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Streszczenie

Woda, jako jeden z najcenniejszych zasobéw naturalnych, jest poddawana sta-
temu monitorowaniu ze wzgledu na jej kluczowa role w zyciu na Ziemi oraz progno-
zowanie ekstremalnych zjawisk pogodowych jak susze czy powodzie. Monitoring ten
jest integralnym elementem i wpisuje sie w podstawowe cele programu GGOS (ang.
Global Geodetic Observing System). Wielopoziomowo$¢ sytemu obiegu wody w przy-
rodzie prowadzi do wielowymiarowej ztozonosci prowadzenia pomiaréw zmiennosci
zawartosci wody w glebie. Z tego wzgledu rejestracja tego sygnalu z putapu sateli-
tarnego stanowi znaczace wyzwanie dla badaczy z calego Swiata.

Praca doktorska skupia sie na analizie synergii miedzy danymi uzyskanymi z r6z-
nych sensoréw grawimetrycznych i teledetekcyjnych w kontekscie monitorowania
zmian zasobéw wodnych na Ziemi okreslanych jako ATWS (ang. Total Water Sto-
rage changes). Przeprowadzone badania naukowe dotycza analizy istotnosci czynni-
kéw wplywajacych na rejestracje zmian poziomu wod gruntowych obserwowanych
przez satelity grawimetryczne GRACE (ang. Gravity Recovery And Climate Experi-
ment) i GRACE-FO (ang. Grace Follow on) i zbadania w jakich warunkach mozliwe
by byto synergiczne wykorzystanie obserwacji dostarczanych do modeli hydrologicz-
nych za pomoca satelitarnych sensorow o odmiennej charakterystyce. Kluczowym
pytaniem postawionym w pracy jest, czy mozliwe jest wykorzystanie informacji za-
wartych w danych zebranych przez czujniki charakteryzujace sie wiekszym szumem
i wariancja sygnalu, takimi jak dane dotyczace wilgotnosci gleby (SM, ang. Soil
Moisture) pochodzace z misji AMSR-E (ang. Advanced Microwave Scanning Ra-
diometer), w globalnej analizie zmiennosci ATWS z satelitéw GRACE i GRACE-
FO. W pracy zdefiniowano takze szereg aspektow badawczych, obejmujacych m.in.
analize przestrzennych i czasowych zaleznosci pomiedzy danymi teledetekcyjnymi
a grawimetrycznymi, ocene wpltywu metody filtracji danych, wykorzystanie technik
uczenia maszynowego w rekonstrukcji sygnatu oraz wyznaczenie czynnikéw umozli-
wiajacych wieksza zgodno$¢ sygnaléw z tych dwoch zrédet danych.

Przeprowadzone badania obejmuja zaréwno analizy regionalne, jak i globalne, co
pozwala na pelniejsze zrozumienie dynamiki zmian woéd na Ziemi i dostarcza pod-
staw dla skuteczniejszych dziatan zarzadczych w obszarze monitorowania $rodowiska
naturalnego. Badania wykazaly, ze satelitarne sensory grawimetryczne sa skutecz-
nym narzedziem do analizy ekstremalnych zjawisk klimatycznych, takich jak susze
i powodzie, pod warunkiem odpowiedniej filtracji przestrzennej sygnatu. Modelo-
wanie lokalnych czynnikéw hydrologicznych oraz antropogenicznych jest kluczowe
dla doktadnoéci obserwacji naziemnych i satelitarnych, zwlaszcza w przypadku ob-
serwacji warunkow hydrologicznych. Wykorzystanie nowoczesnych technik uczenia
maszynowego pozwala na skuteczng rekonstrukcje sygnatu ATWS na podstawie da-
nych z modeli GLDAS (ang. Global Land Data Assimilation System) oraz danych

dotyczacych SM. Praca stanowi wktad w rozwdj naukowego zrozumienia proceséw



hydrologicznych na Ziemi oraz wskazuje kierunki dalszych badan w zakresie analizy

danych grawimetrycznych i teledetekcyjnych.

stowa kluczowe: grawimetria, teledetekcja, GRACE, AMSR-E, zmiany zasobow
wody



Abstract

Water, one of the most valuable natural resources, undergoes constant monito-
ring due to its crucial role in Earth’s life and the forecasting of extreme weather
phenomena such as droughts and floods. This monitoring aligns with the fundamen-
tal goals of the GGOS (Global Geodetic Observing System) program. The multi-level
nature of the Earth’s water cycle leads to multidimensional complexity in measu-
ring soil water content variability. Consequently, recording this signal from a satellite
perspective poses a significant challenge for researchers worldwide.

The doctoral thesis analyzes the synergy between data obtained from various
gravimetric and remote sensing sensors in the context of monitoring changes in
Earth’s water resources, referred to as Total Water Storage (ATWS) changes. The
scientific research conducted pertains to the analysis of the significance of factors
influencing the registration of groundwater level changes recorded by gravimetric
satellites GRACE (Gravity Recovery And Climate Ezxperiment) and GRACE-FO
(Grace Follow-on) and the investigation of under what conditions synergistic use
of observations delivered to hydrological models via satellite sensors with different
characteristics would be possible. A key question posed in the thesis is whether it
is possible to utilize information contained in data collected by sensors characteri-
zed by higher noise and signal variance, such as soil moisture (SM) data from the
AMSR-E mission (Advanced Microwave Scanning Radiometer), in a global analy-
sis of ATWS variability from GRACE and GRACE-FO satellites. The thesis also
defines several research aspects, including the analysis of spatial and temporal de-
pendencies between remote sensing and gravimetric data, assessment of the impact
of data filtering methods, utilization of machine learning techniques in signal recon-
struction, and determination of factors enabling greater alignment of signals from
these two data sources.

The conducted research encompasses regional and global analyses, allowing for
a fuller understanding of water dynamics on Earth and providing the basis for more
effective environmental monitoring management. The studies have shown that gra-
vimetric satellite sensors are practical tools for analyzing extreme climatic pheno-
mena, such as droughts and floods, provided spatial signal filtering is adequate.
Modeling local hydrological and anthropogenic factors is crucial for the accuracy
of ground-based and satellite observations, especially regarding hydrological con-
ditions. Modern machine learning techniques enable effective signal reconstruction
based on the GLDAS (Global Land Data Assimilation System) model and SM data.
The thesis contributes to advancing scientific understanding of hydrological pro-
cesses on Farth and sets directions for further research in gravimetric and remote

sensing data analysis.

keywords: gravimetry, remote sensing, GRACE, AMSR-E, water storage changes
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1

Forma rozprawy doktorskiej

Niniejsza rozprawa doktorska zostata przygotowana w formie spojnego tematycznie zbioru

pieciu prac opublikowanych w czasopismach naukowych oznaczonych numerami [1-5].

1]

Kuczynska-Siehien, J., Piretzidis, D., Sideris, M. G., Olszak, T. and Szabd, V. (2019)
‘Monitoring of extreme land hydrology events in central Poland using GRACE, land
surface models and absolute gravity data’, Journal of Applied Geodesy, Vol. 13, No.
3, pp.-229-243, doi: 10.1515/jag-2019-0003.

100 pkt MEIN; IF: 1.30

Szabé, V. and Marjanska, D. (2020) ‘Accuracy analysis of gravity field changes from
GRACFE RL0O6 and RL0O5 data compared to in situ gravimetric measurements in the
context of choosing optimal filtering type’, Artificial Satellites: Journal of Planetary
Geodesy, Vol. 55, No. 3, pp.100-117, doi: 10.2478 /arsa-2020-0008.

70 pkt MEIN; IF: 0.90

Szabd, V. (2023) ‘Comparison features importance for temporal and spatial-temporal
approaches in GRACE and GRACE-FO signal reconstruction based on GLDAS
data’, International Journal of Hydrology Science and Technology,

doi: 10.1504/TJHST.2023.134623

100 pkt MEIN; TF: 1.80

Szabd, V. and Osinska-Skotak, K. (2023) ’Similarities and differences in the Earth’s

water variations signal provided by GRACE and AMSR-E observations using Mazi-
mum Covariance Analysis at various Land Cover data backgrounds’ Artificial Satel-
lites: Journal of Planetary Geodesy, Vol. 58, No. 2 - 2023, doi: 10.2478/arsa-2023-
0006

70 pkt MEIN; IF: 0.90

Szabd, V., Osifiska-Skotak, K. and Olszak, T. (2024) "Using machine learning tech-

niques to reconstruct the signal observed by the GRACE mission based on AMSR-E
microwave data’; Miscellanea Geographica - Regional Studies on Development, Vol.
28, No. 2 - 2024, doi: 10.2478 /mgrsd-2023-0033

100 pkt MEIN; IF: 0.80

Suma punktéw MEiIN: 440



Moj udzial w poszczegdlnych publikacjach byt nastepujacy:

[1] Przygotowanie danych z misji GRACE, napisanie skryptu umozliwiajacego filtro-
wanie danych wspotezynnikow sferycznych harmonicznych poziomu 2 filtrami nie-
izotropowymi DDK1-8. Jednostkowy udzial: 10%

[2] Przygotowanie danych, praca nad koncepcja i metodyka badan, przeprocesowanie
i analiza rozwiazan, przeglad literatury, przygotowanie catej tresci artykutu w jezyku

polskim. Jednostkowy udzial: 80%

[3] Przygotowanie koncepcji i metodyki badan, przeglad literatury, napisanie kodu
umozlwiajacego analize rozwigzan, opracowanie danych, analiza wynikow, ich dys-
kusja i wnioski. Przygotowanie oryginalnej wersji artykutu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udziat: 100%

[4] Przygotowanie koncepcji i metodyki badan, przeglad literatury, napisanie kodu
umozlwiajacego analize rozwigzan, opracowanie danych, analiza wynikoéw, ich dys-
kusja 1 wnioski. Przygotowanie oryginalnej wersji artykutu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udziat: 85%

[5] Przygotowanie koncepcji i metodyki badan, przeglad literatury, napisanie kodu
umozlwiajacego analize rozwigzan, opracowanie danych, analiza wynikow, ich dys-
kusja i wnioski. Przygotowanie oryginalnej wersji artykutu i korekta na podstawie

otrzymanych recenzji. Jednostkowy udziat: 80%

Oswiadczenia wspétautoréow publikacji okreslajace indywidualny wktad kazdego autora
w powstanie poszczegdlnych publikacji zamieszczono rozdziale (10) w poszczegdlnych za-

tacznikach.



2 Motywacja, cele i hipotezy badawcze

Globalne pomiary geodezyjne pelnia dwie istotne funkcje w dziedzinie obserwacji Ziemi:
dostarczaja ram odniesienia niezbednych do wszystkich obserwacji zaleznych od lokali-
zacji, co stanowi fundament wigkszosci obserwacji ziemskich oraz dostarczaja obserwacji
dotyczacych zmieniajacego sie w czasie ksztaltu, pola grawitacyjnego i rotacji Ziemi. Po-
niewaz Ziemia jest ciggle deformowana przez wewnetrzne procesy geodynamiczne oraz
przez transport masy i energii w ptynnej powtoce astenosfery, zdolno$¢ do zrozumienia
i modelowania tych proceséw niesie znaczace korzysci przy tworzeniu stabilnych rozwia-
zan i projektowaniu systeméw (ITRS, ang. International Terrestrial Reference System)
i uktadéow (ITRF, ang. International Terrestrial Reference Frame) odniesien przestrzen-
nych.

GGOS (ang. Global Geodetic Observing System) (Plag et al., 2009, Rothacher et al.,
2009) stanowi fundamentalna infrastrukture dla badan nad dynamicznymi zmianami w ob-
rebie naszej planety oraz dostarcza kluczowe produkty dla zrozumienia proceséw zwigza-
nych z deformacja globalng i wymiang masy zachodzaca w litosferze, hydrosferze, atmos-
ferze i kriosferze. W obliczu coraz potezniejszych skutkéw zmian pochodzenia zaréwno
naturalnego jak i antropogenicznego, swiadome zarzadzanie naszym srodowiskiem staje
sie kluczowym wyzwaniem. W celu zminimalizowania negatywnego wpltywu dziatalnosci
cztowieka na ekosystem i rownowage naszej planety oraz zachowania zasobow naturalnych
dla przysztych pokolen, niezbedne jest poglebione zrozumienie procesow zachodzacych na
Ziemi. Wymaga to kompleksowych badan, modelowania, prognozowania oraz podejmowa-
nia decyzji politycznych opartych na wszechstronnych obserwacjach systemu Ziemi. Zja-
wiska takie jak susze, powodzie, trzesienia ziemi, tsunami czy erupcje wulkandéw stanowia
jedynie wierzchotek gory lodowej, obrazujac niepokojgca dynamike zmian na Ziemi. Ob-
serwacje te sa nie tylko istotne dla naukowego poznania naszej planety, ale réwniez maja
fundamentalne znaczenie dla wielu sektoréw gospodarki oraz spoteczenstwa jako calosci.
Pomiar zmiennego w czasie ksztattu, pola grawitacyjnego i rotacji Ziemi to elementy ce-
low GGOS oraz ich implementacji przy pomocy GEOSS (ang. Global Earth Observation
System of Systems) (Lautenbacher, 2006). GEOSS to zestaw skoordynowanych, niezalez-
nych systemow pozyskiwania obserwacji, informacji i przetwarzania danych dotyczacych
Ziemi, ktore wspotdziatajg i zapewniajg dostep do réznorodnych informacji szerokiemu
gronu uzytkownikéw zaréwno z sektora publicznego, jak i prywatnego. GEOSS taczy te
systemy w celu wzmocnienia komplementarnosci monitorowania stanu Ziemi.

Woda jest jednym z najcenniejszych zasobéw naturalnych na Ziemi (De Villiers,
2001, Lvovich, 1979). Stalty monitoring tych zasobéw, obiegu wody i cyklu hydrologicznego
daje niezwykte korzysci w postaci nie tylko zrozumienia procesow zachodzacych na naszej

planecie, ale réwniez predykeji ekstremalnych zjawisk pogodowych, takich jak susze czy
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powodzie. Naukowcy stosuja w swoich pracach badawczych dane dotyczace zmian ekwi-
walentu wodnego. Badania te znajduja swoje praktyczne zastosowanie w rolnictwie, moni-
toringu zmian klimatu lub chociazby przewidywaniu katastrof naturalnych (Foroumandi
et al., 2023, Hao et al., 2018, Rashid et al., 2020). Wykorzystanie danych z modeli hydro-
logicznych, danych teledetekcyjnych lub grawimetrycznych na state zagoscito w dziedzinie
badan zwigzanych z klimatem. Ze wzgledu na znaczng liczbe badan, w ktorych przetwarza
sie, taczy i analizuje dane z sensoréw grawimetrycznych w potaczeniu z innymi danymi
o réznej rozdzielczosci czasowo-przestrzennej (Dee et al., 2011, D6ll et al., 2014, Eicker
et al., 2014, Jackson et al., 1981) motywacja do badan stala sie potrzeba przeprowadzenia
prac, ktore pozwolitby na okreslenie przypadkéw, dla ktorych wymienne wykorzystanie
danych wielosensorowych jest mozliwe. Tego rodzaju synergiczne uzycie danych umoz-
liwitoby monitorowanie zmian hydrologicznych na powierzchni Ziemi w sposob bardziej
operacyjny. Waznym elementem badan byto stwierdzenie czy mozliwa jest minimalizacja
wptywu btedow spowodowanych sposobem przetwarzania danych lub wptywem elemen-
tow srodowiskowych, ktére powoduja, ze dane pochodzace z réznych czujnikow opisujace
analogiczne zjawiska daja nie koherentne wyniki.

[stotnos¢ wyzej wymienionych warunkow oraz ich bezposredni wplyw na klimat
i zycie ludzi na Ziemi, stanowity dodatkowa motywacje do powstania tejze rozprawy dok-

torskiej.

W pracy postawiono nastepujaca teze badawcza:

Istnieja uwarunkowania, dla ktorych wystepuje duza zgodnos¢ rejestracji zmian
zawartosci wod przypowierzchniowych obserwowanych za pomoca mikrofalowych technik
teledetekcyjnych w zestawieniu ze zmianami catkowitego ekwiwalentu wodnego obserwo-

wanymi przez satelitarne misje grawimetryczne.

Gloéwnymi celami badawczymi rozprawy byty:

(a) Analiza mozliwosci synergii obserwacji teledetekcyjnych z grawimetrycznymi pod

katem uzyskania informacji i rozktadu zawartosci wody w glebie.

(b) Analiza istotnosci czynnikéw wplywajacych na rejestracje zmian poziomu wod grun-
towych rejestrowanych przez satelity GRACE i GRACE-FO.

Zdefiniowano kilka nastepujacych aspektow badawczych:

1. Zbadanie zaleznosci pomiedzy danymi uzyskiwanymi za pomocg sensoréw grawime-
trycznych dalekiego zasiggu oraz bliskiego (pomiary satelitarne i naziemne) w kon-
tekscie obserwacji ekstremalnych zjawisk pogodowych takich, jak susze czy powo-
dzie. Publikacje [1][2][5]
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2. Ocena wptywu metody filtracji danych poziomu 2 wynikajacych z specyfikacji in-
klinacji orbity misji GRACE w zaleznosci od rozdzielczosci przestrzennej badanych

zjawisk geofizycznych w kontekscie doktadnosci obserwowanego zjawiska. Publikacja

[1][2]

3. Analiza mozliwosci taczenia danych z pomiarami/danymi o innym spektrum cza-
sowym i przestrzennym wraz ze wskazaniem istotnosci poszczegdlnych parametrow
fizycznych zawartych w modelach hydrologicznych przy uzyciu wspotezesnych tech-
nik rekonstrukeji sygnatu. Publikacje [3][4][5]

4. Zbadanie przestrzennych i czasowych zaleznosci pomiedzy danymi z sensorow gra-
wimetrycznych i teledetekcyjnych w kontekscie badanie roznic w wyznaczaniu wil-
gotnosci potrzebnej do modelowania zasobéw woéd podziemnych poprzez odjecie

wierzchniej warstwy wodnej. Publikacje [4][5]

5. Wyznaczenie czynnikéw pozwalajace na uchwycenie wiekszej zgodnosci sygnatow
teledetekeyjnych (o duzej rozdzielczosci czasowo-przestrzennej) z satelitarnymi po-
miarami grawimetrycznymi (o stabszej rozdzielczosci czasowo-przestrzennej) w celu
wyodrebnienia obszaréw i warunkéw, dla ktérych mozliwe jest doktadne interpo-
lowanie obserwacji GRACE oraz takich warunkow, dla ktorych nalezy opracowaé

bardziej wyrafinowane modele zaleznosci. Publikacje [3][4][5]

Publikacje [1][2] dotycza regionalnych badan na szeregu obserwacyjnym grawime-
trycznych pomiaréw absolutnych w Obserwatorium Astronomiczno-Geodezyjnym w Jo-
zefostawiu. Prace [3][4] obejmuja analizy globalne dla obserwacji i modeli globalnych.
Podzielenie badan na dwa podejécia (lokalne i globalne) umozliwia uzyskanie pelnego
obrazu i poprawnego wnioskowania w zakresie przetwarzania danych grawimetrycznych
z misji GRACE i GRACE-FO. Publikacja [5] podsumowuje prace z zakresu badan regio-
nalnych i globalnych. Najwazniejsze wyniki z przeprowadzonych badan zostaty przedsta-
wione w rozdziale (6).

Schemat ilustrujacy przebieg prac badawczych oraz relacje miedzy publikacjami

tworzacymi cykl przedstawiono na rysunku (1).
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odjecie wierzchniej warstwy wodnej.

Wyznaczenie czynnikéw pozwalajace na
uch nie istotnej zbieznosci 6
yjnych (o duzej
czasowo-przestrzennej) z satelitarnymi
pomiarami grawimetrycznymi (o stabszej
r i Sei przestrzennej) w celu
wyodrebnienia obszarow i warunkow, dla ktorych|
imozliwe jest dokladne interpolowanie obserwacji
IGRACE oraz takich warunkow, dla ktérych nalezy|
opracowaé bardziej zlozone modele zaleznosci.

przeglad literatury dane badania

tworzacymi cykl. Zrédlo: Opracowanie wlasne
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3 Wstep

Grawimetria satelitarna jest unikalng technika pomiaréw zmiany przyspieszenia sity ciez-
kosci. Umozliwia obserwacje transportu mas i proceséw zachodzacych na Ziemi w global-
nej skali. Jedna z takich misji satelitarnych jest misja. GRACE (ang. Gravity Recovery
And Climate Ezxperiment) (Tapley et al., 2004b, Wahr et al., 1998). Znalazta ona swoje
zastosowania w hydrologii, badaniach atmosfery, zmian klimatycznych, monitoringu geo-
zagrozen, zmian poziomu moérz, oceanéw oraz skorupy ziemskiej. Na przestrzeni ostatnich
15 lat pogtebita wiedze ludzkosci na temat naszej planety i zmian zachodzacych na jej
powierzchni. Niezliczone korzysci ptynace z prowadzenia satelitarnych obserwacji grawi-
metrycznych doprowadzity do wystania kolejnej misji GRACE-FO (ang. Grace Follow
on) (Flechtner et al., 2016), ktora bedzie kontynuowaé¢ pozyskiwanie danych, umozliwia-
jac dalsze poglebianie wiedzy dotyczacej naszej planety. Jednak metodyka opracowania
satelitarnych danych grawimetrycznych oraz sposob korzystania z tych danych w zalez-
nosci od przeprowadzanego eksperymentu naukowego sa kluczowe, aby moc wyciggaé
poprawne wnioski i doskonali¢ prognozy dotyczace zmian klimatu (Pail et al., 2015, Ta-
pley et al., 2019). Problematyka zwiazana z koniecznoscia filtracji zaszumionych danych
GRACE, powstatych na skutek okotobiegunowej inklinacji orbity, jest niezwykle istotna
ze wzgledu na stosunkowo niewielka rozdzielczosé przestrzenng obserwacji (Swenson and
Wahr, 2006). Zbyt intensywne wygtadzanie sygnatu prowadzi do utraty istotnych infor-
macji geofizycznych, ktére w zaleznosci o konkretnych warunkow i kryteriéw badan moga
by¢ pozadane w danym eksperymencie naukowym. Istnieje znaczny potencjalt w wykorzy-
staniu taczenia danych GRACE z innymi obserwacjami z sensoréw zaréwno o wiekszej
czestotliwodci obserwacji, jak i wyzszej rozdzielczosci przestrzennej. Kluczowe jest jed-
nak zbadanie i wyznaczanie warunkow sprzyjajacych odzyskiwaniu jak najwiekszej czedci
informacji zawarte] w obserwowanym sygnale grawitacyjnym.

Zmiany w dystrybucji masy na Ziemi wynikajg w znacznym stopniu ze zmian cal-
kowitego ekwiwalentu wody wyrazanej jako ATWS (ang. Total Water Storage changes).
Misja GRACE umozliwia obserwacje zmian dystrybucji wody z okoto miesieczng czesto-
tliwosca pomiaréw, zwykle przedstawianej jako taczna miesieczna srednia zmiana maga-
zynowanej wody poprzez usuniecie $redniej dtugoterminowej podzielonej przez odchylenie
standardowe, znane jako anomalia TWS (TWSA). TWSA odpowiada sumie wszystkich
zasoboéw wod powierzchniowych nad i pod powierzchnig, w tym wilgoci w glebie, wod
powierzchniowych, jezior, rzek i wod gruntowych. Jest to z perspektywy hydrologicznej
wazny parametr i element badan naukowcoéw szczegdlnie na terenach niedostepnych lub
nie objetych monitoringiem hydrologicznym (Kusche et al., 2016, Rodell et al., 2018). Ba-
danie zbieznosci obserwacji hydrologicznych z réznych zbioréw danych i warunkow, przy

ktorych sg uzyskiwane pozwala na lepsze zrozumienie proceséw zachodzacych na Ziemi
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i podejmowanie decyzji na obszarach dotknietych takimi wydarzeniami jak chociazby su-
sze czy powodzie (Chen et al., 2007, Liu et al., 2020, Zhao et al., 2017a).

Prawie roczna przerwa miedzy funkcjonowaniem GRACE i GRACE-FO zrodzita
pytania o przysztoé¢ obserwacji GRACE-FO, a co za tym idzie zrozumienie ciggtych zmian
klimatu. Wykazywane przez naukowcoéw korzysci ptynace z monitoringu globalnych pro-
cesOW zmian zarowno naturalnych, jak i tych spowodowanych czynnikami antropogenicz-
nymi stawiaja cel cigglosci pomiaréw na wysokim miejscu listy priorytetow i zatozen
GGOS. Fakt ten przyczynia sie do konieczno$ci prowadzenia badan naukowych majacych
na celu stworzenie najwyzszej jakos$ci rozwigzan umozliwiajacych dostarczanie danych
oraz modelowanie zmian w obrebie ziemskiego pola sity ciezkosci (Kusche et al., 2016,
Rodell et al., 2018). Do tego zadania konieczne jest potaczenie pomiaréw réznych senso-
row, a takze wielowymiarowa analiza zwigzana z czynnikami wplywajacymi bezposrednio
na zmiany obserwowane w polu silty cigzkosci Ziemi.

Wilgotnoséé gleby wyrazona jako SM (ang. Soil Moisture) to istotna zmienna hy-
drologicznego stanu gleby, bedaca gtéwnym sktadnikiem ATWS (Robinson et al., 2008).
Aktywne 1 pasywne obserwacje mikrofalowe umozliwiajg analize wilgotnosci gleby na
skale globalng i regionalng (Babaeian et al., 2019). Ze wzgledu na ograniczenia zwiazane
z rozdzielczoscia czasowo-przestrzenng danych GRACE istotnym czynnikiem przy analizie
mozliwosci synergii danych z innymi sensorami o wyzszej czestotliwosci pomiaréw i roz-
dzielczodci przestrzennej jest zachowanie istotnosci statycznej dla podtrzymania wszelkich
wyprowadzonych wnioskéw z badan naukowych (Ioannidis, 2005). Z tego powodu wyboér
sensorow podyktowany jest dtugoscia i ciagtoscia prowadzonych obserwacji, tak by mozli-
wie jak najlepiej pokrywat czes¢ wspolng z okresem pomiarow prowadzonych przez misje
GRACE i GRACE-FO. Jednym z kluczowych sensoréw teledetekcyjnych dostarczajacych
danych o wilgotnosci gleby byta misja AMSR-E (ang. Advanced Microwave Scanning Ra-
diometer). AMSR-E to zaawansowany skanujacy radiometr mikrofalowy, ktéry stanowi
element systemu obserwacyjnego Ziemi (Njoku et al., 2005). Urzadzenie to zostalo za-
projektowane do pomiaru elektromagnetycznego promieniowania mikrofalowego w celu
uzyskania informacji o parametrach zwigzanych z cyklem wodnym i klimatem. AMSR-E
zbiera dane dotyczace wilgotnosci gleby, opadow atmosferycznych, pokrywy $nieznej i in-
nych istotnych aspektow zwiazanych z obiegiem wody w srodowisku. Wykorzystuje on
mikrofale, ktére sg emitowane, absorbowane i rozpraszane przez rozne formy wody, takie
jak chmury, opady atmosferyczne i pokrywa sniezna. Dzigki tym pomiarom, AMSR-E
dostarcza wartosciowe dane naukowe, ktore sg istotne dla analizy i monitorowania zmian
w $rodowisku naturalnym na naszej planecie. Sensor ten dostarczat dane obejmujace okres
od czerwca 2002 r. do poczatku pazdziernika 2011 r., pokrywajac w ten sposob znaczaca

czes¢ okresu obserwacji z misji GRACE. Doczekat sie tez swojej kontynuacji w postaci mi-
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sji AMSR-2 oraz AMSR-3, bedacych czescig planowanej na marzec 2024 r. misji GOSAT-
GW (ang. Global Observing SATellite for Greenhouse gases and Water cycle), tym samym
dajac najdtuzszy spojny szereg obserwacji SM (Kasahara et al., 2020).

Synergia obserwacji teledetekcyjnych z grawimetrycznymi pod katem uzyskania in-
formacji o rozktadzie zawartosci wody w glebie ma znaczny potencjal badawczy. Osigganie
lepszych wynikow poprzez potaczenie lub wspoétdziatanie réznych zbiorow danych w celu
doktadniejszego oszacowania tempa ubytku wody w danym obszarze, miejsc zagrozonych
susza i predykcja zachodzacych zmian, stanowi wazny element badan naukowych doty-
czacy bezposrednio wszystkich ludzi zamieszkujacych Ziemie. Wykorzystanie réznorod-
nych danych teledetekcjnych i pomiaréw grawimetrycznych pozwoli podejmowac bardziej
skuteczne dziatania zarzadzania zasobami wodnymi naszej planety zaréwno w skali lokal-
nej, jak i globalnej, co ma bezposredni wptyw na jakos¢ zycia i zrownowazony rozwoj.
Idea ta niesie tez ze soba ogromna korzys$¢ w postaci zastosowania danych o wiekszej
rozdzielczosci czasowo—przestrzennej do wzbogacania i skalowania danych grawimetrycz-
nych (Dee et al., 2011, Doll et al., 2014, Eicker et al., 2014). Wykorzystanie potencjatu
tych danych oraz narzedzi statystycznych umozliwia otrzymanie szczegdétowych informacji
w skali lokalnej na temat stanu réznych obszaréw. Umozliwia takze na uzyskanie bardziej
szczegdtowych danych o zmianach ilosci wody w analizach regionalnych, co ma duze zna-
czenie w badaniach klimatycznych, analizie zasobéw wodnych i monitoringu suszy oraz
powodzi.

Wielopoziomowo$¢ sytemu obiegu wody w przyrodzie prowadzi do wielowymia-
rowej ztozonosci prowadzenia pomiaréw zmiennosci zawartosci wody w glebie. Z tego
wzgledu rejestracja tego sygnatu z pulapu satelitarnego stanowi nie lada wyzwanie dla
badaczy z catego Swiata. Powstaje zatem koniecznos¢ prowadzenia analizy istotnosci czyn-
nikéw wplywajacych na rejestracje zmian poziomu wod gruntowych przez satelity GRACE
i GRACE-FO, ktora to umozliwia wyodrebnienie gtéwnych sktadowych bez utraty sygnatu

geofizycznego podczas opracowywania tychze danych.
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4 Podstawy teoretyczne

4.1 Grawimetria satelitarna jako unikalna technika pomiaréow
zmiany przyspieszenia sity ciezkos$ci zwigzanej ze Sledzeniem
zmian mas

Globalne satelitarne pomiary przyspieszenia sity ciezkosci dostarczaja unikalnych danych
o rozktadzie masy i procesach transportu masy w systemie ziemskim, zwigzanych ze zmia-
nami i procesami dynamicznymi zachodzacymi w hydrosferze, kriosferze, oceanach, at-
mosferze i statycznej czeéci Ziemi. Dedykowane misje grawimetryczne, takie jak CHAMP
(ang. Challenging Minisatellite Payload) (Reigber et al., 2002), GRACE (Tapley et al.,
2004b, Wahr et al., 1998), GRACE-FO (Flechtner et al., 2016) i GOCE (ang. Gravity
field and steady-state Ocean Clirculation Ezxplorer) (Tscherning et al., 2001) zainicjowaly
rewolucje w zrozumieniu proceséw transportu masy wewnatrz Ziemi. Dzigki temu stato
sie mozliwe osiggniecie spektakularnych wynikéw naukowych i nowego spojrzenia na za-
chodzace procesy wewnatrz Ziemi i ich wzajemne oddzialywanie (Pail et al., 2015). Bez-
dyskusyjna sprawg jest koniecznos¢ walidacji tych rozwiazan, zwtaszcza gdy dostarczaja
waznych informacji dotyczacych prognoz zmian woéd podpowierzchniowych. Aby zacho-
wana byta zréwnowazona gospodarka wodna i aby mozliwa byta wczesna rekcja ludzkosci
na terenach, gdzie wzrasta ryzyko wystapienia susz nalezy zwroci¢ uwage na doktadnosé
podawanych trendéw i prognoz. W ostatnich latach misje GRACE i GRACE-FO i two-
rzone dzigki nim rozwiazania staly sie gléwnym dostarczycielem ilosciowych danych na

temat obserwacji zmiennosci pola grawitacyjnego Ziemi oraz zjawisk z tym zwigzanych.

4.2 Zmiany przyspieszenia wynikajgce ze zmian wilgotnosci gruntu,
wyrazanej jako ATWS - opis zjawiska

Obserwowane miesieczne zmiany grawitacji sa spowodowane miesiecznymi zmianami masy.
Zmiany masy mozna uznac za skoncentrowane w bardzo cienkiej warstwie zmian poziomu
wody w poblizu powierzchni Ziemi (tj. w warstwie o grubosci do kilku kilometréw). W
rzeczywistosci wiekszo$¢ comiesiecznych zmian grawitacji jest spowodowana zmianami
w magazynowaniu wody w zbiornikach hydrologicznych, przemieszczajacymi sie masami
oceanicznymi, atmosferycznymi i ladowymi oraz wymianami masy miedzy tymi kompo-
nentami systemu ziemskiego. Ich zasigg pionowy mierzy sie w centymetrach réwnowaznej
warstwy wody - ATWS. Niektore zmiany grawitacji sa spowodowane masowa redystrybu-
cja w ,statej” Ziemi, na przyktad po duzym trzesieniu ziemi lub w wyniku dostosowania
izostatycznego post-lodowcowego. W takich przypadkach interpretacja zmian grawitacji

w kategoriach ,rownowaznej warstwy wody” jest nieprawidtowa, nawet jesli nadal mozna
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obliczy¢ te ilo$¢ (tj. przez usuniecie stalych efektéw Ziemi w celu odizolowania zmian
masy zwiazanych z woda). Podstawowa metode wznaczania wartosci ATWS wyjasniono
w (Wahr et al., 1998). Dane dotyczace zmiennosci pola grawitacyjnego sa przechowywane
w zharmonizowanej formie wspotczynnikoéw sferycznych harmonicznych. Wykorzystujac
ten sposdb mozliwe jest przeliczenie danych funkcjonaléw zmian pola sity cigzkoséci w re-
gularnej siatce (ang. grid) o zadanej rozdzielczosci przestrzennej. Wielkosé ,oczek” siatki,
tj. rozdzielczos¢ przestrzenna, zalezy od stopnia rozwiniecia funkcji sferycznych harmo-
nicznych. Sprzezone jest to bezposrednio z czestotliwoscia pomiaréw misji satelitarnych
i w przypadku misji GRACE i GRACE-FO dla okoto miesiecznych rozwigzan maksymalny
stopien rozwiniecia wynosi¢ bedzie 96. Dla dtuzszego okresu obserwacji mozliwe jest osia-
gniecie wyzszego maksymalnego stopnia rozwinigcia, ale wigze si¢ to z utrata obserwacji
dynamiki zmian w polu sity ciezkosci Ziemi i usredniania obserwacji w dtuzszych okresach.
Siatki ladowe i oceaniczne sg przetwarzane za pomocg roznych filtréow, ktore sg dostrojone
tak, aby jak najlepiej odfiltrowywaé¢ szum przy jednoczesnym zachowaniu prawdziwych
sygnatéw geofizycznych. Wzoér umozliwiajacy wyznaczenie catkowitego ekwiwalentu wod-

nego przedstawia sie nastepujaco:

Nmax 2 1 n .
Pl > nt = > (Chun - cos(mA) + Sy - sin(mA)) - Prncos(d) (1)
3 n=0 L+k m=0

ATW S(5) =

gdzie 0, X to wspolrzedne sferyczne punktu, w ktérym wyznaczany jest potencjal, R to pro-
mien Ziemi zdefiniowany w Miedzynarodowej Konwencji dotyczacej Rotacji Ziemi i Sys-
teméw Referencyjnych (IERS2010, ang. International Farth Rotation and Reference Sys-
tems Service Convention) (Luzum and Petit, 2012), C,.p, Spun to znormalizowane wspol-
czynniki harmoniczne rozwiniecia potencjatu sity ciezkosci (wspotezynniki Stokesa) stop-
nia n i rzedu m, P,,, to znormalizowane funkcje Legendre’a stopnia n i rzedu m , k'
oznacza parametr Ziemi elastycznej, okreslany mianem liczb Love’a uwzgledniajacymi
deformacje Ziemi spowodowana efektami obciazenia, p. to srednia gesto$é¢ Ziemi (Seo
et al., 2006, Wahr et al., 1998).

4.3 Grawimetryczne misje satelitarne GRACE i GRACE-FO

Glownym celem naukowym misji GRACE byl pomiar ziemskiego pola grawitacyjnego
i jego zmiennosci w czasie z niespotykanag wcze$niej doktadnoscia. Wykonanie zadania
okazalo sie mozliwe dzieki propozycji wystrzelenia dwéch satelitéw (a nie jednego), ktére
znajdujg sie obok siebie na tej samej $ciezce orbitalnej. Aby uwzglednié precyzyjnie po-
tozenie i sity niegrawitacyjne, oba satelity zostaly wyposazone w kamery gwiazd i akce-
lerometry. Potozenie i predkosé satelitéw zmierzono za pomoca poktadowych anten GPS
(ang. Global Positioning System) i (do celéw walidacji) satelitarnych pomiaréw laserowych

(SLR, ang. satellite laser ranging). Koncepcja pomiaréw satelitarnych miedzy dwoma
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satelitami na niskiej orbicie znana jest jako LL-SST (ang. low-low satellite-to-satellite
tracking), podczas gdy $ledzenie wysoko-niskie (HL, ang. high—low) odnosi sie do pomia-
réow odleglodci miedzy satelitami GPS umieszczonymi na wysokiej orbicie a segmentem
kosmicznym GRACE na niskiej orbicie okotoziemskiej w celu doktadnego sledzenia aktu-
alnej pozycji tej misji grawimetrycznej. Dodatkowo bliZzniacze satelity (potocznie zwane
Tom i Jerry) zostaly potaczone za pomoca tacza mikrofalowego w pasmie K, w celu
zmierzenia doktadnej odlegtosci separacji i szybkosci jej zmian z doktadnoscia lepsza niz
0.1 um/s. Pomiary te sa bezposrednio powiazane z sezonowymi zmianami w kontynen-
talnym cyklu hydrologicznym, utrata masy lodowej w duzych systemach lodowcow na
Grenlandii lub Antarktydzie, wzrostem poziomu morz, procesami cyrkulacji oceanéw lub
wzrostem temperatury oceandow w kierunku biegunéw Ziemi. Przez ponad dekade opera-
cyjnego dzialania GRACE zasadniczo przyczynita sie do lepszego zrozumienia systemu
ziemskiego. Projekt GRACE dziatal trzy razy dtuzej niz pierwotnie planowano, ale za-
konczyt si¢ w pazdzierniku 2017 r. ze wzgledu na problemy z akumulatorem i brak paliwa.
Misja GRACE powstata dzigki wspotpracy amerykanskich i niemieckich agencji kosmicz-
nych (NASA (ang. National Aeronautics and Space Administration) i DLR (ger. Deutsches
Zentrum fir Luft-und Raumfahrt)). Operacje segmentu naziemnego GRACE sa obecnie
wspotinansowane przez Niemieckie Centrum Geo-nauk (GFZ, ger. GeoForschungsZen-
trum) i Europejska Agencje Kosmiczna (ESA, ang. Furopean Space Agency). NASA,
ESA, GFZ i DLR wspieraja kontynuacje pomiaréw przemieszczania sie¢ mas ziemskich
na naszej planecie. Kluczowymi partnerami w projektowaniu, budowie i uruchomieniu
misji byly Laboratorium napedéw odrzutowych JPL, (ang. Jet Propulsion Laboratory),
CSR (ang. Center for Sapce Research), GFZ, a takze konsorcja Astrium GmBH, Space
Systems Loral, Onera i Eurockot GmBH. Wystrzelone 17 marca 2002 r. blizniacze sate-
lity GRACE przez 15 lat dokonywaly szczegdétowych pomiaréw zmian pola grawitacyjnego
Ziemi, rewolucjonizujac badania dotyczace zmiennosci ladowych, podziemnych i oceanicz-
nych zasoboéw wodnych, a takze trzesien ziemi i deformacji skorupy ziemskiej. Korzysci
pltynace z ciagltego obserwowania naszej planety przez satelity GRACE doprowadzity do
kontynuacji projektu pod nazwa GRACE-FO. Bedzie on utrzymywaé¢ niezwykle udana
prace swojego poprzednika, testujac nowa technologie zaprojektowana w celu poprawie-
nia i tak niezwyktej precyzji systemu pomiarowego swojego poprzednika. GRACE-FO,
ktory zostal uruchomiony 22 maja 2018 r. monitoruje sledzenie obiegu wody na Ziemi
w celu badania zmian podziemnych zasobéw wodnych, ilosci wody w duzych jeziorach
i rzekach, wilgotnosci gleby, pokrywy lodowej i lodowcow oraz wahania poziomu morza.
Badania te zapewniajg unikalny obraz klimatu Ziemi i przynosza daleko idace korzysci
ekonomiczno-gospodarcze ludnosci swiata (Flechtner et al., 2016, Tapley et al., 2004b,
Wahr et al., 1998).
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Satelity GRACE wyposazone sa w szereg przyrzadow umozliwiajacych precyzyjne

wyznaczanie pola sity ciezkosci. Sa to miedzy innymi:

e K-band Ranging System (KBR) - zapewnia precyzyjne (w granicach 10 pm) po-
miary zmiany odlegtosci miedzy dwoma satelitami potrzebnej do pomiaru fluktuacji

grawitacji. I[dee pomiaru zaprezentowano na rysunku (2).

e Ultra Stable Oscillator (USO) - zapewnia generowanie czestotliwosci dla systemu

okreslania zakresu w pasmie K.

e Super STAR Accelorometers (ACC) - dokladnie mierzy przyspieszenia niegrawita-

cyjne dziatajace na satelite.

e Star Camera Assembly (SCA) - precyzyjnie okresla orientacje dwoch satelitéw, Sle-

dzac je wzgledem potozenia gwiazd.

e Coarse Earth and Sun Sensor (CES) - zapewnia ogélne, niezawodne i solidne, ale
do$¢ zgrubne Sledzenie Ziemi i Stonca. Uzywany podczas poczatkowej fazy pomiaréw

i zawsze, gdy GRACE dziata w trybie awaryjnym.

e Center of Mass Trim Assembly (CMTA) - precyzyjnie mierzy przesuniecie miedzy
srodkiem masy satelity a ,odporng na przyspieszenie” masg i dostosowuje srodek

masy w razie potrzeby podczas lotu.

e Black-Jack GPS Receiver and Instrument Processing Unit (GPS) - zapewnia cyfrowe

przetwarzanie sygnatu; mierzy zmiane odlegtosdci wzgledem konstelacji satelity GPS.

e Globalstar Silicon Solar Cell Arrays (GSA) - obejmuje zewnetrzna powltoke statku

kosmicznego i generuje moc.

Rysunek 2: Idea pomiaru odleglosci pomiedzy blizniaczymi satelitami GRACE-FO. Zr6-
dto: https://gracefo. jpl.nasa.gov/.
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W poréwnaniu do misji GRACE, misja GRACE-FO wyposazona zostala w interfero-
metryczny laserowy system pomiaru odlegtosci LRI (ang. Laser Range Interferometry).
Umozliwito to okreslenie odlegtosci pomiedzy satelitami ze zwiekszona doktadnoscia do
2000% w poréwnaniu do zastosowania KBR (Sheard et al., 2012).

4.4 Zastosowania satelitarnych danych grawimetrycznych

Tylko w USA (ang. United States of America), powodzie na terenach wewnetrznych powo-
duja $rednio 133 ofiary i straty w wysoko$ci 4 miliardéw dolaréw rocznie. Poprawa prognoz
dhugookresowych mogtaby znacznie zminimalizowaé straty zwigzane z powodziami, jednak
wymaga to doktadnych informacji na temat stanu hydrologicznego catego obszaru zlewni
rzeki, czyli catkowitej zasobno$ci wody. Misja satelitarna GRACE umozliwia obserwacje
miesiecznych zmian w catkowitej zasobnosci wody w duzych zlewniach rzecznych (o po-
wierzchni > 200000km?) z wykorzystaniem pomiaréw zmian w polu grawitacyjnym Ziemi.
Sygnal sktadowania wody na ladzie okresla, zmienng w czasie, zdolno$¢ terenu do maga-
zynowania i przetwarzania wody oraz uwzglednia wode znajdujaca sie pod powierzchnig
ziemi. Moze zatem by¢ wykorzystany zaréwno do monitorowania i prognozowania zjawisk
powodziowych, jak i susz. Charakterystyka suszy obejmuje wiele elementow, takich jak
typ, czestotliwosé, czas trwania, wielkosé, nasilenie oraz rozmiar wystepowania zjawiska.
Metoda oszacowania deficytu zasobéw za pomocg danych z misji GRACE moze by¢ wyko-
rzystana w potaczeniu z tradycyjnymi metodami prognozowania opadéw do oceny ryzyka
powodzi, a takze moze przynies¢ dodatkowe korzysci w globalnym modelowaniu poprzez
uwzglednienie efektywnej pojemnosci magazynowania (Zaitchik et al., 2008). Obserwacje
zjawisk naturalnych i ciggly ich monitoring sa niezwykle wazne pod katem bezpieczen-
stwa. Obserwacje ekstremalnych zjawisk takich, jak susze oraz powodzie ma ogromne
znaczenie dla ludzi. Dostepne rozwigzanie w postaci misji GRACE umozliwia $ledzenie
tych ekstremalnych hydrologicznych zdarzen na Swiecie.

Dane grawimetryczne znajduja zastosowanie przede wszystkim w nastepujacych

obszarach tematycznych:

e Monitorowanie zmian ilosci wody na Ziemi - misja GRACE umozliwia pomiar zmian
w ilodci wody na Ziemi, w tym akumulacji i deficytow wod gruntowych, zbiornikow

wodnych, lodowcéw 1 pokrywy $nieznej (Kusche et al., 2016, Rodell et al., 2018).

e Badanie zmian poziomiu morza - GRACE jest uzywane do monitorowania zmian
w poziomie oceandéw, co pozwala naukowcom na analize globalnych zmian klima-
tycznych i zrozumienie ich wpltywu na poziom moérz i oceanéw (Reager et al., 2016,
Rietbroek et al., 2016).
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e Monitorowanie zmian w lodowcach i pokrywie lodowej: misje grawimetryczne umoz-
liwiajg pomiar zmian objetosci i masy lodowcoéw oraz pokrywy lodowej na Antarkty-
dzie i Grenlandii, co jest kluczowe dla monitorowania zmian klimatycznych i oceny
ich wptywu na podnoszenie poziomu morza (Sasgen et al., 2013, Wouters et al.,
2019).

e Zrozumienie ruchow mas ziemskich - GRACE pomaga w badaniu ruchéw mas ziem-
skich, takich jak ptywy, tektoniczne przesunigcia, zmiany w masie ladowej i migracji
cieczy w plaszczu ziemskim lub zmiany ci$nienia na dnie oceanéw (Landerer et al.,
2015, Poropat et al., 2018).

e Prognozowanie ekstremalnych zjawisk atmosferycznych i klesk zywiotowych - sate-
litarne dane grawimetryczne sa wykorzystywane do prognozowania ekstremalnych
zjawisk atmosferycznych i klimatycznych, takich jak susze i powodzie, poprzez mo-
nitorowanie zmian w ilosci wody w réznych regionach (Chen et al., 2007, Liu et al.,
2020, Zhao et al., 2017a).

e Wispieranie badan naukowych i nauk o klimacie - misja GRACE dostarcza cenne
dane naukowe i pomaga w zrozumieniu globalnych zmian klimatycznych, bilanséw

masy ladowej i innych zjawisk geofizycznych (Tapley et al., 2019).

