

WARSAW UNIVERSITY OF TECHNOLOGY

DISCIPLINE OF SCIENCE - MATHEMATICS
FIELD OF SCIENCE - NATURAL SCIENCES

Ph.D. Thesis

Marta Piecyk, M.Sc.

Graph Homomorphisms –

Exploring the Boundaries of Tractability

Supervisors

Professor Zbigniew Lonc, Ph.D., D.Sc.
Paweł Rzążewski, Ph.D., D.Sc.

WARSAW 2024

Acknowledgements

I am extremely grateful to Paweł for being great supervisor, for all his time, for

everything he taught me, and for inspiring me to start this journey. Without him I would

not be in the place I am today.

I wish to thank all the people I had the pleasure of working with. Special thanks to

Jajko, Carla, Isja, and Jesper – the co-authors of the results included in this dissertation.

I am also thankful to Zbigniew for taking the responsibility of being my supervisor.

Many thanks to all my collegues from MiNI, especially the ones from, broadly defined,

KTGiZU group, for making this time enjoyable. Thanks should also go to Ania, Karolina,

Marcin, and Hubert for sharing (not always easy) experience of PhD studies – I cannot

imagine going through all of this without them. I also cannot imagine this time without

Ola and Aneta who I could always talk to.

Lastly, I would like to thank my family – my parents, Nati, and Adam – for all their

support and love. The ones who always believed in me, were always there when I needed,

and (each one in their own way) helped me go through my darkest times.

Abstract

For a fixed graph H, in the graph homomorphism problem, denoted by Hom(H), we

are given a graph G, and we have to determine whether there exists an edge preserving

mapping φ : V (G) → V (H), i.e., for every uv ∈ E(G), we have φ(u)φ(v) ∈ E(H). This

problem is a generalization of the well-studied k-Coloring, as Hom(Kk), where Kk is

the complete graph on k vertices, is equivalent to k-Coloring.

It is known that Hom(H) is polynomial-time solvable when H is bipartite or contains

a vertex with a loop. Hell and Nešetřil [JCTB, 1990] proved that for every other H, the

problem is NP-hard. For a problem that is hard in general, a natural question is if it

becomes tractable when we restrict the family of the input graphs G. One of possible

restrictions is to bound some parameter of G. In this dissertation, we consider two

parameters: the cutwidth (ctw(G)) and the diameter (diam(G)), whose behavior is very

different and unusual.

For a linear ordering v1, . . . , vn of vertices of a graph G, the width of the ordering is the

maximum number of edges from {v1, . . . , vi} to {vi+1, . . . , vn} over all i. The cutwidth

of G is the minimum width over all linear orderings of V (G). Jansen and Nederlof [TCS,

2019] proved that every instance G of k-Coloring can be solved in (randomized) time

2ctw(G) · |G|O(1). This is very uncommon, as usually, for many graph parameters t(G), the

optimal running time of an algorithm solving k-Coloring is f(k)t(G) · |G|O(1), where f

is some increasing function of k.

In this dissertation, we try to find, for every H, a constant cH such that we can

solve every instance G of Hom(H) in time c
ctw(G)
H · |G|O(1), but there is no algorithm

with running time (cH − ε)ctw(G) · |G|O(1) for any ε > 0, unless the SETH fails. We de-

fine an asymptotic parameter, called mimsup∗(H), which is closely related to the sizes

of maximum induced matchings in powers of H (with respect to direct product). As

an evidence that mimsup∗(H) is a good candidate for cH , we first show that the maxi-

mum number of states in a natural dynamic programming is precisely mimsup∗(H)ctw(G).

Furthermore, we prove that for almost every graph H (and one can remove “almost”

assuming two conjectures from early 2000’s), there is no algorithm solving every instance

G of Hom(H) in time (mimsup∗(H) − ε)ctw(G) · |G|O(1), for any ε > 0, unless the SETH

5

fails. Finally, we provide an algorithm solving every instance G of Hom(H) in time

exp(O(mimsup∗(H) · ctw(G) log ctw(G))) · |G|O(1). Let us point out that this is the first

time when the parameterized complexity of a problem is linked to such an asymptotic

parameter.

For the diameter, we do not even know if 3-Coloring can be solved in poly-

nomial time for diameter-2 graphs. It is known that for k ⩾ 4, we cannot solve k-

Coloring in subexponential time, unless the ETH fails. Mertzios and Spirakis [Algo-

rithmica, 2016] proved that 3-Coloring is NP-hard for diameter-3 graphs and provided

a subexponential-time algorithm for 3-Coloring for diameter-2 n-vertex graphs with

running time 2O(
√

n log n).

In the dissertation we study the complexity of 3-Coloring for diameter-2 and -3

graphs. We show that 3-Coloring can be solved in time

• 2O(n2/3 log2/3 n) on n-vertex diameter-3 graphs,

• 2O(n1/3 log2 n) on n-vertex diameter-2 graphs.

Furthermore, we consider Hom(H) on bounded-diameter graphs for target graphs H

other than triangles. We show that if H is triangle-free, the Hom(H) problem can be

solved in polynomial time on diameter-2 graphs.

Finally, we study the Hom(C2k+1) problem, where C2k+1 is the cycle on 2k+1 vertices

and k ⩾ 2, i.e., we consider all odd cycles other than triangles. We prove that:

(1) every diameter-(k + 1) instance of Hom(C2k+1) can be solved in polynomial time,

(2) every n-vertex diameter-(k + 2) instance of Hom(C2k+1) can be solved in time

exp(O((n log n)
k+1
k+2)),

(3) there is no algorithm that solves every diameter-(2k + 2) instance of Hom(C2k+1) in

subexponential time, unless the ETH fails.

Let us point out that for k = 1, a result as in (1) would be precisely a polynomial-time

algorithm for 3-Coloring on diameter-2 graphs.

Keywords: graph homomorphism, graph coloring, cutwidth, diameter, fine-grained

complexity

6

Streszczenie

Dla ustalonego grafu H, w problemie homomorfizmu grafu, ozn. Hom(H), mamy dany

graf G i pytamy, czy istnieje funkcja φ : V (G)→ V (H), która zachowuje krawędzie, tj. dla

każdej uv ∈ E(G), mamy φ(u)φ(v) ∈ E(H). Ten problem jest uogólnieniem klasycznego

problemu kolorowania grafów, ponieważ k-kolorowanie jest równoważne Hom(Kk), gdzie

Kk to graf pełny o k wierzchołkach.

Wiadomo, że problem Hom(H) jest wielomianowy, gdy H zawiera wierzchołek z pętlą

lub jest dwudzielny. Hell i Nešetřil [JCTB, 1990] pokazali, że dla każdego innego H,

problem Hom(H) jest NP-trudny. W przypadku problemu, który jest trudny w ogólności,

naturalnym pytaniem jest, czy może stać się łatwy, jeśli ograniczymy klasę wejściowych

grafów. Jedną z możliwości jest ograniczenie jakiegoś parametru wejściowego grafu. W tej

rozprawie rozważamy dwa parametry grafu G – szerokość cięciową (ctw(G)) i średnicę

(diam(G)).

Dla ustalonego liniowego porządku v1, . . . , vn wierzchołków grafu G, szerokość takiego

porządku to największa liczba krawędzi z {v1, . . . , vi} do {vi+1, . . . , vn} po wszystkich i.

Szerokość cięciowa grafu G to najmniejsza szerokość po wszystkich liniowych porząd-

kach na V (G). Jansen i Nederlof [TCS, 2019] pokazali, że każdą instancję G problemu

k-kolorowania można rozwiązać w (randomizowanym) czasie 2ctw(G) · |G|O(1). Jest to bar-

dzo nietypowe, ponieważ dla wielu parametrów t(G), optymalny czas, w którym można

rozwiązać k-kolorowanie, to f(k)t(G) · |G|O(1), gdzie f jest rosnącą funkcją k.

W tej rozprawie próbujemy dla każdego H znaleźć stałą cH taką, że można rozwiązać

każdą instancję G problemu Hom(H) w czasie c
ctw(G)
H · |G|O(1), ale, zakładając SETH,

nie istnieje algorytm działający w czasie (cH − ε)ctw(G) · |G|O(1) dla żadnego ε > 0. De-

finiujemy asymptotyczny parametr mimsup∗(H), który jest związany z rozmiarami naj-

większych indukowanych skojarzeń w kolejnych potęgach (w sensie iloczynu prostego)

grafu H. Jako dowód na to, że mimsup∗(H) jest dobrym kandydatem na cH , najpierw

pokazujemy, że największa liczba stanów w naturalnym programowaniu dynamicznym

wynosi dokładnie mimsup∗(H)ctw(G). Następnie pokazujemy, że dla prawie każdego grafu

H (jeśli założymy dwie hipotezy ze wczesnych lat 2000, to słowo „prawie” może być po-

minięte), nie istnieje algorytm, który rozwiązuje każdą instancję G problemu Hom(H) w

7

czasie (mimsup∗(H) − ε)ctw(G) · |G|O(1) dla żadnego ε > 0, zakładając SETH. Ponadto,

przedstawiamy algorytm, który rozwiązuje każdą instancję G problemu Hom(H) w cza-

sie exp(O(mimsup∗(H) · ctw(G) log ctw(G))) · |G|O(1). Podkreślmy, że to jest pierwszy raz,

kiedy parametryzowana złożoność problemu została naturalnie połączona z parametrem

zdefiniowanym asymptotycznie.

W przypadku średnicy, nie wiemy nawet, czy problem 3-kolorowania jest wielo-

mianowy w grafach o średnicy dwa. Wiadomo, że dla k ⩾ 4, nie możemy rozwiązać

k-kolorowania w czasie podwykładniczym, zakładając ETH. Mertzios i Spirakis [Algori-

thmica, 2016] udowodnili, że 3-kolorowanie jest NP-trudne w grafach o średnicy 3 oraz

przedstawili podwykładniczy algorytm dla 3-kolorowania w n-wierzchołkowych grafach o

średnicy 2 działający w czasie 2O(
√

n log n).

W tej rozprawie badamy złożoność 3-kolorowania dla grafów o średnicy dwa i trzy.

Pokazujemy, że 3-kolorowanie może być rozwiązane w czasie

• 2O(n2/3 log2/3 n) dla n-wierzchołkowych grafów o średnicy trzy,

• 2O(n1/3 log2 n) dla n-wierzchołkowych grafów o średnicy dwa.

Następnie rozważamy Hom(H) dla grafów o ograniczonej średnicy oraz H innych niż

trójkąty. Pokazujemy, że jeśli H nie zawiera trójkątów, to Hom(H) w grafach o średnicy

dwa może być rozwiązany w czasie wielomianowym.

Ponadto, badamy problem Hom(C2k+1), gdzie C2k+1 jest cyklem o 2k+1 wierzchołkach

oraz k ⩾ 2, tj. rozważamy wszystkie cykle nieparzyste oprócz trójkątów. Pokazujemy, że

(1) każda instancja Hom(C2k+1) o średnicy (k + 1) może być rozwiązana w czasie wielo-

mianowym,

(2) każda n-wierzchołkowa instancja Hom(C2k+1) o średnicy (k+2) może być rozwiązana

w czasie exp(O((n log n)
k+1
k+2)),

(3) nie istnieje podwykładniczy algorytm rozwiązujący każdą instancję Hom(C2k+1) o

średnicy (2k + 2) zakładając ETH.

Zauważmy, że dla k = 1, wynik taki jak w (1) byłby dokładnie wielomianowym algoryt-

mem dla 3-kolorowania grafów o średnicy dwa.

Słowa kluczowe: homomorfizm grafów, kolorowanie grafów, szerokość cięciowa, śred-

nica, złożoność drobnoziarnista

8

Contents

1 Introduction 11

1.1 Graph coloring . 13

1.2 Cutwidth . 13

1.3 Diameter . 14

1.4 Graph homomorphisms . 15

1.5 Results . 16

1.5.1 Cutwidth . 18

1.5.2 Diameter . 24

1.5.3 Organization of the dissertation . 28

2 Preliminaries 29

3 Graph homomorphisms – basic tools 33

3.1 Non-list variant . 33

3.1.1 Projective graphs and constructions 36

3.2 List homomorphisms . 38

3.2.1 Expressing relations . 40

4 Cutwidth 43

4.1 Algorithm . 46

4.1.1 Connection to Mimsup . 48

4.1.2 Exploiting Representative Sets in Dynamic Programming 49

4.2 Representative sets . 52

4.2.1 Computing representative sets via half-induced matchings 52

4.2.2 Computing representative sets via support rank 56

4.2.3 Bounding support rank via local biclique covers 58

9

4.3 Prime factorizations and algorithms . 60

4.4 Lower bound . 62

4.4.1 List homomorphisms and bipartite target graphs 62

4.4.2 Gadgets . 62

4.4.3 Reduction . 63

4.4.4 List homomorphisms and general target graphs 70

4.4.5 Hardness of Hom(H) . 71

4.5 Comparison of parameters . 75

4.5.1 Comparing him and mimsup . 77

4.5.2 Comparing him and support rank 80

4.5.3 Comparing mimsup and Shannon capacity 82

4.5.4 Support rank, covering by bicliques, and Prague dimension 84

5 Diameter 88

5.1 List 3-Coloring . 93

5.1.1 Diameter-3 graphs . 94

5.1.2 Diameter-2 graphs . 95

5.1.3 Weighted coloring . 104

5.2 Other target graphs . 111

5.2.1 Odd cycles . 114

5.2.2 Hardness result . 129

6 Other results 134

7 Appendix 154

7.1 Inequality from Lemma 4.30 . 154

7.2 Solving recursive inequalities . 155

10

Chapter 1

Introduction

One of the important tasks in the area of computational mathematics and theoretical com-

puter science is to understand where the boundaries between tracable and hard problems

lie. The classical distinction is based on the hypothesis that P̸=NP. However, nowadays

the information that a problem is just NP-hard is not always satisfying. First, one can

ask if on NP-hard problem can be solved in subexponential time, i.e., in time 2o(n) ·nO(1),

where n is the size of the input instance. Furthermore, for a problem hard in general, we

can ask if it can become tractable when we restrict the input instances.

For graph problems, possible restrictions include forbidding some fixed graph or some

family of graphs as induced subgraphs [27–32], bounding some parameter of the input

graph [10, 11, 61, 62, 65, 71, 97, 107], restricting to intersection graphs of geometric

objects [6, 7, 75, 102, 123], etc. In case of bounded parameters, one can also ask how the

complexity of the problem depends on the parameter of the input instance. In last years,

the so-called parameterized complexity of many problems has been widely studied [11, 36,

61, 64, 71, 73, 84, 86, 88, 97, 107, 116]. In a parameterized problem Π, the input consists

of an instance I and some parameter k. We say that Π is fixed-parameter tractable (FPT)

if every instance (I, k) of Π such that the size of I is n can be solved in time f(k) · nO(1),

where f is a function that depends only on the parameter k. Note that if a problem Π

is FPT with respect to some parameter t(G) of the input graph G, then for the class of

graphs with t(G) bounded by a constant, Π is polynomial-time solvable.

Proving the existence of an FPT algorithm may still not be satisfying if the function f

is large. In the so-called fine-grained complexity we are interested in obtaining algorithms

with running time f(k) · nO(1) such that the function f is optimal under some standard

11

complexity assumptions, which we will describe later.

Now let us give some examples of parameters that can be used in designing efficient

algorithms. Arguably, one of the most studied graph parameters is the treewidth [9, 52,

55, 55, 61, 62, 101, 108, 121, 124]. Intuitively, treewidth is a parameter that measures

how close a graph is to a tree. Since usually problems are tractable on trees and can

be solved using dynamic programming, the treewidth is a useful parameter in designing

algorithms. Another “width” parameters are for instance: pathwidth [44, 45, 101, 121],

cliquewidth [36, 65, 97], cutwidth [11, 71, 87], and twinwidth [13–15, 72].

While “width” parameters measure how “thick” a graph is, usually comparing to a tree,

we can ask for parameters that measure how “high” our graph is, and introduce “depth”

parameters. The best known “depth” parameter is the treedepth, a recursive analogue of

the treewidth [77, 88, 116, 117]. The treedepth measures how close a graph is to a star.

There have been also other “depth” analogues of the “width” parameters introduced:

shrubdepth (which is related to the cliquewidth), branchdepth, and rankdepth [42, 66].

Other types of graph parameters are distances to some fixed hereditary graph classes [22,

22, 64, 73, 73, 83, 83, 88, 97, 101, 128], or some variations of well-known parameters, for

instance: H-elimination distance [19, 20, 80], H-treewidth [53], tree-independence num-

ber [39, 40].

Lower bounds. In order to prove better lower bounds we need stronger assumptions

than P̸=NP. The standard hypothesis that P̸=NP implies that there is no algorithm

solving every instance of 3-Sat in polynomial time. Impagliazzo and Paturi [81, 82]

introduced the Exponential Time Hypothesis (ETH) and the Strong Exponential Time

Hypothesis (SETH) in terms of the complexity of Sat problems, which for our purposes

can be stated as follows.

Conjecture 1.1 (Exponential Time Hypothesis). There exists δ > 0 such that there is

no algorithm that solves every instance of 3-Sat with n variables in time 2δ·n · nO(1).

Conjecture 1.2 (Strong Exponential Time Hypothesis). There is no algorithm that solves

every instance of CNF-Sat with n variables and m clauses in time (2− ε)n · (n+m)O(1),

for any ε > 0.

Let us mention that the ETH is often used in its stronger form, where we can assume

that that the number of clauses is linear in number of variables (in general we can only

12

bound this number by O(n3)).

Theorem 1.3 (Sparsification Lemma [82]). If the ETH is true, then there exists δ > 0

such that there is no algorithm that solves every instance of 3-Sat with n variables and

O(n) clauses in time 2δ·n · nO(1).

1.1 Graph coloring

One of the most classic graph problems is k-Coloring, where we are given a graph G and

we have to determine whether there is an assignment c : V (G)→ {1, . . . , k} such that for

every uv ∈ E(G), we have c(u) ̸= c(v). It is known that k-Coloring is polynomial-time

solvable for k ⩽ 2, and NP-hard otherwise [33]. Furthermore, the problem can be solved

in time 2n · nO(1) for n-vertex graphs [8, 92]. On the other hand, there is no algorithm

that solves every n-vertex instance of k-Coloring in time 2o(n) ·nO(1). The k-Coloring

problem has been widely studied on various graph classes [7, 27, 30, 87, 101, 105, 111] and

under various parameterizations [22, 34, 64, 71, 73, 83, 84, 87, 97, 101]. For treewidth,

by standard dynamic programming, every instance G of k-Coloring can be solved in

time kt · |G|O(1), provided that G is given along with a tree decomposition of width t.

Lokshtanov, Marx, and Saurabh showed that this running time is optimal under the

SETH, i.e., there is no algorithm that solves every instance G of k-Coloring in time

(k − ε)tw(G) · |G|O(1) for any ε > 0, unless the SETH fails [101]. In fact, in their lower

bound one can replace treewidth with pathwidth or the size of a minimum feedback vertex

set (both parameters are lower bounded by the treewidth, so by such a replacement, we

get stronger lower bounds). In case of cliquewidth (cw(G)), Lampis proved that every

instance G of k-Coloring given with a clique expression of width t can be solved in time

(2k − 2)t · |G|O(1), which optimal under the SETH [97].

1.2 Cutwidth

Given a linear ordering v1, . . . , vn of vertices of a graph G, the width of the ordering is the

maximum number of edges from {v1, . . . , vi} to {vi+1, . . . , vn} over all i. The cutwidth of

G, denoted by ctw(G), is the minimum width over all possible linear orderings of G.

Jansen and Nederlof provided a randomized algorithm that solves every instance G of

13

k-Coloring in time 2t · |G|O(1) (and deterministic one with running time 2kω · |G|O(1),

where ω ⩽ 2.37 is the matrix multiplication constant [135]) provided that G is given with

linear ordering of width t. This is very uncommon, as for many graph parameters t(G) (eg.

treewidth, cliquewidth), every instance G of k-Coloring can be solved in time f(k)t(G) ·

|G|O(1) for some increasing function f of k and cannot be solved in time f(k)o(t(G)) ·|G|O(1),

unless the ETH fails. In particular, the base of the exponent in the running time depends

on the number of colors. Thus the case of q-Coloring parameterized by the cutwidth

of the input graph seems very special. A natural question is how far the phenomenom of

k-Coloring and cutwidth can be generalized. One can ask if the results for the decision

version of the problem can be applied to the counting version. Groenland et al. [71]

studied the complexity of counting k-colorings modulo prime p, i.e., #pk-Coloring.

