćKS, tym większa różnica między rozkładami

próbek, co sugeruje mniejsze podobieństwo między nimi. Metoda ta jest jest metodą nie-

parametryczną, co oznacza, że nie wymaga założeń dotyczących rozkładu danych. Może

być stosowany zarówno do danych o rozkładzie normalnym, jak i niestandardowym, co

czyni go wszechstronnym narzędziem do analizy różnorodnych typów danych. Test KS ma

wysoką czułość na nawet niewielkie różnice w kształcie lub parametrach rozkładów dwóch

zbiorów danych. Dzięki temu pozwala on wykrywać nawet subtelne zmiany w rozkładach,

co jest istotne w wielu badaniach naukowych, gdzie istotne są nawet niewielkie odchylenia

od oczekiwań. Metoda może być stosowany do różnych rozmiarów próbek oraz różnych

typów danych, w tym do danych ciągłych, dyskretnych oraz zmiennych czasowych. Dzięki

temu nadaje się do szerokiego zakresu zastosowań, a prostota interpretacji i informacja

o istotności różnic daje szerokie spektrum możliwości użycia zapewniając wysoką ufność

do wyników.
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Współczynnik korelacji Pearsona (CC) (Publikacje [1][2][3][4]) jest obliczany za

pomocą następującego wzoru:

CC =
∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n
i=1(yi − ȳ)2

(11)

gdzie: n oznacza liczbę obserwacji, xi i yi to odpowiednio wartości zmiennych x i y dla

obserwacji i, x̄ i ȳ to średnie wartości zmiennych x i y.

Współczynnik korelacji Pearsona mierzy stopień liniowej zależności między zmien-

nymi x i y. Jego wartość mieści się w zakresie od -1 do 1, gdzie wartość 1 oznacza doskonałą

dodatnią liniową zależność, wartość -1 oznacza doskonałą ujemną liniową zależność, a war-

tość 0 oznacza brak liniowej zależności między zmiennymi. Im bliżej wartości CC jest do

1 (lub -1), tym silniejsza jest zależność między zmiennymi. Metoda ta zakłada liniową

zależność między zmiennymi i może nie wykrywać innych rodzajów związków, takich jak

nieliniowe lub niemonotoniczne relacje. Ponadto, korelacja Pearsona może być wrażliwa

na wartości odstające oraz na niestandardowe rozkłady danych. W niektórych sytuacjach

inne metody, takie jak korelacja rang Spearmana lub korelacja tau Kendalla, mogą być

bardziej odpowiednie do analizy związków między zmiennymi. Jednakże, ze względu na

skuteczność w wykrywaniu liniowych zależności między zmiennymi w kontekście przepro-

wadzanych badań zdecydowano się na tą metodę.

Współczynnik RMSE (Publikacje [2][3][5]) jest obliczany za pomocą następu-

jącego wzoru:

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (12)

gdzie: n oznacza liczbę obserwacji, yi to wartość rzeczywista obserwacji i, ŷi to wartość

przewidywana dla obserwacji i przez model.

RMSE jest miarą odchylenia między wartościami rzeczywistymi yi a wartościami

przewidywanymi przez model ŷi. Im mniejsza wartość RMSE, tym lepiej model odwzoro-

wuje rzeczywiste dane.

Współczynnik NRMSE (Publikacje [3][5]) jest obliczany za pomocą następują-

cego wzoru:

NRMSE =
RMSE

max(y)−min(y)
(13)

gdzie: RMSE to pierwiastek błędu średniokwadratowego, max(y) to największa wartość

w zbiorze rzeczywistych danych y, min(y) to najmniejsza wartość w zbiorze rzeczywistych

danych y.

W kontekście analizy danych GRACE mamy do czynniena z amplitudą zjawiska

na danym obszarze. Współczynnik NRMSE jest miarą odchylenia między wartościami

przewidywanymi przez model a rzeczywistymi danymi, znormalizowaną do zakresu war-

tości danych. Dzięki temu można porównywać wartości NRMSE dla różnych zbiorów
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danych o różnych zakresach wartości. Im mniejsza wartość NRMSE, tym lepiej model

odwzorowuje rzeczywiste dane, niezależnie od ich zakresu wartości.

Wzór na korelację krzyżową (Publikacje [2][4]) między dwiema seriami czaso-

wymi x(t) i y(t) wygląda następująco:

xcorrxy(τ) =
∑N−τ
t=1 (x(t)− x̄)(y(t+ τ)− ȳ)√∑N−τ

t=1 (x(t)− x̄)2
∑N−τ
t=1 (y(t+ τ)− ȳ)2

(14)

gdzie: N - liczba punktów w serii czasowej, τ - opóźnienie (time lag) między seriami czaso-

wymi, x(t) - wartość w czasie t w pierwszej serii czasowej, y(t+ τ) - wartość w czasie t+ τ

w drugiej serii czasowej, x̄ - średnia wartość w pierwszej serii czasowej (x̄ = 1
N

∑N
t=1 x(t)),

ȳ - średnia wartość w drugiej serii czasowej (ȳ = 1
N

∑N
t=1 y(t)).

Korelacja krzyżowa pozwala określić jakie jest wzajemne opóźnienie między dwiema

seriami czasowymi oraz w jakim stopniu są one skorelowane w tych opóźnieniach. Wartość

korelacji krzyżowej xcorrxy(τ) jest bliska 1, jeśli istnieje silna korelacja między seriami

czasowymi przy opóźnieniu τ , bliska -1, jeśli istnieje silna korelacja ujemna, oraz bliska 0,

jeśli brak jest korelacji.

Współczynnik R2 (Publikacja [5]) reprezentuje jak dobrze model wyjaśnia wa-

riancję zmiennej zależnej.

R2 = 1−
∑n
i=1(yi − ŷi)2∑
i = 1n(yi − ȳ)2

(15)

gdzie: n oznacza liczbę obserwacji, yi to rzeczywista wartość obserwacji i, ŷi to przewidy-

wana wartość dla obserwaci przez model, ȳ to średnia wartość wszystkich obserwacji.

R2 jest miarą oceniającą, jak dobrze model regresji dopasowuje się do danych. War-

tość R2 mieści się w przedziale od 0 do 1, gdzie 1 oznacza idealne dopasowanie modelu do

danych. Wyższa wartość R2 sugeruje lepsze dopasowanie modelu do danych. Współczyn-

nik efektywności modelu Nasha-Sutcliffe’a jest zbliżony do współczynnika determinacji,

różniąc się głównie zastosowaniem. R2 służy jako wskaźnik jakości dopasowania staty-

stycznego modelu. W przeciwieństwie do tego, NSE służy do kwantyfikowania zdolności

modelu do prognozowania zmiennej wynikowej. Podczas gdy R2 znajduje szerokie zastoso-

wanie we różnych dziedzinach do oceny ogólnego dopasowania modelu do obserwowanych

danych, NSE stosuje się w hydrologii i naukach środowiskowych, koncentrując się na

ocenie dokładności modelu w prognozach.

Aby przeprowacone analizy mogły identyfikować wyniki jako rzetelne, należy wy-

znaczyć minimalną liczbę próbek danych potrzebną do ustalenia istotności statystycznej.

Badania oparte na danych GRACE mają charakter czasowo-przestrzenny. Decydując się

na eksperymenty w ujęciu czasowym należy pamiętać, że w przypadku podejścia czaso-

wego, agregacja danych dla każdej zlewni rzecznej znacznie zmniejsza wielkość próbki, co

może podważać poprawność porównania. Aby móc wnioskować, że porównanie A/B ma
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sens, konieczne jest ustalenie minimalnej liczby próbek włączonych do zbioru testowego

(Ioannidis, 2005). W celu zaobserwowania zmiany obserwowanych efektów na poziomie 1%

- 2% między wynikami, zakładając 95% poziom ufności i 80% moc testu, ustalono wielkość

efektu, a następnie obliczono minimalną liczbę próbek potrzebną do oceny w prowadzo-

nych badaniach.

5.8 Transformacje liniowe sygnału ∆TWS za pomocą EOF

Dane pochodzące z misji GRACE wymagają przestrzennego wygładzenia sygnału. Wy-

korzystanie intensywnie uśredniających filtrów przestrzennych o dużym promieniu wygła-

dzenia prowadzi do utraty sygnału geofizycznego, znanego jako „błąd wycieku danych”

(ang. leakage error) (Longuevergne et al., 2010, Swenson and Wahr, 2002). Filtrowanie

zmniejsza rozdzielczość przestrzenną obserwacji GRACE, utrudniając identyfikację sy-

gnału masy wody w głównym strumieniu sygnału. Analiza EOF (Publikacja [4]) to

metoda analizy danych o charakterystyce czasowo-przestrzennej służąca do oddzielania

sygnałów od szumu sygnału. Jest to korzystne w przypadkach takich jak problemy z utratą

sygnału geofizycznego przy zmniejszającej się rozdzielczości przestrzennej podczas filtracji

(Wouters and Schrama, 2007). Metoda EOF w pierwszym kroku wymaga obliczenia macie-

rzy kowariancji dla danych przestrzennych, które zawierają pomiary w różnych punktach

przestrzeni. Załóżmy, że mamy dane przestrzenne o wymiarze n x m, gdzie n to liczba

punktów w przestrzeni, a m to liczba czasowych pomiarów. Oznaczmy macierz danych

jako X, gdzie Xij to wartość zmiennej w i-tym punkcie przestrzennym w j-tym kroku

czasowym:

Cij =
1
m

m∑
j=1

X ′i ·Xj (16)

gdzie X ′i to wektor zawierający wartości zmiennej w i-tym punkcie przestrzennym dla

wszystkich kroków czasowych, a sumowanie odbywa się dla wszystkich j od 1 do m.

W kolejnym kroku obliczane są wektory własne (ang. eigenvectors) V i odpowiadające

im wartości własne (ang. eigenvalues) λ macierzy kowariancji C. Wektory własne V są

rozwiązaniami równania:

C ·V = λ ·V (17)

Następnie wybierana jest określona liczba k-EOF, które odpowiadają największym war-

tościom własnym λ. Wybrane wektory własne reprezentują główne składowe, które wyja-

śniają największą wariancję w danych. Na podstawie wybranych EOF obliczane są wzorce

przestrzenne (ang. spatial patterns) i wzorce czasowe (ang time series). Wzorce prze-

strzenne wzorce PCi(x, y) pokazują jak zmieniają się dane w przestrzeni i są obliczane ze

wzoru:
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PCi(x, y) =
n∑
j=1

Vij ·Xj(x, y) (18)

gdzie sumowanie odbywa się dla wszystkich j od 1 do n. Xj(x, y) to wartość zmiennej

w punkcie (x, y) przestrzeni, a Vij to i-ty element wybranego wektora własnego V . Wzorce

czasowe Ti(t) pokazują jak zmieniają się dane w czasie i są obliczane ze wzoru:

Ti(t) =
n∑
j=1

Vij ·Xi(t) (19)

gdzie sumowanie odbywa się dla wszystkich j od 1 do n. Xi(t) to wartość zmiennej w kroku

czasowym t, a Vij to i-ty element wybranego wektora własnego V .

Metoda ta umożliwa identyfikowanie i analizę dominujących wzorców zmienności

w danych przestrzennych, co pozwala na wyodrębnienie informacji o głównych tendencjach

i amplitudach charakteryzujących badane zjawiska.

5.9 Analiza maksymalnej kowariancji

Jak wspomniano w rozdziale (4.7) istnieją techniki, które do analizy biorą pod uwagę za-

równo przestrzenne, jak i czasowe aspekty danych ∆TWS i wilgotności gleby, na przykład

TSA (Mart́ınez-Fernández and Ceballos, 2005, Wang et al., 2018), TC (ang. triple collo-

cation) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin and Park,

2021) oraz empiryczne funkcje ortogonalne EOF (ang. Empirical Orthogonal Functions))

(Eom et al., 2017, Lei et al., 2012, Navarra and Simoncini, 2010, Schrama et al., 2007,

Yoo and Kim, 2004).

Analiza maksymalnej kowariancji (MCA, ang. Maximum Covariance Analysis)

(Publikacja [4]) jest techniką analizy wielowymiarowej, która służy do identyfikacji

współzmiennych wzorców w dwóch zbiorach danych. Metoda ta izoluje najbardziej spójne

pary wzorców przestrzennych i związanych z nimi szeregów czasowych, przeprowadzając

analizę wartości własnych macierzy kowariancji czasowej między dwoma obszarami geofi-

zycznymi (Von Storch and Zwiers, 2002).

Zastosowanie tej metody jest uzasadnione w przypadku porównywania danych mi-

krofalowych o większej rozdzielczości przestrzennej i większej częstotliwości czasowej po-

miarów niż grawimetryczne pomiary satelitarne. Rozważając EOF standardowego MCA

(Rieger et al., 2021), amplituda przestrzenna (As) umożliwia zrozumienie, które regiony

mają największy udział w danym modzie. Amplitudę przestrzenną można łatwo obliczyć

za pomocą zespolonego EOF i zespolonego sprzężonego EOF*:

As = 2
√
EOF × EOF ∗ ∈ C (20)
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Określenie w jaki sposób poszczególne regiony są ze sobą dynamicznie powiązane możliwe

jest poprzez wyznaczenia przesunięcia fazowego za pomocą następującego równania:

θ = tan(
R(EOF )
I(EOF )

)
−1

(21)

Dzięki zastosowaniu tej metody możliwa jest identyfikacja dominujących wzorców zmien-

ności między zbiorami danych X i Y, a także zrozumienie związków i współzależności

między różnymi zmiennymi w tych zbiorach.

5.10 Metody rekonstrukcji sygnału ∆TWS przy użyciu metod

bazujących na uczeniu maszynowym

W uczeniu maszynowym istnieje kilka rodzajów problemów, w których można zastosować

te algorytmy. Są to zadania takie jak klasyfikacja, regresja, analiza skupień, wykrywanie

obiektów, prognozowanie, rekomendacja czy wykrywanie anomalii. Rekonstrukcję sygnału

można rozwiązać za pomocą modelowania regresji przy użyciu algorytmów uczenia maszy-

nowego. Problem regresji można określić jako przewidywanie ciągłej zmiennej wynikowej

na podstawie danego zestawu predyktorów (lub cech). Model regresji to technika two-

rzenia równania matematycznego definiującego y jako funkcję zmiennych X. Regresja

liniowa jest najprostszą i najbardziej popularną techniką przewidywania zmiennej ciągłej

wyznaczanej według wzoru:

Y = Xβ1 + β0 + ϵ (22)

gdzie: β0 jest wyrazem wolnym, β1 jest wagą lub współczynnikiem regresji związanym ze

zmienną predykcyjną (cechą lub atrybutem) X, a ϵ jest szumem Gaussa.

Współczesne metody uczenia maszynowego, takie jak maszyny wektorów nośnych

(SVM ang. Support Vector Machines), drzewa decyzyjne, czy sztuczne sieci neuronowe

(ANN) mają znacznie większą zdolność do modelowania bardziej skomplikowanych zależ-

ności w danych. Modele te cechują się zdolnością do wykrywania nieliniowych zależności,

co jest szczególnie ważne w kontekście rekonstrukcji sygnałów, które często mają zło-

żoną i nieregularną strukturę. W przypadku rekonstrukcji sygnałów czasowych używa

się różnych technik regresji, takich jak regresja liniowa, regresja wielomianowa, regresja

grzbietowa (ang. ridge regression), czy regresja oparta na drzewach decyzyjnych. Innym

podejściem, szczególnie użytecznym w przypadku danych sekwencyjnych, jest wykorzy-

stanie modeli autoregresyjnych. Modele autoregresyjne to modele, w których wartości

sygnału są estymowane na podstawie wcześniejszych wartości tego samego sygnału. Po-

pularnym przykładem jest model autoregresyjny ARIMA (ang. AutoRegressive Integrated

Moving Average) (Box and Pierce, 1970), który łączy autoregresję i skumulowaną średnią

ruchomą.
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W dzisiejszych czasach wiele metod rekonstrukcji sygnału wykorzystuje sztuczne

sieci neuronowe (Seyoum et al., 2019), szczególnie sieci rekurencyjne (RNN, ang. Recurrent

Neural Network) (Zaremba et al., 2014) i sieci splotowe (CNN) (Kattenborn et al., 2021).

Sieci RNN są szczególnie przydatne w analizie sekwencji, takich jak sygnały czasowe,

ponieważ mogą przechowywać informacje o poprzednich stanach i wykorzystywać je do

prognozowania kolejnych wartości sygnału. Sieci CNN są stosowane do analizy danych

przestrzennych, takich jak obrazy, ale mogą być również użyteczne w przypadku analizy

sygnałów o strukturze przestrzennej, takich jak dźwięki lub fale. Jedną z kluczowych

kwestii w regresji jest walidacja modelu, czyli sprawdzenie, jak dobrze model radzi sobie

z prognozowaniem wartości sygnału na nowych danych, które nie były użyte w procesie

treningu. Dzięki odpowiedniej walidacji, możemy ocenić skuteczność modelu i określić

jego dokładność w przewidywaniu nowych wartości sygnału.

Bazując na wcześniejszych badaniach dotyczących porównywania modeli wydajno-

ściowych oraz skupiając się na złożoności i interpretowalności modeli, zdecydowano się

na wykorzystanie w przeprowadzonych badaniach (Publikacja [3][5]) modelu XGBoost

(Chen and Guestrin, 2016). XGBoost Regressor to zaawansowana metoda wzmacniania

gradientowego, która wykorzystuje drzewa decyzyjne jako słabe modele predykcyjne. Cały

proces trenowania XGBoost Regressor można podzielić na kilka kroków:

1. Inicjalizacja modelu:

F0(x) = 0 (23)

2. Obliczenie residułów:

ri = yi − Fk−1(xi) (24)

3. Budowa drzewa k:

Tk(x) =
J∑
j=1

cij · I(x ∈ Rij) (25)

Fk(x) = Fk−1(x) + ν · Tk(x) (26)

gdzie: k - numer drzewa (k-ty krok) cij - wartość węzła j w liściu Rij I(x ∈ Rij) - wskaźnik,
który jest równy 1, gdy x należy do liścia Rij, w przeciwnym razie 0, ν - współczynnik

uczenia (learning rate), który kontroluje wpływ nowego drzewa na model.

4. Mechanizm regularyzacji:

cel =
n∑
i=1

L(yi, Fk(xi)) +
J∑
j=1

Ω(cj) (27)

gdzie: L - funkcja straty, która mierzy błąd predykcji Ω - funkcja regularyzacji, która

ogranicza złożoność drzewa.

5. Optymalizacja celu:

cj = argmin
cj

 ∑
xi∈Rij

L(yi, Fk−1(xi) + cj) + Ω(cj)

 (28)
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6. Zatrzymanie budowy drzew: Proces budowy drzew jest powtarzany, aż zostaną speł-

nione warunki zatrzymania, np. osiągnięcie maksymalnej liczby drzew lub osiągnięcie

minimalnej głębokości drzewa.

7. Predykcja: Po zakończeniu trenowania, model jest gotowy do dokonywania predykcji

na nowych danych. Predykcja dla nowego przypadku x jest obliczana jako suma predykcji

wszystkich drzew w modelu:

ŷ = FK(x) = F0(x) + ν
K∑
k=1

Tk(x) (29)

gdzie: x - wektor cech pojedynczego przypadku y - rzeczywista wartość dla tego przypadku

Fk(x) - predykcja modelu na k-ty krok Tk(x) - predykcja k-tego drzewa cj - wartość węzła

j w liściu Rij Rij - obszar węzła j w k-tej iteracji Ω - funkcja regularyzacji, która ogranicza

złożoność drzewa ν - współczynnik uczenia (ang. learning rate), który kontroluje wpływ

nowego drzewa na model K - liczba drzew w modelu L - funkcja straty, która mierzy błąd

predykcji.

Użycie modelu XGBoost zezwala na interpretowalność zależności między cechami

a funkcją celu. Explainable Artificial Intelligence (XAI) to podejście w dziedzinie sztucz-

nej inteligencji, które ma na celu uczynienie procesów podejmowania decyzji przez modele

uczenia maszynowego bardziej zrozumiałymi i interpretowalnymi dla ludzi. W tradycyj-

nych modelach uczenia maszynowego, takich jak głębokie sieci neuronowe, drzewa decy-

zyjne czy lasy losowe, działanie modelu może być często trudne do zrozumienia, ponieważ

te modele są złożone i składają się z tysięcy parametrów. W kontekście zastosowań prak-

tycznych, np. w medycynie, finansach czy przemyśle, zrozumienie jak model dokonuje

swoich predykcji jest kluczowym elementem, szczególnie jeśli te predykcje mają wpływ na

ludzkie życie i podejmowanie ważnych decyzji. Dlatego właśnie metody XAI stają się coraz

bardziej istotne, ze względu na eksplikację wyznaczonych wag predykatów w odniesieniu

do zmiennej przewidywanej, co nazywane jest interpretowalnością modelu (Breiman, 2001,

Elith et al., 2008, Fisher et al., 2019, Friedman, 2001).

Inną metodą zezwalającą na interpretowalność relacji pomiędzy cechami jest me-

toda SHAP (ang. SHapley Additive exPlanations) (Lundberg and Lee, 2017) (Publika-

cja [3]). Jest oparta na teorii gier i wykorzystuje wartości Shapleya, które są używane

do oceny wkładu poszczególnych graczy w zyski lub straty w grach kooperacyjnych. W

przypadku analizy cech w modelach uczenia maszynowego, wartości Shapleya są używane

do określenia istotności cech w przewidywaniach modelu. Załóżmy, że mamy model ucze-

nia maszynowego, który przewiduje wynik f(x) dla danej instancji x z wektorem cech

x = (x1, x2, . . . , xn). Wartość SHAP dla cechy xi dla instancji x jest obliczana jako róż-

nica między przewidywaną wartością dla całej instancji f(x) a przewidywaną wartością,

gdyby cecha xi została pominięta, oznaczoną jako f(x∼i). Wzór na wartość SHAP dla
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cechy xi dla instancji x można zapisać jako:

φi(x) = f(x)− f(x∼i) (30)

Następnie, aby uzyskać istotność cechy xi w całym modelu, oblicza się średnią wartość

SHAP dla tej cechy dla wszystkich instancji w zbiorze danych, stosując formułę:

φ̄i =
1
N

N∑
j=1

φi(x(j)) (31)

gdzie N to liczba instancji w zbiorze danych, a x(j) to j-ta instancja.

Metoda SHAP pozwala na zrozumienie, jakie cechy mają największy wpływ na

przewidywania modelu, a także na wyjaśnienie, dlaczego model dokonuje określonych

predykcji. Jest to szczególnie przydatne w interpretacji modeli złożonych, które są trudne

do zrozumienia tylko na podstawie wag cech. Dzięki metodzie SHAP możemy lepiej zro-

zumieć, jakie czynniki wpływają na decyzje modelu i dlaczego dana instancja została

zaklasyfikowana w określony sposób.

W pracy (Publikacja [5]) wykorzystano kilka popularnych algorytmów do mo-

delowania problemów regresji. Wybór algorytmów regresji do tego badania pokierowany

był ich ustaloną skutecznością w analizie zróżnicowanych zbiorów danych i cech oraz ich

przydatnością do modelowania badanego zjawiska. Na podstawie wcześniejszych badań

(Bonaccorso, 2018, Doan and Kalita, 2015, Maulud and Abdulazeez, 2020), które oceniły

różne algorytmy uczenia maszynowego do zadań regresji, zidentyfikowano kilka popular-

nych metod ze względu na ich stabilne wyniki przy różnych charakterystykach danych.

Wybrane algorytmy obejmują różnorodne podejścia, począwszy od metod zespołowych,

takich jak las losowy i drzewa losowe, znane ze zdolności do uchwycenia złożonych zależno-

ści w dużych zbiorach danych, po algorytmy wzmacniania gradientu, które wyróżniają się

w obsłudze danych o wysokiej wymiarowości i osiąganiu lepszej dokładności predykcyjnej.

Random Forest Regressor (Grömping, 2009) to wszechstronna metoda zespołowa wyko-

rzystująca wiele drzew decyzyjnych do stworzenia stabilnego modelu predykcji, znana

ze swojej dokładności i odporności na nadmierne dopasowanie. Extra Trees Regressor

(Geurts et al., 2006) jest podobny do Random Forest, ale stosuje bardziej losowy sposób

wyboru punktów podziału węzłów, co zwiększa różnorodność i potencjalnie poprawia ge-

neralizację. K Neighbors Regressor (Cover and Hart, 1967) to metoda nieparametryczna

przewidująca wartość zmiennej docelowej na podstawie średniej k najbliższych punktów

danych. Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017) to framework

wzmacniania gradientu zaprojektowany pod kątem efektywności i szybkości, odpowiedni

dla dużych zbiorów danych i zdolny do obsługi cech kategorycznych. Decision Tree Re-

gressor (Xu et al., 2005) to model drzew decyzyjnych, który dzieli dane na homogeniczne

segmenty, co pozwala na interpretację, ale może prowadzić do nadmiernego dopasowania.
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Gradient Boosting Regressor (Friedman, 2002) to algorytm, który iteracyjnie dopasowuje

drzewa decyzyjne do reszt poprzedniego drzewa, tworząc stabilny model predykcyjny.

Regresja liniowa to proste, liniowe podejście modelowania relacji między zmiennymi do-

celowymi a predyktorami za pomocą równania liniowego. Least Angle Regression (LARS)

(Efron et al., 2004) to technika regresji, która identyfikuje najbardziej istotne predyk-

tory, zachowując interpretowalność poprzez stopniowe wybieranie cech. Bayesian Ridge

to metoda regresji oparta na analizie bayesowskiej, która oszacowuje parametry modelu,

równoważąc złożoność modelu i jakość dopasowania. Ridge Regression (McDonald, 2009)

to regresja liniowa z regularyzacją L2, która redukuje problemy wieloliniowości i stabi-

lizuje oszacowania parametrów. Huber Regressor (Sun et al., 2020a) to technika regresji

odporna na obserwacje odstające, minimalizująca wpływ odstających obserwacji przy za-

chowaniu dokładnych predykcji. Orthogonal Matching Pursuit (Tropp and Gilbert, 2007)

to metoda selekcji modeli rzadkich, która sekwencyjnie wybiera zmienne najbardziej sko-

relowane z zmienną docelową. Lasso Regression (Hans, 2009) to metoda regresji liniowej

z regularyzacją L1, odpowiednia do selekcji cech i tworzenia rzadkich modeli. Elastic Net

(Li and Lin, 2010) łączy metody regularyzacji L1 (Lasso) i L2 (Ridge), zapewniając ela-

styczne podejście do regresji. Lasso Least Angle Regression (LARS Lasso) to metoda

łącząca algorytm LARS z regularyzacją L1, tworząca interpretowalny i oszczędny model.

Dummy Regressor (Angrist, 2001) to podstawowy model służący jako punkt odniesienia

do oceny wydajności innych modeli regresji, zwykle dokonujący predykcji na podstawie

średniej lub mediany zmiennej docelowej. AdaBoost Regressor (Solomatine and Shrestha,

2004) wykorzystuje adaptacyjne boostingowanie do poprawy wydajności predykcji sła-

bego modelu regresji, koncentrując się na punktach danych z większymi błędami predykcji.

Passive Aggressive Regressor (Segal, 2004). to wariacja algorytmu pasywno-agresywnego

dostosowana do zadań regresji, która dostosowuje parametry modelu, gdy zaobserwowane

są błędy.
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6 Syntetyczny opis wyników badań

6.1 Publikacja [1]

Kuczynska-Siehien, J., Piretzidis, D., Sideris, M. G., Olszak, T. and Szabó, V. (2019) ‘Mo-

nitoring of extreme land hydrology events in central Poland using GRACE, land surface

models and absolute gravity data’, Journal of Applied Geodesy, Vol. 13, No. 3, pp.229–243,

doi: 10.1515/jag-2019-0003.

100 pkt MEiN; IF: 1.30

Publikacja [1] stanowi szczegółowe studium wariancji przyspieszenia siły ciężkości Ziemi

wyznaczonych metodami grawimetrycznych pomiarów absolutnych, satelitarnych i global-

nych modeli numerycznych. Celem badań, stanowiących przedmiot publikacji była analiza

zgodności wyznaczenia zmienności pola grawitacyjnego oraz lokalnych warunków, w któ-

rych zbieżność obserwacji jest największa. Rozdział 2.1.2(z opisywanej publikacji) opisuje

wpływ lokalnych efektów na pomiar wartości przyspieszenia. Lokalne warunki pomiarowe

mają duże znaczenie na wyznaczaną wartość „g” i mogą prowadzić do błędnych interpre-

tacji, dlatego ważnym procesem było uwzględnienie do opracowania obserwacji poprawki

wynikającej z topografii, struktur urbanistycznych związanych z kształtem i wielkością bu-

dynku, redukcji położenia grawimetru FG5 ze względu na położenie słupu pomiarowego

poniżej poziomu gruntu oraz zmian wynikających z tzw. efektu parasola (ang. umbrella

effect) polegającego na spływie wody opadowej po dachu budynku obserwatorium two-

rzącego rozkład przestrzenny wód opadowych wokół punktu pomiarowego. Rysunki od 3

do 6 (z opisywanej publikacji) pokazują wpływ przestrzenny i czasowy opisywanych efek-

tów. Ze względu na specyfikę położenia grawimetru pokazaną na rysunku 7 (z opisywanej

publikacji) poprawna interpretacja pomiarów możliwa jest jedynie przy dokładnym zamo-

delowaniu geologicznej struktury i hydrologicznych efektów w danym regionie pomiarów.

Poprawkę ze względu na tzw. płytę Bouguer’a odpowiadającą z usunięcie mas wystają-

cych ponad punkt pomiarowy oraz lokalny efekt hydrologiczny przeprowadzono zgodnie

ze schematem przedstawionym we wzorach 2-8 (z opisywanej publikacji). Do wyznacze-

nia zaburzenia grawimetrycznego z misji GRACE użyto rozwiązań CSR i JPL rozwiązań

RL06 opracowanych zgodnie z opisem w rozdziale 2.2 (z opisywanej publikacji) oraz za-

prezentowanym na rysunku nr (5).
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Rysunek 5: Schemat wyznaczenia zaburzenia grawimetrycznego z pomiarów misji

GRACE. Żródło: Opracowanie własne.

Sprężysta reakcja stałej Ziemi na topnienie mas lodowych z ostatniego maksimum

lodowcowego nie będzie miała znaczącego wpływu na analizowany obszar badań, dlatego

korekta izostatyczna nie została uwzględniona, podobnie jak zniekształcenia sygnału wy-

wołane trzęsieniami ziemi. Do badań użyto modelu GLDAS z czterech symulacji Noah,

CLM, VIC, Mosaic, dzięki którym wyznaczono hydrologiczny komponent odpowiadający

sumie średniej zawartości wody w glebie, roślinności oraz opadach śniegu. Kluczową czę-

ścią badań było usunięcie z obserwowanych sygnałów części związanej z trendem liniowym

oraz sezonową i sub-sezonową cykliczną cyrkulacją wodną. Zamodelowanie tych efektów

przeprowadzono na podstawie złożenia funkcji trygonometrycznych i wyznaczenia współ-

czynników algorytmami STL oraz LSSA. Przeprowadzona została analiza korelacji, na

podstawie której zbadano zgodności badanych sygnałów. Główne wyniki przeprowadzo-

nych badań przedstawiono w tabeli 1 (z opisywanej publikacji). Ponieważ na okres obser-

wacji składały się takie wydarzenia, jak intensywne opady powódź hydrogeologiczna, fale

gorąca oraz susza analiza zbieżności sygnałów była podzielona na poszczególne okresy.