Juz ta syntetyczna analiza wskazuje, ze wiekszos¢ zastosowan zwiazana jest z ana-
liza zmian zasobow wody i ich dystrybucja w czasie i przestrzeni. W Polsce prowadzono
prace w temacie wykorzystania danych GRACE w kontekscie wyznaczania wariancji pod-
powierzchniowych zasobéw wodnych (GWS, ang. groundwater storage variations) przez
(Birylo and Rzepecka, 2023, Birylo et al., 2018, Rzepecka et al., 2016, Sliwiriska et al.,
2019), w dziedzinie deformacji (Kermarrec et al., 2023, Lenczuk et al., 2023, 2020, Rajner
and Liwosz, 2017), ruchu bieguna (Nastula and Sliwiniska, 2020, Nastula et al., 2022, Sli-
winska et al., 2020a, 2021a, 2020b, 2021b) oraz dynamicznych systemach wysokosciowych
(Godah et al., 2017, 2020, Szelachowska et al., 2022, 2017). Prace badawcze zrealizowane
w ramach niniejszej rozprawy doktorskiej stanowig nowatorskie podejécie do wykorzysta-

nia grawimetrycznych misji satelitarnych na tle badan prowadzonych dotychczas w Polsce.

4.5 Charakterystyka pomiaréw teledetekcyjnych zorientowanych
na badanie zmian wilgotnosci (AMSR-E)

Wilgotnosé gleby wyrazona jako SM to istotna zmienna hydrologicznego stanu gleby;,
ktora znajduje sie w kregu zainteresowania réznorodnych dyscyplin naukowych, o istot-

nym znaczeniu dla wielu zastosowan w meteorologii, hydrologii, klimatologii i ekologii
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(Robinson et al., 2008). Metody teledetekcyjne do szacowania SM sa stosowane od lat 70.
XX wieku. Aktywna i pasywna teledetekcja mikrofalowa zapewnia obserwacje SM w skali
globalnej i regionalnej (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr
et al., 2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013).
Rozwoj technik teledetkcyjnych zaowocowal mozliwoscig prowadzenia badan zwigzanych
z SM w skali globalnej z subdobowg czestotliwoscig. Do wyznaczania SM z powodzeniem
wykorzystano mikrofalowe pomiary teledetekcyjne (Babaeian et al., 2019).

Jednym z urzadzen stosowanych do pomiaru zawarto$ci wody w glebie jest sen-
sor AMSR-E, czyli pasywny wielopasmowy czujnik satelitarny umieszczony na satelitcie
Aqua programu NASA o nazwie EOS (ang. Earth Observing System). AMSR-E wykorzy-
stuje pasma X i C do pomiaru obiegu wody i okreslania zawartosci SM odpowiadajace;
gltebokosci odpowiednio (2.5-3.75 cm) i (3.75-7.5 cm). Ze wzgledu na fakt znacznych
zakltocen czestotliwosci radiowych, oznaczanych jako RFI (ang. radio frequency interfe-
rence), w pasmie C (6.91 10.7 GHz), to pasmo X byto szeroko stosowane do wyznaczania
SM (Njoku et al., 2005). We wszystkich pasmach sensor wykonuje pomiary w pionowej
i poziomej polaryzacji. Promieniowanie mikrofalowe emitowane przez Ziemie jest zbierane
przez reflektor paraboliczny o Srednicy 1.6 metra, ktéry skanuje Ziemie wzdtuz powierzchni
stozkowej, utrzymujac staly kat padania na powierzchnie Ziemi wynoszacy 55°. System
ten wykorzystuje szes¢ stopni swobody, ktore przekazuja promieniowanie do radiometrow
w celu pomiaru. Do kalibracji wykorzystuje sie obserwacje promieniowania kosmicznego
tta oraz obiektu referencyjnego znajdujacego sie na poktadzie satelity. Rozdzielczosé prze-
strzenna pojedynczych pomiarow rézni sie od 5.4 km przy 89.0 GHz do 56 km przy 6.9
GHz.

Woda istnieje w naturze w réznych formach i stanach, takich jak chmury, para
wodna i deszcz w atmosferze, woda morska i 16d morski, rzeki, gleba, roslinno$¢ i po-
krywa $niezna. Zwiagzana jest bezposrednio z wymiang energii w przyrodzie. Czasteczka
wody H,O, ktéra odgrywa kluczowa role w takim obiegu wody, ma unikalne wtasciwosci
w pasmie mikrofalowym i emituje stabe fale mikrofalowe w zaleznosci od swojego stanu,
ksztattu i temperatury. AMSR-E mierzy te stabe sygnaly mikrofalowe emitowane przez
swiat przyrody. Mikrofale emitowane z powierzchni ziemi sg absorbowane i rozpraszane
przez deszcz, chmury i pare wodna, gdy przechodzg przez atmosfere, co powoduje ich
ostabienie. Jednoczesnie, mikrofale sg rowniez emitowane przez deszcz, chmury i pare
wodna. Ponadto podlegaja rozpraszanu przez krople deszczu i czasteczki chmur w kie-
runku AMSR-E z innych stron.

Mozliwosci pomiarowe sensoréw AMSR-E daja szeroki zakres zastosowan. System
ten mierzy opady atmosferyczne, ilos¢ wody w chmurach, pare wodna, predkos¢ wia-

tru na powierzchni morza, temperature powierzchni morza, 16d, $nieg i wilgotnos$é gleby.
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Dzigki temu mozliwe jest przeprowadzanie pomiaréw w réznych warunkach pogodowych,

co wspiera badania naukowe oraz monitorowanie globalnych zmian klimatycznych.

4.6 Wyznaczenie wilgotnosci gleby wyrazonej jako SM za po-

mocg mikrofalowych sensoré6w AMSR-E

Produkt udostepniany z misji AMSR-E to zawarto$¢ wilgoci gleby oznaczanej jako SMC
(ang. Soil Moisture Content). Reprezentuje to wilgotnos¢ gleby blisko powierzchni gruntu.
Pokrycie tego produktu obejmuje tylko obszary ladowe, a jednostka jest zawarto$é¢ objeto-
sciowa wody podawana w procentach (Njoku et al., 2003). Pasywne czujniki mikrofalowe
(radiometry), jak juz wspomniano, rejestruja naturalng emisje mikrofalowa oznaczana
jako Tb (temperature jasnosciowa), ktora zalezy od emisyjnosci i fizycznej temperatury
emitujgcego ciata. W przypadku pasywnego szacowania wilgotnosci gleby, konieczna jest
znajomosé fizycznej temperatury powierzchni ziemi. Réwnania odbicia Fresnela opisujg
emisyjnos¢ gtadkiej powierzchni odkrytego gruntu w zaleznosci od kata padania promie-
niowania i zatozonej statej dielektrycznej gruntu. W uproszczeniu wzér dla wyznaczania

zawartosci wilgotnosci gleby na podstawie pomiaréw AMSR-E ksztaltuje si¢ nastepujaco:

SMC =a -

Tome 0 2)

gdzie T'b to obserwowana temperatura jasno$ci mikrofalowej, T'b,,,, to maksymalna tem-
peratura jasnosci mikrofalowej dla suchej gleby, a i b to wspdétezynniki kalibracyjne, ktore
sa dostosowywane na podstawie danych referencyjnych. Uksztaltowanie powierzchni gleby,
jej struktura oraz pokrycie roslinnoscig na powierzchni gleby wplywajg na emisje mikrofa-
lowa, dodajac swoje wlasne sygnaty do emisji powierzchni gleby. Aby symulowac te efekty,
naukowcy opracowali model 7 - w, ktéry bierze pod uwage grubosé optyczna (7) i albedo
pojedynczego rozpraszania roslinnosci (w) jako parametréw wejsciowych (Mo et al., 1982).
Model ten jest podstawg dla wielu innych modeli pasywnego szacowania wilgotnosci gleby
mikrofalowej, takich jak SCA (ang. Soil Canopy Atmosphere), model L-MEB (ang. Land
Microwave Emission Model for Brightness Temperature), CMEM (ang. Community Mi-
crowave Emission Model) i LPRM (ang. Land Parameter Retrieval Model) (Drusch et al.,
2009, Mladenova et al., 2014, Wigneron et al., 2007).

Prawidtowe oszacowanie wilgotnosci gleby w poblizu linii brzegowej, wokét duzych
jezior i bagien oraz na obszarach z duzymi przestrzeniami gestego lasu, na podstawie pa-
sywnej techniki mikrofalowej jest utrudnione. Na styku powierzchni ladu oraz morz/jezior
obserwowany sygnal charakteryzuje sie znaczng wariancja i niepewnoscig przez bliskos¢
roznych osrodkéw. W obszarach o charakterystyce gestego pokrycia roslinnoscig obecno$é
skomplikowanej struktury roslinnej wptywa na oddzialtywanie fal mikrofalowych z po-

wierzchnig gleby, co réwniez utrudnia precyzyjne pozyskiwanie danych dotyczach SM.
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Poniewaz radiometry mikrofalowe moga rejestrowaé¢ dane regularnie z duzg czestoscia, ten
produkt jest wykorzystywany do monitorowania duzych obszaréw uprawnych na konty-
nentach. Dostepne sa dwa rodzaje produktow: produkt badawczy i produkt standardowy.
Algorytm obliczania wilgotnosci gleby wykorzystuje dane o pokryciu roslinnoscia z MO-
DIS (ang. Moderate Resolution Imaging Spectroradiometer) w celu uwzglednienia wplywu
roslinnosci. Przy czym w przypadku produktu badawczego wykorzystywane sa aktualne
dane MODIS, podczas gdy produkt standardowy opiera si¢ na wartosciach dla tzw. nor-
malnego roku. W zwiazku z tym, produkt badawczy powinien by¢ stosowany w obszarach
o duzych miedzyrocznych zmianach w pokryciu roslinnosci, takich jak obszary uprawne.
Nalezy jednak zauwazy¢, ze publikowanie produktu badawczego jest op6znione o okoto
jeden miesiac w poréwnaniu do produktu standardowego. Proces wyznaczania wilgotno-
Sci jest realizowany w kilku etapach. Pierwszym krokiem jest przeprowadzenie korekcji
atmosferycznej, aby uwzgledni¢ wplyw atmosfery na sygnaly mikrofalowe. W tym celu
wykorzystuje sie informacje o temperaturze atmosfery i zawartosci pary wodnej. Nastep-
nie algorytm uwzglednia wplyw roélinnosci na sygnaty mikrofalowe. Wykorzystuje sie
do tego dane o pokryciu roslinnosci, ktére moga pochodzié¢ z réoznych Zrédet, takich jak
wspomniane dane z sensora MODIS. Dalej w algorytmie stosowana jest analiza wielo-
obszarowa, ktora bierze pod uwage réznice w sygnatach mikrofalowych miedzy réznymi
obszarami, co moze wskazywa¢ na roéznice w wilgotnosci gleby. Ostatecznie wyznaczone
wartosci produktu dotyczacego SM sa kalibrowane i weryfikowane przy uzyciu danych
referencyjnych, takich jak pomiary terenowe wilgotnosci gleby, aby zapewni¢ pozadang

doktadnos$é¢ wynikow.

4.7 Przeglad dotychczasowych badan opublikowanych w litera-

turze naukowej

Dokumentacja nagtych zmian srodowiskowych byta wielokrotnie prowadzona na calym
swiecie. W Agzji badania przeprowadzone byly w Indiach (Rodell et al., 2009, Tiwari
et al., 2009), Chinach (Chao et al., 2016, Feng et al., 2013, Tang et al., 2014), na Bliskim
Wschodzie (Forootan et al., 2014, Joodaki et al., 2014, Voss et al., 2013). W pracy (Gou-
weleeuw et al., 2017) zastosowano jednodniowe rozwiazania GRACE do monitorowania
zdarzen powodziowych w delcie Gangesu-Brahmaputry w 2004 i 2007 r. W badaniach
opublikowanych w (Jain et al., 2013) naukowcy zbadali mozliwosci zastosowania GRACE
w wykrywaniu powodzi o ograniczonym zasiegu czasoprzestrzennym. W Ameryce Pot-
nocnej takze prowadzono badania, gdzie na przyktadzie Kalifornii mozna obserwowaé
znaczace zmiany ATWS w czasie (Scanlon et al., 2012a,b). W Ameryce Poludniowej
Chen et al. (2010) przeanalizowali zmiany EWH otrzymane dzigki GRACE, aby zbadaé
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przebieg ogromnej powodzi na terenach Puszczy Amazonskiej w 2009 r. W Afryce zastoso-
wania misji GRACE w poréwnaniu do globalnych i regionalnych modeli hydrologicznych
mialo szczegdlne znaczenie z uwagi na niezwykle cenne zasoby wody pitnej (Klees et al.,
2008), 1 wskazywaly na korzysci ptynace z satelitarnych pomiaréw grawimetrycznych do
szacowania zasoboéw wod podziemnych. Potencjal misji GRACE zostal réwniez ukazany
na podstawie analizy gltéwnych zbiornikow wodnych w Afryce, gdzie dzigki kombinacji
z lokalnymi pomiarami in situ wyestymowano wariancje podpowierzchniowych zasobdw
wodnych (Ramillien et al., 2014). Na starym kontynencie réwniez tematyka zwiazana
z zastosowaniem grawimetrii satelitarnej byta podejmowana. Andersen et al. (2005) prze-
analizowali na podstawie danych GRACE susze w 2003r., widoczna rowniez w pomiarach
prowadzonych przez grawimetry SG. Wplyw ekstremalnych zdarzen pogodowych w Eu-
ropie zostal zbadany w (Seitz et al., 2008), gdzie przedstawiono wysoka korelacje modeli
GRACE z danymi atmosferycznymi i hydrologicznymi. W Australii studium przypadku
przeprowadzono w (Tregoning et al., 2012), gdzie autorzy dokonali oceny wiarygodnosci
i uzytecznosci wykorzystania wyznaczenia catkowitego ekwiwalentu wodnego za pomoca
danych z misji GRACE na podstawie danych lokalnych.

Podczas pracy z danymi GRACE niezwykle waznym czynnikiem wplywajacym
na ostatecznie wyznaczone wartosci funkcjonaléow jest odpowiednie opracowanie danych.
W literaturze wielokrotnie poruszany byt problem filtracji danych GRACE jednakze ze
wzgledu na ograniczong liczbe jednorodnych i spojnych szeregdéw czasowych nadal istnieje
duzy potencjal badawczy w kontekscie oceny wptywu czynnikéw zaréwno lokalnych, jak
i ekstremalnych wydarzen klimatycznych na ostateczne wartosci dostarczane przez misje
GRACE. Pojawiajace sie tez kolejne wersje reprocessingu danych GRACE wymagaty po-
nownego sprawdzenie warunkow, dla ktorych mozna obserwowaé wieksza zbieznosé sygna-
tow GRACE do wartosci rzeczywiscie zmierzonych na powierzchni Ziemi i oszacowywaé
btad pomiaru. Prace w tym temacie prowadzone byly przez (Bhanja et al., 2016, Boning
et al., 2008, Dahle et al., 2019, Macrander et al., 2010, Poropat et al., 2018, Syed et al.,
2008) i obejmowaty estymacje budzetu btedéw na podstawie danych z modeli hydrolo-
gicznych, pomiaréow in-situ pozioumu wéd podpowierzchniowych oraz anomalii ci$nienia
dna oceanicznego. Prace dotyczace porownania grawimetrycznych pomiarow satelitarnych
z naziemnymi w rejonie centralnej Europy dokonano w (Abe et al., 2012, Crossley et al.,
2012, Godah et al., 2015, Neumeyer et al., 2008) wskazujac na trudnosci w okresleniu
poziomu rozmycia danych a stopniem straty sygnatu geofizycznego. Dane GRACE cha-
rakteryzujg sie duzg zaleznoscia doktadnosci wyznaczanych funkcjonatéw od odpowied-
niego sposobu ich opracowania. Istniejaca mnogos$¢ sposobdéw filtracji danych GRACE
oraz idaca w parze zaleznos¢ od czynnikow przestrzennych globalnych, jak: odlegtosé od

morz i oceanéw, uksztattowanie terenu, trendy globalne zmian zasobu woéd podziemnych,
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oraz lokalnych, takich jak: czynniki urbanistyczne, lokalne efekty hydrogeologiczne, gtebo-
kos¢ warstw wodonosnych sprawiaja, ze istnieje potencjat badawczy w zrozumieniu tychze
wspotzaleznosci majacych wpltyw na wyznaczenie zmian w polu sity ciezkos$ci Ziemi.

Wplyw oceny przestrzennych i czasowych zmian wilgotnosci gleby na zmiany kli-
matyczne zostal opisany w wielu badaniach naukowych (Betts et al., 1994, Engman, 1992,
Entekhabi et al., 1994, Fast and McCorcle, 1991, Jackson et al., 1987, Petropoulos et al.,
2014, Saha, 1995, Topp et al., 1980). Przestrzenne i czasowe zmiennosci w ilosci wody
w glebie zostaly solidnie udokumentowane we wczesniejszych badaniach dotyczacych wil-
gotnosci gleby (Crow et al., 2012, Famiglietti et al., 2008, Vereecken et al., 2014) oraz
ATWS (Landerer and Swenson, 2012, Tapley et al., 2004a, Zhao et al., 2017b). Z per-
spektywy hydrologii, badanie wzorcow przestrzennych i czasowych obserwacji wilgotnosci
gleby oraz ATWS jest kluczowe dla zrozumienia zachowania tych zmiennych. W literatu-
rze mozna znalezé metody, ktére analizuja jedynie zmienno$¢ w przestrzeni (Haining et al.,
2010, Khaki et al., 2017), jak i takie, ktére koncentruja sie tylko na analizie w czasie, opie-
rajac si¢ na badaniu szeregow czasowych (Fu, 2011, Sprott and Sprott, 2003, Vishwakarma
et al., 2021a). Istnieja rowniez techniki, ktore biora pod uwage zaréwno przestrzenne, jak
i czasowe aspekty danych ATWS i wilgotnosci gleby, na przyktad TSA (ang. temporal
stability analysis) (Martinez-Ferndndez and Ceballos, 2005, Wang et al., 2018), TC (ang.
triple collocation) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin
and Park, 2021) oraz empiryczne funkcje ortogonalne (EOF, (ang. Empirical Orthogonal
Functions)) (Eom et al., 2017, Lei et al., 2012, Navarra and Simoncini, 2010, Schrama
et al., 2007, Yoo and Kim, 2004). W kazdym przypadku, bez wzgledu na to, czy analiza
jest przeprowadzana w kontekscie czasowym czy przestrzenno-czasowym, waznym wnio-
skiem badaczy jest znaczenie wilgotnosci gleby jako czynnika wplywajacego na sygnat
ATWS.

Teledetekcyjne obserwacje réwniez byty z powodzeniem wykorzystywane do okre-
Slenia wilgotnosci gleby (Babaeian et al., 2019, Balenzano et al., 2021, Peng et al., 2021).
Aktywne i pasywne obserwacje mikrofalowe umozliwiajg analize wilgotnosci gleby na skale
globalng i regionalna (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr
et al., 2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013). Te
technologie sa szeroko wykorzystywane w badaniach hydrologii i klimatu, pozwalajac na
zrozumienie zmian srodowiskowych (Njoku and Entekhabi, 1996). Jednym z kluczowych
sensorow teledetekcyjnych dostarczajacych danych o wilgotnosci gleby byta misja AMSR-
E. Badania poréwnawcze miedzy SM z misji AMSR-E a sygnatami ATWS z misji GRACE
wykazaly silne korelacje w poszczegdlnych regionach na $wiecie, co potwierdza znaczenie
danych mikrofalowych w monitoringu hydrologicznym. Przeprowadzone analizy skupiaja

sie¢ na zmiennosci zaréwno przestrzennej, jak i czasowej, z wykorzystaniem réznych me-
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tod takich, jak analiza korelacji, przesuniecia czasowe i analiza gtéwnych sktadowych.
Uzyskane wyniki sa istotne dla zrozumienia dynamiki zmian warunkéw hydrologicznych
w roznych obszarach i moga by¢ pomocne w monitorowaniu suszy i innych zmian srodo-
wiskowych (Abelen et al., 2015, 2011, Chen et al., 2012, 2013, Du et al., 2019, Seo et al.,
2010, Wang and Forman, 2020, Wang et al., 2021). Praca z danymi AMSR-E wymaga
wysokich umiejetnosci pracy na duzych zbiorach danych. Ilos¢ danych niezbedna do prze-
tworzenia czesto przekracza mozliwosci komputeréw o przecigtnej mocy obliczeniowej, co
z jednej strony jest wyzwaniem, ale z drugiej pozostawito nie poruszng przez naukowcow
w dostatecznym stopniu tematyke badawczg. Mimo ze istniejg badania przeprowadzone
w celu oceny ekstremalnych zjawisk hydrologicznych za pomoca danych z misji GRACE
i AMSR-E, pozostaje pewna luka w opublikowanej literaturze dotyczaca zbieznosci sy-
gnatéw ATWS i SM w kontekécie danych o pokryciu terenu, takich jak warunki glebowe,
pokrycie roslinnosci, stopien urbanizacji i uzytkowania rolniczego. Ze wzgledu na to, ze
dane zbierane przez czujniki grawimetryczne maja mniejsza czestotliwosé pomiardéw i roz-
dzielczosé przestrzenng niz pomiary mikrofalowe, istotne jest zbadanie zbieznosci tych
sygnatow. Kluczowe jest znalezienie odpowiedzi na pytanie: czy mozliwe jest
wykorzystanie informacji zawartych w danych zebranych przez czujniki cha-
rakteryzujace sie wiekszym szumem i wariancjg sygnalu, takimi jak AMSR-E,
w globalnej analizie zmiennosci ATWS z satelitow GRACE.

Prawie roczna przerwa miedzy GRACE i GRACE-FO zrodzita pytania o przysztosé
obserwacji GRACE-FO, a co za tym idzie mozliwosci ciggltego monitorowania i zmian
klimatu. Wraz z rosnagcymi mozliwosciami obliczeniowymi komputeréw rosnie znaczenie
metod uczenia maszynowego w rozwigzywaniu problemow zwiazanych z rekonstrukecja sy-
gnatu. Po zakonczeniu misji GRACE-FO dalej bedzie istnie¢ potrzeba kartowania réznych
zjawisk i ich zmian na podstawie istniejacych danych oraz prowadzenia dalszych badan
w obszarze modelowania hydrologicznego. Rosnace zainteresowanie wykorzystaniem mo-
deli stosujacych algorytmy sztucznej inteligencji w zastosowaniach hydrologicznych daje
nowe mozliwoéci rozwigzywania tradycyjnie ztozonych probleméw, w tym rekonstrukcji
danych (Hamshaw et al., 2018). W wielu istniejacych pracach naukowych przedstawiono
zastosowanie modeli uczenia maszynowego. Pierwsze proby z wykorzystaniem EOF opi-
sano w pracy (Becker et al., 2011), gdzie uzyto historycznych danych z dorzecza Amazonki.
Sun et al. (2020b) zaprezentowali rekonstrukcje szeregéw czasowych zwiazanych z ATWS
dla 60 wybranych dorzeczy rzecznych. W tej publikacji dokonano kompleksowego porow-
nania rekonstrukecji ATWS za pomoca glebokiej sieci neuronowej (DNN, ang. deep neural
network), sezonowego autoregresyjnego modelu ruchomej sredniej (SARIMAX, ang. se-
asonal autoregressive integrated moving average model) oraz algorytméw uczenia maszy-

nowego (ML, ang. machine learning) w podejsciu czasowym. Seyoum et al. (2019) zasto-
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sowali drzewa decyzyjne do odtworzenia anomalii poziomu wod gruntowych o wysokiej
rozdzielczosci, poprawiajac dane pochodzace z modelu GLDAS (ang. Global Land Data
Assimilation System) za pomoca obserwacji terenowych. Jing et al. (2020) zastosowali
podejscie przestrzenno-czasowe w badaniu przypadku dorzecza Nilu. W ich algorytmach
wykorzystano metody las losowy (ang. random forest), ekstremalne wzmacnianie gra-
dientu (XGBoost, ang. extreme gradient boosting) oraz regresje logistyczna, ustanawiajac
standardy dla wysoce doktadnej rekonstrukcji parametréw hydrologicznych na podstawie
zbioru danych GLDAS-2. Sun et al. (2021) zaprezentowali rekonstrukcje TWS, uzywajac
danych NOAH i CLSM dla najwiekszych dorzeczy w USA, a takze okreslili znaczenie
predyktoréw. Seyoum and Milewski (2017) wykorzystali z kolei sztuczne sieci neuronowe
(ANN, ang. artificial neural networks). Irrgang et al. (2020) oraz Mo et al. (2021) zapre-
zentowali natomiast wydajnosé konwolucyjnych sieci neuronowych (CNN, ang. convolu-
tional neural network) w kontekscie wypteniania luki danych ATWS pomiedzy misjami
GRACE i GRACE-FO. Ahmed et al. (2019) przeprowadzili badania dotyczace dorzeczy
afrykanskich, takze z zastosowaniem CNN. Sun (2013) uzyt wielowarstwowych perceptro-
now (MLP, ang. multilayer perceptron) oraz architektur ANN do prognozowania zmian
poziomu woéd gruntowych. Sun et al. (2019) wykorzystali model CNN o architekturach
VGG16, Unet i Segnet do obszaru Indii, dowodzac skutecznosci sieci typu enkoder-dekoder
w rekonstrukecji ATWS.

Metody wytlumaczalnej sztucznej inteligencji XAl (ang. explainable artificial in-
telligence) (Arrieta et al., 2020) wprowadzaja benefity w postaci interpretacji gltebokich
zaleznosci pomiedzy parametrami wejsciowymi (cechami) a przewidywanymi wartosciami.
W dotychczasowych pracach naukowych mozna znalezé przyktady uzycia z powodzeniem
zaawansowanych metod dotyczacych rekonstrukeji sygnatu ATWS na podstawie danych
z modelu GLDAS. Niewiele natomiast jest prac dotyczacych badania istotnosci uzytych
cech. Brakuje tez wskazania na réznice w podejsciach czasowych i czasowo-przestrzennych
do rekonstrukcji sygnatu ATWS. Podazajac za tym tokiem rozumowania powstala
przestrzen do przeprowadzenia prac badawczych dotyczacych analizy istotno-
$ci czynnikéw wplywajacych na rejestracje zmian zawartosci wody w glebie
rejestrowanych przez satelity GRACE i GRACE-FO i zbadania w jakich wa-
runkach mozliwe by bylo synergiczne wykorzystanie obserwacji dostarczanych
do modeli hydrologicznych za pomoca satelitarnych sensoré6w o odmiennej

charakterystyce.
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5 Metodyka badan

W tejze rozprawie doktorskiej wprowadzono strukturalny plan dziatania, ktéry umoz-

liwia systematyczne zbieranie, analizowanie i interpretowanie danych w celu uzyskania

odpowiedzi na postawione pytania badawcze oraz weryfikacji hipotez. Niniejszy rozdziat

przedstawia metodyke badan naukowych, czyli zebrany zbior zasad, technik, procedur oraz

zastosowanych narzedzi. Na podstawie istniejacej literatury i zebranych doswiadczen wy-

znaczono odpowiednie cele badawcze, a dalej zaprojektowano badania, ktore obejmowaty:

zebranie i opracowanie danych (rozdzialty: (5.1 - 5.3)), wyselekcjonowanie i zastosowanie

metod przetwarzania (rozdzialy: (5.4 - 5.6), okreslenie kryteriéw poréwnawczych (rozdzial:

(5.7)) oraz metod potrzebnych do przeprowadzenia analizy i interpretacji (rozdziaty: (5.8 -

5.10). Wszelkie prace obliczeniowe wykonano przy pomocy wlasnych skryptéw napisanych

w jezykach programowania Matlab i Python.

Uproszczony przebieg oraz strukture prac badawczych przedstawiono na rysunku (3).
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5.1 Przetwarzanie danych GRACE oraz GRACE-FO

W celu przedstawienia ziemskiego pola sity ciezkoSci, najczedciej stosuje sie rozwiniecie
funkcji reprezentujacej potencjat sity grawitacyjnej w szereg funkcji harmonicznych sfe-
rycznych. Potencjal grawitacyjny (potencjat sity przyciagania) V' w dowolnym punkcie na
powierzchni Ziemi mozna zapisa¢ w funkcji wspotrzednych sferycznych jako:
Viron) = GM nil ; Z mn + €08(MA) + Sy - sin(mA)) - Ppyacos(0) (3)
n=0 m=0
gdzie 0, \, R, émn,gmn, n , m, Ppy, sa zgodne z oznaczeniami i objaénieniami wystepu-
jacymi we wzorze (1), r - to promiefr wodzacy, GM to geocentryczna stala grawitacyjna,
czyli iloczyn stalej grawitacji i masy ziemi, a to dluzsza pédtos referencyjnej elipsoidy
ziemskiej zdefiniowanej w TERS2010

Modele geopotencjatu zostaty opracowane na podstawie satelitarnych obserwacji
zmian pola sity ciezkosci Ziemi. Stworzenie globalnego modelu geopotencjatu sprowadza
sie do wyznaczenia znormalizowanych wspotezynnikéw C,, Spn. Pozycje satelity w po-
szczegblnych epokach oraz wartosci potencjatu grawitacyjnego pozyskane z misji GRACE
pozwalaja, wykorzystujac metode Gaussa-Markova, dokonaé¢ estymacji wspotczynnikow
harmonicznych sferycznych.

Wspbtezynniki maja swoja interpretacje fizyczna. Przyktadowo Chg, Ci1, S11 ozna-
czaja centrum masy, Coy - splaszczenie grawimetryczne Ziemi, Cyy, S - ruch bieguna.
Wspotezynnik Cyy znany jest rowniez jako ,,J27, czyli wspotezynnik opisujacy splaszcze-
nie statyczne, czyli w momencie bezwtadnosci traktujacym Ziemie jako bryte sztywna.
Aby wspdtezynniki J2 i Cyy byly tozsame nalezy skorzystaé z zaleznosci J2 = —Cho * /5
(Chen et al., 2016, Sun et al., 2016a,b). Od 1979r. satelity obserwuja staty spadek J2. Ten
dhugoterminowy spadek wynika gtéwnie z wypietrzania izostatycznego post-lodowcowego.
Staly spadek jest modulowany przez redystrybucje masy oceanu i lodu (Cox and Chao,
2002). Przyspieszona utrata masy lodowej z pokrywy lodowej Grenlandii i Antarktydy
wydaje sie w coraz wiekszym stopniu mie¢ znaczenie w obserwowanym od lat sygnale wy-
pietrzania polodowcowego (GIA, ang. Glacial isostatic adjustment) (Cheng et al., 2013).
Poniewaz otrzymywane wartosci wspotczynnikéw niskiego rzedu na podstawie danych
z misji GRACE sa niewystarczajaco doktadne, nalezyte oszacowania Cyy, Co1, Sar, Cag
i So1 sa uzyskiwane z analizy obserwacji SLR z pieciu satelitéw geodezyjnych: LAGEOS-1
i 2 (ang. Laser Geodynamics Satellite), Starlette, Stella i Ajisai.

Dane z misji GRACE przetwarzane sg w okreslony sposéb wedtug zasad opisanych

na poziomach 1 do 3.

e Poziom 0 - Dane poziomu 0 sg wynikiem gromadzenia surowych danych przez cen-
trum operacji (MOS) w Neustrelitz / Niemcy. Wykorzystujac anteny $ledzace Weil-
heim (WHM) i Neustrelitz (NST), MOS otrzymuje z kazdego satelity GRACE dwa

31



razy dziennie dane, ktore sg przechowywane w dwoch plikach w archiwum RDC po-
ziomu 0. Dodatkowo, przede wszystkim w celu analizy danych operacyjnych sygnatu
radiowego, surowe dane sg réwniez odbierane podczas kazdego przejscia w polarnej
satelitarnej stacji odbiorczej GFZ (SRS) w Nowym Alesund (NYA) i przekazywane
do GFZ w Poczdamie.

Poziom 1 - Udostepniany jest w dwoch wariantach. Produkty danych poziomu 1A
sag wynikiem przetwarzania zastosowanego do danych poziomu 0. Przeprowadzona
zostaje kalibracja, przeksztatcajaca dane w postaci binarnej na dane w jednostkach
uzytkowych dzigki zastosowanym wspotczynnikom kalibracyjnym. Tam, gdzie to ko-
nieczne, rozwigzuje sie drugg niejednoznacznosé¢ catkowity znacznika czasu, a dane
sg oznaczane czasowo wzgledem odpowiedniego czasu zegara odbiornika satelitar-
nego. Produkty danych poziomu 1B sg wynikiem potencjalnie nieodwracalnego prze-
twarzania stosowanego zaréwno do danych poziomu 1A, jak i poziomu 0. Dane sa
ponownie oznakowane lub prébkowane do czasu GPS, filtrowane, przefiltrowane na
nizsza czestotliwosé prébkowania i/lub przeksztatcane na ilosci uzywane w przetwa-
rzaniu poziomu 2. Dane poziomu 1B obejmuja pomiary mikrofalowe pasm K/Ka,
obserwacje akcelerometru, pozycji wyznaczanej poprzez odbiorniki GPS i kamery
sledzacej gwiazdy, a dla misji GRACE-FO réwniez pomiary interferometru lasero-
wego LRI (Wen et al., 2019).

Poziom 2 (Dane wykorzystane w publikacjach [1][2][3]) - Dane pochodzace
z tego poziomu to wyestymowane wspotczynniki harmonicznych sferycznych ziem-
skiego potencjatu grawitacyjnego. Sa one usostepniane publicznie dla wszytkich
uzytkownikéw w ciagu 60 dni od pozyskania danych. Dane poziomu 2 obejmuja
dynamiczne (miesieczne i tygodniowe) i statyczne pole grawitacyjne pochodzace ze
skalibrowanych i zatwierdzonych produktéw danych GRACE poziomu 1B. Poziom
ten obejmuje réwniez pomocnicze zestawy danych (np. $rednie zmiany masy atmos-
fery i oceanéw), ktére sa niezbedne do interpretacji zmiennosci czasowej w rozwia-
zaniach pola grawitacyjnego. Oprogramowanie do przetwarzania poziomu 2 zostato
opracowane niezaleznie przez wszystkie trzy centra przetwarzania. Rutynowe prze-
twarzanie odbywa sie w UTCSR (ang. University of Texas at Austin - Center for
Space Research) i GFZ, podczas gdy JPL generuje produkty poziomu 2 do celéw
weryfikacji (Yuan, 2018).

Poziom 3 (Dane wykorzystane w publikacjach [4][5]) - Na tym poziomie
dostepne sg gotowe siatki, przyjazne uzytkownikowi do jego wtasnych opracowan.
Transformacja potencjatu grawitacyjnego na zmiany mas ziemskich wymaga prze-

prowadzenia obliczen w kilku krokach. Trzeba usuna¢ btedy systematyczne i przy-
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padkowe, efekt wypietrzania izostatycznego GIA, btedy wynikajace z falowania morz
i oceanéw (wplyw atmosfery jest usuwany w przetwarzaniu produktu na poziomie
2), wykonaé rozmyecie filtrem o promieniu 300 km dla ladéw i 500 km dla oceanéw
w celu usuniecia artefaktow zwiazanych z inklinacja orbity (ang. destriping) oraz

wprowadzi¢ poprawke ze wzgledu na oddzielny wplyw sygnatu oceanéw i ladow
(Cooley, 2021).

Poniewaz wraz z uptywem czasu zmieniajg si¢ pewne parametry opisujace model
statyczny geopotencjatu, wedle ktérego sg tworzone rozwigzania miesieczne GRACE na-
lezy wiec zadac sobie pytanie czy raz przyjete rozwigzanie jest wiasciwe? Twoércy misji
ciggle starajag sie ulepsza¢ swoje dzieto i dzieki temu mozemy moéwi¢é o kolejnych wer-
sjach przeprocesowanych danych, oznaczonych jako RL01-06. Wczesne produkty RL01-04
zostaly zastapione przez najpierw RLO05, a w ostatnim czasie RL06 ze wzgledu na zna-
czacy redukcje szumow tla. Serie czasowe GFZ RLO05 sa publikowane od 17 marca 2012
r. i zastapily wersje RL0O4. Modele RL05 zawieraja zmiany grawitacyjne spowodowane
przez hydrosfere, kriosfere, zdarzenia epizodyczne takie jak duze trzesienia ziemi, GIA
oraz bledy lub niemodelowane efekty zastosowanych modeli tta. Gtéwna réznica w sto-
sunku do RL04 jest taka, ze nie zmieniono zadnych wspotczynnikow sferycznych har-
monicznych Cyy, Csg, Cyo, Co1 1 Soq. Liczba obserwacji i ich spojnos¢ spowodowata, ze
wymienione powyzej wspotczynniki podczas przeliczania danych RLO5 sa doktadniejsze
niz te same wspoélczynniki wyznaczane alternatywnymi metodami dla RL04. Maksymalny
stopien i rozwini¢cie wspotezynnikéw sferyeznych harmonicznych n i m dla modeli RL0O5
zostal zmniejszony do 90 x 90 podczas gdy dla (RL04: 120 x 120). W poréwnaniu z RL04,
obecne szeregi czasowe RLO5 wykazuja okoto 2-krotnng poprawe pod wzgledem redukcji
szuméw (Bettadpur, 2007). Rozdzielczo$¢ przestrzenna wyznaczenia poszczegdlnych funk-
cjonatéw na podstawie wspotczynnikow sferycznych harmonicznych wzrosta z ok. 525 km
(RLO04) do ok. 350 km (RLO05) (Dahle et al., 2014). Zawartos¢ informacji w plikach GSM
RLO06 jest taka sama jak w poprzednich plikach GSM RL05. Zmienione zostaty model
statyczny geopotencjatu z GIF48 na GGMO05C oraz model ptywéw z IERS-2003 na IERS-
2010. Produkty RL0O6 GSM moga by¢ nadal uzywane w taki sam sposob jak produkty
RL05 GSM (Dahle et al., 2013). Misje GRACE/-FO charakteryzuja sie duza regularnoscia
dostepnosci danych. Jednakze wraz z trwaniem pierwszej misji, ze wzgledu na problemy
z instrumentami pomiarowymi, pojawialy zaburzenia cigglosci dostarczania danych. Dla
misji GRACE brakuje 3 na 105 epok pomiarowych w latach 2002-2010 i 17 z 78 epok
w latach 2011-2017. Kolejnym istotnym problemem jest 13 miesieczna przerwa pomie-
dzy misjami GRACE i GRACE-FO. W zwigzku z tymi wydarzeniami istotne jest
zaproponowanie metod umozliwiajgcych zapewnienie cigglosci modelowania

zmiennosci pola grawitacyjnego na podstawie innych dostepnych obserwacji
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o charakterze globalnym ale opartych na sensoryce nie iloSciowej.

Mascon solution to rozwiazanie miesiecznych serii danych z GRACE zapropono-
wane przez CSR jako alternatywa dla reprezentacji danych poprzez harmoniczne sferyczne.
Rozwiazanie ma charakter regularnej siatki, gdzie kazdy element to tzw. maskon o pro-
mieniu 120km. Maskony sa estymowane wedle tych samych standardéw co rozwigzanie
CSR RLO5 rozwiniecia w szereg harmonicznych sferycznych z danych poziomu-1 pozyska-
nych z misji GRACE. Korzyscia tego rozwigzania jest brak koniecznosci filtracji sygnatu
w celu pozbycia si¢ artefaktow (paskéw) powstalych ze wzgledu na inklinacje orbity sate-
litow GRACE. Podejscie Mascon pozwala réwniez na lepsza separacje sygnatéow ladowych
i oceanicznych (Watkins et al., 2015).

5.2 Przetwarzanie danych AMSR-E

Jak juz wspomniano w rozdziale (4.5) instrumenty AMSR sa pasywnymi radiometrami
mikrofalowymi o podwodjnej polaryzacji i skanowaniu stozkowym. Kazdy z nich znajduje
si¢ na niemal biegunowej orbicie, co umozliwia rejestracje danych w danej lokalizacji na
Ziemi nawet dwa razy dziennie. Istotna cechg tych instrumentéw AMSR jest zdolnosé
do penetracji chmur, co umozliwia nieprzerwane obserwacje pomiarow, np. oceanu. Pro-
dukty poziomu 1 (L1) dla instrumentu AMSR-E sa generowane przez Japonska Agencje
Badan Kosmicznych (JAXA, ang. Japan Aerospace Exploration Agency) i przekazywane
do SIPS-RSS (ang. Science Investigator-led Processing Systems - Remote Sensing System)
w celu przetworzenia na poziom 2A (L2A). Nastepnie przesylane sa do NASA, do jednostki
GHRC DAAC (ang. Global Hydrometeorology Resource Center Distributed Active Archive
Center), ktéra jest wspOlnie zarzadzana przez NASA’s Marshall Space Flight Center oraz
University of Alabama w Huntsville, w celu przetworzenia na poziom 2B (L2B) oraz na
poziom 3, zgodnie ze standardem EOS. Te produkty, wraz z metadanymi i powiazana do-
kumentacja, sa archiwizowane i dystrybuowane przez jednostke NASA znang jako NSIDC
(ang. National Snow and Ice Data Center) (Kawanishi et al., 2003, Njoku et al., 2005,
2003).

Typy udostepnionych danych obejmuja dobowe, tygodniowe i miesieczne produkty
danych poziomu 1A, poziomu 2A, poziomu 2B i poziomu 3 obejmujgce okres od czerwca

2002 r. do poczatku pazdziernika 2011 r (Spreen et al., 2008).

e Poziom 1B (L1B) - Produkt zawiera dane dotyczace temperatury jasnosci prze-
liczonej z temperatury anteny poziomu 1A przy uzyciu wspotczynnikow konwers;ji,
informacje geometryczne, informacje radiometryczne, rozréznienie na dane ladowe

oraz morskie i dane uzupemhiajace (GCOM-MAS-100045A, 2013).

e Poziom 1R (L1R) - Produkt to ponownie probkowane dane temperatury jasnosci
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przestrzennie wyznaczone z poziomu 1B, aby dopasowaé sie do $rodkowej pozycji
i rozmiaru pola widzenia kazdego pasma czestotliwosci w danym pikselu. Tempera-
tura jasnosci resamplingu jest przetwarzana w celu dopasowania do réznicy rozdziel-
czosci w kazdej z zadanych czestotliwosci(GCOM-SGC-120011, 2013, Takashi Ma-
eda, 2013).

e Poziom 2 (L2) - obejmuje dane fizyczne odtworzone na podstawie temperatury
jasnosci w kazdym pikselu. Produkt AMSR-E poziomu 2 przechowuje wielkos¢ geo-
fizyczng obliczona na podstawie temperatury jasno$ci produktu poziomu 1 oraz
informacje geometryczne jako pliki w formacie HDF5. Produkt AMSR-E poziomu
2 to osiem rodzajow geofizycznych danych iloSciowych zawierajacych informacje na
temat: catkowitej wody opadowej, chmurowej wody w stanie ciektym, opadéw, tem-
peratury powierzchni morza, predkosci wiatru przy powierzchni morza, koncentracji
lodu morskiego, gtebokosci $niegu, zawartosci wilgoci w glebie (GCOM-SGC-120011,
2013, Shibata et al., 2003).

e Poziom 3 (L3) (Dane wykorzystane w publikacjach [4][5]) - Produkt po-
ziomu 3 zawiera dane globalne, ktére sa dobowymi lub miesigcznymi wartosciami
srednimi kazdej wielkosci geofizycznej, takimi jak temperatura jasno$ci w produkcie
poziomu 1B i produkcie poziomu 2. Dane na poziomie 3 sg obliczane jako sred-
nia dobowa lub miesieczna w kazdym kierunku (rosnacym lub malejacym) orbity,
a nastepnie przechowywane w formacie regularnej siatki grid o zdefiniowanej roz-

dzielczosci przestrzennej (Shibata et al., 2003).

Dane pasma L1, L2 to zestawione sa w formacie, w ktorym dane dla kazdego $ladu orbity
przechowywane sa w dwuwymiarowej tablicy (punkty obserwacji w kierunku skanowania
X liczba linii skanowania) zgodnie z kolejnoscia czasu obserwacji. Oprécz danych takich
jak temperatura jasnosci i warto$¢ geofizyczna, w formacie pasma przechowywane sg in-
formacje o jakosci obserwacji, szerokosci geograficznej i dtugosci geograficznej. Standar-
dowe produkty L1B, L1R i L2 przechowywane sa w pojedynczym pliku, ktéry obejmuje
sceng pokrywajaca potowe obwodu Ziemi. Istnieja dwa rodzaje scen: rejestrowana z orbity,

wznoszacej od potudnia do potnocy i orbity opadajacej od potnocy do potudnia.

5.3 Opis wykorzystanych danych

W pracy wykorzystano dane pochodzace z pomiaréw naziemnych, satelitarnych oraz mo-
deli mieszanych wyszczegélnionych w nastepujacych punktach:
Dane pomiary absolutne g (wykorzystane w publikacjach [1][2][5]) - ze

stacji grawimetrycznej JOZE znajdujacej si¢ w podziemiach budynku Obserwatorium
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Astronomiczno - Geodezyjnego w Jozefostawiu (Polska), tj. 5.7 m pod ziemia, na beto-
nowym stupie o wymiarach 2 x 2 m. Pomiary bezwzgledne prowadzono w przyblizeniu
co miesigc od maja 2005 r. do listopada 2016 r. grawimetrem FG-5 nr 230. Jest to naj-
dtuzszy i jednorodny (zaréwno pod wzgledem doktadnosci, jak i rozdzielczosci czasowej)
szereg czasowy wartosci grawimetrycznych w Polsce. Catkowita niepewnos$¢ wyznacza-
nia przyspieszenia sity ciezkosci wynosita £2 pGal. Wyniki pomiaréw bezwzglednych sg
korygowane o efekty zwiazane z ptywami ziemskimi (model Wenzela).

i ptywami oceanicznymi (model FES2004), zmianami ci$nienia atmosferycznego
i ruchem biegunow. Ponadto wartosci grawitacji sg korygowane w rezultacie miedzynaro-
dowych kampanii poréwnawczych. Uwzgledniono réwniez czynniki metrologiczne (wynika-
jace ze zmian czestotliwosci zegara i lasera). Calosé opracowania spetnia wymogi realizacji
miedzynarodowego uktaduodniesienia grawimetrycznego (ITGRF, ang. International Ter-
restrial Gravity Reference Frame).