They provided tight bounds for the complexity of #pk-Coloring, where the base of the

exponent is either k or k − 1, depending on the relation of k and p.

1.3 Diameter

For a connected graph G, the diameter (diam(G)) is the maximum possible distance (the

number of edges on a shortest path) of two distinct vertices of G. We say that G is

a diameter-d graph if diam(G) ⩽ d. Recently, bounded-diameter graphs received a lot

of attention [12, 16, 23, 48, 89, 105, 106, 111]. It is known that almost all graphs have

diameter 2 [93], i.e., the probability that a random graph on n vertices has diameter 2

tends to 1 when n tends to infinity. Moreover, graphs from “real-life” applications often

have bounded diameter, for instance social networks tend to have bounded diameter [131].

Furthermore, a diameter-2 graph can contain arbitrarily complicated structure. Indeed,

consider any graph G and let G+ be obtained by adding a universal vertex (connected to

all other vertices) to G. Then G+ has diameter at most 2.

Therefore, if for some d ⩾ 2, we have an efficient algorithm for the class of diameter-d

graphs, then this algorithm is efficient for a “very wide” class of graphs. On the other

hand, not all of the standard approaches can be used on bounded-diameter graphs – note

that the class of diameter-d graphs is not closed under vertex deletion. Furthermore, many

problems are hard already for diameter-2 graphs, for instance Independent Set cannot

be solved in subexponential time on diameter-2, unless the ETH fails. In particular, most

14

of the hardness proofs use the construction of G+. As an example, let G be an instance

of k-Coloring. Observe that G is k-colorable if and only if G+ is (k+1)-colorable. This

simple observation yields that for k ⩾ 4, there is no subexponential-time algorithm for

k-Coloring on diameter-2 graphs, unless the ETH fails. Thus, for bounded-diameter

graphs, it is only interesting to consider k-Coloring when k = 3.

A textbook reduction from NAE-Sat implies that already for d = 4, the 3-Coloring

problem is NP-hard and cannot be solved in subexponential time on diameter-d graphs,

unless the ETH fails [126, Theorem 9.8]. Mertzios and Spirakis [111] proved that 3-

Coloring is NP-hard on diameter-3 graphs. However, their reduction is quadratic, so

it only excludes an algorithm with running time 2o(
√

n) under the ETH. Actually, the

authors carefully analyzed how the lower bound depends on the minimum degree δ of

the input graph, and presented three hardness reductions, each for a different range of δ.

Furthermore, they showed that the problem can be solved in time 2O(min(δ·∆, n log δ
δ

)), where

∆ is the maximum degree. Let us point out that if ∆ = Θ(n) and δ = O(1), then the

running time is exponential in n.

For diameter-2 graphs, Mertzios and Spirakis [111] provided a subexponential-time

algorithm for 3-Coloring with running time 2O(
√

n log n) on n-vertex instances. Let us

point out that the bound
√
n appears naturally for various parameters of diameter-2

graphs, for example the maximum degree of such a graph is Ω(
√
n). The question of

whether 3-Coloring on diameter-2 graphs is polynomial-time solvable remains open

despite some work on the problem: the 3-Coloring problem on bounded-diameter graphs

was intensively studied on instances with some additional restrictions, i.e., on graphs with

some forbidden induced subgraphs – and on such graph classes polynomial-time algorithms

were given [89, 105, 106].

1.4 Graph homomorphisms

For a fixed graph H, called target, in the graph homomorphism problem, denoted by

Hom(H), we are given a graph G and the task is to determine whether there exists a

homomorphism φ from G to H, i.e., a mapping φ : V (G) → V (H) such that for every

uv ∈ E(G), it holds φ(u)φ(v) ∈ E(H). In the list homomorphism problem, denoted by

LHom(H), the graph G is given along with a list function L : V (G) → 2V (H), and the

15

task is to determine whether there is a homomorphism φ from G to H that additionally

respects the lists L, i.e., for every v ∈ V (G), it holds φ(v) ∈ L(v).

If H contains a vertex with a loop or is bipartite, the Hom(H) problem can be solved in

polynomial time. Hell and Nešetřil [78] proved that for every other graph H, the Hom(H)

problem is NP-hard. The complexity dichotomy was also provided in case of LHom(H)

– note that for every H, if Hom(H) is NP-hard, then so is LHom(H). However, the

LHom(H) problem can be also hard if H is bipartite or contains a vertex with a loop.

The complexity dichotomy was proved in three steps: (i) for reflexive target graphs (every

vertex has a loop), where the polynomial-time cases are precisely interval graphs [56], (ii)

for bipartite target graphs [57], (iii) for general graphs [58].

The graph homomorphism problem has been widely studied [18, 21, 25, 26, 28, 35, 51,

65, 130]. From the fine-grained perspective, a lot of attention was put in the parameteri-

zation by treewidth of the instance graph [52, 55, 62, 121, 124].

Let us point out that since in general graph homomorphism problem is not that

symmetric as k-Coloring, investigating its complexity for various parameters can tell

us more about the parameters themselves.

1.5 Results

In this dissertation, we study the (L)Hom(H) problem on bounded-cutwidth and bounded-

diameter graphs. These two parameters present extremely different behavior. Recall that

almost all graphs have diameter two. This implies that almost all graphs have cutwidth

Ω(
√
n) – note that n-vertex diameter-2 graph needs to have a vertex of degree at least

√
n and the cutwidth is always lower bounded by ⌊∆(G)

2 ⌋, where ∆(G) is the maximum

degree of G.

On the other hand, for cutwidth, many problems are not only polynomial-time solvable

when we bound cutwidth by a constant, but also FPT with respect to cutwidth, and even

the function of the parameter in the running time is unusually small. This is not the

case for the diameter as already for diameter-2 graphs, many problems are NP-hard and

cannot be solved in subexponential time under the ETH.

The results presented in the dissertation are based on the following papers of the

author.

16

[70] Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, Paweł Rzążewski.

Towards tight bounds for the graph homomorphism problem parameterized by

cutwidth via asymptotic matrix parameters. 51st International Colloquium on Au-

tomata, Languages, and Programming, ICALP 2024, volume 297 of LIPIcs, pages

77:1–77:21, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[47] Michał Dębski, Marta Piecyk, Paweł Rzążewski. Faster 3-Coloring of bounded-

diameter graphs. 29th Annual European Symposium on Algorithms, ESA 2021,

volume 204 of LIPIcs, pages 37:1–37:15, Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2021.

[48] Michał Dębski, Marta Piecyk, Paweł Rzążewski. Faster 3-Coloring of bounded-

diameter graphs. SIAM Journal on Discrete Mathematics, 36(3):2205–2224, 2022.

[127] Marta Piecyk. C2k+1-Coloring of bounded-diameter graphs. 49th International

Symposium on Mathematical Foundations of Computer Science, MFCS 2024, vol-

ume 306 of LIPIcs, pages 78:1–78:15, Schloss Dagstuhl - Leibniz-Zentrum für Infor-

matik, 2024.

Moreover, we also use some results from other papers of the author.

[121] Karolina Okrasa, Marta Piecyk, Paweł Rzążewski. Full complexity classification

of the list homomorphism problem for bounded-treewidth graphs. 28th Annual

European Symposium on Algorithms, ESA 2020, volume 173 of LIPIcs, pages 74:1–

74:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[128] Marta Piecyk, Paweł Rzążewski. Fine-grained complexity of the list homomorphism

problem: feedback vertex set and cutwidth. 38th International Symposium on The-

oretical Aspects of Computer Science, STACS 2021, volume 187 of LIPIcs, pages

56:1–56:17, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

The above two papers are not included in the dissertation as they were submitted

before starting PhD studies. In particular, the second paper is based on the Master thesis

of the author.

17

1.5.1 Cutwidth

The first parameter we consider is the cutwidth. By standard dynamic programming,

every instance G of Hom(H) given with a linear ordering of width w can be solved

in time |H|w · |G|O(1). Recall that k-Coloring can be solved in deterministic time

2ω ctw(G) · |G|O(1) [87] – in particular the base of the exponent in the running time does

not depend on k. A natural question, which was asked by Jansen [85], is if this can be

generalized to arbitrary target graph H, i.e., is there a constant c such that for every

H, there is an algorithm solving every instance G of Hom(H) in time cctw(G) · |G|O(1)?

Piecyk and Rzążewski [128] answered this question in the negative – in fact such a constant

cannot exist (under the ETH) even if we restrict the family of target graphs to odd cycles.

However, the lower bounds provided in [128] do not match any known upper bounds.

Therefore, we would like to solve the following open problem.

Open Problem 1. Describe, for any fixed non-bipartite graph H, a constant cH such

that:

1. There is an algorithm that, for all k, n ∈ N, given an n-vertex graph G with linear

ordering of width k, solves Hom(H) in time ck
H · nO(1), and

2. Assuming the SETH, for any ε > 0, there is no algorithm that, for all k, n ∈ N,

given an n-vertex graph G with linear ordering of width k, solves Hom(H) in time

(cH − ε)k · nO(1).

For every non-bipartite graph H, we define a parameter mimsup(H), and we give

strong evidence that cH = mimsup(H).

Let us first discuss the definition of mimsup. Let A be a 0-1 matrix. By mim(A) we

denote the maximum ℓ such that A contains the ℓ × ℓ identity matrix as a submatrix1.

It can be easily seen that if A is the bi-adjacency matrix of a bipartite graph H ′, then

mim(A) equals the size of a maximum induced matching in H ′. Let us point out that

the results of [128] imply that cH needs to be at least mim(AH), if AH is the adjacency

matrix of H.
1A submatrix of a matrix A is any matrix that can be obtained from A by removing and reordering

any of its rows and columns.

18

Next, by ⊗ we denote the Kronecker product, i.e., for two matrices A,B, where

A = (ai,j)i∈[n],j∈[m] is n×m matrix,

A⊗B =



a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB

. . .

an,1B an,2B . . . an,mB


.

For an integer k and a matrix A, we define A⊗k to be the Kronecker product of k copies

of A. Now, for a matrix A, we can define

mimsup(A) := sup
k∈N

mim(A⊗k
H)1/k.

For a graph H, we define mimsup(H) = mimsup(AH), where AH is the adjacency matrix

of H. We remark that mimsup(H) can be also defined in purely graph-theoretic way, in

terms of the size of a maximum matching in a certain graph product. See Chapter 4 for

more thorough definitions and details.

Representative sets. Let us present some intuition behind the mimsup parameter and

its connection to so-called representative sets. The algorithm for k-Coloring parame-

terized by the cutwidth from [87] is based on the fact that in the dynamic programming,

instead of keeping track of all possible colorings of some set of vertices, only some small

subset, that still carries the same information about the solution, is remembered. The

idea of representative sets has been used for example to obtain fast algorithms for the

k-Path problem [112] or connectivity problems parameterized by treewidth [9, 63].

Let us describe the notion of representative sets in our setting. Let G,H be graphs, let

v1, . . . , vn be a linear ordering of V (G) of width w and let Xi ⊆ {v1, . . . , vi} (resp., Yi ⊆

{vi+1, . . . , vn}) be the set of these vertices v such that v has a neighbor in {vi+1, . . . , vn}

(resp., {v1, . . . , vi}). We aim to determine if G → H. Let A be some set of colorings of

Xi (by “colorings” here we mean the homomorphisms to H). We say that a set A′ ⊆ A

represents A if for every coloring φ of Yi, if there is a coloring ψ ∈ A such that φ ∪ ψ

respects the edges between Xi and Yi, then there is ψ′ ∈ A′ such that φ ∪ ψ′ respect the

edges between Xi and Yi. For simplicity of this description, assume that |Xi| = |Yi| and

the edges between Xi and Yi (let us call them Ei) form a matching. So let us consider a

set A which does not have a proper subset that represents A. This means that for every

19

ψ ∈ A there exists some coloring φ of Yi such that φ∪ψ respects the edges of Ei, but for

every other ψ′ ∈ A, the coloring ψ′ ∪ φ does not respect at least one edge of Ei.

Now let k := |Ei| and let AH be the adjacency matrix of H. Each row index of

the matrix A⊗k
H can be interpreted as a coloring ψ of Xi, each column of A⊗k

H can be

interpreted as a coloring φ of Yi, and A⊗k
H [ψ, φ] = 1 if and only if the coloring ψ ∪ φ

respects the edges of Ei. Therefore, the largest possible size of A is precisely mim(A⊗k
H).

Recall that the width of the ordering v1, . . . , vn is w and thus k ⩽ w. So mim(A⊗k
H) ⩽

(mim(A⊗k
H)1/k)w ⩽ mimsup(H)w.

By a reasoning as above, we prove the following theorem (here we only present an

informal statement), which is the first evidence that cH = mimsup(H).

Theorem 1.4 (Informal statement of Theorem 4.3). In the context of the natural dynamic

programming algorithm for Hom(H) parameterized by cutwidth w, there exist representa-

tive sets of size at most mimsup(H)w.

Computing the representative sets. The reason why Theorem 4.3 does not imply an

algorithm for Hom(H) with running time mimsup(H)ctw(G)·|G|O(1) (and thus we lack tight

bounds for Hom(H) parameterized by the cutwidth of the input graph) is that we do not

know how to compute representative sets efficiently. Similar issues with the computation

of representative sets are present in different problems: It withholds us, for example, from

getting faster algorithms for connectivity problems such as Traveling Salesperson

(both parameterized by treewidth [9, 38] and the classic parameterization by the number

of cities [115, Theorem 3]), and polynomial kernelization algorithms for Odd Cycle

Transversal [94].

In our case we try to deal with it in two ways.

Half-induced matching. First, we introduce a parameter him, whose matrix definition

is similar to mim, where instead of an identity submatrix we look for a triangular matrix

with ones on the diagonal. For a graph H, we again set him(H) = him(AH), where AH

is the adjacency matrix of H. We will refer to him as the size of a maximum half-induced

matching. In the following theorem we describe the relation between him and mimsup.

Theorem 1.5. For every non-bipartite graph H with adjacency matrix AH and k ∈ N,

him(AH) ⩽ mimsup(AH) = lim
k→∞

mim(A⊗k
H)1/k and mim(A⊗k

H) ⩽ khim(AH)k.

20

The upper bound in Theorem 1.5 uses an argument similar to the ‘neighborhood

chasing’ argument for the upper bounds on multi-colored Ramsey numbers [54]. This

argument can in fact be made algorithmic in the sense that it can be used to compute

representative sets for Hom(H) of size at most O(khim(H)k) in time O(k2·him(H)k) for input

graphs given with a linear ordering of width at most k. We can use this to obtain the

following result.

Theorem 1.6. For any graphs G and H, where G is given with a linear ordering of width

k, in time O(k2k·him(H) · |H|4|G|) one can decide whether G admits a homomorphism to H.

The bound from Theorem 1.5 yields the following.

Theorem 1.7. For any graphs G and H, where G is given with a linear ordering of width

k, in time O(k2k·mimsup(H) · |H|4|G|) one can decide whether G admits a homomorphism

to H.

Recall that standard dynamic programming for Hom(H) runs in time |H|ctw(G)·|G|O(1).

Therefore, if H is fixed, then the running time of the algorithm from Theorem 1.7 can

be worse. However, in Theorems 1.6 and 1.7, we do not assume that H is fixed, and in

particular, H can be part of the input. In this case, the algorithm from Theorem 1.7 can

be significantly faster than standard dynamic programming when H has small mimsup.

It also should be noted that a similar notion of half-induced matching of a compatibility

matrix was already introduced in previous work in the context of representative sets of

the AntiFactor problem [108] parameterized by treewidth and list size. However, in

that setting, the authors were only able to provide a lower bound for their problem, and

they did not manage to make the connection with half-induced matchings algorithmic.

Additionally, their compatibility matrix has a very specific structure: it is indexed with

integers and the value of an entry only depends on the sum of the values associated with

the row and column.

Support-rank. Another attempt to solve the Hom(H) problem is based on a low-rank

matrix approach, which is a generalization of the algorithm for k-Coloring [87]. For a

matrix A, we define a parameter support-rank, which is the smallest rank over any field

of a matrix A′ with the same support as A (i.e., A′[i, j] = 0 if and only if A[i, j] = 0). We

prove that mimsup(H) is always at most the support-rank of the adjacency matrix of H.

Furthermore, we prove the following generalization of the result from [87].

21

Theorem 1.8. Let H be a non-bipartite graph on h vertices. Suppose we are given an

h× h matrix over a field F with the same support as the adjacency matrix of H and rank

r. Then there exists an algorithm that, given a linear ordering of an n-vertex graph G of

width k, decides whether G→ H in time O
(

(rk·ωhk + h3)|G|
)
.

The caveat in Theorem 1.8 is that a small-rank matrix with the same support as the

adjacency matrix of H must be given. If F is a finite field, an optimal such matrix can be

found in time |F|h2 ·hO(1) by brute-force, which is constant if both |F| and h are constants.

However, in general it is not clear how to find such an optimal matrix.

Therefore, we present a combinatorial approach for finding a small-rank matrix with

the same support, which does not necessarily achieve the support-rank, but can be com-

puted efficiently. The approach is based on a parameter cov(H), which is closely related

to product dimension (also known as Prague dimension or just dimension) [118, 119] and

a biclique covering number studied under names bipartite degree, local biclique cover num-

ber [43, 60], and which is as special case of so-called local covering numbers also studied

in the literature [17, 91]. We prove the following.

Theorem 1.9. Let H be a fixed non-bipartite graph and let r = cov(H). The Hom(H)

problem on n-vertex instances given with a linear ordering of width k can be solved in time

O
(

(r + 1)rk·ωn2
)
.

We point out that for fixed H, Theorem 1.8 provides better upper bounds than The-

orems 1.6 and 1.7. On the other hand, we know that there are families of graphs H for

which him is bounded by a constant and the support-rank is unbounded. Therefore, for

such graph classes H, the upper bounds from Theorem 1.6 are better.

Lower bound. The next evidence that cH = mimsup(H) is the following lower bound.

Theorem 1.10. 1. There exists δ > 0, such that for every non-bipartite projective core

H, there is no algorithm solving every instance G of Hom(H) in time mimsup(H)δ·ctw(G)·

|G|O(1), unless the ETH fails.

2. Let H be a connected non-bipartite projective core. There is no algorithm solving

every instance G of Hom(H) in time (mimsup(H)− ε)ctw(G) · |G|O(1) for any ε > 0,

unless the SETH fails.

22

Let us point out that in the statement we assume H to be a so-called projective

core (see Chapter 3 for definitions). It is known that almost all graphs are projective

cores [79, 104]. Actually, we provide similar lower bounds for every non-bipartite graph

H with a refined version of mimsup: we define a parameter mimsup∗ such that we always

have mimsup∗(H) ⩽ mimsup(H) and if H is a projective core, then mimsup∗(H) =

mimsup(H). The definition of mimsup∗ is related to standard preprocessing that can be

performed on H. In particular, in all the upper bounds that we presented so far, we can

replace mimsup with mimsup∗ (see Section 4.3). We extend the results of Theorem 1.10

(where mimsup is replaced with mimsup∗) to every non-bipartite graph H, assuming two

conjectures from early 2000s. These conjectures are assumed in all similar lower bounds

for Hom(H) under different parameterizations [65, 124].

Mimsup and other graph parameters. One of our main conceptual contributions is

the introduction of the mimsup parameter in the context of parameterized algorithms. It

is actually the first asymptotic rank parameter shown to be relevant in this context. Our

mimsup parameter is very similar to the asymptotic induced matching number studied by

Arunachalam et al. [3] which was introduced for k-partite, k-uniform hypergraphs (and

so, in the graph setting, only for bipartite graphs).

Since our parameter is defined in an asymptotic way, it is not clear whether it can be

computed efficiently or even if it can be computed at all. An indication that computing

mimsup can be hard can be the case of a parameter called Shannon capacity (denoted

by Θ(G)) [103, 132], which is also defined in an asymptotic way (for exact definition we

refer to Section 4.5.3). It is even not clear whether determining if the Shannon capacity

is at most some given value α is decidable [2, Question 6]. Furthermore computing it

seems very challenging even for very basic graphs. For instance, it is not known what the

Shannon capacity of the cycle on 7 vertices is [68].