W przeprowadzonych badaniach byłem odpowiedzialny między innymi za przy-

gotowanie danych z misji GRACE polegającym na napisaniu skryptu umożliwiającego

filtrowanie danych współczynników sferycznych harmonicznych poziomu 2 filtrami nie-
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izotropowymi DDK1-8. Stanowiło to motywację do pogłębienia tematu i przeprowadzenia

prac badawczych w kontekście synergii relacji pomiędzy danymi pochodzącymi z różnych

sensorów a jakością wyników uzyskiwanych ze względu na konwolucję zbiorów danych.

Wstępne opracowanie danych misji GRACE stanowi kluczowy element prac badawczych

i stało się niezbędnym elementem każdego przeprowadzonego procesu badawczego w po-

szczególnych publikacjach.

Wartościowymi wnioskami z powyższego badania wartymi odnotowania są:

• Dotkliwość i zasięg powodzi w 2010 r. w Europie Środkowej są wyraźnie zauważalne,
co skutkuje anomaliami zmiany grawitacji 3,5–14 µGal w zależności od źródła da-
nych. Ujemne anomalie zmiany grawitacji rzędu 2,5–5 µGal są również identyfiko-
wane i powiązane z odnotowanymi warunkami suszy. Uzyskane wyniki sugerują, że

metody monitorowania zmian pola grawitacyjnego stanowią realną metodę identy-

fikacji klimatologicznych zdarzeń ekstremalnych w skali regionalnej.

• Analiza korelacji pokazuje zgodność między danymi pomiarowymi z grawimetru,
GRACE i GLDAS na poziomie 0.7-0.9. Korelacja zwiększa się, gdy wykorzysty-

wane są skorygowane dane grawimetru, co wskazuje, że metoda usuwania lokalnego

wpływu hydrologicznego z pomiarów grawimetru jest wiarygodna. Zwiększoną ko-

relację uzyskuje się również, gdy analizę przeprowadza się tylko dla lat 2009–2012

okres, który obejmuje ekstremalną powódź w 2010 r. i 2011 r. wywołaną ponad-

przeciętnymi opadami. Sygnał sezonowy jest usuwany za pomocą LSSA i STL, przy

czym obie metody dają porównywalne wyniki. W większości przypadków STL two-

rzy szeregi czasowe z nieznacznie większą korelacją niż LSSA.

• Susza z 2015r. jest widoczna we wszystkich trzech zestawach danych. W szere-
gach czasowych grawimetrów obserwuje się gwałtowny spadek grawitacji, od 2 µGal
w czerwcu do -2,5 ± 2 µGal w sierpniu i -2,3 ± 2,3 µGal we wrześniu. Stosunek
sygnału do szumu dla pomiarów grawimetrycznych w tym samym okresie jest bli-

ski lub równy jeden, co czyni je statystycznie nieistotnymi dla monitorowania tego

zdarzenia. W badanym szeregu czasowym uzyskanym z misji GRACE występuje

ujemna anomalia przez cały rok 2015. Extrema anomalii osiągają swoje minimum

we wrześniu z wielkością -5 ± 1 µGal. Uśrednione szeregi czasowe GLDAS pokazują
również ujemne anomalie w zmianach przyspieszenia siły ciężkości w tym okresie.

• Model GLDAS Noah LSM generuje najwyższe anomalie zmiany grawitacji przy 5
µGal w czerwcu 2010 i 7 µGal w lutym 2011. Zauważalne jest również przesunięcie
fazowe w globalnym maksimum między grawimetrem FG5 a danymi GRACE oraz
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GLDAS wynoszące do 3 miesięcy co możne być tłumaczone prędkością przesiąkania

wody opadowej pomiędzy kolejnymi warstwami wodonośnymi.

6.2 Publikacja [2]

Szabó, V. and Marjańska, D. (2020) ‘Accuracy analysis of gravity field changes from

GRACE RL06 and RL05 data compared to in situ gravimetric measurements in the con-

text of choosing optimal filtering type’, Artificial Satellites: Journal of Planetary Geodesy,

Vol. 55, No. 3, pp.100–117, doi: 10.2478/arsa-2020-0008.

70 pkt MEiN; IF: 0.90

W publikacji [2] rozważono wartości różnic zaburzenia grawimetrycznego pomiędzy na-

ziemnymi absolutnymi pomiarami grawimetrycznymi oraz przefiltrowanymi danymi GRACE

uzyskanymi z ośrodków CSR, JPL i GFZ. Celem prac było oszacowanie różnic pomiędzy

sposobami filtracji miesięcznych rozwiązań pochodzących z reporocesingu RL06 i RL05

misji GRACE. Konieczność filtracji danych GRACE wynika z zależności pomiędzy ar-

chitekturą orbity i częstotliwością pomiarów objawiającą się w postaci pewnego rodzaju

błędu w obserwacjach. Dokładność poszczególnych rozwiązań oceniono na podstawie abso-

lutnych pomiarów grawimetrycznych wykonanych grawimetrem FG5 nr 230 w latach 2002-

2016. Przygotowana publikacja obejmuje dwie zasadnicze części. W pierwszej przeanalizo-

wano różnice pomiędzy sposobem filtracji danych na podstawie różnic we współczynnikach

sferycznych harmonicznych. Druga to część eksperymentalna zawierająca opracowanie da-

nych naziemnych z pomiarów grawimetrycznych i piezometrycznych oraz satelitarnych.

Źródło błędu przedstawione zostało na rysunku 1 (z opisywanej publikacji), w którym

zaprezentowano symulację ścieżek orbit badanych satelitów wskazującą na konieczność

interpolacji danych, których brakuje dla części obszarów. Ze względu na inklinację orbity

wynoszącą 89.5°mamy do czynienia z akumulacją danych w regionach polarnych i spad-
kiem liczby obserwacji w okolicach równikowych. Wynika z tego konieczność wprowadzenia

metod matematycznych umożliwiających jak najwierniejsze odzwierciedlenie sygnału fi-

zycznego wraz ze zmieniającą się szerokością geodezyjną. W publikacji zaprezentowano fil-

trację charakterystycznych północno–południowych pasków na podstawie wzorów (1-6) (z

opisywanej publikacji) oraz wskazano na różnice wynikające z zadeklarowanego promienia

rozmycia w zależności od stopnia rozwinięcia sferycznych harmonicznych z danego modelu

geopotencjału, który przedstawia rysunek nr 2 (z opisywanej publikacji). Kolejną badaną

metodą był zbiór filtrów nieziotropowych DDK. Istotą tego rozwiązania jest zmiana okna

równoleżnikowego szerokości filtru w zależności od szerokości geodezyjnej. Różnice pomię-

dzy różnymi filtrami zostały zaprezentowane za pomocą metryki pierwiastka kwadrato-

wego stopnia wariancji sferycznych harmonicznych, którą przedstawiono na rysunku nr 6
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(z opisywanej publikacji). Wykresy wskazują na większą stabilność filtrów DDK dla wyż-

szych stopni rozwinięcia współczynników sferycznych harmonicznych. Wskazane zostały

również różnice pomiędzy RL06 i RL05, gdzie można zauważyć niewielkie rozbieżności do

stopnia 60 dla filtrów typu DDK. Lepszą kompatybilność pomiędzy RL06 i RL05 zacho-

wują filtry Gaussa o promieniach 500 i 600km, podczas gdy w przypadku filtrów anizo-

tropowych kompatybilność wykazują typy DDK 1–4. W publikacji schemat eksperymentu

przedstawia rysunek 7 (z opisywanej publikacji). Dane pochodzące z pomiarów naziem-

nych i satelitarnych zostały opracowane zgodnie z metodyką opisaną w podrozdziale 3.1 (z

opisywanej publikacji). Ze względu na intensywne opady w okresie 2010-2011, mające bez-

pośredni efekt w postaci powodzi hydrologicznej na badanym obszarze, ważnym krokiem

było wyznaczenie poprawki ze względu na ten hydrologiczny efekt, która została uwzględ-

niona w procesie przetwarzania danych grawimetrycznych. Wyniki korekty wprowadzonej

zgodnie ze wzorem (7) (z opisywanej publikacji) zostały przedstawione na rysunku nr 9 (z

opisywanej publikacji). Porównanie pomiędzy danymi z sensorów satelitarnych i naziem-

nych wykonano przeliczając potencjał grawitacyjny na funkcjonał zaburzenia grawitacyj-

nego opisanego równaniem (8) (z opisywanej publikacji). Ponieważ dane GEACE cha-

rakteryzują się dużą sezonowością w celu poprawnego porównania sensorów zdecydowano

się wykluczyć cykliczne efekty (roczne, półroczne i kwartalne) zmian amplitud w zareje-

strowanych obserwacjach GRACE. Efekt ten zamodelowany został poprzez wpasowanie

funkcji sinusoidalnych, których współczynniki wyznaczono metodą Gaussa-Markowa. Tak

zdekomponowany sygnał porównany został na rysunkach 11 i 12 (z opisywanej publikacji),

gdzie przedstawiono odpowiednio średnie zaburzenie grawimetryczne wraz z odchyleniem

standardowym wynikającym z filtracji oraz obserwacje rezydualne. Analizę dokładności

przeprowadzono w wykorzystaniem błędu pierwiastka średniokwadratowego oraz korelacji

krzyżowej. Uzyskane wyniki zaprezentowano w tabeli 1 (z opisywanej publikacji).

Głównymi wnioskami z przeprowadzonych eksperymentów badawczych są:

• Zmiana poziomu wód gruntowych z -11 m do -8 m może być widoczna z pułapu
satelitów grawimetrycznych.

• Usunięcie z szeregów czasowych zjawisk okresowych zmian grawitacji związanych
z różnymi porami roku umożliwiło badanie lokalnych zmian środowiska. W przy-

padku filtracji Gaussa najlepsze wyniki uzyskano przy promieniu wygładzania rów-

nym 300 km, co jest zgodne z zaleceniami oficjalnych ośrodków przetwarzania da-

nych. Inne promienie wykorzystywane do tego rodzaju filtracji powodują zbyt duże

uśrednianie danych na badanym obszarze.

• Biorąc pod uwagę najnowszy przetworzony zestaw danych GRACE, filtry DDK3–DDK6
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opublikowane przez CSR i JPL charakteryzują się wysokim współczynnikiem korela-

cji krzyżowej na poziomie 0.8 i zadowalającym RMSE w zakresie 3.7–4.0 µGal, czyli
mniejszym niż dwukrotność niepewności wykonanego pomiaru przez grawimetr FG5.

Dla tych samych filtrów w wersji danych RL05a wszystkie trzy centra obliczeniowe

cechują dobre wyniki zarówno dla współczynnika korelacji krzyżowej, jak i RMSE,

przy wartościach odpowiednio 0.7–0.8 lub 4.1–4.7 µGal. Odpowiednio przefiltrowane
obserwacje satelitarne zarejestrowane przez misję GRACE mogą być z powodzeniem

stosowane w badaniach w Obserwatorium Astronomiczno-Geodezyjnym w Józefo-

sławiu Politechniki Warszawskiej (JOZE).

• Poprawna selekcja strategii przetwarzania satelitarnych danych grawimetrycznych
jest niezwykle istotna. W wersji RL06 dla rozwiązań GFZ po dekompozycji sy-

gnału uzyskane rezultaty charakteryzowały się generalnie słabszym dopasowaniem

do pomiarów naziemnych. Co więcej filtry DDK1-2 dają zbyt intensywne rozmycie

sygnału geofizycznego i mogą być stosowane tylko na dużych obszarach oceanicznych

lub w analizie szeregów czasowych dla całych dorzeczy.

• Obserwacje satelitarne wykonane przez misję GRACE odpowiednio przefiltrowane
mogą być z powodzeniem stosowane w badaniach w obserwatorium JOZE oraz do

wzmocnienia realizacji IGRF na punktach na których nie wykonuje się obserwacji

grawimetrycznych.

6.3 Publikacja [3]

Szabó, V. (2022) ‘Comparison features importance for temporal and spatial-temporal ap-

proaches in GRACE and GRACE-FO signal reconstruction based on GLDAS data’, Inter-

national Journal of Hydrology Science and Technology, doi: 10.1504/IJHST.2022.10048532

100 pkt MEiN; IF: 1.80

W publikacji [3] zaprezentowano nowe podejście do selekcji parametrów fizycznych uwzględ-

nianych w modelu hydrologicznym do rekonstrukcji sygnału ∆TWS przy użyciu metod

bazujących na uczeniu maszynowym (ang. machine learning). Jak wspomniano około

roczna przerwa pomiędzy istnieniem misji GRACE i GRACE-FO ujawniła potrzebę od-

tworzenia obserwacji ∆TWS na podstawie innych danych. Rosnąca w ostatnich latach

moc obliczeniowa komputerów wskazała na zainteresowanie naukowców algorytmami ucze-

nia maszynowego oraz sztucznych sieci neuronowych (ANN). W wielu pracach naukowcy

przyjmują całkowity ekwiwalent wodny jako uproszczoną sumę zasobu wód podziemnych,

lądowych, śnieżnych oraz przypowierzchniową wodę rozumianą jako parametr wilgotności

gleby. Wartości tych cech fizycznych z powodzeniem są modelowane numeryczne poprzez
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wieloczynnikowe modele hydrologiczne. Jednakże proces obiegu wody jest bardziej skom-

plikowany, a nowe techniki obliczeniowe umożliwiają uzyskanie dokładnego odtworzenia

sygnału na podstawie wielu parametrów fizycznych. W publikacji [3] zaproponowano dwa

podejścia do wskazywania różnic w istotności użytych cech przy rekonstrukcji sygnału

∆TWS, oddzielnie dla podejścia czasowego i przestrzenno-czasowego. Schemat ekspery-

mentu i obszar badań przedstawiają odpowiednio rysunek 1 oraz 2 (z opisywanej publika-

cji). Ze względu na ideę porównania dwóch sposobów prowadzenia analiz danych GRACE

w podziale na analizy regionalnych efektów w obrębie danych dorzeczy oraz poszczegól-

nych punktów rozmieszczonych w regularnej siatce, wyznaczona została niezbędna liczba

danych do uzyskania istotności statystycznej umożliwiającej wyciągnięcie prawidłowych

wniosków na poziomie ufności > 95%. Bazując na doświadczeniach i wynikach z publi-

kacji [1] zdecydowano się na użycie danych z modelu GLDAS-NOAH jako danych, które

posłużyły do rekonstrukcji sygnału. Dane ∆TWS RL06 dostarczane przez ośrodek CSR

zostały oznaczone jako cel rekonstrukcji i przetworzono je przy użyciu filtracji DDK2 na

podstawie doświadczeń i wyników zaprezentowanych w publikacji [2]. Dane prezentujące

poszczególne parametry fizyczne zawarte w modelu GLDAS zostały poddane wstępnej

selekcji i standaryzacji zgodnie z opisem w podrozdziale 2.4 (z opisywanej publikacji).

Do wyznaczenia współczynników w modelu funkcji regresji algorytmu XGBoost. Jakość

rozwiązania oceniono na podstawie metryk RMSE, NRMSE, CC, NSE, i KS. Osiągnięte

metryki odpowiadają wynikom prezentowanym w pracach innych naukowców. Warto-

ści metryk globalnych oraz mapy zawierające charakterystyki przestrzenne dokładności

rozwiązania zaprezentowano odpowiednio w tabeli 2 oraz na rysunku 6 (z opisywanej

publikacji). Wyniki modelowania były zawalające, co pozwoliło na przejście do właści-

wej części eksperymentu, w której wyznaczono istotność użytych cech. W rozdziale 3.2 (z

opisywanej publikacji) zaprezentowano podejścia do wyznaczania istotności parametrów

za pomocą modelowo-agnostycznej wersji ważności cech oraz objaśnienia addytywnego

Shapleya (SHAP), metod popularnie używanych w dziedzinie wytłumaczalnej sztucznej

inteligencji (XAI).

Z przeprowadzonego badania można wysnuć kilka istotnych wniosków:

• Rekonstrukcja sygnału ∆TWS za pomocą metod uczenia maszynowego charaktery-
zuje się dużą skutecznością i mogą one być alternatywą dla stochastycznych podejść

takich jak Ensemble Kalman filter.

• Wielowymiarowa kombinacja dużych zbiorów danych umożliwia uzyskanie dobrych
rezultatów w kontekście rekonstrukcji sygnału ∆TWS charakteryzujących się błę-

dem RMS z zakresu 4.2–5.0 cm oraz współczynnikiem NSE > 0.7.
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• Nie można jednoznacznie wyznaczyć zmiennych o największym wpływie na modelo-
wanie sygnału ∆TWS, ale można zaobserwować zależność dla pewnej grupy zmien-

nych, w skład której wchodzą: zawartosć wody w warstwie śnieżnej, wilgotność gleby

na wszystkich warstwach oraz spływ podpowierzchniowy.

• Każde z podejść ukazuje wyraźny wpływ zmiennych związanych z czasem, położe-
niem i wilgotnością. Wskazuje to na związek z monotoniczną naturą zjawiska i jego

dużą zależnością od przynależności do danych stref klimatycznych.

• Niezwykle istotnym parametrem okazał się spływ podpowierzchniowy. Jednakże
brak możliwości zdefiniowania kompleksowych warunków jak spękana warstwa wo-

donośna podłoża skalnego, wysoka zawartość gliny lub kamienia może prowadzić do

przeszacowywania tej zmiennej przez model. Kompleksowe badanie zależności dyna-

miki ∆TWS od stanu podpowierzchniowego za pomocą pomiarów grawimetrycznych

wskazało na silniejszy związek między współczynnikiem odpływu a zmianą ∆TWS

niż obserwowany przy pomiarach wilgotności w przypowierzchniowej warstwie gleby.

• Na podstawie istotności cech wyznaczonej poprzez algorytm SHAPmożna stwierdzić
stosunkowo niewielkie znaczenie wody zawartej w roślinności wykorzystywanej jako

cecha do rekonstrukcji sygnału ∆TWS.

• Najniższą dokładność statystyk prezentującą dokładność rekonstrukcji sygnału ∆TWS
uzyskano w rejonach rzeki Parana w południowych rejonach Ameryki Południowej,

rzeki Saskatchewan-Nelson i St. Lawrence w rejonie Wielkich Jezior na pograniczu

Kanady i USA, Huang He (Rzeka Żółta), Amur, Liao we wschodniej części konty-

nentu azjatyckiego oraz obszarów pokrywających się z terenami Sahary. Wiąże się

to z dużą zależnością modelu od predykatów związanych z SM oraz brakiem uchwy-

cenia zależności antropogenicznych spowodowantych brakiem występowania takich

zmiennych.

• Wielkość dorzeczy ma znaczenie dla modelu, jednakże nie stwierdzono istnienia re-
lacji pomiędzy powierzchnią dorzeczy a dokładnością predykcji ∆TWS zwracanych

przez model, także implikuje to wniosek, iż nie można odrzucić hipotezy mówiącej

o zależności pomiędzy powierzchnią dorzecza a dokładnością rekonstrukcji sygnału.

• Agregacja zmiennych w ujęciu czasowym według wielkości dorzecza wpływa na
zmianę wag przypisanych poszczególnym zmiennym w porównaniu z podejściem

przestrzenno-czasowym. Jednak zmiana ta dla najbardziej wpływowych zmiennych

pozostaje stosunkowo niewielka.
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6.4 Publikacja [4]

Szabó, V. Osińska-Skotak, K. (2023) ’Similarities and differences in the Earth’s water

variations signal provided by GRACE and AMSR-E observations using Maximum Cova-

riance Analysis at various Land Cover data backgrounds’, Artificial Satellites: Journal of

Planetary Geodesy, Vol. 58, No. 2 - 2023, doi: 10.2478/arsa-2023-0006

70 pkt MEiN; IF: 0.90

Publikacja [4] skupia się na problematyce związanej z wodą i jej dystrybucją w przy-

powierzchniowych warstwach gleby w kontekście porównania obserwacji SM uzyskanych

na podstawie misji AMSR-E z obserwacjami ∆TWS z misji GRACE. Wyniki prezen-

towane w publikacji [3] wskazywały na znaczną wagę w modelowaniu kwestii przepływu

wody z płytszych warstw wodonośnych do głębszych. Ze względu na znaczenie badań doty-

czących zasobu wód podziemnych modelowanych na podstawie danych GRACE konieczne

jest zbadanie warunków, dla których wariancja wilgotności gleby odejmowana w równa-

niu wyznaczającym GWST jest zgodna z monotonicznością grawimetrycznych obserwacji

satelitarnych. W publikacji [4] porównano obserwacje z misji GRACE z mikrofalowymi

danymi dobowymi zebranymi przez misję AMSR-E. Badanie przedstawia analizę zgod-

ności obserwacji grawimetrycznych z pasywnymi obserwacjami mikrofalowymi. Aby za-

chować spójność obserwacji w zakresie częstotliwości i rozdzielczości przestrzennej, dane

dotyczące wilgotności z AMSR-E zostały uśrednione na epoki obserwacji misji GRACE,

a następnie przeinterpolowane przestrzennie wielomianem 1 stopnia na siatkę obserwacji

GRACE o wymiarach 0.5°× 0.5°. W publikacji podzielono badania na dwa etapy: analizy
globalne i regionalne. W pierwszej części porównano znaczenie klimatu w wyznaczanych

parametrach. W badaniu zastosowano analizę maksymalnej kowariancji (MCA), aby wy-

odrębnić składowe główne dla sygnałów ∆TWS i SM. Analiza została przeprowadzona

dla obszaru globalnego, a dyskusję podzielono na poszczególne kontynenty. Podobień-

stwa i różnice w wynikach zgodności sygnałów przedstawiono w zestawieniu do danych

dotyczących pokrycia terenu, które zostały zaprezentowane na rysunku 1 (z opisywanej

publikacji). Do analizy wykorzystano dane dotyczące pokrycia terenu pochodzące z zhar-

monizowanej światowej bazy danych o glebie (ang. Harmonized World Soil Database)

przedstawiające pokrycie terenu roślinnością, dostępność tlenu w strefach korzeniowych,

tereny uprawne i tereny zurbanizowane. Wykresy 2 i 3 (z opisywanej publikacji) pre-

zentują zagregowane średnie wartości parametrów ∆TWS i SM pochodzące z zakresu

mikrofalowego C i X względem współrzędnych geodezyjnych. Wyznaczone zostały także

przeciętne wartości anomalii i ich odchylenia standardowe zagregowane względem sze-

rokości geodezyjnej i czasu. Zaprezentowano je na rysunku 4 (z opisywanej publikacji).
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Uwidoczniona została anomalia TWSA i SMA z lat 2009-2011 dla szerokości 0-20°S, co
może wskazywać na znaczącą zbieżność sygnałów w tych obszarach. Natomiast na szero-

kościach 20-40°N obserwujemy znaczącą anomalię TWSA, która niezostała wychwycona
przez sensory AMSR-E. Ponieważ mamy do czynienia z różnymi amplitudami w zjawisk

obserwowanych przez badane sensory, do przeprowadzenia wolumetrycznej analizy po-

dobieństwa zastosowano normalizacje wartości do zakresu 0-1 zgodnie ze wzorem (1) (z

opisywanej publikacji). Znormalizowane obserwacje ∆TWS i SM pochodzące z zakresu

mikrofalowego C i X zaprezentowano, zestawiając wolumen zawartości wody dla czterech

pór roku, na rysunku 5 (z opisywanej publikacji). Uzupełniając zestawienie przeprowa-

dzono analizę korelacji sygnałów, przedstawioną na rysunku 6 (z opisywanej publikacji),

która wskazuje na dużą wzajemną zgodność sygnałów w rejonach międzyzwrotnikowych

i brak tej zgodności w rejonach okołobiegunowych. W następnych krokach, w celu okre-

ślenia obszarów do szczegółowego porównania, amplitudy sygnałów grawimetrycznych

i mikrofalowych obliczono za pomocą złożonej empirycznej funkcji ortogonalnej (EOF)

i sprzężonej z nią EOF* zgodnie ze wzorami (6) i (7) (z opisywanej publikacji). W efek-

cie prowadzonych analiz wyprowadzono globalny wniosek o braku zależności sygnałów

rejestrowanych przez sensory GRACE i AMSR-E na obszarach wiecznej zmarzliny. Sen-

sory mikrofalowe nie będące wrażliwymi na zmiany w ekwiwalencie śniegu charakteryzuje

duży szum obserwacyjny w tych obszarach, podczas gdy GRACE rejestruje zmiany masy

wynikające ze zmiany pokrywy lodowej.

Druga część artykułu obejmuje analizy regionalne dla wyselekcjonowanych do-

rzeczy. Wyznaczone zostały współczynniki korelacji Pearsona oraz korelacji krzyżowej

uwzględniającej maksymalnie 6-miesięcznie przesunięcie fazowe pomiędzy sygnałami, które

zostały zaprezentowane na rysunkach 10 i 11 (z opisywanej publikacji). Analizy regionalne

przeprowadzono dla największych rzek ze wszystkich kontynentów, zapewniając różnorod-

ność pokrycia terenu, warunków klimatycznych w celu wyeliminowania stronniczości we

wnioskowaniu. Na rysunku 12 (z opisywanej publikacji) przedstawiono szeregi czasowe

∆TWS i SM oraz ich anomalie dla wybranego zestawu danych, a następnie przeprowa-

dzono dyskusję otrzymanych wyników.

Na podstawie przeprowadzonego badania wyszczególnić można następujące wnioski:

• Naturalnie zalesione obszary i duże otwarte przestrzenie wykorzystywane w rolnic-
twie przyczyniają się do wzrostu zgodności sygnałów między obserwacjami GRACE

i AMSR-E, co wskazuje na istotność parametru dotyczącego warunków tlenu w stre-

fach korzeniowych gleby.

• Istniejące ograniczenia glebowe, takie jak wieczna zmarzlina, znacznie eliminują uży-
teczność obserwacji mikrofalowych w zakresie X i C. Analizy przeprowadzone w sub-
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polarnych regionach za pomocą sensorów grawimetrycznych będą charakteryzowały

się przewagą w stosunku do pasywnych obserwacji mikrofalowych.

• Regiony o dużej wariancji sygnału uśrednionego na obszarze całego dorzecza mogą
powodować utratę części sygnału geofizycznego, co zaobserwowano i opisano na

przykładzie rzeki Zair.

• Przywołane przykłady w podrozdziale dla Europy wskazują na różnice między GRACE
i AMSR-E, prowadzący do wniosku o niekorzystnych warunkach wynikających z ogra-

niczeń glebowych i znacznej urbanizacji obszaru.

• Zrozumienie ograniczeń wpływających na szybkość wykrywania zmian i spójność
w obserwacjach prowadzonych przy użyciu różnych metod i czujników ma wymierny

wpływ na jakość dostarczanych rozwiązań do predykcji geozagrożeń.

• Synergia pomiarów ∆TWS i SM może zapewnić lepsze i wysokiej rozdzielczości
zrozumienie procesów na Ziemi związanych z obiegiem wody. Złożoność procesów

i warunków glebowych wpływa na wykrywanie i kartowanie zagrożeń naturalnych,

takich jak susze czy powodzie, w skalach globalnej lub regionalej.

• Badanie pozostawia otwarte pytanie o utratę danych przestrzennych spowodowaną
filtrowaniem danych GRACE o niskiej rozdzielczości czasowo - przestrzennej.

6.5 Publikacja [5]

Szabó, V., Osińska-Skotak, K. and Olszak, T. (2024) ’Using machine learning techniques

to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave

data’, Miscellanea Geographica - Regional Studies on Development, Vol. 28, No. 2 - 2024,

doi: 10.2478/mgrsd-2023-0033

100 pkt MEiN; IF: 0.80

Publikacja [5] porusza problematykę synergetycznego wykorzystania teledetekcyjnych da-

nych mikrofalowych oraz satelitarnych danych grawimetrycznych w celu modelowania

zmian zachodzących w zasobach wodych na podstawie danych z misji AMSR-E i GRACE.

W badaniu przeanalizowano skuteczność różnych algorytmów uczenia maszynowego w mo-

delowaniu wartości ∆TWS. Wyniki przedstawione w publikacji [4] zwracają uwagę na ob-

szary zalesione i rolnicze, gdzie obserwacje GRACE i AMSR-E wykazują silną zgodność,

podkreślając znaczenie dobrze natlenionych stref korzeniowych gleby. Przeprowadzone

badanie identyfikuje ograniczenia związane z obecnością wiecznej zmarzliny na obszarach

okołobiegunowych, która wpływa na wykorzystanie obserwacji mikrofalowych z pasma
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X i C, rejestrowanych przez misję AMSR-E. Mimo ograniczonej korelacji w tych obsza-

rach, modelowanie ∆TWS przy użyciu danych z AMSR-E okazuje się skuteczne, nawet

w obszarach o dużej amplitudzie zmian, takich jak region Amazonii. Wyzwania zwią-

zane z modelowaniem zmian hydrologicznych w obszarach rolniczych są również widoczne

w wynikach przeprowadzonego eksperymentu badawczego, ze wskazaniem na wpływ czyn-

ników takich jak nawadnianie, przepuszczalność wody do głębszych warstw wodonośnych

oraz zmienność okresów wegetacji. Eksperyment skupił się na przecięciu zbiorów danych

sensorów GRACE i AMSR-E w okresie od 2002 do 2012 roku, strategicznie wybranym

w celu maksymalizacji nakładania się zbiorów danych. Dane wejściowe do treningu modeli

ML zostały starannie zorganizowane w formie tabelarycznej, gdzie każdy punkt danych

odpowiadał macierzy reprezentującej różne epoki pomiarowe. Kolumny zawierały predyk-

tory SM AMSR-E z pasm C i X, szerokości i długości geograficzne oraz zmienne dotyczące

fal roczych i półrocznych. Ta macierz odpowiada wektorowi zawierającemu ciągłe zmienne

∆TWS, pełniącemu rolę zmiennej docelowej. Przed fazą treningu, odrębna część losowo

wybranych danych powinna zostać wyznaczona w celu przetestowania dokładności i ewa-

luacji modelu. By uzyskać istotność statystyczną wyników modelu, ustalono minimalną

liczbę próbek włączonych do zbioru testowego. Dane z lat 2002-2008 zostały uwzględnione

w zbiorze treningowym, a dane z lat 2008-2012 zostały uwzględnione w zbiorze testowym.

Wybór algorytmów regresji został podyktowany ich sprawdzoną skutecznością w obsłudze

różnorodnych zbiorów danych i cech oraz ich przydatnością do modelowania badanego zja-

wiska. Korzystając z wcześniejszych badań, w których oceniono różne algorytmy uczenia

maszynowego do zadań regresji, zidentyfikowano kilka popularnych metod ze względu na

ich stabilne wyniki przy różnych charakterystykach danych. Wybór różnorodnych metod

zapewnił wszechstronne eksplorowanie przestrzeni regresji i ułatwił solidne modelowanie

badanego zjawiska, uwzględniając specyficzne cechy każdej z wybranych technik. Osią-

gnięte wyniki na próbie danych testowych przedstawiono w tabeli nr 1 publikacji [5].