Dane 69 GRACE (wykorzystane w publikacjach [1][2]) - do analizy wyko-
rzystano szeregi czasowe dla wybranych miesigcznych rozwiazan misji GRACE opracowa-
nych przez GFZ, CSR i JPL. Dane obejmujace wspotczynniki sferycznych harmonicznych
z rozwiazania RL06 (Dahle et al., 2013) od kwietnia 2002 do marca 2016 roku zostaly
uzyte przy maksymalnym stopniu/rozwiniecia réwnym 96. Dla danych RL05a wartosci
wykorzystanych wspétezynnikéw to: CSR - stopien/rozwinieciu 96, GFZ - 90 i JPL -
90, a dla niektérych rozwiazan az 60. Na podstawie wspolczynnikéw sferycznych har-
monicznych wyznaczone zostato zaburzenie grawitacyjne oznaczane jako dg. Zaburzenie
grawitacyjne rozumiane jest jako réznica miedzy rzeczywistym a normalnym (odnoszacym
sie do elipsoidy) przyspieszeniem grawitacyjnym na fizycznej powierzchni Ziemi. Zostato
to okreslone na podstawie danych z misji GRACE, uwzgledniajac elastyczna deformacje

Ziemi w wyniku obcigzenia (Crossley et al., 2012) zgodnie z ponizszym wzorem:

GM "pee 2h,, oo _ ) —
dgon) = 7 ;} (n+1— o kn) ZO(C’WL - cos(mA) + S - sin(mA)) - Pncos(0) (4)

gdzie 0, A to wspotrzedne sferyczne, h,, i k., to liczby Love’a odpowiadajace catkowi-
tej elastycznej odpowiedzi Ziemi z wykorzystaniem modelu referencyjnego PREM (ang.
Preliminary Farth Model. Ze wzgledu na korekte parametréow geocentrum na podstawie
danych GRACE dla wspotczynnikow Cig, Chp 1 S11, odpowiadajaca wartosé k; zostata
zmieniona na 0.021. Wartosci zaburzenia grawitacyjnego zostaly takze ustalone za po-
moca wspotczynnika wzmocnienia (Landerer and Swenson, 2012) dla badanego obszaru,
ktory wynosit 1.06. W obszarze przeprowadzonych badan nie zaobserwowano trzesienia
ziemi o magnitudzie powyzej 8.5. Ponadto efekt wynoszenia post lodowcowego jest sto-
sunkowo niewielki. Z tego powodu zdecydowano si¢ nie dokonywaé¢ zwigzanych z tym
korekt.
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Dane TWS (wykorzystane w publikacjach [3][4][5]) - przetworzone dane
z misji GRACE, reprezentujace ATWS, sa dostepne na stronie https://podaac-tools.
jpl.nasa.gov/ i sa dystrybuowane przez Centrum Badan Kosmicznych (CSR) w Teksa-
sie. Rozdzielczos¢ przestrzenna danych GRACE uzytych w niniejszych badaniach wynosi
okoto 300 km x 300 km. Dane dotyczace zmian masy na powierzchni i w podpowierzchni
opieraja sie na standardzie RL0O6 (Dahle et al., 2013) na poziomie przetwarzania danych
L2. W trakcie przetwarzania danych GRACE wspotcezynnik Oy reprezentujacy splaszceze-
nie grawimetryczne Ziemi (Swenson et al., 2008a) zostal zastapiony obserwacjami z uzy-
ciem techniki Satellite Laser Ranging (SLR) (Cheng and Tapley, 2004), a btad zwiazany
z pasami N-S powstalymi w wyniki inklinacji orbity z zostat usuniety przy uzyciu zmody-
fikowanego filtra de-korelacji (Chen et al., 2007) (Swenson and Wahr, 2006). Przy prze-
twarzaniu danych GRACE zostata rowniez uwzgledniona korekcja statycznej czesci pola
grawitacyjnego za pomoca modelu GGMO5C (Ries et al., 2016). Podczas przetwarzania
danych GRACE wspoétezynniki stopnia 1 (ang. Geocenter) byly szacowane za pomoca me-
tod przedstawionych w pracach Sun et al. (2016b) i Swenson et al. (2008b) polegajacych
na potaczeniu danych GRACE z modelowanym komponentem oceanicznego geocentrum.
Korekta spowodowana podnoszeniem izostatycznym lodowcéw (GIA) zostata uwzgled-
niona na podstawie modelu ICE6G-D przedstawionego w pracy Peltier et al. (2018).

Dane GLDAS (wykorzystane w publikacjach [1][3]) - Global Land Data As-
similation System to zaawansowany system globalnej asymilacji danych ladowych, ktory
integruje dane meteorologiczne i hydrologiczne z réznych Zrédet i modeli w celu genero-
wania kompleksowych zbiorow danych dotyczacych cyklu wodnego i innych zjawisk zwia-
zanych z powierzchnig ladowa na calym $wiecie. GLDAS jest inicjatywa wspolna wielu
organizacji, w tym NASA, NOAA, Departamentu Obrony USA oraz Uniwersytetu Ma-
ryland, i ma na celu zapewnienie spdjnych i dogtebnych danych do badan naukowych
dotyczacych powierzchni ladowych i klimatu. Modele GLDAS dostarczaja wielu istotnych
zmiennych hydrologicznych dla terenéw ladowych o réznych skalach przestrzennych i cza-
sowych w formie globalnych siatek. Poréwnania danych z misji GRACE i GLDAS wyka-
zuja wysokie zgodnosci czasowe i niewielkie réznice w amplitudach, co sprzyja korzystaniu
z tych danych w globalnych badaniach hydrologicznych (Rodell et al., 2004a,b, Scanlon
et al., 2018). Modele GLDAS zapewniaja globalne siatki wielu parametréw hydrologicz-
nych ladéw w roéznych skalach przestrzennych i czasowych. GLDAS obejmuje cztery rozne
modele powierzchni terenu (LSM, ang. land surface models), a mianowicie CLM (ang.
Community Land Model), Mosaic, Noah oraz VIC (ang. Variable Infltration Capacity)
o zmiennej pojemnosci infiltracyjnej. W pracy [1] wykorzystano cztery modele GLDAS
obejmujace okres od stycznia 2002 r. do grudnia 2016 r. Na podstawie tych danych wy-

znaczono globalne siatki ATWS, ktére sg obliczane przy uzyciu sktadnikéw wyjsciowych
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dotyczacych $redniej wilgotnosci warstwy gleby, catkowitego ekwiwalentu wody w koronie
drzew i ekwiwalentu wody w pokrywie $nieznej z kazdego LSM. Zmiany TWS uzyskuje
si¢ przez usuniecie dtugookresowej sredniej z kazdej miesigcznej siatki ATWS. Nastepnie
zmiany ATWS sa przeliczane na wspétezynniki zmiany masy AC’Q%T, Agﬁﬂr uzywajac

analizy harmonik sferycznych i dalej wspotezynnikéw Stokes’a za pomoca wzoréw (Wahr

et al., 1998):
ACHIT| 3p, 1+ K | ACk 5)
ASkyr [ poye 2n 4+ 1 | AGhydr

gdzie py, 1 pawe 0znaczaja odpowiednio przecigetng gestos¢ wody i Ziemi. Bazujac na wy-

nikach z pracy [1] w pracy [3] miesieczne rozwiazania GLDAS-Noah (v2.1) o rozdziel-
czoSci przestrzennej wynoszacej 1°x 1°(zbiér danych: GLDAS-NOAH10-M) zostaly po-
brane z witryny Earth Data NASA https://disc.gsfc.nasa.gov/ i obejmowaly okres
od stycznia 2002 do stycznia 2021 roku. Do badan wykorzystano 34 parametry opisane
w doktadnie w pracy [3].

Dane SM (wykorzystane w publikacjach [4][5]) - zbior danych AMSR-E jest
dostepny jako pliki o charakterystyce dobowych pomiaréw na https://disc.gsfc.nasa.
gov/. AMSR-E/Aqua surface SM descending V002 to zestaw danych poziomu 3 (w formie
siatki) z dobowa czestotliwoscia i rozdzielczosdcia przestrzenna okoto 25 km na 25 km. Po-
miary SM powierzchni ladu pochodzg z pasywnych danych z teledetekcji mikrofalowej i sg
obliczane przy uzyciu modelu LPRM. LPRM opiera si¢ na modelu transferu promienio-
wania w przod, aby uzyska¢ SM przypowierzchniowej warstwy gleby i gtebokos¢ optyczna
penetracji sygnatu. AMSR-E na satelicie NASA EOS Aqua zaprzestal dostarczania da-
nych w pazdzierniku 2011 z powodu problemu z obrotem jego anteny (van der Vliet et al.,
2020), co uniemozliwito dostarczanie dtuzszgo ciagu pomiarowego. W przeprowadzonych
badaniach wykorzystano tylko orbity opadajace ze wzgledu na znacznie lepsza stabilnosé
nocnej temperatury gleby, pokrycia rodlinnoscig i powietrza (De Jeu et al., 2008, Draper
et al., 2009, Liu et al., 2012, 2011, Owe et al., 2001). Przeptyw danych zostal wskazany
na rysunku (6)

5.4 Normalizacja i skalowanie czasowo-przestrzennych danych

dotyczacych ATWS

Dane miesieczne rozwiazania pochodzace z misji GRAE ograniczone sg przez stosunkowo
nisky rozdzielczos¢ przestrzenna. W celu uzyskania bardziej szczegétowych i lokalnych
informacji o zmianach ilosci wody, naukowcy stosuja techniki skalowania (ang. downsca-
ling). Te techniki wykorzystuja dodatkowe dane i modele matematyczne, aby rozszerzy¢
mozliwos¢ wykorzystania danych z misji GRACE na mniejsza skale przestrzenna. W ten

spos6b mozna uzyskaé¢ bardziej szczegdétowe dane o zmianach ilosci wody na mniejszych
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obszarach. (Miro and Famiglietti, 2018, Seyoum et al., 2019, Vishwakarma et al., 2021b,
Wilby et al., 1998, Wilby and Wigley, 1997, Yin et al., 2018).

Mozemy wyszczegolni¢ kilka podej$é do tego zagadnienia, takich jak:

e Modelowanie hydrologiczne (Publikacje [1][2]), w ktérym wykorzystuje si¢ modele
hydrologiczne, ktore integruja dane o opadach, parowaniu, odptywie powierzchnio-
wym i zasobach wod podziemnych, aby uzyska¢ bardziej szczegdltowe informacje
w skali lokalnej. Modele te wykorzystujag dane z GRACE do skalowania i dostoso-

wania wynikéw do lokalnych warunkéw (D6l et al., 2014).

e Metody interpolacji (Publikacje [3][4][5]), ktore wykorzystuja dodatkowe dane
przestrzenne, takie jak dane z czujnikéw glebowych, stacji meteorologicznych, ob-
serwacji hydrologicznych, aby interpolowa¢ dane z GRACE na obszary wymagajace
wigkszej szczegdtowosci stosujac przyktadowo metody krigingu, metody wielomia-

nowe czy wzmocniony filtr Kalmana (Eicker et al., 2014).

e Synergia danych wielosensorowych (Publikacje [4][5]) - mozliwe jest wykorzysta-
nie danych z innych zZrédet, takich jak dane z sensoréw teledetekcjnych, danych
z sondowania glebowego, aby wzbogaci¢ dane z GRACE i uzyskaé¢ bardziej szczegd-
towe informacje w przypadku mniejszych obszaréw (Dee et al., 2011, Jackson et al.,
1981).

e Metody uczenia maszynowego (Publikacja [3][5]) - wykorzystanie technik uczenia
maszynowego, takich jak sieci neuronowe, algorytmy regresji, moze pomédc w do-
ktadniejszym przeksztatceniu danych z GRACE na dane o wigkszej szegdtowosci
i zrozumieniu lokalnych wzorcéw zmian ilosci wody (Long et al., 2014, Seyoum and
Milewski, 2017).

5.5 Koniecznos¢ i sposoby filtracji obserwacji GRACE i GRACE-
FO

Zr6édlo bledu, ktérego charakterystyczna sygnaturg sa paski N-S, jest obecne w danych
GRACE i GRACE-FO na nizszych poziomach przetwarzania. Przyklad zaszumionych
i odfiltrowanych danych przedstawiono na rysunku (4). Swenson i Wahr zaobserwowali
szczegblng wlasciwosé sferycznych wspotezynnikéw harmonicznych zwigzanych z rozkla-
dem przestrzennym i zaprojektowali klase filtréw, aby usunaé problem (Swenson and
Wahr, 2006). W celu redukcji szuméw obserwacyjnych stosuje sie wygtadzanie prze-
strzenne w postaci filtru Gaussa (Publikacje [1][2]). Nie jest to jednak idealna metoda.
Zaproponowana przez J.Kusche dekorelacja bazujaca na zatozeniu a’pori dotyczacym bu-

dzetu bledéw zostata sprawdzona na podstawie walidacji modeli hydrologicznych (Kusche
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et al., 2009). Podobne rozwiazanie zaproponowano ostatnio przy uzyciu pelnej informa-
cji kowariancyjnej (Horvath et al., 2018). Dobrym rozwiazaniem okazaly sie filtry nie-
izotropowe (Chen et al., 2006, Kusche, 2007) (Publikacje [2][3][4][5]), ktére umozliwity
stosowanie produktéw poziomu 2 z jak najwierniej zachowang informacja geofizyczna. 7Z
biegiem czasu filtry DDK1-8 staty sie podstawowym narzedziem stosowanym przy opra-
cowywaniu danych. Problemem jest jednak to, ze nie okreslono, ktéry spisuje si¢ najlepie;j.
Jakos¢ stosowanego rozwiazania bedzie zalezata od szerokosci geograficznej obszaru opra-
cowania oraz mocy danego filtru. Im nizszy numer, tym wicksza sita filtracji. Pojawiaty
sie takze proby optymalizacji efektu zwigzanego z filtracja i gubieniem sygnatu geofizycz-
nego (Dutt Vishwakarma et al., 2016), jednakze dobér filtru na danym obszarze nadal ma

charakter empiryczny i zalezny od prowadzonego badania.
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Rysunek 4: Przyktad zaszumionych (a) i odfiltrowanych (b) danych GRACE. Zmiana un-
dulacji geoidy w mm, policzona dla danych GRACE z marca 2002 r. na podstawie danych
RLO06 opublikowanych przez CSR dla stopnia rozwiniecia n = 90. Zrédto: Opracowanie

wlasne.

5.6 Metody dekompozycji sygnatu LSSA i STL

W literaturze opisywane sa rézne podejécia i metody dotyczace dekompozycji sygnatu
szeregbw czasowych. Mozna wyrozni¢ najpopularniejsze metody takie, jak: metody $red-
niej ruchomej, procedury X-11, dekompozycja sygnatu bazujaca na falkach (ang. Wavelet
Transform), empiryczna dekompozycja modalna - EMD (ang. Empirical Mode Decompo-
sition), dekompozycja na sktadowe harmoniczne wykorzystujace transformacje Fouriera,
SEATS (ang. Seasonal Eztraction in ARIMA Time Series) czy tez redukcja wymiaréw za
pomoca analizy gtéwnych sktadowych PCA (ang. Principal Component Analysis) (Cleve-
land and Tiao, 1976, Singh et al., 2017, West, 1997). LSSA (ang. Least-Squares Spectral
Analysis)(Vanicek, 1969, 1971) (Publikacje [1][2]) jest metoda estymacji widma, ktéra
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polega na dopasowywaniu sinusoid o znanych okresach do obserwowanych danych. Me-
toda ta pozwala na identyfikacje dominujacych czestotliwosci w sygnale czasowym. Klu-
czowym punktem metody LSSA jest dopasowanie sinusoid o znanych okresach do danych
przy uzyciu technik najmniejszych kwadratow. Metoda ta pozwala na estymacje amplitud
i faz tych sinusoid, ktére najlepiej dopasowujg sie do sygnatu.

27t 27t

)+ dasin((0) (6)

gdzie: a jest wyrazem wolnym, b trendem dtugoterminowym Cj i ds to wspotezynniki wag

Yi(t) = a + bt + cscos((

sktadowych cosinusowych i sinusowch, a Ty odpowiada za uzyta okresowos¢. Ze wzgledu
na cykliczny charakter obserwacji zmian pola sity ciezkosci Ziemi, w badaniach wyko-
rzystane zostaly sktadowe fal rocznych i pétrocznych do dekompozycji sygnatu. Wartosci

wspoOtczynnikéw wyznaczono za pomocg metody najmniejszych kwadratow:
= (ATA)1ATy (7)

gdzie: T to wektor poszukiwanych parametrow wpasowania funkcji okresowych, y to wy-
korzytane obserwacje funkcji celu w zaleznosci od jednostki czasu, a macierz A to uktad
rownan sktadowych okresowych dla danych jednostek czasu.

STL (ang. seasonal trend decomposition) (Cleveland et al., 1990) (Publikacja [1])
jest nieparametryczng metoda dekompozycji szeregow czasowych na sktadnik sezonowy
S(t), sktadnik trendu 7'(t) i sktadnik reszty R(t) opisywana wedle wzoru:

Ys(t) = S(t) +T(t) + R(t) (8)

STL wykonuje si¢ iteracyjnie w kolejnych krokach, uséwajac dtugookresowy trend lin-
niowy, wyznaczajac na podstawie lokalnej regresji komponenty sezonowe. Nastepnie obli-
cza sie zrekonstrutowany i wygtadzony sygnal sezonowy przy uzyciu filtrowania dolnoprze-
pustowego. W kolejnym kroku wykonuje si¢ réznice wyznaczonych sygnatow sezonowych
wzgledem obserowanego i powtarza procedure do uzyskania kryterium dla zbieznosci kom-
ponentéow sezonowych S(t) i sktadnika trendu 7'(¢). STL ma potencjal identyfikowania
mozliwych wartosci odstajacych w danych poprzez wlaczenie wag odpornosci dla kazdego
pomiaru do procedury opartej na filtrowaniu regresji wazonej lokalnie (He et al., 2022,
Theodosiou, 2011).

5.7 Okreslenie metod i kryteriow poréwnawczych oraz miar ja-

kosci pomiedzy analizowanymi zbiorami danych

Analizy poréwnawcze wymagaja dobrania odpowiednich miar jakosci, pozwalajacych oce-
ni¢, jak dobrze model lub zbiér danych odzwierciedla rzeczywiste dane. Wybdér odpowied-

nich miar zalezy od rodzaju analizy i charakterystyki danych, ktére sa poréwnywane.
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W pracy zostaly zastosowane miary jakosci takie, jak: efektywnos¢ Nasha-Sutcliffe’a
(NSE) (Nash, 1970), wspotezynnik korelacji Pearsona (C'C) (Cohen et al., 2009), test
Kolmogorova-Smirnova (K.S) (Hodges Jr, 1958), btad sredniokwadratowy (RM SE, RMSE
(ang. root mean square error)) (Chai and Draxler, 2014) oraz znormalizowany btad $red-
niokwadratowy (NRMSE), a takze korelacja krzyzowa (zcorr) i wspétezynnik determi-
nacji (R?) (Nagelkerke et al., 1991).

NSE (Publikacja [3][5]) jest znormalizowana statystyka okreslajaca wzgledna
wielkosé resztkowej wariancji (szumu) w poréwnaniu do wariancji danych pomiarowych

(informacji). NSE jest obliczany za pomoca nastepujacego wzoru:

n 4. )2
NSE — 1 . Zl:t(yz yz,izr;z) (9)
i1 (i —9)

gdzie: n oznacza liczbe obserwacji, y; to wartos¢ rzeczywista obserwacji ¢, ¥ sim to wartos¢

przewidywana przez model dla obserwacji ¢, i to srednia wartos¢ ze wszystkich obserwacji.

Test KS (Publikacja [3]) sprawdza, czy dwie prébki pochodza z tego samej roz-
ktadu. Ta statystyka mierzy maksymalna odleglo$¢ (supremum) miedzy dystrybuantami
kumulacyjnymi (CDF, (ang. Cumulative Distribution Function)) dwdch prébek. Rozktad
jest zaktadany jako ciggly. Jesli statystyka KS jest mata lub warto$¢ p jest wysoka, nie
mozemy odrzuci¢ hipotezy, ze rozktady dwoch probek sa takie same. Wspotezynnik K.S

jest obliczany za pomoca nastepujacego wzoru:
KS =sup|F(z) — G(z)| (10)

gdzie: F(z) to dystrybuanta kumulacyjna dla jednej z préobek, G(z) to dystrybuanta
kumulacyjna dla drugiej probki, sup oznacza supremum, czyli maksymalng wartos¢ bez-
wzgledna réznicy miedzy dystrybuantami F(z) i G(z) w calym zakresie zmiennej .
Wartosé K .S wskazuje na najwiekszg odlegltosé miedzy dystrybuantami kumulacyj-
nymi probek F(z) i G(z). Im wieksza wartosé K S, tym wieksza réznica miedzy rozktadami
probek, co sugeruje mniejsze podobienstwo miedzy nimi. Metoda ta jest jest metoda nie-
parametryczng, co oznacza, ze nie wymaga zaltozen dotyczacych rozkltadu danych. Moze
by¢ stosowany zaréwno do danych o rozktadzie normalnym, jak i niestandardowym, co
czyni go wszechstronnym narzedziem do analizy réoznorodnych typéw danych. Test KS ma
wysoka czutos¢ na nawet niewielkie réznice w ksztatcie lub parametrach rozktadéw dwéch
zbioréw danych. Dzieki temu pozwala on wykrywaé¢ nawet subtelne zmiany w rozktadach,
co jest istotne w wielu badaniach naukowych, gdzie istotne sa nawet niewielkie odchylenia
od oczekiwan. Metoda moze by¢ stosowany do réznych rozmiaréw probek oraz roéznych
typow danych, w tym do danych cigglych, dyskretnych oraz zmiennych czasowych. Dzieki
temu nadaje sie do szerokiego zakresu zastosowan, a prostota interpretacji i informacja
o istotnosci réznic daje szerokie spektrum mozliwosci uzycia zapewniajac wysoka ufnosé

do wynikéw.
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Wspétezynnik korelacji Pearsona (C'C) (Publikacje [1][2][3][4]) jest obliczany za

pomoca nastepujacego wzoru:

o0 - —_Ziin =3 —9) "
\/Zz (2 —2)? X (v — )?

gdzie: n oznacza liczbe obserwacji, z; i y; to odpowiednio warto$ci zmiennych z i y dla

obserwacji ¢, T i § to $rednie wartosci zmiennych x i y.

Wspbtezynnik korelacji Pearsona mierzy stopien liniowej zaleznosci miedzy zmien-
nymi x i y. Jego wartos¢ miesci sie¢ w zakresie od -1 do 1, gdzie wartos¢ 1 oznacza doskonaty
dodatnig liniowg zalezno$¢, wartos¢ -1 oznacza doskonata ujemna liniowa zaleznosé, a war-
tos¢ 0 oznacza brak liniowej zaleznosci miedzy zmiennymi. Im blizej wartosci C'C' jest do
1 (lub -1), tym silniejsza jest zaleznosé miedzy zmiennymi. Metoda ta zaktada liniowa
zaleznos¢ miedzy zmiennymi i moze nie wykrywacé innych rodzajow zwigzkow, takich jak
nieliniowe lub niemonotoniczne relacje. Ponadto, korelacja Pearsona moze by¢ wrazliwa
na wartosci odstajace oraz na niestandardowe rozktady danych. W niektérych sytuacjach
inne metody, takie jak korelacja rang Spearmana lub korelacja tau Kendalla, moga by¢
bardziej odpowiednie do analizy zwiazkéw miedzy zmiennymi. Jednakze, ze wzgledu na
skutecznos¢ w wykrywaniu liniowych zaleznosci miedzy zmiennymi w kontekscie przepro-
wadzanych badan zdecydowano si¢ na ta metode.

Wspétezynnik RMSE (Publikacje [2][3][5]) jest obliczany za pomoca nastepu-

jacego wzoru:

RMSE = J D STAE (12)
i=1
gdzie: n oznacza liczbe obserwacji, y; to wartos¢ rzeczywista obserwacji ¢, 9; to wartosé
przewidywana dla obserwacji ¢ przez model.

RMSE jest miara odchylenia miedzy wartosciami rzeczywistymi y; a wartosciami
przewidywanymi przez model g;. Im mniejsza wartos¢ RMSE, tym lepiej model odwzoro-
wuje rzeczywiste dane.

Wspbtezynnik NRM SE (Publikacje [3][5]) jest obliczany za pomoca nastepuja-
cego wzoru:

MSE
NRMSE = — 1M5 (13)

max(y) — min(y)
gdzie: RM SE to pierwiastek bledu sredniokwadratowego, max(y) to najwicksza wartosé

w zbiorze rzeczywistych danych y, min(y) to najmniejsza wartos¢ w zbiorze rzeczywistych
danych y.

W kontekscie analizy danych GRACE mamy do czynniena z amplituda zjawiska
na danym obszarze. Wspotczynnik NRMSE' jest miara odchylenia miedzy wartosciami
przewidywanymi przez model a rzeczywistymi danymi, znormalizowana do zakresu war-

tosci danych. Dzieki temu mozna poréwnywaé¢ wartosci NRMSE dla réznych zbiorow
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danych o réznych zakresach wartosci. Im mniejsza warto$¢ NRMSE, tym lepiej model
odwzorowuje rzeczywiste dane, niezaleznie od ich zakresu wartosci.

Wzér na korelacje krzyzowa (Publikacje [2][4]) miedzy dwiema seriami czaso-
wymi z(t) 1 y(t) wyglada nastepujaco:

_ o (2(t) —T)(y(t+7) — 7)
VENT ((t) — 22 SN (y(t + ) — §)?

gdzie: N - liczba punktéw w serii czasowej, T - opdznienie (time lag) miedzy seriami czaso-

TCOTT 3y (T) (14)

wymi, z(t) - warto$¢ w czasie t w pierwszej serii czasowej, y(t +7) - warto$¢ w czasie t + 7
w drugiej serii czasowej, T - $rednia warto$¢ w pierwszej serii czasowej (& = SN x(t)),
y - $rednia wartos¢ w drugiej serii czasowej (7 = % S, y(t)).

Korelacja krzyzowa pozwala okresli¢ jakie jest wzajemne opdznienie miedzy dwiema
seriami czasowymi oraz w jakim stopniu sg one skorelowane w tych opdznieniach. Wartos¢
korelacji krzyzowej xcorr,,(7) jest bliska 1, jesli istnieje silna korelacja miedzy seriami
czasowymi przy opdznieniu 7, bliska -1, jesli istnieje silna korelacja ujemna, oraz bliska 0,
jesli brak jest korelacji.

Wsp6tezynnik R? (Publikacja [5]) reprezentuje jak dobrze model wyjasnia wa-

riancje zmiennej zaleznej.

_ i (yi — 99)?
Yi=1"(y; — y)?

gdzie: n oznacza liczbe obserwacji, y; to rzeczywista wartos¢ obserwacji i, y; to przewidy-

R2=1

(15)

wana wartos¢ dla obserwaci przez model, ¢ to srednia wartos¢ wszystkich obserwacji.

R? jest miarg oceniajaca, jak dobrze model regresji dopasowuje sie do danych. War-
toé¢ R? miesci sie w przedziale od 0 do 1, gdzie 1 oznacza idealne dopasowanie modelu do
danych. Wyzsza warto$¢ R? sugeruje lepsze dopasowanie modelu do danych. Wspétezyn-
nik efektywnos$ci modelu Nasha-Sutcliffe’a jest zblizony do wspélczynnika determinacii,
réznige sie gltéwnie zastosowaniem. R? stuzy jako wskaznik jakosci dopasowania staty-
stycznego modelu. W przeciwienstwie do tego, NSFE stuzy do kwantyfikowania zdolnosci
modelu do prognozowania zmiennej wynikowej. Podczas gdy R? znajduje szerokie zastoso-
wanie we roznych dziedzinach do oceny ogélnego dopasowania modelu do obserwowanych
danych, NSFE stosuje sie w hydrologii i naukach srodowiskowych, koncentrujac sie na
ocenie doktadnosci modelu w prognozach.

Aby przeprowacone analizy mogty identyfikowaé¢ wyniki jako rzetelne, nalezy wy-
znaczy¢ minimalng liczbe probek danych potrzebna do ustalenia istotnosci statystyczne;j.
Badania oparte na danych GRACE maja charakter czasowo-przestrzenny. Decydujac si¢
na eksperymenty w ujeciu czasowym nalezy pamietac, ze w przypadku podejscia czaso-
wego, agregacja danych dla kazdej zlewni rzecznej znacznie zmniejsza wielko$¢ probki, co

moze podwazaé poprawnosé¢ poréwnania. Aby méc wnioskowaé, ze poréwnanie A/B ma
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sens, konieczne jest ustalenie minimalnej liczby probek wtaczonych do zbioru testowego
(Ioannidis, 2005). W celu zaobserwowania zmiany obserwowanych efektéw na poziomie 1%
- 2% miedzy wynikami, zaktadajac 95% poziom ufnosci i 80% moc testu, ustalono wielko$¢
efektu, a nastepnie obliczono minimalng liczbe probek potrzebng do oceny w prowadzo-

nych badaniach.

5.8 Transformacje liniowe sygnalu ATWS za pomocg EOF

Dane pochodzace z misji GRACE wymagaja przestrzennego wygtadzenia sygnatu. Wy-
korzystanie intensywnie usredniajacych filtrow przestrzennych o duzym promieniu wygta-
dzenia prowadzi do utraty sygnalu geofizycznego, znanego jako ,btad wycieku danych”
(ang. leakage error) (Longuevergne et al., 2010, Swenson and Wahr, 2002). Filtrowanie
zmniejsza rozdzielczosé przestrzenng obserwacji GRACE, utrudniajac identyfikacje sy-
gnalu masy wody w gléwnym strumieniu sygnatu. Analiza EOF (Publikacja [4]) to
metoda analizy danych o charakterystyce czasowo-przestrzennej shuzaca do oddzielania
sygnatéow od szumu sygnatu. Jest to korzystne w przypadkach takich jak problemy z utratg
sygnatu geofizycznego przy zmniejszajacej sie rozdzielczosci przestrzennej podczas filtracji
(Wouters and Schrama, 2007). Metoda EOF w pierwszym kroku wymaga obliczenia macie-
rzy kowariancji dla danych przestrzennych, ktore zawierajg pomiary w réznych punktach
przestrzeni. Zatézmy, ze mamy dane przestrzenne o wymiarze n x m, gdzie n to liczba
punktéw w przestrzeni, a m to liczba czasowych pomiaréw. Oznaczmy macierz danych
jako X, gdzie X;j to warto$¢ zmiennej w i-tym punkcie przestrzennym w j-tym kroku

CZasOWyIIl:

1 m
7=1

gdzie X! to wektor zawierajacy wartosci zmiennej w i-tym punkcie przestrzennym dla
wszystkich krokéw czasowych, a sumowanie odbywa sie dla wszystkich 7 od 1 do m.
W kolejnym kroku obliczane sa wektory wlasne (ang. eigenvectors) V i odpowiadajace
im wartosci wlasne (ang. eigenvalues) A\ macierzy kowariancji C'. Wektory wlasne V sa

rozwigzaniami réwnania:

C-V=X\V (17)

Nastepnie wybierana jest okreslona liczba k-EOF, ktore odpowiadajg najwigkszym war-
tosciom wlasnym A. Wybrane wektory wlasne reprezentuja gtéwne sktadowe, ktére wyja-
$niaja najwigksza wariancje w danych. Na podstawie wybranych EOF obliczane sa wzorce
przestrzenne (ang. spatial patterns) i wzorce czasowe (ang time series). Wzorce prze-
strzenne wzorce PC;(x,y) pokazuja jak zmieniaja sie dane w przestrzeni i sa obliczane ze

Wzoru:

45



PCi(r.9) = 3V X0 (19

gdzie sumowanie odbywa si¢ dla wszystkich j od 1 do n. X;(z,y) to warto$¢ zmiennej
w punkcie (x,y) przestrzeni, a V;j to i-ty element wybranego wektora wlasnego V. Wzorce

czasowe T;(t) pokazuja jak zmieniajg sie dane w czasie i sa obliczane ze wzoru:
L) = YV X0 (19)
j=1

gdzie sumowanie odbywa sie dla wszystkich j od 1 do n. X;(t) to wartosé¢ zmiennej w kroku
czasowym t, a V;j to i-ty element wybranego wektora wtasnego V.

Metoda ta umozliwa identyfikowanie i analize dominujacych wzorcéw zmiennosci
w danych przestrzennych, co pozwala na wyodrebnienie informacji o gtéwnych tendencjach

i amplitudach charakteryzujacych badane zjawiska.

5.9 Analiza maksymalnej kowariancji

Jak wspomniano w rozdziale (4.7) istnieja techniki, ktére do analizy biora pod uwage za-
rowno przestrzenne, jak i czasowe aspekty danych ATWS i wilgotnosci gleby, na przyktad
TSA (Martinez-Ferndndez and Ceballos, 2005, Wang et al., 2018), TC (ang. triple collo-
cation) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin and Park,
2021) oraz empiryczne funkcje ortogonalne EOF (ang. Empirical Orthogonal Functions))
(Eom et al., 2017, Lei et al., 2012, Navarra and Simoncini, 2010, Schrama et al., 2007,
Yoo and Kim, 2004).

Analiza maksymalnej kowariancji (MCA, ang. Mazimum Covariance Analysis)
(Publikacja [4]) jest technika analizy wielowymiarowej, ktéra stuzy do identyfikacji
wspotzmiennych wzorcow w dwdch zbiorach danych. Metoda ta izoluje najbardziej spdjne
pary wzorcoOw przestrzennych i zwigzanych z nimi szeregéw czasowych, przeprowadzajac
analize wartosci wlasnych macierzy kowariancji czasowej miedzy dwoma obszarami geofi-
zycznymi (Von Storch and Zwiers, 2002).

Zastosowanie tej metody jest uzasadnione w przypadku poréwnywania danych mi-
krofalowych o wiekszej rozdzielczosci przestrzennej i wiekszej czestotliwosci czasowej po-
miar6w niz grawimetryczne pomiary satelitarne. Rozwazajac EOF standardowego MCA
(Rieger et al., 2021), amplituda przestrzenna (As) umozliwia zrozumienie, ktére regiony
maja najwigkszy udzial w danym modzie. Amplitude przestrzenna mozna tatwo obliczy¢

za pomocy zespolonego EOF i zespolonego sprzezonego EOF*:

As = VEOF x EOF* € C (20)
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Okreslenie w jaki sposob poszczegdlne regiony sg ze sobg dynamicznie powigzane mozliwe

jest poprzez wyznaczenia przesuniecia fazowego za pomoca nastepujacego rownania:

R(EOF)

6= tan(m) (21)

Dzieki zastosowaniu tej metody mozliwa jest identyfikacja dominujacych wzorcow zmien-
nosci miedzy zbiorami danych X i Y, a takze zrozumienie zwiazkow i wspotzaleznosci

miedzy ré6znymi zmiennymi w tych zbiorach.

5.10 Metody rekonstrukcji sygnatu ATWS przy uzyciu metod

bazujacych na uczeniu maszynowym

W uczeniu maszynowym istnieje kilka rodzajow probleméw, w ktoérych mozna zastosowaé
te algorytmy. Sa to zadania takie jak klasyfikacja, regresja, analiza skupien, wykrywanie
obiektéw, prognozowanie, rekomendacja czy wykrywanie anomalii. Rekonstrukeje sygnatu
mozna rozwiagzac¢ za pomocg modelowania regresji przy uzyciu algorytmow uczenia maszy-
nowego. Problem regresji mozna okresli¢ jako przewidywanie ciaglej zmiennej wynikowej
na podstawie danego zestawu predyktoréw (lub cech). Model regresji to technika two-
rzenia réwnania matematycznego definiujacego y jako funkcje zmiennych X. Regresja
liniowa jest najprostsza i najbardziej popularng technika przewidywania zmiennej ciggte;j
wyznaczanej wedlug wzoru:

Y = XPh + fho+ € (22)

gdzie: [y jest wyrazem wolnym, (3, jest waga lub wspotczynnikiem regresji zwigzanym ze
zmienna predykcyjna (cecha lub atrybutem) X, a € jest szumem Gaussa.

Wspotczesne metody uczenia maszynowego, takie jak maszyny wektoréw nosnych
(SVM ang. Support Vector Machines), drzewa decyzyjne, czy sztuczne sieci neuronowe
(ANN) maja znacznie wigksza zdolnosé do modelowania bardziej skomplikowanych zalez-
nosci w danych. Modele te cechujg sie zdolnoscig do wykrywania nieliniowych zaleznodci,
co jest szczegblnie wazne w kontekscie rekonstrukeji sygnatow, ktoére czesto maja zto-
zong 1 nieregularna strukture. W przypadku rekonstrukcji sygnatéw czasowych uzywa
sie roznych technik regresji, takich jak regresja liniowa, regresja wielomianowa, regresja
grzbietowa (ang. ridge regression), czy regresja oparta na drzewach decyzyjnych. Innym
podejsciem, szczegdlnie uzytecznym w przypadku danych sekwencyjnych, jest wykorzy-
stanie modeli autoregresyjnych. Modele autoregresyjne to modele, w ktorych wartosci
sygnatu sg estymowane na podstawie wczesniejszych wartosci tego samego sygnatu. Po-
pularnym przykladem jest model autoregresyjny ARIMA (ang. AutoRegressive Integrated
Movwing Average) (Box and Pierce, 1970), ktory taczy autoregresje i skumulowana srednia

ruchoma.
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W dzisiejszych czasach wiele metod rekonstrukeji sygnatu wykorzystuje sztuczne
sieci neuronowe (Seyoum et al., 2019), szczegdlnie sieci rekurencyjne (RNN, ang. Recurrent
Neural Network) (Zaremba et al., 2014) i sieci splotowe (CNN) (Kattenborn et al., 2021).
Sieci RNN sa szczegdlnie przydatne w analizie sekwencji, takich jak sygnaly czasowe,
poniewaz moga przechowywaé informacje o poprzednich stanach i wykorzystywacé je do
prognozowania kolejnych wartosci sygnatu. Sieci CNN sg stosowane do analizy danych
przestrzennych, takich jak obrazy, ale moga by¢ rowniez uzyteczne w przypadku analizy
sygnatow o strukturze przestrzennej, takich jak dzwieki lub fale. Jedng z kluczowych
kwestii w regresji jest walidacja modelu, czyli sprawdzenie, jak dobrze model radzi sobie
z prognozowaniem wartosci sygnatu na nowych danych, ktére nie byty uzyte w procesie
treningu. Dzigki odpowiedniej walidacji, mozemy oceni¢ skutecznos¢ modelu i okresli¢
jego doktadnos$¢ w przewidywaniu nowych wartosci sygnatu.

Bazujac na wezesniejszych badaniach dotyczacych poréwnywania modeli wydajno-
Sciowych oraz skupiajac si¢ na ztozonosci i interpretowalnosci modeli, zdecydowano si¢
na wykorzystanie w przeprowadzonych badaniach (Publikacja [3][5]) modelu XGBoost
(Chen and Guestrin, 2016). XGBoost Regressor to zaawansowana metoda wzmacniania
gradientowego, ktora wykorzystuje drzewa decyzyjne jako stabe modele predykcyjne. Caty
proces trenowania XGBoost Regressor mozna podzieli¢ na kilka krokow:

1. Inicjalizacja modelu:

Fy(z) =0 (23)
2. Obliczenie residutow:
1 =Yy — Fr1(x) (24)
3. Budowa drzewa k: §
Ty(x) = jz_:lcij I(x € Ry) (25)
Fi(z) = Fy_1(x) + v - T (2) (26)

gdzie: k - numer drzewa (k-ty krok) ¢;; - wartosé¢ wezta j w lisciu R;; I(x € R;;) - wskaznik,
ktory jest rowny 1, gdy x nalezy do liScia R;;, w przeciwnym razie 0, v - wspotczynnik
uczenia (learning rate), ktéry kontroluje wpltyw nowego drzewa na model.
4. Mechanizm regularyzacji:

n J

cel =Y L(y;, Fi(z:)) + > Q(cy) (27)

i=1 j=1
gdzie: L - funkcja straty, ktora mierzy btad predykcji 2 - funkcja regularyzacji, ktéra
ogranicza ztozonos$¢ drzewa.

5. Optymalizacja celu:

¢j = argmin > L(yi, Fia(2i) + ¢;) + Qcy) (28)

CCZ‘ER”'
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6. Zatrzymanie budowy drzew: Proces budowy drzew jest powtarzany, az zostang spet-
nione warunki zatrzymania, np. osiagniecie maksymalnej liczby drzew lub osiagnigcie
minimalnej gtebokosci drzewa.

7. Predykcja: Po zakonczeniu trenowania, model jest gotowy do dokonywania predykcji
na nowych danych. Predykcja dla nowego przypadku x jest obliczana jako suma predykcji

wszystkich drzew w modelu:

§ = F(z) = Fy(x) + u; Ty (z) (29)

gdzie: x - wektor cech pojedynczego przypadku y - rzeczywista wartosé dla tego przypadku
Fi.(x) - predykcja modelu na k-ty krok 7} (z) - predykcja k-tego drzewa c; - wartosé¢ wezta
J wlidciu R;; R;; - obszar wezta j w k-tej iteracji (2 - funkcja regularyzacji, ktora ogranicza
ztozonosé drzewa v - wspotezynnik uczenia (ang. learning rate), ktéry kontroluje wplyw
nowego drzewa na model K - liczba drzew w modelu L - funkcja straty, ktéra mierzy btad
predykcji.

Uzycie modelu XGBoost zezwala na interpretowalnos¢ zalezno$ci miedzy cechami
a funkcja celu. Explainable Artificial Intelligence (XAI) to podejscie w dziedzinie sztucz-
nej inteligencji, ktére ma na celu uczynienie procesow podejmowania decyzji przez modele
uczenia maszynowego bardziej zrozumiatymi i interpretowalnymi dla ludzi. W tradycyj-
nych modelach uczenia maszynowego, takich jak gtebokie sieci neuronowe, drzewa decy-
zyjne czy lasy losowe, dziatanie modelu moze by¢ czesto trudne do zrozumienia, poniewaz
te modele sa ztozone i sktadaja sie z tysiecy parametréw. W kontekscie zastosowan prak-
tycznych, np. w medycynie, finansach czy przemyéle, zrozumienie jak model dokonuje
swoich predykeji jest kluczowym elementem, szczegolnie jesli te predykcje maja wpltyw na
ludzkie zycie i podejmowanie waznych decyzji. Dlatego wtasnie metody XAl staja sie coraz
bardziej istotne, ze wzgledu na eksplikacje wyznaczonych wag predykatow w odniesieniu
do zmiennej przewidywanej, co nazywane jest interpretowalnoscia modelu (Breiman, 2001,
Elith et al., 2008, Fisher et al., 2019, Friedman, 2001).

Inng metoda zezwalajaca na interpretowalnos$é relacji pomiedzy cechami jest me-
toda SHAP (ang. SHapley Additive exPlanations) (Lundberg and Lee, 2017) (Publika-
cja [3]). Jest oparta na teorii gier i wykorzystuje wartosci Shapleya, ktore sa uzywane
do oceny wktadu poszczegdlnych graczy w zyski lub straty w grach kooperacyjnych. W
przypadku analizy cech w modelach uczenia maszynowego, wartosci Shapleya sa uzywane
do okreslenia istotnosci cech w przewidywaniach modelu. Zal6zmy, ze mamy model ucze-
nia maszynowego, ktéry przewiduje wynik f(x) dla danej instancji  z wektorem cech
r = (T1,Z9,...,2,). Wartos¢ SHAP dla cechy x; dla instancji = jest obliczana jako réz-
nica miedzy przewidywana wartoscia dla calej instancji f(x) a przewidywana wartoscia,

gdyby cecha x; zostala pominieta, oznaczona jako f(z.;). Wzdér na wartos¢ SHAP dla
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cechy x; dla instancji x mozna zapisa¢ jako:

di(z) = f(x) — f(i) (30)

Nastepnie, aby uzyska¢ istotnos¢ cechy z; w calym modelu, oblicza si¢ $rednig wartosé

SHAP dla tej cechy dla wszystkich instancji w zbiorze danych, stosujac formute:

1 N
¢ = N ; (31)

gdzie N to liczba instancji w zbiorze danych, a 1) to j-ta instancja.

Metoda SHAP pozwala na zrozumienie, jakie cechy maja najwiekszy wptyw na
przewidywania modelu, a takze na wyjasnienie, dlaczego model dokonuje okreslonych
predykcji. Jest to szczegodlnie przydatne w interpretacji modeli ztozonych, ktore sa trudne
do zrozumienia tylko na podstawie wag cech. Dzieki metodzie SHAP mozemy lepiej zro-
zumie¢, jakie czynniki wptywaja na decyzje modelu i dlaczego dana instancja zostata
zaklasyfikowana w okreslony sposob.

W pracy (Publikacja [5]) wykorzystano kilka popularnych algorytméw do mo-
delowania probleméw regresji. Wybor algorytmoéw regresji do tego badania pokierowany
byt ich ustalong skutecznoscig w analizie zréznicowanych zbioréw danych i cech oraz ich
przydatnoscig do modelowania badanego zjawiska. Na podstawie wczesniejszych badan
(Bonaccorso, 2018, Doan and Kalita, 2015, Maulud and Abdulazeez, 2020), ktére ocenity
rézne algorytmy uczenia maszynowego do zadan regresji, zidentyfikowano kilka popular-
nych metod ze wzgledu na ich stabilne wyniki przy réznych charakterystykach danych.
Wybrane algorytmy obejmuja réznorodne podejscia, poczawszy od metod zespotowych,
takich jak las losowy i drzewa losowe, znane ze zdolnosci do uchwycenia ztozonych zalezno-
Sci w duzych zbiorach danych, po algorytmy wzmacniania gradientu, ktére wyrdzniaja sie
w obstudze danych o wysokiej wymiarowosci i osigganiu lepszej doktadnosci predykeyjne;j.
Random Forest Regressor (Gromping, 2009) to wszechstronna metoda zespotowa wyko-
rzystujaca wiele drzew decyzyjnych do stworzenia stabilnego modelu predykcji, znana
ze swojej doktadnosci i odpornosci na nadmierne dopasowanie. Extra Trees Regressor
(Geurts et al., 2006) jest podobny do Random Forest, ale stosuje bardziej losowy sposéb
wyboru punktéw podziatu weztdéw, co zwicksza réznorodnosé i potencjalnie poprawia ge-
neralizacje. K Neighbors Regressor (Cover and Hart, 1967) to metoda nieparametryczna
przewidujaca warto$¢ zmiennej docelowej na podstawie Sredniej k najblizszych punktéw
danych. Light Gradient Boosting Machine (LightGBM) (Ke et al., 2017) to framework
wzmacniania gradientu zaprojektowany pod katem efektywnosci i szybkosci, odpowiedni
dla duzych zbioréw danych i zdolny do obstugi cech kategorycznych. Decision Tree Re-
gressor (Xu et al., 2005) to model drzew decyzyjnych, ktory dzieli dane na homogeniczne

segmenty, co pozwala na interpretacje, ale moze prowadzi¢ do nadmiernego dopasowania.