As we already mentioned, we compare mimsup with some other graph parameters – in

fact this is similar approach as the ones used for Shannon capacity, where in order to com-

pute Θ(G), some other parameters that lower/upper bound Θ(G) were investigated [103].

We prove that for every graph H, we have him(H) ⩽ mimsup(H) ⩽ support-rank(H).

Furthermore, we present families of graphs for which the him(H) is bounded by a con-

stant and the support-rank is unbounded, and thus him(H) and support-rank(H) are not

functionally equivalent. However, we do not know if mimsup is functionally equivalent to

23

any of the two parameters.

1.5.2 Diameter

The second parameter we consider in the dissertation is the diameter. We first turn our

attention to a special case of graph homomorphims, which is 3-Coloring. We first give

a subexponential-time algorithm for diameter-3 graphs. Let us point out that all the

algorithmic results can actually solve a more general, List 3-Coloring, where every

vertex v of an input graph G is equipped with a list L(v) ⊆ {1, 2, 3}, and the desired

coloring has to respect the lists.

Theorem 1.11. The List 3-Coloring problem on n-vertex graphs with diameter at

most 3 can be solved in time 2O(n2/3·log2/3 n).

Note that the running time bound does not depend on the maximum nor the minimum

degree of the input graph. In particular, this is the first algorithm for List 3-Coloring,

whose complexity is subexponential for all diameter-3 graphs.

Let us present a high-level overview of the proof. First, we partition the vertex set of

the input graph G into V1, V2, V3, where Vi is the set of vertices with lists of size i. If G

contains a vertex v ∈ V2 ∪ V3 with many neighbors in V2 ∪ V3, then we branch on coloring

the vertex v with some color c or not – note that since v has many neighbors, the lists of

many vertices will be reduced. On the other hand, if all vertices of V2 ∪ V3 have bounded

number of neighbors in V2 ∪ V3, then for some fixed v, we can branch on the coloring of

the set S of vertices of V2 ∪ V3 at distance at most 2 in G[V2 ∪ V3] from v. In this case

the size of S is bounded and the set S almost dominates G (the only vertices that are

not dominated by S are all contained in V1 ∪ V2). Therefore, after guessing the coloring

of the set S, all lists are reduced to size at most 2 and then we can finish in polynomial

time, using the result of Edwards [50].

Next, we provide a faster subexponential-time algorithm for List 3-Coloring on

diameter-2 graphs.

Theorem 1.12. The List 3-Coloring problem on n-vertex graphs with diameter 2 can

be solved in time 2O(n1/3·log2 n).

Again, let us give some intuition about the proof. We partition the vertex set of G into

(V1, V2, V3), as previously. We aim to empty the set V3, as then the problem can be solved

24

in polynomial time. We first apply three branching rules, which are slightly technical, so

we do not describe them now, but in all three of them we branch on coloring a vertex or

a pair of vertices with some color or not.

The main combinatorial insight that is used in our algorithm is as follows. Consider

an instance (G,L), where G is of diameter 2 and none of the previous branching rules

can be applied. Suppose that G has a proper 3-coloring φ that respects lists L. Then

there is a color a ∈ {1, 2, 3} and sets S ⊆ V3 ∩ φ−1(a) and S̃ ⊆ V3 \ φ−1(a), each of size

O(n1/3 log n), with the following property:

(⋆) S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
dominates at least 1

6 -fraction of V3,

where N(S) (resp. N(S̃)) denotes the set of vertices from V (G)\S (resp. V (G)\ S̃) with

a neighbor in S (resp. S̃). The existence of the sets S and S̃ is shown using a probabilistic

argument.

Now we proceed as follows. We enumerate all pairs of disjoint sets S and S̃, each of

size O(n1/3 log n). If they satisfy the property (⋆), we exhaustively guess the color a used

for every vertex of S and the coloring of S̃ with colors {1, 2, 3} \ {a}. Then we update

the lists of the neighbors of colored vertices. Note that the color of every vertex from

N(S)∩N(S̃) is now uniquely determined. Thus, for at least 1
6 -fraction of vertices v ∈ V3,

they are either already colored or have a colored neighbor, so their lists are of size at most

2. Therefore, our instance was significantly simplified and we can proceed recursively.

A natural question is how far the results of Theorem 1.11 and Theorem 1.12 can

be generalized. We first consider a generalization of 3-Coloring, which is Weighted

3-Coloring. In Weighted 3-Coloring, the input graph G is given along with an

integer k and a weight function, i.e., for every vertex v ∈ V (G) and every color i, we have

a “cost” of coloring v with i. The task is to determine whether there exists a 3-coloring

of a total cost at most k. A prominent special case of this problem is Independent

Odd Cycle Transversal, where we ask for a minimum-sized independent set which

intersects all odd cycles. Clearly it is equivalent to solving an instance G of Weighted

3-Coloring where for every v ∈ V (G) the cost of coloring v with 1 or 2 is 0 and the cost

of coloring v with 3 is 1.

We show that the we can extend the result from Theorem 1.12 to the weighted setting.

Theorem 1.13. The Weighted 3-Coloring problem on n-vertex diameter-2 graphs

can be solved in time 2O(n1/3 log2 n).

25

However, it is not possible (under the ETH) to obtain a similar strenghtening of

Theorem 1.11.

Theorem 1.14. The Weighted 3-Coloring problem on n-vertex diameter-3 graphs

cannot be solved in time 2o(n), unless the ETH fails.

Other target graphs. In order to understand the peculiar case of 3-Coloring and

diameter-2 graphs, we study closely related problems. As a natural direction, we consider

other target graphs H – recall that 3-Coloring can be seen as Hom(K3), where K3 is the

triangle. First, we still focus on diameter-2 input graphs, but we change the target graph

to some arbitrary H, which is triangle-free. Note that it only makes sense to consider

graphs H of diameter 2, since the homomorphic image of a diameter-2 graph has to induce

a diameter-2 subgraph. We provide a polynomial-time algorithm for triangle-free target

graphs – the algorithm works in the more general list setting. We point out that the class

of triangle-free diameter-2 graphs is still very rich, for instance, contains all Mycielski

graphs [113].

Theorem 1.15. Let H be a triangle-free graph. Then the LHom(H) problem can be

solved in polynomial time on diameter-2 graphs.

Furthermore, we consider a special class of target graphs, which are odd cycles. We

point out that odd cycles in homomorphism problems received considerable attention [5,

49, 67, 96, 133]. Moreover, note that the cycle on 5 vertices is the smallest graph H

such that the Hom(H) problem is not equivalent to graph coloring. We first provide the

following result. Again, the algorithm works in more general list setting.

Theorem 1.16. Let k ⩾ 2. Then LHom(C2k+1) can be solved in polynomial time on

diameter-(k + 1) graphs.

Note that such a result for k = 1 would yield a polynomial-time algorithm for 3-

Coloring on diameter-2 graphs. Let us discuss the crucial points where this algorithm

cannot be applied directly for k = 1. The first property, which holds for every cycle except

C3 and C6, is that if for some set S of vertices, any two of them have a common neighbor,

then there is a vertex that is a common neighbor of all vertices of S. Furthermore, for

every cycle of length at least 5 except C6, for a set S of 3 vertices, every vertex of S has

26

a private neighbor with respect to S, i.e., a neighbor that is non-adjacent to any other

vertex of S.

We first show that for an instance of LHom(C2k+1), for each vertex v, we can deduce

the set of vertices it can be mapped to and update the list of v so that all lists are of size

at most 3. The properties discussed above allow us to encode coloring of a vertex with

list of size 3 using its neighbors with lists of size two, and such a reduced instance of a

slightly more general problem (we have more constraints than just the edges, but all of

them are binary) can be solved in polynomial time by reduction to 2-Sat, similar to the

one of Edwards [50].

Furthermore, we provide a subexponential-time algorithm for diameter-(k+2) graphs.

Theorem 1.17. Let k ⩾ 1. Then LHom(C2k+1) can be solved in time exp
(
O
(
(n log n)

k+1
k+2
))

on diameter-(k + 2) n-vertex graphs.

Let us point out that the case k = 1 is precisely Theorem 1.11. However, we prefer

to present first a simpler proof, and then move to the more complicated one. In fact the

branching part of the algorithm from Theorem 1.17 is similar to the one in Theorem 1.11.

The more involved part is to show that after applying braching and reduction rules we

are left with an instance that can be solved in polynomial time. Similar to Theorem 1.16,

we first analyze the lists of all vertices, and then reduce to an instance of more general

problem where every vertex has list of size at most 2.

We complement Theorem 1.16 and Theorem 1.17 with the following NP-hardness

result – since our reduction from 3-Sat is linear, we also prove that the problem cannot

be solved in subexponential time under the ETH.

Theorem 1.18. Let k ⩾ 1. The Hom(C2k+1) problem is NP-hard on graphs of radius

k + 1 (and thus diameter (2k + 2)) and cannot be solved in subexponential time, unless

the ETH fails.

We summarize the current state of knowledge about the complexity of Hom(C2k+1)

in Table 1.1. We also point out that, again, all upper bounds, i.e., Theorem 1.15, Theo-

rem 1.16, and Theorem 1.17 hold in the more general list setting, while the lower bound

from Theorem 1.18 holds already in the non-list setting.

27

k \ diam 2 3 4 5 6 7 8 9 10 11 ⩾ 12

1 [111] 1.11 folklore

2 1.16 1.17 5.23 1.18

3 1.16 1.17 ? ? 1.18

4 1.16 1.17 ? ? ? 1.18

⩾ 5 1.16 1.17 ? ? ? ? 1.18

Table 1.1: Complexity of Hom(C2k+1) on bounded-diameter graphs. The color in the cell

(k, d) denotes that Hom(C2k+1) on diameter-d, respectively, green – is polynomial-time

solvable, blue – can be solved in subexponential time, and red – cannot be solved in

subexponential time, assuming the ETH. The table is filled due to [111] and the results

of this dissertation – the theorem numbers are placed in appropriate cells.

1.5.3 Organization of the dissertation

In Chapter 2 we define basic notions and problems. In Chapter 3 we present some existing

results on Hom(H) and LHom(H), which will be useful in this dissertation. In Chapter 4,

which is based on [70], we consider the Hom(H) problem parameterized by the cutwidth

of the input graph. In Chapter 5, which is based on [48] and [127], we first consider a

special case of Hom(H), which is 3-Coloring, for bounded-diameter graphs, and then

we consider other target graphs H. In Chapter 6 we discuss some other results of the

author, which were not selected for the dissertation.

28

Chapter 2

Preliminaries

By [n] we denote the set {1, 2, . . . , n} and by [n]0 we denote {0, 1, . . . , n}. For integers

a, b with a < b, we write [a, b] = {a, a + 1, . . . , b}. Whenever we write log x, i.e., we do

not specify the base of the logarithm, then we mean the natural logarithm. For a set X,

by 2X we denote the family of all subsets of X.

Throughout this paper all graphs we consider are simple, i.e., have no loops nor mul-

tiple edges. For a graph G and V ′ ⊆ V (G) (resp. E ′ ⊆ E(G)), by G[V ′] (resp. G[E ′])

we denote the subgraph of G induced by V ′ (resp. E ′). We define |G| := |V (G)|. By

G we denote the complement of G, i.e., V (G) = V (G) and E(G) =
(

V (G)
2

)
\ E(G). By

Pn, Cn, and Kn we denote, respectively, the path on n vertices, the cycle on n vertices,

and the complete graph on n vertices. By distG(u, v) we denote the length (number of

edges) of a shortest u-v path in G. For a vertex v, by NG(v) we denote its open neigh-

borhood, i.e., the set of all vertices adjacent to v. The closed neighborhood of v is defined

as NG[v] := NG(v) ∪ {v}. For an integer p, by N⩽p
G [v] we denote the set of vertices at

distance at most p from v, and define N⩽p
G (v) := N⩽p

G [v] \ {v}. For a set X of vertices,

we define NG(X) := ⋃
v∈X NG(v) \X and NG[X] := NG(X) ∪X. For sets X, Y ⊆ V , we

say that X dominates Y if Y ⊆ NG[X]. By degG(v) we denote the degree of a vertex v,

i.e., |NG(v)|. By ∆(G) we denote the maximum vertex degree in G. If G is clear from

the contex, we omit the subscript G and simply write N(v), N⩽d(v), dist(u, v), etc. Two

vertices u, v ∈ V (G) are incomparable if their neighborhoods are not contained in each

other, i.e., N(u) ̸⊆ N(v) and N(v) ̸⊆ N(u). A set of vertices is incomparable if all vertices

in this set are pairwise incomparable. Finally, a graph G is incomparable if V (G) is an

incomparable set.

29

For a connected graph G, the diameter of G, denoted by diam(G), is the maximum

dist(u, v) over all pairs of vertices u, v ∈ V (G). We say that G is diameter-d graph if

diam(G) ⩽ d. The radius of G, denoted by radius(G), is the minimum integer r such

that there is a vertex z ∈ V (G) such that for every v ∈ V (G), it holds that dist(v, z) ⩽ r.

Observe that we always have radius(G) ⩽ diam(G) ⩽ 2 · radius(G).

Let G be a graph and consider a linear ordering σ = (v1, . . . , vn) of its vertices. For

i ∈ [n− 1], the i-th cut is the partition of V (G) into sets {v1, . . . , vi} and {vi+1, . . . , vn}.

The width of such a cut is the number of edges with one endvertex in {v1, . . . , vi} and the

other in {vi+1, . . . , vn}. The width of σ is the maximum width of a cut of σ. The cutwidth

of G, denoted by ctw(G), is the minimum width of a linear ordering of the vertices of G.

Let H be a graph. By H∗ we denote the associated bipartite graph defined as follows.

V (H∗) = {u′, u′′ | u ∈ V (H)},

E(H∗) = {u′w′′, u′′w′ | uw ∈ E(H)}.

Colorings and homomorphisms. Let q ∈ N. A q-coloring of a graph G is a function

c : V (G)→ [q]. A q-coloring c of G is proper if for every uv ∈ E(G), we have c(u) ̸= c(v).

For a list function L : V (G)→ 2[q], we say that a q-coloring c respects lists L if for every

v ∈ V (G), we have c(v) ∈ L(v). We will also call such a coloring an L-coloring.

For graphs G,H, a homomorphism from G to H is an edge-preserving mapping φ :

V (G) → V (H), i.e., for every uv ∈ E(G), it holds φ(u)φ(v) ∈ E(H). For a list function

L : V (G) → 2V (H), a list homomorphism from (G,L) to H is a homomorphism that

additionally respects the lists L, i.e., for every v ∈ V (G) it holds φ(v) ∈ L(v). Sometimes

we will refer to L as H-lists. We will write φ : G → H (resp. φ : (G,L) → H) if φ is a

(list) homomorphism from G to H, and G→ H (resp. (G,L)→ H) to indicate that such

a (list) homomorphism exists.

Since any proper (list) q-coloring can be seen as a (list) homomorphism to Kq, we will

often refer to a homomorphism as a coloring and to vertices of H as colors.

Problem definitions. We define the main computational problems of this paper.

For a fixed q ∈ N, we define the q-Coloring problem.
q-Coloring

Input: Graph G.

Question: Is there a proper q-coloring of G?

30

We also define a list version of the problem, where each vertex of the input graph is

equipped in a list of its allowed colors.
List-q-Coloring

Input: Graph G with list function L : V (G)→ 2[q].

Question: Is there a proper q-coloring of G, which respects lists L?
In the Weighted q-Coloring problem the instance graph G is given along with a

weight function w : V (G) × [q] → N and an integer k. We might think of w(v, i) as the

cost of coloring v with the color i. We ask if there exists a q-coloring c of G with the total

cost at most k, i.e., ∑v∈V (G) w(v, c(v)) ⩽ k.
Weighted q-Coloring

Input: Graph G with weight function w : V (G)× [q]→ N, and an integer k.

Question: Is there a proper q-coloring of G such that ∑v∈V (G) w(v, c(v)) ⩽ k?
We point out that Weighted List q-Coloring is actually equivalent to Weighted

q-Coloring (see Section 5.1.3). However, sometimes it will be convenient for us to

consider Weighted List q-Coloring instead of Weighted q-Coloring.

For fixed H, called target, in the homomorphism problem, denoted by Hom(H), we

are given a graph G, called input, and we have to determine whether there exists a

homomorphism from G to H.
Hom(H)

Input: Graph G.

Question: Is there a homomorphism φ : G→ H?

In the list homomorphism problem, denoted by LHom(H), G is given along with lists

L : V (G)→ 2V (H), and we have to determine if there is a homomorphism φ from G to H

which additionally respects lists.
LHom(H)

Input: Graph G with list function L : V (G)→ 2V (H).

Question: Is there a list homomorphism φ : (G,L)→ H?

We will also consider a variant of the homomorphism problem, Hom, where the target

graph H is part of the input.
Hom

Input: Graphs G and H.

Question: Is there a homomorphism φ : G→ H?

31

Finally, we define the LHom problem, which is the list version of Hom.
LHom

Input: Graphs G and H, and a list function L : V (G)→ 2V (H).

Question: Is there a list homomorphism φ : (G,L)→ H?

For fixed integers q, r, in the Constraint Satisfaction Problem, denoted by CSP(q, r)

problem we have a fixed set D (domain) of size q, and in the input we are given a set of

variables V and set C of constraints which are of form R(v1, . . . , vr), where R ⊆ Dr. The

task is to determine whether there exists an assignment f : V → D such that for every

constraint R(v1 . . . , vr) ∈ C, we have (f(v1), . . . , f(vr)) ∈ R.
CSP(q, r)

Input: Set of variables V and set C of constraints.

Question: Does there exist an assignment f : V → D such that for every contraint

R(v1 . . . , vr) ∈ C, we have (f(v1), . . . , f(vr)) ∈ R?

32

Chapter 3

Graph homomorphisms – basic tools

In this chapter we present basic tools for dealing with graph homomorphisms – we intro-

duce definitions and show useful properties. We first consider graph homomorphisms in

the non-list setting and then we consider list homomorphisms.

3.1 Non-list variant

In what follows we assume that H is non-bipartite and has no vertices with loops; recall

that otherwise Hom(H) can be solved in polynomial time [78].

Disconnected graphs. Suppose that H is a disconnected graph and let H1, . . . , Hℓ be

the connected components of H. Let G be a graph with connected components G1, . . . , Gp.

Observe that G → H if and only if Gi → H for every i ∈ [p]. Furthermore, for i ∈ [p],

we have Gi → H if and only if Gi → Hj for at least one j ∈ [ℓ]. Therefore, in order to

determine whether G → H, it is sufficient to determine whether Gi → Hj for every pair

i ∈ [p], j ∈ [ℓ].

Cores. A graph H is a core if it does not admit a homomorphism to any of its proper

subgraphs. A core of H is a subgraph C of H, such that C is a core and there is a

homomorphism H → C. As shown by Hell and Nešetřil [79], every graph has a unique

core (up to isomorphism). Thus we can talk about the core of a graph H and denote it

by core(H). It is straightforward to verify that core(H) is actually an induced subgraph

of H. Furthermore, for non-bipartite graphs H, core(H) is non-bipartite.

We will require the following straightforward properties of cores, see e.g. [124].

33

Proposition 3.1. Let H be a core.

(1) Every homomorphism φ : H → H is an automorphism.

(2) The graph H is incomparable. In particular, the neighborhoods of vertices in H are

pairwise distinct.

Observe that homomorphisms are transitive: ifG1 → G2 andG2 → G3, thenG1 → G3.

Furthermore, for every graph H we have core(H) → H. Indeed, the function mapping

each vertex of core(H) to itself is clearly a homomorphism. Consequently, G admits a

homomorphism to H if and only if it admits a homomorphism to core(H). Thus, in order

to solve Hom(H), one can equivalently focus on solving Hom(core(H)).

Let us point out that the problem of deciding whether a given graph H is a core is

co-NP-hard [79].

One of the examples of cores are odd cycles. The following observation, which shows

that we cannot map a smaller odd cycle to a larger one, will be useful for us.

Observation 3.2. Let k ⩾ 2 and let G be a graph such that G → C2k+1. Then, for any

ℓ < k, the graph G does not contain a (2ℓ+ 1)-cycle.