Najlepsze wyniki osiągnięto za pomocą metod związanych z Lasami Losowymi, takimi

jak Random Forest Regressor, Extra Trees Regressor oraz Extreme Gradient Boosting,

uzyskując satysfakcjonujące wartości R2 większe od 0.7, co pokazuje zgodność z usta-

lonymi standardami poprzez badaczy wskazywanymi w podobnych pracach naukowych.

Rozkład przestrzenny błędów pokazano na rysunku nr 2 tej pracy. W kolejnym etapie

przeprowadzono dyskusję możliwośći łączenia pomiarów lokalnych zmian hydrologicznych

w warstwach wodonośnych na podstawie synergii absolutnych pomiarów grawimetrycz-

nych z pomiarami satelitarnymi. W publikacji [4] wskazano, że wielkość zlewni rzecz-

nych nie wykazuje bezpośredniej korelacji z rozbieżnościami w sygnałach uzyskiwanych

z GRACE i AMSR-E. Europejskie rzeki, takie jak Dunaj i Wisła, wykazują równoległe

przesunięcia w sygnałach hydrologicznych, gdy obserwowane są za pomocą zarówno czuj-
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ników grawimetrycznych, jak i mikrofalowych. Obserwacje z pasm X- i C wprowadzają

bardziej wyraźną wariancję sygnału w porównaniu z obserwacjami GRACE. W rezulta-

cie zidentyfikowane anomalie charakteryzują się podwyższonym poziomem szumu w tych

zakresach częstotliwości. Podobnie jak w pracy [4], w przypadku pracy nr [5] przewi-

dywanie fali powodziowej na podstawie danych SM z AMSR-E było nieudane. Metryki

dla predykcji dla tego obszaru wykazują wartości, takie jak NSE = -0.19, RMSE =

0.04 [m], NRMSE = 0.23, R2 = 0.27, i potwierdzają, że determinacja anomalii w tym

obszarze widocznych w lokalnych pomiarach absolutnych w latach 2010-2011 jest zada-

niem trudnym. Wymagałoby to prawdopodobnie danych ze znacznie dłuższego okresu

obserwacji, w którym obserwowane byłyby także zjawiska powodzi o różnym nasileniu.

Jednakże jak wskazano w pracach nr [1][2] odpowiednie opracowanie obserwacji grawi-

metrycznych wspomaga modelowanie ekstremalnych zawisk klimatycznych, co w pracy

nr [5] potwierdzono obserwując wyraźne korelacje między pomiarami absolutnymi a SM

z AMSR-E w określonych okresach. Ujemna anomalia z grudnia 2009 roku była widoczna

w obu seriach czasowych, co jest dowodem na wrażliwość sygnału grawimetrycznego na

zmiany środowiskowe w głębszych warstwach wodonośnych.

Na podstawie przeprowadzonego badania wyszczególnić można następujące wnioski:

• Badanie wskazuje na wysoką skuteczność wykorzystania danych teledetekcyjnych
AMSR-E do modelowania wartości ∆TWS na podstawie obserwacji z misji GRACE.

Rezultaty te potwierdziły skuteczność i możliwość zastosowania technik uczenia ma-

szynowego w analizie zmian zasobów wodnych.

• Obszary takie jak obszary wiecznej zmarzliny czy obszary intensywnej działalności
rolniczej, mogą wprowadzać pewne wyzwania w dokładnym modelowaniu ∆TWS,

ale mimo to istnieje potencjał do skutecznego zastosowania danych teledetekcyjnych

do uzupełniania szeregów czasowych obserwacji grawimetrycznych.

• Określenie i przewidywanie anomalii dotyczących ekstremalnych zjawisk pogodo-
wych widocznych w lokalnych pomiarach absolutnych w poszczególnych latach jest

zadaniem trudnym, jednakże istnieją okresy dla których jest to możliwe. Dzięki

synergicznemu wykorzystaniu obserwacji teledetekcyjnych i grawimetrycznych moż-

liwe jest uzyskanie zadawalających rezultatów w kontekście modelowania zmian hu-

drologicznych.
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7 Podsumowanie

W przedstawionej rozprawie doktorskiej podjęta została tematyka łączenia danych z sen-

sorów mikrofalowych i grawimetrycznych dalekiego oraz bliskiego zasięgu. W cyklu pięciu

publikacji omówiono poszczególne aspekty badawcze. Zbadano zależności tychże sensorów

w kontekście obserwacji ekstremalnych zjawisk pogodowych. Oceniono wpływ metod fil-

tracji danych GRACE poziomu 2 na możliwość uchwycenia minimalnej wielkości badanych

zjawisk geofizycznych przez satelitarne sensory grawimetryczne. Przeprowadzona analiza

szeregów czasowych wskazała, iż przy odpowiednim dobraniu sposobu filtracji możliwe

jest uchwycenie zjawisk takich jak powodzie hydrologiczne charakteryzujące sie wartością

anomalii wykrywaną przez absolutne pomiary grawimetryczne na poziomie 3.5–14 µGal.
Doprowadziło to bezpośrednio do ukierunkowania kolejnych badań w stronę analiz moż-

liwości łączenia danych GRACE z pomiarami o innym spektrum czasowo-przestrzennym,

w tym modeli hydrologicznych. W badaniach posłużono się wybranymi uprzed-

nio metodami statystycznymi w tym metodami wytłumaczalnej sztucznej in-

teligencji (XAI) wskazując na istotność czynników i parametrów fizycznych

wpływających na rejestrację zmian poziomu wody w glebie spełniając tym sa-

mym wyznaczony cel badawczy.Wykazana duża istotność cech fizycznych związanych

z wilgotnością gleby oraz konieczność zastosowania spójnych i długich szeregów obserwa-

cyjnych zadecydowała o wykorzystaniu w kolejnych badaniach danych dotyczących SM

z misji AMSR-E. W pracy wykorzystano techniki rekonstrukcji sygnału używając poszcze-

gólnych sposobów modelowania regresji zjawiska ∆TWS. W badaniach wskazano na

istniejące obszary i uwarunkowania fizyczne tych przestrzeni, dla których jest

możliwe dokładnie interpolowanie czasowo-przestrzenne danych GRACE na

podstawie obserwacji z innych sensorów spełniając tym samym pierwszy cel

badawczy i potwierdzając możliwość wzajemnej integracji danych teledetek-

cyjnych z grawimetrycznymi pod kątem uzyskania informacji i rozkładu wody

w glebie.

Na podstawie przeprowadzonych badań potwierdzono postawioną tezę wykazu-

jąc, iż istnieją uwarunkowania, dla których występuje duża zgodność rejestra-

cji zmian zawartości wód przypowierzchniowych obserwowanych za pomocą

mikrofalowych technik teledetekcyjnych w zestawieniu ze zmianami całkowi-

tego ekwiwalentu wodnego obserwowanymi przez satelitarne misje grawime-

tryczne. Przeprowadzony proces badawczy oraz relacje między publikacjami tworzącymi

cykl przedstawiono na rysunku (6).
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Rysunek 6: Przeprowadzony proces badawczy, cele badawcze oraz relacje między publi-

kacjami tworzącymi cykl. Żródło: Opracowanie własne.
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Na podstawie wyników badań zaprezentowanych w niniejszej rozprawie wyciągnięto na-

stępujące wnioski, które w opinii autora zasługują na wyszczególnienie:

• Sposób przetwarzania danych grawimetrycznych z misji GRACE i GRACE-FO jest
niezwykle istotny w kontekście interpretacji prowadzonych analiz. Dokładności uzy-

skiwanych wyników zależą od przestrzenno-czasowych komponentów badanego sy-

gnału geofizycznego, dlatego metodyka opracowania obserwacji jest kluczowa dla

naukowców.

• Osiągnięcie zadowalających rezultatów przy analizie wychwytywania klimatycznych
ekstremalnych wydarzeń takich jak susze i powodzie może z powodzeniem być

wykonywane przy pomocy satelitarnych sensorów grawimetrycznych. Zastosowa-

nie odpowiedniej filtracji przestrzennej sygnału jest znaczące dla wyników. Metody

monitorowania zmian pola grawitacyjnego z pułapu satelitarnego okazały się sku-

teczne w identyfikacji ekstremalnych zdarzeń klimatologicznych na skalę regionalną

(< 100km2). Analiza korelacji między różnymi danymi pomiarowymi in-situ po-

twierdziła ich zgodność na poziomie RMSE 4.5 - 5.2 µGal i korelacji krzyżowej

0.7-0.8, a przy uwzględnieniu korekty pomiarów związanej z czynnikami lokalnymi

można stwierdzić znaczącą poprawę zbieżności tych sygnałów do wartości RMSE

4.1-5.2 µGal i korelacji krzyżowej 0.75-0.85.

• Modelowanie lokalnych czynników hydrologicznych, terenowych oraz antropogenicz-
nych przy regionalnej analizie dokładnościowej grawimetrycznych obserwacji na-

ziemnych i satelitarnych jest kluczowe w przypadku obserwacji ponadstandardo-

wych warunków hydrologicznych. Usuwanie sezonowych komponentów z obserwacji

umożliwia uwidocznienie anomalii związanych z sygnałem geofizycznym w postaci

zwiększonej lub zmniejszonej zawartości wody w glebie.

• Nowoczesne techniki uczenia maszynowego mogą być z powodzeniem użyte w za-
daniach związanych z rekonstrukcją sygnału ∆TWS obserwowanego przez misje

GRACE i GRACE-FO na podstawie wielowymiarowych danych z modeli GLDAS.

Kluczowe jest dobranie odpowiednich parametrów fizycznych modelu do tego zada-

nia. W zależności od prowadzonych analiz regionalnych w podejściu czasowym lub

globalnych w ujęciu czasowo-przestrzennym mogą istnieć różnice w istotności zasto-

sowanych zmiennych, jednakże ogólna istotność grup zmiennych jest podobna i za-

chowana niezależnie od podejścia. Większej uwagi zdecydowanie wymagają obszary

o silnych czynnikach antropogenicznych. W analizie dokładnościowej takie obszary

charakteryzują się gorszymi metrykami. W zależności od warunków ukształtowania

stref wodonośnych wartości spływu podpowierzchniowego i migracji wód są silną

składową sygnału ∆TWS i nie powinny być pomijalne przy modelowaniu.
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• Asymilacja danych grawimetrycznych i teledetekcyjnych, takich jak obserwacje ∆TWS
i SM, ma kluczowe znaczenie dla lepszego zrozumienia procesów związanych z obie-

giem wody na Ziemi. Synergia pomiarów ∆TWS i SM może zapewnić lepsze i wy-

sokiej rozdzielczości zrozumienie procesów na Ziemi związanych z obiegiem wody.

Złożoność procesów i warunków glebowych wpływa na wykrywanie i mapowanie za-

grożeń naturalnych, takich jak susze czy powodzie, na skalę globalną lub regionalną.

Zrozumienie ograniczeń wpływających na prędkość wykrywania zmian i spójności

w obserwacjach za pomocą różnych metod i sensorów ma rzeczywisty wpływ na

jakość rozwiązań stosowanych do przewidywania zagrożeń geofizycznych.

• Przeprowadzone badania wykazały, że obszary zalesione i duże przestrzenie rolnicze
poprawiają zgodność między obserwacjami GRACE a AMSR-E charakteryzując się

współczynnikiem korelacji pearsona na poziomie 0.8, podkreślając znaczenie para-

metru dotyczącego zawartości tlenu w strefach korzeniowych gleby. Ograniczenia

glebowe, takie jak wieczna zmarzlina, eliminują użyteczność obserwacji mikrofalo-

wych w zakresie X i C. Współczynnik NSE na poziomie -0.5 przy krekonstrukcji

sygnału ∆TWS na tych obszarach oraz ujemna korelacja -0.5 - -0.25 wskazują na

niską koherencję obserwacji mikrofalowych z grawimetrycznymi w tynm obszarze.

Badanie wykazało, że zrozumienie tych ograniczeń wpływa na jakość i spójność mo-

delowanych wartości, co jest kluczowe dla predykcji geozagrożeń. Synergia między

pomiarami ∆TWS i SM poprawia zrozumienie obiegu wody na Ziemi, ale istnieje

pytanie o utratę danych przestrzennych związanych z filtrowaniem danych GRACE

o niskiej rozdzielczości czasowo (miesięczne rozwiązania) - przestrzennej (300 x 300

km) w stosunku do pomiarów teledetekcyjnych (dane dobowe, średnia rozdzielczość

przestrzenna 25 x 25 km).

Wyniki przeprowadzonych badań są istotnym elementem poszerzającym wiedzę w zakre-

sie świadomości naukowców zajmujących się opracowywaniem danych grawimetrycznych

rozwiązań miesięcznych modeli geopotencjału. Opracowywane dane znajdują swoich od-

biorców w dziedzinach hydrologii, fizyki Ziemi, ale przede wszystkim w rolnictwie, klima-

tologii, gospodarce wodnej. Bez dobrego zrozumienia praw natury nie jest możliwe pełne

korzystanie z jej darów w postaci niezwykle cennego surowca jakim jest woda. Badany

temat jest jednym z wielu istotnych kręgów zainteresowań międzynarodowej społeczności

naukowej i zgodny z celami GGOS.
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8 Wykaz użytych skrótów i akronimów

∆TWS (ang. Total Water Storage changes)

ACC (ang. Super STAR Accelorometers)

AMSR-2 (ang. Advanced Microwave Scanning Radiometer -2)

AMSR-3 (ang. Advanced Microwave Scanning Radiometer -3)

AMSR-E (ang. Advanced Microwave Scanning Radiometer -E)

ANN (ang. artificial neural networks)

ARIMA (ang. AutoRegressive Integrated Moving Average)

CC (Współczynnik korelacji Pearsona)

CDF (ang. Cumulative Distribution Function)

CES (ang. Coarse Earth and Sun Sensor)

CHAMP (ang. Challenging Minisatellite Payload )

CLM (ang. Community Land Model)

CMEM (ang. Community Microwave Emission Model)

CMTA (ang. Center of Mass Trim Assembly)

CNN (ang. convolutional neural network)

CSR (ang. Center for Sapce Research)

DLR (ger. Deutsches Zentrum für Luft-und Raumfahrt)

DNN (ang. deep neural network)

EMD (ang. Empirical Mode Decomposition)

EOF (ang. Empirical Orthogonal Functions)

EOS (ang. Earth Observing System)

ESA (ang. European Space Agency)

GEOSS (ang. Global Earth Observation System of Systems)

GFZ (ger. GeoForschungsZentrum
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GGOS (ang. Global Geodetic Observing System)

GHRC DAAC (ang. Global Hydrometeorology Resource Center Distributed Active Ar-

chive Center )

GIA (ang. Glacial isostatic adjustment)

GLDAS (ang. Global Land Data Assimilation System)

GOCE (ang. Gravity field and steady-state Ocean Circulation Explorer )

GOSAT-GW (ang. Global Observing SATellite for Greenhouse gases and Water cycle)

GPS (ang. Global Positioning System)

GRACE (ang. Gravity Recovery And Climate Experiment)

GRACE-FO (ang. Grace Follow on)

GSA (ang. Globalstar Silicon Solar Cell Arrays)

GWS (ang. groundwater storage variations)

HL (ang. high–low)

IERS2010 (ang. International Earth Rotation and Reference Systems Service Conven-

tion)

ITGRF (ang. International Terrestrial Gravity Reference Frame)

ITRF (ang. International Terrestrial Reference Frame)

ITRS (ang. International Terrestrial Reference System)

JAXA (ang. Japan Aerospace Exploration Agency)

JOZE (obserwatorium Astronomiczno-Geodezyjnym w Józefosławiu Politechniki War-

szawskiej)

JPL (ang. Jet Propulsion Laboratory)

KBR (ang. K-band Ranging System)

KS (Test Kolmogorova-Smirnova)

L-MEB (ang. Land Microwave Emission Model for Brightness Temperature)

LAGEOS (ang. Laser Geodynamics Satellite)
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LARS (ang. Least Angle Regression)

LightGBM (ang. Light Gradient Boosting Machine)

LL-SST (ang. low–low satellite-to-satellite tracking)

LPRM (ang. Land Parameter Retrieval Model)

LRI (ang. Laser Range Interferometry)

LSSA (ang. Least-Squares Spectral Analysis)

MCA (ang. Maximum Covariance Analysis)

ML (ang. machine learning)

MODIS (ang. Moderate Resolution Imaging Spectroradiometer )

NASA (ang. National Aeronautics and Space Administration)

NRMSE (ang. Normalized Root Mean Square Error)

NSE (ang. Nash-Sutcliffe Efficiency)

NSIDC (ang. National Snow and Ice Data Center)

PCA (ang. Principal Component Analysis)

RFI (ang. radio frequency interference)

RMSE (ang. Root Mean Square Error)

RNN (ang. Recurrent Neural Network)

SARIMAX (ang. seasonal autoregressive integrated moving average model)

SCA (ang. Soil Canopy Atmosphere)

SCA (ang.Star Camera Assembly)

SEATS (ang. Seasonal Extraction in ARIMA Time Series)

SHAP (ang. SHapley Additive exPlanations)

SIPS-RSS (ang. Science Investigator-led Processing Systems - Remote Sensing System)

SLR (ang. satellite laser ranging)

SM (ang. Soil Moisture)
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SMC (ang. Soil Moisture Content)

STL (ang. seasonal trend decomposition)

SVM (ang. Support Vector Machines)

TSA (ang. temporal stability analysis)

TWSA (ang. Total Water Storage anomaly)

USA (ang. United States of America)

USO (ang. Ultra Stable Oscillator)

UTCSR (ang. University of Texas at Austin - Center for Space Research)

VIC (ang. Variable Infltration Capacity)

XAI (ang. explainable artificial intelligence)

XGBoost (ang. Extreme gradient boosting)
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in the la plata basin in soil moisture data and grace. Remote Sensing, 7(6):7324–7349.
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Abstract: This study deals with the analysis of temporal
gravity variations in central Poland, deduced from multi-
ple sources and covering the period from 2002–2016. The
gravity data sets used comprise GRACEmonthly solutions,
GLDAS land surface models and absolute gravimeter mea-
surements from the FG-5 gravimeter located in Józefos-
ław, Poland. All data are corrected using standard pro-
cessing methods in order to include the same gravity ef-
fects. After removing the annual and semi-annual com-
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time series are derived and examined for signatures of ex-
tremehydrological events. The signatures of several severe
drought and flood conditions affecting Poland and central
Europe are identified. A complementary correlation anal-
ysis is performed to assess the level of agreement between
different data sources. A higher correlation is shownwhen
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1 Introduction

The main geophysical process contributing to spatiotem-
poral gravity changes on global scale is the redistribution
of water masses. This led to an increase of land hydrology
studies that utilize gravity data and thedevelopment of im-
proved landhydrologymodels by assimilating gravity data
into already existing models [1–3]. The accurate monitor-
ing of gravity field changes on global scale and with uni-
form coverage can be performed only by the Gravity Re-
covery and Climate Experiment (GRACE; [4]) twin-satellite
system. GRACE mission was launched in March 2002 and
ended in October 2017, providing monthly gravity field so-
lutions for fifteen years with sporadic interruptions.

Amongst the numerous applications of GRACE, moni-
toring extreme hydrological events, such as droughts and
floods, is ofmajor importance. Groundwater depletion and
drought conditions are repeatedly reported for northern
India [5], [6], China [7], [8], the Middle East [9], [10] and
California Central Valley [11–13]. In central Europe, Ander-
sen et al. [14] identified signatures of the 2003 heat wave
in GRACE data that were also corroborated by supercon-
ducting gravimeter measurements, hydrology models and
water-balance estimates. Increased terrestrial water stor-
age (TWS) trends and extreme flood events are also doc-
umented by previous studies using GRACE data. The in-
fluence of extreme weather conditions in GRACE-derived
equivalent water height (EWH) in central Europe using
wavelet analysis is studied in [15]. They identified signa-
tures of high precipitation events and dry seasons, and
demonstrated the high correlation of GRACE models with
atmospheric and hydrological data. Chen et al. [16] ana-
lyzed GRACE-derived EWH changes to study the spatial
and temporal evolution of the 2009 exceptional Amazon
flood. Vishwakarma et al. [17] investigated the potential of
GRACE to detect floods of limited spatiotemporal extent
by analyzing time series of EWH residuals. More recently,
Gouweleeuw et al. [18] used daily GRACE solutions tomon-
itor the major flood events in the Ganges-Brahmaputra
Delta during 2004 and 2007.

Although many studies have been performed on the
evaluation of extreme hydrological events using GRACE,
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there is a gap in the published literature concerning such
events in central Europe during the recent decade. The
main objective of our study is to detect and monitor ex-
tremehydrological events in east-central Poland from2002
to 2016 and investigate their gravity signatures.Weanalyze
time series of gravity changes coming from three indepen-
dent sources, i. e., GRACE monthly solutions, Global Land
Data Assimilation System (GLDAS; [19]) monthly models
and absolute gravimeter measurements. GLDAS models
provide global grids of numerous land hydrology param-
eters at different spatial and temporal scales. GLDAS also
incorporates four different land surface models (LSMs),
namely, the Community Land Model (CLM), Mosaic, Noah
and Variable Infiltration Capacity (VIC) LSMs. Since the
first GRACE solutions became available, GLDAS data are
routinely compared with the former in hydrological stud-
ies with a fairly good level of agreement [20–24]. The abso-
lute gravimetermeasurements are obtained from thegravi-
metric station at the Astro-Geodetic Observatory (AGO) in
Józefosław (Figure 1), located in the center of our study
area. The gravimetric station operates since 2005, result-
ing in the longest time series of gravity measurements in
Poland at this time [25]. Absolute gravity measurements
have been used in the past, together with GRACE and hy-
drology models, to compare temporal gravity variations
and validate GRACE data [26–29].

Figure 1: Location of the Astro-Geodetic Observatory in Józefosław,
Poland.

2 Data and methods
2.1 Absolute gravity data
2.1.1 Gravimeter site and study area

The FG-5 no. 230 absolute gravimeter, installed on a pillar
in the basement of themainAGObuilding, is used to deter-

mine absolute gravity values at monthly intervals. The pil-
lar is located 5.7 meters below ground level. The gravime-
ter’s total uncertainty is 2 μGal and is comparable with the
accuracy of the GRACE-derived gravity field series, which
is at the level of a few μGal. A better accuracy in grav-
ity measurements can be achieved only by using super-
conducting gravimeters. In addition to gravimetric obser-
vations, the AGO monitors the changes in environmental
conditions, including the groundwater level, around the
gravity station [25]. The groundwater level is measured by
a piezometer and ranges from approximately −8 to −12me-
ters. The hydro-geological situation near the gravimetric
station is shown in Figure 2 and represents a typical struc-
ture for quaternary post-glacial sediments with sands ac-
cumulated on boulder clays.

2.1.2 Influence of local site effects

Gravimeters are more sensitive to temporal gravity varia-
tions occurring in their immediate surroundings because
gravity magnitude is inversely proportional to the squared
distance from the attracting masses. Local site effects
should therefore be studied in order to validate geomet-
ric assumptions made in the gravity processing (e. g.,
Bouguer slab approximation) and be taken into account
for the accurate interpretation of gravity changes. The
most important local site effects, also highlighted in previ-
ous studies, are the topography and building housing. In
case the surrounding ground surface is above the gravime-
ter site (i. e., gravimeter located next to a hill), water stor-
age changes occurring at shallow depth result in nega-
tive gravity response. The spatial distributionofwater stor-
age changes are also directly affected by buildings. Build-
ing roofs prevent rain water from directly infiltrating the
area beneath the building [31]. This is known as “um-
brella” effect [32]. The foundation of a building also forms
a zone where no water storage change occurs. The studies
of [31] and [33], focused entirely on the correction of local
site effects, are based on in-situ data (e. g., elevation, soil
moisture and evapotranspiration) and advanced model-
ing of the hydrological processes in the surrounding area.
Due to the absence of in-situ hydrological data around the
gravimeter site and limited knowledge of the very local hy-
drogeology, local site effects in the AGO region are taken
into account using a simplified approach based on [31].

In order to examine the influence of the topography,
digital elevation model (DEM) data from the Polish Geo-
portal of Spatial Information Infrastructure are used. The
DEM data provide normal heights in a rectangular grid
with a spatial resolution of 100 meters. The grid coordi-
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Figure 2: Scheme of geological profile in Józefosław (reproduction based on [30]).

nates refer to the State Geodetic Coordinate System 1992
(PUWG1992) and the elevation data to the Kronsztadt86
local vertical datum. Figure 3a shows the elevation differ-
ences with respect to gravimeter site around an area of 2.5
by 2.5 km. In the closer vicinity of a few hundred meters
around the gravimeter site, elevation differences donot ex-
ceed one meter and the area can be characterized as al-
most flat. The effect of the topography on measured grav-
ity is quantified by comparing the gravity response of a 1m
water mass change occurring on the topographic surface
with the response of the same mass change occurring on
an infinite slab (Bouguer plate). The ratio of the resulting
gravity responses, denoted as Ctopo, is equal to one for an
entirely flat terrain [31]. Before calculating Ctopo, the DEM
spatial resolution is artificially increased to 25 meters us-
ing cubic interpolation to avoid step effects. The DEM data
are also corrected for the curvature of the equipotential
surfaces, as follows [34]:

hcorr = hDEM −
1
2R

d2, (1)

where hcorr and hDEM is the corrected and original normal
height, R is the Earth’s equatorial radius and d is the hor-
izontal distance of each grid cell from the gravimeter lo-
cation. The gravity response for the evaluation of Ctopo is
calculatedusing rectangular prisms asmass elements [35],
[36]. The gravity effect of each water prism is given in Fig-
ure 3b. Negative gravity values denote that prisms are lo-
cated higher than the gravimeter site. The maximum cur-
vature at the area of Figure 3 is approximately 1 meter, re-
sulting in a gravity response of 0.01 μGal. Therefore, the
effect of the curvature of the equipotential surface is neg-
ligible for such local cases. Given the results of Figure 3b,
99% of the gravity response is produced by water masses
inside a radius of 125meters. The ratioCtopo is equal to0.99,
which denotes an almost flat terrain.

For the building umbrella effect, the gravity response
of a 1m water mass change occurring in an area that

matches the building shape is comparedwith the response
of an infinite slab. The ratio of the two gravity responses,
denoted as Cbldg , is close to one when the building has a
significant effect on the signal sensed by the gravimeter.
Cbldg depends on the building footprint and shape, and
the location of the gravimeter relative to the building. The
AGObuilding ismostly rectangular with a rotunda-shaped
room (dotted circle in Figure 4) of 3.8meters radius located
in the center, across the main entrance. The rotunda is ap-
proximated by a square of 7.6 by 7.6 meters and the rest
of the building is divided into three additional rectangles,
given in Figure 4. The building footprint covers a total area
of 630m2. The gravity response at the gravimeter location
is calculated by adding the gravity response of the four
prisms in Figure 4. The ratio Cbldg is equal to 0.93, indicat-
ing that the umbrella effect is significant. More advanced
methods for accounting building effects are given in [33].
The total influence of local site effects Ctotal = Ctopo − Cbldg
is equal to 0.06 for the gravimeter located at theAGObuild-
ing.

2.1.3 Gravimeter data processing

All absolute gravity values are corrected for the well-
known gravity effects due to Earth and ocean tides, pole
tide and atmospheric pressure. Tidal effects are calculated
using the ETGTAB software [37]with the tidal potential cat-
alog of [38], and the FES2004 ocean tide model [39]. For
the polar motion correction, mean pole coordinates from
Bulletin B of Earth Orientation Center are interpolated to
the mean epoch of each gravity session. Atmospheric cor-
rection is applied based on the pressure differences from
the gravity station height, using a value of 0.3 μGal/mbar.
Instrumental corrections such as the reduction to the con-
stant height with measured vertical gravity gradient and
the absolute reference level offset, determined during the

Authenticated | viktor.szabo@pw.edu.pl author's copy
Download Date | 4/21/19 4:47 PM



4 | J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland

Figure 3: (a) Elevation differences with respect to gravimeter site. (b) Contribution of gravity response from a water mass change of 1m at the
gravimeter site, calculated for each prismatic body.

Figure 4: Approximate layout of AGO building for the calculation of
Cbldg. The yellow triangle shows the gravimeter location and the red
triangle the main entrance.

Figure 5: Gravity change and groundwater level change at the AGO.

ICAG/ECAG International Comparison campaigns, are ap-
plied. The time series of the observed gravity and ground-
water level change, after a long-term mean is removed,
are shown in Figure 5. The time series exhibits time gaps
around 2009, 2012, 2013 and 2014 related to the gravimeter
maintenance.

Figure 6: Time series of hydrological loading in terms of gravity.
Light color denotes the complete time series, while dark color the
values interpolated to the gravimeter measurement epochs.

We additionally use the surface gravity products of
the EOST Loading Service [40] to include the hydrological
loading in the gravimeter time series. This procedure is ex-
plained later in the paper. The hydrological loading is esti-
mated from the GLDAS Noah v. 2.1 model. The spatial and
temporal resolution of GLDAS Noah v. 2.1 are 0.25° and 3
hours, respectively. The EOST service provides time series
of surface gravity change that account for the influence of
local and non-local hydrology, presented in Figure 6 after
removing seasonal components. GLDASdata do notmodel
groundwater, therefore the time series of Figure 6 corre-
spond mainly to surface hydrological processes.

The absolute gravimeter measurements are not di-
rectly comparable with GRACE- and GLDAS-derived esti-
mates of gravity changes for two main reasons: (a) the
gravimeter is located below the Earth’s surface and (b) the
gravimetermeasurements contain local hydrology signals.
Gravimeters located in underground stations provide a sig-
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nal influenced by masses from both above and below the
sensor. The resulting attraction of these two components
oppose each other [28]. In such cases, it is more difficult to
interpret gravity changes and infer conclusions about oc-
curring geophysical events. Correct interpretation is pos-
sible only by accurately modeling the geological structure
and the hydrological events of the region. Here we dis-
cuss a simpler approach to account for the gravimeter lo-
cation. First, we distinguish two components that form
the resulting gravity measured by the gravimeter. The first
component (surface component) includes the attraction
from the solid masses (gs1) and water masses (gh1) above
the gravimeter. If the gravimeter is located a few meters
below ground, gh1 is mainly coming from soil moisture,
water stored in canopy and surface water. Local site ef-
fects are also included in the surface component. The sec-
ond component (deep component) comprises the attrac-
tion from solid masses (gs2) and water masses (gh2) below
the gravimeter. The constituent gh2 is mostly due to under-
ground water [31]. The resulting attraction measured by
the gravimeter is (Figure 7a):

g = gs2 + gh2 − gs1 − gh1. (2)

The corresponding gravity measured by a gravimeter on
the Earth’s surface would be (Figure 7b):

g� = g�s2 + g�h2 + gs1 + gh1, (3)

where prime denotes quantities measured on the surface.
When the gravity changes are studied, and assuming that
the soil mass distribution is constant (Δgs1 = 0, Δgs2 = 0),
the conversion of Δg to Δg� is done as follows:

Δg� = Δg + 2Δgh1. (4)

The surface water mass change Δgh1 is estimated here us-
ing the EOST hydrological loading data and is equal to the
sum of the local and non-local contribution, denoted as

Figure 7: Gravity components sensed by a gravimeter located (a)
below and (b) above the ground.