20



Gradient Boosting Regressor (Friedman, 2002) to algorytm, ktéry iteracyjnie dopasowuje
drzewa decyzyjne do reszt poprzedniego drzewa, tworzac stabilny model predykcyjny.
Regresja liniowa to proste, liniowe podejscie modelowania relacji miedzy zmiennymi do-
celowymi a predyktorami za pomoca réwnania liniowego. Least Angle Regression (LARS)
(Efron et al., 2004) to technika regresji, ktéra identyfikuje najbardziej istotne predyk-
tory, zachowujac interpretowalnos¢ poprzez stopniowe wybieranie cech. Bayesian Ridge
to metoda regresji oparta na analizie bayesowskiej, ktora oszacowuje parametry modelu,
réwnowazac ztozonosé modelu i jako$¢ dopasowania. Ridge Regression (McDonald, 2009)
to regresja liniowa z regularyzacjg L2, ktéra redukuje problemy wieloliniowo$ci i stabi-
lizuje oszacowania parametréw. Huber Regressor (Sun et al., 2020a) to technika regresji
odporna na obserwacje odstajace, minimalizujaca wptyw odstajacych obserwacji przy za-
chowaniu doktadnych predykcji. Orthogonal Matching Pursuit (Tropp and Gilbert, 2007)
to metoda selekcji modeli rzadkich, ktéra sekwencyjnie wybiera zmienne najbardziej sko-
relowane z zmienna docelowa. Lasso Regression (Hans, 2009) to metoda regresji liniowej
z regularyzacja L1, odpowiednia do selekcji cech i tworzenia rzadkich modeli. Elastic Net
(Li and Lin, 2010) taczy metody regularyzacji L1 (Lasso) i L2 (Ridge), zapewniajac ela-
styczne podejscie do regresji. Lasso Least Angle Regression (LARS Lasso) to metoda
taczaca algorytm LARS z regularyzacja L1, tworzgca interpretowalny i oszczedny model.
Dummy Regressor (Angrist, 2001) to podstawowy model stuzacy jako punkt odniesienia
do oceny wydajnosci innych modeli regresji, zwykle dokonujacy predykecji na podstawie
sredniej lub mediany zmiennej docelowej. AdaBoost Regressor (Solomatine and Shrestha,
2004) wykorzystuje adaptacyjne boostingowanie do poprawy wydajnosci predykcji sta-
bego modelu regresji, koncentrujac sie na punktach danych z wiekszymi btedami predykc;ji.
Passive Aggressive Regressor (Segal, 2004). to wariacja algorytmu pasywno-agresywnego
dostosowana do zadan regresji, ktora dostosowuje parametry modelu, gdy zaobserwowane

sg bledy.
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6 Syntetyczny opis wynikéw badan

6.1 Publikacja [1]

Kuczynska-Siehien, J., Piretzidis, D., Sideris, M. G., Olszak, T. and Szabé, V. (2019) ‘Mo-
nitoring of extreme land hydrology events in central Poland using GRACE, land surface
models and absolute gravity data’; Journal of Applied Geodesy, Vol. 13, No. 3, pp.229-243,
doi: 10.1515/jag-2019-0003.

100 pkt MEIN; IF: 1.30

Publikacja [1] stanowi szczegdtowe studium wariancji przyspieszenia sity ciezkosci Ziemi
wyznaczonych metodami grawimetrycznych pomiaréw absolutnych, satelitarnych i global-
nych modeli numerycznych. Celem badan, stanowiacych przedmiot publikacji byta analiza
zgodnosci wyznaczenia zmienno$ci pola grawitacyjnego oraz lokalnych warunkéw, w kto-
rych zbieznos$¢ obserwacji jest najwieksza. Rozdzial 2.1.2(z opisywanej publikacji) opisuje
wptyw lokalnych efektéw na pomiar wartosci przyspieszenia. Lokalne warunki pomiarowe
majg duze znaczenie na wyznaczang wartos¢ ,,g” i moga prowadzi¢ do btednych interpre-
tacji, dlatego waznym procesem byto uwzglednienie do opracowania obserwacji poprawki
wynikajacej z topografii, struktur urbanistycznych zwiazanych z ksztattem i wielkoscig bu-
dynku, redukcji potozenia grawimetru FG5 ze wzgledu na potozenie stupu pomiarowego
ponizej poziomu gruntu oraz zmian wynikajacych z tzw. efektu parasola (ang. umbrella
effect) polegajacego na spltywie wody opadowej po dachu budynku obserwatorium two-
rzacego rozktad przestrzenny wod opadowych wokot punktu pomiarowego. Rysunki od 3
do 6 (z opisywanej publikacji) pokazuja wplyw przestrzenny i czasowy opisywanych efek-
tow. Ze wzgledu na specyfike polozenia grawimetru pokazana na rysunku 7 (z opisywanej
publikacji) poprawna interpretacja pomiaréw mozliwa jest jedynie przy dokltadnym zamo-
delowaniu geologicznej struktury i hydrologicznych efektéw w danym regionie pomiaréw.
Poprawke ze wzgledu na tzw. ptyte Bouguer’a odpowiadajaca z usuniecie mas wystaja-
cych ponad punkt pomiarowy oraz lokalny efekt hydrologiczny przeprowadzono zgodnie
ze schematem przedstawionym we wzorach 2-8 (z opisywanej publikacji). Do wyznacze-
nia zaburzenia grawimetrycznego z misji GRACE uzyto rozwigzan CSR i JPL rozwiazan
RLO06 opracowanych zgodnie z opisem w rozdziale 2.2 (z opisywanej publikacji) oraz za-

prezentowanym na rysunku nr (5).
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Rysunek 5: Schemat wyznaczenia zaburzenia grawimetrycznego z pomiaréw misji

GRACE. Zrédto: Opracowanie wlasne.

Sprezysta reakcja statej Ziemi na topnienie mas lodowych z ostatniego maksimum
lodowcowego nie bedzie miata znaczacego wptywu na analizowany obszar badan, dlatego
korekta izostatyczna nie zostata uwzgledniona, podobnie jak znieksztatcenia sygnatu wy-
wotane trzesieniami ziemi. Do badan uzyto modelu GLDAS z czterech symulacji Noah,
CLM, VIC, Mosaic, dzigki ktéorym wyznaczono hydrologiczny komponent odpowiadajacy
sumie $redniej zawartosci wody w glebie, roslinnosci oraz opadach $niegu. Kluczows cze-
Scig badan byto usuniecie z obserwowanych sygnatéw czesci zwigzanej z trendem liniowym
oraz sezonowa i sub-sezonowg cykliczng cyrkulacja wodna. Zamodelowanie tych efektéw
przeprowadzono na podstawie ztozenia funkcji trygonometrycznych i wyznaczenia wspot-
czynnikow algorytmami STL oraz LSSA. Przeprowadzona zostata analiza korelacji, na
podstawie ktorej zbadano zgodnosci badanych sygnatéow. Gtéwne wyniki przeprowadzo-
nych badan przedstawiono w tabeli 1 (z opisywanej publikacji). Poniewaz na okres obser-
wacji sktadaly sie takie wydarzenia, jak intensywne opady powddz hydrogeologiczna, fale
goraca oraz susza analiza zbieznosci sygnatéow byta podzielona na poszczegdlne okresy.

W przeprowadzonych badaniach bylem odpowiedzialny miedzy innymi za przy-
gotowanie danych z misji GRACE polegajacym na napisaniu skryptu umozliwiajacego

filtrowanie danych wspotczynnikéw sferycznych harmonicznych poziomu 2 filtrami nie-
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izotropowymi DDK1-8. Stanowito to motywacje do poglebienia tematu i przeprowadzenia
prac badawczych w kontekscie synergii relacji pomiedzy danymi pochodzacymi z réznych
sensorow a jakoscig wynikéw uzyskiwanych ze wzgledu na konwolucje zbioréw danych.
Wstepne opracowanie danych misji GRACE stanowi kluczowy element prac badawczych
i stalo sie niezbednym elementem kazdego przeprowadzonego procesu badawczego w po-

szczegolnych publikacjach.

Wartosciowymi wnioskami z powyzszego badania wartymi odnotowania sa:

e Dotkliwos¢ i zasieg powodzi w 2010 r. w Europie Srodkowej sa wyraznie zauwazalne,
co skutkuje anomaliami zmiany grawitacji 3,5-14 pGal w zaleznosci od zrodta da-
nych. Ujemne anomalie zmiany grawitacji rzedu 2,5-5 nGal sg réwniez identyfiko-
wane i powigzane z odnotowanymi warunkami suszy. Uzyskane wyniki sugeruja, ze
metody monitorowania zmian pola grawitacyjnego stanowia realng metode identy-

fikacji klimatologicznych zdarzen ekstremalnych w skali regionalne;j.

e Analiza korelacji pokazuje zgodno$¢ miedzy danymi pomiarowymi z grawimetru,
GRACE i GLDAS na poziomie 0.7-0.9. Korelacja zwieksza sie, gdy wykorzysty-
wane sg skorygowane dane grawimetru, co wskazuje, ze metoda usuwania lokalnego
wptywu hydrologicznego z pomiaréw grawimetru jest wiarygodna. Zwiekszong ko-
relacje uzyskuje sie réwniez, gdy analize przeprowadza sie tylko dla lat 2009-2012
okres, ktory obejmuje ekstremalng pow6dz w 2010 r. i 2011 r. wywotang ponad-
przecigtnymi opadami. Sygnat sezonowy jest usuwany za pomoca LSSA i STL, przy
czym obie metody daja poréwnywalne wyniki. W wiekszosci przypadkéw STL two-

rzy szeregi czasowe z nieznacznie wiekszg korelacja niz LSSA.

e Susza z 2015r. jest widoczna we wszystkich trzech zestawach danych. W szere-
gach czasowych grawimetrow obserwuje sie gwaltowny spadek grawitacji, od 2 nGal
w czerweu do -2,5 + 2 pGal w sierpniu i -2,3 £+ 2,3 nGal we wrzesniu. Stosunek
sygnatu do szumu dla pomiaréw grawimetrycznych w tym samym okresie jest bli-
ski lub réwny jeden, co czyni je statystycznie nieistotnymi dla monitorowania tego
zdarzenia. W badanym szeregu czasowym uzyskanym z misji GRACE wystepuje
ujemna anomalia przez caly rok 2015. Extrema anomalii osiggaja swoje minimum
we wrzesniu z wielkoscig -5 + 1 pGal. Usrednione szeregi czasowe GLDAS pokazuja

rowniez ujemne anomalie w zmianach przyspieszenia sity ciezko$ci w tym okresie.

e Model GLDAS Noah LSM generuje najwyzsze anomalie zmiany grawitacji przy 5
nGal w czerwecu 2010 i 7 pGal w lutym 2011. Zauwazalne jest réwniez przesuniecie

fazowe w globalnym maksimum miedzy grawimetrem FG5 a danymi GRACE oraz
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GLDAS wynoszace do 3 miesigecy co mozne by¢ thumaczone predkoscig przesigkania

wody opadowej pomiedzy kolejnymi warstwami wodonosnymi.

6.2 Publikacja [2]

Szabd, V. and Marjanska, D. (2020) ‘Accuracy analysis of gravity field changes from
GRACE RL0O6 and RL0O5 data compared to in situ gravimetric measurements in the con-
text of choosing optimal filtering type’, Artificial Satellites: Journal of Planetary Geodesy,
Vol. 55, No. 3, pp.100-117, doi: 10.2478 /arsa-2020-0008.

70 pkt MEIN; IF: 0.90

W publikacji [2] rozwazono wartosci réznic zaburzenia grawimetrycznego pomiedzy na-
ziemnymi absolutnymi pomiarami grawimetrycznymi oraz przefiltrowanymi danymi GRACE
uzyskanymi z osrodkéw CSR, JPL i GFZ. Celem prac byto oszacowanie réznic pomiedzy
sposobami filtracji miesiecznych rozwigzan pochodzacych z reporocesingu RL06 i RL05
misji GRACE. Koniecznos¢ filtracji danych GRACE wynika z zalezno$ci pomiedzy ar-
chitektura orbity i czestotliwoscia pomiaréow objawiajaca si¢ w postaci pewnego rodzaju
bledu w obserwacjach. Doktadnosé¢ poszczegdlnych rozwigzan oceniono na podstawie abso-
lutnych pomiaréw grawimetrycznych wykonanych grawimetrem FG5 nr 230 w latach 2002-
2016. Przygotowana publikacja obejmuje dwie zasadnicze czeéci. W pierwszej przeanalizo-
wano roznice pomiedzy sposobem filtracji danych na podstawie réznic we wspotczynnikach
sferycznych harmonicznych. Druga to cze$¢ eksperymentalna zawierajaca opracowanie da-
nych naziemnych z pomiarow grawimetrycznych i piezometrycznych oraz satelitarnych.
Zrédlo bledu przedstawione zostalo na rysunku 1 (z opisywanej publikacji), w ktérym
zaprezentowano symulacje Sciezek orbit badanych satelitoéw wskazujaca na koniecznos$é
interpolacji danych, ktorych brakuje dla czesci obszarow. Ze wzgledu na inklinacje orbity
wynoszaca 89.5°mamy do czynienia z akumulacja danych w regionach polarnych i spad-
kiem liczby obserwacji w okolicach roéwnikowych. Wynika z tego koniecznosé wprowadzenia
metod matematycznych umozliwiajacych jak najwierniejsze odzwierciedlenie sygnatu fi-
zycznego wraz ze zmieniajaca si¢ szerokoscia geodezyjna. W publikacji zaprezentowano fil-
tracje charakterystycznych potnocno—potudniowych paskéw na podstawie wzoréw (1-6) (z
opisywanej publikacji) oraz wskazano na réznice wynikajace z zadeklarowanego promienia
rozmycia w zaleznosci od stopnia rozwiniecia sferycznych harmonicznych z danego modelu
geopotencjatu, ktéry przedstawia rysunek nr 2 (z opisywanej publikacji). Kolejna badana
metoda byt zbior filtréw nieziotropowych DDK. Istota tego rozwigzania jest zmiana okna
rownoleznikowego szerokosci filtru w zaleznosci od szerokosci geodezyjnej. Réznice pomie-
dzy réznymi filtrami zostaty zaprezentowane za pomoca metryki pierwiastka kwadrato-

wego stopnia wariancji sferycznych harmonicznych, ktéra przedstawiono na rysunku nr 6
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(z opisywanej publikacji). Wykresy wskazuja na wigksza stabilnoé¢ filtrow DDK dla wyz-
szych stopni rozwiniecia wspotczynnikow sferycznych harmonicznych. Wskazane zostaty
rowniez roznice pomiedzy RLO6 i RLO5, gdzie mozna zauwazy¢ niewielkie rozbieznosci do
stopnia 60 dla filtrow typu DDK. Lepsza kompatybilnos¢ pomiedzy RL06 i RLO5 zacho-
wuja filtry Gaussa o promieniach 500 i 600km, podczas gdy w przypadku filtréw anizo-
tropowych kompatybilnos¢ wykazuja typy DDK 1-4. W publikacji schemat eksperymentu
przedstawia rysunek 7 (z opisywanej publikacji). Dane pochodzace z pomiaréw naziem-
nych i satelitarnych zostaly opracowane zgodnie z metodyka opisana w podrozdziale 3.1 (z
opisywanej publikacji). Ze wzgledu na intensywne opady w okresie 2010-2011, majace bez-
posredni efekt w postaci powodzi hydrologicznej na badanym obszarze, waznym krokiem
byto wyznaczenie poprawki ze wzgledu na ten hydrologiczny efekt, ktora zostata uwzgled-
niona w procesie przetwarzania danych grawimetrycznych. Wyniki korekty wprowadzonej
zgodnie ze wzorem (7) (z opisywanej publikacji) zostaly przedstawione na rysunku nr 9 (z
opisywanej publikacji). Poréwnanie pomiedzy danymi z sensoréw satelitarnych i naziem-
nych wykonano przeliczajac potencjal grawitacyjny na funkcjonal zaburzenia grawitacyj-
nego opisanego réwnaniem (8) (z opisywanej publikacji). Poniewaz dane GEACE cha-
rakteryzuja sie duzg sezonowoscig w celu poprawnego poréwnania sensoréw zdecydowano
sie wykluczy¢ cykliczne efekty (roczne, pétroczne i kwartalne) zmian amplitud w zareje-
strowanych obserwacjach GRACE. Efekt ten zamodelowany zostatl poprzez wpasowanie
funkcji sinusoidalnych, ktorych wspotezynniki wyznaczono metoda Gaussa-Markowa. Tak
zdekomponowany sygnal poréwnany zostatl na rysunkach 111 12 (z opisywanej publikacji),
gdzie przedstawiono odpowiednio $rednie zaburzenie grawimetryczne wraz z odchyleniem
standardowym wynikajacym z filtracji oraz obserwacje rezydualne. Analize doktadnosci
przeprowadzono w wykorzystaniem btedu pierwiastka sredniokwadratowego oraz korelacji

krzyzowej. Uzyskane wyniki zaprezentowano w tabeli 1 (z opisywanej publikacji).

Gloéwnymi wnioskami z przeprowadzonych eksperymentéw badawczych sa:

e 7Zmiana poziomu woéd gruntowych z -11 m do -8 m moze by¢ widoczna z putapu

satelitow grawimetrycznych.

e Usuniecie z szeregéow czasowych zjawisk okresowych zmian grawitacji zwiazanych
z réznymi porami roku umozliwito badanie lokalnych zmian $rodowiska. W przy-
padku filtracji Gaussa najlepsze wyniki uzyskano przy promieniu wygtadzania row-
nym 300 km, co jest zgodne z zaleceniami oficjalnych o$rodkéw przetwarzania da-
nych. Inne promienie wykorzystywane do tego rodzaju filtracji powoduja zbyt duze

usrednianie danych na badanym obszarze.

e Biorac pod uwage najnowszy przetworzony zestaw danych GRACE, filtry DDK3-DDK6
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opublikowane przez CSR i JPL charakteryzuja si¢ wysokim wspotczynnikiem korela-
cji krzyzowej na poziomie 0.8 i zadowalajacym RMSE w zakresie 3.7-4.0 pGal, czyli
mniejszym niz dwukrotno$¢ niepewnosci wykonanego pomiaru przez grawimetr FGb5.
Dla tych samych filtréw w wersji danych RL0O5a wszystkie trzy centra obliczeniowe
cechuja dobre wyniki zaréwno dla wspétezynnika korelacji krzyzowej, jak i RMSE,
przy wartosciach odpowiednio 0.7-0.8 lub 4.1-4.7 nGal. Odpowiednio przefiltrowane
obserwacje satelitarne zarejestrowane przez misje GRACE moga by¢ z powodzeniem
stosowane w badaniach w Obserwatorium Astronomiczno-Geodezyjnym w Jozefo-
stawiu Politechniki Warszawskiej (JOZE).

e Poprawna selekcja strategii przetwarzania satelitarnych danych grawimetrycznych
jest niezwykle istotna. W wersji RLO6 dla rozwigzan GFZ po dekompozycji sy-
gnalu uzyskane rezultaty charakteryzowaty si¢ generalnie stabszym dopasowaniem
do pomiaréw naziemnych. Co wigcej filtry DDK1-2 daja zbyt intensywne rozmycie
sygnatu geofizycznego i moga by¢ stosowane tylko na duzych obszarach oceanicznych

lub w analizie szeregéw czasowych dla catych dorzeczy.

e Obserwacje satelitarne wykonane przez misje GRACE odpowiednio przefiltrowane
moga by¢ z powodzeniem stosowane w badaniach w obserwatorium JOZE oraz do
wzmocnienia realizacji IGRF na punktach na ktorych nie wykonuje si¢ obserwacji

grawimetrycznych.

6.3 Publikacja [3]

Szabé, V. (2022) ‘Comparison features importance for temporal and spatial-temporal ap-
proaches in GRACE and GRACE-FO signal reconstruction based on GLDAS data’, Inter-
national Journal of Hydrology Science and Technology, doi: 10.1504/TJHST.2022.10048532
100 pkt MEIN; IF: 1.80

W publikacji [3] zaprezentowano nowe podejscie do selekcji parametrow fizycznych uwzgled-
nianych w modelu hydrologicznym do rekonstrukcji sygnatu ATWS przy uzyciu metod
bazujacych na uczeniu maszynowym (ang. machine learning). Jak wspomniano okoto
roczna przerwa pomiedzy istnieniem misji GRACE i GRACE-FO ujawnita potrzebe od-
tworzenia obserwacji ATWS na podstawie innych danych. Rosngca w ostatnich latach
moc obliczeniowa komputeréw wskazata na zainteresowanie naukowcow algorytmami ucze-
nia maszynowego oraz sztucznych sieci neuronowych (ANN). W wielu pracach naukowcy
przyjmuja catkowity ekwiwalent wodny jako uproszczong sume zasobu wod podziemnych,
ladowych, $nieznych oraz przypowierzchniowa wode rozumiang jako parametr wilgotnosci

gleby. Wartosci tych cech fizycznych z powodzeniem sg modelowane numeryczne poprzez
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wieloczynnikowe modele hydrologiczne. Jednakze proces obiegu wody jest bardziej skom-
plikowany, a nowe techniki obliczeniowe umozliwiaja uzyskanie doktadnego odtworzenia
sygnatu na podstawie wielu parametréw fizycznych. W publikacji [3] zaproponowano dwa
podejscia do wskazywania réznic w istotnosci uzytych cech przy rekonstrukcji sygnatu
ATWS, oddzielnie dla podejscia czasowego i przestrzenno-czasowego. Schemat ekspery-
mentu i obszar badan przedstawiaja odpowiednio rysunek 1 oraz 2 (z opisywanej publika-
cji). Ze wzgledu na idee poréwnania dwoch sposobéw prowadzenia analiz danych GRACE
w podziale na analizy regionalnych efektéw w obrebie danych dorzeczy oraz poszczegdl-
nych punktow rozmieszczonych w regularnej siatce, wyznaczona zostata niezbedna liczba
danych do uzyskania istotnosci statystycznej umozliwiajacej wyciagniecie prawidtowych
wnioskow na poziomie ufnosci > 95%. Bazujac na doswiadczeniach i wynikach z publi-
kacji [1] zdecydowano sie na uzycie danych z modelu GLDAS-NOAH jako danych, ktére
postuzyly do rekonstrukcji sygnatu. Dane ATWS RL06 dostarczane przez osrodek CSR
zostaly oznaczone jako cel rekonstrukeji i przetworzono je przy uzyciu filtracji DDK2 na
podstawie doswiadczen i wynikéw zaprezentowanych w publikacji [2]. Dane prezentujace
poszczegblne parametry fizyczne zawarte w modelu GLDAS zostaly poddane wstepnej
selekcji 1 standaryzacji zgodnie z opisem w podrozdziale 2.4 (z opisywanej publikacji).
Do wyznaczenia wspotczynnikéw w modelu funkceji regresji algorytmu XGBoost. Jakosé
rozwiazania oceniono na podstawie metryk RMSE, NRMSE, CC, NSE, i KS. Osiagniete
metryki odpowiadaja wynikom prezentowanym w pracach innych naukowcow. Warto-
sci metryk globalnych oraz mapy zawierajace charakterystyki przestrzenne doktadnosci
rozwiazania zaprezentowano odpowiednio w tabeli 2 oraz na rysunku 6 (z opisywanej
publikacji). Wyniki modelowania byty zawalajace, co pozwolito na przejécie do wlasci-
wej czesci eksperymentu, w ktorej wyznaczono istotnosé uzytych cech. W rozdziale 3.2 (z
opisywanej publikacji) zaprezentowano podejscia do wyznaczania istotnosci parametrow
za pomocg modelowo-agnostycznej wersji waznosci cech oraz objasnienia addytywnego
Shapleya (SHAP), metod popularnie uzywanych w dziedzinie wytlumaczalnej sztucznej
inteligencji (XAI).

7 przeprowadzonego badania mozna wysnu¢ kilka istotnych wnioskdw:

e Rekonstrukcja sygnalu ATWS za pomoca metod uczenia maszynowego charaktery-
zuje sie duza skutecznoscia i moga one by¢ alternatywa dla stochastycznych podejsé
takich jak Ensemble Kalman filter.

o Wielowymiarowa kombinacja duzych zbioréw danych umozliwia uzyskanie dobrych
rezultatéw w kontekscie rekonstrukeji sygnatu ATWS charakteryzujacych si¢ ble-
dem RMS z zakresu 4.2-5.0 cm oraz wspétczynnikiem NSE > 0.7.
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e Nie mozna jednoznacznie wyznaczy¢ zmiennych o najwiekszym wplywie na modelo-
wanie sygnalu ATWS, ale mozna zaobserwowaé zalezno$¢ dla pewnej grupy zmien-
nych, w sktad ktorej wchodza: zawartos¢ wody w warstwie $nieznej, wilgotnosé¢ gleby

na wszystkich warstwach oraz sptyw podpowierzchniowy.

e Kazde z podejs¢ ukazuje wyrazny wptyw zmiennych zwigzanych z czasem, potoze-
niem i wilgotnoscia. Wskazuje to na zwiazek z monotoniczng naturg zjawiska i jego

duza zalezno$cig od przynaleznosci do danych stref klimatycznych.

e Niezwykle istotnym parametrem okazal sie sptyw podpowierzchniowy. Jednakze
brak mozliwosci zdefiniowania kompleksowych warunkéw jak spekana warstwa wo-
donosna podtoza skalnego, wysoka zawartos¢ gliny lub kamienia moze prowadzi¢ do
przeszacowywania tej zmiennej przez model. Kompleksowe badanie zaleznosci dyna-
miki ATWS od stanu podpowierzchniowego za pomocg pomiaréw grawimetrycznych
wskazato na silniejszy zwigzek miedzy wspotezynnikiem odptywu a zmiang ATWS

niz obserwowany przy pomiarach wilgotnosci w przypowierzchniowej warstwie gleby.

e Na podstawie istotnosci cech wyznaczonej poprzez algorytm SHAP mozna stwierdzic¢
stosunkowo niewielkie znaczenie wody zawartej w roslinnosci wykorzystywanej jako

cecha do rekonstrukeji sygnatu ATWS.

e Najnizszag doktadno$c¢ statystyk prezentujaca doktadnosé rekonstrukeji sygnatu ATWS
uzyskano w rejonach rzeki Parana w potudniowych rejonach Ameryki Potudniowej,
rzeki Saskatchewan-Nelson i St. Lawrence w rejonie Wielkich Jezior na pograniczu
Kanady i USA, Huang He (Rzeka Zo6tta), Amur, Liao we wschodniej czeéci konty-
nentu azjatyckiego oraz obszarow pokrywajacych sie z terenami Sahary. Wiaze sie
to z duza zaleznoscia modelu od predykatéw zwigzanych z SM oraz brakiem uchwy-
cenia zalezno$ci antropogenicznych spowodowantych brakiem wystepowania takich

zmiennych.

e Wielko$¢ dorzeczy ma znaczenie dla modelu, jednakze nie stwierdzono istnienia re-
lacji pomiedzy powierzchnig dorzeczy a doktadnoscia predykeji ATWS zwracanych
przez model, takze implikuje to wniosek, iz nie mozna odrzuci¢ hipotezy mowiacej

o zaleznosci pomiedzy powierzchnia dorzecza a doktadnoscig rekonstrukeji sygnatu.

e Agregacja zmiennych w ujeciu czasowym wedlug wielkoéci dorzecza wplywa na
zmiane wag przypisanych poszczegélnym zmiennym w porownaniu z podejsciem
przestrzenno-czasowym. Jednak zmiana ta dla najbardziej wptywowych zmiennych

pozostaje stosunkowo niewielka.
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6.4 Publikacja [4]

Szab6, V. Osinska-Skotak, K. (2023) ’Similarities and differences in the Earth’s water
variations signal provided by GRACE and AMSR-FE observations using Mazimum Cova-
riance Analysis at various Land Cover data backgrounds’, Artificial Satellites: Journal of
Planetary Geodesy, Vol. 58, No. 2 - 2023, doi: 10.2478/arsa-2023-0006

70 pkt MEIN; IF: 0.90

Publikacja [4] skupia sie na problematyce zwiazanej z woda i jej dystrybucja w przy-
powierzchniowych warstwach gleby w kontekscie poréwnania obserwacji SM uzyskanych
na podstawie misji AMSR-E z obserwacjami ATWS z misji GRACE. Wyniki prezen-
towane w publikacji [3] wskazywaly na znaczna wage w modelowaniu kwestii przeptywu
wody z ptytszych warstw wodonosnych do gltebszych. Ze wzgledu na znaczenie badan doty-
czacych zasobu wod podziemnych modelowanych na podstawie danych GRACE konieczne
jest zbadanie warunkow, dla ktérych wariancja wilgotnosci gleby odejmowana w réwna-
niu wyznaczajacym GWST jest zgodna z monotonicznoscia grawimetrycznych obserwacji
satelitarnych. W publikacji [4] poréwnano obserwacje z misji GRACE z mikrofalowymi
danymi dobowymi zebranymi przez misje AMSR-E. Badanie przedstawia analize zgod-
nosci obserwacji grawimetrycznych z pasywnymi obserwacjami mikrofalowymi. Aby za-
chowadé sp6jnos¢ obserwacji w zakresie czestotliwosci i rozdzielczosci przestrzennej, dane
dotyczace wilgotnosci z AMSR-E zostaly usrednione na epoki obserwacji misji GRACE;,
a nastepnie przeinterpolowane przestrzennie wielomianem 1 stopnia na siatke obserwacji
GRACE o wymiarach 0.5°x 0.5°. W publikacji podzielono badania na dwa etapy: analizy
globalne i regionalne. W pierwszej czesci poréwnano znaczenie klimatu w wyznaczanych
parametrach. W badaniu zastosowano analize maksymalnej kowariancji (MCA), aby wy-
odrebnié¢ sktadowe gtowne dla sygnaléow ATWS i SM. Analiza zostata przeprowadzona
dla obszaru globalnego, a dyskusje podzielono na poszczegdlne kontynenty. Podobien-
stwa i r6znice w wynikach zgodnosci sygnatéow przedstawiono w zestawieniu do danych
dotyczacych pokrycia terenu, ktére zostaly zaprezentowane na rysunku 1 (z opisywanej
publikacji). Do analizy wykorzystano dane dotyczace pokrycia terenu pochodzace z zhar-
monizowanej Swiatowej bazy danych o glebie (ang. Harmonized World Soil Database)
przedstawiajace pokrycie terenu roslinnoscia, dostepno$é tlenu w strefach korzeniowych,
tereny uprawne i tereny zurbanizowane. Wykresy 2 i 3 (z opisywanej publikacji) pre-
zentuja zagregowane $rednie warto$ci parametréw ATWS i SM pochodzace z zakresu
mikrofalowego C i X wzgledem wspotrzednych geodezyjnych. Wyznaczone zostaty takze
przecietne wartosci anomalii i ich odchylenia standardowe zagregowane wzgledem sze-

rokosci geodezyjnej i czasu. Zaprezentowano je na rysunku 4 (z opisywanej publikacji).
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Uwidoczniona zostata anomalia TWSA i SMA z lat 2009-2011 dla szerokosci 0-20°S, co
moze wskazywac na znaczaca zbieznos¢ sygnatéw w tych obszarach. Natomiast na szero-
kosciach 20-40°N obserwujemy znaczaca anomalic TWSA | ktora niezostata wychwycona
przez sensory AMSR-E. Poniewaz mamy do czynienia z réznymi amplitudami w zjawisk
obserwowanych przez badane sensory, do przeprowadzenia wolumetrycznej analizy po-
dobiefistwa zastosowano normalizacje wartosci do zakresu 0-1 zgodnie ze wzorem (1) (z
opisywanej publikacji). Znormalizowane obserwacje ATWS i SM pochodzace z zakresu
mikrofalowego C i X zaprezentowano, zestawiajac wolumen zawartosci wody dla czterech
pér roku, na rysunku 5 (z opisywanej publikacji). Uzupelniajac zestawienie przeprowa-
dzono analize korelacji sygnalow, przedstawiong na rysunku 6 (z opisywanej publikacji),
ktora wskazuje na duza wzajemna zgodnos$é sygnatéw w rejonach miedzyzwrotnikowych
i brak tej zgodnosci w rejonach okotobiegunowych. W nastepnych krokach, w celu okre-
Slenia obszaréw do szczegdtowego pordéwnania, amplitudy sygnatow grawimetrycznych
i mikrofalowych obliczono za pomoca zlozonej empirycznej funkeji ortogonalnej (EOF)
i sprzezonej z nig EOF* zgodnie ze wzorami (6) i (7) (z opisywanej publikacji). W efek-
cie prowadzonych analiz wyprowadzono globalny wniosek o braku zaleznosci sygnatéw
rejestrowanych przez sensory GRACE i AMSR-E na obszarach wiecznej zmarzliny. Sen-
sory mikrofalowe nie bedace wrazliwymi na zmiany w ekwiwalencie $niegu charakteryzuje
duzy szum obserwacyjny w tych obszarach, podczas gdy GRACE rejestruje zmiany masy
wynikajace ze zmiany pokrywy lodowej.

Druga cze$¢ artykulu obejmuje analizy regionalne dla wyselekcjonowanych do-
rzeczy. Wyznaczone zostaly wspotczynniki korelacji Pearsona oraz korelacji krzyzowej
uwzgledniajacej maksymalnie 6-miesiecznie przesuniecie fazowe pomiedzy sygnatami, ktore
zostaly zaprezentowane na rysunkach 101 11 (z opisywanej publikacji). Analizy regionalne
przeprowadzono dla najwickszych rzek ze wszystkich kontynentow, zapewniajac réznorod-
nos¢ pokrycia terenu, warunkéw klimatycznych w celu wyeliminowania stronniczosci we
wnioskowaniu. Na rysunku 12 (z opisywanej publikacji) przedstawiono szeregi czasowe
ATWS i SM oraz ich anomalie dla wybranego zestawu danych, a nastepnie przeprowa-

dzono dyskusje otrzymanych wynikow.

Na podstawie przeprowadzonego badania wyszczegdlni¢ mozna nastepujace wnioski:

e Naturalnie zalesione obszary i duze otwarte przestrzenie wykorzystywane w rolnic-
twie przyczyniaja sie do wzrostu zgodnodci sygnatéw miedzy obserwacjami GRACE
i AMSR-E, co wskazuje na istotnosé¢ parametru dotyczacego warunkow tlenu w stre-

fach korzeniowych gleby.

e [stniejace ograniczenia glebowe, takie jak wieczna zmarzlina, znacznie eliminujg uzy-

tecznosé obserwacji mikrofalowych w zakresie X i C. Analizy przeprowadzone w sub-
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polarnych regionach za pomoca sensorow grawimetrycznych beda charakteryzowaly

sie przewaga w stosunku do pasywnych obserwacji mikrofalowych.

e Regiony o duzej wariancji sygnatu usrednionego na obszarze calego dorzecza moga
powodowaé¢ utrate czesci sygnalu geofizycznego, co zaobserwowano i opisano na

przyktadzie rzeki Zair.

e Przywolane przyktady w podrozdziale dla Europy wskazuja na réznice miedzy GRACE
i AMSR-E, prowadzacy do wniosku o niekorzystnych warunkach wynikajacych z ogra-

niczen glebowych i znacznej urbanizacji obszaru.

e /rozumienie ograniczen wptywajacych na szybkos¢ wykrywania zmian i spdjnosé
w obserwacjach prowadzonych przy uzyciu roznych metod i czujnikéw ma wymierny

wplyw na jako$¢ dostarczanych rozwigzan do predykeji geozagrozen.

e Synergia pomiaréw ATWS i SM moze zapewnié lepsze i wysokiej rozdzielczosci
zrozumienie proceséw na Ziemi zwigzanych z obiegiem wody. Ztozonosé¢ proceséw
i warunkow glebowych wptywa na wykrywanie i kartowanie zagrozen naturalnych,

takich jak susze czy powodzie, w skalach globalnej lub regionalej.

e Badanie pozostawia otwarte pytanie o utrate danych przestrzennych spowodowana

filtrowaniem danych GRACE o niskiej rozdzielczosci czasowo - przestrzenne;j.

6.5 Publikacja [5]

Szabé, V., Osinska-Skotak, K. and Olszak, T. (2024) "Using machine learning techniques
to reconstruct the signal observed by the GRACE mission based on AMSR-E microwave
data’, Miscellanea Geographica - Regional Studies on Development, Vol. 28, No. 2 - 2024,
doi: 10.2478 /mgrsd-2023-0033

100 pkt MEIN; IF: 0.80

Publikacja [5] porusza problematyke synergetycznego wykorzystania teledetekcyjnych da-
nych mikrofalowych oraz satelitarnych danych grawimetrycznych w celu modelowania
zmian zachodzacych w zasobach wodych na podstawie danych z misji AMSR-E i GRACE.
W badaniu przeanalizowano skutecznos¢ réznych algorytméw uczenia maszynowego w mo-
delowaniu wartosci ATWS. Wyniki przedstawione w publikacji [4] zwracaja uwage na ob-
szary zalesione i rolnicze, gdzie obserwacje GRACE i AMSR-E wykazuja silng zgodnos¢,
podkredlajac znaczenie dobrze natlenionych stref korzeniowych gleby. Przeprowadzone
badanie identyfikuje ograniczenia zwigzane z obecnoscig wiecznej zmarzliny na obszarach

okotobiegunowych, ktéra wptywa na wykorzystanie obserwacji mikrofalowych z pasma
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X i C, rejestrowanych przez misje AMSR-E. Mimo ograniczonej korelacji w tych obsza-
rach, modelowanie ATWS przy uzyciu danych z AMSR-E okazuje sie skuteczne, nawet
w obszarach o duzej amplitudzie zmian, takich jak region Amazonii. Wyzwania zwia-
zane z modelowaniem zmian hydrologicznych w obszarach rolniczych sa réwniez widoczne
w wynikach przeprowadzonego eksperymentu badawczego, ze wskazaniem na wplyw czyn-
nikéw takich jak nawadnianie, przepuszczalnosé wody do gtebszych warstw wodonosnych
oraz zmiennos¢ okreséw wegetacji. Eksperyment skupit si¢ na przecigciu zbioréw danych
sensorow GRACE i AMSR-E w okresie od 2002 do 2012 roku, strategicznie wybranym
w celu maksymalizacji naktadania sie zbioréw danych. Dane wejsciowe do treningu modeli
ML zostaly starannie zorganizowane w formie tabelarycznej, gdzie kazdy punkt danych
odpowiadal macierzy reprezentujacej rozne epoki pomiarowe. Kolumny zawieraty predyk-
tory SM AMSR-E z pasm C i X, szerokosci i dtugosci geograficzne oraz zmienne dotyczace
fal roczych i potrocznych. Ta macierz odpowiada wektorowi zawierajacemu ciagte zmienne
ATWS, petlniacemu role zmiennej docelowej. Przed faza treningu, odrebna czes¢ losowo
wybranych danych powinna zosta¢ wyznaczona w celu przetestowania doktadnosci i ewa-
luacji modelu. By uzyskaé istotno$é statystyczng wynikéw modelu, ustalono minimalng
liczbe probek wiaczonych do zbioru testowego. Dane z lat 2002-2008 zostaty uwzglednione
w zbiorze treningowym, a dane z lat 2008-2012 zostaly uwzglednione w zbiorze testowym.
Wybor algorytmow regresji zostal podyktowany ich sprawdzona skutecznoscia w obstudze
roznorodnych zbioréw danych i cech oraz ich przydatnoscig do modelowania badanego zja-
wiska. Korzystajac z wczesniejszych badan, w ktorych oceniono rézne algorytmy uczenia
maszynowego do zadan regresji, zidentyfikowano kilka popularnych metod ze wzgledu na
ich stabilne wyniki przy réznych charakterystykach danych. Wybor réznorodnych metod
zapewnit wszechstronne eksplorowanie przestrzeni regresji i utatwit solidne modelowanie
badanego zjawiska, uwzgledniajac specyficzne cechy kazdej z wybranych technik. Osia-
gniete wyniki na prébie danych testowych przedstawiono w tabeli nr 1 publikacji [5].
Najlepsze wyniki osiggnieto za pomocag metod zwiazanych z Lasami Losowymi, takimi
jak Random Forest Regressor, Extra Trees Regressor oraz Extreme Gradient Boosting,
uzyskujac satysfakcjonujace wartoéci R? wieksze od 0.7, co pokazuje zgodnoéé¢ z usta-
lonymi standardami poprzez badaczy wskazywanymi w podobnych pracach naukowych.
Rozktad przestrzenny btedéw pokazano na rysunku nr 2 tej pracy. W kolejnym etapie
przeprowadzono dyskusje mozliwo$¢i taczenia pomiaréw lokalnych zmian hydrologicznych
w warstwach wodonosnych na podstawie synergii absolutnych pomiaréw grawimetrycz-
nych z pomiarami satelitarnymi. W publikacji [4] wskazano, ze wielko$¢ zlewni rzecz-
nych nie wykazuje bezposredniej korelacji z rozbieznosciami w sygnatach uzyskiwanych
z GRACE i AMSR-E. Europejskie rzeki, takie jak Dunaj i Wista, wykazuja réwnolegte

przesuniecia w sygnatach hydrologicznych, gdy obserwowane sg za pomocg zaréwno czuj-
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nikéw grawimetrycznych, jak i mikrofalowych. Obserwacje z pasm X- i C wprowadzaja
bardziej wyrazna wariancje sygnatu w poréwnaniu z obserwacjami GRACE. W rezulta-
cie zidentyfikowane anomalie charakteryzujg sie podwyzszonym poziomem szumu w tych
zakresach czestotliwodci. Podobnie jak w pracy [4], w przypadku pracy nr [5] przewi-
dywanie fali powodziowej na podstawie danych SM z AMSR-E byto nieudane. Metryki
dla predykcji dla tego obszaru wykazuja wartosci, takie jak NSE = -0.19, RMSE =
0.04 [m], NRMSE = 0.23, R? = 0.27, i potwierdzaja, ze determinacja anomalii w tym
obszarze widocznych w lokalnych pomiarach absolutnych w latach 2010-2011 jest zada-
niem trudnym. Wymagatoby to prawdopodobnie danych ze znacznie dtuzszego okresu
obserwacji, w ktorym obserwowane bylyby takze zjawiska powodzi o réznym nasileniu.
Jednakze jak wskazano w pracach nr [1][2] odpowiednie opracowanie obserwacji grawi-
metrycznych wspomaga modelowanie ekstremalnych zawisk klimatycznych, co w pracy
nr [5] potwierdzono obserwujac wyrazne korelacje miedzy pomiarami absolutnymi a SM
z AMSR-E w okreslonych okresach. Ujemna anomalia z grudnia 2009 roku byta widoczna
w obu seriach czasowych, co jest dowodem na wrazliwos¢ sygnatu grawimetrycznego na

zmiany srodowiskowe w glebszych warstwach wodonosnych.

Na podstawie przeprowadzonego badania wyszczegdlni¢ mozna nastepujace wnioski:

e Badanie wskazuje na wysoka skutecznos¢ wykorzystania danych teledetekcyjnych
AMSR-E do modelowania wartosci ATWS na podstawie obserwacji z misji GRACE.
Rezultaty te potwierdzity skutecznos¢ i mozliwos$¢ zastosowania technik uczenia ma-

szynowego w analizie zmian zasobéw wodnych.

e Obszary takie jak obszary wiecznej zmarzliny czy obszary intensywnej dziatalnosci
rolniczej, moga wprowadzaé pewne wyzwania w doktadnym modelowaniu ATWS,
ale mimo to istnieje potencjal do skutecznego zastosowania danych teledetekcyjnych

do uzupetniania szeregdw czasowych obserwacji grawimetrycznych.

e Okredlenie i przewidywanie anomalii dotyczacych ekstremalnych zjawisk pogodo-
wych widocznych w lokalnych pomiarach absolutnych w poszczegdlnych latach jest
zadaniem trudnym, jednakze istnieja okresy dla ktorych jest to mozliwe. Dzigki
synergicznemu wykorzystaniu obserwacji teledetekcyjnych i grawimetrycznych moz-
liwe jest uzyskanie zadawalajgcych rezultatéw w kontekscie modelowania zmian hu-

drologicznych.
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7 Podsumowanie

W przedstawionej rozprawie doktorskiej podjeta zostata tematyka taczenia danych z sen-
soréw mikrofalowych i grawimetrycznych dalekiego oraz bliskiego zasiggu. W cyklu pieciu
publikacji omowiono poszczegdlne aspekty badawcze. Zbadano zaleznosci tychze sensoréw
w kontekscie obserwacji ekstremalnych zjawisk pogodowych. Oceniono wptyw metod fil-
tracji danych GRACE poziomu 2 na mozliwos¢ uchwycenia minimalnej wielkosci badanych
zjawisk geofizycznych przez satelitarne sensory grawimetryczne. Przeprowadzona analiza
szeregbw czasowych wskazala, iz przy odpowiednim dobraniu sposobu filtracji mozliwe
jest uchwycenie zjawisk takich jak powodzie hydrologiczne charakteryzujace sie wartoscia
anomalii wykrywana przez absolutne pomiary grawimetryczne na poziomie 3.5-14 pGal.
Doprowadzito to bezposrednio do ukierunkowania kolejnych badan w strone analiz moz-
liwosci taczenia danych GRACE z pomiarami o innym spektrum czasowo-przestrzennym,
w tym modeli hydrologicznych. W badaniach postuzono sie¢ wybranymi uprzed-
nio metodami statystycznymi w tym metodami wytlumaczalnej sztucznej in-
teligencji (XAI) wskazujac na istotnosé czynnikéw i parametréow fizycznych
wplywajacych na rejestracje zmian poziomu wody w glebie spelniajac tym sa-
mym wyznaczony cel badawczy. Wykazana duza istotnos¢ cech fizycznych zwigzanych
z wilgotnoscia gleby oraz koniecznos¢ zastosowania spojnych i dtugich szeregéw obserwa-
cyjnych zadecydowata o wykorzystaniu w kolejnych badaniach danych dotyczacych SM
z misji AMSR-E. W pracy wykorzystano techniki rekonstrukeji sygnatu uzywajac poszcze-
golnych sposobéw modelowania regresji zjawiska ATWS. W badaniach wskazano na
istniejace obszary i uwarunkowania fizyczne tych przestrzeni, dla ktérych jest
mozliwe dokladnie interpolowanie czasowo-przestrzenne danych GRACE na
podstawie obserwacji z innych sensoréw spelniajgc tym samym pierwszy cel
badawczy i potwierdzajac mozliwosé wzajemnej integracji danych teledetek-
cyjnych z grawimetrycznymi pod katem uzyskania informacji i rozktadu wody
w glebie.