Direct products. For graphs H1, H2, their direct product is the graph H1×H2 defined

as follows

V (H1 ×H2) ={(v1, v2) | v1 ∈ V (H1) and v2 ∈ V (H2)}

E(H1 ×H2) ={(v1, v2)(u1, u2) | v1u1 ∈ E(H1) and v2u2 ∈ E(H2)}.

Graphs H1 and H2 are factors of H and H1 × H2 is a factorization of H (formally, a

factorization is a sequence of factors). These definitions can be naturally generalized to

more factors. A graph H with at least two vertices is prime if it cannot be written as

a direct product of at least two graphs, each with at least two vertices. A factorization,

where each factor is prime and has at least two vertices is called a prime factorization.

For a graph H = H1 × . . .×Hp and for i ∈ [p], by πi we will denote the projection on ith

coordinate, i.e., the mapping πi : V (H) → V (Hi) such that for v = (v1, . . . , vp) ∈ V (H),

we have πi(v) = vi. It is straightforward to verify that a projection (on any coordinate)

is always a homomorphism.

34

For a graph H, and for a positive integer k, by H×k we will denote the direct product

of k copies of H.

The following statement follows from a well-known result of McKenzie [110]; see

also [74, Theorem 8.17].

Theorem 3.3 (McKenzie [110]). Any connected non-bipartite core has a unique (up to

reordering of factors) prime factorization. Furthermore, such a factorization can be found

in polynomial time.

The following properties of direct products are straightforward, see e.g. [124].

Proposition 3.4. Let H = H1 × . . .×Hℓ.

(1) If H is connected, then for every i ∈ [ℓ], the graph Hi is connected.

(2) If H is a core, then for every i ∈ [ℓ], the graph Hi is a core.

(3) If H is non-bipartite, then for every i ∈ [ℓ], the graph Hi is non-bipartite.

The fact why direct products play an important role in the study of graph homomor-

phisms is the following observation.

Observation 3.5. Let H = H1 × H2 × . . . × Hp. Then G → H if and only if G → Hi

for every i ∈ [p].

Proof. First, suppose that there exists φ : G → H. For i ∈ [p], let us define φi = πi ◦ φ.

Let us verify that φi is a homomorphism. Let uv ∈ E(G) and let (x1, . . . , xp) = φ(u)

and (y1, . . . , yp) = φ(v). Then φi(u) = xi and φi(v) = yi. Since φ is a homomorphism,

φ(u)φ(v) ∈ E(H), which means that xiyi ∈ E(Hj) for every i ∈ [p], and thus φi is indeed

a homomorphism.

Now suppose that for every i ∈ [p], there exists a homomorphism φi : G→ Hi. Let us

define φ : G→ H so that for v ∈ V (G), we have φ(v) = (φ1(v), . . . , φp(v)). Let us verify

that φ is a homomorphism. Let uv ∈ E(G). For every i ∈ [p], we have φi(u)φi(v) ∈ E(Hi)

since φi is a homomorphism. Then φ(u)φ(v) = (φ1(u), . . . , φp(u))(φ1(v), . . . , φp(v)) ∈

E(H), which completes the proof.

By Observation 3.5, we can solve the problem for each Hi independently and then

return the conjunction of answers.

35

Now, for a graph H, let us define a set of graphs atoms(H) as follows.

atoms(H) ={Hi,j | Hi is a connected component of H,

Hi,1 × . . .×Hi,p, is the prime factorization of core(Hi)}.

Let us point out that by Proposition 3.4 (1) and (2), every H ′ ∈ atoms(H) is a connected

prime core. Moreover, by Proposition 3.4 (3), if H is non-bipartite, then every H ′ ∈

atoms(H) is non-bipartite.

By all the discussions above, we can state the following.

Observation 3.6. Assume that we can solve every instance (G′, H ′) of Hom where H ′

is a connected non-bipartite core in time f(H ′, G′) · |G′| + |H ′|)O(1), for some function f

which is non-decreasing with respect to taking induced subgraphs of G′. For graphs G,H,

let us define

f ∗(H,G) = max
H′∈atoms(H)

f(H ′, G).

Then every instance (G,H) of Hom can be solved in time f ∗(H,G) · (|G| + |H|)O(1),

provided that H is given along with cores of all its connected components.

3.1.1 Projective graphs and constructions

In this section we present notion of projectivity and its connections to constructions.

Projective graphs. We first consider so-called projective graphs. Let H be a graph.

We say that a homomorphism φ : H×ℓ → H, for some ℓ ⩾ 2, is idempotent if for every

v ∈ V (H), we have φ(v, . . . , v) = v. A graph H is projective if for every ℓ ⩾ 2, every

idempotent homomorphism φ : H×ℓ → H is a projection.

Larose and Tardiff [100] provided a characterization of projective graphs using a notion

of constructions.

Definition 3.7. Let H be a graph and let S ⊆ V (H). A construction of S consists of:

• a graph C(S),

• a tuple (x1, x2, . . . , xℓ) of vertices of H,

• a tuple (y1, y2, . . . , yℓ) of vertices of C(S),

36

• one special vertex y0 of C(S),

and the following property has to be satisfied:

S = {φ(y0) | φ : C(S)→ H such that φ(y1) = x1, . . . , φ(yℓ) = xℓ}.

In other words, if we map each vertex xi to its corresponding vertex yi, then the set

of possible images of y0 over all extensions of this partial mapping to a homomorphism

from C(S) to H is exactly S.

The following charactarization of projective graphs will be crucial for us.

Theorem 3.8 (Larose, Tardif [100]). A graph H with at least three vertices is projective

if and only if every S ⊆ V (H) has a construction.

Non-projective graphs. Now we would like to be able to have a similar property for

remaining graphs H. We will use methods introduced by Okrasa and Rzążewski [124].

In [124] they assume two conjectures from early 2000s.

Conjecture 3.9 ([100]). Let H be connected non-bipartite core. Then H is projective if

and only if H is prime.

Assuming Conjecture 3.9, if a graph H is a connected non-bipartite core, and H is

not projective, then there exist projective cores H1, . . . , Hℓ such that H = H1 × . . .×Hℓ.

This motivates the following definition.

Definition 3.10. Let H = H1 ×W , let S ⊆ V (H), and let w ∈ V (W). A construction

of (S,w) consists of :

• a graph C(S,w),

• a tuple (x1, x2, . . . , xℓ) of vertices of H,

• a tuple (y1, y2, . . . , yℓ) of vertices of C(S),

• one special vertex y0 of C(S),

and the following properties have to be satisfied:

1. for every vertex s ∈ S, there exists a homomorphism φ : G→ H such that φ(y0) =

(s, w),

37

2. for s′ ∈ V (H1), if there is w ∈ V (W) and a homomorphism φ : G → H such that

φ(y0) = (s′, w′), then s′ ∈ S.

In order to introduce the second conjecture we need a few more definitions. Let

H1, H2 be non-bipartite graphs, and let H = H1 × H2. We say that a homomorphism

φ : H×ℓ
1 ×H2 → H1, for some ℓ ⩾ 2, is H1-idempotent if for every u ∈ V (H1), v ∈ V (H2), it

holds φ(u, . . . , u, v) = u. Then H is H1-projective if for every ℓ ⩾ 2, every H1-idempotent

homomorphism φ : H×ℓ
1 ×H2 → H1 is a projection.

Conjecture 3.11 ([98, 99]). Let H = H1×H2 be a core such that H1 is projective. Then

H is H1-projective.

Now assuming that Conjecture 3.9 and Conjecture 3.11 are true, we can have an

analogue of Theorem 3.8.

Theorem 3.12 ([120], Lemma 3.2.7). Let H be a connected non-bipartite core and let H =

H1 × . . .×Hℓ be its prime factorization. Assuming Conjecture 3.9 and Conjecture 3.11,

for every S ⊆ V (H1) and w ∈ V (W) = V (H2 × . . . ×Hℓ), there exists a construction of

(S,w).

3.2 List homomorphisms

In this section we focus on the list variant of the problem, i.e., LHom(H) – in order to

prove hardness in Theorem 1.10, we will first prove it for the list version of the problem,

and then, using methods described in the first part of this chapter, we will extend the

results to the non-list version.

Note that in the list setting it makes sense if vertices of H have loops, but for the scope

of this dissertation we will focus on simple graphs. In such a case the dichotomy provided

by Feder, Hell, and Huang [57], can be formulated as follows (a circular-arc graph is the

intersection graph of arcs on a given circle).

Theorem 3.13 (Feder, Hell, Huang [57]). Let H be a simple graph. Then LHom(H) is

polynomial-time solvable if H is bipartite and its complement is a circular-arc graph, and

NP-complete otherwise.

The following property of circular-arc graphs will be useful for us.

38

Proposition 3.14 ([57]). Let H be a bipartite graph whose complement is a circular-arc

graph. Then H does not contain an induced cycle on at least 6 vertices.

Similarly as in [121, 128], we will first prove hardness for bipartite target graphs, and

then extend to the general case using properties of associated bipartite graphs. Recall

that for a graph H, the associated bipartite graph H∗ is defined as follows:

V (H∗) = {u′, u′′ | u ∈ V (H)},

E(H∗) = {u′w′′, u′′w′ | uw ∈ E(H)}.

For a connected, bipartite graph H with bipartition classes X, Y , we say that (G,L) is a

consistent instance of LHom(H), if the following conditions are satisfied:

1. G is connected and bipartite with bipartition classes XG, YG,

2. ⋃v∈XG
L(v) ⊆ X and ⋃v∈YG

L(v) ⊆ Y .

The following proposition allows us to extend hardness results for bipartite target

graphs to general target graphs.

Proposition 3.15 (Okrasa, Piecyk, Rzążewski [121]). Let H be a graph, and let (G,L) be

a consistent instance of LHom(H∗). Define L′ : V (G)→ 2V (H) as L′(v) = {u | {u′, u′′}∩

L(v) ̸= ∅}. Then (G,L)→ H∗ if and only if (G,L′)→ H.

Therefore, through the rest of this chapter, we will consider bipartite target graphs.

For a connected bipartite graph H with bipartition classes X, Y , we say that a subset

of V (H) is one-sided if it is contained either in X or in Y .

Decomposable graphs. Okrasa, Piecyk, and Rzążewski [121] defined the following

decomposition of biparitte graphs which turned out to be useful in solving LHom(H).

Definition 3.16 (Bipartite decomposition). Let H be a bipartite graph with bipartition

classes X, Y . A partition of V (H) into an ordered triple of sets (D,N,R) is a bipartite

decomposition if the following conditions are satisfied (see Figure 3.1)

1. N is non-empty and separates D and R,

2. |D ∩X| ⩾ 2 or |D ∩ Y | ⩾ 2,

39

3. N induces a biclique in H,

4. (D ∩X) ∪ (N ∩ Y) and (D ∩ Y) ∪ (N ∩X) induce bicliques in H.

If H admits a bipartite decomposition, we call it decomposable, otherwise we call it un-

decomposable.

D

N

R

Figure 3.1: Bipartite decomposition (D,N,R). Circles denote independent sets. A black

line denotes that there are all possible edges between sets, an orange one that there might

be some edges, and the lack of a line denotes that there are no edges between sets. The

figure is taken from [121].

We observe that the property of being incomparable is actually stronger that being

undecomposable.

Proposition 3.17. Every connected bipartite incomparable graph is undecomposable.

Proof. Let H be a connected bipartite incomparable graph with bipartition classes X, Y ,

and, for contradiction, suppose that it admits a decomposition (D,N,R).

Note that the neighborhood of every vertex in D ∩ X (resp. D ∩ Y) is contained in

the neighborhood of any vertex in N ∩ X (resp. N ∩ Y). Thus we have D ∩ X = ∅ or

N ∩X = ∅, and D ∩ Y = ∅ or N ∩ Y = ∅.

Suppose that D ∩X = ∅ (the case that D ∩ Y = ∅ is symmetric). This implies that

|D ∩ Y | ⩾ 2, and all vertices in D ∩ Y have the same neighborhood (i.e., N ∩ Y). So we

conclude that N ∩X = N ∩ Y = ∅, a contradiction with N being non-empty.

3.2.1 Expressing relations

Throughout this section we assume thatH is a connected undecomposable bipartite graph,

whose complement is not a circular-arc graph, and (α, β) is a fixed pair of vertices from

one bipartition class of H.

40

Let k ∈ N, and for i ∈ [k], let Si ⊆ V (H) be a one-sided incomparable set. Let

R ⊆ S1 × . . . × Sk be a k-ary relation. We say that a graph F with H-lists L and k

vertices v1, . . . , vk is an R-gadget if

R = {(φ(v1), . . . , φ(vk)) | φ : (F,L)→ H}.

In the following theorem we show that for every relation R, an R-gadget exists.

Theorem 3.18. Let H be a connected undecomposable bipartite graph, whose complement

is not a circular-arc graph. Let k ∈ N and let R ⊆ S1 × . . .× Sk, where for every i ∈ [k],

the set Si ⊆ V (H) is one-sided and incomparable. Then there exists an R-gadget.

The first building block for proving Theorem 3.18 is a gadget of a k-ary relation called

a NANDk(α, β).

NANDk(α, β) := {α, β}k \ {(β, . . . , β)}.

The second building block is gadget of a binary relation called indicator (S, s, α, β),

where S ⊆ V (H) and s ∈ S.

I(S, s, α, β) := S × {α, β} \ {(s, α)}.

For an indicator gadget I(S, s, α, β) with interface vertices (x, y), we will call x, y, respec-

tively, input and output.

By the following lemma from [121], we can construct both, the NANDk-gadget and

the indicator gadget.

Lemma 3.19 (Okrasa, Piecyk, Rzążewski [121]). Let H be an undecomposable, connected,

bipartite graph, whose complement is not a circular-arc graph. Let S ⊆ V (H) be an

incomparable one-sided set. There exists a pair (α, β) of incomparable vertices from one

bipartition class such that there exists a NANDk(α, β)-gadget and for every s ∈ S there

exists an I(S, s, α, β)-gadget.

Now we are ready to prove Theorem 3.18.

Proof of Theorem 3.18. Let α, β be the pair given by Lemma 3.19. First, let us intro-

duce the interface vertices v1, . . . , vk with lists L(vi) = Si. For every tuple (s1, . . . , sk) ∈

S1 × . . . × Sk \ R we introduce the following gadgets. For i ∈ [k], we introduce an in-

dicator gadget I(Si, si, α, β) and identify its input vertex with vi. Then we introduce a

41

NANDk(α, β)-gadget and identify its interface vertices with the output vertices of indica-

tor gadgets. This completes the construction of the R-gadget (F,L).

Let us verify that the constructed graph is indeed an R-gadget. First let (s1, . . . , sk) ∈

S1 × . . . × Sk \ R and suppose that there is a list homomorphism φ : (F,L) → H such

that φ(vi) = si for every i ∈ [k]. Then for every indicator gadget I(α, β) introduced

for the tuple (s1, . . . , sk), its output vertex must be mapped to β. These output vertices

were identified with interface vertices of a NANDk(α, β)-gadget, and thus cannot all be

mapped to β, which is a contradiction.

So now let (s1, . . . , sk) ∈ R. We set φ(vi) = si for every i ∈ [k]. It remains to

show that φ can be extended to the remaining vertices of F , i.e., vertices of gadgets

introduced for some tuples (s′
1, . . . , s

′
k). Consider such a tuple (s′

1, . . . , s
′
k), i.e., any tuple

from S1 × . . . × Sk \ R. There must be i ∈ [k] such that si ̸= s′
i. Therefore the output

vertex of the indicator gadget I(Si, si, α, β) can be mapped to α. We can extend φ to the

vertices of the remaining indicator gadgets so that their output vertices are mapped either

to α or β. Since at least one of the interface vertices is not mapped to β, we can extend

φ to the remaining vertices of the NANDk(α, β)-gadget. This completes the proof.

42

Chapter 4

Cutwidth

In this chapter as the parameter of the input graph the cutwidth. Let us first define

crucial notions of this chapter.

Throughout this chapter, for a bipartite graph H, we will sometimes write H =

(X, Y,E), where V (H) = X ∪ Y , E(H) = E, and X, Y are bipartition classes of H.

In such a case we will consider H as a graph with fixed bipartition classes X, Y , which

will allow us to avoid confusion, when H is not connected and bipartition classes are

not uniquely defined. However, we will mostly consider connected graphs, for which

bipartition classes are always uniquely defined. Finally, the values of all the parameters

we will define for bipartite graphs with fixed bipartition classes, are independent on the

choice of bipartition classes – we fix them only for clarity.

Induced matchings and half-induced matchings. A set M ⊆ E of edges of a

graph H forms an induced matching if the edges in M are disjoint and no edge in E(H)

is incident with two edges from M . We may also view this as two sequences of distinct

vertices v1, . . . , vm and u1, . . . , um where viuj ∈ E(H) if and only if i = j. For a bipartite

graph H, by mim(H) we denote the size of a maximum induced matching in H. For non-

bipartite H, we define mim(H) := mim(H∗) – recall that by H∗ we denote the associated

bipartite graph of H.

A half-induced matching in a bipartite graph H with bipartition classes X, Y consists

of two sequences v1, . . . , vm ∈ X and u1, . . . , um ∈ Y of distinct vertices where viui ∈ E

for i ∈ [m] and uivj ̸∈ E if 1 ⩽ i < j ⩽ m (see Figure 4.1). For a bipartite graph H,

43

v1

v2

v3

v4

v5

v6

u1

u2

u3

u4

u5

u6

Figure 4.1: A half-induced matching of size 6. Black edges denote the edges that must

be present, orange ones denote edges that might exist, and there are no other edges. If

none of the orange edges exists, then we have an induced matching, and if all of them

exist, then we have a halfgraph.

we denote the size of a largest half-induced matching in H by him(H). We extend the

definition to graphs H that are non-bipartite via him(H) = him(H∗). This notion has

been studied under the name constrained matching (a subset with a unique matching, see

e.g. [24, 125, 134]), but we decided to use the name which appeared more recently in a

similar setting to ours [108], since the word ‘constrained matching’ has also been used for

various other purposes in the algorithmic community.

Note that an induced matching is in particular a half-induced matching, and thus

we always have mim(H) ⩽ him(H). The other extremal case is a halfgraph, when we

decide that all possible edges exist, i.e., a halfgraph of size m is a bipartite graph H with

bipartition classes {v1, . . . , vm} and {u1, . . . , um} and we have uivj ∈ E(H) if and only if

i ⩾ j. Note that for a halfgraph H of size m, we have him(H) = m and mim(H) = 1.

Mim and him for matrices. Let A ∈ {0, 1}n×m be a matrix. Given a sequence

r ∈ [n]ℓ of ℓ distinct row indices and c ∈ [m]p of p distinct columns indices, for some

integers ℓ ∈ [n], p ∈ [m], we write A[r, c] for the ℓ× p matrix with entries A[r, c]i,j = Ari,cj

for i ∈ [ℓ] and j ∈ [p]. We refer to any matrix which arises in such a manner as a permuted

submatrix of A.

We write mim(A) for the maximum ℓ for which A has the ℓ × ℓ identity matrix as

permuted submatrix (equivalently, the largest permutation submatrix). We write him(A)

for the largest ℓ for which A has an ℓ× ℓ triangular matrix with ones on the diagonal as

permuted submatrix. We will also refer to such a submatrix as half induced matching. (A

44

matrix is called triangular if either all entries below the diagonal, or all entries above the

diagonal are 0.)

For a bipartite graph H = (X, Y,E), in the bi-adjacency matrix BH rows are indexed

by vertices of X and columns are indexed by the vertices of Y , and B[u, v] = 1 if uv ∈ E

and B[u, v] = 0 otherwise. For a bipartite graph H, there is a one-to-one correspondence

between induced matchings of H of size m and m × m identity permuted submatrices

of the bi-adjacency matrix of H. In particular, for a bi-adjacency matrix BH of H,

mim(BH) = mim(H). Similarly, him(BH) = him(H).

For a non-bipartite graph H, if AH is its adjacency matrix, then AH is also the

bi-adjacency matrix of H∗ with bipartition classes V ′ = {v′ | v ∈ V (H)} and V ′′ =

{v′′ | v ∈ V (H)}. This means that for non-bipartite H with adjacency matrix AH ,

mim(H) = mim(AH) and him(H) = him(AH).

Mimsup. For a matrix A, we define

mimsup(A) = sup
k

mim(A⊗k)1/k.