Δglh1 and Δgnlh1, respectively. The local contribution is cal-
culated by the EOST service using a simple Bouguer ap-
proximation and needs to be corrected for local site ef-
fects, whereas the non-local contribution is calculated us-
ing Greens function [41]. After correcting the local contri-
bution for deviations from theBouguer approximation due
to local site effects, Eq. (4) takes the following form:

Δg� = Δg + 2(CtotalΔglh1 + Δgnlh1) (5)

After correcting for the gravimeter location, we account
for local hydrology effects. Local influences of water stor-
age changes at shallow depth are removed using the local
contribution of EOST hydrological loading. The corrected
gravity changes, after applying the local site effect correc-
tion are:

Δgc1 = Δg
� − CtotalΔglh1. (6)

Local effects of groundwater storage changes are removed
using the available in-situ groundwater level changes. As-
suming that a changeofΔh in the groundwater level results
in a change of Δghyd in the measured gravity based on the
relation [42]:

Δghyd = 41.92SyΔh, (7)

the impact of local groundwater changes on gravity can
be calculated by estimating the specific yield coefficient
Sy using linear regression. The true value of specific yield
Sy depends on the hydrogeology of the study area (e. g.,
water properties of underground material). In practice,
the estimation of Sy also depends on instrument uncer-
tainties. Absolute gravimeter uncertainties are usually one
or sometimes two orders of magnitude greater than su-
perconducting gravimeter uncertainties. Wilson et al. [42]
state that superconducting gravimeters can sense storage
changes equivalent to a 2-mm water layer, whereas other
types of gravimeters are only able to sense changes that ex-
ceed the equivalent to a 40-mmwater layer. Therefore, the
Sy estimate of our study might not be in good agreement
with previous studies that use superconducting gravime-
ters. After calculating a specific yield Sy = 0.13 (slope of
best fitting line in Figure 8), the corrected gravity Δgc will
be given by:

Δgc = Δgc1 − Δghyd. (8)

2.2 GRACE

We use the RL06 of GRACE monthly solutions, distributed
by the Center for Space Research (CSR) and the Jet Propul-
sion Laboratory (JPL), fromAugust 2002 toDecember 2016.
RL06 solutions from the GeoForschungsZentrum (GFZ)
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Figure 8: Scatter plot of FG-5 gravity changes, corrected for gravime-
ter location and local hydrology at shallow depth, and groundwater
level changes.

were not included because they were only provided up
to 2011 during the preparation of our analysis. GRACE
monthly solutions (Level 2 products) are in the form of
Stokes coefficients Cn,m and Sn,m of degree n and order
m. Degree-1 coefficients (C1,0, C1,1 and S1,1) obtained from
Dr. Don Chambers and Dr. Jeniffer Bonin, University of
South Florida, are added to GRACE monthly solutions to
account for geocenter variations [43]. C2,0 coefficients are
replaced by SLR-derived ones [44]. C2,1 and S2,1 coefficients
are corrected for pole tide effects using the methodology
of Wahr et al. [45]. The viscoelastic response of the solid
Earth to themelting of icemasses from the last glacialmax-
imum is not expected to have significant influence in our
study area, therefore, no glacial isostatic adjustment (GIA)
correction is applied. Stokes coefficient changes ΔCn,m
and ΔSn,m are calculated by removing the GGM05C static
gravity field [46] from each monthly solution. Coefficient
changes mainly represent mass redistribution due to hy-
drological events but are highly affected by correlated er-
rors. These errors are suppressed by selectively applying
the empirical decorrelationfilter of SwensonandWahr [47]
using the methodology of Piretzidis et al. [48]. The selec-
tive decorrelation is performed using the SHADE toolbox
[49]. A 300-km Gaussian filter [50] is also applied to the
decorrelated coefficient changes. The gravity changes Δg
of a point with spherical coordinates (r, θ, λ) are expressed
in spherical harmonic expansion as follows [26]:

Δg(r, θ, λ) = 1
r
GM
R

nmax
∑
n=0(Rr )

n+1
(n + 1)

n
∑
m=0Pn,m(cos θ)

× (ΔCfn,m cosmλ + ΔSfn,m sinmλ), (9)

where GM is the Earth’s standard gravitational parameter,
R is the Earth’s radius, Pn,m are the normalized associated
Legendre functions and the superscript f denotes filtered

coefficient changes. The gravity changes Δgs of a point
on the Earth’s surface (i. e., r = R) are computed by tak-
ing into account the Earth’s elastic deformation due to
loading [28]:

Δgs(θ, λ) =
GM
R2

nmax
∑
n=0(n + 1 − 2hn

1 + kn
)

n
∑
m=0Pn,m(cos θ)

× (ΔCfn,m cosmλ + ΔSfn,m sinmλ), (10)

where hn and kn are the Love numbers, taken from [51].
The value of k1 is changed to 0.021 to account for the in-
cluded GRACE geocenter variations. Monthly grids of Δgs
are calculated with a spatial resolution of 1°, and a spatial
average is calculated for each epochby taking into account
grid points inside a radius of 250 km around Józefosław.
We also calculate a scale factor for the conversion of Δg to
Δgs using linear regression. The scale factor corresponds to
the slope of the best fitting line in Figure 9(a) and is equal
to 1.36 for both GRACE data sets. This value is in close
agreement with the value of 1.35 calculated by Neumeyer
et al. [27], although theydidnot take into account the effect
of kn. Crossley et al. [28] also found similar scale factors
(1.34 for GRGS solutions, 1.36 and 1.39 for CSR solutions
using different filtering techniques). The spatial averages
of Δgs are corrected for filter-induced signal damage using
a simple basin-scale gain factor of 1.06. This factor is de-
rived by a simulation using the four GLDAS LSMs and the
methodology of Landerer and Swenson [52]. The basin-
scale gain factor is shown as the slope of the best fitting
line in Figure 9(b). The GRACE-derived Δgs time series,
after filtering and rescaling, is presented in Figure 10.

2.3 Land surface models

The four GLDAS LSMs cover the period from January 2002
to December 2016. Global grids of TWS are calculated us-
ing the output components of average layer soil mois-
ture, total canopy water storage and snow water equiva-
lent from each LSM. TWS changes are derived by remov-
ing a long term mean from each monthly TWS grid. The
TWS changes are converted into mass change coefficients
{ΔĈhydn,m ,ΔŜhydn,m} using global spherical harmonic analysis,
and then into Stokes coefficient changes using [53]:

{
ΔChydn,m
ΔShydn,m} = 3ρwρave

1 + kn
2n + 1
{
ΔĈhydn,m
ΔŜhydn,m} , (11)

where ρw and ρave denote water density and the Earth’s av-
eragedensity, respectively. The coefficient changesderived
from Eq. (11) are also filtered with a 300-km Gaussian fil-
ter and used in Eq. (10) to calculate GLDAS-derived gravity
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Figure 9: (a) Scatter plot of GRACE Δg and Δgs calculated on the Earth’s surface. (b) Scatter plot of filtered and unfiltered GLDAS Δgs.

Figure 10: GRACE-derived Δgs.

Figure 11: GLDAS-derived Δgs.

changes on the Earth’s surface. The results after perform-
ing spatial averaging are shown in Figure 11.

2.4 Removal of periodic variations

Periodic variability of land hydrology is usually the pre-
dominant signal in GRACE time series. The annual and

semi-annual variations that comprise the periodic con-
stituent of gravity changes, denoted as Δ̃gs, should be re-
moved in order to reveal signatures of extreme hydrolog-
ical events. The reduced time series of gravity changes,
given by:

Δgr(t) = Δgs(t) − Δ̃gs(t), (12)

with t = t1, . . . , tN to denote the time epoch, contains pos-
sible periodic signals with period T = 3 months and T > 1
year, non-periodic signals and noise. Due to the presence
of gaps in the analyzed GRACE time series, the annual
and semi-annual signals are computed using two meth-
ods, i. e., least-squares spectral analysis (LSSA) and sea-
sonal trend decomposition using local regression (STL).
Another frequently used method to isolate and examine
seasonal patterns in time series is the use of empirical or-
thogonal function (EOF) decomposition. The studies [27],
[28] and [29] provide good examples of comparison analy-
sis between GRACE-derived gravity variations with super-
conducting gravimeter observations in several European
sites using EOF decomposition. EOF decomposition is not
preferred in this study due to time gaps in GRACE time se-
ries.

LSSA [54], [55] is a method of spectrum estimation by
fitting sinusoids of known periods to the observed data.
Utilizing the concept of least-squares fit makes LSSA an
appropriate tool for studying unevenly spaced time se-
ries or time series with gaps. We use LSSA to approximate
the annual and semi-annual signals with the weighted
sum of two pairs of sinusoids with periods Ta = 1 and
Ts = 0.5 years, respectively, and simultaneously estimate
a bias a and a long-term trend b. In this case, the peri-
odic signal can be expressed using the following linear
model:
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Δ̃gs(t) = a + bt + ca cos
2πt
Ta
+ da sin

2πt
Ta

+ cs cos
2πt
Ts
+ ds sin

2πt
Ts
, (13)

where ca and cs are the cosine weights, da and ds are the
sine weights, and the subscripts “a” and “s” denote the
annual and semi-annual signal, respectively. Optimal val-
ues for the unknown parameters a, b, ca, da, cs and ds are
estimated from the well-known least-squares method:

x̂ = (ATA)−1ATy, (14)

where the optimally estimated vector of unknown param-
eters x̂, the observation vector y and the design matrix A
are as follows:

x̂ = [â b̂ ĉa d̂a ĉs d̂s]
T
, (15)

y = [Δgs(t1) Δgs(t2) ⋅ ⋅ ⋅ Δgs(tN )]
T
, (16)

A =
[[[[

[

1 t1 cos 2πt1
Ta

sin 2πt1
Ta

cos 2πt1
Ts

sin 2πt1
Ts

...
...

...
...

...
...

1 tN cos 2πtN
Ta

sin 2πtN
Ta

cos 2πtN
Ts

sin 2πtN
Ts

]]]]

]

.

(17)

STL [56] is a non-parametric method of decomposing a
time series into a seasonal component S(t), a trend com-
ponent T(t) and a remainder component R(t), such that:

Δgs(t) = S(t) + T(t) + R(t) (18)

and S(t) = Δ̃gs(t). STL can be used in a time series with
gaps and became a common method of analyzing basin-
averaged estimates of GRACE-derived gravity and mass
changes. Some examples are given in the recent stud-
ies [57] and [58]. Seasonal and trend components are
calculated using an iterative procedure based on locally
weighted regression (Loess; [59]). We summarize the STL
method in the following six steps, using the same notation
as in [56] whenever is applicable:
1. The de-trended time series Δgs − T(k) is calculated us-

ing the estimated trend from the previous iteration k.
A zero trend is used for the first iteration.

2. Based on the period of the seasonal component, sub-
series are formed and smoothed using Loess. For ex-
ample, the estimation of the annual component re-
quires the formulation of twelve subseries; the first
one containing all January values, the second one all
February values, etc.

3. The seasonal time series C(k) is reconstructed from the
smoothed subseries of Step 2 and an additional low-
pass filtering is applied to reveal any remaining trend.
The low-pass filtered time series is denoted as L(k+1).

4. The seasonal component is calculated by detrending
the seasonal time series of Step 3, i. e., S(k+1) = C(k) −
L(k+1).

5. The deseasoned time series Δgs − S(k+1) is calculated.
6. The trend component T(k+1) is calculated by filtering

the deseasoned time series of Step 5 using Loess.

Steps 1–5 are repeated until convergence criteria for S(t)
and T(t) aremet. The remainder R(t) is then calculated by:

R(t) = Δgs(t) − S(t) − T(t). (19)

STL has the potential of identifying possible outliers in the
data by incorporating robustness weights for each mea-
surement into the Loess filtering. These weights are cal-
culated iteratively by enclosing Steps 1–5 into a second
(outer) loop. This is not performedhere because it is highly
unusual that filtered GRACE and GLDAS data contain out-
liers. The STL algorithm does not account for the simulta-
neous estimate of more than one periodic component like
LSSA. We first estimate and remove the semi-annual con-
stituent from Δgs and then used the resulting time series to
estimate and remove the annual constituent.

3 Results
The time series of absolute gravity changes, corrected
for the gravimeter location and local hydrology effects,
is given in Figure 12. Compared with the time series of
Figure 5, there is a decrease in the magnitude range of
the corrected gravimeter data, going from approximately
−10–25 μGal to−9–10 μGal. The corrected gravimeter series
mostly represents the non-local hydrology signal.

The GRACE-derived gravity changes, deseasoned us-
ing LSSA and STL are provided in Figures 13 and 14, re-
spectively. These time series mainly represent the inter-

Figure 12: Gravimeter-based corrected gravity changes.
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Figure 13: GRACE-derived Δgr using LSSA.

Figure 14: GRACE-derived Δgr using STL.

annual variations of land hydrology. The CSR and JPL se-
ries agree quite well, with no clear pattern in the differ-
ences between the two solutions. This suggests that the
differences between CSR and JPL are due to random errors
in the processing strategy of each center. The two meth-
ods of removing the seasonality provide comparable re-
sults, with STL to produce time series with slightly smaller
magnitude. The magnitude reduction using STL can be at-
tributed to the absorption of some signal from the seasonal
component S(t) that can vary in amplitude. On the other
hand, LSSA provide a seasonal signal with constant am-
plitude.

The deseasoned time series of gravity changes for all
four GLDAS LSMs is provided in Figure 15 for LSSA and
in Figure 16 for STL. Although all LSMs follow the same
long-term behavior, there are some substantial differences
amongst them. These differences are generally attributed
to the modeling of GLDAS parameters, i. e., using differ-
ent number of layers and depths for modeling soil mois-
ture. The Mosaic LSM shows the highest magnitude and
strongest deviation from the rest of LSMs, especially from
2002 to 2004. The LSM with the smallest magnitude is
CLM. The same conclusions are deduced by interpreting
the results of Figure 11. The general disagreement of Mo-

Figure 15: GLDAS-derived Δgr using LSSA.

Figure 16: GLDAS-derived Δgr using STL.

saic and CLM with GRACE and GLDAS products in Europe
is also demonstrated by Yang et al. [60]. LSSA and STL
produce deseasoned time series in close agreement, as in
GRACE case.

3.1 Correlation analysis

We perform a correlation analysis to examine the level of
agreement amongst computed time series using the Pear-
son correlation coefficient. The results are provided in Ta-
ble 1. The lower triangular part of Table 1 contains the cor-
relation coefficient of detrended GRACE and GLDAS time
series using LSSA and the upper triangular part using STL.
The lower triangular elements are compared with the cor-
responding upper triangular elements and the instances
that show higher correlation are underlined. This is done
to investigate if LSSA or STL systematically produces de-
seasoned time series with improved correlation. Correla-
tion coefficients are also calculated only for the 2009–2012
period, which includes the effects of the heaviest flood
and increased precipitation that took place in Poland. The
correlation coefficients for 2009–2012 are given in square
brackets.
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Table 1: Correlation coefficient.

STL
LSSA GRACE CSR GRACE JPL GLDAS CLM GLDASMosaic GLDAS Noah GLDAS VIC FG-5 (original) FG-5 (corrected)

GRACE CSR 0.88 0.70 0.65 0.78 0.63 0.60 0.66
[0.89] [0.77] [0.86] [0.86] [0.77] [0.75] [0.81]

GRACE JPL 0.89 0.67 0.67 0.75 0.59 0.62 0.69
[0.91] [0.76] [0.85] [0.86] [0.76] [0.73] [0.84]

GLDAS CLM 0.70 0.65 0.58 0.85 0.86 0.55 0.67
[0.81] [0.79] [0.66] [0.92] [0.92] [0.53] [0.78]

GLDASMosaic 0.64 0.65 0.57 0.68 0.61 0.87 0.86
[0.86] [0.84] [0.63] [0.78] [0.63] [0.90] [0.82]

GLDAS Noah 0.77 0.75 0.84 0.68 0.90 0.62 0.73
[0.92] [0.93] [0.90] [0.78] [0.95] [0.65] [0.84]

GLDAS VIC 0.64 0.62 0.84 0.62 0.90 0.52 0.64
[0.84] [0.84] [0.90] [0.62] [0.94] [0.49] [0.71]

FG-5 (original) 0.54 0.57 0.53 0.87 0.62 0.51 0.95
[0.71] [0.71] [0.50] [0.90] [0.65] [0.49] [0.85]

FG-5 (corrected) 0.62 0.65 0.65 0.87 0.73 0.64 0.95
[0.83] [0.87] [0.76] [0.84] [0.85] [0.71] [0.85]

The GRACE data show good agreement with GLDAS
data, with a correlation in the range of 0.59–0.78 for the
complete period examined. The highest correlation (0.78)
is attained when CSR and Noah are compared using STL.
The correlation between GRACE and GLDAS is increased
to the range of 0.76–0.93 when the 2009–2012 period is
examined, with the highest correlation obtained for JPL
and Noah data using LSSA. Although LSSA and STL show
similar correlation, slightly better results are produced us-
ing LSSA. The correlation between different LSMs is at
0.57–0.90 for the complete period and at 0.62–0.92 for
2009–2012. In both cases, VIC and Noah show the best
agreement. Improved correlation amongst the LSMs is ob-
tained using STL.

The original gravimeter time series is moderately cor-
related with both GRACE and GLDAS models. The high-
est correlation (0.87 for the complete period and 0.90
for 2009–2012) is obtained for GLDAS Mosaic, whereas
the correlation with the rest of GLDAS and GRACE mod-
els is at 0.50–0.75. STL produces deseasoned GRACE and
GLDAS time series that are better correlated with the
original gravimeter data. The corrected gravimeter time
series shows higher correlation with both GRACE and
GLDAS data than the original gravimeter series. Consider-
ing GRACE, the correlation is at 0.62–0.69 for the complete
period andat 0.81–0.87 for 2009–2012. ForGLDASdata, the
corresponding ranges are 0.64–0.87 and 0.71–0.85. When
examining the complete period, the highest correlation
(0.87) is obtained between the corrected gravimeter data
and Mosaic using LSSA. For the 2009–2012 period, the
same gravimeter data are better correlated (0.87) with the

JPL series using LSSA. The higher correlation of the cor-
rected gravimeter datawith the GRACE andGLDASmodels
indicates that most of the local hydrology signal is proba-
bly removed successfully.

3.2 Hydrology and climate signatures

We analyze the results presented in Figures 12–16 to con-
nect anomalies in the gravity changes with extreme hy-
drological and climate events. Averaged time series of all
data sets are given in Figure 17 along with error bars, rep-
resenting the standard deviation for each measurement
(gravimeter data) or the deviation of the ensemble time se-
ries (GRACE and GLDAS data). The GRACE average is de-
rived from the four times series given in Figures 13 and 14.
The GLDAS average is computed by the CLM, Noah and

Figure 17: Ensemble average of GRACE, GLDAS and gravimeter time
series.
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VIC LSMs given in Figures 15 and 16. The Mosaic LSM is
excluded due to its large deviations and lower correlation
with other LSMs. For both GRACE and GLDAS data, the
standard deviation varies from 0.1–1.9 μGal depending on
the monthly solution. These values are mainly due to ran-
dom errors and different strategies used by the process-
ing centers (GRACE) and LSMs (GLDAS). For the error bud-
get of the corrected gravimeter time series, only the instru-
ment accuracy is taken into account,which ranges from1.9
to 2.3 μGal. The accuracy level of the gravimeter series is
probably underestimated, meaning that the true standard
deviation is higher, because the propagation of errors due
to the corrections described in Sections 2.1.2 and 2.1.3 is
not taken into account. For example, in areaswhere the to-
pography significantly affects themodelingof gravitymea-
surements, the assessment of DEM errors is especially im-
portant [34]. A detailed discussion on the uncertainties of
post-processed gravimeter measurements is also given in
Creutzfeldt et al. [61].

Time periods with increased precipitation levels are
expected to be followed by an increase in terrestrial wa-
ter masses and a higher value of gravity. A decrease in the
measured gravity is expected due to water depletion dur-
ing periods of drought. We examine several events docu-
mented in the literature that occurred in Poland and cen-
tral Europe in the period 2002–2016. The averaged time
series are then used to find projected signatures of these
events. Due to the short time span, the presence of long-
time gaps and the reduced accuracy of the gravimeter
time series, only a limited number of events can be iden-
tified. The events studied are given in the subsections be-
low.

3.2.1 The 2003 severe heat wave

During the summer of 2003, a severe heat wave was re-
ported in central Europe with the mean surface temper-
ature to rise ∼3 °C above normal levels [62] accompanied
by total precipitation levels below average [15]. This heat
wave was probably the warmest recorded since 1500 with
a return period of more than 5000 years [63], making it
extremely unlikely to repeat in the near future. The re-
sulting drought of this heat wave is visible in the GRACE
and GLDAS data with a decrease of 2 ± 0.9 μGal in gravity
during August. Using GRACE data, this event is better ev-
ident in the JPL time series using STL (Figure 14) with a
clear negative peak of ∼3 μGal around August-September
2003. Both GRACE and GLDAS time series provide neg-
ative gravity changes throughout 2003. Andersen at al.
[14] also reports a depletion in GRACE-derived terrestrial

water storage related to the 2003 central European heat
wave.

3.2.2 The 2005 increased precipitation

Increased precipitation levels are reported in central Eu-
rope from thebeginningof 2005untilMarch [15], accompa-
nied by ample rainfall in central and eastern Europe dur-
ing July-August [64]. GRACE time series show an increase
in gravity change for the most part of 2005, with three dis-
tinctive peaks occurring in March, May and August. The
highest peak is in May and produces an anomaly of ∼2.5 ±
0.3 μGal. Only theMay peak is clearly evident in theGLDAS
series, producing an anomaly of ∼1.5 ± 0.5 μGal. It is also
seen from Figures 15 and 16 that Noah LSM produces the
highest anomaly (∼3 μGal) that is in good agreement with
GRACE time series.

3.2.3 The 2010 flooding

The 2010 flood that mostly affected southern Poland was
the result of several days of heavy rain and thunderstorm
during May-June 2010. Especially on May 16th–17th 2010,
a precipitation of up to 200mm occurred over southern
Poland [65]. The aftermath of this event included con-
siderably damaged farmlands, and flooded towns and
agricultural areas. The flood also claimed the lives of at
least twenty people and resulted the death of many an-
imals. Due to its intensity and extent, this event was
categorized as an outstanding heavy precipitation event
[66]. The extend of the 2010 flooding is evident in all
three data sets. The gravimeter time series show posi-
tive anomalies in gravity changes starting from May, with
two peaks occurring in September 2010 and January 2011.
The magnitude of these anomalies starts from ∼6.5 ±
1.9 μGal in May and reaches a global maximum of 14 ±
2 μGal around September. TheMay-June flood event is also
seen in GRACE gravity changes, with a positive anomaly
in May reaching 3.5 ± 0.4 μGal. The anomaly magnitude
drops to ∼2 μGal in July and increases again until De-
cember, reaching a magnitude of 6 ± 0.6 μGal. GLDAS
time series show the same behavior as GRACE, with pos-
itive gravity change anomalies in 2010. The effect of May-
June flood is evident in June with an average magnitude
of 3.5 ± 1.5 μGal, followed by a drop at 1 μGal in July
and then increasing until it reaches a magnitude of 5.5 ±
1.2 μGal in February 2011. Noah LSM produces the high-
est gravity change anomalies with 5 μGal in June 2010 and
7 μGal in February 2011. A shift on the global maximum
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is also noticeable between gravimeter and GRACE/GLDAS
data.

3.2.4 The 2011 increased precipitation

After the 2010 flooding, increased precipitation was re-
ported in July 2011 over eastern Poland. The Institute of
Meteorology and Water Management of the Polish Na-
tional Research Institute reported total precipitation levels
of up to 340mm that correspond to an increase of 450%
with respect to the 1971–2000 average precipitation lev-
els. The event is recorded in gravimeter time series as a
rapid increase in gravity reaching a value of ∼9 ± 2.1 μGal
in July and continued by 9.4 ± 2.1 μGal in August. The
2011 increased precipitation is also identified in GRACE
data with an increase in gravity change starting from July
and reaching a peak in August with an anomaly of 4 ±
0.8 μGal. GLDAS time series shows the same behavior as
GRACE, with the gravity change anomalies increasing in
July, reaching a maximum value of ∼4 ± 1.6 μGal in August
and then decreasing until the end of 2011.

3.2.5 The 2013 flooding

An extreme precipitation event was also reported in May-
June 2013 that caused a flood in Poland [67]. At the end
of this event (June 2013), record precipitation levels were
recorder in eastern Europe [68]. Although, the gravimeter
time series shows a positive anomaly of 3.7 ± 2.1 μGal in
early May, no direct conclusions can be inferred for the
evolution of these events using gravimeter observations
due to the absence of data for the latter half of 2013. The
May-June extreme precipitation event coincides with the
positive gravity change anomalies that peaks at 3 μGal dur-
ing June 2013 for both GRACE and GLDAS time series.

3.2.6 The 2015 drought

2015 was a notably dry year for central Europe [69]. In
the same year, Poland experienced an extremely hot and
dry summer, especially during August-September, caus-
ing extensive crop yield damages. Low precipitation lev-
els resulted in the lowest discharge values for many rivers,
including the Vistula River (∼9 km from Józefosław) that
passes through our study area [70]. In Poland, the 2015
drought was the result of a 3-month extreme summer
drought that occurred in August and affected 47% of the
country, and a 12-month drought occurred again in August

and affected 44% of the country [71]. The signature of the
2015 drought is seen in all three data sets. In the gravime-
ter time series, a steep drop in the gravity is observed,
decreasing from 2 μGal in June to −2.5 ± 2 μGal in August
and −2.3 ± 2.3 μGal in September. The signal-to-noise ra-
tio for the gravimeter measurements in the same period is
close or equal to one, making them statistically insignifi-
cant for the monitoring of this event. In the GRACE data,
there is a negative anomaly throughout 2015. The gravity
changes reach their minimum in September with amagni-
tude of −5 ± 1 μGal. The averaged GLDAS time series also
show negative anomalies in gravity changes during 2015.
The local minimum for the same period occurs around
July-August with a magnitude of −2.3 ± 1.2 μGal. The Noah
time series deseasoned using STL (Figure 14) shows the
highest negative peak at −4 μGal.

4 Conclusions

We examine the gravity changes in central Poland
from 2002–2016 using absolute gravimetermeasurements,
GRACE monthly solutions and GLDAS LSMs. After apply-
ing various corrections and removing seasonal signals,
we analyze the data to detect geophysical signatures con-
nected to extreme hydrological events. We successfully
identify signatures related to heat waves and droughts, as
well as increased precipitation and floods in Poland and
the proximity of central Europe. The severity and extend
of the 2010 flood occurred in central Europe is predomi-
nantlynoticeable, resulting in gravity changeanomalies of
3.5–14 μGal depending on the data source. Negative grav-
ity change anomalies of 2.5–5 μGal are also identified and
connected to reported drought conditions. Our results sug-
gest that methods of gravity field monitoring provide a
viable method of identifying extreme events on regional
scales. The correlation analysis shows reasonable agree-
ment between gravimeter, GRACE and GLDAS data. The
correlation is increased when the corrected gravimeter
data are used, indicating that the method of removing the
local hydrological influence from the gravimeter measure-
ments is reliable. Increased correlation is also obtained
when the analysis is performed only for the 2009–2012
period that includes the 2010 extreme flood and 2011 in-
creased precipitation event. The seasonal signal is re-
moved using LSSA and STL, with bothmethods to produce
comparable results. In most cases, STL produces time se-
ries with slightly improved correlation that LSSA.