Na podstawie przeprowadzonych badan potwierdzono postawiong teze wykazu-
jac, iz istnieja uwarunkowania, dla ktérych wystepuje duza zgodno$é¢ rejestra-
cji zmian zawartosci woéd przypowierzchniowych obserwowanych za pomoca
mikrofalowych technik teledetekcyjnych w zestawieniu ze zmianami catkowi-
tego ekwiwalentu wodnego obserwowanymi przez satelitarne misje grawime-
tryczne. Przeprowadzony proces badawczy oraz relacje miedzy publikacjami tworzacymi

cykl przedstawiono na rysunku (6).
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Na podstawie wynikéw badan zaprezentowanych w niniejszej rozprawie wyciagnieto na-

stepujace wnioski, ktére w opinii autora zastuguja na wyszczegolnienie:

e Sposob przetwarzania danych grawimetrycznych z misji GRACE i GRACE-FO jest
niezwykle istotny w kontekscie interpretacji prowadzonych analiz. Doktadnosci uzy-
skiwanych wynikéw zaleza od przestrzenno-czasowych komponentéw badanego sy-
gnatu geofizycznego, dlatego metodyka opracowania obserwacji jest kluczowa dla

naukowcow.

e Osiggniecie zadowalajacych rezultatow przy analizie wychwytywania klimatycznych
ekstremalnych wydarzen takich jak susze i powodzie moze z powodzeniem by¢
wykonywane przy pomocy satelitarnych sensoréw grawimetrycznych. Zastosowa-
nie odpowiedniej filtracji przestrzennej sygnatu jest znaczace dla wynikow. Metody
monitorowania zmian pola grawitacyjnego z putapu satelitarnego okazalty sie sku-
teczne w identyfikacji ekstremalnych zdarzen klimatologicznych na skale regionalng
(< 100km?). Analiza korelacji migdzy réznymi danymi pomiarowymi in-situ po-
twierdzita ich zgodno$¢ na poziomie RMSE 4.5 - 5.2 puGal i korelacji krzyzowej
0.7-0.8, a przy uwzglednieniu korekty pomiarow zwiazanej z czynnikami lokalnymi
mozna stwierdzi¢ znaczaca poprawe zbieznosci tych sygnatéw do wartosci RMSE
4.1-5.2 pGal i korelacji krzyzowej 0.75-0.85.

e Modelowanie lokalnych czynnikéw hydrologicznych, terenowych oraz antropogenicz-
nych przy regionalnej analizie doktadnos$ciowej grawimetrycznych obserwacji na-
ziemnych i satelitarnych jest kluczowe w przypadku obserwacji ponadstandardo-
wych warunkow hydrologicznych. Usuwanie sezonowych komponentéw z obserwacji
umozliwia uwidocznienie anomalii zwigzanych z sygnalem geofizycznym w postaci

zwickszonej lub zmniejszonej zawartosci wody w glebie.

e Nowoczesne techniki uczenia maszynowego moga by¢ z powodzeniem uzyte w za-
daniach zwigzanych z rekonstrukcja sygnatu ATWS obserwowanego przez misje
GRACE i GRACE-FO na podstawie wielowymiarowych danych z modeli GLDAS.
Kluczowe jest dobranie odpowiednich parametréw fizycznych modelu do tego zada-
nia. W zaleznosci od prowadzonych analiz regionalnych w podejsciu czasowym lub
globalnych w ujeciu czasowo-przestrzennym mogg istnie¢ roznice w istotnosci zasto-
sowanych zmiennych, jednakze ogélna istotnos¢ grup zmiennych jest podobna i za-
chowana niezaleznie od podejécia. Wiekszej uwagi zdecydowanie wymagaja obszary
o silnych czynnikach antropogenicznych. W analizie doktadnosciowej takie obszary
charakteryzuja sie gorszymi metrykami. W zaleznosci od warunkéw uksztattowania
stref wodonosnych wartoéci sptywu podpowierzchniowego i migracji wod sa silng

sktadowa sygnalu ATWS i nie powinny by¢ pomijalne przy modelowaniu.
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e Asymilacja danych grawimetrycznych i teledetekcyjnych, takich jak obserwacje ATWS
i SM, ma kluczowe znaczenie dla lepszego zrozumienia proceséw zwiazanych z obie-
giem wody na Ziemi. Synergia pomiaréw ATWS i SM moze zapewni¢ lepsze i wy-
sokiej rozdzielczos$ci zrozumienie procesOw na Ziemi zwigzanych z obiegiem wody.
Ztozonosé proceséw i warunkow glebowych wpltywa na wykrywanie i mapowanie za-
grozen naturalnych, takich jak susze czy powodzie, na skale globalng lub regionalna.
Zrozumienie ograniczen wptywajacych na predko$¢ wykrywania zmian i spéjnosci
w obserwacjach za pomoca réznych metod i sensorow ma rzeczywisty wptyw na

jakos¢ rozwigzan stosowanych do przewidywania zagrozen geofizycznych.

e Przeprowadzone badania wykazaly, ze obszary zalesione i duze przestrzenie rolnicze
poprawiaja zgodno$¢ miedzy obserwacjami GRACE a AMSR-E charakteryzujac sie
wspotczynnikiem korelacji pearsona na poziomie 0.8, podkreslajac znaczenie para-
metru dotyczacego zawartosci tlenu w strefach korzeniowych gleby. Ograniczenia
glebowe, takie jak wieczna zmarzlina, eliminujg uzyteczno$é obserwacji mikrofalo-
wych w zakresie X i C. Wspotezynnik NSE na poziomie -0.5 przy krekonstrukeji
sygnatu ATWS na tych obszarach oraz ujemna korelacja -0.5 - -0.25 wskazuja na
niskg koherencje obserwacji mikrofalowych z grawimetrycznymi w tynm obszarze.
Badanie wykazato, ze zrozumienie tych ograniczen wptywa na jakosé¢ i spojno$é¢ mo-
delowanych wartosci, co jest kluczowe dla predykcji geozagrozen. Synergia miedzy
pomiarami ATWS i SM poprawia zrozumienie obiegu wody na Ziemi, ale istnieje
pytanie o utrate danych przestrzennych zwiazanych z filtrowaniem danych GRACE
o niskiej rozdzielczosci czasowo (miesieczne rozwiazania) - przestrzennej (300 x 300
km) w stosunku do pomiaréw teledetekcyjnych (dane dobowe, srednia rozdzielczo$é

przestrzenna 25 x 25 km).

Wyniki przeprowadzonych badan sa istotnym elementem poszerzajacym wiedze w zakre-
sie swiadomosci naukowcéw zajmujacych sie opracowywaniem danych grawimetrycznych
rozwiazan miesiecznych modeli geopotencjatu. Opracowywane dane znajduja swoich od-
biorcéow w dziedzinach hydrologii, fizyki Ziemi, ale przede wszystkim w rolnictwie, klima-
tologii, gospodarce wodnej. Bez dobrego zrozumienia praw natury nie jest mozliwe petne
korzystanie z jej darow w postaci niezwykle cennego surowca jakim jest woda. Badany
temat jest jednym z wielu istotnych kregéw zainteresowan miedzynarodowej spotecznosci

naukowej i zgodny z celami GGOS.
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8 Wykaz uzytych skré6téw i akroniméw
ATWS (ang. Total Water Storage changes)

ACC (ang. Super STAR Accelorometers)

AMSR-2 (ang. Advanced Microwave Scanning Radiometer -2)
AMSR-3 (ang. Advanced Microwave Scanning Radiometer -3)
AMSR-E (ang. Advanced Microwave Scanning Radiometer -E)
ANN (ang. artificial neural networks)

ARIMA (ang. AutoRegressive Integrated Moving Average)
CC (Wspdlezynnik korelacji Pearsona)

CDF (ang. Cumulative Distribution Function)

CES (ang. Coarse Earth and Sun Sensor)

CHAMP (ang. Challenging Minisatellite Payload )

CLM (ang. Community Land Model)

CMEM (ang. Community Microwave Emission Model)
CMTA (ang. Center of Mass Trim Assembly)

CNN (ang. convolutional neural network)

CSR (ang. Center for Sapce Research)

DLR (ger. Deutsches Zentrum fiir Luft-und Raumfahrt)
DNN (ang. deep neural network)

EMD (ang. Empirical Mode Decomposition)

EOF (ang. Empirical Orthogonal Functions)

EOS (ang. Earth Observing System)

ESA (ang. European Space Agency)

GEOSS (ang. Global Earth Observation System of Systems)
GFZ (ger. GeoForschungsZentrum
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GGOS (ang. Global Geodetic Observing System)

GHRC DAAC (ang. Global Hydrometeorology Resource Center Distributed Active Ar-

chive Center )
GIA (ang. Glacial isostatic adjustment)
GLDAS (ang. Global Land Data Assimilation System)
GOCE (ang. Gravity field and steady-state Ocean Circulation Explorer )
GOSAT-GW (ang. Global Observing SATellite for Greenhouse gases and Water cycle)
GPS (ang. Global Positioning System)
GRACE (ang. Gravity Recovery And Climate Experiment)
GRACE-FO (ang. Grace Follow on)
GSA (ang. Globalstar Silicon Solar Cell Arrays)
GWS (ang. groundwater storage variations)
HL (ang. high-low)

IERS2010 (ang. International Earth Rotation and Reference Systems Service Conven-

tion)
ITGRF (ang. International Terrestrial Gravity Reference Frame)
ITRF (ang. International Terrestrial Reference Frame)
ITRS (ang. International Terrestrial Reference System)
JAXA (ang. Japan Aerospace Exploration Agency)

JOZE (obserwatorium Astronomiczno-Geodezyjnym w Jozefostawiu Politechniki War-

szawskiej)
JPL (ang. Jet Propulsion Laboratory)
KBR (ang. K-band Ranging System)
KS (Test Kolmogorova-Smirnova)
L-MEB (ang. Land Microwave Emission Model for Brightness Temperature)
LAGEOS (ang. Laser Geodynamics Satellite)
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LARS (ang. Least Angle Regression)

Light GBM (ang. Light Gradient Boosting Machine)

LL-SST (ang. low—low satellite-to-satellite tracking)

LPRM (ang. Land Parameter Retrieval Model)

LRI (ang. Laser Range Interferometry)

LSSA (ang. Least-Squares Spectral Analysis)

MCA (ang. Maximum Covariance Analysis)

ML (ang. machine learning)

MODIS (ang. Moderate Resolution Imaging Spectroradiometer )
NASA (ang. National Aeronautics and Space Administration)
NRMSE (ang. Normalized Root Mean Square Error)

NSE (ang. Nash-Sutcliffe Efficiency)

NSIDC (ang. National Snow and Ice Data Center)

PCA (ang. Principal Component Analysis)

RFI (ang. radio frequency interference)

RMSE (ang. Root Mean Square Error)

RNN (ang. Recurrent Neural Network)

SARIMAX (ang. seasonal autoregressive integrated moving average model)
SCA (ang. Soil Canopy Atmosphere)

SCA (ang.Star Camera Assembly)

SEATS (ang. Seasonal Extraction in ARIMA Time Series)
SHAP (ang. SHapley Additive exPlanations)

SIPS-RSS (ang. Science Investigator-led Processing Systems - Remote Sensing System )
SLR (ang. satellite laser ranging)

SM (ang. Soil Moisture)
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SMC (ang. Soil Moisture Content)

STL (ang. seasonal trend decomposition)

SVM (ang. Support Vector Machines)

TSA (ang. temporal stability analysis)

TWSA (ang. Total Water Storage anomaly)

USA (ang. United States of America)

USO (ang. Ultra Stable Oscillator)

UTCSR (ang. University of Texas at Austin - Center for Space Research)
VIC (ang. Variable Infltration Capacity)

XAI (ang. explainable artificial intelligence)

XGBoost (ang. Extreme gradient boosting)
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Abstract: This study deals with the analysis of temporal
gravity variations in central Poland, deduced from multi-
ple sources and covering the period from 2002-2016. The
gravity data sets used comprise GRACE monthly solutions,
GLDAS land surface models and absolute gravimeter mea-
surements from the FG-5 gravimeter located in Jozefos-
taw, Poland. All data are corrected using standard pro-
cessing methods in order to include the same gravity ef-
fects. After removing the annual and semi-annual com-
ponents from all data using least-squares spectral anal-
ysis and seasonal-trend decomposition, the deseasoned
time series are derived and examined for signatures of ex-
treme hydrological events. The signatures of several severe
drought and flood conditions affecting Poland and central
Europe are identified. A complementary correlation anal-
ysis is performed to assess the level of agreement between
different data sources. A higher correlation is shown when
the analysis is restricted in the 20092012 period that in-
cludes the 2010 extreme flood and 2011 increased precipi-
tation events, both affecting Poland.
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1 Introduction

The main geophysical process contributing to spatiotem-
poral gravity changes on global scale is the redistribution
of water masses. This led to an increase of land hydrology
studies that utilize gravity data and the development of im-
proved land hydrology models by assimilating gravity data
into already existing models [1-3]. The accurate monitor-
ing of gravity field changes on global scale and with uni-
form coverage can be performed only by the Gravity Re-
covery and Climate Experiment (GRACE; [4]) twin-satellite
system. GRACE mission was launched in March 2002 and
ended in October 2017, providing monthly gravity field so-
lutions for fifteen years with sporadic interruptions.

Amongst the numerous applications of GRACE, moni-
toring extreme hydrological events, such as droughts and
floods, is of major importance. Groundwater depletion and
drought conditions are repeatedly reported for northern
India [5], [6], China [7], [8], the Middle East [9], [10] and
California Central Valley [11-13]. In central Europe, Ander-
sen etal. [14] identified signatures of the 2003 heat wave
in GRACE data that were also corroborated by supercon-
ducting gravimeter measurements, hydrology models and
water-balance estimates. Increased terrestrial water stor-
age (TWS) trends and extreme flood events are also doc-
umented by previous studies using GRACE data. The in-
fluence of extreme weather conditions in GRACE-derived
equivalent water height (EWH) in central Europe using
wavelet analysis is studied in [15]. They identified signa-
tures of high precipitation events and dry seasons, and
demonstrated the high correlation of GRACE models with
atmospheric and hydrological data. Chen etal. [16] ana-
lyzed GRACE-derived EWH changes to study the spatial
and temporal evolution of the 2009 exceptional Amazon
flood. Vishwakarma et al. [17] investigated the potential of
GRACE to detect floods of limited spatiotemporal extent
by analyzing time series of EWH residuals. More recently,
Gouweleeuw et al. [18] used daily GRACE solutions to mon-
itor the major flood events in the Ganges-Brahmaputra
Delta during 2004 and 2007.

Although many studies have been performed on the
evaluation of extreme hydrological events using GRACE,
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there is a gap in the published literature concerning such
events in central Europe during the recent decade. The
main objective of our study is to detect and monitor ex-
treme hydrological events in east-central Poland from 2002
to 2016 and investigate their gravity signatures. We analyze
time series of gravity changes coming from three indepen-
dent sources, i. e., GRACE monthly solutions, Global Land
Data Assimilation System (GLDAS; [19]) monthly models
and absolute gravimeter measurements. GLDAS models
provide global grids of numerous land hydrology param-
eters at different spatial and temporal scales. GLDAS also
incorporates four different land surface models (LSMs),
namely, the Community Land Model (CLM), Mosaic, Noah
and Variable Infiltration Capacity (VIC) LSMs. Since the
first GRACE solutions became available, GLDAS data are
routinely compared with the former in hydrological stud-
ies with a fairly good level of agreement [20-24]. The abso-
lute gravimeter measurements are obtained from the gravi-
metric station at the Astro-Geodetic Observatory (AGO) in
Jozefostaw (Figure 1), located in the center of our study
area. The gravimetric station operates since 2005, result-
ing in the longest time series of gravity measurements in
Poland at this time [25]. Absolute gravity measurements
have been used in the past, together with GRACE and hy-
drology models, to compare temporal gravity variations
and validate GRACE data [26-29].

Figure 1: Location of the Astro-Geodetic Observatory in J6zefostaw,
Poland.

2 Data and methods

2.1 Absolute gravity data

2.1.1 Gravimeter site and study area

The FG-5 no. 230 absolute gravimeter, installed on a pillar
in the basement of the main AGO building, is used to deter-

J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland
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mine absolute gravity values at monthly intervals. The pil-
lar is located 5.7 meters below ground level. The gravime-
ter’s total uncertainty is 2 pGal and is comparable with the
accuracy of the GRACE-derived gravity field series, which
is at the level of a few pGal. A better accuracy in grav-
ity measurements can be achieved only by using super-
conducting gravimeters. In addition to gravimetric obser-
vations, the AGO monitors the changes in environmental
conditions, including the groundwater level, around the
gravity station [25]. The groundwater level is measured by
a piezometer and ranges from approximately —8 to —12 me-
ters. The hydro-geological situation near the gravimetric
station is shown in Figure 2 and represents a typical struc-
ture for quaternary post-glacial sediments with sands ac-
cumulated on boulder clays.

2.1.2 Influence of local site effects

Gravimeters are more sensitive to temporal gravity varia-
tions occurring in their immediate surroundings because
gravity magnitude is inversely proportional to the squared
distance from the attracting masses. Local site effects
should therefore be studied in order to validate geomet-
ric assumptions made in the gravity processing (e.g.,
Bouguer slab approximation) and be taken into account
for the accurate interpretation of gravity changes. The
most important local site effects, also highlighted in previ-
ous studies, are the topography and building housing. In
case the surrounding ground surface is above the gravime-
ter site (i. e., gravimeter located next to a hill), water stor-
age changes occurring at shallow depth result in nega-
tive gravity response. The spatial distribution of water stor-
age changes are also directly affected by buildings. Build-
ing roofs prevent rain water from directly infiltrating the
area beneath the building [31]. This is known as “um-
brella” effect [32]. The foundation of a building also forms
a zone where no water storage change occurs. The studies
of [31] and [33], focused entirely on the correction of local
site effects, are based on in-situ data (e. g., elevation, soil
moisture and evapotranspiration) and advanced model-
ing of the hydrological processes in the surrounding area.
Due to the absence of in-situ hydrological data around the
gravimeter site and limited knowledge of the very local hy-
drogeology, local site effects in the AGO region are taken
into account using a simplified approach based on [31].

In order to examine the influence of the topography,
digital elevation model (DEM) data from the Polish Geo-
portal of Spatial Information Infrastructure are used. The
DEM data provide normal heights in a rectangular grid
with a spatial resolution of 100 meters. The grid coordi-
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Figure 2: Scheme of geological profile in J6zefostaw (reproduction based on [30]).

nates refer to the State Geodetic Coordinate System 1992
(PUWG1992) and the elevation data to the Kronsztadt86
local vertical datum. Figure 3a shows the elevation differ-
ences with respect to gravimeter site around an area of 2.5
by 2.5km. In the closer vicinity of a few hundred meters
around the gravimeter site, elevation differences do not ex-
ceed one meter and the area can be characterized as al-
most flat. The effect of the topography on measured grav-
ity is quantified by comparing the gravity response ofa1m
water mass change occurring on the topographic surface
with the response of the same mass change occurring on
an infinite slab (Bouguer plate). The ratio of the resulting
gravity responses, denoted as Cy,,,, is equal to one for an
entirely flat terrain [31]. Before calculating Cy,,,, the DEM
spatial resolution is artificially increased to 25 meters us-
ing cubic interpolation to avoid step effects. The DEM data
are also corrected for the curvature of the equipotential
surfaces, as follows [34]:

1
hcorr = hDEM - ﬁdz’ o)

where h.,,, and hpgy, is the corrected and original normal
height, R is the Earth’s equatorial radius and d is the hor-
izontal distance of each grid cell from the gravimeter lo-
cation. The gravity response for the evaluation of Cy,, is
calculated using rectangular prisms as mass elements [35],
[36]. The gravity effect of each water prism is given in Fig-
ure 3b. Negative gravity values denote that prisms are lo-
cated higher than the gravimeter site. The maximum cur-
vature at the area of Figure 3 is approximately 1 meter, re-
sulting in a gravity response of 0.01pGal. Therefore, the
effect of the curvature of the equipotential surface is neg-
ligible for such local cases. Given the results of Figure 3b,
99 % of the gravity response is produced by water masses
inside aradius of 125 meters. The ratio Cy,,,, is equal to 0.99,
which denotes an almost flat terrain.

For the building umbrella effect, the gravity response
of a 1m water mass change occurring in an area that

matches the building shape is compared with the response
of an infinite slab. The ratio of the two gravity responses,
denoted as Cygg, is close to one when the building has a
significant effect on the signal sensed by the gravimeter.
Cpige depends on the building footprint and shape, and
the location of the gravimeter relative to the building. The
AGO building is mostly rectangular with a rotunda-shaped
room (dotted circle in Figure 4) of 3.8 meters radius located
in the center, across the main entrance. The rotunda is ap-
proximated by a square of 7.6 by 7.6 meters and the rest
of the building is divided into three additional rectangles,
given in Figure 4. The building footprint covers a total area
of 630 m”. The gravity response at the gravimeter location
is calculated by adding the gravity response of the four
prisms in Figure 4. The ratio Cy4e is equal to 0.93, indicat-
ing that the umbrella effect is significant. More advanced
methods for accounting building effects are given in [33].
The total influence of local site effects Cyytq1 = Ctopo — Chidg
is equal to 0.06 for the gravimeter located at the AGO build-
ing.

2.1.3 Gravimeter data processing

All absolute gravity values are corrected for the well-
known gravity effects due to Earth and ocean tides, pole
tide and atmospheric pressure. Tidal effects are calculated
using the ETGTAB software [37] with the tidal potential cat-
alog of [38], and the FES2004 ocean tide model [39]. For
the polar motion correction, mean pole coordinates from
Bulletin B of Earth Orientation Center are interpolated to
the mean epoch of each gravity session. Atmospheric cor-
rection is applied based on the pressure differences from
the gravity station height, using a value of 0.3 pGal/mbar.
Instrumental corrections such as the reduction to the con-
stant height with measured vertical gravity gradient and
the absolute reference level offset, determined during the
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Figure 3: (a) Elevation differences with respect to gravimeter site. (b) Contribution of gravity response from a water mass change of 1m at the

gravimeter site, calculated for each prismatic body.
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Figure 4: Approximate layout of AGO building for the calculation of
Chigg- The yellow triangle shows the gravimeter location and the red
triangle the main entrance.
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Figure 5: Gravity change and groundwater level change at the AGO.

ICAG/ECAG International Comparison campaigns, are ap-
plied. The time series of the observed gravity and ground-
water level change, after a long-term mean is removed,
are shown in Figure 5. The time series exhibits time gaps
around 2009, 2012, 2013 and 2014 related to the gravimeter
maintenance.
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Figure 6: Time series of hydrological loading in terms of gravity.
Light color denotes the complete time series, while dark color the
values interpolated to the gravimeter measurement epochs.

We additionally use the surface gravity products of
the EOST Loading Service [40] to include the hydrological
loading in the gravimeter time series. This procedure is ex-
plained later in the paper. The hydrological loading is esti-
mated from the GLDAS Noah v. 2.1 model. The spatial and
temporal resolution of GLDAS Noah v. 2.1 are 0.25° and 3
hours, respectively. The EOST service provides time series
of surface gravity change that account for the influence of
local and non-local hydrology, presented in Figure 6 after
removing seasonal components. GLDAS data do not model
groundwater, therefore the time series of Figure 6 corre-
spond mainly to surface hydrological processes.

The absolute gravimeter measurements are not di-
rectly comparable with GRACE- and GLDAS-derived esti-
mates of gravity changes for two main reasons: (a) the
gravimeter is located below the Earth’s surface and (b) the
gravimeter measurements contain local hydrology signals.
Gravimeters located in underground stations provide a sig-
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nal influenced by masses from both above and below the
sensor. The resulting attraction of these two components
oppose each other [28]. In such cases, it is more difficult to
interpret gravity changes and infer conclusions about oc-
curring geophysical events. Correct interpretation is pos-
sible only by accurately modeling the geological structure
and the hydrological events of the region. Here we dis-
cuss a simpler approach to account for the gravimeter lo-
cation. First, we distinguish two components that form
the resulting gravity measured by the gravimeter. The first
component (surface component) includes the attraction
from the solid masses (g5;) and water masses (gj;) above
the gravimeter. If the gravimeter is located a few meters
below ground, gj; is mainly coming from soil moisture,
water stored in canopy and surface water. Local site ef-
fects are also included in the surface component. The sec-
ond component (deep component) comprises the attrac-
tion from solid masses (g;,) and water masses (gy,) below
the gravimeter. The constituent gy, is mostly due to under-
ground water [31]. The resulting attraction measured by
the gravimeter is (Figure 7a):

g =82 +8m 81— 8n- @

The corresponding gravity measured by a gravimeter on
the Earth’s surface would be (Figure 7b):

g = 8o+ 8+ 8+ 8 3)

where prime denotes quantities measured on the surface.
When the gravity changes are studied, and assuming that
the soil mass distribution is constant (4g; = 0, 4g,, = 0),
the conversion of Ag to Ag' is done as follows:

Ag' = Ag + 2Agy,. (4)

The surface water mass change Agy, is estimated here us-
ing the EOST hydrological loading data and is equal to the
sum of the local and non-local contribution, denoted as

A z 1+ng
i Z s ' 1
i gten 8o 8
SrUEER LRSI (U8 UL PR AL AN
‘gs2+gh2
Groundwater
(@) (b)

Figure 7: Gravity components sensed by a gravimeter located (a)
below and (b) above the ground.
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Ag}11 and Agﬂ{, respectively. The local contribution is cal-
culated by the EOST service using a simple Bouguer ap-
proximation and needs to be corrected for local site ef-
fects, whereas the non-local contribution is calculated us-
ing Greens function [41]. After correcting the local contri-
bution for deviations from the Bouguer approximation due
to local site effects, Eq. (4) takes the following form:

Ag' =Ag+ Z(CtotalAg;ll + Aglrﬁ) (5)

After correcting for the gravimeter location, we account
for local hydrology effects. Local influences of water stor-
age changes at shallow depth are removed using the local
contribution of EOST hydrological loading. The corrected
gravity changes, after applying the local site effect correc-
tion are:

Agq =Ag - CtotaIAg}ln- (6)

Local effects of groundwater storage changes are removed
using the available in-situ groundwater level changes. As-
suming that a change of Ah in the groundwater level results
in a change of Agy,; in the measured gravity based on the
relation [42]:

Agpyq = 41.925,Ah, 7)

the impact of local groundwater changes on gravity can
be calculated by estimating the specific yield coefficient
S, using linear regression. The true value of specific yield
S, depends on the hydrogeology of the study area (e. g.,
water properties of underground material). In practice,
the estimation of S, also depends on instrument uncer-
tainties. Absolute gravimeter uncertainties are usually one
or sometimes two orders of magnitude greater than su-
perconducting gravimeter uncertainties. Wilson et al. [42]
state that superconducting gravimeters can sense storage
changes equivalent to a 2-mm water layer, whereas other
types of gravimeters are only able to sense changes that ex-
ceed the equivalent to a 40-mm water layer. Therefore, the
S, estimate of our study might not be in good agreement
with previous studies that use superconducting gravime-
ters. After calculating a specific yield S, = 0.13 (slope of
best fitting line in Figure 8), the corrected gravity Ag, will
be given by:

Ag. =Ag - Aghyd' (8)

2.2 GRACE

We use the RL0O6 of GRACE monthly solutions, distributed
by the Center for Space Research (CSR) and the Jet Propul-
sion Laboratory (JPL), from August 2002 to December 2016.
RLO6 solutions from the GeoForschungsZentrum (GFZ)
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Figure 8: Scatter plot of FG-5 gravity changes, corrected for gravime-
ter location and local hydrology at shallow depth, and groundwater
level changes.

were not included because they were only provided up
to 2011 during the preparation of our analysis. GRACE
monthly solutions (Level 2 products) are in the form of
Stokes coefficients C,,,,, and S, ,, of degree n and order
m. Degree-1 coefficients (C;, C;; and S, ;) obtained from
Dr. Don Chambers and Dr. Jeniffer Bonin, University of
South Florida, are added to GRACE monthly solutions to
account for geocenter variations [43]. C, coefficients are
replaced by SLR-derived ones [44]. C,, and S, ; coefficients
are corrected for pole tide effects using the methodology
of Wahr et al. [45]. The viscoelastic response of the solid
Earth to the melting of ice masses from the last glacial max-
imum is not expected to have significant influence in our
study area, therefore, no glacial isostatic adjustment (GIA)
correction is applied. Stokes coefficient changes AC,,,
and AS,,,, are calculated by removing the GGMO5C static
gravity field [46] from each monthly solution. Coefficient
changes mainly represent mass redistribution due to hy-
drological events but are highly affected by correlated er-
rors. These errors are suppressed by selectively applying
the empirical decorrelation filter of Swenson and Wahr [47]
using the methodology of Piretzidis et al. [48]. The selec-
tive decorrelation is performed using the SHADE toolbox
[49]. A 300-km Gaussian filter [50] is also applied to the
decorrelated coefficient changes. The gravity changes Ag
of a point with spherical coordinates (r, 6, A) are expressed
in spherical harmonic expansion as follows [26]:

n+1

nmax
Ag(r,0,A) = %G—M <R>

n
R n+1) Z P, m(cos 0)
m=0

n=0
X (AC’:,)m cosmA + AS’:,)m sinmA), )

where GM is the Earth’s standard gravitational parameter,
R is the Earth’s radius, 1_9,,,”, are the normalized associated
Legendre functions and the superscript f denotes filtered
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coefficient changes. The gravity changes Ag; of a point
on the Earth’s surface (i.e., r = R) are computed by tak-
ing into account the Earth’s elastic deformation due to
loading [28]:

Nmax

GM 2h LA
Ag(0,A) = — 1——"> P 0
850, 0) = 7 n;)<H+ T+ k, mZ::o um(cos 6)

X (AC’,:’m cosmA + AS’;m sinmA), (10)

where h, and k, are the Love numbers, taken from [51].
The value of k; is changed to 0.021 to account for the in-
cluded GRACE geocenter variations. Monthly grids of Ag;
are calculated with a spatial resolution of 1°, and a spatial
average is calculated for each epoch by taking into account
grid points inside a radius of 250 km around J6zefostaw.
We also calculate a scale factor for the conversion of Ag to
Ag, using linear regression. The scale factor corresponds to
the slope of the best fitting line in Figure 9(a) and is equal
to 1.36 for both GRACE data sets. This value is in close
agreement with the value of 1.35 calculated by Neumeyer
et al. [27], although they did not take into account the effect
of k,. Crossley etal. [28] also found similar scale factors
(1.34 for GRGS solutions, 1.36 and 1.39 for CSR solutions
using different filtering techniques). The spatial averages
of Ag; are corrected for filter-induced signal damage using
a simple basin-scale gain factor of 1.06. This factor is de-
rived by a simulation using the four GLDAS LSMs and the
methodology of Landerer and Swenson [52]. The basin-
scale gain factor is shown as the slope of the best fitting
line in Figure 9(b). The GRACE-derived Ag; time series,
after filtering and rescaling, is presented in Figure 10.

2.3 Land surface models

The four GLDAS LSMs cover the period from January 2002
to December 2016. Global grids of TWS are calculated us-
ing the output components of average layer soil mois-
ture, total canopy water storage and snow water equiva-
lent from each LSM. TWS changes are derived by remov-
ing a long term mean from each monthly TWS grid. The
TWS changes are converted into mass change coefficients
{A(:’ﬁfﬁ,ASf,’fﬁ} using global spherical harmonic analysis,
and then into Stokes coefficient changes using [53]:

hyd ~hyd
{Acn?;n } — 3l)W 1 + kn {Acnf;n }
ASPA] paye2n+1 | ASMA

(¢8))

where p,, and p,,, denote water density and the Earth’s av-
erage density, respectively. The coefficient changes derived
from Eq. (11) are also filtered with a 300-km Gaussian fil-
ter and used in Eq. (10) to calculate GLDAS-derived gravity
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Figure 9: (a) Scatter plot of GRACE Ag and Ag, calculated on the Earth’s surface. (b) Scatter plot of filtered and unfiltered GLDAS Ag;.
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Figure 11: GLDAS-derived Ag;.

changes on the Earth’s surface. The results after perform-
ing spatial averaging are shown in Figure 11.

2.4 Removal of periodic variations

Periodic variability of land hydrology is usually the pre-
dominant signal in GRACE time series. The annual and

semi-annual variations that comprise the periodic con-
stituent of gravity changes, denoted as Ag,, should be re-
moved in order to reveal signatures of extreme hydrolog-
ical events. The reduced time series of gravity changes,
given by:

Ag, () = Agy(t) - Ag(8), (12)
with t = ¢t;,...,ty to denote the time epoch, contains pos-
sible periodic signals with period T = 3 monthsand T > 1
year, non-periodic signals and noise. Due to the presence
of gaps in the analyzed GRACE time series, the annual
and semi-annual signals are computed using two meth-
ods, i.e., least-squares spectral analysis (LSSA) and sea-
sonal trend decomposition using local regression (STL).
Another frequently used method to isolate and examine
seasonal patterns in time series is the use of empirical or-
thogonal function (EOF) decomposition. The studies [27],
[28] and [29] provide good examples of comparison analy-
sis between GRACE-derived gravity variations with super-
conducting gravimeter observations in several European
sites using EOF decomposition. EOF decomposition is not
preferred in this study due to time gaps in GRACE time se-
ries.

LSSA [54], [55] is a method of spectrum estimation by
fitting sinusoids of known periods to the observed data.
Utilizing the concept of least-squares fit makes LSSA an
appropriate tool for studying unevenly spaced time se-
ries or time series with gaps. We use LSSA to approximate
the annual and semi-annual signals with the weighted
sum of two pairs of sinusoids with periods T, = 1 and
T, = 0.5 years, respectively, and simultaneously estimate
a bias a and a long-term trend b. In this case, the peri-
odic signal can be expressed using the following linear
model:
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S 4 TS '
where c, and c, are the cosine weights, d, and d, are the
sine weights, and the subscripts “a” and “s” denote the
annual and semi-annual signal, respectively. Optimal val-
ues for the unknown parameters a, b, c,, d,, c; and d, are
estimated from the well-known least-squares method:

x = (ATA) ATy, (14)
where the optimally estimated vector of unknown param-
eters X, the observation vector y and the design matrix A
are as follows:

e s 2 . A anT
X = [a b ¢, d, ¢ ds] , (15)
T
y= [Ags(tl) Agy(t) Ags(tN)] > (16)
1 t cos 2;—51 sin 2;—51 cos 27TT—:1 sin 2%1
A = . . . . . .
1 ty cos 2’% sin 2’% cos 2’%” sin 2’%
17)

STL [56] is a non-parametric method of decomposing a
time series into a seasonal component S(t), a trend com-
ponent T(t) and a remainder component R(t), such that:

Ag,(t) = S(t) + T(t) + R(t) (18)

and S(t) = Z\Es(t). STL can be used in a time series with
gaps and became a common method of analyzing basin-
averaged estimates of GRACE-derived gravity and mass
changes. Some examples are given in the recent stud-
ies [57] and [58]. Seasonal and trend components are
calculated using an iterative procedure based on locally
weighted regression (Loess; [59]). We summarize the STL
method in the following six steps, using the same notation
as in [56] whenever is applicable:

1. The de-trended time series Ag, — T® is calculated us-
ing the estimated trend from the previous iteration k.
A zero trend is used for the first iteration.

2. Based on the period of the seasonal component, sub-
series are formed and smoothed using Loess. For ex-
ample, the estimation of the annual component re-
quires the formulation of twelve subseries; the first
one containing all January values, the second one all
February values, etc.

3. The seasonal time series C¥) is reconstructed from the
smoothed subseries of Step 2 and an additional low-
pass filtering is applied to reveal any remaining trend.
The low-pass filtered time series is denoted as LD,
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4. The seasonal component is calculated by detrending

the seasonal time series of Step 3, i.e., sl — ¢l
L(k+1)

5. The deseasoned time series Ag, — S® D is calculated.

6. The trend component T** is calculated by filtering
the deseasoned time series of Step 5 using Loess.

Steps 1-5 are repeated until convergence criteria for S(t)
and T(t) are met. The remainder R(¢) is then calculated by:

R(t) = Agy(t) — S(t) - T(2). (19)
STL has the potential of identifying possible outliers in the
data by incorporating robustness weights for each mea-
surement into the Loess filtering. These weights are cal-
culated iteratively by enclosing Steps 1-5 into a second
(outer) loop. This is not performed here because it is highly
unusual that filtered GRACE and GLDAS data contain out-
liers. The STL algorithm does not account for the simulta-
neous estimate of more than one periodic component like
LSSA. We first estimate and remove the semi-annual con-
stituent from Ag, and then used the resulting time series to
estimate and remove the annual constituent.

3 Results

The time series of absolute gravity changes, corrected
for the gravimeter location and local hydrology effects,
is given in Figure 12. Compared with the time series of
Figure 5, there is a decrease in the magnitude range of
the corrected gravimeter data, going from approximately
—-10-25 pGal to —9-10 pGal. The corrected gravimeter series
mostly represents the non-local hydrology signal.

The GRACE-derived gravity changes, deseasoned us-
ing LSSA and STL are provided in Figures 13 and 14, re-
spectively. These time series mainly represent the inter-

10f .

| A:W v :
Lo

2002 2004 2006 2008 2010 2012 2014 20186

[nGal]

Figure 12: Gravimeter-based corrected gravity changes.
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Figure 14: GRACE-derived Ag, using STL.

annual variations of land hydrology. The CSR and JPL se-
ries agree quite well, with no clear pattern in the differ-
ences between the two solutions. This suggests that the
differences between CSR and JPL are due to random errors
in the processing strategy of each center. The two meth-
ods of removing the seasonality provide comparable re-
sults, with STL to produce time series with slightly smaller
magnitude. The magnitude reduction using STL can be at-
tributed to the absorption of some signal from the seasonal
component S(t) that can vary in amplitude. On the other
hand, LSSA provide a seasonal signal with constant am-
plitude.

The deseasoned time series of gravity changes for all
four GLDAS LSMs is provided in Figure 15 for LSSA and
in Figure 16 for STL. Although all LSMs follow the same
long-term behavior, there are some substantial differences
amongst them. These differences are generally attributed
to the modeling of GLDAS parameters, i. e., using differ-
ent number of layers and depths for modeling soil mois-
ture. The Mosaic LSM shows the highest magnitude and
strongest deviation from the rest of LSMs, especially from
2002 to 2004. The LSM with the smallest magnitude is
CLM. The same conclusions are deduced by interpreting
the results of Figure 11. The general disagreement of Mo-

J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland =—— 9

~CLM
-=-Mosaic

=Noah H
~-VIC

r

Ag [uGal]

2004 2006 2008 2010 2012 2014 2016

2002
Figure 15: GLDAS-derived Ag, using LSSA.
15 . T T T . ————
~-CLM
-=-Mosaic|
10¢ =Noah {

r

Ag [Gal]

2002 2004 2006 2008 2010 2012 2014 2016

Figure 16: GLDAS-derived Ag, using STL.

saic and CLM with GRACE and GLDAS products in Europe
is also demonstrated by Yang etal. [60]. LSSA and STL
produce deseasoned time series in close agreement, as in
GRACE case.

3.1 Correlation analysis

We perform a correlation analysis to examine the level of
agreement amongst computed time series using the Pear-
son correlation coefficient. The results are provided in Ta-
ble 1. The lower triangular part of Table 1 contains the cor-
relation coefficient of detrended GRACE and GLDAS time
series using LSSA and the upper triangular part using STL.
The lower triangular elements are compared with the cor-
responding upper triangular elements and the instances
that show higher correlation are underlined. This is done
to investigate if LSSA or STL systematically produces de-
seasoned time series with improved correlation. Correla-
tion coefficients are also calculated only for the 2009-2012
period, which includes the effects of the heaviest flood
and increased precipitation that took place in Poland. The
correlation coefficients for 2009-2012 are given in square
brackets.
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Table 1: Correlation coefficient.
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LSSA (Si-II;LACE CSR GRACEJPL GLDASCLM GLDAS Mosaic GLDAS Noah GLDASVIC FG-5 (original) FG-5 (corrected)
0.88 0.70 0.6 0.78 0.6 0.60 0.66
GRACECSR [0.89] [o.777] [0.8765] [0.8776] [0.773; [0.75] [0.81]
0. 0.6 0. 0. 0. 0.62 0.

GRACEIPL [ﬁ [(ﬁ [%7657] [0.8765] [0.75651 [0L763] [0_87643
GLDAS CLM [&; [0(29? [ ﬁ [ % [ % [ g [ &7687]
CLDAS Mosalc [0? 5661; [00- ;36451 [0? $5371 [00. }68? [3;6311 [oo. 58071 [oo. 58261
cwshh 0 3w oo o7 059 103 oon
GLDAS VIC : % [ ;ﬁf} [0?-980‘5 [ &7622] [0?.994? [ (;)..ngz] [O(.?.76ll;
F6-5 (original) 0.54 0.57 0.53 0.87 0.62 0.51 0.95
[0.71] [0.71] [0.50] [0.90] [0.65] [0.49] [0.85]

festomeded g 076l 084 08y lo7n o8]

The GRACE data show good agreement with GLDAS
data, with a correlation in the range of 0.59-0.78 for the
complete period examined. The highest correlation (0.78)
is attained when CSR and Noah are compared using STL.
The correlation between GRACE and GLDAS is increased
to the range of 0.76-0.93 when the 2009-2012 period is
examined, with the highest correlation obtained for JPL
and Noah data using LSSA. Although LSSA and STL show
similar correlation, slightly better results are produced us-
ing LSSA. The correlation between different LSMs is at
0.57-0.90 for the complete period and at 0.62-0.92 for
2009-2012. In both cases, VIC and Noah show the best
agreement. Improved correlation amongst the LSMs is ob-
tained using STL.

The original gravimeter time series is moderately cor-
related with both GRACE and GLDAS models. The high-
est correlation (0.87 for the complete period and 0.90
for 2009-2012) is obtained for GLDAS Mosaic, whereas
the correlation with the rest of GLDAS and GRACE mod-
els is at 0.50-0.75. STL produces deseasoned GRACE and
GLDAS time series that are better correlated with the
original gravimeter data. The corrected gravimeter time
series shows higher correlation with both GRACE and
GLDAS data than the original gravimeter series. Consider-
ing GRACE, the correlation is at 0.62—0.69 for the complete
period and at 0.81-0.87 for 2009-2012. For GLDAS data, the
corresponding ranges are 0.64—0.87 and 0.71-0.85. When
examining the complete period, the highest correlation
(0.87) is obtained between the corrected gravimeter data
and Mosaic using LSSA. For the 2009-2012 period, the
same gravimeter data are better correlated (0.87) with the

JPL series using LSSA. The higher correlation of the cor-
rected gravimeter data with the GRACE and GLDAS models
indicates that most of the local hydrology signal is proba-
bly removed successfully.

3.2 Hydrology and climate signatures

We analyze the results presented in Figures 12-16 to con-
nect anomalies in the gravity changes with extreme hy-
drological and climate events. Averaged time series of all
data sets are given in Figure 17 along with error bars, rep-
resenting the standard deviation for each measurement
(gravimeter data) or the deviation of the ensemble time se-
ries (GRACE and GLDAS data). The GRACE average is de-
rived from the four times series given in Figures 13 and 14.
The GLDAS average is computed by the CLM, Noah and

= Gravimeter|
~-GRACE
~-GLDAS

Increased rainfall
Increased rainfall

Heat wave

[uGal]

n
Increased rainfall

Flood
Flood

2014

N
oL
=
N

2002 2004 2006 2008 2010
Figure 17: Ensemble average of GRACE, GLDAS and gravimeter time

series.
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VIC LSMs given in Figures 15 and 16. The Mosaic LSM is
excluded due to its large deviations and lower correlation
with other LSMs. For both GRACE and GLDAS data, the
standard deviation varies from 0.1-1.9 pGal depending on
the monthly solution. These values are mainly due to ran-
dom errors and different strategies used by the process-
ing centers (GRACE) and LSMs (GLDAS). For the error bud-
get of the corrected gravimeter time series, only the instru-
ment accuracy is taken into account, which ranges from 1.9
to 2.3 pGal. The accuracy level of the gravimeter series is
probably underestimated, meaning that the true standard
deviation is higher, because the propagation of errors due
to the corrections described in Sections 2.1.2 and 2.1.3 is
not taken into account. For example, in areas where the to-
pography significantly affects the modeling of gravity mea-
surements, the assessment of DEM errors is especially im-
portant [34]. A detailed discussion on the uncertainties of
post-processed gravimeter measurements is also given in
Creutzfeldt et al. [61].

Time periods with increased precipitation levels are
expected to be followed by an increase in terrestrial wa-
ter masses and a higher value of gravity. A decrease in the
measured gravity is expected due to water depletion dur-
ing periods of drought. We examine several events docu-
mented in the literature that occurred in Poland and cen-
tral Europe in the period 2002-2016. The averaged time
series are then used to find projected signatures of these
events. Due to the short time span, the presence of long-
time gaps and the reduced accuracy of the gravimeter
time series, only a limited number of events can be iden-
tified. The events studied are given in the subsections be-
low.

3.2.1 The 2003 severe heat wave

During the summer of 2003, a severe heat wave was re-
ported in central Europe with the mean surface temper-
ature to rise ~3 °C above normal levels [62] accompanied
by total precipitation levels below average [15]. This heat
wave was probably the warmest recorded since 1500 with
a return period of more than 5000 years [63], making it
extremely unlikely to repeat in the near future. The re-
sulting drought of this heat wave is visible in the GRACE
and GLDAS data with a decrease of 2 + 0.9 pGal in gravity
during August. Using GRACE data, this event is better ev-
ident in the JPL time series using STL (Figure 14) with a
clear negative peak of ~3 pGal around August-September
2003. Both GRACE and GLDAS time series provide neg-
ative gravity changes throughout 2003. Andersen at al.
[14] also reports a depletion in GRACE-derived terrestrial
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water storage related to the 2003 central European heat
wave.

3.2.2 The 2005 increased precipitation

Increased precipitation levels are reported in central Eu-
rope from the beginning of 2005 until March [15], accompa-
nied by ample rainfall in central and eastern Europe dur-
ing July-August [64]. GRACE time series show an increase
in gravity change for the most part of 2005, with three dis-
tinctive peaks occurring in March, May and August. The
highest peak is in May and produces an anomaly of ~2.5 +
0.3 pGal. Only the May peak is clearly evident in the GLDAS
series, producing an anomaly of ~1.5 + 0.5 pGal. It is also
seen from Figures 15 and 16 that Noah LSM produces the
highest anomaly (~3 pGal) that is in good agreement with
GRACE time series.