Here ⊗ denotes the Kronecker product of the matrix. Given an n × m matrix A =

(ai,j)i∈[n],j∈[m] and a matrix B, the Kronecker product is given by

A⊗B =



a1,1B a1,2B . . . a1,mB

a2,1B a2,2B . . . a2,mB

. . .

an,1B an,2B . . . an,mB


.

Moreover, by A⊗k we denote the Kronecker product of k copies of A.

We point out that for every matrix A ∈ {0, 1}n×m the value mimsup(A) is finite and

is bounded by min{n,m}. Indeed, for every k ∈ N, the matrix A⊗k has nk rows and

mk columns, so it can only contain permutation submatrix with at most min{nk,mk}

rows/columns, and thus mim(A⊗k)1/k ⩽ min{n,m}.

In fact, in the definition of mimsup, we can replace the supremum with the limit.

Theorem 4.1. Let A ∈ {0, 1}n×m. Then

sup
k∈N

mim(A⊗k)1/k = lim
k→∞

mim(A⊗k)1/k.

45

We postpone the proof of Theorem 4.1 to Section 4.5.

For a non-bipartite graph H, with adjacency matrix AH , we set

mimsup(H) = mimsup(AH).

WhenH = (X, Y,E) is bipartite with bi-adjacency matrix1 BH , mimsup(H) = mimsup(BH).

The parameters can also be defined in purely graph theoretical terms, as we now explain.

For a bipartite graph H = (X, Y,E), and for k ∈ N, we define H⊗k to be the graph

on vertex set Xk ∪ Y k where there is an edge (x1, . . . , xk)(y1, . . . , yk) in H⊗k if and only

if xiyi ∈ E(H) for every i ∈ [k]. With this definition of graph power, we define

mimsup(H) =


supk∈N mim(H⊗k)1/k if H is bipartite,

mimsup(H∗) otherwise.

We point out that the power ⊗k is very similar to taking powers with respect to the

direct product ×. In fact for a bipartite graph H = (X, Y,E), the graph H⊗k is an

induced subgraph of H×k, i.e., we consider only vertices (z1, . . . , zk) ∈ V (H)k such that

either for every i ∈ [k], we have zi ∈ X, or for every i ∈ [k], we have zi ∈ Y .

The following property of mimsup is straightforward.

Observation 4.2. If H is an induced subgraph of G, then mimsup(H) ⩽ mimsup(G).

4.1 Algorithm

In this section we discuss how we can use representative sets to create fast algorithms for

Hom. Let us first discuss the high-level sketch of the algorithm and the idea behind the

so-called representative sets. Suppose we aim to solve Hom for input graphs G and H,

where H is non-bipartite. We assume that G is given with a linear ordering v1, . . . , vn of

width at most w. For an integer i ∈ [n] we refer to G[{v1, . . . , vi}] as the left-hand side of

the graph and

Xi := {v ∈ {v1, . . . , vi} | ∃v′ ∈ {vi+1, . . . , vn}, vv′ ∈ E(G)}

as the left-hand side of the i-th cut.
1Note that mimsup is invariant under row and column permutations. This means that the choice

of bi-adjacency matrix does not affect the mimsup on matrices and thus mimsup on bipartite graphs is

well-defined.

46

Similarly, we refer to

Yi := {v ∈ {vi+1, . . . , vn} | ∃v′ ∈ {v1, . . . , vi}, vv′ ∈ E(G)} .

as the right-hand side of the i-th cut.

Given a 0-1 matrix M , with rows indexed by a set R and A ⊆ R, we are interested

in knowing whether for a column c, there is a row r ∈ A with M [r, c] = 1. In our case,

• each row represents a coloring of the left-hand side of the cut;

• A contains the colorings that can be extended to the left-hand side of the (input)

graph;

• each column represents a coloring of the right-hand side of the cut;

• M [r, c] = 1 if and only if the colorings represented by row r and column c respect

the edges crossing the cut.

This makes the following definition very natural. We say that a subset A′ ⊆ A M-

represents A, if for any column j we have that if there is a row index i ∈ A such that

M [i, j] = 1, then there is also i′ ∈ A′ such that M [i′, j] = 1. Intuitively, this means that

we do not “lose any solutions” by restricting A to A′. We will also refer to A′ as an

M-representative set of A. We may omit M if it is clear from context.

We remark that representing is transitive: if A′′ represents A′ and A′ represents A,

then A′′ represents A.

We will be interested in representative sets with respect to M = A⊗k
H for integers k,

where AH is the adjacency matrix of H. Thus, we may also refer to H-representative sets

rather than AH-representative sets.

Suppose there are k edges crossing the ith cut: {a1, b1}, . . . , {ak, bk} ∈ E(G) with

a1, . . . , ak ∈ {v1, . . . , vi} and b1, . . . , bk ∈ {vi+1, . . . , vn}. Let Li = (a1, . . . , ak) and Ri =

(b1, . . . , bk). Note that {a1, . . . , ak} = Xi but some elements may be repeated. A row r of

the matrix M = A⊗k
H is a k-tuple (r1, . . . , rk) ∈ V (H)k, which corresponds to a coloring

Xi → V (H) if rj = rj′ whenever aj = aj′ . If similarly c ∈ V (H)k represents a coloring of

the ‘right-hand side of the cut’, then M [r, c] = 1 if and only if ajbj ∈ E(H) for all j ∈ [k],

i.e., the colorings are compatible. So indeed we capture the properties informally claimed

above.

47

The main idea behind the use of representative sets in an algorithmic setting is as

follows. We solve the problem with a standard dynamic programming approach, where

the cells are indexed by the elements of the set A. A representative set then forms a

small subset of these indices, which still carries enough information to solve the problem.

Therefore, by reducing the current set of indices to a smaller representative set after each

step, we can effectively run our dynamic programming algorithm on only a small subset

of the cells in the table.

4.1.1 Connection to Mimsup

We now show that the largest size of a setA ⊆ V (H)k without a smallerA⊗k
H -representative

set, equals mimsup(H)k (for k an integer, H a non-bipartite graph and AH its adjacency

matrix).

Theorem 4.3. Let H be a non-bipartite graph and let AH be its adjacency matrix.

• For each integer k ∈ N, for any A ⊆ V (H)k, there is a subset A′ ⊆ A of size at

most mimsup(H)k that A⊗k
H -represents A.

• Conversely, for each ε > 0, for each sufficiently large k, there is A ⊆ V (H)k, for

which no A′ ⊆ A of size at most (mimsup(H)− ε)k can A⊗k
H -represent A.

Proof. Let M = A⊗k
H . Let A′ ⊆ A be of minimum size among the subsets that M -

represent A. Then no proper subset of it M -represents A. This means that for each

a ∈ A′ it cannot be removed from A′ to get a set that M -represents A. Thus, for each

a ∈ A′ there is some µ(a) ∈ V (H)k such that M [a, µ(a)] = 1, but for every a′ ∈ A′ \ {a}

we have that M [a′, µ(a)] = 0. Hence the rows and columns from {a, µ(a) : a ∈ A′} form

a permutation submatrix in A⊗k
H of size |A′|. This shows that |A′| ⩽ mim(A⊗k

H). By

definition of mimsup, mim(A⊗k
H) ⩽ mimsup(H)k.

Conversely, recall that by Theorem 4.1, we can replace the supremum with the limit in

the definition of mimsup. Therefore, by the definition of a limit, for each ε > 0 there is k0

such that mim(A⊗k
H) ⩾ (mimsup(AH)−ε)k for all k ⩾ k0. Any permutation submatrix has

no smaller representative sets, so it suffices to consider the set of rows A of a permutation

submatrix in A⊗k
H of size mim(A⊗k

H).

48

v1 v2 v3 v4 v5 v6 v7 v8 v9

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 4.2: Sets Xi (blue) and Yi (green) for i = 4 (above) and i = 5 (below).

4.1.2 Exploiting Representative Sets in Dynamic Programming

In the following theorem we formally show how to use representative sets for solving Hom.

Let us emphasize that H is not assumed to be fixed here but rather given as an input.

Theorem 4.4. Let H be a non-bipartite graph on h vertices. Let R be a reduction algo-

rithm that, given an integer k ⩾ 2 and a subset A ⊆ V (H)k, outputs a set A′ of size at

most size(H, k) that A⊗k
H -represents A, running in time time(|A|, H, k). Then there exists

an algorithm that, given a linear ordering of an n-vertex graph G of width w, decides

whether G→ H in time

O
((

size(H,w) · h+ time (size(H,w) · h,H,w)
)
n
)
.

Proof. We can assume that G is connected, as otherwise we can solve the problem for

every connected component of G separately (see Section 3.1). Let v1, . . . , vn be a linear

ordering of G of width w. For i ∈ [n], by Ei we denote the set of edges that cross the i-th

cut, i.e., those with one endpoint in {v1, . . . , vi} and the other in {vi+1, . . . , vn}. Recall

that Xi and Yi are defined as follows.

Xi := {v ∈ {v1, . . . , vi} | ∃v′ ∈ {vi+1, . . . , vn}, vv′ ∈ E(G)} ,

Yi := {v ∈ {vi+1, . . . , vn} | ∃v′ ∈ {v1, . . . , vi}, vv′ ∈ E(G)} .

Note that we have |Xi| ⩽ |Ei| ⩽ w and X1 = {v1} (since G is connected). Let us point

out that we always have Xi ⊆ Xi−1 ∪ {vi} (see Figure 4.2).

49

For a mapping c : Xi → V (H), we define the table entry Ti[c] as true if there exists a

homomorphism φ : G[{v1, . . . , vi}]→ V (H), such that for all v ∈ Xi we have φ(v) = c(v).

(In other words, the keys are given by the H-colorings of Xi and the value of the table is

true if there is an extension of the coloring to the graph induced on the left-hand side of

the cut.)

This table can be easily computed in time hw+1 ·nO(1) by the following naive dynamic

programming procedure. We initiate every entry Ti[c] to be false and every entry T1[c] to

be true. Then, for every i ∈ [2, n], every mapping c′ : Xi−1 → V (H), such that Ti−1[c′] is

true, and every u ∈ V (H), we check whether c : Xi−1 ∪ {vi} → V (H) defined as

c(v) =


u if v = vi,

c′(v) v ∈ Xi−1.

(4.1.1)

is a homomorphism from G[Xi−1 ∪ {vi}] to H. If so, we set Ti[c|Xi
] to true.

We first outline why this correctly computes the table entries (that is, that at the

end Ti[c] is true if and only if c extends to a coloring of G[{v1, . . . , vi}]) and then explain

how to improve on this naive algorithm. We prove the correctness by induction on i. For

i = 1, the homomorphism only assigns a color to v1 and does not need to be extended

(and it automatically respects the empty set of edges). Now suppose that the claim has

been shown for i = 1, . . . j and let α : Xj+1 → V (H) be a coloring. If this extends

to a coloring ϕ of G[{v1, . . . , vj+1}], then Tj[c′] is true for c′ = ϕ|Xj
(by the induction

hypothesis) and we could obtain α as a restriction of c from (4.1.1) with u = ϕ(vj+1)

and i = j + 1. So Tj+1[α] is true. Vice versa, if Tj+1[α] has been set to true, then

there is a c′ : Xi−1 → V (H) and u ∈ V (H) such that c (again defined as in (4.1.1)) is

a homomorphism G[Xj ∪ {vj+1}] → H which restricts to α on Xj+1. By the induction

hypothesis, there exists a homomorphism ϕ′ that extends c′ to G[{v1, . . . , vj}] and we

extend this to a homomorphism ϕ of G[{v1, . . . , vj+1}] by setting ϕ(vj+1) = u. Then ϕ

still restricts to α and all of the edge constraints have been verified by c and/or ϕ′ – let us

point out that all the neighbors of vj+1 in {v1, . . . , vj} are contained in Xj and thus are

colored by ϕ′, so indeed ϕ respects the edges containing vj+1. In particular, G→ H if and

only if Tn[∅] is true, where ∅ denotes the empty mapping (Xn = ∅). Since for every i ∈ [n]

the number of table entries of Ti is bounded by the number of possible mappings from Xi

to H, which is hw (recall that |Xi| ⩽ |Ei| ⩽ w) and we construct Ti+1 by checking pairs:

an entry of Ti and a vertex of H, the running time is indeed bounded by hw+1 · nO(1).

50

We will speed up this naive version of the dynamic program by computing a repre-

sentative table T ′ as follows. We first set T ′
1 = T1. For i = 1, 2, . . . , n − 1 we proceed

as follows. Let k = |Ei| ⩽ w and M = A⊗k
H . Let {a1, b1}, . . . , {ak, bk} ∈ Ei be an enu-

meration of the edges, with aj ∈ {v1, . . . , vi} for all j ∈ [k]. For each c : Xi → V (H)

such that T ′
i [c] is set to true, we put the k-tuple (c(a1), . . . , c(ak)) in Ai. When k ⩾ 2,

we apply the reduction algorithm R to Ai, resulting in a set A′
i of size at most size(H, k)

that A⊗k
H -represents Ai. When k = 1, we set A′

i = Ai. We then compute the next table

entries similarly as in the previous approach. Each element of A′
i corresponds to a col-

oring c′ : Xi → V (H). For u ∈ V (H), we check whether c : Xi ∪ {vi+1} → V (H) with

c(vi+1) = u and c|Xi
= c′ is a homomorphism from G[Xi ∪ {vi+1}] to H. If so, we set

T ′
i+1[c|Xi+1] = 1. We repeat this for all pairs (c′, u).

The procedure above is repeated for i = 1, . . . , n − 1, after which we return T ′
n[∅] as

the answer.

Running time. When |A′
i| ⩽ size(H, k), we find that |Ai+1| ⩽ size(H, k)h (for k =

|Ei| ⩽ w and size(H, k) = h for k = 1). We may assume size is a non-decreasing function

on each coordinate. So the total running time is as claimed:

O
((

size(H,w) · h+ time (size(H,w) · h,H,w)
)
n
)
.

Correctness. The fact that the dynamic programming steps preserve representation

follows from transitivity of representation, but let us spell out the details.

Let Yi+1 be the set of endpoints on the right-hand side of the (i+1)th cut and enumer-

ate the edges in Ei+1 as {x1, y1}, . . . , {xk, yk}, with xj ∈ Xi+1 and yj ∈ Yi+1. We will show

that for every i ∈ [n − 1], if A′
i represents the set Truei := {(c(x1), . . . , c(xk)) | Ti[c] =

True}, then Ai+1 represents the set Truei+1. We started with setting T ′
1 = T1, so A′

1

indeed represents True1.

Suppose that A′
i represents the set Truei for some i ∈ [n− 1]. We need to show that

Ai+1 represents the set Truei+1. The same then holds for A′
i+1 by transitivity.

Let us first unravel the definitions to see what we need to show. Let i ∈ [n − 1] and

suppose that c : G[Xi+1] → H extends to a homomorphism ϕ : G[{v1, . . . , vi+1}] → H

(i.e., Ti[c] = True). Since we want to verify representation, we will then assume there is a

homomorphism d : G[Yi+1]→ H for which c ∪ d respects all edges from the (i+ 1)th cut

51

(those in Ei+1), i.e., this corresponds to a “one-entry in the compatibility matrix”. What

needs to be shown is that this “one-entry” can also be generated via a coloring coming

from Ai+1, that is, there is α : G[Xi+1] → H, such that (α(x1), . . . , α(xk)) ∈ Ai+1 and

(α ∪ d)|G[Ei+1] is a homomorphism.

By assumption, ϕ∪d respects all the edges with at least one endpoint in {v1, . . . , vi+1},

and in particular those with one endpoint in {v1, . . . , vi}. Since A′
i is a representative

set of Truei, there must be c′ : G[Xi] → H such that (c′(x′
1), . . . , c′(x′

k′)) ∈ A′
i, for

{x′
1, . . . , x

′
k′} = Xi, and where c′ ∪ ϕ|{vi+1} ∪ d respects all the edges with at least one

endpoint in {v1, . . . , vi}. We set α = (c′ ∪ ϕ|{vi+1})|Xi+1 . Then (α(x1), . . . , α(xk)) ∈ Ai+1,

by definition of how we obtain Ai+1 from A′
i. Moreover, α ∪ d is a homomorphism

G[Ei+1]→ H, as desired.

4.2 Representative sets

In this section we focus on upper bounds for the size of representative sets and how

to actually compute H-representative sets, where the size guarantee for the resulting

representative sets is given in terms of two different parameters of H. The first of these

two algorithms is one of main technical contributions of this chapter, and it is rather

general since it finds representative sets non-trivially fast for any large Kronecker power

of a matrix with small size of a maximum half-induced matching. The second of these two

algorithms uses the notion of the so-called support-rank and is a natural generalization

of the algorithm from [87]. We compare the size of a maximum half-induced matching to

the support-rank in Section 4.5.2.

4.2.1 Computing representative sets via half-induced matchings

In this section we show how to compute small representative sets for graphs with no large

half-induced matching. In order to do this, we will show how to find a representative set

that has one fewer element, by finding some element that can be safely removed. We then

use this intermediate result to find our final reduction algorithm, which will result in the

following lemma.

Lemma 4.5. Let ℓ ⩾ 1 and k ⩾ 2 be integers. Let A ∈ {0, 1}h×h be a matrix with

him(A) < ℓ, and let A ⊆ [h]k. Then we can compute A′ ⊆ A that A⊗k-represents A with

52

|A′| ⩽ kkℓ in time O(|A|2h2k2).

Before we prove Lemma 4.5, let us discuss its consequences. When we combine the

reduction algorithm described in Lemma 4.5 with Theorem 4.4 we find the following result.

Theorem 1.6. For any graphs G and H, where G is given with a linear ordering of width

k, in time O(k2k·him(H) · |H|4|G|) one can decide whether G admits a homomorphism to H.

We emphasize that the algorithm does not need to know the value of him(H). Since

him(H) ⩽ mimsup(H) (see Lemma 4.26), we immediately obtain Theorem 1.7 as a corol-

lary from Theorem 1.6.

Theorem 1.7. For any graphs G and H, where G is given with a linear ordering of width

k, in time O(k2k·mimsup(H) · |H|4|G|) one can decide whether G admits a homomorphism

to H.

Theorem 1.5 and Theorem 1.6 also easily follow from Lemma 4.5. We postpone the

details of the combinatorial bound to Section 4.5.1 and for now focus on the algorithmic

aspects.

Proof of Theorem 1.6. Let h = |V (H)| and let AH be the adjacency matrix of H. Recall

that him(AH) = him(H) is always an integer. By Lemma 4.5 we have a reduction

algorithm R that for every A ⊆ V (H)k returns a representative set A′ ⊆ A of size at

most size(H, k) ⩽ kk·(him(H)−1) in time time(|A|, H, k) = O(|A|2h2k2). Then

time(size(H, k) · h,H, k) = O
(
k2 · k2k·(him(H)−1) · h4

)
.

By Theorem 4.4 we find an algorithm that decides Hom in time

O ((size(H, k) · h+ time(size(H, k) · h,H, k))|G|) = O(k2k·him(H)h4 · |G|).

This completes the proof.

In order to prove Lemma 4.5, we will perform a recursive algorithm for which we no

longer want to treat all the coordinates symmetrically. We therefore define

gk(ℓ1, . . . , ℓk) =
(∑

i ℓi

ℓ1, . . . , ℓk

)
.

When ℓ1 = · · · = ℓk = ℓ, we have gk(ℓ, . . . , ℓ) =
(

kℓ
ℓ,...,ℓ

)
⩽ kkℓ. The lemma will follow

easily from the following more complicated statement.

53

Lemma 4.6. Let k ⩾ 2, ℓ1, . . . , ℓk ⩾ 1 be integers. Let A ∈ {0, 1}h×h be a matrix and

let A ⊆ [h]k with |A| ⩾ gk(ℓ1, . . . , ℓk). Suppose that for every i ∈ [k], for the set of rows

Ri = {ri | r ∈ A}, we have him(A[Ri, ·]) < ℓi. Then there exists v ∈ A such that A\{v}

A⊗k-represents A. Moreover, v can be found in time O(∑k
i=1 ℓi · |A|hk).

Proof. Note that |A| ⩾ gk(ℓ1, . . . , ℓk) ⩾ 1 for ℓ1, . . . , ℓk, k ⩾ 1, so it is non-empty.