Themonitoring ofmass changes is performed in terms
of gravity changes. Due to limited availability of in situ
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data and reported results from previous studies, our anal-
ysis is restricted to a qualitative assessment. When in situ
hydrology data are available, the conversion of gravity
changes to water mass changes can be done in a straight-
forward way for GRACE and GLDAS data, allowing a quan-
titative analysis (i. e., in terms of TWS or EWH). Another
limitation of our study is the presence of extended time
gaps in the gravimeter measurements, and their reduced
accuracy due to instrumental noise level and approximate
corrections due to local hydrology. Improved gravime-
ter data can be obtained only with a superconducting
gravimeter and by accurately modeling local hydrogeolog-
ical interactions using localized information. Further in-
vestigation is therefore required for the reliable removal
of local hydrology from the absolute gravimeter located in
Józefosław. The findings of this study can be extended by
analyzing basin-scale averages of various global precipi-
tation models. Such an analysis will potentially increase
our confidence for the interpretation of small fluctuations
in GRACE TWS estimates. Future studies will also be fo-
cused on the optimal combination of gravity changes com-
ing from different sources for enhancing the identification
of extreme hydrological events.
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ABSTRACT. Global satellite gravity measurements provide unique information regarding 
gravity field distribution and its variability on the Earth. The main cause of gravity changes is 
the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology, 
glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more 
comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and 
Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field 
and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE 
seems to be the most dominating source of gravity data, sharing a unique set of observations 
from over 15 years. The results of this experiment are often of interest to geodesists and 
geophysicists due to its high compatibility with the other methods of gravity measurements, 
especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can 
provide conclusions concerning forecasts of subsurface water changes. The aim of this work is 
to present the issue of selection of filtration parameters for monthly gravity field solutions in 
RL06 and RL05 releases and then to compare them to a time series of absolute gravimetric data 
conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Józefosław 
(Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal 
solutions in comparison with absolute terrestrial gravimetry data and making an attempt to 
indicate the significance of differences between solutions using various types of filtration 
(DDK, Gaussian) from selected research centres. 
Keywords: GRACE, DDK, Gaussian filter, FG5 

1. INTRODUCTION 
The twin GRACE satellites, launched in 2002, had taken detailed measurements of the Earth’s 
gravitational field changes for 15 years. This has revolutionised research on land water 
resources, glaciology, earthquakes and deformation of Earth’s crust. The benefits of continuous 
observation of our planet through GRACE satellites have led to rerun the project, this time 
named GRACE Follow-On (GRACE-FO), which was initiated in 2018. 
In order to present the distribution of the Earth’s gravitational field, the most common 
representation is to expand gravitational potential function in series of spherical harmonics 
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functions. Gravity potential V in any point on the surface of the Earth can be described as 
a function of spherical coordinates = 90 − 𝜑𝜑, 𝜆𝜆: 

 𝑉𝑉(𝑟𝑟,𝜃𝜃, 𝜆𝜆) = 𝐺𝐺𝐺𝐺
𝑅𝑅
∑ �𝑎𝑎

𝑟𝑟
�
𝑛𝑛+1

∑ (𝐶𝐶𝑛̅𝑛𝑛𝑛 ∙ cos𝑚𝑚𝑚𝑚 + 𝑆𝑆𝑛̅𝑛𝑛𝑛 ∙ sin𝑚𝑚𝑚𝑚) ∙𝑛𝑛
𝑚𝑚=0

𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛=0 𝑃𝑃�𝑛𝑛𝑛𝑛(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (1) 

where 𝜑𝜑 is a geodetic latitude, (𝜃𝜃, 𝜆𝜆) are the spherical coordinates of this point, 𝑟𝑟 stands for 
radius vector, 𝐺𝐺𝐺𝐺 is the geocentric gravitational constant, 𝑎𝑎 is the semi-major axis of reference 
ellipsoid defined in International Earth Rotation and Reference Systems Service Convention 
(IERS2010), 𝐶𝐶𝑛̅𝑛𝑛𝑛𝑆𝑆𝑛̅𝑛𝑛𝑛 are the normalised harmonic coefficients of the gravity potential 
expansion (Stokes’ coefficients) and 𝑃𝑃�𝑛𝑛𝑛𝑛(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) are the Legendre polynomials of 𝑛𝑛-th degree 
and 𝑚𝑚-th order (Wahr, 1998). To ensure a consistent long-term time series of the gravitational 
field of the highest possible quality, the values of geopotential coefficients are reprocessed by 
major scientific centres, the latest solution known as RL06 has replaced the predecessor RL05a. 
As compared to the previous version, the following components have been changed in RL06: 
ocean tides models, time-variable a priori gravity field, non-tidal atmospheric and oceanic mass 
variations (Atmosphere and Ocean De-aliasing Product [AOD1B]), as well as a strategy of data 
processing described in Dahle et al. (2019). Before interpreting the variability of the field of 
gravity from GRACE data, it is necessary to reduce the effects of the specific inclination of the 
orbit of GRACE satellites (that is equal to 89.5°). It usually occurs as characteristic meridional 
‘stripes’ when visualising spatial distribution. There are several methods to dispose this issue 
in the form of spatial signal filtering. Unfortunately, throughout this process, it is possible to 
miss some information about the geodynamic signal. To choose an optimal filter, a common 
method is the comparison of filtered data with terrestrial results from gravimetric and geodetic 
measurements (e.g. SG, AG).  
In Poland, such research was conducted in, e.g. Kuczynska-Siehien et al. (2019), whereby 
decomposing the signal with periodic functions, GRACE data was compared with hydrological 
and gravimetric in situ data. In Godah and Krynski (2017), principal component analysis (PCA) 
method was used to decompose the periodic signal and then to compare the RL05 data to 
changes in normal and orthometric heights on the territory of Poland. The article Godah et al. 
(2018) presents a comparison of satellite-only global geopotential models (GGMs) with 
quasigeoid undulation derived from levelling and Global Navigation Satellite Systems (GNSS) 
measurements. The article Godah et al. (2015) presents a comparison of non-isotropic 
decorrelation filters (denoted by DDK) and Gauss filtration for the Vistula and Odra river basins 
based on data from the RL05 solution. In a comparison of RL04 data with Global Land Data 
Assimilation System (GLDAS) time series, described in Kloch-Glowka et al. (2012), DDK1 
filter turned out to be the most effective in the noise from observations. Further research on 
GRACE data compared with gravimetric measurements in Eastern and Central Europe has been 
outlined in Crossley et al. (2012), Neumeyer et al. (2005) and Abe et al. (2012).  
This paper will assess how compatible are terrestrial measurements with satellite signals in the 
context of filtering GRACE data. The research is based on entire GRACE time series and the 
last two absolute gravity measurement campaigns performed in the Astro-Geodetic 
Observatory located in Józefosław (AGO JOZE). 

2. GRACE SIGNAL FILTRATION 

2.1. Applied algorithms 
The source of meridional (North–South oriented) stripes is geometry of the twin-satellites 
system. They moved in at an altitude of approx. 450 km, separated by 220 km along their orbit 
track. GRACE consisted of only one pair of satellites at near-polar orbit. The creators' intention 
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was to provide monthly solutions of GRACE results. The number of observations made on 
average over 30 days is limited. Hence, there are areas without any numerical information in a 
month. To succeed in delivering a global solution for every period, an interpolation of the data 
is necessary. 

   
Figure 1. (a–c) GRACE ground track simulation. Source: own study 

However, it causes highly correlated errors in spherical harmonic coefficients due to their 
orthogonality that appears in Level-1 solutions. In order to reduce this kind of observational 
noise, spatial smoothing by Gaussian function is used (Jekeli, 1981). Swenson and Wahr (2006) 
had observed a unique property of spherical harmonic coefficients associated with their 
decomposition. They also had designed a set of filters to eliminate the problem. Nevertheless, 
the provided method is not perfect. Due to the orbit inclination of 89.5°, there is a significant 
accumulation of data in the polar region, while in the equatorial area its spatial resolution is 
lower (as shown in Figure 1). Gauss filtration smooths the data equally in every direction.  
Hence, other solutions are proposed, e.g. filtering with latitude-dependent filters. 
A decorrelation of monthly global solutions was suggested by J. Kusche. It is based on a priori 
assumptions of error budget and was tested using hydrological models (Kusche et al., 2009). A 
similar solution has been presented in Horvath et al. (2018) using full covariance matrix 
determined in two ways: stochastic and deterministic. Anisotropic DDK filters proved to be a 
satisfying method that preserves geophysical details from GRACE level 2 products the best 
(Chen et al., 2006; Kusche, 2007). DDK1-8 filters have become the primary tool used in 
GRACE data processing over time. Another proposed method is a reduction of the correlation 
between spherical harmonic coefficients and errors using quadratic polynomials (with a moving 
window) to fit the resulting function between original and decorrelated 𝐶𝐶𝑛𝑛𝑛𝑛 coefficients (Duan, 
2009). Empirical decorrelation of coefficients is a wide group of methods and will not be 
analysed in this paper. Despite the large number of filtering approaches, none is stated as 
universal. This is because the quality of the final solution depends on the latitudes of an 
examined area and the power of a chosen filter. 

2.2. Gaussian filter 
Gauss filtration is based on the regular smoothing of variance of the observed gravity field 
changes by the following kernel function: 

 𝐹𝐹(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 2𝑏𝑏
1−𝑒𝑒−2𝑏𝑏

𝑒𝑒−𝑏𝑏(1−𝑐𝑐𝑐𝑐𝑠𝑠𝜓𝜓) (2) 
where 𝝍𝝍 stands for a spherical distance from the given point and 𝑏𝑏 is calculated by the formula: 
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 𝑏𝑏 = l n(2)

1−cos�𝑑𝑑𝑅𝑅�
 (3) 

with 𝑑𝑑 meaning a radius value and 𝑅𝑅 is the equatorial radius, both expressed in kilometres. The 
filtration process is based on multiplying all spherical harmonic coefficients by a predefined 
filtration factor. Because the filtering domain depends on the spatial resolution of the data, it is 
possible to express the Gauss weighting coefficients as:  

 𝐹𝐹(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) = 𝑤𝑤𝑛𝑛  (4) 
where 𝑤𝑤𝑛𝑛 value defines the dependence on 𝑛𝑛-th degree of spherical harmonic function as 
follows: 

 𝑤𝑤𝑛𝑛 = 2𝑛𝑛−1
𝑏𝑏

𝑤𝑤𝑛𝑛−1 + 𝑤𝑤𝑛𝑛−2 (5) 
These weighting coefficients must be included in the function describing the Earth’s gravity 
field (expanding equation (1)): 

 𝑉𝑉(𝑟𝑟,𝜃𝜃, 𝜆𝜆) = 𝐺𝐺𝐺𝐺
𝑅𝑅
∑ �𝑎𝑎

𝑟𝑟
�
𝑛𝑛
𝑤𝑤𝑛𝑛 ∑ (𝐶𝐶𝑛̅𝑛𝑛𝑛 ∙ cos𝑚𝑚𝑚𝑚 + 𝑆𝑆𝑛̅𝑛𝑛𝑛 ∙ sin𝑚𝑚𝑚𝑚) ∙𝑛𝑛

𝑚𝑚=0
𝑛𝑛𝑚𝑚𝑚𝑚𝑚𝑚
𝑛𝑛=0 𝑃𝑃�𝑛𝑛𝑛𝑛(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (6) 

The size of the radius is crucial. The larger it is, the more it blurs geophysical information 
contained in coefficients of higher degree, as shown in Figure 2. 

 
Figure 2. Gauss filter spectral scale of factor wn. Source: own study 

According to the Center for Space Research (CSR) standards for processing GRACE Level-2 
RL05 and RL06 data (Savannah et al., 2019), different radii are chosen for sea/ocean and land 
areas, equal to 500 and 300 km, respectively. Examples of applying Gauss filter with various 
radii are presented in Figure 3a–d. 
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a. b. 

  
c. d. 

 
Figure 3. (a–d) Geoid height changes in metres compiled for GRACE data from the 2002.123 to 

2002.137 period published by CSR RL06. Development in relation to the GOCO05S static model with 
a degree of development of n = 90, unfiltered, blurred by a Gaussian filter with 100, 200, 300 km radii. 

Source: own study 

Apparently, Gauss filtration is not an ideal solution to the meridional stripes issue. Due to the 
frequent passage of satellites around the pole, this region is better covered with data than the 
equatorial zone. It should be considered if there is a method including the different distance 
ranges between the stripes at a given latitude. 

2.3. Anisotropic DDK filters 
The anisotropic filtration method differs from Gaussian filters in that it uses approximate 
coefficient errors, a full matrix of covariance errors and normalised values of spherical 
harmonics. A kernel function determines the way of eliminating errors resulting from the orbit 
path by azimuth-weighted coefficients: narrower in the N–S direction and wider in the E–W 
direction. The spectrum of a given filter was created as a result of empirical mathematical 
modelling of error covariance matrix and the methods for developing observations from level 
1 to 2 based on distance measurements between GRACE satellites using a K-band inter-satellite 
sensor. The entire method is described in Kusche (2007). Examples of kernel functions for 
selected geodetic coordinates in the N–S direction are presented in Figure 4a–c. 
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a. b.                 c. 

Figure 4. (a–c) Examples of DDK base filtration function depending on latitude. Source: own study 

For a better understanding of the problem, the maps presented in Figure 5a–h show an 
application for subsequent types of DDK filtration – geoid undulation changes for a declared 
period. 
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a. b. 

  
c. d. 

  
e. f. 

  
g. h. 

 
Figure 5. (a–h) Geoid height changes in metres compiled for GRACE data from the 2002.123 to 

2002.137 period published by CSR RL06. Development in relation to the GOCO05S static model with 
a degree of development of n = 90, filtered by non-isotropic DDK1-8 filters. Source: own study 

The full difference between the filtration types used is shown in Figure 6 in terms of the square 
root of degree variance of spherical harmonics depending on their degree. It is well noticeable 
that the variance of data filtered by Gaussian method with 100 km radius practically coincides 
with the variance of unfiltered coefficients. In turn, Gaussian filter with a radius of 600 km 
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ceases to be useful for monthly solutions above 75–77 degree of harmonic function. DDK1-5 
filters are on a similar level as Gaussian filter with a radius R = 300 km (recommended by the 
CSR). 

 
                         a. b. 

 
                         c. d. 

 
                         e. f. 

Figure 6. (a–f) Square root of Degree Variance of Spherical harmonic from period 2002.123-2002.137 
for RL05, RL06 and difference between RL06-RL05. Source: own study 

On comparing the Gauss filter to DDK, it can be seen that DDK shows better stability for higher 
degree/order of spherical harmonic coefficients. Regarding the differences between the RL06 
and RL05 versions, slight discrepancies can be noticed, up to 60 harmonic degree. Better 
compatibility between RL06 and RL05 is preserved by Gaussian filters with radii 500 and 600 
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km, while in the case of anisotropic filters, DDK 1–4 types show compatibility. All examples 
discussed above present only one epoch of GRACE mission solutions. Results may vary over 
time. Presenting the differences between official centres from different epochs over the 15 years 
may be complicated. One of the possibilities has been presented in Sakumura et al. (2014). It 
has revealed a clear similarity between the CSR and GeoForschungsZentrum, German Research 
Centre for Geosciences (GFZ) solutions. Also, a significant difference between the CSR and 
the GFZ solutions compared to Jet Propulsion Laboratory (JPL) is observed in the basins of 
Amazon and Congo rivers. In both cases, there is a slight discrepancy in the equivalent water 
height (EWH) in the polar regions, where it reaches about ±2 mm/year. In the ocean, the 
differences are minor and the mean squared error of EWH varies from 12 to 16 mm/year. It is 
worth mentioning that terrestrial and oceanic areas are developed separately. Solutions for 
oceans are comparable for each processing centre. Moreover, each of them suggests a 
comparable radius of filtration as the most effective for these areas. Thus, GRACE results on 
continents are crucial in comparing the computing strategies of individual data centres. The 
next section presents an example of local comparison of different GRACE data filtration types 
derived from three official processing centres. 

3. SELECTING AN APPROPRIATE FILTERING TYPE FOR AGO JOZE LOCATION 

3.1. Data processing 
This part presents a comprehensive comparison of the gravity fluctuations determined from 
GRACE periodic models and absolute gravimetric measurements at the AGO JOZE. The main 
goal of the study is to estimate the accuracy of GRACE temporal solutions in comparison with 
terrestrial gravimetry data. Furthermore, the authors attempted to evaluate the discrepancies 
between various solutions that were based on numerous DDK and Gauss filters and that were 
computed in different research centres. A simplified scheme of this experiment is presented in 
Figure 7. 

 
Figure 7. Scheme of the experiment. Source: own study 

Time series analysis was carried out for selected monthly solutions of GRACE missions 
produced by GFZ, CSR, and JPL. RL06 data (Dahle et al., 2013) from April 2002 to March 
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2016 was used in the maximum degree/order of expansion equal to 96 and for RL05a data, the 
values are CSR – d/o 96, GFZ – 90 and JPL – 90, respectively (for certain solutions up to 60). 
It results in a spatial resolution of about 330 km. This value may vary depending on the selected 
version and the method of smoothing the signal. GRACE is effective for the study of 
phenomena in the continental scale. For examined areas smaller than 100,000 km2, the signal-
to-noise ratio may be weak. Thus, the resulting errors (especially those from smoothing and 
signal leakage) require user’s attention. Despite averaging observations from GRACE, 
appropriate post-processing methods can preserve geophysical information for areas of about 
10,000 km2 (Vishwakarma and Devaraju, 2018).  

 

Figure 8. Location of the case study. Source: own study 

The gravimetric JOZE station (general location in Figure 8) is in the basement of AGO building, 
i.e. 5.7 m below the ground, on a 2 × 2 m concrete pole. Absolute measurements were conducted 
in roughly monthly routine from May 2005 to November 2016 using the FG-5 gravimeter No. 
230. This is the longest and homogeneous (considering both accuracy and spatial resolution) 
time series of gravity values in Poland. The total uncertainty in determining the gravity field 
force is ±2 μGal. Results from the absolute measurements are corrected for the effects related 
to Earth tides (Wenzel model) and oceanic tides (FES2004 model), changes in atmospheric 
pressure and polar motion. In addition, gravity values are corrected by the results of 
international comparison campaigns. Metrological factors (resulting from clock and laser 
frequency changes) are also considered.  
Results measured by an absolute gravimeter are not only affected by systematic geodynamic 
factors removed during data processing, but also by local hydrological influence. In AGO 
JOZE, parallel to the gravity data measurements, groundwater level was recorded by 
a piezometer. After calculating the impact of local subsurface water masses, it was possible to 
compare terrestrial data with satellite ones. To obtain the desired results, the approach presented 
in Kuczynska-Siehien et al. (2019) was used. Piezometric measurements of groundwater level 
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fluctuations made it possible to estimate the hydrological effect on gravity according to the 
formula (Creutzfeldt, 2010): 

 𝛥𝛥𝛥𝛥ℎ𝑦𝑦𝑦𝑦  =  41.92 ∙ 𝑆𝑆𝑆𝑆 ∙ 𝛥𝛥ℎ (7) 

𝑆𝑆𝑆𝑆 (specific yield) means the water content in the pores of a given aquifer and 𝛥𝛥ℎ is the change 
in groundwater level obtained from piezometer readings. In this case, 𝑆𝑆𝑆𝑆 = 0.13 was 
determined on the basis of simple regression of piezometric and gravimetric observations. 

 
Figure 9. Graph of observed dg changes by absolute gravimeter before and after hydro correction 

against the background of changes in groundwater level. Source: own study 

On analysing the graph in Figure 9, is it noticeable that gravimetric measurements are highly 
dependent on groundwater level fluctuations. The 𝛥𝛥𝛥𝛥ℎ𝑦𝑦𝑦𝑦 correction reduced the amplitude of 
the observed 𝑔𝑔 values from 25 to 14 µGal. Compared to the total uncertainty of absolute 
measurement at ±2µGal, it is clearly seen how sensitive equipment is to changes in local mass 
distribution. 
Data from the GRACE mission was collected as spherical harmonics (.gfc file from the 
International Center for Global Earth Models [ICGEM] website) in RL06 and RL05a releases. 
The changes denoted as 𝛥𝛥𝛥𝛥𝑛𝑛𝑛𝑛 and 𝛥𝛥𝛥𝛥𝑛𝑛𝑛𝑛 were calculated by removing the static part of the 
gravity field using GGM05C model (Ries et al., 2016) for each monthly solution. According to 
the valid conventions (technical notes TN-11 and TN-07), GRACE coefficients C10, C11, S11 
denoting the centre of mass and C20 denoting the gravimetric flattening of the Earth (Swenson 
et al., 2008) have been replaced with the coefficients determined using satellite laser ranging 
(SLR) measurements (Cheng et al., 2013). Additionally, due to problems with the GRACE-B 
accelerometer, a significantly higher variance of the C30 coefficient could have been observed 
in the last 7 months of the mission, therefore it was also substituted by a corresponding value 
from SLR. For the RL06 data, a linear model of polar motion has been introduced, which is 
consistent with the IERS2010 convention. Hence, it is not recommended to introduce any 
corrections to the C21 and S21 coefficients (according to Dahle et al., 2019).  
GRACE and FG5 observations were recorded for different epochs. To be able to compare them, 
it was necessary to interpolate the data. The choice of interpolation method was important 
because of possible overestimation with a too aggressive approach. Several popular ways were 
tested in this study and the best one turned out to be a moving average with a window size of 5 
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months. This allowed to faithfully reflect the original signal without excessive smoothing and 
the appearance of gross errors. 
The comparison of gravity field changes data determined by GRACE sensors and absolute 
measurements with the FG5 gravimeter was based on gravimetric disturbances. The gravity 
disturbance is understood here as the difference between the real and normal (referred to 
ellipsoid) acceleration of gravity on the physical surface of the Earth. It was determined from 
GRACE data, taking into account the elastic deformation of the Earth as a result of loading 
(Crossley et al., 2012) according to the following formula: 

 𝛿𝛿𝛿𝛿(𝜃𝜃, 𝜆𝜆) = 𝐺𝐺𝐺𝐺
𝑅𝑅2
∑ �𝑛𝑛 + 1 − 2ℎ𝑛𝑛

1+𝑘𝑘𝑛𝑛
�∑ (𝐶𝐶𝑛̅𝑛𝑛𝑛 ∙ cos𝑚𝑚𝑚𝑚 + 𝑆𝑆𝑛̅𝑛𝑛𝑛 ∙ sin𝑚𝑚𝑚𝑚) ∙𝑛𝑛

𝑚𝑚=0
∞
𝑛𝑛=0 𝑃𝑃�𝑛𝑛𝑛𝑛(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) (8) 

where ℎ𝑛𝑛 and 𝑘𝑘𝑛𝑛 are the Love numbers for the overall elastic response of the Earth from the 
preliminary reference earth model (PREM). Due to the correction of the geocenter parameters 
from GRACE data to the coefficients C10, C11 and S11, the corresponding value of 𝑘𝑘1 was 
changed to 0.021. The values of gravity disturbance have also been fixed by the gain factor 
(Landerer and Swenson, 2012) for the examined region, which was equal to 1.06. In our 
research area, no earthquake with magnitude above 8.5 has been observed. Further, the effect 
of postglacial uplift is relatively small. Hence, it was decided not to make related corrections.  
To analyse the time series of GRACE mission, all eight types of non-isotropic filtration of DDK 
(DDK1–DDK8) were used, as well as Gaussian filtration with the following radii (R): 200, 300, 
400, 500 and 600 km. Datasets from RL05a and RL06 releases were considered separately for 
solutions from CSR, GFZ and JPL centres. 

 
Figure 10. Mean gravity disturbance values and standard deviation (dispersion) based on all types of 

filtration. Source: own study 
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On comparing the discrepancies between gravity disturbances observed by GRACE and FG5 
(corrected for hydrological effect), a significant difference can be seen between the time series 
from 2005 to 2009 and from 2010 to 2016 in ground data (red dots in Figure 10), regardless of 
the type of filtration. The discrepancies observed in these periods result mainly from a major 
hydrological flood that happened during those times. This rapid increase in dg is not noticed 
very clearly by GRACE sensors. Substantial seasonal fluctuations in amplitudes, caused by 
large-scale changes in the water level of the Vistula basin, affect the suppression of information 
related to the flood in 2010. To compare the data from satellite and terrestrial sensors properly, 
it is needed to exclude the effects that are modellable and do not appear in local ground 
observations. These effects are periodic (annual, semi-annual and quarterly) changes of 
amplitudes in observations recorded by GRACE. Eliminating them allows more effective 
analysis regarding the comparison of data from different sensors. 
To remove the effect caused by seasonal amplitude changes of continental hydrology, the signal 
had to be approximated with sinusoidal functions. This was done using the least-squares 
spectral analysis (LSSA) method (Vaníček, 1969, 1971) based on modelling of two waves with 
annual and semi-annual amplitude parameters determined using the Gauss–Markov model. 
Decomposition of the observed signal was made in accordance with the methodology proposed 
in Kuczynska-Siehien et al. (2019). This approach enables eliminating time series periodicity 
for both GRACE and absolute measurement datasets (Figure 11). 

 

Figure 11. Mean gravity disturbance values after signal decomposition, and standard deviation 
(dispersion) based on all types of filtration. Source: own study 

3.2. Analysis of residuals and time series consistency 
After cleaning the datasets, the variability analysis of individual signals was performed in terms 
of the selected filtration type. To distinguish all discrepancies between FG5 absolute 
measurements and filtered observations from GRACE, the graphs shown in Figure 12 present 
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the differences between them. The left graph depicts the residues of RL06 release and the right 
one depicts the residues of RL05a release. 

  
Figure 12 Residual diagram AG-GRACE RL06 (left) and RL05a (right) for DDK1-8 filtration (rows: 

1–8, 14–21, 27–34) and Gaussian 200–600 km (rows: 9–13, 22–26, 35–39). Source: own study 

The performances of Gaussian filter with smoothing radius equal to 200 km (rows: 9, 22, 35) 
and DDK8 (rows: 8, 21, 34) are clearly different from others. Furthermore, it can be seen that 
the discrepancies occurring in 2010 were not fully corrected due to the changes in groundwater 
level. This is because of the intense floods that occurred in that year. To determine which of the 
filtered GRACE time series best fits the AG measurements, the mean square error (RMSE) for 
each of these series was calculated based on the residues according to the formula: 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑁𝑁
∑ (𝛿𝛿𝑔𝑔𝑛𝑛𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 − 𝛿𝛿𝑔𝑔𝑛𝑛𝐴𝐴𝐴𝐴)2𝑁𝑁
𝑛𝑛=1  (9) 

Subsequently, Pearson’s correlation coefficients were estimated for all calculated variants (on 
account of applied filters, processing centres) of gravimetric disturbance. However, since the 
GRACE solutions were delivered monthly, there are some phase shifts between the signals 
observed by satellite and ground sensors. Therefore, the analysis of signal compatibility was 
completed with the normalised cross-correlation (Xcorr) coefficients: 

  𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥(𝛿𝛿𝑔𝑔𝐴𝐴𝐴𝐴(𝑡𝑡), 𝛿𝛿𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑡𝑡 + 𝜏𝜏)) =  𝐸𝐸[(𝛿𝛿𝑔𝑔𝑡𝑡
𝐴𝐴𝐴𝐴−𝜇𝜇�𝛿𝛿𝑔𝑔𝐴𝐴𝐴𝐴�)(𝛿𝛿𝑔𝑔𝑡𝑡+𝜏𝜏

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺−𝜇𝜇�𝛿𝛿𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺����������������������������������)]
𝜎𝜎�𝛿𝛿𝑔𝑔𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺�𝜎𝜎�𝛿𝛿𝑔𝑔𝐴𝐴𝐴𝐴�

 (10) 

where 𝐸𝐸 is the expected value of the given expression, 𝜎𝜎 is the standard deviation and 𝜇𝜇 is the 
average value, all depending on the time shift 𝜏𝜏. In our paper, we have chosen an Xcorr value 
that was a maximum in ±3 months interval of possible lags between the examined time series. 
So, this lag value is less than 3 (months). The results of all the statistics listed above are 
summarised in Table 1. 
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Table 1. The statistics of time series comparison 

  RL06 

Filter type  

RL05 

20
05

-2
01

6 

Xcorr RMS (µGal) Pearson corr  Xcorr RMS (µGal) Pearson corr  

CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL 

0.39 0.55 0.37 5.15 5.09 5.26 0.15 0.13 0.11 DDK1 0.26 0.52 0.15 5.52 5.19 5.48 0.09 0.20 0.08 

0.60 0.64 0.59 4.74 4.67 4.87 0.33 0.24 0.29 DDK2 0.57 0.71 0.49 5.10 4.77 5.00 0.27 0.38 0.29 

0.77 0.70 0.72 4.59 4.44 4.70 0.40 0.28 0.37 DDK3 0.76 0.80 0.73 4.78 4.51 4.65 0.39 0.47 0.43 

0.79 0.70 0.73 4.59 4.43 4.70 0.40 0.27 0.37 DDK4 0.78 0.80 0.76 4.79 4.56 4.66 0.40 0.46 0.43 

0.81 0.70 0.75 4.65 4.38 4.71 0.39 0.24 0.36 DDK5 0.79 0.78 0.79 5.04 4.98 4.96 0.33 0.33 0.38 

0.81 0.69 0.76 4.76 4.36 4.69 0.36 0.23 0.36 DDK6 0.78 0.76 0.79 5.31 5.32 5.25 0.27 0.24 0.33 

0.78 0.68 0.79 5.26 4.79 4.71 0.27 0.20 0.33 DDK7 0.65 0.63 0.74 6.67 6.52 6.28 0.07 -0.03 0.22 

0.76 0.67 0.78 5.62 5.55 4.91 0.22 0.18 0.29 DDK8 0.48 0.48 0.68 7.75 7.17 6.83 0.00 -0.12 0.18 

0.72 0.67 0.79 6.16 6.90 6.11 0.20 0.09 0.22 

G
A

U
SS

 R
= 

200 km 0.24 0.78 0.13 7.54 6.69 7.03 0.04 0.26 0.16 

0.75 0.68 0.72 4.63 4.58 4.67 0.34 0.17 0.32 300 km 0.61 0.80 0.73 5.05 4.98 4.95 0.27 0.28 0.31 

0.65 0.64 0.60 4.78 4.70 4.88 0.28 0.16 0.24 400 km 0.50 0.72 0.56 5.07 4.89 5.05 0.24 0.30 0.24 

0.56 0.61 0.54 4.89 4.82 4.99 0.22 0.14 0.17 500 km 0.41 0.64 0.39 5.14 4.88 5.15 0.19 0.30 0.18 

0.50 0.59 0.50 4.99 4.90 5.07 0.16 0.12 0.12 600 km 0.37 0.61 0.30 5.20 4.91 5.23 0.15 0.27 0.13 

RL06 

Filter type  

RL05 

 2
00

5-
20

16
 d

es
ea

so
na

lis
ed

 

Xcorr RMS (µGal) Pearson corr  Xcorr RMS (µGal) Pearson corr  

CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL CSR GFZ JPL 

0.24 0.16 0.41 4.25 4.91 4.27 0.48 0.16 0.48 DDK1 0.25 0.50 0.34 4.56 4.52 4.53 0.42 0.44 0.45 

0.62 0.17 0.70 3.83 4.59 3.88 0.62 0.28 0.61 DDK2 0.58 0.68 0.64 4.27 4.22 4.21 0.53 0.54 0.56 

0.77 0.29 0.74 3.75 4.52 3.75 0.63 0.31 0.63 DDK3 0.73 0.76 0.68 4.15 4.08 4.16 0.56 0.59 0.56 

0.80 0.32 0.74 3.76 4.53 3.77 0.62 0.30 0.62 DDK4 0.77 0.79 0.69 4.17 4.09 4.22 0.56 0.58 0.54 

0.84 0.38 0.76 3.85 4.51 3.83 0.59 0.26 0.60 DDK5 0.82 0.84 0.79 4.38 4.33 4.50 0.49 0.50 0.45 

0.83 0.40 0.79 4.00 4.51 3.87 0.55 0.25 0.59 DDK6 0.81 0.84 0.81 4.62 4.60 4.74 0.40 0.40 0.40 

0.78 0.43 0.79 4.74 5.08 4.18 0.37 0.21 0.49 DDK7 0.72 0.76 0.77 6.00 5.81 5.66 0.11 0.04 0.28 

0.75 0.41 0.75 5.25 5.87 4.55 0.30 0.18 0.39 DDK8 0.62 0.68 0.74 7.10 6.54 6.21 0.01 -0.09 0.23 

0.62 0.49 0.79 5.80 7.09 5.43 0.25 0.09 0.34 

G
A

U
SS

 R
= 

200 km 0.40 0.77 0.17 6.67 6.79 7.26 0.18 0.23 0.09 

0.73 0.33 0.71 3.89 4.78 3.92 0.61 0.18 0.61 300 km 0.68 0.84 0.78 4.35 4.58 4.44 0.51 0.40 0.46 

0.51 0.09 0.48 4.02 4.81 4.08 0.58 0.18 0.57 400 km 0.41 0.70 0.56 4.38 4.41 4.48 0.51 0.50 0.46 

0.24 0.17 0.35 4.18 4.88 4.21 0.53 0.15 0.53 500 km 0.15 0.42 0.28 4.49 4.45 4.55 0.48 0.49 0.44 

0.11 0.25 0.21 4.31 4.93 4.32 0.48 0.12 0.49 600 km 0.17 0.25 0.11 4.59 4.53 4.63 0.44 0.47 0.42 

 

Performance: good     avg     bad 

It can be seen that with RL05a dataset, all processing centres show quite a large consistency of 
the results. They reveal similar values of both indexes, correlation and RMS. DDK3–6 filters 
fare very well in this comparison. They are characterised by a cross-correlation coefficient of 
0.7–0.8. The RMSE for these sets is approx. 4.5–5.2 µGal before signal decomposition. This 
values decreases to 4.1–4.7 µGal after removing the seasonal effects. An alternative to these 
types of filtration may be Gaussian filtration with a smoothing radius of R = 300 or 400 km (in 
GFZ solution). In all other cases, there is no balance between preserving geophysical 
information and removing orbital or seasonal hydrological effects. Although RMSE remains at 
4.5 µGal, the correlation coefficients drop significantly below 0.5. This means there is no 
relationship between the signals. 
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For the RL06 release, DDK3–6 filters are still the best perfsorming ones. The relation between 
GRACE and FG5 time series remained strong with 0.7–0.8 Xcorr values for CSR and JPL 
centres. This release had also lower RMS error varying in the range of 3.7–4.0 µGal. The 
amount of observational noise decreased as compared to RL05a. In turn, Gaussian filtration 
gave satisfactory results only for a smoothing radius of 300 km in any data processing centre. 
On comparing the results from the research centres, the dataset from GFZ clearly stands out 
from the rest. Before removing seasonal impacts, cross-correlation coefficients did not differ 
much from those obtained for JPL and CSR. However, after eliminating periodicity effects, the 
values of these factors dropped down. Thus, RL06 data processing strategy provided by GFZ 
turns out to be inefficient in the case of research in AGO Józefosław area. 