3.2.3 The 2010 flooding

The 2010 flood that mostly affected southern Poland was
the result of several days of heavy rain and thunderstorm
during May-June 2010. Especially on May 16™-17% 2010,
a precipitation of up to 200 mm occurred over southern
Poland [65]. The aftermath of this event included con-
siderably damaged farmlands, and flooded towns and
agricultural areas. The flood also claimed the lives of at
least twenty people and resulted the death of many an-
imals. Due to its intensity and extent, this event was
categorized as an outstanding heavy precipitation event
[66]. The extend of the 2010 flooding is evident in all
three data sets. The gravimeter time series show posi-
tive anomalies in gravity changes starting from May, with
two peaks occurring in September 2010 and January 2011.
The magnitude of these anomalies starts from ~6.5 +
19 pGal in May and reaches a global maximum of 14 +
2 pGal around September. The May-June flood event is also
seen in GRACE gravity changes, with a positive anomaly
in May reaching 3.5 + 0.4 pGal. The anomaly magnitude
drops to ~2uGal in July and increases again until De-
cember, reaching a magnitude of 6 + 0.6 puGal. GLDAS
time series show the same behavior as GRACE, with pos-
itive gravity change anomalies in 2010. The effect of May-
June flood is evident in June with an average magnitude
of 3.5 + 1.5pGal, followed by a drop at 1uGal in July
and then increasing until it reaches a magnitude of 5.5 +
1.2pGal in February 2011. Noah LSM produces the high-
est gravity change anomalies with 5 puGal in June 2010 and
7pGal in February 2011. A shift on the global maximum
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is also noticeable between gravimeter and GRACE/GLDAS
data.

3.2.4 The 2011 increased precipitation

After the 2010 flooding, increased precipitation was re-
ported in July 2011 over eastern Poland. The Institute of
Meteorology and Water Management of the Polish Na-
tional Research Institute reported total precipitation levels
of up to 340 mm that correspond to an increase of 450 %
with respect to the 1971-2000 average precipitation lev-
els. The event is recorded in gravimeter time series as a
rapid increase in gravity reaching a value of ~9 + 2.1 pGal
in July and continued by 94 + 2.1pGal in August. The
2011 increased precipitation is also identified in GRACE
data with an increase in gravity change starting from July
and reaching a peak in August with an anomaly of 4 +
0.8 nGal. GLDAS time series shows the same behavior as
GRACE, with the gravity change anomalies increasing in
July, reaching a maximum value of ~4 + 1.6 pGal in August
and then decreasing until the end of 2011.

3.2.5 The 2013 flooding

An extreme precipitation event was also reported in May-
June 2013 that caused a flood in Poland [67]. At the end
of this event (June 2013), record precipitation levels were
recorder in eastern Europe [68]. Although, the gravimeter
time series shows a positive anomaly of 3.7 + 2.1pGal in
early May, no direct conclusions can be inferred for the
evolution of these events using gravimeter observations
due to the absence of data for the latter half of 2013. The
May-June extreme precipitation event coincides with the
positive gravity change anomalies that peaks at 3 pGal dur-
ing June 2013 for both GRACE and GLDAS time series.

3.2.6 The 2015 drought

2015 was a notably dry year for central Europe [69]. In
the same year, Poland experienced an extremely hot and
dry summer, especially during August-September, caus-
ing extensive crop yield damages. Low precipitation lev-
els resulted in the lowest discharge values for many rivers,
including the Vistula River (~9 km from J6zefoslaw) that
passes through our study area [70]. In Poland, the 2015
drought was the result of a 3-month extreme summer
drought that occurred in August and affected 47 % of the
country, and a 12-month drought occurred again in August
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and affected 44 % of the country [71]. The signature of the
2015 drought is seen in all three data sets. In the gravime-
ter time series, a steep drop in the gravity is observed,
decreasing from 2pGal in June to -2.5 + 2pGal in August
and -2.3 + 2.3 pGal in September. The signal-to-noise ra-
tio for the gravimeter measurements in the same period is
close or equal to one, making them statistically insignifi-
cant for the monitoring of this event. In the GRACE data,
there is a negative anomaly throughout 2015. The gravity
changes reach their minimum in September with a magni-
tude of -5 + 1puGal. The averaged GLDAS time series also
show negative anomalies in gravity changes during 2015.
The local minimum for the same period occurs around
July-August with a magnitude of —2.3 + 1.2 pGal. The Noah
time series deseasoned using STL (Figure 14) shows the
highest negative peak at —4 pGal.

4 Conclusions

We examine the gravity changes in central Poland
from 2002-2016 using absolute gravimeter measurements,
GRACE monthly solutions and GLDAS LSMs. After apply-
ing various corrections and removing seasonal signals,
we analyze the data to detect geophysical signatures con-
nected to extreme hydrological events. We successfully
identify signatures related to heat waves and droughts, as
well as increased precipitation and floods in Poland and
the proximity of central Europe. The severity and extend
of the 2010 flood occurred in central Europe is predomi-
nantly noticeable, resulting in gravity change anomalies of
3.5-14 pGal depending on the data source. Negative grav-
ity change anomalies of 2.5-5 pGal are also identified and
connected to reported drought conditions. Our results sug-
gest that methods of gravity field monitoring provide a
viable method of identifying extreme events on regional
scales. The correlation analysis shows reasonable agree-
ment between gravimeter, GRACE and GLDAS data. The
correlation is increased when the corrected gravimeter
data are used, indicating that the method of removing the
local hydrological influence from the gravimeter measure-
ments is reliable. Increased correlation is also obtained
when the analysis is performed only for the 2009-2012
period that includes the 2010 extreme flood and 2011 in-
creased precipitation event. The seasonal signal is re-
moved using LSSA and STL, with both methods to produce
comparable results. In most cases, STL produces time se-
ries with slightly improved correlation that LSSA.

The monitoring of mass changes is performed in terms
of gravity changes. Due to limited availability of in situ
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data and reported results from previous studies, our anal-
ysis is restricted to a qualitative assessment. When in situ
hydrology data are available, the conversion of gravity
changes to water mass changes can be done in a straight-
forward way for GRACE and GLDAS data, allowing a quan-
titative analysis (i. e., in terms of TWS or EWH). Another
limitation of our study is the presence of extended time
gaps in the gravimeter measurements, and their reduced
accuracy due to instrumental noise level and approximate
corrections due to local hydrology. Improved gravime-
ter data can be obtained only with a superconducting
gravimeter and by accurately modeling local hydrogeolog-
ical interactions using localized information. Further in-
vestigation is therefore required for the reliable removal
of local hydrology from the absolute gravimeter located in
Jozefostaw. The findings of this study can be extended by
analyzing basin-scale averages of various global precipi-
tation models. Such an analysis will potentially increase
our confidence for the interpretation of small fluctuations
in GRACE TWS estimates. Future studies will also be fo-
cused on the optimal combination of gravity changes com-
ing from different sources for enhancing the identification
of extreme hydrological events.

Acknowledgment: The two anonymous reviewers are
thanked for their valuable comments and suggestions.
Dr. Don Chambers and Dr. Jennifer Bonin are thanked
for kindly providing geocenter time series consistent with
RLO6 GRACE data. NASA’s PODAAC and GES DISC services
are thanked for making freely available the GRACE Level 2
data and the GLDAS models. Figure 1is produced using the
M_Map mapping toolbox [72].

Funding: Financial support for this research was provided
to the first author by the National Science Center, Poland,
agreement number UMO-2015/17/B/ST10/03927 from 16th
March 2016; and to the third author by Natural Sciences
and Engineering Research Council of Canada.

References

[1]  A.Eicker, M. Schumacher, J. Kusche, P. D6ll, and
H. M. Schmied, “Calibration/Data Assimilation Approach for
Integrating GRACE Data into the WaterGAP Global Hydrology
Model (WGHM) Using an Ensemble Kalman Filter: First
Results,” Surv Geophys, vol. 35, no. 6, pp. 1285-1309, Nov.
2014.

[2] M. Khaki et al., “Assessing sequential data assimilation
techniques for integrating GRACE data into a hydrological
model,” Advances in Water Resources, vol. 107, pp. 301-316,
Sep. 2017.

B

(4]

(5]

(6]

[71

(8]

[10]

[11]

[12]

(13]

[14]

[15]

[16]

[17]

J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland = 13

M. Khaki, I. Hoteit, M. Kuhn, E. Forootan, and J. Awange,
“Assessing data assimilation frameworks for using
multi-mission satellite products in a hydrological context,”
Science of The Total Environment, vol. 647, pp.1031-1043, Jan.
2019.

B.D. Tapley, S. Bettadpur, M. Watkins, and C. Reigber, “The
gravity recovery and climate experiment: Mission overview and
early results,” Geophys. Res. Lett., vol. 31, no. 9, p. L09607,
May 2004.

M. Rodell, I. Velicogna, and J. S. Famiglietti, “Satellite-based
estimates of groundwater depletion in India,” Nature, vol. 460,
no. 7258, pp.999-1002, Aug. 2009.

V. M. Tiwari, ). Wahr, and S. Swenson, “Dwindling
groundwater resources in northern India, from satellite gravity
observations,” Geophys. Res. Lett., vol. 36, no. 18, p. L18401,
Sep. 2009.

W. Feng, M. Zhong, J.-M. Lemoine, R. Biancale, H.-T. Hsu, and
J. Xia, “Evaluation of groundwater depletion in North China
using the Gravity Recovery and Climate Experiment (GRACE)
data and ground-based measurements,” Water Resources
Research, vol. 49, no. 4, pp. 2110-2118, Apr. 2013.

J. Tang, H. Cheng, and L. Liu, “Assessing the recent droughts in
Southwestern China using satellite gravimetry,” Water Resour.
Res., vol. 50, no. 4, pp. 3030-3038, Apr. 2014.

K.A. Voss, ). S. Famiglietti, M. Lo, C. de Linage, M. Rodell,

and S. C. Swenson, “Groundwater depletion in the Middle

East from GRACE with implications for transboundary water
management in the Tigris-Euphrates-Western Iran region,”
Water Resour. Res., vol. 49, no. 2, pp. 904-914, Feb. 2013.

G. Joodaki, . Wahr, and S. Swenson, “Estimating the

human contribution to groundwater depletion in the

Middle East, from GRACE data, land surface models, and

well observations,” Water Resour. Res., vol. 50, no. 3,
pp.2679-2692, Mar. 2014.

J. S. Famiglietti et al., “Satellites measure recent rates

of groundwater depletion in California’s Central Valley,”
Geophys. Res. Lett., vol. 38, no. 3, p. L03403, Feb. 2011.

B.R. Scanlon et al., “Groundwater depletion and sustainability
of irrigation in the US High Plains and Central Valley,” PNAS,
vol. 109, no. 24, pp. 9320-9325, Jun. 2012.

B.R. Scanlon, L. Longuevergne, and D. Long, “Ground
referencing GRACE satellite estimates of groundwater

storage changes in the California Central Valley, USA,” Water
Resources Research, vol. 48, no. 4, Apr. 2012.

0.B. Andersen, S. . Seneviratne, ). Hinderer, and P. Viterbo,
“GRACE-derived terrestrial water storage depletion associated
with the 2003 European heat wave,” Geophysical Research
Letters, vol. 32, no. 18, Sep. 2005.

F. Seitz, M. Schmidt, and C. K. Shum, “Signals of extreme
weather conditions in Central Europe in GRACE 4-D
hydrological mass variations,” Earth Planet. Sci. Lett., vol. 268,
no.1, pp.165-170, Apr. 2008.

J. L. Chen, C.R. Wilson, and B. D. Tapley, “The 2009 exceptional
Amazon flood and interannual terrestrial water storage change
observed by GRACE,” Water Resources Research, vol. 46,

no. 12, Dec. 2010.

B. D. Vishwakarma, K. Jain, N. Sneeuw, and B. Devaraju,
“Mumbai 2005, Bihar 2008 Flood Reflected in Mass Changes
Seen by GRACE Satellites,” / Indian Soc Remote Sens, vol. 41,
no. 3, pp. 687-695, Sep. 2013.

Authenticated | viktor.szabo@pw.edu.pl author's copy
Download Date | 4/21/19 4:47 PM



14 —

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

B.T. Gouweleeuw et al., “Daily GRACE gravity field solutions
track major flood events in the Ganges—Brahmaputra

Delta,” Hydrology and Earth System Sciences, vol. 22, no. 5,
pp. 2867-2880, May 2018.

M. Rodell et al., “The Global Land Data Assimilation System,”
Bull. Amer. Meteor. Soc., vol. 85, no. 3, pp. 381-394, Mar.
2004.

T.H. Syed, ). S. Famiglietti, M. Rodell, J. Chen, and C. R. Wilson,
“Analysis of terrestrial water storage changes from GRACE and
GLDAS,” Water Resour. Res., vol. 44, no. 2, p. W02433, Feb.
2008.

S. Werth, A. Giintner, R. Schmidt, and J. Kusche, “Evaluation
of GRACE filter tools from a hydrological perspective,”
Geophysical Journal International, vol. 179, no. 3,

pp. 1499-1515, Dec. 2009.

E. Rangelova, M. G. Sideris, and J. W. Kim, “On the capabilities
of the multi-channel singular spectrum method for extracting
the main periodic and non-periodic variability from weekly
GRACE data,” Journal of Geodynamics, vol. 54, pp. 64-78, Mar.
2012.

J. Huang, G. Pavlic, A. Rivera, D. Palombi, and B. Smerdon,
“Mapping groundwater storage variations with GRACE: a

case study in Alberta, Canada,” Hydrogeol J, vol. 24, no. 7,
pp.1663-1680, Nov. 2016.

Z. Rzepecka, M. Birylo, ). Kuczynska-Siehien, J. Nastula, and
P. Katarzyna, “Analysis of groundwater level variations and
water balance in the area of the Sudety mountains,” Acta
Geodynamica et Geomaterialia, vol. 14, no. 187, pp. 307-315,
May 2017.

A. Brzezifiski et al., “Geodetic and Geodynamic Studies

at Department of Geodesy and Geodetic Astronomy Wut,”
Reports on Geodesy and Geoinformatics, vol. 100, no. 1,

pp. 165-200, Jun. 2016.

J. Neumeyer et al., “Combination of temporal gravity
variations resulting from superconducting gravimeter (SG)
recordings, GRACE satellite observations and global hydrology
models,” ] Geodesy, vol. 79, no. 10-11, pp. 573-585, Feb.
2006.

J. Neumeyer et al., “Analysis of gravity field variations derived
from Superconducting Gravimeter recordings, the GRACE
satellite and hydrological models at selected European sites,”
Earth Planet Sp, vol. 60, no. 5, pp. 505-518, May 2008.

D. Crossley, C. de Linage, . Hinderer, J.-P. Boy, and ).
Famiglietti, “A comparison of the gravity field over Central
Europe from superconducting gravimeters, GRACE and global
hydrological models, using EOF analysis,” Geophys J Int,

vol. 189, no. 2, pp. 877-897, May 2012.

M. Abe et al., “A comparison of GRACE-derived temporal
gravity variations with observations of six European
superconducting gravimeters,” Geophys / Int, vol. 191, no. 2,
pp.545-556, Nov. 2012.

J. B. Rogowski et al., “Activities of J6zefostaw Astro-Geodetic
Observatory in the last five decades,” Reports on Geodesy,
vol. z.2/89, pp.31-52, 2010.

S. Deville, T. Jacob, J. Chéry, and C. Champollion, “On the
impact of topography and building mask on time varying
gravity due to local hydrology,” Geophys / Int, vol. 192, no. 1,
pp. 82-93, Jan. 2013.

B. Creutzfeldt, A. Giintner, H. Wziontek, and B. Merz,
“Reducing local hydrology from high-precision gravity

J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

DE GRUYTER

measurements: a lysimeter-based approach,” Geophys J Int,
vol. 183, no. 1, pp. 178-187, Oct. 2010.

M. Reich, M. Mikolaj, T. Blume, and A. Giintner, “Reducing
gravity data for the influence of water storage variations
beneath observatory buildings,” Geophysics, vol. 84, no. 1,
pp. EN15-EN31, Oct. 2018.

B. Creutzfeldt, A. Giintner, T. Kliigel, and H. Wziontek,
“Simulating the influence of water storage changes on the
superconducting gravimeter of the Geodetic Observatory
Wettzell,” Geophysics, vol. 73, no. 6, pp. WA95-WA104, Nov.
2008.

D. Nagy, G. Papp, and ). Benedek, “The gravitational potential
and its derivatives for the prism,” Journal of Geodesy, vol. 74,
no.7-8, pp. 552-560, 2000.

D. Nagy, G. Papp, and J. Benedek, “Corrections to ‘The
gravitational potential and its derivatives for the prism’,”
Journal of Geodesy, vol. 76, no. 8, pp. 475-475, Nov. 2002.
H.-G. Wenzel, “The Nanogal software: earth tide data
processing package ETERNA 3.30,” Bull. Inf. Marees Terrestres,
no.124, pp. 9425-9439, 1996.

Y. Tamura, “A harmonic development of the tide-generating
potential,” Bull. Inf. Marees Terrestres, no. 124,

pp. 9425-9439, 1987.

F. Lyard, F. Lefevre, T. Letellier, and O. Francis, “Modelling the
global ocean tides: modern insights from FES2004,” Ocean
Dynamics, vol. 56, no. 5, pp. 394-415, Dec. 2006.

J.-P. Boy and F. Lyard, “High-frequency non-tidal ocean loading
effects on surface gravity measurements,” Geophys J Int,

vol. 175, no. 1, pp. 35-45, Oct. 2008.

S. Rosat et al., “A two-year analysis of the i0SG-24
superconducting gravimeter at the low noise underground
laboratory (LSBB URL) of Rustrel, France: Environmental noise
estimate,” Journal of Geodynamics, vol. 119, pp. 1-8, Sep.
2018.

C.R. Wilson, B. Scanlon, J. Sharp, L. Longuevergne, and

H. Wu, “Field test of the superconducting gravimeter as a
hydrologic sensor,” Ground Water, vol. 50, no. 3, pp. 442-449,
Jun. 2012.

S. Swenson, D. Chambers, and J. Wahr, “Estimating geocenter
variations from a combination of GRACE and ocean model
output,” J. Geophys. Res., vol. 113, no. B8, p. B08410, Aug.
2008.

M. Cheng, B.D. Tapley, and ). C. Ries, “Deceleration in the
Earth’s oblateness,” J. Geophys. Res. Solid Earth, vol. 118,

no. 2, pp. 740-747, Feb. 2013.

J. Wahr, R. S. Nerem, and S. V. Bettadpur, “The pole tide and
its effect on GRACE time-variable gravity measurements:
Implications for estimates of surface mass variations,” J.
Geophys. Res. Solid Earth, vol. 120, no. 6, p. 2015)B011986,
Jun. 2015.

J. Ries etal., “The Combined Gravity Model GGMO5C.” GFZ Data
Services, 2016.

S. Swenson and J. Wahr, “Post-processing removal of
correlated errors in GRACE data,” Geophys. Res. Lett., vol. 33,
no. 8, p.L08402, Apr. 2006.

D. Piretzidis, G. Sra, G. Karantaidis, M. G. Sideris, and

H. Kabirzadeh, “Identifying presence of correlated errors using
machine learning algorithms for the selective de-correlation
of GRACE harmonic coefficients,” Geophys J Int, vol. 215, no. 1,
pp. 375-388, Oct. 2018.

Authenticated | viktor.szabo@pw.edu.pl author's copy
Download Date | 4/21/19 4:47 PM



DE GRUYTER

[49]

(50]

[51]

(52]

(53]

(54]

[55]

[56]

(57]

(58]

[59]

[60]

D. Piretzidis and M. G. Sideris, “SHADE: A MATLAB toolbox
and graphical user interface for the empirical de-correlation of
GRACE monthly solutions,” Computers & Geosciences, vol. 119,
pp. 137-150, Oct. 2018.

C. Jekeli, Alternative methods to smooth the Earth’s gravity
field. Columbus, Ohio: Ohio State University Dept. of Geodetic
Science and Surveying, 1981.

H. Wang et al., “Load Love numbers and Green’s functions

for elastic Earth models PREM, iasp91, ak135, and modified
models with refined crustal structure from Crust 2.0,”
Computers & Geosciences, vol. 49, no. Supplement C,
pp.190-199, Dec. 2012.

F.W. Landerer and S. C. Swenson, “Accuracy of scaled GRACE
terrestrial water storage estimates,” Water Resour. Res.,

vol. 48, no. 4, p. W04531, Apr. 2012.

J. Wahr, M. Molenaar, and F. Bryan, “Time variability of the
Earth’s gravity field: Hydrological and oceanic effects and their
possible detection using GRACE,” J. Geophys. Res., vol. 103,
no.B12, pp.30205-30229, Dec. 1998.

P. Vanicek, “Further development and properties of the
spectral analysis by least-squares,” Astrophys Space Sci,

vol. 12, no. 1, pp. 10-33, Jul. 1971.

P. Vanicek, “Approximate spectral analysis by least-squares
fit,” Astrophys Space Sci, vol. 4, no. 4, pp. 387-391, Aug. 1969.
R.B. Cleveland, W. S. Cleveland, J. E. McRae, and I. Terpenning,
“STL: A Seasonal-Trend Decomposition Procedure Based on
Loess,” Journal of Official Statistics, vol. 6, no. 1, pp.3-73,
1990.

V. Humphrey, L. Gudmundsson, and S. I. Seneviratne,
“Assessing Global Water Storage Variability from GRACE:
Trends, Seasonal Cycle, Subseasonal Anomalies and
Extremes,” Surv Geophys, vol. 37, no. 2, pp. 357-395, Mar.
2016.

B.R. Scanlon et al., “Global models underestimate large
decadal declining and rising water storage trends relative to
GRACE satellite data,” PNAS, p. 201704665, Jan. 2018.

W. S. Cleveland, “Robust Locally Weighted Regression and
Smoothing Scatterplots,” Journal of the American Statistical
Association, vol. 74, no. 368, pp. 829-836, Dec. 1979.

T. Yang, C. Wang, Z. Yu, and F. Xu, “Characterization of
spatio-temporal patterns for various GRACE- and GLDAS-born
estimates for changes of global terrestrial water storage,”
Global and Planetary Change, vol. 109, pp. 30-37, Oct.

2013.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

J. Kuczynska-Siehien et al., Monitoring of extreme land hydrology events in central Poland = 15

B. Creutzfeldt, A. Giintner, H. Thoss, B. Merz, and H. Wziontek,
“Measuring the effect of local water storage changes on in situ
gravity observations: Case study of the Geodetic Observatory
Wettzell, Germany,” Water Resources Research, vol. 46, no. 8,
Aug. 2010.

C. Schar et al., “The role of increasing temperature variability
in European summer heatwaves,” Nature, vol. 427, no. 6972,
pp.332-336, Jan. 2004.

J. Luterbacher, D. Dietrich, E. Xoplaki, M. Grosjean, and

H. Wanner, “European Seasonal and Annual Temperature
Variability, Trends, and Extremes Since 1500,” Science,

vol. 303, no. 5663, pp.1499-1503, Mar. 2004.

NOAA-NCEI, “NOAA National Centers for Environmental
Information, State of the Climate: Global Climate Report for
Annual 2005,” 2006. [Online]. Available: https://www.ncdc.
noaa.gov/sotc/global/200513. [Accessed: 26-Nov-2018].
NOAA-NCEI, “NOAA National Centers for Environmental
Information, State of the Climate: Global Hazards for May
2010,” 2010. [Online]. Available: https://www.ncdc.noaa.
gov/sotc/hazards/201005. [Accessed: 26-Nov-2018].

P. Bissolli, K. Friedrich, ). Rapp, and M. Ziese, “Flooding in
eastern central Europe in May 2010 - reasons, evolution

and climatological assessment,” Weather, vol. 66, no. 6,
pp.147-153, Jun. 2011.

NOAA-NCEI, “NOAA National Centers for Environmental
Information, State of the Climate: Global Climate Report for
Annual 2013,” 2014. [Online]. Available: https://www.ncdc.
noaa.gov/sotc/global/201313. [Accessed: 26-Nov-2018].
NOAA-NCEI, “NOAA National Centers for Environmental
Information, State of the Climate: Global Climate Report for
June 2013,” 2013. [Online]. Available: https://www.ncdc.noaa.
gov/sotc/global/201306. [Accessed: 26-Nov-2018].
NOAA-NCEI, “NOAA National Centers for Environmental
Information, State of the Climate: Global Climate Report for
Annual 2015,” 2016. [Online]. Available: https://www.ncdc.
noaa.gov/sotc/global/201513. [Accessed: 26-Nov-2018].

I. Piniskwar, A. Choryfski, D. Graczyk, and Z. W. Kundzewicz,
“Observed changes in extreme precipitation in Poland:
1991-2015 versus 1961-1990,” Theor Appl Climatol, Jan. 2018.
U. Somorowska, “Changes in Drought Conditions in Poland
over the Past 60 Years Evaluated by the Standardized
Precipitation-Evapotranspiration Index,” Acta Geophys.,

vol. 64, no. 6, pp. 2530-2549, Dec. 2016.

R. Pawlowicz, M_Map: A mapping package for MATLAB. 2018.

Authenticated | viktor.szabo@pw.edu.pl author's copy
Download Date | 4/21/19 4:47 PM



ARTIFICIAL SATELLITES, Vol. 55, No 3 - 2020

§ sciendo
DOI: 10.2478/arsa-2020-0008

ACCURACY ANALYSIS OF GRAVITY FIELD CHANGES
FROM GRACE RL06 AND RLO0O5 DATA
COMPARED TO IN SITU GRAVIMETRIC MEASUREMENTS
IN THE CONTEXT OF CHOOSING OPTIMAL FILTERING TYPE

Viktor SZABO!, Dorota MARJANSKA?

! Faculty of Geodesy and Cartography, Warsaw University of Technology,
Warsaw, Poland

e-mails: viktor.szabo@pw.edu.pl, dorota.marjanska@pw.edu.pl

ABSTRACT. Global satellite gravity measurements provide unique information regarding
gravity field distribution and its variability on the Earth. The main cause of gravity changes is
the mass transportation within the Earth, appearing as, e.g. dynamic fluctuations in hydrology,
glaciology, oceanology, meteorology and the lithosphere. This phenomenon has become more
comprehensible thanks to the dedicated gravimetric missions such as Gravity Recovery and
Climate Experiment (GRACE), Challenging Minisatellite Payload (CHAMP) and Gravity Field
and Steady-State Ocean Circulation Explorer (GOCE). From among these missions, GRACE
seems to be the most dominating source of gravity data, sharing a unique set of observations
from over 15 years. The results of this experiment are often of interest to geodesists and
geophysicists due to its high compatibility with the other methods of gravity measurements,
especially absolute gravimetry. Direct validation of gravity field solutions is crucial as it can
provide conclusions concerning forecasts of subsurface water changes. The aim of this work is
to present the issue of selection of filtration parameters for monthly gravity field solutions in
RLO6 and RLOS5 releases and then to compare them to a time series of absolute gravimetric data
conducted in quasi-monthly measurements in Astro-Geodetic Observatory in Jozefostaw
(Poland). The other purpose of this study is to estimate the accuracy of GRACE temporal
solutions in comparison with absolute terrestrial gravimetry data and making an attempt to
indicate the significance of differences between solutions using various types of filtration
(DDK, Gaussian) from selected research centres.

Keywords: GRACE, DDK, Gaussian filter, FG5

1. INTRODUCTION

The twin GRACE satellites, launched in 2002, had taken detailed measurements of the Earth’s
gravitational field changes for 15 years. This has revolutionised research on land water
resources, glaciology, earthquakes and deformation of Earth’s crust. The benefits of continuous
observation of our planet through GRACE satellites have led to rerun the project, this time
named GRACE Follow-On (GRACE-FO), which was initiated in 2018.

In order to present the distribution of the Earth’s gravitational field, the most common
representation is to expand gravitational potential function in series of spherical harmonics

@ ©The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
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functions. Gravity potential V in any point on the surface of the Earth can be described as
a function of spherical coordinates = 90 — ¢, A:
n+1 _ _ _
V(r,6,1) = %Z"m‘“‘ (2) oG - cOsSMA + Sy, - sinmA) - By (cosf) (1)

n=0 \,

where ¢ is a geodetic latitude, (6, A1) are the spherical coordinates of this point, r stands for
radius vector, GM is the geocentric gravitational constant, a is the semi-major axis of reference
ellipsoid defined in International Earth Rotation and Reference Systems Service Convention
(IERS2010), C,.,Snm are the normalised harmonic coefficients of the gravity potential
expansion (Stokes’ coefficients) and B,,,(cos@) are the Legendre polynomials of n-th degree
and m-th order (Wahr, 1998). To ensure a consistent long-term time series of the gravitational
field of the highest possible quality, the values of geopotential coefficients are reprocessed by
major scientific centres, the latest solution known as RL06 has replaced the predecessor RLO5a.
As compared to the previous version, the following components have been changed in RLO6:
ocean tides models, time-variable a priori gravity field, non-tidal atmospheric and oceanic mass
variations (Atmosphere and Ocean De-aliasing Product [AOD1B]), as well as a strategy of data
processing described in Dahle et al. (2019). Before interpreting the variability of the field of
gravity from GRACE data, it is necessary to reduce the effects of the specific inclination of the
orbit of GRACE satellites (that is equal to 89.5°). It usually occurs as characteristic meridional
‘stripes’ when visualising spatial distribution. There are several methods to dispose this issue
in the form of spatial signal filtering. Unfortunately, throughout this process, it is possible to
miss some information about the geodynamic signal. To choose an optimal filter, a common
method is the comparison of filtered data with terrestrial results from gravimetric and geodetic
measurements (e.g. SG, AG).

In Poland, such research was conducted in, e.g. Kuczynska-Siehien et al. (2019), whereby
decomposing the signal with periodic functions, GRACE data was compared with hydrological
and gravimetric in situ data. In Godah and Krynski (2017), principal component analysis (PCA)
method was used to decompose the periodic signal and then to compare the RLO5 data to
changes in normal and orthometric heights on the territory of Poland. The article Godah et al.
(2018) presents a comparison of satellite-only global geopotential models (GGMs) with
quasigeoid undulation derived from levelling and Global Navigation Satellite Systems (GNSS)
measurements. The article Godah et al. (2015) presents a comparison of non-isotropic
decorrelation filters (denoted by DDK) and Gauss filtration for the Vistula and Odra river basins
based on data from the RLO5 solution. In a comparison of RL04 data with Global Land Data
Assimilation System (GLDAS) time series, described in Kloch-Glowka et al. (2012), DDK1
filter turned out to be the most effective in the noise from observations. Further research on
GRACE data compared with gravimetric measurements in Eastern and Central Europe has been
outlined in Crossley et al. (2012), Neumeyer et al. (2005) and Abe et al. (2012).

This paper will assess how compatible are terrestrial measurements with satellite signals in the
context of filtering GRACE data. The research is based on entire GRACE time series and the
last two absolute gravity measurement campaigns performed in the Astro-Geodetic
Observatory located in Jozefostaw (AGO JOZE).

2. GRACE SIGNAL FILTRATION

2.1. Applied algorithms

The source of meridional (North-South oriented) stripes is geometry of the twin-satellites
system. They moved in at an altitude of approx. 450 km, separated by 220 km along their orbit
track. GRACE consisted of only one pair of satellites at near-polar orbit. The creators' intention
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was to provide monthly solutions of GRACE results. The number of observations made on
average over 30 days is limited. Hence, there are areas without any numerical information in a
month. To succeed in delivering a global solution for every period, an interpolation of the data
IS necessary.

(Y

i
zullmmﬁ\\\\m

|——GRACE 1daytrack| |~ GRACE 7 daystrack| | GRACE 30 days track|

Figure 1. (a—c) GRACE ground track simulation. Source: own study

However, it causes highly correlated errors in spherical harmonic coefficients due to their
orthogonality that appears in Level-1 solutions. In order to reduce this kind of observational
noise, spatial smoothing by Gaussian function is used (Jekeli, 1981). Swenson and Wahr (2006)
had observed a unique property of spherical harmonic coefficients associated with their
decomposition. They also had designed a set of filters to eliminate the problem. Nevertheless,
the provided method is not perfect. Due to the orbit inclination of 89.5°, there is a significant
accumulation of data in the polar region, while in the equatorial area its spatial resolution is
lower (as shown in Figure 1). Gauss filtration smooths the data equally in every direction.

Hence, other solutions are proposed, e.g. filtering with latitude-dependent filters.
A decorrelation of monthly global solutions was suggested by J. Kusche. It is based on a priori
assumptions of error budget and was tested using hydrological models (Kusche et al., 2009). A
similar solution has been presented in Horvath et al. (2018) using full covariance matrix
determined in two ways: stochastic and deterministic. Anisotropic DDK filters proved to be a
satisfying method that preserves geophysical details from GRACE level 2 products the best
(Chen et al., 2006; Kusche, 2007). DDK1-8 filters have become the primary tool used in
GRACE data processing over time. Another proposed method is a reduction of the correlation
between spherical harmonic coefficients and errors using quadratic polynomials (with a moving
window) to fit the resulting function between original and decorrelated C,,,,, coefficients (Duan,
2009). Empirical decorrelation of coefficients is a wide group of methods and will not be
analysed in this paper. Despite the large number of filtering approaches, none is stated as
universal. This is because the quality of the final solution depends on the latitudes of an
examined area and the power of a chosen filter.

2.2. Gaussian filter

Gauss filtration is based on the regular smoothing of variance of the observed gravity field
changes by the following kernel function:

F(cosy) =

where  stands for a spherical distance from the given point and b is calculated by the formula:

2

b —b(1—
1_e—2be b(1-cosy) (2)
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b= ln(z)d 3
) ©)

1—COS(E

with d meaning a radius value and R is the equatorial radius, both expressed in kilometres. The
filtration process is based on multiplying all spherical harmonic coefficients by a predefined
filtration factor. Because the filtering domain depends on the spatial resolution of the data, it is
possible to express the Gauss weighting coefficients as:

F(cosy) = w, 4)
where w,, value defines the dependence on n-th degree of spherical harmonic function as
follows:

2n-1

Wy = Twn—l + Wy (5)

These weighting coefficients must be included in the function describing the Earth’s gravity
field (expanding equation (1)):

GM gy (@ n n ~ C : D
V(r,0,1) = TZ (;) Wy 2h—0(Crm - cosmA + Sy - sinmA) - By, (cos@)  (6)

n=0

The size of the radius is crucial. The larger it is, the more it blurs geophysical information
contained in coefficients of higher degree, as shown in Figure 2.

Gauss filter

08

0.6

0.4 r

factor w

Dz2r

—Dz i i i i i i i i i
a 10 20 30 40 50 G0 70 B0 90 100
degree

Figure 2. Gauss filter spectral scale of factor wy,. Source: own study

According to the Center for Space Research (CSR) standards for processing GRACE Level-2
RLO5 and RLO6 data (Savannah et al., 2019), different radii are chosen for sea/ocean and land
areas, equal to 500 and 300 km, respectively. Examples of applying Gauss filter with various
radii are presented in Figure 3a—d.
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AN unflltered AN Gauss 100km

Figure 3. (a—d) Geoid height changes in metres compiled for GRACE data from the 2002.123 to
2002.137 period published by CSR RL06. Development in relation to the GOCOO05S static model with
a degree of development of n = 90, unfiltered, blurred by a Gaussian filter with 100, 200, 300 km radii.

Source: own study

Apparently, Gauss filtration is not an ideal solution to the meridional stripes issue. Due to the
frequent passage of satellites around the pole, this region is better covered with data than the
equatorial zone. It should be considered if there is a method including the different distance
ranges between the stripes at a given latitude.

2.3. Anisotropic DDK filters

The anisotropic filtration method differs from Gaussian filters in that it uses approximate
coefficient errors, a full matrix of covariance errors and normalised values of spherical
harmonics. A kernel function determines the way of eliminating errors resulting from the orbit
path by azimuth-weighted coefficients: narrower in the N-S direction and wider in the E-W
direction. The spectrum of a given filter was created as a result of empirical mathematical
modelling of error covariance matrix and the methods for developing observations from level
1 to 2 based on distance measurements between GRACE satellites using a K-band inter-satellite
sensor. The entire method is described in Kusche (2007). Examples of kernel functions for
selected geodetic coordinates in the N-S direction are presented in Figure 4a—c.
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Figure 4. (a—c) Examples of DDK base filtration function depending on latitude. Source: own study

For a better understanding of the problem, the maps presented in Figure 5a—h show an
application for subsequent types of DDK filtration — geoid undulation changes for a declared
period.
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Figure 5. (a—h) Geoid height changes in metres compiled for GRACE data from the 2002.123 to
2002.137 period published by CSR RL06. Development in relation to the GOCOO5S static model with
a degree of development of n = 90, filtered by non-isotropic DDK1-8 filters. Source: own study

The full difference between the filtration types used is shown in Figure 6 in terms of the square
root of degree variance of spherical harmonics depending on their degree. It is well noticeable
that the variance of data filtered by Gaussian method with 100 km radius practically coincides
with the variance of unfiltered coefficients. In turn, Gaussian filter with a radius of 600 km
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ceases to be useful for monthly solutions above 75-77 degree of harmonic function. DDK1-5
filters are on a similar level as Gaussian filter with a radius R = 300 km (recommended by the
CSR).
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Figure 6. (a—f) Square root of Degree Variance of Spherical harmonic from period 2002.123-2002.137
for RLO5, RLO6 and difference between RL06-RL05. Source: own study

On comparing the Gauss filter to DDK, it can be seen that DDK shows better stability for higher
degree/order of spherical harmonic coefficients. Regarding the differences between the RL06
and RLO5 versions, slight discrepancies can be noticed, up to 60 harmonic degree. Better
compatibility between RL0O6 and RLO5 is preserved by Gaussian filters with radii 500 and 600
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km, while in the case of anisotropic filters, DDK 1-4 types show compatibility. All examples
discussed above present only one epoch of GRACE mission solutions. Results may vary over
time. Presenting the differences between official centres from different epochs over the 15 years
may be complicated. One of the possibilities has been presented in Sakumura et al. (2014). It
has revealed a clear similarity between the CSR and GeoForschungsZentrum, German Research
Centre for Geosciences (GFZ) solutions. Also, a significant difference between the CSR and
the GFZ solutions compared to Jet Propulsion Laboratory (JPL) is observed in the basins of
Amazon and Congo rivers. In both cases, there is a slight discrepancy in the equivalent water
height (EWH) in the polar regions, where it reaches about £2 mm/year. In the ocean, the
differences are minor and the mean squared error of EWH varies from 12 to 16 mm/year. It is
worth mentioning that terrestrial and oceanic areas are developed separately. Solutions for
oceans are comparable for each processing centre. Moreover, each of them suggests a
comparable radius of filtration as the most effective for these areas. Thus, GRACE results on
continents are crucial in comparing the computing strategies of individual data centres. The
next section presents an example of local comparison of different GRACE data filtration types
derived from three official processing centres.

3.SELECTING AN APPROPRIATE FILTERING TYPE FOR AGO JOZE LOCATION

3.1. Data processing

This part presents a comprehensive comparison of the gravity fluctuations determined from
GRACE periodic models and absolute gravimetric measurements at the AGO JOZE. The main
goal of the study is to estimate the accuracy of GRACE temporal solutions in comparison with
terrestrial gravimetry data. Furthermore, the authors attempted to evaluate the discrepancies
between various solutions that were based on numerous DDK and Gauss filters and that were
computed in different research centres. A simplified scheme of this experiment is presented in
Figure 7.

satellite data

DDK1 Gauss:
DDK2 R=200km
DDK3 R=300km
DDK4 R=400km
DDK5 R=500km
DDK6 R=600 km
DDK7

DDKS8

filtering

GRACE

DDKI1

DDK2

DDK3 Gauss:
DDK4 R=200 km
DDK5 R=300 km
DDK6 R=400 km
DDK7 R=500km

DDK8 R=600km ground data

1

Figure 7. Scheme of the experiment. Source: own study

level 2 data

filtering

Time series analysis was carried out for selected monthly solutions of GRACE missions
produced by GFZ, CSR, and JPL. RL06 data (Dahle et al., 2013) from April 2002 to March
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2016 was used in the maximum degree/order of expansion equal to 96 and for RLO5a data, the
values are CSR - d/o 96, GFZ — 90 and JPL — 90, respectively (for certain solutions up to 60).
It results in a spatial resolution of about 330 km. This value may vary depending on the selected
version and the method of smoothing the signal. GRACE is effective for the study of
phenomena in the continental scale. For examined areas smaller than 100,000 km?, the signal-
to-noise ratio may be weak. Thus, the resulting errors (especially those from smoothing and
signal leakage) require user’s attention. Despite averaging observations from GRACE,
appropriate post-processing methods can preserve geophysical information for areas of about
10,000 km? (Vishwakarma and Devaraju, 2018).

Location of the Astro-Geodetic Observatoryin Jézefostaw, Poland

o

Latitude
g
=

45°N

40°N

35°N - = it Jezefostan
10°W 0° 10°E 20°E 30°E 40°E
Longitude

Figure 8. Location of the case study. Source: own study

The gravimetric JOZE station (general location in Figure 8) is in the basement of AGO building,
i.e. 5.7 m below the ground, ona 2 x 2 m concrete pole. Absolute measurements were conducted
in roughly monthly routine from May 2005 to November 2016 using the FG-5 gravimeter No.
230. This is the longest and homogeneous (considering both accuracy and spatial resolution)
time series of gravity values in Poland. The total uncertainty in determining the gravity field
force is £2 pGal. Results from the absolute measurements are corrected for the effects related
to Earth tides (Wenzel model) and oceanic tides (FES2004 model), changes in atmospheric
pressure and polar motion. In addition, gravity values are corrected by the results of
international comparison campaigns. Metrological factors (resulting from clock and laser
frequency changes) are also considered.

Results measured by an absolute gravimeter are not only affected by systematic geodynamic
factors removed during data processing, but also by local hydrological influence. In AGO
JOZE, parallel to the gravity data measurements, groundwater level was recorded by
a piezometer. After calculating the impact of local subsurface water masses, it was possible to
compare terrestrial data with satellite ones. To obtain the desired results, the approach presented
in Kuczynska-Siehien et al. (2019) was used. Piezometric measurements of groundwater level
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fluctuations made it possible to estimate the hydrological effect on gravity according to the
formula (Creutzfeldt, 2010):

Agnya = 41.92-Sy-Ah )

Sy (specific yield) means the water content in the pores of a given aquifer and Ah is the change
in groundwater level obtained from piezometer readings. In this case, Sy = 0.13 was
determined on the basis of simple regression of piezometric and gravimetric observations.

dg FG5 and WT

® dg corrected
25 - ® dg -8
° e T

pGal
WT (m)

DATA

Figure 9. Graph of observed dg changes by absolute gravimeter before and after hydro correction
against the background of changes in groundwater level. Source: own study

On analysing the graph in Figure 9, is it noticeable that gravimetric measurements are highly
dependent on groundwater level fluctuations. The 4g,4 correction reduced the amplitude of

the observed g values from 25 to 14 pGal. Compared to the total uncertainty of absolute
measurement at £2puGal, it is clearly seen how sensitive equipment is to changes in local mass
distribution.

Data from the GRACE mission was collected as spherical harmonics (.gfc file from the
International Center for Global Earth Models [ICGEM] website) in RLO6 and RLO5a releases.
The changes denoted as AC,,, and 4S,,, were calculated by removing the static part of the
gravity field using GGMO05C model (Ries et al., 2016) for each monthly solution. According to
the valid conventions (technical notes TN-11 and TN-07), GRACE coefficients Cio, C11, S11
denoting the centre of mass and Cxo denoting the gravimetric flattening of the Earth (Swenson
et al., 2008) have been replaced with the coefficients determined using satellite laser ranging
(SLR) measurements (Cheng et al., 2013). Additionally, due to problems with the GRACE-B
accelerometer, a significantly higher variance of the Cso coefficient could have been observed
in the last 7 months of the mission, therefore it was also substituted by a corresponding value
from SLR. For the RLO6 data, a linear model of polar motion has been introduced, which is
consistent with the IERS2010 convention. Hence, it is not recommended to introduce any
corrections to the Cz1 and Sz1 coefficients (according to Dahle et al., 2019).

GRACE and FG5 observations were recorded for different epochs. To be able to compare them,
it was necessary to interpolate the data. The choice of interpolation method was important
because of possible overestimation with a too aggressive approach. Several popular ways were
tested in this study and the best one turned out to be a moving average with a window size of 5
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months. This allowed to faithfully reflect the original signal without excessive smoothing and
the appearance of gross errors.

The comparison of gravity field changes data determined by GRACE sensors and absolute
measurements with the FG5 gravimeter was based on gravimetric disturbances. The gravity
disturbance is understood here as the difference between the real and normal (referred to
ellipsoid) acceleration of gravity on the physical surface of the Earth. It was determined from
GRACE data, taking into account the elastic deformation of the Earth as a result of loading
(Crossley et al., 2012) according to the following formula:
GM oo 2hn
59(6.20) = 53w o(n+1- o

) n —o(Cam - cOSMA + Spppy - sinmA) - By, (cos6) (8)

where h, and k,, are the Love numbers for the overall elastic response of the Earth from the
preliminary reference earth model (PREM). Due to the correction of the geocenter parameters
from GRACE data to the coefficients Cio, C11 and Sii, the corresponding value of k; was
changed to 0.021. The values of gravity disturbance have also been fixed by the gain factor
(Landerer and Swenson, 2012) for the examined region, which was equal to 1.06. In our
research area, no earthquake with magnitude above 8.5 has been observed. Further, the effect
of postglacial uplift is relatively small. Hence, it was decided not to make related corrections.

To analyse the time series of GRACE mission, all eight types of non-isotropic filtration of DDK
(DDK1-DDKB8) were used, as well as Gaussian filtration with the following radii (R): 200, 300,
400, 500 and 600 km. Datasets from RL05a and RLO6 releases were considered separately for
solutions from CSR, GFZ and JPL centres.
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Figure 10. Mean gravity disturbance values and standard deviation (dispersion) based on all types of
filtration. Source: own study
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On comparing the discrepancies between gravity disturbances observed by GRACE and FG5
(corrected for hydrological effect), a significant difference can be seen between the time series
from 2005 to 2009 and from 2010 to 2016 in ground data (red dots in Figure 10), regardless of
the type of filtration. The discrepancies observed in these periods result mainly from a major
hydrological flood that happened during those times. This rapid increase in dg is not noticed
very clearly by GRACE sensors. Substantial seasonal fluctuations in amplitudes, caused by
large-scale changes in the water level of the Vistula basin, affect the suppression of information
related to the flood in 2010. To compare the data from satellite and terrestrial sensors properly,
it is needed to exclude the effects that are modellable and do not appear in local ground
observations. These effects are periodic (annual, semi-annual and quarterly) changes of
amplitudes in observations recorded by GRACE. Eliminating them allows more effective
analysis regarding the comparison of data from different sensors.