For i ∈ [k] and u ∈ [h], let

Ai
u = {v = (v1, . . . , vk) ∈ A | A[vi, u] = 0}

We choose v ∈ A (arbitrarily). We then iterate over u ∈ [h] and i ∈ [k] to find if there is

(u, i) for which

• A[vi, u] = 1, and

• |Ai
u| ⩾ gk(ℓ1, . . . , ℓi − 1, . . . , ℓk).

This step can be performed in time O(|A|hk).

If we cannot find such (u, i) pair for v, then we return v as the row to be removed

from A (and the algorithm terminates).

Otherwise, we did find (u, i). If ℓi = 1, then since him(A[Ri, ·]) < ℓi, we know A[Ri, ·]

has all zero-entries and so A[vi, u] = 1 would not have been possible. This means that

ℓi ⩾ 2. We apply the same process after updating ℓi ← ℓi − 1 and A ← Ai
u. Note that

v /∈ Ai
u and ℓi − 1 ⩾ 1. We will show that

(1.) when v is returned, then indeed A \ {v} A⊗k-represents A, and

(2.) when we recursively apply the algorithm, the conditions of the lemma are again sat-

isfied, for which it remains to show that him(A[R′
i, ·]) < ℓi−1 forR′

i = {ri | r ∈ Ai
u}.

Since we reduce ∑k
i=1 ℓi by one in each recursive call, the algorithm will terminate. More-

over, the number of recursive calls is at most ∑k
i=1 ℓi. This shows that assuming (1.) and

(2.), the time complexity is as stated.

Correctness. We first show (1.): if the algorithm outputs v, then indeed it can be

removed. Note that when for some subset A′ ⊆ A, it is the case that A′ \ {v} represents

A′, then

A′ \ {v} ∪ (A \ A′) = A \ {v}

54

will also represent A. This means we only have to check the claims in the “base case”,

i.e., it is sufficient to show that if the algorithm outputs v at some step, then A \ {v}

represents A. Suppose towards a contradiction that we wrongly outputted v ∈ A, so

• there exists u = (u1, . . . , uk) ∈ [h]k such that A⊗k[v, u] = 1 yet A⊗k[v′, u] = 0 for

all v′ ∈ A \ {v} (since we wrongly outputted v, there needs to be a reason why we

could not remove it),

• for this u, for all i ∈ [k], |Ai
ui
| < gk(ℓ1, . . . , ℓi − 1, . . . , ℓk) (else the algorithm would

have recursed instead of outputting v).

The fact that A⊗k[v′, u] = 0 in the first condition means that each v′ ∈ A \ {v} is an

element of Ai
ui

for some i ∈ [k]. In particular,

|A \ {v}| ⩽
k∑

i=1
|Ai

ui
| ⩽

k∑
i=1

gk(ℓ1, . . . , ℓi − 1, . . . , ℓk)− k = gk(ℓ1, . . . , ℓk)− k,

which contradicts the assumptions of the lemma since k ⩾ 2.

We now prove (2.): the conditions of the lemma are satisfied when we recurse. By

assumption, ℓi ⩾ 1 for all i and the new A is sufficiently large. Moreover, him can only

decrease when taking submatrices, so indeed we only need to show that him(A[R′
i, ·]) <

ℓi−1 for R′
i = {ri | r ∈ Ai

ui
}. If there is a half-induced matching of size ℓi−1, induced on

rows w1, . . . , wℓi−1 ∈ R′
i and columns z1, . . . , zℓi−1, then there is a half-induced matching

of size ℓi in A[Ri, ·] by considering rows w1, . . . , wℓi−1, vi ∈ Ri and columns z1, . . . , zℓ−1, u.

But by assumption this does not exist, so indeed him(A[R′
i, ·]) < ℓi − 1. This completes

the proof.

Now we are ready to prove Lemma 4.5.

Proof of Lemma 4.5. Suppose that |A| ⩾ gk(ℓ, . . . , ℓ). For i ∈ [k], set Ri = {ri | r ∈ A}.

Then him(A[Ri, ·]) < ℓ for each i. By Lemma 4.6 we can find a row v in A such that

A \ {v} A⊗k-represents A in time O(ℓk · |A|hk) = O(|A|h2k2), where we use that ℓ ⩽ h.

We repeat this at most |A|− gk(ℓ, . . . , ℓ) times until we find the desired representative

set in time O(|A|2h2k2).

55

4.2.2 Computing representative sets via support rank

The support-rank (called also ‘non-deterministic rank’ in [41], see also [114]) of a matrix

M ∈ {0, 1}n×m over a field F is defined as

support-rank(M) = min{rankF(M ′) | M ′ ∈ Fn×m and M [i, j] = 0 ⇐⇒ M ′[i, j] = 0}.

The algorithm of Jansen and Nederlof [87] that solves every instance (G,L) of List

q-Coloring in time 2ωk · |G|O(1) provided that G is given with a linear ordering of its

vertices of width k builds on the fact that support-rank of the adjacency matrix of Kq is

at most 2, since the sum of two rank-one matrices

1 1 . . . 1

2 2 . . . 2
...

n n . . . n


+



−1 −2 . . . −n

−1 −2 . . . −n
...

−1 −2 . . . −n


has the same non-zero entries (and we always have rank(A + B) ⩽ rank(A) + rank(B)).

Small support-rank allows representative sets to be computed efficiently using row elimi-

nation. We record here what a generalization of this approach would give for our setting.

The following lemma is a generalization of the approach of Jansen and Nederlof [87].

Lemma 4.7. Let F be any field.2 Let A ∈ {0, 1}h×h be a matrix and let B ∈ Fh×h be a

matrix with the same support as A (i.e., B[i, j] = 0 ⇐⇒ A[i, j] = 0). For any ℓ ∈ N

and set of rows R ⊆ [h]ℓ of A⊗ℓ, we can find an A⊗ℓ-representative set R′ for R of size

at most rank(B)ℓ in time O(|R|rank(B)ℓ·(ω−1) · ℓ+ h3).

Here by ω ⩽ 2.371552 we denote the matrix multiplication exponent [135].

Before we prove Lemma 4.7, we present some well-known facts from linear algebra

that will be crucial for us. Let F be any field.

(L1) Let A ∈ Fn×n be a matrix and let r = rankF(A). Using Gaussian elimination, in

time O(n3) we can find matrices L ∈ Fn×r and R ∈ Fr×n such that A = LR.

(L2) Let A ∈ Fn×m be such that A = LR for some matrices L,R. Suppose that B ⊆ [n]

is a row basis for L. Then B is also a row basis for A.
2We assume that all arithmetic operations over F are performed in constant time.

56

(L3) Let A ∈ Fn1×m1 , B ∈ Fn2×m2 . Then rankF(A⊗B) = rankF(A) ·rankF(B). Moreover,

if B1 ⊆ [n1] is a row basis for A and B2 ⊆ [n2] is a row basis for B, then B = B1 × B2

is a row basis for A⊗B.

(L4) Let A ∈ Fn1×m1 , B ∈ Fn2×m2 . Then rankF(AB) ⩽ min{rankF(A), rankF(B)}.

(L5) Let A ∈ Fn1×m1 , B ∈ Fn2×m2 , and let k ∈ N. Then (AB)⊗k = A⊗kB⊗k.

The next fact follows from [9, Lemma 3.15]. Let us point out that the lemma in the paper

is written in the setting that F = F2, but this assumption is actually unnecessary.

(L6) A row basis for an n×m matrix with m ⩽ n and entries in F can be computed in

time O(nmω−1).

Now we are ready to prove Lemma 4.7.

Proof of Lemma 4.7. We may assume that |R| > rank(B)ℓ, since otherwise we are done.

We wish to compute a row basisR′ for the matrix B⊗ℓ[R, ·], but that matrix has too many

columns. By (L1), B can be expressed as B = LR for L of dimensions h× rank(B) and R

of dimensions rank(B)× h in time O(h3) by Gaussian elimination. Then by (L5), B⊗ℓ =

L⊗ℓR⊗ℓ and so, by (L2), a row basis for L⊗ℓ[R, ·] is also a row basis for B⊗ℓ[R, ·]. Note

that we also cannot permit ourselves to compute L⊗ℓ since it has too many rows again.

However, we can compute an entry L⊗ℓ[x, y] = L[x1, y1]L[x2, y2] · · ·L[xℓ, yℓ]. This allows

us to compute the |R|× rank(B)ℓ matrix L′ = L⊗ℓ[R, ·] in time O(|R| rank(B)ℓ · ℓ). Since

|R| > rank(B)ℓ, we can now compute a row basis R′ for L′ in time O(|R| rank(B)ℓ·(ω−1))

by (L6). This is then also a row basis for B⊗ℓ[R, ·].

We claim such a row basis forms the desired representative set. Suppose thatA⊗ℓ[r, c] =

1 for some row r ∈ R and column c ∈ [h]ℓ of A⊗ℓ. We need to prove that A⊗ℓ[r′, c] = 1

for some r′ ∈ R′. Since R′ is a row basis, there exist coefficients ar′ ∈ F such that

B⊗ℓ[r, c] =
∑

r′∈R
ar′B⊗ℓ[r′, c].

Combined with the fact that B has the same support as A, we find

A⊗ℓ[r, c] ̸= 0 =⇒ B⊗ℓ[r, c] ̸= 0 =⇒ B⊗ℓ[r′, c] ̸= 0 for some r′ =⇒ A⊗ℓ[r′, c] ̸= 0 for some r′.

This shows that indeed R′ is a representative set for R. Moreover, the size of the row

basis is at most the rank of B⊗ℓ, which by (L3), is rank(B)ℓ as claimed.

57

Combining Lemma 4.7 with Theorem 4.4, we immediately obtain the following.

Theorem 1.8. Let H be a non-bipartite graph on h vertices. Suppose we are given an

h× h matrix over a field F with the same support as the adjacency matrix of H and rank

r. Then there exists an algorithm that, given a linear ordering of an n-vertex graph G of

width k, decides whether G→ H in time O
(

(rk·ωhk + h3)|G|
)
.

We saw in the previous section that there is always an A⊗k-representative set of size

at most mimsup(A)k. The size constraint of Lemma 4.7 is possibly worse, but in this case

we can guarantee that the representative sets can also be computed efficiently. We remark

that Lemma 4.7 in particular implies that the support-rank is an upper bound on mimsup.

This can also be seen directly and we record this fact in the following observation.

Observation 4.8. Let A ∈ {0, 1}n×n be a matrix and let F be a field. Let B ∈ Fn×n be

a matrix with the same support as A. Then mim(A⊗k) ⩽ rankF(B⊗k) = rankF(B)k for

every k ∈ N. In particular,

mimsup(A) ⩽ support-rank(A).

We do not know whether mimsup and support-rank are functionally equivalent, but

we do provide a separation between support-rank and him in Section 4.5.2.

4.2.3 Bounding support rank via local biclique covers

The caveat in Theorem 1.8 is that a small-rank matrix with the same support as the

adjacency matrix of H must be given. If F is a finite field, an optimal such matrix can be

found in time |F|h2 ·hO(1) by brute-force, which is constant if both |F| and h are constants.

We will now present a combinatorial approach for finding a small-rank matrix with the

same support, which does not necessarily achieve the support-rank, but can be computed

efficiently.

Let F be a bipartite graph with bipartition classes X, Y . By F c we denote the bipartite

complement of F , i.e., the bipartite graph with bipartition classes X, Y , where uv ∈ X×Y

is an edge if and only if uv /∈ E(F).

For a bipartite graph F , let B = {B1, . . . , Bs} be a family of subgraphs of F , such that

(i) each Bi is a biclique, (ii) ⋃s
i=1 E(Bi) = E(F), and (iii) every v ∈ V (F) is in at most r

bicliques of B. Then we say that B r-covers F . The minimum r for which there exists a

58

family that r-covers F , has been studied under names bipartite degree, local biclique cover

number [43, 60], and is as special case of so-called local covering numbers also studied in

the literature [17, 91].

Lemma 4.9. Let H be a non-bipartite graph and assume we are given a family B of

bicliques that r-covers the bipartite complement (H∗)c of H∗. Then we can compute a

matrix A′
H with the same support as the adjacency matrix AH of H with rankR(A′

H) ⩽

(r + 1)r in time O(h2r2). In particular the support rank of AH is at most (r + 1)r.

Proof. Define an arbitrary ordering B1, B2, . . . , Bs of the elements of B. Moreover, for

every vertex of V (H∗), we fix the ordering of bicliques containing it. For each v ∈ V (H)

and i ∈ [r], define σi(v) = p (resp. δi(v) = p) if the i-th biclique covering v′ (resp., v′′)

is Bp. If v′ (resp., v′′) is covered by r′ < r bicliques, then for i = r′ + 1, . . . , r, we define

σi(v) = s+ 1 (resp., δi(v) = s+ 2). For u, v ∈ V (H), we define:

A′
H [u, v] =

r∏
i=1

r∏
j=1

(σi(u)− δj(v)).

Observe that such a product is non-zero if and only if there is no biclique from B that

contains both u′, v′′, and this in turn happens if and only if u′v′′ ∈ E(H∗) which is

equivalent to uv ∈ E(H). Therefore, A′
H has the same support as AH . We claim that the

rank of A′
H is at most (r + 1)r.

In order to bound the rank of A′
H we can rewrite

A′
H [u, v] =

r∏
i=1

(r∑
ℓ=0

σi(u)ℓ ·
∑

J⊆[r] : |J |=r−ℓ

∏
j∈J

(−δj(v))
)

=
∑

(ℓ1,...,ℓr) : ℓi∈[r]0

r∏
i=1

σi(u)ℓi ·
r∏

i=1

∑
Ji⊆[r] : |Ji|=r−ℓi

∏
ji∈Ji

(−δji
(v)).

If for i ∈ [r], ℓi ∈ [r]0 we define

L[u, (ℓ1, . . . , ℓr)] =
r∏

i=1
σi(u)ℓi ,

R[(ℓ1, . . . , ℓr), v] =
r∏

i=1

∑
Ji⊆[r] : |Ji|=r−ℓi

∏
ji∈Ji

(−δji
(v)),

then we see that A′
H is the product of two matrices L,R such that number of columns of

L and number of rows of R is (r + 1)r. Therefore both L,R have rank at most (r + 1)r

and by (L4), we conclude that rank(A′
H) ⩽ (r + 1)r, which completes the proof.

59

For a non-bipartite graph H, let cov(H) denote the minimum r for which there exists a

family that r-covers (H∗)c. Note that if H is assumed to be fixed, i.e., in the setting of the

Hom(H) problem, the value of cov(H) and the actual covering family can be computed

in constant time by brute force. Thus, combining Lemma 4.9 and Theorem 1.8 we obtain

the following.

Theorem 1.9. Let H be a fixed non-bipartite graph and let r = cov(H). The Hom(H)

problem on n-vertex instances given with a linear ordering of width k can be solved in time

O
(

(r + 1)rk·ωn2
)
.

4.3 Prime factorizations and algorithms

In this section we will discuss how to improve the algorithms from Section 4.2 using

methods discussed in Chapter 3.

First, let us define refinements of the parameters him and mimsup. Recall that we

defined:

atoms(H) ={Hi,j | Hi is a connected component of H,

Hi,1 × . . .×Hi,p, is the prime factorization of core(Hi)}.

So we can define:

him∗(H) = max
H′∈atoms(H)

him(H ′)

mimsup∗(H) = max
H′∈atoms(H)

mimsup(H ′).

Examples. Let us show that the parameters him and mimsup can be arbitrarily larger

than him∗ and mimsup∗. As the first example consider a graph H1 on 3h vertices which

is a collection of h disjoint triangles. Since H1 is non-bipartite, him(H1) = him(H∗
1)

and mimsup(H1) = mimsup(H∗
1). It is easy to verify that H∗

1 is a disjoint union of h

copies of C6. Then, the maximum induced matching of H∗
1 is of size 2h (we can take two

edges from each C6), and thus mimsup(H1) ⩾ him(H1) ⩾ 2h. On the other hand, the

set atoms(H1) constists only of a triangle (K3 is a prime core), and thus it can be easily

verified that him∗(H1) = mimsup∗(H1) = 2 (the equality him∗(H1) = 2 is straightforward

and mimsup∗(H1) = 2 follows from the fact that mimsup is lowerbounded by him and

upperbounded by the support-rank of the adjacency matrix).

60

Figure 4.3: The graph H2 for h = 4 (left) and H∗
2 (right). The colors of vertices indicate

the correspondence between the vertices in H2 and H∗
2 .

As the second example, consider a graph H2 obtained from h triangles by identifying

one vertex from each triangle into one vertex (see Figure 4.3). Again, him(H2) = him(H∗
2)

and mimsup(H2) = mimsup(H∗
2). It can be verified that H∗

2 contains an induced matching

of size 2h and thus mimsup(H2) ⩾ him(H2) ⩾ 2h. On the other hand, the core of H2 is

the triangle and thus mimsup∗(H2) = him∗(H2) = 2.

Improved algorithms. By Observation 3.6, we can state the following strenghtenings

of Theorems 1.6 and 1.7, where we replace him and mimsup with him∗ and mimsup∗,

respectively.

Theorem 4.10. The Hom problem on an instance (G,H), where G is given with a linear

ordering of width k and H is given along with cores of all its connected components, can

be solved in time O(k2k·him∗(H) · |H|4|G|).

Theorem 4.11. The Hom problem on an instance (G,H), where G is given with a linear

ordering of width k and H is given along with cores of all its connected components, can

be solved in time O(k2k·mimsup∗(H) · |H|4|G|).

Similarly, we can strenghten Theorem 1.8 and Theorem 1.9.

Theorem 4.12. Let H be a non-bipartite graph on h vertices. Suppose that for every

H ′ ∈ atoms(H ′) on h′ vertices we are given an h′×h′ matrix over a field F with the same

61

support as the adjacency matrix of H ′ and rank at most r. Then there exists an algorithm

that, given a linear ordering of an n-vertex graph G of width k, decides whether G → H

in time O
(

(rk·ωhk + h3)|G|
)
.

Theorem 4.13. Let H be a fixed non-bipartite graph and let r = maxH′∈atoms(H) cov(H ′).

The Hom(H) problem on n-vertex instances given with a linear ordering of width k can

be solved in time O
(

(r + 1)rk·ωn2
)
.

4.4 Lower bound

We prove lower bounds for Hom(H) parameterized by cutwidth of the input graph G

in three steps: (i) first we prove lower bounds for the list version of the problem, i.e.,

LHom(H), for bipartite target graphs H, (ii) then we extend the results to every target

graph H, and (iii) by using some gadgets that can imitate the lists, we reduce from

LHom(H) to Hom(H).

4.4.1 List homomorphisms and bipartite target graphs

The main technical contribution is the following lower bound.

Theorem 4.14. Let H0 denote the set of connected incomparable bipartite graphs whose

complement is not a circular-arc graph.

(1.) Assuming the ETH, there exists δ > 0 such that for every H ∈ H0 the follow-

ing holds. There is no algorithm that solves every consistent instance (G,L) of

LHom(H), given with a linear ordering of V (G) of width t, in time mimsup(H)δ·t ·

|G|O(1).

(2.) Assuming the SETH, for every ε > 0 and H ∈ H0 the following holds. There is

no algorithm that solves every consistent instance (G,L) of LHom(H), given with

a linear ordering of V (G) of width t, in time (mimsup(H)− ε)t · |G|O(1).

4.4.2 Gadgets

We start with introducing two gadgets which will be basic building blocks in the hardness

proof of Theorem 1.10. We define both gadgets as R-gadgets for some relation R.

62

Definition 4.15 (Assignment relation). Let H be a connected undecomposable bipartite

graph whose complement is not a circular-arc graph. Let S be a one-sided set in H, let

v ∈ S, and let (α, β, γ) be a triple of vertices from one bipartition class of H. We define

a binary relation on V (H) as:

Assign(S, v, α, β, γ) = S × {α, β, γ} \ {(u, γ) | u ̸= v}.

For an Assign(S, v, α, β, γ)-gadget, we will call its interface vertices as the x-vertex and

the y-vertex. The definition of Assign(S, v, α, β, γ) implies that if the y-vertex is mapped

to γ, then the x-vertex has to be mapped to v.

The second building block is a ternary relation is called a switching relation.