4. CONCLUSIONS 
When considering the compatibility between terrestrial gravity measurements and GRACE 
filtered data, it can be noticed that the change in the water table from −11 m to about −8 m 
below the Earth's surface is not recorded from a satellite’s level because the phenomenon is 
purely local. It should be eliminated at the stage of comparing GRACE solutions with in situ 
data. 
Removing the periodic phenomena of gravity changes associated with different seasons from 
time series enabled investigation of local environmental changes. To effectively perform this 
process, it was sufficient to use proper sinusoidal function fit. 
In the case of Gaussian filtration, the best results are obtained by a smoothing radius equal to 
300 km, which agrees with the recommendations posted by official data processing centres. 
Other radii of this kind of filtration cause too much data averaging in the study area. Thus, they 
should not be used because of unsatisfactory performance. 
Considering the latest GRACE reprocessed dataset, DDK3–DDK6 filters published by the CSR 
and the JPL are characterised by a high cross-correlation coefficient at the level of 0.8 and 
a satisfactory RMSE in the range of 3.7–4.0 µGal, i.e. lower than twice the measurement made 
by the FG5 gravimeter. For the same filters in the RL05a data version, all three computing 
centres present good results for both cross-correlation coefficient and RMSE, with values of 
0.7–0.8 and 4.1–4.7 µGal, respectively. Therefore, the conclusion is that satellite observations 
made by GRACE mission properly filtered can be successfully used in studies on the JOZE 
observatory. 
Furthermore, the right selection of data processing strategy is of additional importance. In the 
RL06 version for GFZ, after signal decomposition, the overall results are worse. Moreover, 
DDK1–2 filtration types present too intense blurring of geophysical artefacts and could only be 
used in large oceanic or river basin areas. 
The choice of an optimal filtration type and the accuracy of GRACE solutions resulting from it 
are extremely important in the context of establishing International Geomagnetic Reference 
Field (IGRF) system and the maintenance of basic gravimetric network in Poland. 
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Abstract: Machine learning algorithms can effectively learn the complex 
relationships between various input variables from the global land data 
assimilation system (GLDAS) and the total water storage (TWS) observed by 
gravity recovery and climate experiment (GRACE) and GRACE-FO  
(follow-on) missions. As the TWS depends on various features, a serious 
question arises about the importance of used variables for reconstruction. 
Furthermore, will the variables used for the reconstruction be equally 
significant for grid-based and basin-based analyses? This work examined the 
importance of individual predictors for the temporal and spatial-temporal 
approach over 254 river basins using GRACE and GRACE-FO data as target 
and GLDAS data as predictors. The extreme gradient boosting (XGBoost) 
algorithm was used to reconstruct TWS. Results were evaluated with 
root‐mean‐square error, normalised root‐mean‐square error, Pearson correlation 
coefficient, Nash‐Sutcliffe efficiency, and Kolmogorov-Smirnow-test metrics. 
Model output influence was checked by the model-agnostic version of the 
feature importance and by Shapley additive explanations (SHAP). 

Keywords: total water storage; TWS; global land data assimilation system; 
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1 Introduction 

Global satellite gravity measurements provide unique information regarding gravity 
changes caused by the mass transport over the Earth’s surface. During last 19 years 
satellite missions gravity recovery and climate experiment (GRACE) (Tapley et al., 
2004) and GRACE follow-on (GRACE-FO) (Flechtner et al., 2016) have been 
monitoring changes of total water storage (TWS) (Wahr et al., 1998), enabling the 
creation of many applications used in hydrological monitoring. The almost one-year-long 
gap between GRACE and GRACE-FO has raised questions about the future of  
GRACE-FO observation and hence understanding of the constant ongoing climate 
change. Along with the growing computing capabilities of computers, the importance of 
using machine learning methods in solving the problems related to signal reconstruction 
grows. It is of crucial importance that after the completion of the GRACE-FO mission 
planned for five years, it will be possible to map the GRACE-FO signal based on the 
existing data and to conduct further research related to the observations of the 
hydrological modelling. A growing interest in using learning‐based models in 
hydrological applications gives new opportunities to resolve the traditionally complex 
problems, including data reconstruction (Hamshaw et al., 2018). 

The implementation of machine learning models has been presented in several works. 
The first trials in 2011 using empirical orthogonal functions (EOF) were presented in 
Becker et al. (2011), where historical data from the Amazon basin was used. The 
reconstruction of TWS time series of 60 selected river basins was presented in Sun et al. 
(2020a). This publication presented a comprehensive comparison of TWS reconstruction 
using deep neural network (DNN), seasonal autoregressive integrated moving average 
model (SARIMAX) and machine learning (MLR) algorithms in a temporal algorithm. 
Seyoum et al. (2019) decision trees were used to reproduce high-resolution groundwater 
level anomaly (GWLA), improving global land data assimilation system (GLDAS) data 
with in situ observations. The spatial-temporal approach was used by Jing et al. (2020) in 
case study for the Nile river basin. The algorithms using random forest, extreme gradient 
boosting (XGBoost) and Logistic regression created a benchmark for highly accurate 
predictor-based reconstruction of time variation of such hydrological parameters as Snow 
depth water equivalent, surface soil moisture storage, root zone soil moisture storage, 
profile soil moisture storage, plant canopy surface water, ground water storage from 
GLDAS-2 dataset. Sun et al. (2020b) presented the reconstruction of TWS using NOAH 
and CLSM data for the largest river basins in the US, for which the predictor importance 
was calculated. Artificial neural networks (ANN) was also used by Seyoum and 
Milewski (2017). Convolutional neural network (CNN) performance was presented by 
Irrgang et al. (2020) and Mo et al. (2021). A research on this topic regarding the African 
river basins was conducted by Ahmed et al. (2019). Multilayer perceptron (MLP) 
networks and ANN architecture were used in predicting groundwater changes by  
Sun (2013). Used CNN-based model architectures, VGG16, Unet, and Segnet (Sun et al., 
2019) for the India area proved the effectiveness of encoder-decoder networks in TWS 
reconstruction.  

TWS is a complex effect strongly related to many parameters. It is essential to choose 
the variables used for TWS signal reconstruction. Also is crucial to find an answer that 
variables used for the reconstruction can be equally significant for grid-based and  
basin-based analysis. Machine learning predictive models are often treated as black boxes 
that can be automatically trained without explanation about used data impact on predicted 
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results. Introduction a explainable artificial intelligence (XAI) methods provide benefit to 
research society as a guide and benchmark for future analysis. In this work, the 
importance of individual predictors for the temporal and spatial-temporal approach was 
examined. The TWS signal was reconstructed using GRACE and GRACE-FO RL06 data 
as target and GLDAS-Noah model data as predictors. Data from 254 river basins areas 
were selected for both examined approaches. The XGBoost algorithm was used to 
reconstruct ∆TWS and model the relationship between climate variables. And then, last 
but not least, the precision metrics were determined, and finally, the importance of the 
individual variables used was calculated. All steps in the proposed research lead to the 
answer to the posed questions: Are there variables of greater importance than others in 
the case of reconstructing ∆TWS signal from GLDAS data using ML methods? 
Furthermore, what are the differences in the importance of individual variables used for 
the signal reconstruction between grid-based and basin-based analyses? 

2 Data and methods 

2.1 Experiment overview 

The existing research on the GRACE topic can be divided into grid-based and  
basin-based analyses. The first type of research relates to time series analyses over each 
grid (point) cell. The second type introduces feature mapping for the entire catchment 
area of a given basin. In regression modelling, this leads to the division into the 
application of algorithms for entire catchments called temporal or for individual points in 
given grid cells called spatial-temporal. The general idea of the experiment is based on 
the use of linear regression to reconstruct the ∆TWS based on the available predictors 
from the GLDAS hydrological model and examining the impact of grid-based and  
basin-based algorithm type on variable importance. The machine learning process 
requires the division of data into a training set and a target. The training set contains the 
variables based on which the weights for the model will be trained. Expected results 
‘target’, otherwise known as ‘labels,’ are continuous variables that will be predicted as 
output. In this case, ∆TWS values, determined based on GRACE data, were assumed as 
expected results and GLDAS data were used as predictors. Since the GRACE data to be 
used as labels were stored in the form of spherical harmonic product, in the first step, it 
was necessary to develop these data by applying appropriate corrections and filtering, 
which is described in detail in sub-chapter 2.2. The scheme of the experiment is shown in 
Figure 1. The experiment consisted of the preparation and elaboration of training data, 
training and evaluation of models, and determination of significant variables. 

Training data from the GLDAS model was standardised and concatenated with the 
target. ∆TWS was modelled using two different approaches for which global precision 
metrics were determined and their spatial distribution for each of the approaches. The 
research area was limited to 254 selected river basins, shown in Figure 2, with different 
climate, area and location. Major river basins of the world were downloaded from The 
World Bank website (https://www.worldbank.org/en/home). 
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Figure 1 Scheme of the experiment (see online version for colours) 

 

 

Figure 2 Global river basins selected to experiment (see online version for colours) 

 

 

2.2 Target GRACE data 

Data from the GRACE and GRACE-FO missions was collected from the International 
Center for Global Earth Models website (http://icgem.gfz-potsdam.de/home) as spherical 
harmonics coefficients. Spherical harmonic coefficients are a quantity that varies with 
position on the surface of a sphere. Due to this fact, it is possible to quickly determine the 
value described by a given function in a place with specific coordinates on the sphere. 
The study used RL06 data (Dahle et al., 2013) from April 2002 to January 2021 
distributed by the Center for Space Research (CSR). Data was used in the maximum 
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degree/order of expansion equal to 96, corresponding to a spatial resolution of about 300 
km. Terrestrial and oceanic TWS (Wahr et al., 1998) grids are processed a specific filter 
that is tuned to filter out noise as well as possible while maintaining true geophysical 
signals. The formula for determining the total water equivalent, which is the sum of all 
above and below surface water storages, including canopy water, rivers and lakes, soil 
moisture and groundwater, is as follows: 

( )
0 0

2 1( , ) cos sin
3 1

 (cos ),

ne
nm nmn m

nm

ρ R nTWS θ λ C mλ S mλ
k

P θ

∞

= =

+Δ = Δ ⋅ + Δ ⋅
′+

⋅

   (1) 

where (θ, λ) are geographical co-latitude and longitude of this point, R stands for Earth 
reference radius defined in International Earth Rotation and Reference Systems Service 
Convention (IERS2010), nm nmC S  are the normalised harmonic coefficients of the gravity 
potential expansion (Stokes’ coefficients), (cos )nmP θ  are the Legendre polynomials of 
nth degree and mth order and k′ represents the elastic Earth parameter is called Love’s 
numbers, taking into account the deformation of the Earth caused by load effects and ρe is 
average soil density (Wahr et al., 1998). The ∆Cnm and ∆Snm, representing changes the in 
gravity field, were calculated by excluding the static part of the gravity field using 
GGM05C (Ries et al., 2016) model. In pursuance of the technical remarks TN-11 and 
TN-07, GRACE coefficients localising the centre of mass (C10, C11, S11) and the 
gravimetric flattening of the Earth (C20) (Swenson et al., 2008) have been substituted 
with the coefficients determined using satellite laser ranging (SLR) measurements 
(Cheng et al., 2013). Corrections were not introduced to the C21 and S21 coefficients due 
to the inclusion of a linear model of polar motion in the GRACE RL06 data (Dahle et al., 
2019). An anisotropic filtration with DDK2 filter was used (Kusche, 2007) due to the 
compromise between the stability and accuracy of solutions (Kusche et al., 2009; Szabó 
and Marjańska, 2020). 

2.3 Predictors land surface model data 

Determining ∆TWS is a complex process. According to the definition, it will correspond 
to the sum of all above and below surface water storage, including canopy water, rivers, 
and lakes, soil moisture, and groundwater. However, this assumption does not consider 
the interplay of climate, meteorological and environmental indicators. According to 
previous research (Hamshaw et al., 2018; Sun et al., 2020a, 2020b; Jing et al., 2020), 
where it was shown that ML methods based on methods could successfully learn 
relationships between various variables and catch correlation with a target. This research 
is focused on understanding the complexity between variables caught by machine 
learning models, which can be significantly different from human understanding, so all 
variables provided by GLDAS model were used to ∆TWS modelling. 

GLDAS models provide many important variables of land hydrology at different 
spatial and temporal scales in user-friendly global grids. Comparisons of data from 
GRACE and GLDAS show high temporal agreement and slight differences in 
amplitudes, which contributes to the favourable use of these data in global hydrological 
studies (Scanlon et al., 2018). Kuczynska-Siehien et al. (2019) shows a correlation 
between different GLDAS models, GRACE products, and terrestrial gravity 
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measurements. Because GLDAS-Noah provided a high correlation with gravity 
variability from GRACE in this case as trained data were used variables from  
GLDAS-Noah (v2.1) land surface model (Rodell et al., 2005). GLDAS-Noah (v2.1) 
monthly solutions (1°, dataset: GLDAS_NOAH10_M) were downloaded from Earth 
Data – NASA website (https://disc.gsfc.nasa.gov/) from January 2002 to January 2021. 
The list of variables used for TWS modelling from GLDAS is presented in Table 1. 
Table 1 GLDAS parameters 

Variable name Unit Variable explain 
Lat, long [o] Geodetic coordinates 
date [dd-mm-yyyy] Epoch of measurements 
Swnet_tavg, Lwnet_tavg [W m-2] Surface net downward shortwave /longwave 

flux 
Qle_tavg, Qh_tavg [W m–2] Surface upward latent/sensible heat flux 
Qg_tavg [W m–2] Downward heat flux in soil 
Snowf_tavg, Rainf_tavg, 
Evap_tavg 

[kg m–2 s–1] Snowfall/rainfall/water evaporation flux 

Qs_acc, Qsb_acc [kg m–2 s–1] Surface/subsurface runoff amount 
Qsm_acc [kg m–2 s–1] Surface snow melt amount 
AvgSurfT_inst [K] Surface temperature 
SWE_inst [kg m–2] Surface snow amount 
SnowDepth_inst [M] Surface snow thickness 
SoilMoi0_10 cm_inst, 
SoilMoi10_40 cm_inst, 
SoilMoi40_100 cm_inst 
SoilMoi100_200 cm_inst 

[kg m–2] Soil moisture content at different layers 

Albedo_inst [%] Surface albedo 
SoilTMP0_10 cm_inst, 
SoilTMP10_40 cm_inst, 
SoilTMP40_100 cm_inst, 
SoilTMP100_200 cm_ins 

[K] Soil temperature at different layers 

PotEvap_tavg [W m–2] Potential evaporation flux 
ECanop_tavg, [W m–2] Evaporation flux from canopy 
Tveg_tavg [W m–2] Transpiration flux from veg 
ESoil_tavg [W m–2] Evaporation flux from soil 
RootMoist_inst [kg m–2] Root zone soil moisture 
CanopInt_inst [kg m–2] Canopy water amount 
Wind_f_inst [m/s] Wind speed 
Rainf_f_tavg [kg m–2 s–1] Precipitation flux 
Tair_f_inst [K] Air temperature 
Qair_f_inst [kg/kg] Specific humidity 
Psurf_f_inst [Pa] Surface air pressure 
SWdown_f_tavg, 
LWdown_f_tavg 

[W m–2] Surface downwelling shortwave/ longwave 
flux in air 
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2.4 Features selection and proccessing 

Feature engineering is the process of selecting and scaling variables to build the machine 
learning model. It makes the model easier to interpret and reduces overfitting. Different 
techniques of feature engineering might work better with some algorithms. During this 
experiment, techniques such as imputation, standardisation, grouping, time 
transformation and encoding were used. In this study, training data was divided into 
numerical variables with continuous characteristics and categorical variables, i.e., those 
with two or more groups or categories. During comparing monthly solutions from 
GRACE or GRACE-FO fields with the GLDAS model, monthly sampling needs to be 
matched between the datasets. In the first step, the observations for the same epochs for 
GRACE and GLDAS were averaged. Since the data had to be prepared for point-based 
and basin-based analyses, each element from the training data and the target was assigned 
to a given river basin. Each river basin has been encoded by converting the river name 
into a unique ID with becoming a categorical variable. A parameter related to the  
river basin area has been added to numerical variables as additional column. In the 
temporal-based approach, data were aggregated against a given river basin using averages 
so that each river basin was represented by a different time series. Parameters Lat and 
Long were averaged as a centroid of a river basin in the temporal approach, which gives 
us the only difference in variables between these approaches. Because variables measured 
at different scales do not contribute equally to the model fitting and model learned 
function and might create a bias thus, to deal with this potential problem, feature-wise 
standardisation is usually used prior to model fitting. Each numerical variable was 
standardised by removing mean divided by the standard deviation. Standard scaler is 
described by the following equation. 

x μz
σ
−=  (2) 

where x denotes a specific variable, μ is mean value of x, and σ its standard deviation. In 
non-sequential algorithms, it is necessary to let the machine learning model know that a 
feature has a cyclical characteristic. A standard method for encoding cyclical data is to 
transform the data into two dimensions using a sine and cosine transformation. In order to 
take into account the seasonal variability, the time-related variable was decomposed into 
sine and cosine components with annual and semi annual periods. This made it possible 
to break away from the data, sequence but retain the repeatability of the factors related to 
the Earth’s circular motion. Date represented in decimal year format was transformed by 
applying the following equation. 

( )
( )
( )
( )

sin sin 2
cos cos 2

 
sin sin 2 / 0.5
cos cos 2 / 0.5

Annual π date
Annual π date

time decompose
SemiAnnual π date
SemiAnnual π date

= ⋅ ⋅
 = ⋅ ⋅
 = ⋅ ⋅
 = ⋅ ⋅

 (3) 

During the feature selection process, a dropping collinear features operation can be found 
in many research works. This operation is essential because of the multicollinearity 
problem (Allen, 1997). Collinear features are features that are highly dependent on 
another feature. Due to high variance and less model interpretability, collinear features 
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lead to decreased generalised performance. Distribution of statistics presenting 
interquartile range (IQR) and mutual correlations for parameters used in this study are 
presented using boxplots in Figure 3. 

Figure 3 (a) Distribution of statistics presenting interquartile range (b) Correlations of parameters 
(see online version for colours) 

  
(a) (b) 

Similar values of correlation Figure 3 (b) for soil temperature (SoilTMP) or soil moisture 
(SoilMoi) of the predictors could be noticed. Since the shallow (top) soil layers have a 
much faster physical process than the deeper one, removing this predictor form model 
provides a lost significant part of the signal. Due to this study’s subject and the use of 
sine and cosine components with semiannual periods, it was consciously decided not to 
drop any of these columns. Looking at Figure 3(a) a significant variance for the variables 
surface snow melt amount (Qsm_acc), Surface runoff amount (Qs_acc), subsurface 
runoff amount (Qsb_acc), surface snow amount (SWE_inst), surface snow thickness 
(SnowDepth_inst), Snowfall evaporation flux (Snowf_tavg) can be seen. It can be viewed 
in terms of outliers. These variables are clearly interdependent. High variance results 
from the appearance of snowfall and spring thaw, but only in temperate climatic zones, 
where we have the opportunity to observe four seasons. Snow variables do not appear in 
hot climates, hence the small range of these values between the 1st and the 3rd quantile. 
Variables with non-zero values regardless of latitude have clearly more stable 
distributions. At the end process, numerical and categorical variables were concatenated 
and shuffled before training.  

2.5 Regression modelling 

In machine learning, there are several kinds of problems where these algorithms can be 
applied. It is tasks such as classification, regression, clustering, object detection, 
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forecasting, recommendation or anomaly detection. Signal reconstruction can be 
addressed well by regression modelling using machine learning algorithms. A regression 
problem may be stated as predicting a continuous outcome variable based on the given 
set of predictors (or features). A regression model is a technique of creating a 
mathematical equation that defines y as a function of the x variables. Linear regression is 
the most simple and popular technique for predicting a continuous variable and can be 
written as: 

1 0 ,Y X εβ β= + +  (4) 

where β0 is the intercept, β1 is the regression weight or coefficient associated with the 
predictor variable X and ε is the Gaussian noise. The literature can find many different 
models used in regression problems. This work aimed not to build a perfect model but get 
an insight into relationships in the data and create a benchmark for more complex 
interpretations. Based on previous research about comparing performance models and 
focusing on model complexity and interpretability, it was decided to use the XGBoost 
(Chen and Guestrin, 2016) model in this study. XGBoost regressor with the 
implementation of the Scikit-Learn API for Python was used to create a regression 
model. XGBoost is a variant of tree ensemble learner that combines gradient-based 
optimisation with boosting. Boosting is a method for improving model accuracy, based 
on the idea that it is easier to find and average many rough rules of thumb than to find a 
single, highly accurate prediction rule. 

The data included as input for training the model has been prepared in tabular form. 
For each point (or basin in the temporal algorithm), a matrix was determined. The rows 
were following measurement epochs. The columns presented the developed variables 
from the GLDAS model with the encoded ID river name and the basin area. This matrix 
corresponds to a vector with continuous TWS variables, which was marked as a target. 
Then all matrices were combined into one table with dimensions equal to the number of 
epochs x number of points x number of variables. 

Before training, a specific percentage of random data should be separated for 
accuracy testing and model evaluation. Since the mean values of the two groups are not 
significantly different it is necessary to determine test data sample size to achieve 
statistical significance. There are a different number of samples between the first and 
second approach. In the temporal approach, data aggregation per river basin significantly 
reduced the sample size, which questioned the correctness of the comparison. In order to 
be able to conclude that the A / B comparison makes sense, the minimum number of 
samples included in the test set was determined (Ioannidis, 2005). In order to observe a  
1%–2% change in the target between the results, assuming the 95% confidence level and 
80% power test, the effect size was determined, and the minimum number of samples 
needed for the evaluation was calculated, which constituted no less than 27% of the data. 
This value was arbitrarily rounded to 30%. The hyperparameters of model have been 
tuned with Grid Search algorithm (Shekar and Dagnew, 2019). The results achieved are 
presented in the next chapter. 
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Figure 4 Scheme of train dataset (see online version for colours) 

 

3 Results 

3.1 Model performance 

The performance of the model was measured by metrics such as Nash‐Sutcliffe  
efficiency (NSE) (Nash and Sutcliffe, 1970), Pearson correlation coefficient (CC), 
Kolmogorov-Smirnov-Test (KS) (Hodges, 1958), root‐mean‐square error (RMSE), and 
normalised root‐mean‐square error (NRMSE) as RMSE divided by annual amplitude 
determined as the root of the fit parameters of periodic functions (Vaníček, 1969, 1971). 
Parameters of periodic functions were determined using the Gauss-Markov model. 
Additionally the RMSE was determined using cross-validation (Refaeilzadeh and Tang, 
2009) with 10 k-fold and 3 repeated. NSE is a normalised statistic determining the 
relative magnitude of residual variance (noise) relative to the measured data variance 
(information) (Nash and Sutcliffe, 1970). KS tests whether two samples are drawn from 
the same distribution. This statistic measures the absolute max distance (supremum) 
between the cumulative distribution functions (CDFs) of the two samples. The 
distribution is assumed to be continuous. If the KS statistic is small or the p-value is high, 
then we cannot reject the hypothesis that the distributions of the two samples are the 
same. Metrics are described by the following equations. 
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1, 2,sup ( ) ( ) ,x n mKS F x F x= −  (9) 

where yi, oi are predicted and observed true values respectively, F1,n and F2,m are the 
empirical distribution functions of the first and second samples respectively, and sup is 
the supremum function. Parameters ,y o  are averages of predicted and observed true 
values respectively, and a, b are parameters of periodic functions. 

Figure 5 Validation model, (a) CDF for temporal approach (b) CDF for spatial-temporal 
approach (c) prediction against true values for temporal approach (d) prediction against 
true values for spatial-temporal approach (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

The results of the validation demonstrate Figure 5 which shows plotting predicted values 
against the true value. If points are close to a diagonal line, the predicted values are more 
accurate. The differences between the distribution of predicted and true variables are 
presented using the CDFs plot and the corresponding KS metric presented in Table 2. 
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Table 2 Global metrics of model evaluation determined on the randomly selected test set 

Metrics Temporal Spatial-temporal 
NSE 0.717 0.805 
CC 0.847 0.898 
RMSE (cross validated) [mm] 50.320 45.974 
RMSE[mm] 45.221 42.432 
NRMSE 0.625 1.165 
KS 0.038 0.035 

Figures 5(c) and 5(d) show a highly satisfactory distribution of the density of the 
predicted observations against the true values. Moreover, 95% of the value is within the 
standard deviation limit, proving the high quality of the trained model. 

The achieved results correspond to the benchmark level of the results in other works.  
Sun et al. (2020a) show average results of CC: 0.88–0.89, RMSE: 4.5–4.7 cm, NSE: 0.7 
for the temporal approach. For spatial and temporal algorithm, Sun et al. (2020b) achieve 
results of Nash-Sutcliffe efficiency around 0.85, the mean correlation coefficient around 
0.95 and the mean normalised root-mean-square-error about 0.09 at over the US area. For 
a case study of the Nile river basin with the spatial-temporal method (Jing et al., 2020) it 
can be observed results of RMSE: 1.4–3.47 cm, NSE: 0.54–0.94, CC: 0.79–0.97. Using 
CNN networks at the grid-based scale showed a very good fit of predicted results of  
CC = 0.94 and NSE = 0.87 at the India study area. Global metrics are similar between 
approaches. The achieved NSE and CC values in this work intensely converge to 1, 
which is satisfactory for this experiment. However, RMS at 4.5–5.0 cm does not say 
much about the quality of the solution. A better metric showing the ratio of the error 
achieved to the size of the observed phenomenon is NRMSE. The more excellent value 
of this metric for approach spatial-temporal results from the more significant variance of 
individual observations, which significantly increases this error. The KS values are small, 
which shows that the distribution of the predicted values by the model does not differ 
significantly from the real ones. Figure 6 shows statistical measures of the accuracy of fit 
model in spatial distribution. 

The distribution of the metrics for both approaches is very similar. The spatial 
distribution of the metrics shows the largest RMSE for the Amazon basin. However, due 
to large fluctuations of ∆TWS in this area, the NRMSE index is relatively small. The 
regions with the weakest results for the reconstruction of ∆TWS is the Parana river in the 
southern regions of South America, Saskatchewan-Nelson and St. Lawrence river in the 
area of the Great Lakes on the border of Canada and the USA, Huang He (Yellow River), 
Amur, Liao in the eastern part of the Asian continent areas overlap with the Sahara 
desert. The better performance in humid areas than in dry areas can be seen in Higher 
NSE and CC values in these regions, reflected by spatial distributions of GLDAS humid 
related variables. The reason why XGBoost underestimates ∆TWS in these specific 
regions may be related to the complex anthropogenic effects on groundwater storage 
(GWS) and TWS. Human impact is not included in a set of predictors in this experiment, 
but explaining these phenomena is not the primary purpose of this work. 
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Figure 6 Spatial distribution of metrics, (a) NESE for temporal approach 
(b) NSE for spatial-temporal approach (c) RMSE for temporal approach 
(d) RMSE for spatial-temporal approach (e) NRMSE for temporal approach 
(f) NRMSE for spatial-temporal approach (g) CC for temporal approach 
(h) CC for spatial-temporal approach (i) KS for temporal approach  
(j) KS for spatial-temporal approach (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 

  
(e)     (f) 

  
(g)     (h) 

  
(i)     (j) 
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3.2 Feature importance 

Feature importance is techniques that assign a score to input features based on how useful 
they are at predicting a target variable. The permutation feature importance measurement 
was introduced in Breiman (2001) We can describe feature importance as the measures 
are based on the number of times a variable is selected for splitting, weighted by the 
squared improvement to the model as a result of each split, and averaged over all trees 
(Breiman, 2001; Friedman, 2001; Elith et al., 2008). Fisher et al. (2018) proposed a 
model-agnostic version of the feature importance. 

: jj node j split on fi
i

jk all nodes

ni
fi

ni
∈

=



 (10) 

where fii is importance of features i, nij is importance of node j of decision tree. In 
XGBoost model we can calculate it in different ways, and it is worth understanding 
which one will be right for a given task. The Gain implies the relative contribution of the 
corresponding feature to the model calculated by taking each feature’s contribution for 
each tree in the model. When compared to another feature, a higher value of this metric 
implies is more important for generating a prediction. The Coverage metric means the 
relative number of observations related to this feature. Weight is the percentage 
representing the relative number of times a particular feature occurs in the trees of the 
model. Due to the small number of categorical variables, it was decided to use gain to 
present the impact of variables on the model, which is presented in Figure 7. 

Figure 7 Gain model, (a) temporal approach (b) for spatial-temporal approach (see online version 
for colours) 

  
(a) (b) 
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A different approach to this issue is presented by Shapley additive explanations (SHAP) 
(Lundberg and Lee, 2017). Its methods that help users interpret predictions where values 
are based on Shapley values, a concept coming from game theory. SHAP values are 
define as: 

( ) ( ) ( ){ } { }\{ }

| | ! | | | | 1 !
Φ ,

| | !i S i S i S SS F i

S F S
f x f x

F ∪ ∪⊆

− −
 = −   (11) 

where F is a set of all features, xs represents values of input in stet S. fS∪{i} is trained 
model with specific features and fS is trained model with the feature withheld. Summing 
the SHAP values of each features of given observation yields the difference between the 
prediction of the model and the null for all possible set S ⊆ F\{i}. 

Figure 8 SHAP values, (a) impact on model output in temporal approach (b) impact on model 
output in spatial-temporal approach (c) average impact on model output magnitude in 
temporal approach (d) average impact on model output magnitude spatial-temporal 
approach (see online version for colours) 

  
(a)     (b) 

  
(c)     (d) 
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Figure 8 demonstrates top 20 variables ranked in descending order. The horizontal 
location shows whether the effect of that value is associated with a higher or lower 
prediction. The colour at Figures 8(a) and 8(b) shows whether that variable is high (red) 
or low (blue) for that observation. 