To remove the effect caused by seasonal amplitude changes of continental hydrology, the signal
had to be approximated with sinusoidal functions. This was done using the least-squares
spectral analysis (LSSA) method (Vanicek, 1969, 1971) based on modelling of two waves with
annual and semi-annual amplitude parameters determined using the Gauss—Markov model.
Decomposition of the observed signal was made in accordance with the methodology proposed
in Kuczynska-Siehien et al. (2019). This approach enables eliminating time series periodicity
for both GRACE and absolute measurement datasets (Figure 11).
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Figure 11. Mean gravity disturbance values after signal decomposition, and standard deviation
(dispersion) based on all types of filtration. Source: own study

3.2. Analysis of residuals and time series consistency

After cleaning the datasets, the variability analysis of individual signals was performed in terms
of the selected filtration type. To distinguish all discrepancies between FG5 absolute
measurements and filtered observations from GRACE, the graphs shown in Figure 12 present
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the differences between them. The left graph depicts the residues of RLOG6 release and the right
one depicts the residues of RL05a release.
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Figure 12 Residual diagram AG-GRACE RLO06 (left) and RLO5a (right) for DDK1-8 filtration (rows:
1-8, 14-21, 27-34) and Gaussian 200-600 km (rows: 9-13, 22-26, 35-39). Source: own study

The performances of Gaussian filter with smoothing radius equal to 200 km (rows: 9, 22, 35)
and DDKS8 (rows: 8, 21, 34) are clearly different from others. Furthermore, it can be seen that
the discrepancies occurring in 2010 were not fully corrected due to the changes in groundwater
level. This is because of the intense floods that occurred in that year. To determine which of the
filtered GRACE time series best fits the AG measurements, the mean square error (RMSE) for
each of these series was calculated based on the residues according to the formula:

1
RMSE = 15,698 — 5gi)? ©

Subsequently, Pearson’s correlation coefficients were estimated for all calculated variants (on
account of applied filters, processing centres) of gravimetric disturbance. However, since the
GRACE solutions were delivered monthly, there are some phase shifts between the signals
observed by satellite and ground sensors. Therefore, the analysis of signal compatibility was
completed with the normalised cross-correlation (Xcorr) coefficients:

El(S AG _ S AG S GRTACE_ 5 gGRACE
xeorr(8g9(£), 89 (¢ + 1)) = LA OEEPOsCZuBTED (1)
where E is the expected value of the given expression, ¢ is the standard deviation and u is the
average value, all depending on the time shift 7. In our paper, we have chosen an Xcorr value
that was a maximum in £3 months interval of possible lags between the examined time series.

So, this lag value is less than 3 (months). The results of all the statistics listed above are
summarised in Table 1.
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Table 1. The statistics of time series comparison

Xcorr RMS (uGal) Pearson corr Filter type Xcorr RMS (uGal) Pearson corr
CSR GFzZz JPL CSR GFZ JPL CSR GFzZ JPL CSR GFzZz JPL CSR GFZ JPL CSR GFzZ JPL
039 055 0.37]515 509 5.26 DDK1 - 0.52 552 519 548 0.09 0.20 0.08
0.60 0.64 059|474 467 487 DDK2 0.57 0.71 510 4.77 5.00|( 0.27 0.29

0.70 0.72| 459 444 470 DDK3 478 451 465
0.70 0.73] 459 4.43 4.70 DDK4 479 456 4.66
g 0.70 0.75] 465 438 4.71 DDKS5 504 498 4.96
8 0.69 476 | 436 4.69 DDKG6 5.31 532 5.25 0.33
UOI) 0.68 526 479 4.71]027 0.20 DDK?7 6.67 6.52 6.28
8 0.67 5.62 0.22 018 0.29 DDK8

0.72  0.67
0.75 0.68
0.65 0.64
056 0.61 0.54

6.16
4.63
4.78
4.89
4.99

0.20 0.22 200 km
0.17 0.32 300 km
0.28 0.16 0.24 400 km

500 km
600 km

GAUSS R

Xcorr RMS (pGal) Pearson corr Filter type Xcorr RMS (uGal) Pearson corr
CSR GFzZz JPL CSR GFZ JPL CSR GFzZ JPL CSR GFzZ JPL CSR GFZ JPL CSR GFz JPL
425 491 427 DDK1 ; 456 452 453|042 044 045
DDK2
DDK3
DDK4
DDK5
DDK®6
DDK7
DDK8
200 km
300 km
400 km
500 km
600 km 459 453 4.63

2005-2016 deseasonalised

GAUSS R

Performance: avg m

It can be seen that with RL05a dataset, all processing centres show quite a large consistency of
the results. They reveal similar values of both indexes, correlation and RMS. DDK3-6 filters
fare very well in this comparison. They are characterised by a cross-correlation coefficient of
0.7-0.8. The RMSE for these sets is approx. 4.5-5.2 uGal before signal decomposition. This
values decreases to 4.1-4.7 pGal after removing the seasonal effects. An alternative to these
types of filtration may be Gaussian filtration with a smoothing radius of R = 300 or 400 km (in
GFZ solution). In all other cases, there is no balance between preserving geophysical
information and removing orbital or seasonal hydrological effects. Although RMSE remains at
4.5 uGal, the correlation coefficients drop significantly below 0.5. This means there is no
relationship between the signals.
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For the RLOG6 release, DDK3-6 filters are still the best perfsorming ones. The relation between
GRACE and FG5 time series remained strong with 0.7-0.8 Xcorr values for CSR and JPL
centres. This release had also lower RMS error varying in the range of 3.7-4.0 uGal. The
amount of observational noise decreased as compared to RL05a. In turn, Gaussian filtration
gave satisfactory results only for a smoothing radius of 300 km in any data processing centre.

On comparing the results from the research centres, the dataset from GFZ clearly stands out
from the rest. Before removing seasonal impacts, cross-correlation coefficients did not differ
much from those obtained for JPL and CSR. However, after eliminating periodicity effects, the
values of these factors dropped down. Thus, RL06 data processing strategy provided by GFZ
turns out to be inefficient in the case of research in AGO Jozefostaw area.

4. CONCLUSIONS

When considering the compatibility between terrestrial gravity measurements and GRACE
filtered data, it can be noticed that the change in the water table from —11 m to about -8 m
below the Earth's surface is not recorded from a satellite’s level because the phenomenon is
purely local. It should be eliminated at the stage of comparing GRACE solutions with in situ
data.

Removing the periodic phenomena of gravity changes associated with different seasons from
time series enabled investigation of local environmental changes. To effectively perform this
process, it was sufficient to use proper sinusoidal function fit.

In the case of Gaussian filtration, the best results are obtained by a smoothing radius equal to
300 km, which agrees with the recommendations posted by official data processing centres.
Other radii of this kind of filtration cause too much data averaging in the study area. Thus, they
should not be used because of unsatisfactory performance.

Considering the latest GRACE reprocessed dataset, DDK3-DDKG6 filters published by the CSR
and the JPL are characterised by a high cross-correlation coefficient at the level of 0.8 and
a satisfactory RMSE in the range of 3.7-4.0 pGal, i.e. lower than twice the measurement made
by the FG5 gravimeter. For the same filters in the RL05a data version, all three computing
centres present good results for both cross-correlation coefficient and RMSE, with values of
0.7-0.8 and 4.1-4.7 uGal, respectively. Therefore, the conclusion is that satellite observations
made by GRACE mission properly filtered can be successfully used in studies on the JOZE
observatory.

Furthermore, the right selection of data processing strategy is of additional importance. In the
RLO6 version for GFZ, after signal decomposition, the overall results are worse. Moreover,
DDK1-2 filtration types present too intense blurring of geophysical artefacts and could only be
used in large oceanic or river basin areas.

The choice of an optimal filtration type and the accuracy of GRACE solutions resulting from it
are extremely important in the context of establishing International Geomagnetic Reference
Field (IGRF) system and the maintenance of basic gravimetric network in Poland.
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1 Introduction

Global satellite gravity measurements provide unique information regarding gravity
changes caused by the mass transport over the Earth’s surface. During last 19 years
satellite missions gravity recovery and climate experiment (GRACE) (Tapley et al.,
2004) and GRACE follow-on (GRACE-FO) (Flechtner et al., 2016) have been
monitoring changes of total water storage (TWS) (Wahr et al., 1998), enabling the
creation of many applications used in hydrological monitoring. The almost one-year-long
gap between GRACE and GRACE-FO has raised questions about the future of
GRACE-FO observation and hence understanding of the constant ongoing climate
change. Along with the growing computing capabilities of computers, the importance of
using machine learning methods in solving the problems related to signal reconstruction
grows. It is of crucial importance that after the completion of the GRACE-FO mission
planned for five years, it will be possible to map the GRACE-FO signal based on the
existing data and to conduct further research related to the observations of the
hydrological modelling. A growing interest in using learning-based models in
hydrological applications gives new opportunities to resolve the traditionally complex
problems, including data reconstruction (Hamshaw et al., 2018).

The implementation of machine learning models has been presented in several works.
The first trials in 2011 using empirical orthogonal functions (EOF) were presented in
Becker et al. (2011), where historical data from the Amazon basin was used. The
reconstruction of TWS time series of 60 selected river basins was presented in Sun et al.
(2020a). This publication presented a comprehensive comparison of TWS reconstruction
using deep neural network (DNN), seasonal autoregressive integrated moving average
model (SARIMAX) and machine learning (MLR) algorithms in a temporal algorithm.
Seyoum et al. (2019) decision trees were used to reproduce high-resolution groundwater
level anomaly (GWLA), improving global land data assimilation system (GLDAS) data
with in situ observations. The spatial-temporal approach was used by Jing et al. (2020) in
case study for the Nile river basin. The algorithms using random forest, extreme gradient
boosting (XGBoost) and Logistic regression created a benchmark for highly accurate
predictor-based reconstruction of time variation of such hydrological parameters as Snow
depth water equivalent, surface soil moisture storage, root zone soil moisture storage,
profile soil moisture storage, plant canopy surface water, ground water storage from
GLDAS-2 dataset. Sun et al. (2020b) presented the reconstruction of TWS using NOAH
and CLSM data for the largest river basins in the US, for which the predictor importance
was calculated. Artificial neural networks (ANN) was also used by Seyoum and
Milewski (2017). Convolutional neural network (CNN) performance was presented by
Irrgang et al. (2020) and Mo et al. (2021). A research on this topic regarding the African
river basins was conducted by Ahmed et al. (2019). Multilayer perceptron (MLP)
networks and ANN architecture were used in predicting groundwater changes by
Sun (2013). Used CNN-based model architectures, VGG16, Unet, and Segnet (Sun et al.,
2019) for the India area proved the effectiveness of encoder-decoder networks in TWS
reconstruction.

TWS is a complex effect strongly related to many parameters. It is essential to choose
the variables used for TWS signal reconstruction. Also is crucial to find an answer that
variables used for the reconstruction can be equally significant for grid-based and
basin-based analysis. Machine learning predictive models are often treated as black boxes
that can be automatically trained without explanation about used data impact on predicted
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results. Introduction a explainable artificial intelligence (XAI) methods provide benefit to
research society as a guide and benchmark for future analysis. In this work, the
importance of individual predictors for the temporal and spatial-temporal approach was
examined. The TWS signal was reconstructed using GRACE and GRACE-FO RL06 data
as target and GLDAS-Noah model data as predictors. Data from 254 river basins areas
were selected for both examined approaches. The XGBoost algorithm was used to
reconstruct ATWS and model the relationship between climate variables. And then, last
but not least, the precision metrics were determined, and finally, the importance of the
individual variables used was calculated. All steps in the proposed research lead to the
answer to the posed questions: Are there variables of greater importance than others in
the case of reconstructing ATWS signal from GLDAS data using ML methods?
Furthermore, what are the differences in the importance of individual variables used for
the signal reconstruction between grid-based and basin-based analyses?

2 Data and methods

2.1 Experiment overview

The existing research on the GRACE topic can be divided into grid-based and
basin-based analyses. The first type of research relates to time series analyses over each
grid (point) cell. The second type introduces feature mapping for the entire catchment
area of a given basin. In regression modelling, this leads to the division into the
application of algorithms for entire catchments called temporal or for individual points in
given grid cells called spatial-temporal. The general idea of the experiment is based on
the use of linear regression to reconstruct the ATWS based on the available predictors
from the GLDAS hydrological model and examining the impact of grid-based and
basin-based algorithm type on variable importance. The machine learning process
requires the division of data into a training set and a target. The training set contains the
variables based on which the weights for the model will be trained. Expected results
‘target’, otherwise known as ‘labels,” are continuous variables that will be predicted as
output. In this case, ATWS values, determined based on GRACE data, were assumed as
expected results and GLDAS data were used as predictors. Since the GRACE data to be
used as labels were stored in the form of spherical harmonic product, in the first step, it
was necessary to develop these data by applying appropriate corrections and filtering,
which is described in detail in sub-chapter 2.2. The scheme of the experiment is shown in
Figure 1. The experiment consisted of the preparation and elaboration of training data,
training and evaluation of models, and determination of significant variables.

Training data from the GLDAS model was standardised and concatenated with the
target. ATWS was modelled using two different approaches for which global precision
metrics were determined and their spatial distribution for each of the approaches. The
research area was limited to 254 selected river basins, shown in Figure 2, with different
climate, area and location. Major river basins of the world were downloaded from The
World Bank website (https://www.worldbank.org/en/home).
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Figure 1 Scheme of the experiment (see online version for colours)
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2.2 Target GRACE data

Data from the GRACE and GRACE-FO missions was collected from the International
Center for Global Earth Models website (http://icgem.gfz-potsdam.de/home) as spherical
harmonics coefficients. Spherical harmonic coefficients are a quantity that varies with
position on the surface of a sphere. Due to this fact, it is possible to quickly determine the
value described by a given function in a place with specific coordinates on the sphere.
The study used RLO6 data (Dahle et al., 2013) from April 2002 to January 2021
distributed by the Center for Space Research (CSR). Data was used in the maximum
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degree/order of expansion equal to 96, corresponding to a spatial resolution of about 300
km. Terrestrial and oceanic TWS (Wahr et al., 1998) grids are processed a specific filter
that is tuned to filter out noise as well as possible while maintaining true geophysical
signals. The formula for determining the total water equivalent, which is the sum of all
above and below surface water storages, including canopy water, rivers and lakes, soil
moisture and groundwater, is as follows:

PR~ 2n+1on = s .
ATWS(0, 1) = AC,,, -cosmA+AS,,, -sin mA
( ) 3 Zn=o 1+ % Zm=0( ) (1)

: f_)nm (COS 0)’

where (0, A) are geographical co-latitude and longitude of this point, R stands for Earth
reference radius defined in International Earth Rotation and Reference Systems Service

Convention (IERS2010), C,nS,m are the normalised harmonic coefficients of the gravity
potential expansion (Stokes’ coefficients), P,,(cos8) are the Legendre polynomials of

n" degree and m™ order and &’ represents the elastic Earth parameter is called Love’s
numbers, taking into account the deformation of the Earth caused by load effects and p. is
average soil density (Wahr et al., 1998). The AC,» and AS,.., representing changes the in
gravity field, were calculated by excluding the static part of the gravity field using
GGMO5C (Ries et al., 2016) model. In pursuance of the technical remarks TN-11 and
TN-07, GRACE coefficients localising the centre of mass (C10, C11, S11) and the
gravimetric flattening of the Earth (C20) (Swenson et al., 2008) have been substituted
with the coefficients determined using satellite laser ranging (SLR) measurements
(Cheng et al., 2013). Corrections were not introduced to the C21 and S21 coefficients due
to the inclusion of a linear model of polar motion in the GRACE RLO06 data (Dahle et al.,
2019). An anisotropic filtration with DDK2 filter was used (Kusche, 2007) due to the
compromise between the stability and accuracy of solutions (Kusche et al., 2009; Szabd
and Marjanska, 2020).

2.3 Predictors land surface model data

Determining ATWS is a complex process. According to the definition, it will correspond
to the sum of all above and below surface water storage, including canopy water, rivers,
and lakes, soil moisture, and groundwater. However, this assumption does not consider
the interplay of climate, meteorological and environmental indicators. According to
previous research (Hamshaw et al., 2018; Sun et al., 2020a, 2020b; Jing et al., 2020),
where it was shown that ML methods based on methods could successfully learn
relationships between various variables and catch correlation with a target. This research
is focused on understanding the complexity between variables caught by machine
learning models, which can be significantly different from human understanding, so all
variables provided by GLDAS model were used to ATWS modelling.

GLDAS models provide many important variables of land hydrology at different
spatial and temporal scales in user-friendly global grids. Comparisons of data from
GRACE and GLDAS show high temporal agreement and slight differences in
amplitudes, which contributes to the favourable use of these data in global hydrological
studies (Scanlon et al., 2018). Kuczynska-Siehien et al. (2019) shows a correlation
between different GLDAS models, GRACE products, and terrestrial gravity
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measurements. Because GLDAS-Noah provided a high correlation with gravity
variability from GRACE in this case as trained data were used variables from
GLDAS-Noah (v2.1) land surface model (Rodell et al., 2005). GLDAS-Noah (v2.1)
monthly solutions (1°, dataset: GLDAS NOAH10 M) were downloaded from Earth
Data — NASA website (https://disc.gsfc.nasa.gov/) from January 2002 to January 2021.
The list of variables used for TWS modelling from GLDAS is presented in Table 1.

LWdown f tavg

Table 1 GLDAS parameters
Variable name Unit Variable explain
Lat, long [°] Geodetic coordinates
date [dd-mm-yyyy] Epoch of measurements
Swnet _tavg, Lwnet tavg [W m?] Surface net downward shortwave /longwave

flux

Qle tavg, Qh tavg [Wm2] Surface upward latent/sensible heat flux
Qg tavg [Wm2] Downward heat flux in soil
Snowf tavg, Rainf tavg, [kg m2s1] Snowfall/rainfall/water evaporation flux
Evap tavg
Qs_acc, Qsb_acc [kg m2s1] Surface/subsurface runoff amount
Qsm_acc [kg m2s1] Surface snow melt amount
AvgSurfT _inst K] Surface temperature
SWE inst [kg m2] Surface snow amount
SnowDepth_inst [M] Surface snow thickness
SoilMoi0_10 cm_inst, [kg m~2] Soil moisture content at different layers
SoilMoil0 40 cm_inst,
SoilMo0i40 100 cm_inst
S0ilMo0i100 200 cm_inst
Albedo_inst [%] Surface albedo
SoilTMPO 10 cm_inst, K] Soil temperature at different layers
SoilTMP10_40 cm_inst,
SoilTMP40 100 cm_inst,
SoilTMP100_200 cm_ins
PotEvap_tavg [W m2] Potential evaporation flux
ECanop_tavg, [W m2] Evaporation flux from canopy
Tveg tavg [Wm2] Transpiration flux from veg
ESoil tavg [Wm?2] Evaporation flux from soil
RootMoist_inst [kg m~2] Root zone soil moisture
Canoplnt_inst [kg m2] Canopy water amount
Wind f inst [m/s] Wind speed
Rainf f tavg [kg m2s1] Precipitation flux
Tair f inst K] Air temperature
Qair_f inst [kg/kg] Specific humidity
Psurf f inst [Pa] Surface air pressure
SWdown_f tavg, [Wm2] Surface downwelling shortwave/ longwave

flux in air
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2.4 Features selection and proccessing

Feature engineering is the process of selecting and scaling variables to build the machine
learning model. It makes the model easier to interpret and reduces overfitting. Different
techniques of feature engineering might work better with some algorithms. During this
experiment, techniques such as imputation, standardisation, grouping, time
transformation and encoding were used. In this study, training data was divided into
numerical variables with continuous characteristics and categorical variables, i.e., those
with two or more groups or categories. During comparing monthly solutions from
GRACE or GRACE-FO fields with the GLDAS model, monthly sampling needs to be
matched between the datasets. In the first step, the observations for the same epochs for
GRACE and GLDAS were averaged. Since the data had to be prepared for point-based
and basin-based analyses, each element from the training data and the target was assigned
to a given river basin. Each river basin has been encoded by converting the river name
into a unique ID with becoming a categorical variable. A parameter related to the
river basin area has been added to numerical variables as additional column. In the
temporal-based approach, data were aggregated against a given river basin using averages
so that each river basin was represented by a different time series. Parameters Lat and
Long were averaged as a centroid of a river basin in the temporal approach, which gives
us the only difference in variables between these approaches. Because variables measured
at different scales do not contribute equally to the model fitting and model learned
function and might create a bias thus, to deal with this potential problem, feature-wise
standardisation is usually used prior to model fitting. Each numerical variable was
standardised by removing mean divided by the standard deviation. Standard scaler is
described by the following equation.

z=1"F )

where x denotes a specific variable, x4 is mean value of x, and ¢ its standard deviation. In
non-sequential algorithms, it is necessary to let the machine learning model know that a
feature has a cyclical characteristic. A standard method for encoding cyclical data is to
transform the data into two dimensions using a sine and cosine transformation. In order to
take into account the seasonal variability, the time-related variable was decomposed into
sine and cosine components with annual and semi annual periods. This made it possible
to break away from the data, sequence but retain the repeatability of the factors related to
the Earth’s circular motion. Date represented in decimal year format was transformed by
applying the following equation.

sin Annual = sin (2 T date)
cos Annual = cos(2 -z - date)

(
sin SemiAnnual = sin(2-x - date/ 0.5)

cos SemiAnnual = cos(2- - date/0.5)

€)

time decompose

During the feature selection process, a dropping collinear features operation can be found
in many research works. This operation is essential because of the multicollinearity
problem (Allen, 1997). Collinear features are features that are highly dependent on
another feature. Due to high variance and less model interpretability, collinear features
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lead to decreased generalised performance. Distribution of statistics presenting
interquartile range (IQR) and mutual correlations for parameters used in this study are
presented using boxplots in Figure 3.

Figure 3 (a) Distribution of statistics presenting interquartile range (b) Correlations of parameters
(see online version for colours)
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Similar values of correlation Figure 3 (b) for soil temperature (SoilTMP) or soil moisture
(SoilMoi) of the predictors could be noticed. Since the shallow (top) soil layers have a
much faster physical process than the deeper one, removing this predictor form model
provides a lost significant part of the signal. Due to this study’s subject and the use of
sine and cosine components with semiannual periods, it was consciously decided not to
drop any of these columns. Looking at Figure 3(a) a significant variance for the variables
surface snow melt amount (Qsm_acc), Surface runoff amount (Qs_acc), subsurface
runoff amount (Qsb_acc), surface snow amount (SWE inst), surface snow thickness
(SnowDepth _inst), Snowfall evaporation flux (Snowf tavg) can be seen. It can be viewed
in terms of outliers. These variables are clearly interdependent. High variance results
from the appearance of snowfall and spring thaw, but only in temperate climatic zones,
where we have the opportunity to observe four seasons. Snow variables do not appear in
hot climates, hence the small range of these values between the 1st and the 3rd quantile.
Variables with non-zero values regardless of latitude have clearly more stable
distributions. At the end process, numerical and categorical variables were concatenated
and shuffled before training.

2.5 Regression modelling

In machine learning, there are several kinds of problems where these algorithms can be
applied. It is tasks such as classification, regression, clustering, object detection,
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forecasting, recommendation or anomaly detection. Signal reconstruction can be
addressed well by regression modelling using machine learning algorithms. A regression
problem may be stated as predicting a continuous outcome variable based on the given
set of predictors (or features). A regression model is a technique of creating a
mathematical equation that defines y as a function of the x variables. Linear regression is
the most simple and popular technique for predicting a continuous variable and can be
written as:

Y:Xﬂ1+ﬁ0+8, (4)

where f is the intercept, £ is the regression weight or coefficient associated with the
predictor variable X and ¢ is the Gaussian noise. The literature can find many different
models used in regression problems. This work aimed not to build a perfect model but get
an insight into relationships in the data and create a benchmark for more complex
interpretations. Based on previous research about comparing performance models and
focusing on model complexity and interpretability, it was decided to use the XGBoost
(Chen and Guestrin, 2016) model in this study. XGBoost regressor with the
implementation of the Scikit-Learn API for Python was used to create a regression
model. XGBoost is a variant of tree ensemble learner that combines gradient-based
optimisation with boosting. Boosting is a method for improving model accuracy, based
on the idea that it is easier to find and average many rough rules of thumb than to find a
single, highly accurate prediction rule.

The data included as input for training the model has been prepared in tabular form.
For each point (or basin in the temporal algorithm), a matrix was determined. The rows
were following measurement epochs. The columns presented the developed variables
from the GLDAS model with the encoded ID river name and the basin area. This matrix
corresponds to a vector with continuous TWS variables, which was marked as a target.
Then all matrices were combined into one table with dimensions equal to the number of
epochs x number of points x number of variables.

Before training, a specific percentage of random data should be separated for
accuracy testing and model evaluation. Since the mean values of the two groups are not
significantly different it is necessary to determine test data sample size to achieve
statistical significance. There are a different number of samples between the first and
second approach. In the temporal approach, data aggregation per river basin significantly
reduced the sample size, which questioned the correctness of the comparison. In order to
be able to conclude that the A / B comparison makes sense, the minimum number of
samples included in the test set was determined (Ioannidis, 2005). In order to observe a
1%—2% change in the target between the results, assuming the 95% confidence level and
80% power test, the effect size was determined, and the minimum number of samples
needed for the evaluation was calculated, which constituted no less than 27% of the data.
This value was arbitrarily rounded to 30%. The hyperparameters of model have been
tuned with Grid Search algorithm (Shekar and Dagnew, 2019). The results achieved are
presented in the next chapter.
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Figure 4 Scheme of train dataset (see online version for colours)
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3 Results

3.1 Model performance

The performance of the model was measured by metrics such as Nash-Sutcliffe
efficiency (NSE) (Nash and Sutcliffe, 1970), Pearson correlation coefficient (CC),
Kolmogorov-Smirnov-Test (KS) (Hodges, 1958), root-mean-square error (RMSE), and
normalised root-mean-square error (NRMSE) as RMSE divided by annual amplitude
determined as the root of the fit parameters of periodic functions (Vanicek, 1969, 1971).
Parameters of periodic functions were determined using the Gauss-Markov model.
Additionally the RMSE was determined using cross-validation (Refaeilzadeh and Tang,
2009) with 10 k-fold and 3 repeated. NSE is a normalised statistic determining the
relative magnitude of residual variance (noise) relative to the measured data variance
(information) (Nash and Sutcliffe, 1970). KS tests whether two samples are drawn from
the same distribution. This statistic measures the absolute max distance (supremum)
between the cumulative distribution functions (CDFs) of the two samples. The
distribution is assumed to be continuous. If the KS statistic is small or the p-value is high,
then we cannot reject the hypothesis that the distributions of the two samples are the
same. Metrics are described by the following equations.

1
RMSE=\/NZZI(M‘—01')2, (5)

RMSE

Ja? +b? ’

NRMSE = (6)
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Z;(J’i —0; )2

NSE =1- 5 o (7)
Zi:l(oi —5)
> (n-7)(0-3)
cC= ~ . ~ s (8)
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KS = Sup |Fi,n (x) - FZ,m (X) s (9)

where y;, o; are predicted and observed true values respectively, Fi, and F,, are the
empirical distribution functions of the first and second samples respectively, and sup is
the supremum function. Parameters y,o are averages of predicted and observed true

values respectively, and a, b are parameters of periodic functions.

Figure 5 Validation model, (a) CDF for temporal approach (b) CDF for spatial-temporal
approach (c) prediction against true values for temporal approach (d) prediction against
true values for spatial-temporal approach (see online version for colours)
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The results of the validation demonstrate Figure 5 which shows plotting predicted values
against the true value. If points are close to a diagonal line, the predicted values are more
accurate. The differences between the distribution of predicted and true variables are
presented using the CDFs plot and the corresponding KS metric presented in Table 2.
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Table 2 Global metrics of model evaluation determined on the randomly selected test set
Metrics Temporal Spatial-temporal
NSE 0.717 0.805
cC 0.847 0.898
RMSE (cross validated) [mm] 50.320 45.974
RMSE[mm] 45221 42.432
NRMSE 0.625 1.165
KS 0.038 0.035

Figures 5(c) and 5(d) show a highly satisfactory distribution of the density of the
predicted observations against the true values. Moreover, 95% of the value is within the
standard deviation limit, proving the high quality of the trained model.

The achieved results correspond to the benchmark level of the results in other works.
Sun et al. (2020a) show average results of CC: 0.88—0.89, RMSE: 4.5-4.7 cm, NSE: 0.7
for the temporal approach. For spatial and temporal algorithm, Sun et al. (2020b) achieve
results of Nash-Sutcliffe efficiency around 0.85, the mean correlation coefficient around
0.95 and the mean normalised root-mean-square-error about 0.09 at over the US area. For
a case study of the Nile river basin with the spatial-temporal method (Jing et al., 2020) it
can be observed results of RMSE: 1.4-3.47 cm, NSE: 0.54-0.94, CC: 0.79-0.97. Using
CNN networks at the grid-based scale showed a very good fit of predicted results of
CC = 0.94 and NSE = 0.87 at the India study area. Global metrics are similar between
approaches. The achieved NSE and CC values in this work intensely converge to 1,
which is satisfactory for this experiment. However, RMS at 4.5-5.0 cm does not say
much about the quality of the solution. A better metric showing the ratio of the error
achieved to the size of the observed phenomenon is NRMSE. The more excellent value
of this metric for approach spatial-temporal results from the more significant variance of
individual observations, which significantly increases this error. The KS values are small,
which shows that the distribution of the predicted values by the model does not differ
significantly from the real ones. Figure 6 shows statistical measures of the accuracy of fit
model in spatial distribution.

The distribution of the metrics for both approaches is very similar. The spatial
distribution of the metrics shows the largest RMSE for the Amazon basin. However, due
to large fluctuations of ATWS in this area, the NRMSE index is relatively small. The
regions with the weakest results for the reconstruction of ATWS is the Parana river in the
southern regions of South America, Saskatchewan-Nelson and St. Lawrence river in the
area of the Great Lakes on the border of Canada and the USA, Huang He (Yellow River),
Amur, Liao in the eastern part of the Asian continent areas overlap with the Sahara
desert. The better performance in humid areas than in dry areas can be seen in Higher
NSE and CC values in these regions, reflected by spatial distributions of GLDAS humid
related variables. The reason why XGBoost underestimates ATWS in these specific
regions may be related to the complex anthropogenic effects on groundwater storage
(GWS) and TWS. Human impact is not included in a set of predictors in this experiment,
but explaining these phenomena is not the primary purpose of this work.
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Figure 6 Spatial distribution of metrics, (a) NESE for temporal approach
(b) NSE for spatial-temporal approach (c) RMSE for temporal approach
(d) RMSE for spatial-temporal approach (¢) NRMSE for temporal approach
(f) NRMSE for spatial-temporal approach (g) CC for temporal approach
(h) CC for spatial-temporal approach (i) KS for temporal approach
(j) KS for spatial-temporal approach (see online version for colours)
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3.2 Feature importance

Feature importance is techniques that assign a score to input features based on how useful
they are at predicting a target variable. The permutation feature importance measurement
was introduced in Breiman (2001) We can describe feature importance as the measures
are based on the number of times a variable is selected for splitting, weighted by the
squared improvement to the model as a result of each split, and averaged over all trees
(Breiman, 2001; Friedman, 2001; Elith et al., 2008). Fisher et al. (2018) proposed a
model-agnostic version of the feature importance.

J:node j split on fi
E nij
keall nodes

where fi; is importance of features i, ni; is importance of node j of decision tree. In
XGBoost model we can calculate it in different ways, and it is worth understanding
which one will be right for a given task. The Gain implies the relative contribution of the
corresponding feature to the model calculated by taking each feature’s contribution for
each tree in the model. When compared to another feature, a higher value of this metric
implies is more important for generating a prediction. The Coverage metric means the
relative number of observations related to this feature. Weight is the percentage
representing the relative number of times a particular feature occurs in the trees of the
model. Due to the small number of categorical variables, it was decided to use gain to
present the impact of variables on the model, which is presented in Figure 7.

ﬁi = (10)

Figure 7 Gain model, (a) temporal approach (b) for spatial-temporal approach (see online version
for colours)
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A different approach to this issue is presented by Shapley additive explanations (SHAP)
(Lundberg and Lee, 2017). Its methods that help users interpret predictions where values
are based on Shapley values, a concept coming from game theory. SHAP values are
define as:

d: =
! zng\{i}

where F is a set of all features, xs represents values of input in stet S. fsuy; 1s trained
model with specific features and fs is trained model with the feature withheld. Summing
the SHAP values of each features of given observation yields the difference between the
prediction of the model and the null for all possible set S < F\{i}.

MICAENR
| £ ]!

(11)

)!I:fSu{i} (xSu{i} ) —fs (xs )],

Figure 8 SHAP values, (a) impact on model output in temporal approach (b) impact on model

output in spatial-temporal approach (c) average impact on model output magnitude in
temporal approach (d) average impact on model output magnitude spatial-temporal
approach (see online version for colours)
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Figure 8 demonstrates top 20 variables ranked in descending order. The horizontal
location shows whether the effect of that value is associated with a higher or lower
prediction. The colour at Figures 8(a) and 8(b) shows whether that variable is high (red)
or low (blue) for that observation.

4 Discussion

In each approach, a significant influence of variables related to time, coordinates and soil
moisture can be seen. The time factor is evident due to the monotonous nature of the
phenomenon, regardless of the environment. Coordinates are reflected in climatic zones.
The numerical presentation of the variables reflected in the climate has a positive impact
on the accuracy of the ATWS signal reconstruction. Due to the multicollinearity of the
moisture variables at different levels, they should all be considered as variables of high
importance. Another important variable that appears in each of the algorithms turns out to
be the subsurface runoff amount. It is characterised by a significant variance in Figure 3
and may be critical to the estimated bias. Since no complex subsurface conditions such as
fractured bedrock aquifer, high clay or stone content, deep vadose zone, were used,
which are highly correlated observations for subsurface runoff, it is possible to
overestimate the importance of this variable by ML model. ATWS represents a synthetic
proxy of the dynamic of slow-responding hydrological quantities, which means that using
variables with a high monthly frequency of changes may be inconvenient for ML models
predictions. However, the authors of the publication (Creutzfeldt et al., 2012), in a
comprehensive study on the dependence of ATWS dynamics on the subsurface condition
using gravimetric measurements, show a stronger relationship between the runoff
coefficient and TWS change than that seen with near-surface soil moisture
measurements. Moreover, the authors have shown a significant correlation between flood
potential amount and the runoff. Due to the fact that GRACE can be successfully used to
observe gravity response for extreme precipitation (Reager and Famiglietti, 2009) it can
be concluded that runoff is strictly connected with GRACE water storage estimations. It
can be said with certainty that subsurface runoff impact value has been determined
correctly as high. SHAP indicates the validity of the data climate forcing data concerning
precipitation flux and air temperature, which is interesting because this data may
represent certain aspects of observed climatology that are not fully captured in the
simulated ATWS. The NOAH ATWS can be calculated as the sum of snow water, soil
moisture water (in all layers), and canopy water. Features Importance determined by
XGBoost and SHAP do not give much weight to canopy water amount for both trained
models, which is an interesting observation. Temporal and spatial-temporal approaches
are similar to each other, and differences in the impact of individual variables may be
mainly due to more significant variance for spatial-temporal approaches among
individual variables. The biggest differences between the impacts on the model appear
for surface snow thickness, surface temperature, soil temperature at 0—10 cm, snowfall
evaporation flux, evaporation flux from canopy features. However, they do not have the
most significant impact on the model being trained. The variables used in the modelling
have different spatial and temporal coverage. The strong dependence of the model on
variables related to humidity causes an increase in errors in tropical climatic zones due to
the low coverage of these variables in this area. Moreover, wind speed and air
temperature variables in the top list presented by the SHAP algorithm tell us that the
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climate forcing data provided by the GLDAS model is very well captured in the raw
observation

The signal-to-noise ratio may be weak for basin areas smaller than 1 * 105 km?
(Dutt Vishwakarma et al., 2016). Despite the errors, ensuing from smoothing and signal
leakage can preserve geophysical information for these areas but need special attention
during the process data. Observed spatial distribution of accuracy metrics prevents to
rejection of the null hypothesis of a linear relationship between the size of the river basin
and the accuracy of the ATWS signal reconstruction based on GLDAS data.

5 Conclusions

The paper shows the reconstruction of the ATWS signal based on data from the GLDAS
hydrological model. Trained models were evaluated with RMS (4.24-5.03 cm), NRMSE
(0.62-1.16), CC (0.84-0.89), NSE (0.71-0.80), KS (0.035-0.038) precision metrics. The
influence of individual variables on the model’s output for the temporal and
spatial-temporal approach was checked, indicating the differences between the
importance of individual variables. The spatial distribution of the metrics was checked.
The lowest accuracy was achieved in areas of Parana river in the southern regions of
South America, Saskatchewan-Nelson and St. Lawrence river in the area of the Great
Lakes on the border of Canada and the USA, Huang He (Yellow River), Amur, Liao in
the eastern part of the Asian continent areas overlap with the Sahara desert. This indicates
a high dependence of the trained model on humid-related variables. The aggregation of
variables at the temporal approach by the river basin district influences the change of
weights assigned to particular variables compared to the spatial-temporal approach.
However, this change for the most influential variables remains relatively small. The
work indicates the high importance for the group of predictors that make up the simulated
ATWS: the snow water, soil moisture water (in all layers) variables. However, they are
not given relevant importance for canopy water, which is also part of the simulated
ATWS. Regardless of the approach, subsurface runoff is one of the essential variables for
the models being trained. The coordinate variables perform a significant role for the
models, because they reflect the influence of the climatic zones. The size of the river
basin district is a significant variable for the model. However, no relationship was
observed between the area of the river basin and the accuracy of ATWS prediction.

Trained models were able to learn the complex relationships between various inputs
from the GLDAS land surface model and the ATWS observed by GRACE sensors with
high accuracy. Successful reconstructed GRACE time series by ML algorithms can fill
the gap between GRACE and GRACE-FO missions and provide useful information after
the satellite gravity mission.
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ABSTRACT. The study presents a compatibility analysis of gravimetric observations with
passive microwave observations. Monitoring the variability of soil water content is one of the
essential issues in climate-related research. Total water storage changes (ATWS) observed by
Gravity Recovery and Climate Experiment (GRACE), enables the creation of many applications
in hydrological monitoring. Soil moisture (SM) is a critical variable in hydrological studies.
Advanced Microwave Scanning Radiometer (AMSR-E) satellite products provided unique
observations on this variable in near-daily time resolutions. The study used maximum covariance
analysis (MCA) to extract principal components for ATWS and SM signals. The analysis
was carried out for the global area, dividing the discussion into individual continents. The
amplitudes of gravimetric and microwave signals were computed via the complex empirical
orthogonal function (EOF) and the complex conjugate EOF* to determine the regions for detailed
comparison. Similarities and differences in signal convergence results were compared with land
cover data describing soil conditions, vegetation cover, urbanization status, and cultivated land.
Convergence was determined using Pearson correlation coefficients and cross-correlation. In
order to compare ATWS and SM in individual seasons, ATWS observations were normalized.
Results show that naturally forested areas and large open spaces used for agriculture support
the compatibility between GRACE and AMSRE observations and are characterized by a good
Pearson correlation coefficient >0.8. Subpolar regions with permafrost present constraints for
AMSR-E observations and have little convergence with GRACE observations.

Keywords: GRACE, AMSR-E, total water storage anomalies, soil moisture, remote sensors

1. INTRODUCTION

Soil moisture (SM) is a critical hydrologic state variable of the land that crosses the interfaces
of several disciplines, of significant importance for numerous applications for meteorology,
hydrology, climatology, and ecology (Robinson et al., 2008). Small changes in gravity measured
from space also deduced water mass fluctuations. Launched in March 2002 twin-satellite
system Gravity Recovery and Climate Experiment (GRACE) (Tapley et al., 2004b) and GRACE
Follow-On (GRACE-FO) (Flechtner et al., 2016) provided unique information regarding gravity
changes caused by the mass transport over the Earth’s surface. Changes in total water storage
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(ATWS) (Wahr et al., 1998) show the Earth’s mass change on a near-monthly timescale.
The derivative of the TWS signal is TWS anomaly (TWSA), understood as a combined
monthly averaged water storage change by removing the long-term average divided by standard
deviation. TWSA corresponds to the sum of all above and below surface water storage, including
SM, canopy water, lakes, rivers, and groundwater. The importance of SM and ATWS for
understanding the Earth’s water cycle, and the factors affecting it over the years, has been
considered in many studies individually.

The influence of estimating spatial and temporal variations of SM on climate changes was
described in multiple studies (Betts et al., 1994, Engman, 1992, Entekhabi et al., 1994, Fast
and McCorcle, 1991, Jackson et al., 1987, Petropoulos et al., 2014, Saha, 1995, Topp et al.,
1980). Spatial and temporal variability of water was well documented in previous work for SM
(Crow et al., 2012, Famiglietti et al., 2008, Vereecken et al., 2014) and ATWS (Landerer and
Swenson, 2012, Tapley et al., 2004a, Zhao et al., 2017). From a hydrological point of view,
analysis of spatiotemporal patterns of SM and ATWS observations is essential to understanding
their behavior. In literature, existing methods describe variability only in the spatial domain
(Haining et al., 2010, Khaki et al., 2017) or only in the temporal domain, based on time series
analysis (Fu, 2011, Sprott and Sprott, 2003, Vishwakarma et al., 2021). Several methods can be
found in the literature that analyzes ATWS and SM space and time domains together such as
temporal stability analysis (TSA) (Martinez-Ferndndez and Ceballos, 2005, Wang et al., 2018),
triple collocation (TC) (Crow et al., 2015, Gruber et al., 2017, Hasan and Tarhule, 2021, Yin
and Park, 2021), and empirical orthogonal functions (EOFs) (Eom et al., 2017, Lei et al., 2012,
Navarra and Simoncini, 2010, Schrama et al., 2007, Yoo and Kim, 2004). Whether the analysis
is temporal or spatiotemporal, researchers in previous work have indicated the importance of SM
as a component of the ATWS signal.

Water content in near-surface soil layers is a significant component of the ATWS signal observed
by the GRACE mission. There have been many significant studies examining the relationship
between SM and ATWS. A joint comparison of the remote sensing retrieval products’ metric
entropy and fluctuation complexity was considered in (Kumar et al., 2018). The satellite products
of Advanced Microwave Scanning Radiometer (AMSR-E), Advanced Scatterometer (ASCAT),
Soil Moisture and Ocean Salinity (SMOS), and Advanced Microwave Scanning Radiometer 2
(AMSR?2) show significant noise (high entropy, low complexity), except Soil Moisture Active
Passive (SMAP) is slightly noisy and more informative. The correlation greater than 0.7 between
TWSA and SM data was shown in previous work (Abelen and Seitz, 2013, Crow et al., 2017,
Swenson et al., 2008b). Expanding the shallow groundwater variation under the SM root zone
1s an essential issue in scientific research. Since using microwave satellites may be a possible
way to isolate groundwater storage (GWS) variations from the GRACE signal (Frappart and
Ramillien, 2018, Yeh et al., 2006), a significant area of research is the possibility of using
microwave observations to determine SM.

Microwave remote sensing observations have been applied for the determination of SM (Babaeian
etal., 2019). Active and passive microwave remote sensing provides an observation of SM at
global and regional scales (Bartalis et al., 2007, Chen et al., 2018, Jackson et al., 2010, Kerr et al.,
2016, Koike et al., 2004, Ulaby, 1982, Vinnikov et al., 1999, Wagner et al., 2013). It helps in
much scientific research in hydrology and climate studies and gives an opportunity to understand
environmental changes (Njoku and Entekhabi, 1996). GRACE ATWS and remote sensing
microwave SM observations have recently been used to improve SM and GWS simulations
(Tangdamrongsub et al., 2022, Tian et al., 2017).
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One of the essential microwave sensors providing SM data was the AMSR-E mission. Owing to
the long joint period in orbit during the operation of GRACE and AMSR-E missions, numerous
previous studies have considered comparing SM from AMSR-E and ATWS signals from these
sensors. Comparisons between the AMSR-E surface wetness index (ASWI) and the GRACE
drought severity index (DSI) were shown in the previous work (Du et al., 2019). The indicated
comparisons showed robust correlations in regions in the United States (R higher than 0.7
for 29 percent of the area) during the summer months (June—August) from 2002 to 2017 for
regions where a semiannual temporal lag between fast surface water changes and the slower
GWST was considered. The study explores multivariate data assimilation (DA) using synthetic
ATWS from GRACE and synthetic AMSR-E passive microwave brightness temperature spectral
differences (dTb) in case estimation of snow water equivalent (SWE) over snow-covered terrain
was presented by Wang et al. (2021) and Wang and Forman (2020). In a previous study (Seo et al.,
2010), the authors propose methods to estimate solid precipitation accumulation in winter in the
northern Arctic region. Based on the GRACE and AMSR-E, winter season solid precipitation
accumulation was estimated. In the second step, estimated values was compared with the
traditional estimations from the Global Precipitation Climatology Project (GPCP) and Climate
Prediction Center’s Merged Analysis of Precipitation (CMAP). Correlation, time shift, and
principal component analyses of SM from the WaterGAP Global Hydrology Model (WGHM)
and the satellite sensors AMSR-E and ASCAT to total water storage variations from the satellite
gravity mission GRACE in the area of the La Plata Basin in South America were provided by
Abelen et al. (2015). Regional and global variations in SM from satellite sensor AMSR-E and
GRACE was also considered in Abelen et al. (2011). Global Land Data Assimilation System
(GLDAS) (Rodell et al., 2004) product was used to evaluate AMSR-E observations over central
Tibetan Plateau (Chen et al., 2013). To effectively catch drought disasters in the Guangdong
province of southern China in 2004-2005, 2007, and 2009 SM from AMSR-E was used (Chen
et al., 2012). The highest SM variability in the surface soil layer can be observed because
of meteorological and environmental interactions such as precipitation, temperature changes,
porosity, topography, vegetation processes, and human factors.

Although many studies have been performed on evaluating extreme hydrological events using
GRACE and AMSR-E, there is a gap in the published literature concerning ATWS and SM
signal convergence considering land cover data described soil conditions, vegetation cover,
urbanization status, and cultivated land. Since the information collected by gravimetric sensors
has a lower temporal frequency and spatial resolution than microwave measurements, it is crucial
to investigate the convergence of these signals. The key question posed in the article is: is it
possible to use the information contained by sensors characterized by higher noise and signal
variance, such as AMSR-E, in the global analysis of ATWS variability from GRACE satellites?
In work, it was decided to present the similarities and differences in the Earth’s water resource
measurements. This article analyzes the spatiotemporal variations of SM and ATWS in the
context of the similarity pattern comparison. The study used maximum covariance analysis
(MCA) to extract principal components for ATWS and SM signals.