Definition 4.16 (Switching relation). Let H be a connected undecomposable bipartite

graph whose complement is not a circular-arc graph. Let (α, β, γ) be a triple of vertices

from one bipartition class of H. We define a ternary relation

Switch(α, β, γ) = {α, β} × {α, β, γ} × {α, β} \ {(α, α, β), (α, β, β)}.

For a Switch(α, β, γ)-gadget, we will call its interface vertices, respectively, the p-

vertex, the q-vertex, and the r-vertex. Mapping both p- and r-vertex to the same vertex,

i.e., mapping both to α or both to β, or mapping the p-vertex to β and the r-vertex to

α allows us to map the q-vertex to one of α, β, but “switching sides” from α to β forces

mapping the q-vertex to γ.

The existence of both gadgets follows from Theorem 3.18, but we also point out that

these gadgets (with some additional properties) were constructed in [128].

4.4.3 Reduction

Now we will use the introduced gadgets to reduce the Constraint Satisfaction Problem

to LHom(H). Recall that for fixed integers q, r, in the Constraint Satisfaction Problem,

denoted by CSP(q, r) problem we have a fixed set D (domain) of size q, and in the input

we are given a set of variables V and set C of constraints which are of form R(v1, . . . , vr),

where R ⊆ Dr. The task is to determine whether there exists an assignment f : V → D

such that for every constraint R(v1 . . . , vr) ∈ C, we have (f(v1), . . . , f(vr)) ∈ R.

The construction in the following lemma is a refinement of the construction from [128].

63

xC yC

Xi X ′
i Xi Xi+1

T f1
C T f2

C T
fj

C
T fℓ

C

Figure 4.4: The path PC for a constraint C and variable gadgets connected to PC with

assignment gadgets.

Lemma 4.17. Let q, r, k ∈ N and let H ∈ H0 be such that mim(H⊗k) ⩾ q. Let (V, C)

be an instance of CSP(q, r) with n variables and m constraints. In time polynomial in

(n+m) we can construct a graph G with H-lists L and with a linear ordering σ of V (G),

such that:

(1.) (V, C) is a yes-instance of CSP(q, r) if and only if (G,L)→ H,

(2.) the width of σ is at most k ·n+ r · g(k,H), where g is some function depending only

on H and k,

(3.) |G| = (n+m)O(1).

Proof. Recall that by Proposition 3.17, H is undecomposable, so it satisfies the assump-

tions of all the lemmas in Section 3.2. Let (α, β, γ) be a triple of incomparable ver-

tices from one bipartition class of H, and such that there exist α′ ∈ N(α) \ N(β) and

β′ ∈ N(β) \N(α) – for a bipartite graph H whose complement is not a circular-arc graph

there always exists such a triple, see [121]. Let D be the domain of the instance (V, C).

We construct (G,L) as follows.

Constraint gadgets. For each constraint C ∈ C, we construct a constraint gadget PC

with H-lists L, as follows. We start with vertices xC and yC with lists L(xC) = {α′}

and L(yC) = {β′}. Then for every assignment f of the variables in C that satisfies C

we introduce a switching gadget, i.e., Switch(α, β, γ)-gadget, T f
C with q-vertex qf

C . We

connect the introduced gadgets by identifying the r-vertex of the preceding switching

gadget with the p-vertex of the following one. Moreover, we add edges from the p-vertex

64

of the first switching gadget to xC and from the r-vertex from the last switching gadget

to yC . This completes the construction of constraint gadgets.

Variable gadgets. Let V = {v1, . . . , vn}. Let S, S ′ ⊆ V (H⊗k) be the sets of endpoints

of the induced matching M of size q in H⊗k and such that S ⊆ Xk, S ′ ⊆ Y k for X, Y being

the bipartition classes of H. By Si (resp. S ′
i) we denote the projection of S (resp. S ′) on

ith coordinate. Note that each Si and each S ′
i is incomparable (since H is incomparable)

and one-sided. For each variable vi, for each constraint C that contains vi, and for each

satisfying assignment f of the variables of C, we call Theorem 3.18 to introduce an S-

gadget Xi,f,C and an S ′-gadget X ′
i,f,C , with interface vertices respectively x1

i,f,C , . . . , x
k
i,f,C

and x′1
i,f,C , . . . , x

′k
i,f,C . We will refer to Xi,f,C and X ′

i,f,C as variable gadgets.

Connecting variables and constraints. Note that since |S| = q, there is a bijection

between S and possible assignments of one variable from V , let us fix one, say µ : S →

D. Let Xi,f,C be the variable gadget introduced for the variable vi and a satisfying

assignment f for a constraint C. Let (s1, . . . , sk) be the tuple from S that corresponds

to f(vi), i.e., µ((s1, . . . , sk)) = f(vi). For each interface vertex xj
i,f,C we introduce an

Assign(S, sj, α, β, γ)-gadget Asj
and identify its x-vertex with xj

i,f,C and its y-vertex with

qf
C . Then we add the edges xj

i,f,Cx
′j
i,f,C . Finally, let us fix an arbitrary ordering of the

constraints in C, and an ordering of q-vertices so that q1 precedes a vertex q2 if:

• q1 belongs to PC and q2 belongs to PC′ , and C precedes C ′, or

• q1 and q2 belong to the same constraint gadget PC and q1 was introduced before q2

on PC .

Let qf
C and qf ′

C′ be consecutive q-vertices. We add all edges x′j
i,f,Cx

j
i,f ′,C′ . This completes

the construction of (G,L) (see Figure 4.4).

Correctness. Let us verify that (G,L)→ H if and only if (V, C) is satisfiable.

Claim 4.17.1. If (G,L)→ H, then (V, C) is satisfiable.

Proof of Claim: Let φ be a list homomorphism from (G,L) to H. First observe that since

M is an induced matching inH⊗k, all variable gadgetsXi,f ′,C corresponding to the variable

vi have its interface vertices mapped to the same tuple (s1, . . . , sk) of S. Indeed, since for

65

every variable gadget Xi,f ′,C its interface vertices are adjacent to corresponding interface

vertices of the gadget X ′
i,f ′,C , mapping interface vertices of Xi,f ′,C to (s1, . . . , sk) forces

mapping the interface vertices of X ′
i,f ′,C to a tuple (s′

1, . . . , s
′
k) such that sℓs

′
ℓ ∈ E(H) for

every ℓ ∈ [k], and thus (s1, . . . , sk) is adjacent to (s′
1, . . . , s

′
k) in H⊗k. Since the interface

vertices can be mapped only to tuples that are endpoints of the induced matching M in

H⊗k, the tuple (s1, . . . , sk) uniquely determines (s′
1, . . . , s

′
k). Similarly, any mapping of the

interface vertices of X ′
i,f ′,C uniquely determines the mapping of the interface vertices of

the variable gadget Xi′,f ′′,C′ following X ′
i,f ′,C . Therefore we can set f(vi) = µ((s1, . . . , sk)),

for (s1, . . . , sk) being the tuple of vertices that the interface vertices of any variable gadget

Xi,f ′,C are mapped to.

Since the vertices α, α′, β, β′ induce a matching in H, for every constraint C, the p-

vertex of the first switching gadget on PC must be mapped to α and the r-vertex of the

last switching gadget on PC must be mapped to β. Therefore, there must be a switching

gadget T f ′

C such that its p-vertex is mapped to α and its r-vertex is mapped to β. By

the definition of Switch(α, β, γ)-gadget, the vertex qf ′

C must be mapped to γ. Recall

that for every variable vi that appears in C, we introduced k assignment gadgets Asj
,

where (s1, . . . , sk) is the tuple such that f ′(vi) = µ((s1, . . . , sk)). By the definition of the

Assign(S, sj, α, β, γ)-gadget, each vertex xj
i,f ′,C is mapped by φ to sj. Thus f = f ′ on the

variables from C, so f satisfies C. This completes the proof of the claim. ⌟

Claim 4.17.2. If (V, C) is satisfiable, then (G,L)→ H.

Proof of Claim: Let f be a satisfying assignment of the variables of (V, C). We construct

φ : (G,L) → H as follows. For every variable gadget Xi,f ′,C we set its interface vertices

xj
i,f,C to sj, where (s1, . . . , sk) = µ−1(f(vi)) and we map the vertices x′j

i,f,C to sj, where

(s′
1, . . . , s

′
k) is the private neighbor of (s1, . . . , sk) in H⊗k in the set S ′. By the definition of

the S-gadget and the S ′-gadget, this mapping can be extended to every variable gadget.

Now consider a constraint C and a switching gadget T f
C . For this gadget, we map its

p-vertex to α, its q-vertex to γ, its r-vertex to β, and we extend φ to all other vertices of

this gadget by the definition of Switch(α, β, γ)-gadget. For all other switching gadgets on

PC that precede T f
C , we map their p-vertices and r-vertices to α and we extend φ to every

switching gadget so that no q-vertex is mapped to γ, which again can be done the definition

of Switch(α, β, γ)-gadget. Similarly, for all switching gadgets that follow T f
C on PC we map

their p-vertices and r-vertices to β and extend φ on remaining vertices of the gadgets so

66

that no q-vertex is mapped to γ. It remains to map the vertices of the assignment gadgets.

Let A be an assignment gadget that joins an interface vertex xj
i,f ′,C with a q-vertex qf ′

C . If

f ′ = f , then φ(qf
C) = γ and φ(xj

i,f) = sj, where (s1, . . . , sk) = µ−1(f(vj)). Recall that A

must be an assignment gadget Asj
. Therefore, by the definition of the Assign(S, sj, α, β, γ)-

gadget, the homomorphism φ can be extended to remaining vertices of the gadget. Finally,

if f ′ ̸= f , then φ(qf ′

C) ∈ {α, β}, and again the definition of the Assign(S, sj, α, β, γ)-gadget

implies that the homomorphism φ can be extended to remaining vertices of the gadget.

This completes the proof of the claim. ⌟

Cutwidth. Now we will construct a linear ordering σ of V (G) of width at most k ·

n + r · g(k,H), where g is a function that depends only on k and H. First we order

vertices of the constraint gadgets so that we first put the vertices from PC1 , and among

the vertices of one constraint gadget, we order vertices according to the ordering of the

switching gadgets (among vertices of one switching gadget the order is arbitrary), then

from PC2 , and so on. Then we modify this ordering by inserting, immediately after each

q-vertex qf
C , the vertices from the gadgets Xi,f,C and X ′

i,f,C such that vi is a variable that

appears in C, and we place there also the vertices of the assignment gadgets that connect

Xi,f,C with qf
C . The ordering of the vertices of these gadgets is arbitrary. This completes

the construction of the ordering of V (G). Now let us verify that it has desired width.

Consider any cut. The edges that can cross this cut are:

• at most g1(H) edges from a constraint gadget, where g1 depends only on H,

• at most r · g2(k,H) edges of variable gadgets and assignment gadgets corresponding

to the same q-vertex, where g2 depends only on k and H,

• at most n · k edges that connect consecutive variable gadgets.

Therefore the cutwidth of G is at most n · k + r · g(k,H), where g depends only on k

and H.

Finally, observe that the construction of (G,L) is performed in time polynomial in

(n+m) and thus |G| = (n+m)O(1). This completes the proof.

We will use Lemma 4.17 to provide a series of lower bounds for the complexity of

LHom(H). We will use the folowing result of Lampis [97]. The first part of the theorem

was not stated in the paper, but it follows from the proof of the second part.

67

Theorem 4.18 (Lampis [97]). (1.) Assuming the ETH, there exists δ > 0 such that for

every q ⩾ 2 the following holds. The CSP(q, 3) problem on n variables and m

clauses cannot be solved in time qδ·n · (n+m)O(1).

(2.) Assuming the SETH, for every q ⩾ 2 and ε > 0 there exists r such that the following

holds. The CSP(q, r) problem on n variables and m clauses cannot be solved in time

(q − ε)n · (n+m)O(1).

By combining Theorem 4.18 with Lemma 4.17, we obtain the following.

Theorem 4.19. Let H0 denote the set of connected incomparable bipartite graphs whose

complement is not a circular-arc graph.

(1.) Assuming the ETH, there exists δ > 0 such that for every H ∈ H0 and for every

k ∈ N, the following holds. There is no algorithm solving every instance (G,L) of

LHom(H) given with a linear ordering of width t in time mim(H⊗k) 1
k

·δ·t · |G|O(1).

(2.) Assuming the SETH, for every H ∈ H0, for every k ∈ N, and for every ε > 0, the

following holds. There is no algorithm solving every instance (G,L) of LHom(H)

given with a linear ordering of width t in time (mim(H⊗k) 1
k − ε)t · |G|O(1).

Proof of (1.) First assume the ETH and let δ > 0 be given by Theorem 4.18 (1.). Fur-

thermore let H ∈ H0 and let q = mim(H⊗k). Suppose that there is an algorithm A1

that solves every instance (G,L) of LHom(H) given with a linear ordering of width t in

time mim(H⊗k) 1
k

·δ·t · |G|O(1). Let (V, C) be an instance of CSP(q, 3) on n variables and m

clauses. We call Lemma 4.17 to construct an instance (G,L) of LHom(H) with a linear

ordering σ of width t satisfying the conditions given in Lemma 4.17. Thus we can solve

the instance (V, C) by calling A1 in time:

mim(H⊗k) 1
k

·δ·t · |G|O(1) ⩽ q
1
k

·δ·(k·n+r·g(k,H)) · (n+m)O(1) = qδ·n · (n+m)O(1),

which is a contradiction by Theorem 4.18.

Proof of (2.) Now assume the SETH. Let ε > 0, let H ∈ H0 and suppose there is an

algorithm A2 that solves every instance (G,L) of LHom(H) given with a linear ordering

of width t in time (mim(H⊗k) 1
k − ε)t · |G|O(1). Let q = mim(H⊗k), let ε′ = q− (q 1

k − ε)k >

0, and let r = r(q, ε′) be given by Theorem 4.18 (2.). Let (V, C) be an instance of

68

CSP(q, r) on n variables and m clauses. We call Lemma 4.17 to construct an instance

(G,L) of LHom(H) with a linear ordering σ of width t satisfying the conditions given in

Lemma 4.17.

Since the instance (G,L) is equivalent to the instance (V, C), we can use A2 to solve

(V, C). The reduction is performed in time polynomial in (n+m), and A2 runs in time:

(mim(H⊗k) 1
k − ε)t · |G|O(1) ⩽ (q 1

k − ε)k·n+r·g(k,H) · (n+m)O(1) = (q 1
k − ε)k·n · (n+m)O(1)

= (q − ε′)n · (n+m)O(1),

which is a contradiction by Theorem 4.18.

By definition, for a bipartite H, we have mimsup(H) = supk∈N mim(H⊗k)1/k, so The-

orem 4.19 yields the following.

Theorem 4.14. Let H0 denote the set of connected incomparable bipartite graphs whose

complement is not a circular-arc graph.

(1.) Assuming the ETH, there exists δ > 0 such that for every H ∈ H0 the follow-

ing holds. There is no algorithm that solves every consistent instance (G,L) of

LHom(H), given with a linear ordering of V (G) of width t, in time mimsup(H)δ·t ·

|G|O(1).

(2.) Assuming the SETH, for every ε > 0 and H ∈ H0 the following holds. There is

no algorithm that solves every consistent instance (G,L) of LHom(H), given with

a linear ordering of V (G) of width t, in time (mimsup(H)− ε)t · |G|O(1).

Proof of (1.) Let H ∈ H0 and let (G,L) be an instance of LHom(H) given with a linear

ordering of width t. Let δ′ > 0 be given by Theorem 4.19 and let 0 < δ < δ′. Furthermore,

let k ∈ N be such that mim(H⊗k) 1
k > mimsup(H) δ

δ′ – it exists by the definition of mimsup

and the fact that δ
δ′ < 1. If (G,L) can be solved in time

mimsup(H)δ·t · |G|O(1) < mim(H⊗k) δ′
k

·t · |G|O(1),

then, by Theorem 4.19, it contradicts the ETH.

Proof of (2.) Let H ∈ H0 and let (G,L) be an instance of LHom(H) given with a linear

ordering of width t. Let ε > 0 and let ε′ = ε
2 . By the definition of mimsup(H), there

69

exists k ∈ N such that mim(H⊗k) 1
k − ε′ ⩾ mimsup(H)− ε. If (G,L) can be solved in time

(mimsup(H)− ε)t · |G|O(1) ⩽ (mim(H⊗k) 1
k − ε′)t · |G|O(1),

then, by Theorem 4.19, it contradicts the SETH.

4.4.4 List homomorphisms and general target graphs

Now we extend Theorem 4.14 to general target graphs. Recall Proposition 3.15.

Proposition 3.15 (Okrasa, Piecyk, Rzążewski [121]). Let H be a graph, and let (G,L) be

a consistent instance of LHom(H∗). Define L′ : V (G)→ 2V (H) as L′(v) = {u | {u′, u′′}∩

L(v) ̸= ∅}. Then (G,L)→ H∗ if and only if (G,L′)→ H.

Combining Theorem 4.14 with Proposition 3.15 yields the following lower bound.

Theorem 4.20. Let H1 denote the set of connected incomparable non-bipartite graphs.

(1.) Assuming the ETH, there exists δ > 0 such that for every H ∈ H1 the following

holds. There is no algorithm that solves every instance (G,L) of LHom(H), given

with a linear ordering of V (G) of width k, in time mimsup(H)δ·k · |G|O(1).

(2.) Assuming the SETH, for every ε > 0 and H ∈ H1 the following holds. There is

no algorithm that solves every instance (G,L) of LHom(H), given with a linear

ordering of V (G) of width k, in time (mimsup(H)− ε)k · |G|O(1).

Proof. Fix any H ∈ H1. Observe that H∗ ∈ H0, where H0 is defined as in Theorem 4.14.

Indeed, the connectivity of H∗ follows easily from the fact that H is connected and non-

bipartite, see e.g. [124, Observation 2.5]. The fact that H∗ is incomparable follows from

the fact that H is incomparable and has no isolated vertices. Finally, H contains an

(induced) odd cycle, so H∗ contains an induced cycle with at least 6 vertices, and by

Proposition 3.14, H∗ cannot be the complement of a circular-arc graph.

Now suppose that we have an algorithmA that solves every instance (G̃, L̃) of LHom(H)

in time f(H, G̃), where f is some function that depends on H and G̃. Proposition 3.15

implies that that for any consistent instance (G,L) of LHom(H∗), we can solve it by

calling A on the instance (G,L′) of LHom(H), defined as in Proposition 3.15, in time

f(H,G). Recall that for non-bipartite H, we have mimsup(H) = mimsup(H∗). Thus the

statement of the theorem follows directly from Theorem 4.14.

70

We point out that in the instance (G.L′) constructed in the reduction above, the graph

G is bipartite. This yields the following corollary.

Corollary 4.21. Let H1 denote the set of connected incomparable non-bipartite graphs.

(1.) Assuming the ETH, there exists δ > 0 such that for every H ∈ H1 the follow-

ing holds. There is no algorithm that solves every instance (G,L) of LHom(H)

such that G is bipartite, given with a linear ordering of V (G) of width k, in time

mimsup(H)δ·k · |G|O(1).

(2.) Assuming the SETH, for every ε > 0 and H ∈ H1 the following holds. There is no

algorithm that solves every instance (G,L) of LHom(H) such that G is bipartite,

given with a linear ordering of V (G) of width k, in time (mimsup(H)− ε)k · |G|O(1).

4.4.5 Hardness of Hom(H)

Finally, we are ready to prove lower bounds for the non-list variant of the problem. We

will extend Theorem 4.20 using methods described in Chapter 3.

Theorem 4.22. (A) Let H2 be a set of connected projective non-bipartite cores.

(1) There exists δ > 0, such that for every H ∈ H1, there is no algorithm solving

every instance G of Hom(H) in time mimsup∗(H)δ·ctw(G) · |G|O(1), unless the

ETH fails.

(2) Let H ∈ H2. There is no algorithm solving every instance G of Hom(H) in

time (mimsup∗(H)− ε)ctw(G) · |G|O(1) for any ε > 0, unless the SETH fails.

(B) Let H3 be a set of connected non-projective non-bipartite cores. If Conjecture 3.9

and Conjecture 3.11 are true, then the following holds.

(1) There exists δ > 0, such that for every H ∈ H3, there is no algorithm solving

every instance G of Hom(H) in time mimsup∗(H)δ·ctw(G) · |G|O(1), unless the

ETH fails.