4 Discussion 

In each approach, a significant influence of variables related to time, coordinates and soil 
moisture can be seen. The time factor is evident due to the monotonous nature of the 
phenomenon, regardless of the environment. Coordinates are reflected in climatic zones. 
The numerical presentation of the variables reflected in the climate has a positive impact 
on the accuracy of the ∆TWS signal reconstruction. Due to the multicollinearity of the 
moisture variables at different levels, they should all be considered as variables of high 
importance. Another important variable that appears in each of the algorithms turns out to 
be the subsurface runoff amount. It is characterised by a significant variance in Figure 3 
and may be critical to the estimated bias. Since no complex subsurface conditions such as 
fractured bedrock aquifer, high clay or stone content, deep vadose zone, were used, 
which are highly correlated observations for subsurface runoff, it is possible to 
overestimate the importance of this variable by ML model. ∆TWS represents a synthetic 
proxy of the dynamic of slow-responding hydrological quantities, which means that using 
variables with a high monthly frequency of changes may be inconvenient for ML models 
predictions. However, the authors of the publication (Creutzfeldt et al., 2012), in a 
comprehensive study on the dependence of ∆TWS dynamics on the subsurface condition 
using gravimetric measurements, show a stronger relationship between the runoff 
coefficient and TWS change than that seen with near-surface soil moisture 
measurements. Moreover, the authors have shown a significant correlation between flood 
potential amount and the runoff. Due to the fact that GRACE can be successfully used to 
observe gravity response for extreme precipitation (Reager and Famiglietti, 2009) it can 
be concluded that runoff is strictly connected with GRACE water storage estimations. It 
can be said with certainty that subsurface runoff impact value has been determined 
correctly as high. SHAP indicates the validity of the data climate forcing data concerning 
precipitation flux and air temperature, which is interesting because this data may 
represent certain aspects of observed climatology that are not fully captured in the 
simulated ∆TWS. The NOAH ∆TWS can be calculated as the sum of snow water, soil 
moisture water (in all layers), and canopy water. Features Importance determined by 
XGBoost and SHAP do not give much weight to canopy water amount for both trained 
models, which is an interesting observation. Temporal and spatial-temporal approaches 
are similar to each other, and differences in the impact of individual variables may be 
mainly due to more significant variance for spatial-temporal approaches among 
individual variables. The biggest differences between the impacts on the model appear 
for surface snow thickness, surface temperature, soil temperature at 0–10 cm, snowfall 
evaporation flux, evaporation flux from canopy features. However, they do not have the 
most significant impact on the model being trained. The variables used in the modelling 
have different spatial and temporal coverage. The strong dependence of the model on 
variables related to humidity causes an increase in errors in tropical climatic zones due to 
the low coverage of these variables in this area. Moreover, wind speed and air 
temperature variables in the top list presented by the SHAP algorithm tell us that the 
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climate forcing data provided by the GLDAS model is very well captured in the raw 
observation 

The signal-to-noise ratio may be weak for basin areas smaller than 1 * 105 km2  
(Dutt Vishwakarma et al., 2016). Despite the errors, ensuing from smoothing and signal 
leakage can preserve geophysical information for these areas but need special attention 
during the process data. Observed spatial distribution of accuracy metrics prevents to 
rejection of the null hypothesis of a linear relationship between the size of the river basin 
and the accuracy of the ∆TWS signal reconstruction based on GLDAS data. 

5 Conclusions 

The paper shows the reconstruction of the ∆TWS signal based on data from the GLDAS 
hydrological model. Trained models were evaluated with RMS (4.24–5.03 cm), NRMSE 
(0.62–1.16), CC (0.84–0.89), NSE (0.71–0.80), KS (0.035–0.038) precision metrics. The 
influence of individual variables on the model’s output for the temporal and  
spatial-temporal approach was checked, indicating the differences between the 
importance of individual variables. The spatial distribution of the metrics was checked. 
The lowest accuracy was achieved in areas of Parana river in the southern regions of 
South America, Saskatchewan-Nelson and St. Lawrence river in the area of the Great 
Lakes on the border of Canada and the USA, Huang He (Yellow River), Amur, Liao in 
the eastern part of the Asian continent areas overlap with the Sahara desert. This indicates 
a high dependence of the trained model on humid-related variables. The aggregation of 
variables at the temporal approach by the river basin district influences the change of 
weights assigned to particular variables compared to the spatial-temporal approach. 
However, this change for the most influential variables remains relatively small. The 
work indicates the high importance for the group of predictors that make up the simulated 
∆TWS: the snow water, soil moisture water (in all layers) variables. However, they are 
not given relevant importance for canopy water, which is also part of the simulated 
∆TWS. Regardless of the approach, subsurface runoff is one of the essential variables for 
the models being trained. The coordinate variables perform a significant role for the 
models, because they reflect the influence of the climatic zones. The size of the river 
basin district is a significant variable for the model. However, no relationship was 
observed between the area of the river basin and the accuracy of ∆TWS prediction. 

Trained models were able to learn the complex relationships between various inputs 
from the GLDAS land surface model and the ∆TWS observed by GRACE sensors with 
high accuracy. Successful reconstructed GRACE time series by ML algorithms can fill 
the gap between GRACE and GRACE-FO missions and provide useful information after 
the satellite gravity mission. 
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ABSTRACT. The study presents a compatibility analysis of gravimetric observations with
passive microwave observations. Monitoring the variability of soil water content is one of the
essential issues in climate-related research. Total water storage changes (∆TWS) observed by
Gravity Recovery and Climate Experiment (GRACE), enables the creation of many applications
in hydrological monitoring. Soil moisture (SM) is a critical variable in hydrological studies.
Advanced Microwave Scanning Radiometer (AMSR-E) satellite products provided unique
observations on this variable in near-daily time resolutions. The study used maximum covariance
analysis (MCA) to extract principal components for ∆TWS and SM signals. The analysis
was carried out for the global area, dividing the discussion into individual continents. The
amplitudes of gravimetric and microwave signals were computed via the complex empirical
orthogonal function (EOF) and the complex conjugate EOF* to determine the regions for detailed
comparison. Similarities and differences in signal convergence results were compared with land
cover data describing soil conditions, vegetation cover, urbanization status, and cultivated land.
Convergence was determined using Pearson correlation coefficients and cross-correlation. In
order to compare ∆TWS and SM in individual seasons, ∆TWS observations were normalized.
Results show that naturally forested areas and large open spaces used for agriculture support
the compatibility between GRACE and AMSRE observations and are characterized by a good
Pearson correlation coefficient >0.8. Subpolar regions with permafrost present constraints for
AMSR-E observations and have little convergence with GRACE observations.

Keywords: GRACE, AMSR-E, total water storage anomalies, soil moisture, remote sensors

1. INTRODUCTION

Soil moisture (SM) is a critical hydrologic state variable of the land that crosses the interfaces
of several disciplines, of significant importance for numerous applications for meteorology,
hydrology, climatology, and ecology (Robinson et al., 2008). Small changes in gravity measured
from space also deduced water mass fluctuations. Launched in March 2002 twin-satellite
system Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004b) and GRACE
Follow-On (GRACE-FO) (Flechtner et al., 2016) provided unique information regarding gravity
changes caused by the mass transport over the Earth’s surface. Changes in total water storage
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(∆TWS) (Wahr et al., 1998) show the Earth’s mass change on a near-monthly timescale.
The derivative of the TWS signal is TWS anomaly (TWSA), understood as a combined
monthly averaged water storage change by removing the long-term average divided by standard
deviation. TWSA corresponds to the sum of all above and below surface water storage, including
SM, canopy water, lakes, rivers, and groundwater. The importance of SM and ∆TWS for
understanding the Earth’s water cycle, and the factors affecting it over the years, has been
considered in many studies individually.

The influence of estimating spatial and temporal variations of SM on climate changes was
described in multiple studies (Betts et al., 1994, Engman, 1992, Entekhabi et al., 1994, Fast
and McCorcle, 1991, Jackson et al., 1987, Petropoulos et al., 2014, Saha, 1995, Topp et al.,
1980). Spatial and temporal variability of water was well documented in previous work for SM
(Crow et al., 2012, Famiglietti et al., 2008, Vereecken et al., 2014) and ∆TWS (Landerer and
Swenson, 2012, Tapley et al., 2004a, Zhao et al., 2017). From a hydrological point of view,
analysis of spatiotemporal patterns of SM and ∆TWS observations is essential to understanding
their behavior. In literature, existing methods describe variability only in the spatial domain
(Haining et al., 2010, Khaki et al., 2017) or only in the temporal domain, based on time series
analysis (Fu, 2011, Sprott and Sprott, 2003, Vishwakarma et al., 2021). Several methods can be
found in the literature that analyzes ∆TWS and SM space and time domains together such as
temporal stability analysis (TSA) (Martı́nez-Fernández and Ceballos, 2005, Wang et al., 2018),
triple collocation (TC) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin
and Park, 2021), and empirical orthogonal functions (EOFs) (Eom et al., 2017, Lei et al., 2012,
Navarra and Simoncini, 2010, Schrama et al., 2007, Yoo and Kim, 2004). Whether the analysis
is temporal or spatiotemporal, researchers in previous work have indicated the importance of SM
as a component of the ∆TWS signal.

Water content in near-surface soil layers is a significant component of the ∆TWS signal observed
by the GRACE mission. There have been many significant studies examining the relationship
between SM and ∆TWS. A joint comparison of the remote sensing retrieval products’ metric
entropy and fluctuation complexity was considered in (Kumar et al., 2018). The satellite products
of Advanced Microwave Scanning Radiometer (AMSR-E), Advanced Scatterometer (ASCAT),
Soil Moisture and Ocean Salinity (SMOS), and Advanced Microwave Scanning Radiometer 2
(AMSR2) show significant noise (high entropy, low complexity), except Soil Moisture Active
Passive (SMAP) is slightly noisy and more informative. The correlation greater than 0.7 between
TWSA and SM data was shown in previous work (Abelen and Seitz, 2013, Crow et al., 2017,
Swenson et al., 2008b). Expanding the shallow groundwater variation under the SM root zone
is an essential issue in scientific research. Since using microwave satellites may be a possible
way to isolate groundwater storage (GWS) variations from the GRACE signal (Frappart and
Ramillien, 2018, Yeh et al., 2006), a significant area of research is the possibility of using
microwave observations to determine SM.

Microwave remote sensing observations have been applied for the determination of SM (Babaeian
et al., 2019). Active and passive microwave remote sensing provides an observation of SM at
global and regional scales (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr et al.,
2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013). It helps in
much scientific research in hydrology and climate studies and gives an opportunity to understand
environmental changes (Njoku and Entekhabi, 1996). GRACE ∆TWS and remote sensing
microwave SM observations have recently been used to improve SM and GWS simulations
(Tangdamrongsub et al., 2022, Tian et al., 2017).
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One of the essential microwave sensors providing SM data was the AMSR-E mission. Owing to
the long joint period in orbit during the operation of GRACE and AMSR-E missions, numerous
previous studies have considered comparing SM from AMSR-E and ∆TWS signals from these
sensors. Comparisons between the AMSR-E surface wetness index (ASWI) and the GRACE
drought severity index (DSI) were shown in the previous work (Du et al., 2019). The indicated
comparisons showed robust correlations in regions in the United States (R higher than 0.7
for 29 percent of the area) during the summer months (June–August) from 2002 to 2017 for
regions where a semiannual temporal lag between fast surface water changes and the slower
GWST was considered. The study explores multivariate data assimilation (DA) using synthetic
∆TWS from GRACE and synthetic AMSR-E passive microwave brightness temperature spectral
differences (dTb) in case estimation of snow water equivalent (SWE) over snow-covered terrain
was presented by Wang et al. (2021) and Wang and Forman (2020). In a previous study (Seo et al.,
2010), the authors propose methods to estimate solid precipitation accumulation in winter in the
northern Arctic region. Based on the GRACE and AMSR-E, winter season solid precipitation
accumulation was estimated. In the second step, estimated values was compared with the
traditional estimations from the Global Precipitation Climatology Project (GPCP) and Climate
Prediction Center’s Merged Analysis of Precipitation (CMAP). Correlation, time shift, and
principal component analyses of SM from the WaterGAP Global Hydrology Model (WGHM)
and the satellite sensors AMSR-E and ASCAT to total water storage variations from the satellite
gravity mission GRACE in the area of the La Plata Basin in South America were provided by
Abelen et al. (2015). Regional and global variations in SM from satellite sensor AMSR-E and
GRACE was also considered in Abelen et al. (2011). Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004) product was used to evaluate AMSR-E observations over central
Tibetan Plateau (Chen et al., 2013). To effectively catch drought disasters in the Guangdong
province of southern China in 2004–2005, 2007, and 2009 SM from AMSR-E was used (Chen
et al., 2012). The highest SM variability in the surface soil layer can be observed because
of meteorological and environmental interactions such as precipitation, temperature changes,
porosity, topography, vegetation processes, and human factors.

Although many studies have been performed on evaluating extreme hydrological events using
GRACE and AMSR-E, there is a gap in the published literature concerning ∆TWS and SM
signal convergence considering land cover data described soil conditions, vegetation cover,
urbanization status, and cultivated land. Since the information collected by gravimetric sensors
has a lower temporal frequency and spatial resolution than microwave measurements, it is crucial
to investigate the convergence of these signals. The key question posed in the article is: is it
possible to use the information contained by sensors characterized by higher noise and signal
variance, such as AMSR-E, in the global analysis of ∆TWS variability from GRACE satellites?
In work, it was decided to present the similarities and differences in the Earth’s water resource
measurements. This article analyzes the spatiotemporal variations of SM and ∆TWS in the
context of the similarity pattern comparison. The study used maximum covariance analysis
(MCA) to extract principal components for ∆TWS and SM signals.

2. DATA AND METHODS

2.1. Data

GRACE data is available at https://podaac-tools.jpl.nasa.gov/(accessed on
01.06.2022) distributed by the Center for Space Research (CSR). The spatial resolution of
the GRACE data included in the study is approximately 300 km x 300 km. Surface and
subsurface mass change data are based on the RL06 standards (Dahle et al., 2013) at the L2
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data processing level. Processing GRACE data included replaced coefficient C20 representing
gravimetric flattening of the Earth (Swenson et al., 2008a) by Satellite Laser Ranging (SLR)
observation (Cheng and Tapley, 2004) and filtered out the correlated error (Swenson and Wahr,
2006) using a modified de-correlation filter (Chen et al., 2007). Processing GRACE data also
included excluding the static part of the gravity field using GGM05C model (Ries et al., 2016).
During processing GRACE data the degree-1 coefficients (Geocenter) are estimated using the
methods from Sun et al. (2016) and Swenson et al. (2008b). A glacial isostatic adjustment (GIA)
correction has been applied based on the ICE6G-D model from Peltier et al. (2018).

The Advanced Microwave Scanning Radiometer for the Earth Observing System is a passive
multiband sensor of NASA’s Earth Observing System Aqua satellite. AMSR-E uses the X-band
and C-band to measure the water cycle and SM content retrievals corresponding to the depth of
(2.5–3.75cm) and (3.75–7.5cm), respectively. Owing to the fact that radio frequency interference
(RFI) in the C-band (6.9 and 10.7 GHz), the X-band has been extensively used for SM retrieval
(Njoku et al., 2005). AMSR-E dataset is available as daily files at https://disc.gsfc.
nasa.gov/(accessed on 01.06.2022). AMSR-E/Aqua surface SM ascending V002 is a Level
3 (gridded) data set with a daily frequency and spatial resolution of about 25 km by 25 km. Land
surface SM measurements is derived from passive microwave remote sensing data using the
Land Parameter Retrieval Model (LPRM). The LPRM is based on a forward radiative transfer
model to retrieve surface SM and vegetation optical depth. The dataset contains data from May
2002 to December 2011. AMSR-E on the NASA EOS Aqua satellite discontinued producing
data in October 2011 due to an issue with the rotation of its antenna (van der Vliet et al., 2020).
Only descending tracks were used because of the much better stability of nighttime soil, canopy,
and air temperatures in this study (De Jeu et al., 2008, Draper et al., 2009, Liu et al., 2012, 2011,
Owe et al., 2001).

The intersection of the GRACE and AMSR-E sensors datasets was selected for analysis. The
time range of the selected data for this study was chosen to cover the maximum part intersection
of existing GRACE and AMSR-E datasets. The dataset in the analysis contains data from 2002
to 2012 from both missions.

2.2. Methodology

Data preparation involved averaging with moving window data collected by the AMSR-E sensor
over the GRACE epochs. As the compared sensors have different spatial resolutions, the data
from AMSR-E were linearly interpolated on the GRACE resolution. The values for ∆TWS
observed by GRACE and AMSR-E have different amplitudes. To be able to compare these results
to each other, it was decided to normalize data for each season and then compare the normalized
values for given seasons to minimize the effects of seasonality. Volumetric soil water content
collected by AMSR-E sensor is the volume of water per unit volume of soil [m3

water/m
3
soil]

(Njoku et al., 2003). Volumetric water content (VSM) can be expressed as a ratio, percentage, or
depth of water per soil (assuming a unit surface area). As the VSM data from ARMS-E were
already presented as percentages, normalization was provided only at ∆TWS from GRACE.
Since results of retrieving global surface SM from GRACE depend on used SM extreme values,
the authors of Sadeghi et al. (2020) proposed used extreme values from overlapping SMAP
and GRACE timelines from 2015 to 2017. This research used maximum and minimum values
from the overlapping periods of GRACE and AMSR-E from 2002 to 2011. Normalization was
performed according to the following equation:

TWSnorm =
TWS − TWSmin

TWSmax − TWSmin
(1)
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To reveal the similarities and differences between the values, both sensor signals were grouped
for the winter, spring, summer, and autumn months. Moreover, a complementary correlation
analysis was performed to assess the level of agreement between different data sources:

corr(tws),(sm) =

∑n
i=1(TWSi − µtws)(SMi − µsm)√∑n
i=1(TWSi − µtws)2(SMi − µsm)2

(2)

where µ is the mean value, and σ its standard deviation. However, some phase shifts are observed
between the signals in the selected values delivered by analyzed sensors. Therefore, the analysis
of signal similarity was completed with the normalized cross-correlation (xcorr) coefficients:

xcorrtws(t),sm(t+τ) =
E[(TWSt − µtws)(SMt+τ − µsm)]

σtwsσsm
(3)

where E is the expected value of the given expression and τ is the time shift. In this case, a
maximum 6 months interval of possible lags between the examined time series was determined.
Anomalies for SM were also determined to indicate the similarities and differences with TWSA
resulting from extreme environmental changes. TWSA and SM anomalies (SMA) were calculated
by the following equations:

SMA(t) =
SM(t) − µsm

σsm
(4)

TWSA(t) =
TWS(t) − µtws

σtws
(5)

Intense spatial averaging filters with a high radius of smoothing kernel can cause signal loss,
known as ”leakage error” (Longuevergne et al., 2010, Swenson and Wahr, 2002). Filtering
decreases the spatial resolution of the GRACE observation, making it challenging to identify the
mass water signal of the main stem. The EOF analysis is a method for GRACE data to separate
signals from signal noise. It is beneficial in cases such as problems with loss of geophysical signal
with diminishing spatial resolution during filtration (Wouters and Schrama, 2007). The use of this
method is justified in the case of comparison of microwave data with higher spatial resolution and
greater time frequency of measurements than gravimetric satellite measurements. Concerning
the EOF’s of standard MCA (Rieger et al., 2021), the spatial amplitude (As) provides a means to
understand which regions contribute the most to the given mode. The spatial amplitude is easily
computed via the complex EOF and the complex conjugate EOF*:

As = 2
√
EOF × EOF ∗ ∈ C (6)

We can determine exactly how the individual regions are dynamically linked to each other. Phase
shifts between these two cases are signals that can be combined into one mode with standard
MCA by the following equation:

θ = tan(
R(EOF )

I(EOF )
)
−1

(7)

3. RESULTS

The surface soil layer commonly shows the most considerable SM variability due to the
relations with meteorological, environmental, and anthropogenic factors such as porosity,
topography, vegetation, precipitation, and temperature decreasing with depth. To analyze
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land cover conditions, the Harmonized World Soil Database was used (Fischer et al., 2008) from
https://www.fao.org/soils-portal/data-hub/(accessed on 01.06.2022). Land
cover data contain datasets based on an iterative calculation procedure to estimate land cover
class weights. It was consistent with combined Food and Agriculture Organization (FAO) land
statistics and spatial land cover characteristics. Data was collected from remote sensing data,
allowing intepretation and classification of land cover shares in 5’ by 5’ latitude/longitude grid
cells. The class weights used in the study determine the presence of arable land and forests for
each land cover class. As the water content strongly depends on the soil porosity, the analysis
included classes presenting soil conditions in terms of oxygen content.

Figure 1. Land cover data of forest land (a), oxygen availability to roots (b), total cultivated land (c),
and share of build-up land (d) based on Harmonized World Soil Database

Drainage characteristics of soils broadly define oxygen availability in soils. The determination of
soil drainage classes is based on procedures developed at FAO. These procedures consider soil
type, texture, terrain slope, and phases with mean proportion of water, air, and solids in soil. This
publication contains characteristics of forest land, oxygen availability to roots, total cultivated
land, and share of build-up land in Figure 1.

Figure 2. Seasonal patterns of ∆TWS (a), SM from band X (b),
and SM from band C (c) grouped by month over time
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Figure 3. Average SM from AMSR-E and ∆TWS from GRACE
grouped by latitude (a) and longitude (b)

The SM and ∆TWS variables are characterized by high variability over time. The main
components are related to seasonal factors included and the occurrence of dry and rainy seasons.
This decline over the years is presented in Figure 2. The figure clearly shows the negative trend
of ∆TWS value over the years. There are no similarities between the averaged SM and ∆TWS
observations for a given month. Since the cyclic signal can be reset by cyclical phenomena
occurring in a given area, the article presents averaged anomalies concerning time and latitude.

In order to characterize the values collected by gravimetric and microwave sensors, the averaged
values of the observation epochs in the years 2002–2011 were determined concerning the latitude
and longitude, respectively, as shown in Figure 3. Mean anomalies and standard deviation of
anomalies in time over the latitude are presented in Figure 4. Figure 4 a) c) e) show an increase in
the average values of TWSA and SMA in 2009–2011 for latitudes 0–20◦S with a slight standard
deviation for these latitudes in the given years. Both sensors picked up the same anomaly in these
areas. Time series analyses in this area can be characterized by high convergence. For latitudes
20–40◦N, we observe a significant TWSA anomaly that was not captured by the AMSR-E
sensors. In the years 2003–2005, we observed a significant standard deviation of anomalies,
which indicates a large scatter of observations and substantial variability, which was not captured
when determining the average SMA values.
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Figure 4. GRACE (a,b) and AMSR-E (c,d,e,f) average anomaly (a,c,e) and standard deviation (b,d,f)
grouped by latitude over time

As the data on the water content in the ground shows the cycle of seasonal changes in the
groundwater level, the average values were compared separately for each season of the year.
The analysis was divided into the C and X bands for the SM observation. After normalizations
of ∆TWS, ∆TWS and SM signals were grouped for the winter, spring, summer, and autumn
seasons. Where winter months are marked as December, January, February (DJF), spring as
March, April, May (MAM), summer as June, July, August (JJA), and autumn as September,
October, and November (SON).
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Figure 5. GRACE ∆TWS (a,d,g,j) and AMSR-E band C (b,e,h,k) and band X (c,f,i,l) SM averaged
and normalized values grouped by seasons DJF (a,b,c), MAM (g,h,i), JJA (j,k,l) and SON (j,k,l)

Figure 6. Pearson correlation coefficient between SM from band X and C from AMSR-E (a),
∆TWS from GRACE and SM from band C from AMSR-E (b),
∆TWS from GRACE and SM from band X from AMSR-E (c)

Data from the C- and X-ranges are very similar. However, they are visible in the saturation of the
SM parameter. In Figure 5, higher values of VSM in the areas of Amazonia can be noticed for
the C- range and the latitude of 60–70 degrees. When comparing the percentages of GRACE and
AMSR-E, there are apparent differences. Some of them may be due to data noise in GRACE.
Theoretically, all observations from the Sahara area should be close to zero due to the near-zero
water content in that area. However, variations in the water content around Lake Chad are
observed (Boy et al., 2012), which partially explain this effect. More similarities can be seen
between the C-band and the GRACE data, especially in the equatorial regions.

Often long-term microwave SM datasets, such as the Climate Change Initiative (CCI), based
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on C- and X-band observations, are typically masked over densely vegetated areas due to the
soil signal’s strong attenuation by the vegetation signal canopy (Dorigo et al., 2011, Liu et al.,
2011). It is worth emphasizing here that the X-band penetrates only the surface layer, the C-band
a bit deeper, into with highly dense vegetation. Both bands cannot penetrate the soil in some
cases (El Hajj et al., 2018). Pearson’s correlation coefficient for the tested signals is presented in
Figure 6.

Significant values of humidity in the X- and C-bands and low coefficients of correlation with
GRACE data observed in the northern regions of the globe, are strongly related to the permafrost
region. Data from this area deviates significantly in quality from other observations. No reduced
correlations can be seen in forest areas during the comparison of the water content obtained
from gravimetric and microwave sensors. The central part of Europe and the eastern regions of
China are mainly urbanized areas. There we observe a negative correlation between GRACE
and AMSR-E sensors. The anthropogenic factor related to the urbanization of space strongly
influences the quality of observation (Ahmed et al., 2014, Chen et al., 2019, Wang et al., 2017).
A high rate of urbanization also characterizes the Indian subcontinent. Moreover, over 60%
of the area is arable land, which, due to the large number of people living in the region, is
necessary to produce the right amount of food. Owing to the large open area and the lack of
limitations in oxygen availability in the root zones, we can observe a significant amplitude of the
SM signal. Phase compliance contributes to a high correlation in this area despite the progressive
urbanization of the area, in particular in the X-band. The cultivated areas worldwide showed
highly coherent GRACE and AMSR-E signals for GRACE and AMSR-E observations. The open
areas do not have barriers or limitations for rainfall, which allows water to penetrate the root
zone. The only exception is the eastern part of Europe, for which the overlapping of urbanization
factors and soil constraints on oxygen content, and thus lower soil porosity, slows down water
penetration into the soil. This causes a phase shift for the observed signals manifested by the
negative correlation coefficient in this area.

EOF method is effective due to its capacity to find spatial correlation in spatiotemporal data.
∆TWS retrieved from the GRACE and SM retrieved from AMSR-E missions are decomposed
using the EOF method to extract the signal, mainly describing the river discharge along the main
gravity stream. Before determining the EOF, the linear trend was removed from the observations
to eliminate the bias. Applying orthogonal decomposition MCA to geophysical datasets permits
extracting common dominant patterns between two variables. Regions with the same color are
in phase, that means their time series correlate with each other, while regions whose color is
different are anticorrelated as shown in Figure 8 and Figure 9.
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Figure 7. Dominant spatial pattern of water variability presended by decomposition of signal using EOF
for ∆TWS from GRACE (a,d,g) and SM from AMSR-E (b,c,e,f,h,j). The first spatial pattern (EOF1)

(a,b,c), the second spatial pattern (EOF2) (d,e,f), and the third spatial pattern (EOF3) (g,h,j)

Figure 8. EOF signal amplitude for ∆TWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c)

Figure 9. EOF signal phase shift for ∆TWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c)
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4. DISCUSSION

The preservation of the flow of subsurface waters is a significant regional issue, depending on
the climate determining the amount of rainwater, the topography, the arrangement of permeable
layers, and the presence of river sources. In this part of the article, regional studies were carried
out for selected river basins with the most significant area by selecting cases for all continents.
Regional analyses appear in earlier articles by Vishwakarma et al. (2021), where time series
analysis was carried out for major river basins. In this article, scientists capture significant dips
and identify constraints due to too short an observation period using the trend to variability ratio
(TVR) metric. This section focuses on the reasons for similarities and differences in gravimetric
and microwave signals in selected areas. The observations provided by the GRACE mission
are characterized by a significantly lower spatial resolution than microwave observations. The
application of grouping to the studied signals within rivers allows for finding patterns resulting
from minimizing errors resulting from noise or artifacts of the filtration process. For each
continent, a set of rivers with the largest area and different land cover features and different
latitudes was selected, thus eliminating bias in the dataset sample. For selected river basins,
Pearson’s correlation coefficients and cross-correlation, taking into account the phase shift
calculated according to formula (2) and presented in Figure 10 and Figure 11, were determined.

Figure 10. Pearson correlation over selected rivers basin between ∆TWS from GRACE and SM
from band X from AMSR-E (a) and ∆TWS from GRACE and SM from band C from AMSR-E (b)

Figure 11. Cross-correlation over selected rivers basin between ∆TWS from GRACE and SM from band
X from AMSR-E (a) and ∆TWS from GRACE and SM from band C from AMSR-E (b)

Examples of ∆TWS and SM time series and TWSA and SMA anomalies are shown in Figure
12.
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Figure 12. River basin time series containing ∆TWS and SM (a,c,e,g,i,k,m,o,q,s,u,w), TWSA and SMA
(b,d,f,h,j,l,n,p,r,t,v,x) for European (a,b,c,d), North America (e,f,g,h), South America (i,j,k,l),

Asian (m,n,o,p), African (q,r,s,t,w,x), and Australian (u,v) rivers

4.1. Europe

The analysis shows that the size of the river basin is not directly related to the differences in
GRACE and AMSR-E signals. Large European rivers, such as the Danube and the Vistula,
show the mutual shift of hydrological signals for gravimetric and microwave remote sensors
as can be seen in Figure 12 a), c). There is a more significant variance in the signal for
observations from the X- and C-bands than in GRACE observations. Therefore, the determined
anomalies are characterized by high noise for these ranges. Similar to the analysis performed in
Kuczynska-Siehien et al. (2019), the GRACE and AMSR-E sensors pick up an anomaly related
to the 2010 hydrological flood. However, contrary to the cited article, the SM determined from
AMSR-E indicates the occurrence of anomalies in the years 2007–2009, which is not recorded
in the GLDAS models. The snowfall in these regions during the months of DJF indicates a
lower moisture content in the soil, while GRACE sensors capture the mass contained in the snow
equivalent. This is explained by the method used to process AMSR-E data. Under frozen surface
conditions, the dielectric properties of the water change dramatically. Therefore, the method
assigns all pixels where the surface temperature is observed to be at or below 273 K with an
appropriate data flag (Holmes et al., 2009).

4.2. Africa

The Nile basin shows a very high agreement between GRACE and AMSR-E signals in both
X- and C-bands for the ∆TWS and SM values and their anomalies. The Pearson correlation
coefficient between these variables is greater than 0.8 for this region. The lack of soil constraints
and little human intervention in the form of agricultural or urban activities contribute to the
consistency of observations (Gossel et al., 2004). The percentage of arable land with additional
irrigation is less than 5% (Villholth, 2013). In the case of the Nile, a significant factor influencing
the changes in ∆TWS is surface runoff. The weather extremes and climatic variances observed
over the years using gravimetric observations indicate the high sensitivity of these sensors to
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extreme phenomena such as droughts (Scanlon et al., 2022, Seka et al., 2022a,b). The GRACE
and AMSR-E sensors catch the 2005 and 2010 drought anomalies, shown in Figure 12 t). Similar
results were also described by Seka et al. (2022b) using meteorological drought indicators and a
water storage deficit index (WSDI) occurring at the source of the Nile in the Turkana, Victoria,
and Tanganyika lakes.

The Congo River basin, known as Zaire, is over 60% covered by tropical forests. Crops account
for only 10% of the area. The correlation of gravimetric and microwave signals is lower than at
the same latitude for the Amazon basin. In this case, data collected by the AMSR-E mission
detects two seasonal signal peaks, while GRACE usually has only one, as presented in Figure 12
q), r). The X-band observations for shallow soil layers do not detect a split between longer and
shorter rainfall. At the same time, the C-band distinguishes subeasonal changes more like the
GRACE observations. Despite the lack of soil constraints, such a large area affected by changes
in precipitation caused by the movement of circulation cells poses a challenge for scientists in
interpreting ∆TWS and SM observations.