2. DATA AND METHODS

2.1. Data

GRACE data is available at https://podaac-tools. jpl.nasa.gov/(accessed on
01.06.2022) distributed by the Center for Space Research (CSR). The spatial resolution of
the GRACE data included in the study is approximately 300 km x 300 km. Surface and
subsurface mass change data are based on the RL0O6 standards (Dahle et al., 2013) at the .2
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data processing level. Processing GRACE data included replaced coefficient C'yq representing
gravimetric flattening of the Earth (Swenson et al., 2008a) by Satellite Laser Ranging (SLR)
observation (Cheng and Tapley, 2004) and filtered out the correlated error (Swenson and Wahr,
2006) using a modified de-correlation filter (Chen et al., 2007). Processing GRACE data also
included excluding the static part of the gravity field using GGMO05C model (Ries et al., 2016).
During processing GRACE data the degree-1 coefficients (Geocenter) are estimated using the
methods from Sun et al. (2016) and Swenson et al. (2008b). A glacial isostatic adjustment (GIA)
correction has been applied based on the ICE6G-D model from Peltier et al. (2018).

The Advanced Microwave Scanning Radiometer for the Earth Observing System is a passive
multiband sensor of NASA’s Earth Observing System Aqua satellite. AMSR-E uses the X-band
and C-band to measure the water cycle and SM content retrievals corresponding to the depth of
(2.5-3.75cm) and (3.75-7.5cm), respectively. Owing to the fact that radio frequency interference
(RFI) in the C-band (6.9 and 10.7 GHz), the X-band has been extensively used for SM retrieval
(Njoku et al., 2005). AMSR-E dataset is available as daily files at https://disc.gsfc.
nasa.gov/(accessed on 01.06.2022). AMSR-E/Aqua surface SM ascending V002 is a Level
3 (gridded) data set with a daily frequency and spatial resolution of about 25 km by 25 km. Land
surface SM measurements is derived from passive microwave remote sensing data using the
Land Parameter Retrieval Model (LPRM). The LPRM is based on a forward radiative transfer
model to retrieve surface SM and vegetation optical depth. The dataset contains data from May
2002 to December 2011. AMSR-E on the NASA EOS Aqua satellite discontinued producing
data in October 2011 due to an issue with the rotation of its antenna (van der Vliet et al., 2020).
Only descending tracks were used because of the much better stability of nighttime soil, canopy,
and air temperatures in this study (De Jeu et al., 2008, Draper et al., 2009, Liu et al., 2012, 2011,
Owe et al., 2001).

The intersection of the GRACE and AMSR-E sensors datasets was selected for analysis. The
time range of the selected data for this study was chosen to cover the maximum part intersection
of existing GRACE and AMSR-E datasets. The dataset in the analysis contains data from 2002
to 2012 from both missions.

2.2. Methodology

Data preparation involved averaging with moving window data collected by the AMSR-E sensor
over the GRACE epochs. As the compared sensors have different spatial resolutions, the data
from AMSR-E were linearly interpolated on the GRACE resolution. The values for ATWS
observed by GRACE and AMSR-E have different amplitudes. To be able to compare these results
to each other, it was decided to normalize data for each season and then compare the normalized
values for given seasons to minimize the effects of seasonality. Volumetric soil water content
collected by AMSR-E sensor is the volume of water per unit volume of soil [m? ,../m?3 |
(Njoku et al., 2003). Volumetric water content (VSM) can be expressed as a ratio, percentage, or
depth of water per soil (assuming a unit surface area). As the VSM data from ARMS-E were
already presented as percentages, normalization was provided only at ATWS from GRACE.
Since results of retrieving global surface SM from GRACE depend on used SM extreme values,
the authors of Sadeghi et al. (2020) proposed used extreme values from overlapping SMAP
and GRACE timelines from 2015 to 2017. This research used maximum and minimum values
from the overlapping periods of GRACE and AMSR-E from 2002 to 2011. Normalization was
performed according to the following equation:

TWS —TW Spin
TW Shorm = 07 S TWS, ey
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To reveal the similarities and differences between the values, both sensor signals were grouped
for the winter, spring, summer, and autumn months. Moreover, a complementary correlation
analysis was performed to assess the level of agreement between different data sources:

)= Z?:l (TWSZ' - Mtws)(SMi - ,Usm)
\/Z?:l (TWSZ - ,utws)g(SMi - ,usm)2
where 1 is the mean value, and o its standard deviation. However, some phase shifts are observed

between the signals in the selected values delivered by analyzed sensors. Therefore, the analysis
of signal similarity was completed with the normalized cross-correlation (zcorr) coefficients:

2
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where FE is the expected value of the given expression and 7 is the time shift. In this case, a
maximum 6 months interval of possible lags between the examined time series was determined.
Anomalies for SM were also determined to indicate the similarities and differences with TWSA
resulting from extreme environmental changes. TWSA and SM anomalies (SMA) were calculated
by the following equations:

SMy — fism
SM Ay = =0t )
TW S — it
TWSAp = ——2 s )
tws

Intense spatial averaging filters with a high radius of smoothing kernel can cause signal loss,
known as ’leakage error” (Longuevergne et al., 2010, Swenson and Wahr, 2002). Filtering
decreases the spatial resolution of the GRACE observation, making it challenging to identify the
mass water signal of the main stem. The EOF analysis is a method for GRACE data to separate
signals from signal noise. It is beneficial in cases such as problems with loss of geophysical signal
with diminishing spatial resolution during filtration (Wouters and Schrama, 2007). The use of this
method is justified in the case of comparison of microwave data with higher spatial resolution and
greater time frequency of measurements than gravimetric satellite measurements. Concerning
the EOF’s of standard MCA (Rieger et al., 2021), the spatial amplitude (As) provides a means to
understand which regions contribute the most to the given mode. The spatial amplitude is easily
computed via the complex EOF and the complex conjugate EOF*:

As = VEOF x EOF* € C (6)

We can determine exactly how the individual regions are dynamically linked to each other. Phase
shifts between these two cases are signals that can be combined into one mode with standard
MCA by the following equation:

o tan(%) )

3. RESULTS

The surface soil layer commonly shows the most considerable SM variability due to the
relations with meteorological, environmental, and anthropogenic factors such as porosity,
topography, vegetation, precipitation, and temperature decreasing with depth. To analyze
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land cover conditions, the Harmonized World Soil Database was used (Fischer et al., 2008) from
https://www.fao.org/soils—-portal/data—hub/(accessed on 01.06.2022). Land
cover data contain datasets based on an iterative calculation procedure to estimate land cover
class weights. It was consistent with combined Food and Agriculture Organization (FAO) land
statistics and spatial land cover characteristics. Data was collected from remote sensing data,
allowing intepretation and classification of land cover shares in 5’ by 5’ latitude/longitude grid
cells. The class weights used in the study determine the presence of arable land and forests for
each land cover class. As the water content strongly depends on the soil porosity, the analysis
included classes presenting soil conditions in terms of oxygen content.
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Figure 1. Land cover data of forest land (a), oxygen availability to roots (b), total cultivated land (c),
and share of build-up land (d) based on Harmonized World Soil Database

Drainage characteristics of soils broadly define oxygen availability in soils. The determination of
soil drainage classes is based on procedures developed at FAO. These procedures consider soil
type, texture, terrain slope, and phases with mean proportion of water, air, and solids in soil. This
publication contains characteristics of forest land, oxygen availability to roots, total cultivated
land, and share of build-up land in Figure 1.
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Figure 2. Seasonal patterns of ATWS (a), SM from band X (b),
and SM from band C (c) grouped by month over time
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Figure 3. Average SM from AMSR-E and ATWS from GRACE
grouped by latitude (a) and longitude (b)

The SM and ATWS variables are characterized by high variability over time. The main
components are related to seasonal factors included and the occurrence of dry and rainy seasons.
This decline over the years is presented in Figure 2. The figure clearly shows the negative trend
of ATWS value over the years. There are no similarities between the averaged SM and ATWS
observations for a given month. Since the cyclic signal can be reset by cyclical phenomena
occurring in a given area, the article presents averaged anomalies concerning time and latitude.

In order to characterize the values collected by gravimetric and microwave sensors, the averaged
values of the observation epochs in the years 2002-2011 were determined concerning the latitude
and longitude, respectively, as shown in Figure 3. Mean anomalies and standard deviation of
anomalies in time over the latitude are presented in Figure 4. Figure 4 a) c) e) show an increase in
the average values of TWSA and SMA in 2009-2011 for latitudes 0-20°S with a slight standard
deviation for these latitudes in the given years. Both sensors picked up the same anomaly in these
areas. Time series analyses in this area can be characterized by high convergence. For latitudes
20-40°N, we observe a significant TWSA anomaly that was not captured by the AMSR-E
sensors. In the years 2003-2005, we observed a significant standard deviation of anomalies,
which indicates a large scatter of observations and substantial variability, which was not captured
when determining the average SMA values.
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Figure 4. GRACE (a,b) and AMSR-E (c,d,e,f) average anomaly (a,c,e) and standard deviation (b,d,f)
grouped by latitude over time

As the data on the water content in the ground shows the cycle of seasonal changes in the
groundwater level, the average values were compared separately for each season of the year.
The analysis was divided into the C and X bands for the SM observation. After normalizations
of ATWS, ATWS and SM signals were grouped for the winter, spring, summer, and autumn
seasons. Where winter months are marked as December, January, February (DJF), spring as
March, April, May (MAM), summer as June, July, August (JJA), and autumn as September,
October, and November (SON).

70



[%]

Figure 5. GRACE ATWS (a,d,g,j) and AMSR-E band C (b,e,h,k) and band X (c,f,i,]) SM averaged
and normalized values grouped by seasons DJF (a,b,c), MAM (g,h,i), JJA (j,k,1) and SON (j.k,I)
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Figure 6. Pearson correlation coefficient between SM from band X and C from AMSR-E (a),
ATWS from GRACE and SM from band C from AMSR-E (b),
ATWS from GRACE and SM from band X from AMSR-E (c¢)

Data from the C- and X-ranges are very similar. However, they are visible in the saturation of the
SM parameter. In Figure 5, higher values of VSM in the areas of Amazonia can be noticed for
the C- range and the latitude of 60-70 degrees. When comparing the percentages of GRACE and
AMSR-E, there are apparent differences. Some of them may be due to data noise in GRACE.
Theoretically, all observations from the Sahara area should be close to zero due to the near-zero
water content in that area. However, variations in the water content around Lake Chad are
observed (Boy et al., 2012), which partially explain this effect. More similarities can be seen
between the C-band and the GRACE data, especially in the equatorial regions.

Often long-term microwave SM datasets, such as the Climate Change Initiative (CCI), based
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on C- and X-band observations, are typically masked over densely vegetated areas due to the
soil signal’s strong attenuation by the vegetation signal canopy (Dorigo et al., 2011, Liu et al.,
2011). It is worth emphasizing here that the X-band penetrates only the surface layer, the C-band
a bit deeper, into with highly dense vegetation. Both bands cannot penetrate the soil in some
cases (El Hajj et al., 2018). Pearson’s correlation coefficient for the tested signals is presented in
Figure 6.

Significant values of humidity in the X- and C-bands and low coefficients of correlation with
GRACE data observed in the northern regions of the globe, are strongly related to the permafrost
region. Data from this area deviates significantly in quality from other observations. No reduced
correlations can be seen in forest areas during the comparison of the water content obtained
from gravimetric and microwave sensors. The central part of Europe and the eastern regions of
China are mainly urbanized areas. There we observe a negative correlation between GRACE
and AMSR-E sensors. The anthropogenic factor related to the urbanization of space strongly
influences the quality of observation (Ahmed et al., 2014, Chen et al., 2019, Wang et al., 2017).
A high rate of urbanization also characterizes the Indian subcontinent. Moreover, over 60%
of the area is arable land, which, due to the large number of people living in the region, is
necessary to produce the right amount of food. Owing to the large open area and the lack of
limitations in oxygen availability in the root zones, we can observe a significant amplitude of the
SM signal. Phase compliance contributes to a high correlation in this area despite the progressive
urbanization of the area, in particular in the X-band. The cultivated areas worldwide showed
highly coherent GRACE and AMSR-E signals for GRACE and AMSR-E observations. The open
areas do not have barriers or limitations for rainfall, which allows water to penetrate the root
zone. The only exception is the eastern part of Europe, for which the overlapping of urbanization
factors and soil constraints on oxygen content, and thus lower soil porosity, slows down water
penetration into the soil. This causes a phase shift for the observed signals manifested by the
negative correlation coefficient in this area.

EOF method is effective due to its capacity to find spatial correlation in spatiotemporal data.
ATWS retrieved from the GRACE and SM retrieved from AMSR-E missions are decomposed
using the EOF method to extract the signal, mainly describing the river discharge along the main
gravity stream. Before determining the EOF, the linear trend was removed from the observations
to eliminate the bias. Applying orthogonal decomposition MCA to geophysical datasets permits
extracting common dominant patterns between two variables. Regions with the same color are
in phase, that means their time series correlate with each other, while regions whose color is
different are anticorrelated as shown in Figure 8 and Figure 9.
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Figure 7. Dominant spatial pattern of water variability presended by decomposition of signal using EOF
for ATWS from GRACE (a,d,g) and SM from AMSR-E (b,c,e,f,h,j). The first spatial pattern (EOF1)
(a,b,c), the second spatial pattern (EOF2) (d,e.f), and the third spatial pattern (EOF3) (g,h,j)

a) GRACE EOF spatial amplitude
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Figure 8. EOF signal amplitude for ATWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c¢)
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Figure 9. EOF signal phase shift for ATWS form GRACE (a), SM from band X from AMSR-E (b),
and SM from band C from AMSR-E (c¢)
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4. DISCUSSION

The preservation of the flow of subsurface waters is a significant regional issue, depending on
the climate determining the amount of rainwater, the topography, the arrangement of permeable
layers, and the presence of river sources. In this part of the article, regional studies were carried
out for selected river basins with the most significant area by selecting cases for all continents.
Regional analyses appear in earlier articles by Vishwakarma et al. (2021), where time series
analysis was carried out for major river basins. In this article, scientists capture significant dips
and identify constraints due to too short an observation period using the trend to variability ratio
(TVR) metric. This section focuses on the reasons for similarities and differences in gravimetric
and microwave signals in selected areas. The observations provided by the GRACE mission
are characterized by a significantly lower spatial resolution than microwave observations. The
application of grouping to the studied signals within rivers allows for finding patterns resulting
from minimizing errors resulting from noise or artifacts of the filtration process. For each
continent, a set of rivers with the largest area and different land cover features and different
latitudes was selected, thus eliminating bias in the dataset sample. For selected river basins,
Pearson’s correlation coefficients and cross-correlation, taking into account the phase shift
calculated according to formula (2) and presented in Figure 10 and Figure 11, were determined.

a) ATWS & SM band X Pearson correlation at main river bassin b) ATWS & SM band C Pearson correlation at main river bassin

Figure 10. Pearson correlation over selected rivers basin between ATWS from GRACE and SM
from band X from AMSR-E (a) and ATWS from GRACE and SM from band C from AMSR-E (b)

a) ATWS & SM band X cross correlation at main river bassin ) b) ATWS & SM band C cross correlation at main river bassin

Figure 11. Cross-correlation over selected rivers basin between ATWS from GRACE and SM from band
X from AMSR-E (a) and ATWS from GRACE and SM from band C from AMSR-E (b)

Examples of ATWS and SM time series and TWSA and SMA anomalies are shown in Figure
12.
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Figure 12. River basin time series containing ATWS and SM (a,c,e,g,i,k,m,0,q,s,u,w), TWSA and SMA
(b,d,f,h,j,1,n,p,r,t,v,x) for European (a,b,c,d), North America (e.f,g,h), South America (i,j,k,1),
Asian (m,n,0,p), African (q,r,s,t,w,X), and Australian (u,v) rivers

4.1. Europe

The analysis shows that the size of the river basin is not directly related to the differences in
GRACE and AMSR-E signals. Large European rivers, such as the Danube and the Vistula,
show the mutual shift of hydrological signals for gravimetric and microwave remote sensors
as can be seen in Figure 12 a), c). There is a more significant variance in the signal for
observations from the X- and C-bands than in GRACE observations. Therefore, the determined
anomalies are characterized by high noise for these ranges. Similar to the analysis performed in
Kuczynska-Siehien et al. (2019), the GRACE and AMSR-E sensors pick up an anomaly related
to the 2010 hydrological flood. However, contrary to the cited article, the SM determined from
AMSR-E indicates the occurrence of anomalies in the years 2007-2009, which is not recorded
in the GLDAS models. The snowfall in these regions during the months of DJF indicates a
lower moisture content in the soil, while GRACE sensors capture the mass contained in the snow
equivalent. This is explained by the method used to process AMSR-E data. Under frozen surface
conditions, the dielectric properties of the water change dramatically. Therefore, the method
assigns all pixels where the surface temperature is observed to be at or below 273 K with an
appropriate data flag (Holmes et al., 2009).

4.2. Africa

The Nile basin shows a very high agreement between GRACE and AMSR-E signals in both
X- and C-bands for the ATWS and SM values and their anomalies. The Pearson correlation
coefficient between these variables is greater than 0.8 for this region. The lack of soil constraints
and little human intervention in the form of agricultural or urban activities contribute to the
consistency of observations (Gossel et al., 2004). The percentage of arable land with additional
irrigation is less than 5% (Villholth, 2013). In the case of the Nile, a significant factor influencing
the changes in ATWS is surface runoff. The weather extremes and climatic variances observed
over the years using gravimetric observations indicate the high sensitivity of these sensors to
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extreme phenomena such as droughts (Scanlon et al., 2022, Seka et al., 2022a,b). The GRACE
and AMSR-E sensors catch the 2005 and 2010 drought anomalies, shown in Figure 12 t). Similar
results were also described by Seka et al. (2022b) using meteorological drought indicators and a
water storage deficit index (WSDI) occurring at the source of the Nile in the Turkana, Victoria,
and Tanganyika lakes.

The Congo River basin, known as Zaire, is over 60% covered by tropical forests. Crops account
for only 10% of the area. The correlation of gravimetric and microwave signals is lower than at
the same latitude for the Amazon basin. In this case, data collected by the AMSR-E mission
detects two seasonal signal peaks, while GRACE usually has only one, as presented in Figure 12
q), r). The X-band observations for shallow soil layers do not detect a split between longer and
shorter rainfall. At the same time, the C-band distinguishes subeasonal changes more like the
GRACE observations. Despite the lack of soil constraints, such a large area affected by changes
in precipitation caused by the movement of circulation cells poses a challenge for scientists in
interpreting ATWS and SM observations.

The Zambezi River basin maintained an above-average consistency between GRACE and
AMSR-E signals in both X- and C-bands for the ATWS and SM values and their anomalies also
described in Thomas et al. (2014) and Hassan and Jin (2016). Similar to Thomas et al. (2014), a
water deficit was observed in the area Zambezi River basin due to a hydrological drought event
in April 2005. For the Zambezi and Zaire river basins, the highest amplitudes of ATWS and SM
signals on the African continent can be observed. It can therefore be concluded, similarly to the
publication of Hassan and Jin (2016), that the ATWS in these regions is dominated mainly by
precipitation. Despite the relatively poorly urbanized area, the most important anthropogenic
factors include that the Zambezi River is used to produce electricity for southern Africa. In the
middle stretch of the river, there is a large artificial water reservoir called Kariba. Incremental
storage of a large mass of water favors capturing this effect by GRACE sensors with a minor
time frequency. Large uncovered agricultural areas and lack of factors contributing to noise
in microwave observations contribute to a significant convergence of results with gravimetric
Sensors.

4.3. North America

The large rivers of North America have different results for the studied similarity between
gravimetric and microwave observations. The Mackenzie River basin has its source in Great
Slave Lake. Located in the north of Canada in subpolar regions, the source is closely related to
the snow equivalent variances visible in the GRACE observations but not included in the X- and
C-bands. A similar situation will be seen in the subpolar regions of the Ob River. This result is
visible in small correlations and low aggregation of ATWS and SM signals and their anomalies.

The Mississippi River basin has the opposite statistics compared to the Mackenzie River described
previously. The high agreement of ATWS and SM observations, shown by the cross-correlation
coefficient > 0.7, is due to the large area of agricultural crops. No limitations for soil conditions,
and <10% afforestation of the area does not retain water in the vegetation and allows free
seepage to groundwater. The main components of EOF3 show similar signal strength in terms of
area. Observations in the X-range have a slightly more substantial phase shift than observations
from the C microwave band. However, the difference is not significant in the context of the
examined similarity to gravimetric observations. The high compatibility of TWSA and SMA
allows both sensors to quickly monitor and predict natural disasters caused by droughts or floods
(Foroumandi et al., 2022).
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4.4. South America

The Amazon basin, well described in the literature previously by Chen et al. (2009), Cui et al.
(2020, 2022), Eom et al. (2017) and Wu et al. (2022), is exceptionally consistent for GRACE
and AMSR-E signals despite being mostly forested. Observations in the X-band captured the
2004 anomaly, which is not visible in the C-band observations. Both bands indicated an anomaly
in 2009 resulting from the exceptional flood in this area (Chen et al., 2010b) and droughts
in 2010-2012 (Nie et al., 2015). As in the two previously mentioned publications, extreme
hydrological phenomena from 2009 to 2012 were captured by the GRACE and AMSR-E sensors
in Figure 12 j). A large area and one of the largest amplitudes of water fluctuations resulting
from tropical rains occurring at equatorial latitudes cause, despite minor soil limitations, the
studied signals to be characterized by considerable convergence.

The La Plata basin region is characterized by a significant anomaly in the GRACE and AMSR-E
observations in Figure 4. Extremes occurring in this area require special attention during
interpretation (Abelen et al., 2015, Chen et al., 2010a). The low topographic complexity
facilitates penetration of the microwave signal. Secondly, a higher value of EOF3 shown in
Figure 7 in the X-band AMSR-E indicates the occurrence of phenomena that in the literature can
be found as the flood of winter 2009/2010. It was correlated with the occurrence of the El Nifio
effect and the droughts occurring in 2009. The analysis of the main components indicates that
extreme hydrological phenomena have a significant effect both in gravimetric and microwave
data. However, due to the differentiation in the La Plata river basin, these phenomena are
characterized by a phase shift.

4.5. Asia

The Amur is the tenth longest river in the world, forming the border between the Russian Far
East and Northeast China. From the north of the basin, the area covers permafrost and is covered
with the boreal forest. The southern part of the area is intensively cultivated and distorted by
human activity. As can be seen in Figure 11, the cross-correlation coefficient is at the level
of 0.3, which proves the extremely poor compatibility of the ATWS and SM signals. This is
also confirmed in Figure 12 m), n) presenting the time series for this area. Extreme droughts
and wildfires in 2008 described previously in Semenov et al. (2017) are reflected in GRACE
observations in this research, represented by an anomaly in this period, which is entirely absent
in microwave observations.

The Ganges and Brahmaputra valley is intensively used for agriculture and densely populated
area near the Himalayas. The monsoons in this area have become a permanent part of the
landscape of the local population. ATWS observations in that area were previously described
by Felfelani et al. (2017), Forootan et al. (2016) and Papa et al. (2015). Figure 12 o) shows
a good agreement between the ATWS and SM signals. Cross-correlation over this basin is
at a level of 0.75. However, Figure 12 p) shows the discrepancy between TWSA and SMA
characterized by the opposite trend in the 2006-2012 period. A similar difference was noted
in (Felfelani et al., 2017), described as a significant divergence between the SM natural and
GRACE ATWS trend lines. As in the case of the Zaire River, the observations provided by the
AMSR-E mission capture two annual waves and only one primary wave during GRACE. In
this case, the differences between the X- and C-bands are smaller than in the case of the Congo
Basin. Strong amplitudes of GRACE and AMSR-E signals, especially in the X-range, presented
in Figure 8 a), b) indicate the intensity of SM changes in shallow layers for the largest river delta
in the world.
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4.6. Australia

The Murray-Darling basin is a large geographic area in the interior of south-eastern Australia
with intensive farmland use around Adelaide. The area is characterized by one of the best TWSA
and SMA signal correspondences observed in Figure 12 v). The decreasing trend of water
content in the soil in this area was described by Heimhuber et al. (2019), Tregoning et al. (2012)
and Yang et al. (2014). We see considerable agreement in the detected anomaly in 2010-2011
for gravimetric and microwave sensors. Similar conclusions as in the article by Heimhuber et al.
(2019) can be obtained regarding the interpretation of the results from the period 2010-2012. La
Nina Floods can be observed in higher TWSA and SMA in Figure 12 v). Unlike previous works,
ASMR-E sensors did not show decreasing trend related to the 2000-2009 Millennium Drought.
This is partly explained by the aggregation of data over a large river basin area and the different
intensification of phenomena in the northern and southern parts of the river basin. Observations
in the C-band compared to GRACE are similar in phase. Figure 9 shows a more significant
shift in the observations of the X-band for its main components, which explains the shallow
penetration into the soil layers for this band. However, the lack of significant global constraints,
large open spaces, and small built-up areas create favorable conditions for the GRACE and
AMSR-E satellites to detect the same groundwater characteristics and variances. The high
Pearson correlation coefficient at the level of 0.8 and the cross-correlation of about 0.7 are visible
in Figure 10 and Figure 11.

5. CONCLUSIONS

This article discusses the conditions under which the ATWS observations provided by the
gravimetric GRACE mission are characterized by a greater or lesser signal convergence with
the observations provided by the passive multiwavelength microwave sensors of the AMSR-E
mission. The interplay of ATWS and SM can provide a better and high-resolution understanding
of the Earth’s processes related to the water cycle. The complexity of land uses processes
and conditions impacts the detection and mapping of natural hazards, such as droughts or
floods, observed on a global or regional scale. Understanding the limitations affecting the
speed of detection of changes and consistency in the observations provided using various
methods and sensors has a tangible impact on the quality of the solutions provided for the
prediction of geo-hazards. The main conclusions and observations from the conducted study
worth emphasizing are the mutual relationship between the use of cultivated and forested areas
in the ATWS and SM compliance analyses. Naturally forested areas and large open spaces
used for agriculture support the compatibility between GRACE and AMSR-E observations. The
discussion showed a high correlation for these areas, at the same time pointing to the importance
of good oxygen conditions for root zones in the soil. Existing soil constraints such as permafrost
significantly eliminate the usefulness of X- and C-range microwave observations. For this reason,
analyses carried out in subpolar regions using gravimetric sensors have a significant advantage.
The referenced examples in the subsection for Europe indicate differences between GRACE
and AMSR-E in signals leading to the conclusion of unfavorable conditions resulting from soil
constraints and significant urbanization of the area. Moreover, the study opens the question of
spatial data leakage caused by filtering low-resolution GRACE data. Regions with high signal
variance averaged over the area of the entire river basin may cause the loss of a part of the
geophysical signal, which was observed and described for the example of the Zaire River. The
use of mathematical methods and a combination of signals with different spatial and temporal
resolutions, for areas with appropriate conditions and no soil and urban restrictions, will be the
next direction of the research.
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MG

Using machine learning techniques to reconstruct
the signal observed by the GRACE mission based

on AMSR-E microwave data

Abstract

This study delves into the synergy between remote sensing and satellite
gravimetry, focusing on the utilization of Advanced Microwave Scanning
Radiometer (AMSR-E) data for modeling delta Total Water Storage
(ATWS) values derived from the GRACE mission. Various machine
learning algorithms were employed to investigate the concordance
between Gravity Recovery and Climate Experiment (GRACE) and
AMSR-E observations. Despite the limited correlation in circumpolar
permafrost areas, ATWS was successfully modeled with an accuracy
of a Root Mean Square Error (RMSE) of 3.5 cm. The Amazon region
exhibited a notable model error, attributed to significant ATWS amplitude;
the overall model quality was affirmed by Normalized Root Mean Square
Error (NRMSE) and Nash-Sutcliffe Efficiency (NSE) metrics. Importantly,
the effectiveness of AMSR-E Soil Moisture (SM) data, encompassing C
(frequency of 4-8 GHz) and X (frequency of 8—12 GHz) ranges (~0.04 m
and ~0.03 m wavelength, respectively) in modeling ATWS, even in heavily
forested equatorial regions, was demonstrated.

Keywords
GRACE * AMSR-E - total water storage anomalies ¢ soil moisture * remote
sensors

Introduction

Water, a crucial Earth resource (De Villiers 2001), necessitates
continuous monitoring in order to understand planetary processes
and predict extreme weather events. Utilizing hydrological models,
remote sensing, and gravimetric sensors has become integral
to climate-related research. Satellite gravimetry is a unique
technique for monitoring mass transport and Earth’s processes
on a global scale. One such satellite mission is GRACE (Tapley
et al. 2004; Wahr et al. 1998). SM is a pivotal hydrological variable,
constituting a fundamental component of ATWS (Robinson et al.
2008). Both active and passive microwave observations enable
the analysis of SM at both global and regional scales (Babaeian
et al. 2019). One of the key remote sensors providing SM data
was the AMSR-E mission. AMSR-E is an advanced microwave
scanning radiometer, serving as a component of the Earth
observation system (Njoku et al. 2005). Given the constraints
associated with the spatiotemporal resolution of GRACE data,
it is essential to uphold statistical significance when examining
the potential synergy of GRACE data with sensors that offer
higher measurement frequencies and spatial resolutions (loannidis
2005). In the literature, there is a significant amount of research
that involves processing, merging, and analyzing data from
gravimetric sensors in conjunction with other data with varying
spatiotemporal resolutions (Eicker et al. 2014). The year-long gap
between GRACE and GRACE-FO missions raises concerns
about our understanding of ongoing climate change. With the
increasing computational capabilities of computers, machine
learning methods have gained significance in solving signal
reconstruction problems. After the completion of the GRACE-
FO mission, there will be a continued need to map various
phenomena and their changes using existing data, along with
further research in hydrological modeling (Hamshaw et al. 2018).
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Numerous studies have already demonstrated the utility
of machine learning models in various contexts. Early attempts
to use Empirical Orthogonal Functions (EOF) were described
by Becker et al. (2011). Sun et al. (2020) presented time series
reconstructions of ATWS for sixty selected river basins, employing
a comprehensive comparison of deep neural networks (DNN) and
seasonal autoregressive integrated moving average (SARIMAX)
models. Sun et al. (2021) presented a ATWS reconstruction using
NOAH and CLSM data for major North American river basins.
Artificial neural networks (ANN) were utilized by Seyoum and
Milewski (2017), while Irrgang et al. (2020) demonstrated the efficiency
of convolutional neural networks (CNN). Babaeian et al. (2019)
conducted studies focusing on African river basins, and Sun
(2013) used multilayer perceptron (MLP) and ANN architectures.
Spatiotemporal analysis, using random forest, extreme gradient
boosting (XGBoost), and logistic regression was employed by Jing
et al. (2020) in the case of the Nile River basin, setting standards
for highly accurate hydrological parameter reconstructions based
on GLDAS-2 data. Seyoum et al. (2019) applied decision trees to
enhance high-resolution groundwater level anomalies, improving
GLDAS model data with field observations. Additionally,
Sun et al. (2019) utilized CNN models with VGG16, Unet, and
Segnet architectures for the Indian subcontinent, proving the
effectiveness of encoder-decoder network structures in ATWS
reconstruction.

The main goal of this publication is to show the possibility
of using satellite microwave data (AMSR-E) to recreate the
waveform observed by the gravimetric GRACE satellite mission
on a global and local scale. To validate the experiment on a
local scale, absolute gravimetric measurements were used.
The underlying hypothesis posits that the ML methods applied
to remote sensing AMSR-E data can effectively bridge the
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gaps in the GRACE mission data, serving as the independent
variable in various regression approaches. Previous research
endeavors encompassed diverse models and techniques to
reconstruct the temporal variations in ATWS, frequently relying
on SM data sourced from alternative sensors, indicating the
tremendous importance of this feature over other predictors. The
present study seeks to augment the existing body of literature by
comprehensively examining various regression methodologies to
reconstruct the GRACE-derived signal.

Target data - GRACE

The processed data from the GRACE mission, representing
ATWS, are available on the PODAAC website (Physical Oceanography
Distributed Active Archive Center 2023) and are distributed by the Center
for Space Research (CSR) in Texas. The spatial resolution of the
GRACE data used in this study is approximately 300 km x 300 km.
The data concerning changes in mass on the Earth’s surface and
subsurface are based on the RL0O6 standard (Dahle etal. 2013) at the
level of L2 data processing. During the GRACE data processing,
the C,, coefficient, representing the Earth’s gravitational flattening
(Swenson et al. 2008a), was replaced with observations using the
Satellite Laser Ranging (SLR) technique (Cheng & Tapley 2004).
The error associated with the N-S stripes, resulting from orbit
inclination, was removed using a modified decorrelation filter
(Chen et al. 2007; Swenson & Wahr 2006). Additionally, during the
GRACE data processing, the static part of the gravitational field
was corrected using the GGM05C model (Ries et al. 2016). While
processing GRACE data, degree 1 coefficients (Geocenter) were
estimated using the methods presented in the work of Swenson et
al. (2008b). Correction due to the glacial isostatic adjustment (GIA)
was considered, based on the ICE6G-D model, as presented in
the study by Peltier et al. (2018).

Predictors data - AMSR-E

The AMSR-E dataset is available as daily measurement
files on the NASA website (NASAs Goddard Earth Sciences Data
and Information Services Center, 2023). The AMSR-E/Aqua surface
SM descending dataset, version 2, is a Level 3 dataset in grid
format, with a daily temporal resolution and a spatial resolution
of approximately 25 km x 25 km. AMSR-E uses the X-band and
C-band to measure the water cycle and SM content retrievals,
corresponding to depths of 2.5-3.75 cm and 3.75-7.5 cm,
respectively. Land surface SM measurements are derived from
passive microwave remote sensing data using LPRM (Land
Parameter Retrieval Model). LPRM leverages a radiative
transfer model to obtain near-surface SM and optical depth of
signal penetration. AMSAT-E on NASA's EOS Aqua satellite
discontinued data provision in October 2011 due to issues with
its antenna rotation (van der Vliet et al. 2020). This study exclusively
utilized descending orbits, primarily due to their superior stability
for soil temperature, vegetation cover, and nighttime air conditions
(Liu et al. 2012).

True validation data — absolute gravimetric measurements
The JOZE gravimetric station is situated beneath the
facilities of the Astronomical-Geodetic Observatory (AGO) in
Jézefostaw, Poland, precisely 5.7 meters below the surface. It is
anchored to a concrete pillar measuring 2 x 2 meters. Absolute
measurements were conducted at approximately monthly
intervals, from May 2005 to November 2016, employing the
FG-5 gravimeter, serial number 230. This dataset represents
the longest and most uniformly collected time series of absolute
gravimetric values in Poland. The total uncertainty in determining
the gravity amounted to +2 pGal. The results of absolute
measurements are meticulously adjusted to account for Earth
tides (following the Wenzel model), oceanic tides (based on

the FES2004 model), atmospheric pressure fluctuations, and
polar motion in accordance with ITGRS standards (Wziontek et
al. 2021). In addition, gravitational values are further refined by
incorporating the outcomes of ICAG and ECAG international
comparison meetings to define common international gravity
reference values and metrological factors stemming from
variations in clock and laser frequencies.

Methods

Machine learning encompasses various problem types
where these algorithms find application. Signal reconstruction
is effectively addressed through regression modeling, using
machine learning algorithms. The regression problem involves
predicting a continuous response variable based on a given set
of predictors. Regression models are techniques for creating a
mathematical equation defining y as a function of the variables X.
Linear regression is the simplest and most widely used technique
for predicting a continuous variable and is defined by the formula:

Y=XB1+p0+¢ M

Here, B0 is the intercept, B7 is the regression coefficient
associated with the predictor variable (feature or attribute) X, and
€ represents Gaussian noise.

The selection of regression algorithms for this study was
guided by their established efficacy in handling diverse datasets
and features, and their suitability for modeling the phenomenon
under investigation. Drawing from prior research (Bonaccorso
2018; Maulud & Abdulazeez 2020), which evaluated various machine
learning algorithms for regression tasks, we identified several
popular methods for their robust performance across different
data characteristics. Leveraging diverse methods ensured a
comprehensive exploration of the regression landscape and
facilitated robust modeling of the target phenomenon. The
selected algorithms encompass a range of approaches, from
ensemble methods such as Random Forest Regressor and
Extra Trees Regressor, known for their ability to capture complex
relationships in large datasets, to gradient boosting algorithms
such as Extreme Gradient Boosting (XGBoost) and Gradient
Boosting Regressor, which excel in handling high-dimensional
data and achieving superior predictive accuracy. Additionally,
traditional linear models, such as linear regression and ridge
regression, were included, which, despite their simplicity, often
serve as reliable baselines for comparison. Bayesian Ridge
regression was chosen for its ability to balance model complexity
and goodness of fit through Bayesian analysis. At the same time,
the Huber Regressor was selected for its robustness to outliers,
a common challenge in real-world datasets. Furthermore, more
specialized techniques, such as Orthogonal Matching Pursuit
and Lasso Regression, offer sparse solutions by selecting only
the most relevant features, thus aiding in model interpretability.
Elastic Net, a hybrid regularization method combining L1 (Lasso)
and L2 (Ridge) penalties, was included to address potential
collinearity among predictor variables, enhancing the stability of
parameter estimates. To provide a comprehensive evaluation,
ensemble methods, such as AdaBoost Regressor, known for
their ability to combine multiple weak learners in order to improve
predictive performance adaptively, were also considered,
and Passive Aggressive Regressor, a variant of the passive
aggressive algorithm, adapted specifically for regression tasks,
offering flexibility in adjusting model parameters in response to
observed errors.

Methods of fitting trigonometric functions were chosen as
a reference point. A custom script, written in Python, was used
for calculations using open-source libraries such as scikit-learn,
PyCaret, and numpy.



The experiment focused on the intersection of GRACE
and AMSR-E sensor datasets over the 2002-2012 period,
which were strategically chosen to maximize dataset overlap.
Input data for model training were meticulously organized into
a tabular format, where each data point corresponds to a point
in the matrix, and represents different measurement epochs.
The columns contain variables derived from SM AMSR-E Band
C and Band X determination, latitude, longitude, and monthly/
semi-annual factors. This matrix corresponds to a vector,
containing continuous ATWS variables, which are marked as
the target variable. Subsequently, all these matrices have been
amalgamated into a single table with dimensions equivalent to
the number of epochs multiplied by the number of data points,
and further multiplied by the number of variables.

Prior to the training phase, a distinct portion of randomly
selected data should be set aside for the purpose of accuracy
testing and model evaluation. It is crucial to ascertain the
appropriate sample size for the test data to attain statistical
significance, given the lack of substantial variance in the
mean values between the two groups (loannidis 2005). To obtain
statistical significance of the model results, the minimum number
of samples included in the test set was determined. Data from
2002—-2008 were included in the training set, and data from
2008-2012 were included in the test set.

Comparative analyses necessitate quality metrics to
evaluate model performance, which is dependent on the analysis
type and data characteristics. This work utilizes metrics such as
NSE (Nash 1970), the coefficient of determination (R?) (Nagelkerke
1991), Root Mean Square Error (RMSE) (Chai & Draxler 2014),
and Normalized Root Mean Square Error. NSE is a normalized
statistic that quantifies the relative size of the residual variance to
the variance of the measured data. NSE is calculated using the
following formula:

Y1 = Disim)?

NSE =1 — St
X i —y)?

where: n represents the number of observations, y, is the actual
value of observation /, § is the predicted value for observation /
by the model, and y is the mean value of all observations. The
coefficient RMSE is calculated using the following formula:

1 n
— c—1.)2
o E_l(yl 91 ®)

RMSE is a measure of the deviation between actual values y,
and model-predicted values §. A lower RMSE value indicates a
better fit of the model to the actual data. The coefficient NRMSE
is calculated using the following formula:

RMSE =

NRMSE = RMSE 4)
" Imax(y) — min(y)|

where: max(y) and min(y) are the maximum and minimum values
in the set of actual data y. In the context of GRACE data analysis,
we are dealing with the amplitude of a phenomenon in a specific
area. NRMSE is a measure of the deviation between model-
predicted values and actual data, normalized to the data value
range.
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In this formula: y, is the actual value of observation i, § is the
predicted value for observation i by the model, and y is the mean
value of all observations. R? is a measure that assesses how well
a regression model fits the data. The value of R? ranges from 0
to 1, where 1 indicates a perfect fit of the model to the data. The
Nash-Sutcliffe model efficiency coefficient closely resembles the
coefficient of determination, differing from R? in its application. R?
serves as an indicator of the quality of fit for a statistical model.
In contrast, NSE is utilized to quantify a model's capability to
forecast the outcome variable.

Global results and discussion

The achieved results on the test data sample are presented
in table 1. The best results were obtained from methods related
to Random Forests, such as Random Forest Regressor, Extra
Trees Regressor, and Extreme Gradient Boosting, achieving
satisfactory R? values greater than 0.7.

The results align with established benchmarks. For example,
Sun et al. (2020) achieved impressive metrics in their temporal
approach, including RMSE of 4.5-4.7 cm and NSE of 0.7. RMSE
results of 4.5-4.7 cm can be observed (Szabé 2023) and RMSE
of 4.2-4.5 cm, depending on the temporal and spatiotemporal
scales considered. In a spatial and temporal context, Sun et al.
(2021) achieved strong Nash-Sutcliffe efficiency (ca. 0.85), and
low mean Normalized Root Mean Square Error (ca. 0.09) over
the US. In a Nile River basin case study, using the spatiotemporal
method (Jing et al. 2020), results revealed RMSE of 1.4-3.47 cm
and NSE of 0.54-0.94. Using CNN networks, at a grid-based
scale, showed promising results, with NSE of 0.87 in the Indian
study area. However, RMSE values of 4.5-5.0 cm provide
limited insight into solution quality. For a more comprehensive
assessment, and considering the error-scale ratio, NRMSE
serves as a superior metric, with the spatiotemporal approach
benefiting from the increased variance in individual observations.

Local results and discussion

Measurements conducted with an absolute gravimeter
are influenced by systematic geodynamic effects, which are
accounted for during data processing and the local hydrological
environment. Alongside gravity measurements at AGO JOZE,
groundwater levels were monitored through a piezometer. By
assessing the influence of nearby subsurface water bodies,
a comparison between ground-based and satellite data was
feasible. The methodology outlined in the work of Kuczynska-
Siehien et al. (2019) and Szabé and Marjanska (2020) was employed
to process absolute gravity data. The ATWS prediction results
and the given gravity disturbance are presented in figure 3.
The signal is accurately replicated with a high degree of precision,
capturing the periodic changes effectively. However, in the
presence of anomalies such as floods, the disparities between
the model and observed values intensify.

In a study by Szab6 and Osinska-Skotak (2023), the investigation
reveals that the size of the river basin does not exhibit a
direct correlation with the disparities in signals obtained from
GRACE and AMSR-E. European rivers such as the Danube
and Vistula exhibit concurrent shifts in hydrological signals
when observed using both gravimetric and microwave remote
sensors. Observations from the X- and C-bands introduce a
more pronounced signal variance, compared with GRACE
observations. Consequently, the identified anomalies are marked
by heightened noise levels within these frequency ranges.
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Table 1: The achieved results on the test data sample

Model RMSE [m] R? A RMSE [%] A R?2[%] 1-R? A 1-R? [%]
Random Forest Regressor 0.035 0.761 51.3 380700.0 0.239 76.1
Extra Trees Regressor 0.035 0.757 50.9 378700.0 0.243 75.7
Extreme Gradient Boosting 0.037 0.739 48.9 369350.0 0.262 73.9
K Neighbors Regressor 0.038 0.725 47.7 362450.0 0.275 72.5
Light Gradient Boosting Machine 0.038 0.715 46.7 357750.0 0.285 71.5
Decision Tree Regressor 0.048 0.546 32.8 273000.0 0.454 54.6
Gradient Boosting Regressor 0.052 0.469 27.3 234600.0 0.531 46.9
Linear Regression 0.069 0.074 3.9 36950.0 0.926 7.4
Least Angle Regression 0.069 0.074 3.9 36950.0 0.926 7.4
Bayesian Ridge 0.069 0.074 3.9 36900.0 0.926 7.4
Ridge Regression 0.069 0.068 3.7 34150.0 0.932 6.8
Huber Regressor 0.070 0.062 3.2 31000.0 0.938 6.2
Orthogonal Matching Pursuit 0.072 0.000 0.2 50.0 1.000 0.0
Lasso Regression 0.072 -0.001 0.2 -150.0 1.001 0.0
Elastic Net 0.072 -0.001 0.2 -150.0 1.001 0.0
Lasso Least Angle Regression 0.072 -0.001 0.2 -150.0 1.001 0.0
Dummy Regressor 0.072 -0.001 0.2 -150.0 1.001 0.0
AdaBoost Regressor 0.073 -0.021 -0.9 -10450.0 1.021 -2.1
Passive Aggressive Regressor 0.086 -0.485 -20.0 -242550.0 1.485 -48.5
sin+cos annual function (baseline) 0.072 0.000 - - 1.000
sin+cos semiannual function 0.095 0.000 -32.7 0.0 1.000 0.0
Source: own elaboration
a) Residuals for RandomForestRegressor Model b) Prediction Error for RandomForestRegressor ’
0 | == Train R? = 0.967 s - _._ gz =0.768 //
TestR? =0.768 T ideestm:l; ’/ /,'
e
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Predicted Value Distribution

Figure 1. Random Forest Regressor model: (a) residuals; (b) prediction identity
Source: own elaboration

Similar to the cited study, the flood wave prediction, based on
SM data from AMSR-E, was unsuccessful in this case. Metrics
for predictions for this location show the following values: NSE
= -0.19, RMSE = 0.04 [m], NRMSE = 0.23, R? = 0.27, and
confirm that the determination of anomalies in this area, visible
in local absolute measurements in 2010-2011, is unsuccessful.

However, clear correlations between absolute measurements
and SM from AMSR-E are visible in given periods. The negative
anomaly from December 2009 was visible in both time series.
This demonstrates the sensitivity of the gravimetric signal to
environmental changes in the top aquifers.
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Figure 2. Random Forest Regressor model spatial distribution of metrics: (a) NSE; (b) RMSE; (c) NRMSE; (d) R?
Source: own elaboration
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Conclusions

This study employs AMSR-E remote sensing data to model
ATWS values, based on observations from the GRACE mission,
testing various machine learning algorithms. Naturally forested
and agricultural open regions exhibit a strong concordance
between GRACE and AMSR-E data, emphasizing the importance
of well-oxygenated soil root zones (Szabo & Osifiska-Skotak 2023). The
presence of permafrost restricts the applicability of X- and C-band
microwave observations. Despite limited correlation in permafrost
areas, ATWS values are accurately modeled with an RMSE of 3.5
cm. The Amazon region displays a notable model error, associated
with the substantial amplitude of ATWS. However, metrics such
as NRMSE and NSE affirm the overall quality of the model.
AMSR-E SM data effectively models ATWS, even in equatorial
forests. Challenges arise in the Mississippi River basin, the Great
Plains, and Patagonia, where agricultural intensification leads to
significant residuals from true observations. Factors influencing
this may include connections with the irrigation of agricultural
areas, faster water permeability to deeper aquifers in open areas,
different vegetation periods, or other phenological factors. In the
context of the approximately one-year gap between GRACE and
GRACE-FO data, using existing data to model and complement
the time series of gravimetric observations is extremely important.
Data from remote sensing missions can be successfully used to
achieve this goal.
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