The Zambezi River basin maintained an above-average consistency between GRACE and
AMSR-E signals in both X- and C-bands for the ∆TWS and SM values and their anomalies also
described in Thomas et al. (2014) and Hassan and Jin (2016). Similar to Thomas et al. (2014), a
water deficit was observed in the area Zambezi River basin due to a hydrological drought event
in April 2005. For the Zambezi and Zaire river basins, the highest amplitudes of ∆TWS and SM
signals on the African continent can be observed. It can therefore be concluded, similarly to the
publication of Hassan and Jin (2016), that the ∆TWS in these regions is dominated mainly by
precipitation. Despite the relatively poorly urbanized area, the most important anthropogenic
factors include that the Zambezi River is used to produce electricity for southern Africa. In the
middle stretch of the river, there is a large artificial water reservoir called Kariba. Incremental
storage of a large mass of water favors capturing this effect by GRACE sensors with a minor
time frequency. Large uncovered agricultural areas and lack of factors contributing to noise
in microwave observations contribute to a significant convergence of results with gravimetric
sensors.

4.3. North America

The large rivers of North America have different results for the studied similarity between
gravimetric and microwave observations. The Mackenzie River basin has its source in Great
Slave Lake. Located in the north of Canada in subpolar regions, the source is closely related to
the snow equivalent variances visible in the GRACE observations but not included in the X- and
C-bands. A similar situation will be seen in the subpolar regions of the Ob River. This result is
visible in small correlations and low aggregation of ∆TWS and SM signals and their anomalies.

The Mississippi River basin has the opposite statistics compared to the Mackenzie River described
previously. The high agreement of ∆TWS and SM observations, shown by the cross-correlation
coefficient > 0.7, is due to the large area of agricultural crops. No limitations for soil conditions,
and <10% afforestation of the area does not retain water in the vegetation and allows free
seepage to groundwater. The main components of EOF3 show similar signal strength in terms of
area. Observations in the X-range have a slightly more substantial phase shift than observations
from the C microwave band. However, the difference is not significant in the context of the
examined similarity to gravimetric observations. The high compatibility of TWSA and SMA
allows both sensors to quickly monitor and predict natural disasters caused by droughts or floods
(Foroumandi et al., 2022).
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4.4. South America

The Amazon basin, well described in the literature previously by Chen et al. (2009), Cui et al.
(2020, 2022), Eom et al. (2017) and Wu et al. (2022), is exceptionally consistent for GRACE
and AMSR-E signals despite being mostly forested. Observations in the X-band captured the
2004 anomaly, which is not visible in the C-band observations. Both bands indicated an anomaly
in 2009 resulting from the exceptional flood in this area (Chen et al., 2010b) and droughts
in 2010–2012 (Nie et al., 2015). As in the two previously mentioned publications, extreme
hydrological phenomena from 2009 to 2012 were captured by the GRACE and AMSR-E sensors
in Figure 12 j). A large area and one of the largest amplitudes of water fluctuations resulting
from tropical rains occurring at equatorial latitudes cause, despite minor soil limitations, the
studied signals to be characterized by considerable convergence.

The La Plata basin region is characterized by a significant anomaly in the GRACE and AMSR-E
observations in Figure 4. Extremes occurring in this area require special attention during
interpretation (Abelen et al., 2015, Chen et al., 2010a). The low topographic complexity
facilitates penetration of the microwave signal. Secondly, a higher value of EOF3 shown in
Figure 7 in the X-band AMSR-E indicates the occurrence of phenomena that in the literature can
be found as the flood of winter 2009/2010. It was correlated with the occurrence of the El Niño
effect and the droughts occurring in 2009. The analysis of the main components indicates that
extreme hydrological phenomena have a significant effect both in gravimetric and microwave
data. However, due to the differentiation in the La Plata river basin, these phenomena are
characterized by a phase shift.

4.5. Asia

The Amur is the tenth longest river in the world, forming the border between the Russian Far
East and Northeast China. From the north of the basin, the area covers permafrost and is covered
with the boreal forest. The southern part of the area is intensively cultivated and distorted by
human activity. As can be seen in Figure 11, the cross-correlation coefficient is at the level
of 0.3, which proves the extremely poor compatibility of the ∆TWS and SM signals. This is
also confirmed in Figure 12 m), n) presenting the time series for this area. Extreme droughts
and wildfires in 2008 described previously in Semenov et al. (2017) are reflected in GRACE
observations in this research, represented by an anomaly in this period, which is entirely absent
in microwave observations.

The Ganges and Brahmaputra valley is intensively used for agriculture and densely populated
area near the Himalayas. The monsoons in this area have become a permanent part of the
landscape of the local population. ∆TWS observations in that area were previously described
by Felfelani et al. (2017), Forootan et al. (2016) and Papa et al. (2015). Figure 12 o) shows
a good agreement between the ∆TWS and SM signals. Cross-correlation over this basin is
at a level of 0.75. However, Figure 12 p) shows the discrepancy between TWSA and SMA
characterized by the opposite trend in the 2006–2012 period. A similar difference was noted
in (Felfelani et al., 2017), described as a significant divergence between the SM natural and
GRACE ∆TWS trend lines. As in the case of the Zaire River, the observations provided by the
AMSR-E mission capture two annual waves and only one primary wave during GRACE. In
this case, the differences between the X- and C-bands are smaller than in the case of the Congo
Basin. Strong amplitudes of GRACE and AMSR-E signals, especially in the X-range, presented
in Figure 8 a), b) indicate the intensity of SM changes in shallow layers for the largest river delta
in the world.
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4.6. Australia

The Murray-Darling basin is a large geographic area in the interior of south-eastern Australia
with intensive farmland use around Adelaide. The area is characterized by one of the best TWSA
and SMA signal correspondences observed in Figure 12 v). The decreasing trend of water
content in the soil in this area was described by Heimhuber et al. (2019), Tregoning et al. (2012)
and Yang et al. (2014). We see considerable agreement in the detected anomaly in 2010-2011
for gravimetric and microwave sensors. Similar conclusions as in the article by Heimhuber et al.
(2019) can be obtained regarding the interpretation of the results from the period 2010–2012. La
Nina Floods can be observed in higher TWSA and SMA in Figure 12 v). Unlike previous works,
ASMR-E sensors did not show decreasing trend related to the 2000–2009 Millennium Drought.
This is partly explained by the aggregation of data over a large river basin area and the different
intensification of phenomena in the northern and southern parts of the river basin. Observations
in the C-band compared to GRACE are similar in phase. Figure 9 shows a more significant
shift in the observations of the X-band for its main components, which explains the shallow
penetration into the soil layers for this band. However, the lack of significant global constraints,
large open spaces, and small built-up areas create favorable conditions for the GRACE and
AMSR-E satellites to detect the same groundwater characteristics and variances. The high
Pearson correlation coefficient at the level of 0.8 and the cross-correlation of about 0.7 are visible
in Figure 10 and Figure 11.

5. CONCLUSIONS

This article discusses the conditions under which the ∆TWS observations provided by the
gravimetric GRACE mission are characterized by a greater or lesser signal convergence with
the observations provided by the passive multiwavelength microwave sensors of the AMSR-E
mission. The interplay of ∆TWS and SM can provide a better and high-resolution understanding
of the Earth’s processes related to the water cycle. The complexity of land uses processes
and conditions impacts the detection and mapping of natural hazards, such as droughts or
floods, observed on a global or regional scale. Understanding the limitations affecting the
speed of detection of changes and consistency in the observations provided using various
methods and sensors has a tangible impact on the quality of the solutions provided for the
prediction of geo-hazards. The main conclusions and observations from the conducted study
worth emphasizing are the mutual relationship between the use of cultivated and forested areas
in the ∆TWS and SM compliance analyses. Naturally forested areas and large open spaces
used for agriculture support the compatibility between GRACE and AMSR-E observations. The
discussion showed a high correlation for these areas, at the same time pointing to the importance
of good oxygen conditions for root zones in the soil. Existing soil constraints such as permafrost
significantly eliminate the usefulness of X- and C-range microwave observations. For this reason,
analyses carried out in subpolar regions using gravimetric sensors have a significant advantage.
The referenced examples in the subsection for Europe indicate differences between GRACE
and AMSR-E in signals leading to the conclusion of unfavorable conditions resulting from soil
constraints and significant urbanization of the area. Moreover, the study opens the question of
spatial data leakage caused by filtering low-resolution GRACE data. Regions with high signal
variance averaged over the area of the entire river basin may cause the loss of a part of the
geophysical signal, which was observed and described for the example of the Zaire River. The
use of mathematical methods and a combination of signals with different spatial and temporal
resolutions, for areas with appropriate conditions and no soil and urban restrictions, will be the
next direction of the research.
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Introduction
Water, a crucial Earth resource (De Villiers 2001), necessitates 

continuous monitoring in order to understand planetary processes 
and predict extreme weather events. Utilizing hydrological models, 
remote sensing, and gravimetric sensors has become integral 
to climate-related research. Satellite gravimetry is a unique 
technique for monitoring mass transport and Earth’s processes 
on a global scale. One such satellite mission is GRACE (Tapley 
et al. 2004; Wahr et al. 1998). SM is a pivotal hydrological variable, 
constituting a fundamental component of ∆TWS (Robinson et al. 
2008). Both active and passive microwave observations enable 
the analysis of SM at both global and regional scales (Babaeian 
et al. 2019). One of the key remote sensors providing SM data 
was the AMSR-E mission. AMSR-E is an advanced microwave 
scanning radiometer, serving as a component of the Earth 
observation system (Njoku et al. 2005). Given the constraints 
associated with the spatiotemporal resolution of GRACE data, 
it is essential to uphold statistical significance when examining 
the potential synergy of GRACE data with sensors that offer 
higher measurement frequencies and spatial resolutions (Ioannidis 
2005). In the literature, there is a significant amount of research 
that involves processing, merging, and analyzing data from 
gravimetric sensors in conjunction with other data with varying 
spatiotemporal resolutions (Eicker et al. 2014). The year-long gap 
between GRACE and GRACE-FO missions raises concerns 
about our understanding of ongoing climate change. With the 
increasing computational capabilities of computers, machine 
learning methods have gained significance in solving signal 
reconstruction problems. After the completion of the GRACE-
FO mission, there will be a continued need to map various 
phenomena and their changes using existing data, along with 
further research in hydrological modeling (Hamshaw et al. 2018).

Numerous studies have already demonstrated the utility 
of machine learning models in various contexts. Early attempts 
to use Empirical Orthogonal Functions (EOF) were described 
by Becker et al. (2011). Sun et al. (2020) presented time series 
reconstructions of ∆TWS for sixty selected river basins, employing 
a comprehensive comparison of deep neural networks (DNN) and 
seasonal autoregressive integrated moving average (SARIMAX) 
models. Sun et al. (2021) presented a ∆TWS reconstruction using 
NOAH and CLSM data for major North American river basins. 
Artificial neural networks (ANN) were utilized by Seyoum and 
Milewski (2017), while Irrgang et al. (2020) demonstrated the efficiency 
of convolutional neural networks (CNN). Babaeian et al. (2019) 
conducted studies focusing on African river basins, and Sun 
(2013) used multilayer perceptron (MLP) and ANN architectures. 
Spatiotemporal analysis, using random forest, extreme gradient 
boosting (XGBoost), and logistic regression was employed by Jing 
et al. (2020) in the case of the Nile River basin, setting standards 
for highly accurate hydrological parameter reconstructions based 
on GLDAS-2 data. Seyoum et al. (2019) applied decision trees to 
enhance high-resolution groundwater level anomalies, improving 
GLDAS model data with field observations. Additionally, 
Sun et al. (2019) utilized CNN models with VGG16, Unet, and 
Segnet architectures for the Indian subcontinent, proving the 
effectiveness of encoder-decoder network structures in ∆TWS 
reconstruction.

The main goal of this publication is to show the possibility 
of using satellite microwave data (AMSR-E) to recreate the 
waveform observed by the gravimetric GRACE satellite mission 
on a global and local scale. To validate the experiment on a 
local scale, absolute gravimetric measurements were used. 
The underlying hypothesis posits that the ML methods applied 
to remote sensing AMSR-E data can effectively bridge the 

Using machine learning techniques to reconstruct 
the signal observed by the GRACE mission based 
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1Department of Geodesy and Geodetic Astronomy,
 Faculty of Geodesy and Cartography, Warsaw University
 of Technology, Warsaw, Poland
 e-mail: viktor.szabo.dokt@pw.edu.pl

2Department of Photogrammetry, Remote Sensing and  
 Spatial Information Systems, Faculty of Geodesy and  
 Cartography, Warsaw University of Technology,  
 Warsaw, Poland 
 e-mail: katarzyna.osinska-skotak@pw.edu.pl

3Department of Geodesy and Geodetic Astronomy,  
 Faculty of Geodesy and Cartography, Warsaw University  
 of Technology, Warsaw, Poland 
 e-mail: tomasz.olszak@pw.edu.pl

Viktor Szabó1 , 
Katarzyna Osińska-Skotak2 , 
Tomasz Olszak3

Received: 20 January 2024 
Accepted: 21 April 2024

Abstract
This study delves into the synergy between remote sensing and satellite 
gravimetry, focusing on the utilization of Advanced Microwave Scanning 
Radiometer (AMSR-E) data for modeling delta Total Water Storage 
(∆TWS) values derived from the GRACE mission. Various machine 
learning algorithms were employed to investigate the concordance 
between Gravity Recovery and Climate Experiment (GRACE) and 
AMSR-E observations. Despite the limited correlation in circumpolar 
permafrost areas, ∆TWS was successfully modeled with an accuracy 
of a Root Mean Square Error (RMSE) of 3.5 cm. The Amazon region 
exhibited a notable model error, attributed to significant ∆TWS amplitude; 
the overall model quality was affirmed by Normalized Root Mean Square 
Error (NRMSE) and Nash-Sutcliffe Efficiency (NSE) metrics. Importantly, 
the effectiveness of AMSR-E Soil Moisture (SM) data, encompassing C 
(frequency of 4–8 GHz) and X (frequency of 8–12 GHz) ranges (~0.04 m 
and ~0.03 m wavelength, respectively) in modeling ∆TWS, even in heavily 
forested equatorial regions, was demonstrated. 
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gaps in the GRACE mission data, serving as the independent 
variable in various regression approaches. Previous research 
endeavors encompassed diverse models and techniques to 
reconstruct the temporal variations in ∆TWS, frequently relying 
on SM data sourced from alternative sensors, indicating the 
tremendous importance of this feature over other predictors. The 
present study seeks to augment the existing body of literature by 
comprehensively examining various regression methodologies to 
reconstruct the GRACE-derived signal. 

Target data – GRACE
The processed data from the GRACE mission, representing 

∆TWS, are available on the PODAAC website (Physical Oceanography 
Distributed Active Archive Center 2023) and are distributed by the Center 
for Space Research (CSR) in Texas. The spatial resolution of the 
GRACE data used in this study is approximately 300 km × 300 km. 
The data concerning changes in mass on the Earth’s surface and 
subsurface are based on the RL06 standard (Dahle et al. 2013) at the 
level of L2 data processing. During the GRACE data processing, 
the C20 coefficient, representing the Earth’s gravitational flattening 
(Swenson et al. 2008a), was replaced with observations using the 
Satellite Laser Ranging (SLR) technique (Cheng & Tapley 2004). 
The error associated with the N-S stripes, resulting from orbit 
inclination, was removed using a modified decorrelation filter 
(Chen et al. 2007; Swenson & Wahr 2006). Additionally, during the 
GRACE data processing, the static part of the gravitational field 
was corrected using the GGM05C model (Ries et al. 2016). While 
processing GRACE data, degree 1 coefficients (Geocenter) were 
estimated using the methods presented in the work of Swenson et 
al. (2008b). Correction due to the glacial isostatic adjustment (GIA) 
was considered, based on the ICE6G-D model, as presented in 
the study by Peltier et al. (2018).

Predictors data – AMSR-E
The AMSR-E dataset is available as daily measurement 

files on the NASA website (NASA’s Goddard Earth Sciences Data 
and Information Services Center, 2023). The AMSR-E/Aqua surface 
SM descending dataset, version 2, is a Level 3 dataset in grid 
format, with a daily temporal resolution and a spatial resolution 
of approximately 25 km x 25 km. AMSR-E uses the X-band and 
C-band to measure the water cycle and SM content retrievals, 
corresponding to depths of 2.5–3.75  cm and 3.75–7.5  cm, 
respectively. Land surface SM measurements are derived from 
passive microwave remote sensing data using LPRM (Land 
Parameter Retrieval Model). LPRM leverages a radiative 
transfer model to obtain near-surface SM and optical depth of 
signal penetration. AMSAT-E on NASA’s EOS Aqua satellite 
discontinued data provision in October 2011 due to issues with 
its antenna rotation (van der Vliet et al. 2020). This study exclusively 
utilized descending orbits, primarily due to their superior stability 
for soil temperature, vegetation cover, and nighttime air conditions 
(Liu et al. 2012).

True validation data – absolute gravimetric measurements
The JOZE gravimetric station is situated beneath the 

facilities of the Astronomical-Geodetic Observatory (AGO) in 
Józefosław, Poland, precisely 5.7 meters below the surface. It is 
anchored to a concrete pillar measuring 2 × 2 meters. Absolute 
measurements were conducted at approximately monthly 
intervals, from May 2005 to November 2016, employing the 
FG-5 gravimeter, serial number 230. This dataset represents 
the longest and most uniformly collected time series of absolute 
gravimetric values in Poland. The total uncertainty in determining 
the gravity amounted to ±2 µGal. The results of absolute 
measurements are meticulously adjusted to account for Earth 
tides (following the Wenzel model), oceanic tides (based on 

the FES2004 model), atmospheric pressure fluctuations, and 
polar motion in accordance with ITGRS standards (Wziontek et 
al. 2021). In addition, gravitational values are further refined by 
incorporating the outcomes of ICAG and ECAG international 
comparison meetings to define common international gravity 
reference values and metrological factors stemming from 
variations in clock and laser frequencies.

Methods
Machine learning encompasses various problem types 

where these algorithms find application. Signal reconstruction 
is effectively addressed through regression modeling, using 
machine learning algorithms. The regression problem involves 
predicting a continuous response variable based on a given set 
of predictors. Regression models are techniques for creating a 
mathematical equation defining y as a function of the variables X. 
Linear regression is the simplest and most widely used technique 
for predicting a continuous variable and is defined by the formula:

Y = Xβ1 + β0 + ϵ (1)

Here, β0 is the intercept, β1 is the regression coefficient 
associated with the predictor variable (feature or attribute) X, and 
ϵ represents Gaussian noise. 

The selection of regression algorithms for this study was 
guided by their established efficacy in handling diverse datasets 
and features, and their suitability for modeling the phenomenon 
under investigation. Drawing from prior research (Bonaccorso 
2018; Maulud & Abdulazeez 2020), which evaluated various machine 
learning algorithms for regression tasks, we identified several 
popular methods for their robust performance across different 
data characteristics. Leveraging diverse methods ensured a 
comprehensive exploration of the regression landscape and 
facilitated robust modeling of the target phenomenon. The 
selected algorithms encompass a range of approaches, from 
ensemble methods such as Random Forest Regressor and 
Extra Trees Regressor, known for their ability to capture complex 
relationships in large datasets, to gradient boosting algorithms 
such as Extreme Gradient Boosting (XGBoost) and Gradient 
Boosting Regressor, which excel in handling high-dimensional 
data and achieving superior predictive accuracy. Additionally, 
traditional linear models, such as linear regression and ridge 
regression, were included, which, despite their simplicity, often 
serve as reliable baselines for comparison. Bayesian Ridge 
regression was chosen for its ability to balance model complexity 
and goodness of fit through Bayesian analysis. At the same time, 
the Huber Regressor was selected for its robustness to outliers, 
a common challenge in real-world datasets. Furthermore, more 
specialized techniques, such as Orthogonal Matching Pursuit 
and Lasso Regression, offer sparse solutions by selecting only 
the most relevant features, thus aiding in model interpretability. 
Elastic Net, a hybrid regularization method combining L1 (Lasso) 
and L2 (Ridge) penalties, was included to address potential 
collinearity among predictor variables, enhancing the stability of 
parameter estimates. To provide a comprehensive evaluation, 
ensemble methods, such as AdaBoost Regressor, known for 
their ability to combine multiple weak learners in order to improve 
predictive performance adaptively, were also considered, 
and Passive Aggressive Regressor, a variant of the passive 
aggressive algorithm, adapted specifically for regression tasks, 
offering flexibility in adjusting model parameters in response to 
observed errors.

Methods of fitting trigonometric functions were chosen as 
a reference point. A custom script, written in Python, was used 
for calculations using open-source libraries such as scikit-learn, 
PyCaret, and numpy.
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The experiment focused on the intersection of GRACE 
and AMSR-E sensor datasets over the 2002–2012 period, 
which were strategically chosen to maximize dataset overlap. 
Input data for model training were meticulously organized into 
a tabular format, where each data point corresponds to a point 
in the matrix, and represents different measurement epochs. 
The columns contain variables derived from SM AMSR-E Band 
C and Band X determination, latitude, longitude, and monthly/
semi-annual factors. This matrix corresponds to a vector, 
containing continuous ∆TWS variables, which are marked as 
the target variable. Subsequently, all these matrices have been 
amalgamated into a single table with dimensions equivalent to 
the number of epochs multiplied by the number of data points, 
and further multiplied by the number of variables. 

Prior to the training phase, a distinct portion of randomly 
selected data should be set aside for the purpose of accuracy 
testing and model evaluation. It is crucial to ascertain the 
appropriate sample size for the test data to attain statistical 
significance, given the lack of substantial variance in the 
mean values between the two groups (Ioannidis 2005). To obtain 
statistical significance of the model results, the minimum number 
of samples included in the test set was determined. Data from 
2002–2008 were included in the training set, and data from 
2008–2012 were included in the test set. 

Comparative analyses necessitate quality metrics to 
evaluate model performance, which is dependent on the analysis 
type and data characteristics. This work utilizes metrics such as 
NSE (Nash 1970), the coefficient of determination (R2) (Nagelkerke 
1991), Root Mean Square Error (RMSE) (Chai & Draxler 2014), 
and Normalized Root Mean Square Error. NSE is a normalized 
statistic that quantifies the relative size of the residual variance to 
the variance of the measured data. NSE is calculated using the 
following formula:
  						    

𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 = 1−
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖
∑ (𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦)2𝑛𝑛𝑛𝑛
𝑖𝑖𝑖𝑖𝑖𝑖

 (2)

where: n represents the number of observations, yi is the actual 
value of observation i, ŷ i is the predicted value for observation i 
by the model, and y is the mean value of all observations. The 
coefficient RMSE is calculated using the following formula:
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RMSE is a measure of the deviation between actual values yi 
and model-predicted values ŷ i. A lower RMSE value indicates a 
better fit of the model to the actual data. The coefficient NRMSE 
is calculated using the following formula:

𝑁𝑁𝑁𝑁𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 =
𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

|𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑦𝑦𝑦𝑦) −𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛𝑛𝑛(𝑦𝑦𝑦𝑦)| 
(4)

where: max(y) and min(y) are the maximum and minimum values 
in the set of actual data y. In the context of GRACE data analysis, 
we are dealing with the amplitude of a phenomenon in a specific 
area. NRMSE is a measure of the deviation between model-
predicted values and actual data, normalized to the data value 
range. 
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In this formula: yi is the actual value of observation i, ŷ i is the 
predicted value for observation i by the model, and ȳ   is the mean 
value of all observations. R2 is a measure that assesses how well 
a regression model fits the data. The value of R2 ranges from 0 
to 1, where 1 indicates a perfect fit of the model to the data. The 
Nash-Sutcliffe model efficiency coefficient closely resembles the 
coefficient of determination, differing from R2 in its application. R2 
serves as an indicator of the quality of fit for a statistical model. 
In contrast, NSE is utilized to quantify a model’s capability to 
forecast the outcome variable. 

Global results and discussion
The achieved results on the test data sample are presented 

in table 1. The best results were obtained from methods related 
to Random Forests, such as Random Forest Regressor, Extra 
Trees Regressor, and Extreme Gradient Boosting, achieving 
satisfactory R2 values greater than 0.7.

The results align with established benchmarks. For example, 
Sun et al. (2020) achieved impressive metrics in their temporal 
approach, including RMSE of 4.5–4.7 cm and NSE of 0.7. RMSE 
results of 4.5–4.7 cm can be observed (Szabó 2023) and RMSE 
of 4.2–4.5  cm, depending on the temporal and spatiotemporal 
scales considered. In a spatial and temporal context, Sun et al. 
(2021) achieved strong Nash-Sutcliffe efficiency (ca. 0.85), and 
low mean Normalized Root Mean Square Error (ca. 0.09) over 
the US. In a Nile River basin case study, using the spatiotemporal 
method (Jing et al. 2020), results revealed RMSE of 1.4–3.47 cm 
and NSE of 0.54–0.94. Using CNN networks, at a grid-based 
scale, showed promising results, with NSE of 0.87 in the Indian 
study area. However, RMSE values of 4.5–5.0  cm provide 
limited insight into solution quality. For a more comprehensive 
assessment, and considering the error-scale ratio, NRMSE 
serves as a superior metric, with the spatiotemporal approach 
benefiting from the increased variance in individual observations. 

Local results and discussion
Measurements conducted with an absolute gravimeter 

are influenced by systematic geodynamic effects, which are 
accounted for during data processing and the local hydrological 
environment. Alongside gravity measurements at AGO JOZE, 
groundwater levels were monitored through a piezometer. By 
assessing the influence of nearby subsurface water bodies, 
a comparison between ground-based and satellite data was 
feasible. The methodology outlined in the work of Kuczynska-
Siehien et al. (2019) and Szabó and Marjańska (2020) was employed 
to process absolute gravity data. The ∆TWS prediction results 
and the given gravity disturbance are presented in figure 3.  
The signal is accurately replicated with a high degree of precision, 
capturing the periodic changes effectively. However, in the 
presence of anomalies such as floods, the disparities between 
the model and observed values intensify.

In a study by Szabó and Osińska-Skotak (2023), the investigation 
reveals that the size of the river basin does not exhibit a 
direct correlation with the disparities in signals obtained from 
GRACE and AMSR-E. European rivers such as the Danube 
and Vistula exhibit concurrent shifts in hydrological signals 
when observed using both gravimetric and microwave remote 
sensors. Observations from the X- and C-bands introduce a 
more pronounced signal variance, compared with GRACE 
observations. Consequently, the identified anomalies are marked 
by heightened noise levels within these frequency ranges. 
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Similar to the cited study, the flood wave prediction, based on 
SM data from AMSR-E, was unsuccessful in this case. Metrics 
for predictions for this location show the following values: NSE 
= -0.19, RMSE = 0.04 [m], NRMSE = 0.23, R2 = 0.27, and 
confirm that the determination of anomalies in this area, visible 
in local absolute measurements in 2010–2011, is unsuccessful. 

However, clear correlations between absolute measurements 
and SM from AMSR-E are visible in given periods. The negative 
anomaly from December 2009 was visible in both time series. 
This demonstrates the sensitivity of the gravimetric signal to 
environmental changes in the top aquifers.

Table 1: The achieved results on the test data sample

Model RMSE [m] R2 Δ RMSE [%] Δ R2 [%] 1-R2 Δ 1-R2 [%]
Random Forest Regressor 0.035 0.761 51.3 380700.0 0.239 76.1

Extra Trees Regressor 0.035 0.757 50.9 378700.0 0.243 75.7

Extreme Gradient Boosting 0.037 0.739 48.9 369350.0 0.262 73.9

K Neighbors Regressor 0.038 0.725 47.7 362450.0 0.275 72.5

Light Gradient Boosting Machine 0.038 0.715 46.7 357750.0 0.285 71.5

Decision Tree Regressor 0.048 0.546 32.8 273000.0 0.454 54.6

Gradient Boosting Regressor 0.052 0.469 27.3 234600.0 0.531 46.9

Linear Regression 0.069 0.074 3.9 36950.0 0.926 7.4

Least Angle Regression 0.069 0.074 3.9 36950.0 0.926 7.4

Bayesian Ridge 0.069 0.074 3.9 36900.0 0.926 7.4

Ridge Regression 0.069 0.068 3.7 34150.0 0.932 6.8

Huber Regressor 0.070 0.062 3.2 31000.0 0.938 6.2

Orthogonal Matching Pursuit 0.072 0.000 0.2 50.0 1.000 0.0

Lasso Regression 0.072 -0.001 0.2 -150.0 1.001 0.0

Elastic Net 0.072 -0.001 0.2 -150.0 1.001 0.0

Lasso Least Angle Regression 0.072 -0.001 0.2 -150.0 1.001 0.0

Dummy Regressor 0.072 -0.001 0.2 -150.0 1.001 0.0

AdaBoost Regressor 0.073 -0.021 -0.9 -10450.0 1.021 -2.1

Passive Aggressive Regressor 0.086 -0.485 -20.0 -242550.0 1.485 -48.5

sin+cos annual function (baseline) 0.072 0.000 - - 1.000  
sin+cos semiannual function 0.095 0.000 -32.7 0.0 1.000 0.0

Source: own elaboration

Figure 1. Random Forest Regressor model: (a) residuals; (b) prediction identity
Source: own elaboration
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Figure 2. Random Forest Regressor model spatial distribution of metrics: (a) NSE; (b) RMSE; (c) NRMSE; (d) R2

Source: own elaboration

Figure 3. (a) Predicted ∆TWS and true ∆TWS with SM predictors from AMSR-E; (b) Predicted ∆TWS and true ∆TWS with dg 
validation data
Source: own elaboration
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Conclusions
This study employs AMSR-E remote sensing data to model 

∆TWS values, based on observations from the GRACE mission, 
testing various machine learning algorithms. Naturally forested 
and agricultural open regions exhibit a strong concordance 
between GRACE and AMSR-E data, emphasizing the importance 
of well-oxygenated soil root zones (Szabó & Osińska-Skotak 2023). The 
presence of permafrost restricts the applicability of X- and C-band 
microwave observations. Despite limited correlation in permafrost 
areas, ∆TWS values are accurately modeled with an RMSE of 3.5 
cm. The Amazon region displays a notable model error, associated 
with the substantial amplitude of ∆TWS. However, metrics such 
as NRMSE and NSE affirm the overall quality of the model. 
AMSR-E SM data effectively models ∆TWS, even in equatorial 
forests. Challenges arise in the Mississippi River basin, the Great 
Plains, and Patagonia, where agricultural intensification leads to 
significant residuals from true observations. Factors influencing 
this may include connections with the irrigation of agricultural 
areas, faster water permeability to deeper aquifers in open areas, 
different vegetation periods, or other phenological factors. In the 
context of the approximately one-year gap between GRACE and 
GRACE-FO data, using existing data to model and complement 
the time series of gravimetric observations is extremely important. 
Data from remote sensing missions can be successfully used to 
achieve this goal.
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