(2) Let H ∈ H3. There is no algorithm solving every instance G of Hom(H) in

time (mimsup∗(H)− ε)ctw(G) · |G|O(1) for any ε > 0, unless the SETH fails.

71

Proof. The general framework of the proof is the same in (A) and (B), so we will prove

both in parallel. Let H ∈ H2∪H3. If H ∈ H2 (case (A)), then we set H ′ = H. If H ∈ H3

(case (B)), then by Conjecture 3.9 there are projective graphs H1, . . . , Hp such that H =

H1× . . .×Hp. Without loss of generality we can assume that H1 has the largest mimsup

among all factors of H. We set H ′ = H1. Moreover, let us denote W = H2 × . . . × Hp,

so H = H ′ × W . Observe that in both cases we have mimsup(H ′) = mimsup∗(H).

Furthermore, since H is a connected non-bipartite core, then so is H ′ – in case (A) it

is clear since H ′ = H, and in case (B) if follows from Proposition 3.4. Moreover, by

Proposition 3.1 (2), H ′ is incomparable and thus H ′ ∈ H1 (where H1 is defined as in

Theorem 4.20).

Therefore, we can reduce from LHom(H ′) – recall that by Corollary 4.21, it is sufficient

to reduce from an instance where the input graph is bipartite. So let (G,L) be an instance

of LHom(H ′), given along with a linear ordering σ = (v1, v2, . . . , v|V (G)|) of V (G) of width

k and such that G is bipartite. Let XG, YG be the bipartition classes of G.

We will construct, in time polynomial in |G|, an instance G̃ of Hom(H) with the

following properties:

1. G̃→ H if and only if (G,L)→ H ′,

2. |G̃| = |G| · f(H),

3. ctw(G̃) ⩽ k + g(H),

where f and g are functions whose value depends only on H.

We start constructing G̃ by taking a copy of G. Then for every vertex v ∈ V (G) we

proceed as follows. In case (A), using Theorem 3.8, we introduce a construction of L(v),

i.e., for S = L(v), we introduce the graph C(S) with special vertices y0, . . . , yℓ. Moreover,

let (x1, . . . , xℓ) be the fixed tuple of vertices of V (H) from Definition 3.7. We identify y0

with v.

In case (B), let ab be an edge of W – it exists since W is non-bipartite. If v ∈ XG

(resp., v ∈ YG), then, using Theorem 3.12, we introduce a construction of (L(v), a)

(resp., (L(v), b)), i.e., we introduce the graph C(S, a) (resp. C(S, b)) with special ver-

tices y0, . . . , yℓ. Moreover, let (x1, . . . , xℓ) be the fixed tuple of vertices of V (H) from

Definition 3.10. Again, we identify y0 with v.

72

Next, (in both cases) we introduce a copy Hv of H; for any z ∈ V (H), let zv denote

the copy of z in Hv. For each i ∈ [ℓ] we identify xv
i with yi.

Finally, for every pair vj, vj+1 ∈ V (G), we proceed as follows. For every wz ∈ E(H),

we add an edge between wvj and zvj+1 . This completes the construction of G̃. Clearly

the construction is performed in time polynomial in |G|, and |G̃| = |G| · f(H) for some

function f that depends only on H.

Correctness. Let us verify the equivalence of the instances G̃ and (G,L).

Claim 4.22.1. If (G,L)→ H ′, then G̃→ H.

Proof of Claim: Suppose that there exists φ′ : (G,L) → H ′. We define φ : G̃ → H as

follows.

Case (A). We set φ|V (G) = φ′ and for every copy Hv of H we define φ on its vertices

as the identity function. Note that the function defined so far respects the edges inside

V (G) since φ′ is a homomorphism, and the edges between copies of H as vertices of two

consecutive copies of H are adjacent only to vertices that correspond to their neighbors in

their own copy. It remains to extend φ to the remaining vertices of graphs C(S). We can

do it independently for every graph C(S) as there are no edges between them. Consider

such C(S) introduced for some v ∈ V (G) and S = L(v). Since φ(y0) = φ(v) ∈ L(v)

and φ(yi) = xi for every i ∈ [ℓ], Theorem 3.8 implies that the mapping φ can indeed be

extended to a homomorphism from G̃ to H.

Case (B). Let v ∈ V (G). If v ∈ XG, then we set φ(v) = (φ′(v), a), otherwise we

set φ(v) = (φ′(v), b). Furthermore, we set φ on every copy Hv of H to the identity

function. As in the previous case, the function defined so far respects the edges. Indeed,

note that for an edge uv ∈ E(G), say u ∈ XG and v ∈ YG, we have φ(u) = (φ′(u), a)

and φ(v) = (φ′(v), b). Moreover, φ′(u)φ′(v) ∈ E(H ′) since φ′ is a homomorphism and

ab ∈ E(W), so φ(u)φ(v) ∈ E(H). It remains to extend φ to the remaining vertices of

graphs C(S, a) and C(S, b). If v ∈ XG (resp. v ∈ YG), then φ(y0) = (φ′(v), a) (resp.

φ(y0) = (φ′(v), b)), φ′(v) ∈ L(v), and φ(yi) = xi for every i ∈ [ℓ]. Therefore, by the

definition of construction, φ can be extended to the remaining vertices of C(S, a) (resp.

C(S, b)). ⌟

Claim 4.22.2. If G̃→ H, then (G,L)→ H ′.

73

Proof of Claim: Suppose that there is φ : G̃→ H. Let us define φ′ : G→ H ′.

Case (A). We define φ = φ′|V (G). Clearly φ is a homomorphism. Let us verify that

it respects lists. First, since H is a core, Proposition 3.1 (1) implies that φ′ restricted

to any copy Hv of H is an automorphism. We claim that for each copy it is actually

the same automorphism of H. Indeed, let Hvj and Hvj+1 be consecutive copies and let

z ∈ V (H). Let s := φ′(zvj) and u := φ′(zvj+1). For contradiction, suppose that s ̸= u.

Since φ′ restricted to Hvj+1 is an automorphism, the image of NHvj+1 (zvj+1) is precisely

NH(u). Furthermore, zvj is adjacent to every vertex wvj+1 ∈ NHvj+1 (zvj+1), and thus

φ′(wvj+1) ∈ NH(s) for every wvj+1 ∈ NHvj+1 (zvj+1). Therefore, NH(u) ⊆ NH(s), which by

Proposition 3.1 (2), is a contradiction with the fact that H is incomparable.

So since now we can assume that for each copy Hv, we have the same automorphism

of H. Without loss of generality assume that this “global” automorphism of H is the

identity. Now consider any v ∈ V (G). Since each vertex xi from the copy of C(L(v))

corresponding to v is mapped to yi and C(L(v)) is a construction of L(v), we conclude

that v(= y0) is mapped to some element of L(v). Thus φ′ respects lists.

Case (B). For every v ∈ V (G), for (s, w) = φ(v) such that s ∈ V (H ′), w ∈ V (W),

we set φ′(v) = s, i.e., φ′ = π1 ◦ φ, where π1 is the projection to the first coordinate.

Clearly φ′ is a homomorphism. Let us verify that it respects lists. As in the previous

case, φ restricted to any copy Hv of H is an automorphism, and we may assume that this

automorphism is the identity. Now consider any v ∈ V (G). Assume that v ∈ XG (the

case v ∈ YG is symmetric) and let (s, w) = φ(v). Since each vertex yi from the copy of

C(L(v), a) introduced for v is mapped to xi, by the definition of C(L(v), a), we conclude

that s ∈ L(v), which means that v(= y0) is mapped by φ′ to some element of L(v). Thus

φ′ respects lists. ⌟

Cutwidth of G̃. Now let us define a linear ordering σ̃ of V (G̃). First we order the

vertices of G according to σ. Then we modify this ordering by inserting right after a

vertex v the vertices of Hv and, in case (A) the graph C(L(v)) introduced for v, and

in case (B) the graph C(L(v), a) or C(L(v), b) introduced for v; the order among these

vertices is arbitrary. This completes the definition of σ̃. Consider any cut in σ̃. Among

the edges crossing this cut there can be:

a) at most k edges of E(G),

74

b) edges from at most one copy of H and at most one graph C(S) or C(S, a) or C(S, b),

c) edges joining two consecutive copies of H.

Observe that the number of edges in b) and c) can be bounded by a constant that depends

only on H, say g(H). Therefore, we can conclude that ctw(G̃) ⩽ k + g(H).

Wrapping up the proof. Now consider δ from Theorem 4.20 and suppose there is

an algorithm A1 that solves every instance G′ of Hom(H) in time mimsup∗(H)δ·ctw(G′) ·

|G′|O(1). Then, we can call the above reduction for any instance (G,L) of LHom(H ′)

given along with a linear ordering of V (G) of width k and use A1 to solve it in time:

mimsup∗(H)δ·ctw(G̃) · |G̃|O(1) = mimsup(H ′)δ·ctw(G̃) · |G̃|O(1)

⩽ mimsup(H ′)δ·(k+g(H)) · |G|O(1) = mimsup(H ′)δ·k · |G|O(1),

which by Theorem 4.20 (1.) contradicts the ETH.

Finally, let ε > 0 and suppose there is an algorithm A2 that solves every instance G′ of

Hom(H) in time (mimsup∗(H)−ε)ctw(G′) · |G′|O(1). Then, we can call the above reduction

for any instance (G,L) of LHom(H ′) given along with a linear ordering of V (G) of width

k and use A2 to solve it in time:

(mimsup∗(H)− ε)ctw(G̃) · |V (G̃)|O(1) = (mimsup(H ′)− ε)ctw(G̃) · |G̃|O(1)

⩽ (mimsup(H ′)− ε)k+g(H) · |G|O(1) = (mimsup(H ′)− ε)k · |G|O(1),

which, by Theorem 4.20 (2.), contradicts the SETH.

4.5 Comparison of parameters

In this section, we state various combinatorial results about the parameters studied in

this chapter. Before we move to comparing mimsup with other parameters, we give some

properties of the parameter itself.

In the following observation we show that mim is supermultiplicative with respect to

⊗, i.e., we always have mim(A⊗B) ⩾ mim(A) mim(B). This also implies that sequences

such as
(
mim(A⊗2k)1/2k

)
k∈N

are non-decreasing.

Lemma 4.23. For two 0-1 matrices A and B, it holds that mim(A⊗B) ⩾ mim(A) mim(B).

75

Proof. Suppose that (r1, c1), . . . , (ra, ca) is such that A[(r1, . . . , ra), (c1, . . . , ca)] is the iden-

tity matrix. Similarly, suppose the submatrix of B induced on rows r′
1, . . . , r

′
b and columns

c′
1, . . . , c

′
b (in that order) is the identity matrix. In A⊗B, we may consider the submatrix

induced on ab rows

{(ri, r
′
j) | i ∈ [a], j ∈ [b]}

and columns

{(ci, c
′
j) | i ∈ [a], j ∈ [b]}.

In this case, (A ⊗ B)[(ri, r
′
j), (cv, c

′
w)] = A[ri, cv]B[r′

j, c
′
w] is 1 if and only if i = v and

j = w. This gives an induced matching of size ab = mim(A) mim(B), as desired.

In order to prove next theorem, we will use the Fekete’s lemma [59].

Theorem 4.24 (Fekete’s lemma [59]). For any sequence (an)n∈N which is subadditive

(an+m ⩽ an+am for all n,m ∈ N), it holds that limn→∞
an

n
exists and is equal to infn∈N

an

n
.

We can now prove that in the definition of mimsup, we can replace the supremum

with the limit.

Theorem 4.1. Let A ∈ {0, 1}n×m. Then

sup
k∈N

mim(A⊗k)1/k = lim
k→∞

mim(A⊗k)1/k.

Proof. Since mim is supermultiplicative with respect to ⊗, the sequence defined by

ak = −k log2(mim(A⊗k)1/k) = − log2(mim(A⊗k))

is subadditive.

By Theorem 4.24, the limit limk→∞
ak

k
exists and is equal to infk∈N

ak

k
. Therefore,

lim
k→∞
− log2(mim(A⊗k)1/k) = inf

k
− log2(mim(A⊗k)1/k).

That, in turn, implies that limk→∞ mim(A⊗k)1/k exists and is equal to

supk∈N mim(A⊗k)1/k, which completes the proof.

Since by Theorem 4.1, the limit limk→∞ mim(A⊗k)1/k exists, the subsequence

(mim(A⊗kℓ)1/kℓ)ℓ has the same limit as (mim(A⊗k′)1/k′)k′ , that is,

mimsup(A⊗k)1/k = lim
ℓ→∞

mim(A⊗kℓ)1/kℓ = lim
k′→∞

mim(A⊗k′)1/k′ = mimsup(A).

This yields the following.

Theorem 4.25. For a matrix A, it holds that mimsup(A⊗k) = mimsup(A)k.

76

4.5.1 Comparing him and mimsup

We first make some simple observations and then show that (perhaps surprisingly) mimsup

can be much larger than him.

Lemma 4.26. Let A be a 0-1 matrix. Then mimsup(A) ⩾ him(A) ⩾ mim(A).

Proof. The second inequality follows directly since each induced matching is a half-induced

matching. We prove the first inequality.

Let R = {a1, . . . , ai} and C = {b1, . . . , bi} be the rows and columns, respectively, of a

maximum half-induced matching in A. We may assume that these are ordered such that

A[aj, bj] = 1 for all j ∈ [i] and A[ak, bj] = 0 for all k < j. For integer s ⩾ 1, we consider

the submatrix of A⊗is induced on the rows consisting of “balanced” sequences

{(r1, . . . , ris) ∈ Ris | |{ℓ : rℓ = aj}| = s, for every j ∈ [i]}

and similarly for the columns

{(c1, . . . , cis) ∈ Cis | |{ℓ : cℓ = bj}| = s, for every j ∈ [i]}.

We claim this forms an induced matching of size
(

is
s,...,s

)
= i(1+o(1))is, which shows that

mimsup(A) ⩾ i = him(A). Since the size is clear from the definition, it only remains to

check that it indeed forms an induced matching. To show this, we explain why the row of

r = (a1, . . . , a1, a2, . . . , a2, . . . , ai, . . . , ai)

has a single one entry in column

c = (b1, . . . , b1, b2, . . . , b2, . . . , bi, . . . , bi).

The other cases follow by symmetry. It is clear that A⊗is[r, c] = 1. Any column c′ with

A⊗is[r, c′] = 1 must have A[a1, c
′
j] = 1 for all j ∈ [s]. But A[a1, bj] = 0 when j > 1, so this

implies that {j : c′
j = b1} = [s]. Similarly, we require A[a2, c

′
j] = 1 for all j ∈ [s + 1, 2s],

but c′ has already ‘used’ all its b1’s and so {j | c′
j = b2} needs to be [s+1, 2s]. Continuing

inductively, we find that {j | c′
j = bk} = [(k−1)s+1, ks] for all k ∈ [i], that is, c′ = c.

Since by Theorem 4.1, the limit limk→∞ mim(A⊗k)1/k exists, and by Theorem 4.25,

we always have mimsup(A⊗k) = mimsup(A)k, applying inequality from Lemma 4.26, for

every k ∈ N, we obtain:

77

mim(A⊗k) ⩽ him(A⊗k) ⩽ mimsup(A⊗k) = mimsup(A)k.

When k tends to infinity, we obtain the following corollary.

Corollary 4.27. Let A ∈ {0, 1}n×m. Then

mimsup(A) = lim
k→∞

him(A⊗k)1/k,

We are now ready to prove previously claimed bounds.

Theorem 1.5. For every non-bipartite graph H with adjacency matrix AH and k ∈ N,

him(AH) ⩽ mimsup(AH) = lim
k→∞

mim(A⊗k
H)1/k and mim(A⊗k

H) ⩽ khim(AH)k.

Proof. Lemma 4.26 shows the first inequality. By Lemma 4.5, for a matrix A and any set

R of rows of A⊗k, there is always a representative set R′ of R of size at most khim(A)k.

On the other hand, if we consider R to be the set of rows that (together with appropriate

columns) form an induced matching of size mim(A⊗k) in A⊗k, then mim(A⊗k) ⩽ |R′|,

and thus the desired inequality follows.

In principle, mim(A⊗k)1/k could grow very slowly and it could take very long to become

as large as him(A) (and in fact it may stay smaller for all k ∈ N). Our next result gives

some form of guarantee: already for k = 2, mim(A⊗k)1/k ⩾
√

him(A).

Lemma 4.28. mim(A⊗2) ⩾ him(A).

Proof. Let a1, . . . , ai and b1, . . . , bi be the rows and columns, respectively, of a maxi-

mum half-induced matching in A. We may assume that these are ordered such that

A[aj, bj] = 1 for all j ∈ [i] and A[ak, bj] = 0 for all k < j. In A⊗2 we claim that the

rows r1 = (a1, ai), r2 = (a2, ai−1), . . . , ri = (ai, a1) and the columns c1 = (b1, bi), c2 =

(b2, bi−1), . . . , ci = (bi, b1) induce a matching of size i = him(A). Indeed, for j, j′ ∈ [i], by

definition

A[cj, rj′] = A[aj, bj′]A[ai+1−j, bi+1−j′],

for which both terms are 1 if j = j′ and at least one term is 0 if j ̸= j′.

At first glance, it may be natural to conjecture that in fact mimsup(A) = him(A) for

all matrices A. This is however not true, as the following result shows.

78

Theorem 4.29. There is a constant C > 1, such that for all integers h ⩾ C, there is a

symmetric matrix A ∈ {0, 1}2h×2h with him(A) ⩽ 10 log2 h and mimsup(A) ⩾
√
h.

In order to ensure that a matrix has no large half-induced matching, we will in fact

ensure it has no large blocks of zeros. Moreover, we will show that not just the mimsup

is large, we already find a large induced matching in the second Kronecker power. This

lemma immediately implies the theorem above, since if M has a half-induced matching

of size 2ℓ, then it has an ℓ× ℓ all zeros square submatrix.

Lemma 4.30. There is a constant C > 1, such that for all h ⩾ C, there is a symmet-

ric matrix A ∈ {0, 1}2h×2h without 2⌈2 log2 h⌉ × 2⌈2 log2 h⌉ blocks of zeros, but satisfies

mim(A⊗2) ⩾ h.

Proof. We write · for the Hadamard product: for two n×m matrices A,B, the Hadamard

product A ·B is n×m matrix such that (A ·B)[i, j] = A[i, j] ·B[i, j]. Then, for two n′×m′

submatrices A1, A2 of A, we can observe that A1 · A2 is a submatrix of A⊗2. Indeed, let

r
(1)
1 , . . . , r

(1)
n′ (resp., r(2)

1 , . . . , r
(2)
n′) be the row indices of A present in A1 (resp., A2) and

let c(1)
1 , . . . , c

(1)
n′ (resp., c(2)

1 , . . . , c
(2)
n′) be the column indices of A present in A1 (resp., A2).

Then for i ∈ [n′], j ∈ [m′], we have

A1 · A2[i, j] = A1[i, j] · A2[i, j] = A[r(1)
i , c

(1)
j] · A[r(2)

i , c
(2)
i] = A⊗2[(r(1)

i , r
(2)
i), (c(1)

i , c
(2)
i)],

and thus the matrix A1 · A2 is the submatrix of A⊗2 with rows (r(1)
1 , r

(2)
1), . . . , (r(1)

n′ , r
(2)
n′)

and columns (c(1)
1 , c

(2)
1), . . . , (c(1)

m′ , c
(2)
m′).

Let M be a random (h × h)-matrix, with 1’s on the diagonal and the entries below

the diagonal sampled independently uniformly at random from {0, 1}, where the entries

above the diagonal are chosen in order to make a symmetric matrix. Let M ′ be the

“complement” of M : the diagonal entries are still 1 (M ′[i, i] = M [i, i] = 1) but all other

entries are flipped (M ′[i, j] = 1 − M [i, j] for i ̸= j). By construction, M · M ′ is the

(h× h)-identity matrix and M,M ′ are both symmetric with the same distribution.

We first show that with high probability, M does not contain an ℓ×ℓ block of zeros for

ℓ = ⌈2 log2 h⌉. Note that any such block is given by rows r1, . . . , rℓ and columns c1, . . . , cℓ.

All must be distinct (since the diagonal entries are non-zero). In particular, all M [ri, cj]

entries are sampled independently. By the union bound, the probability that M has an

ℓ× ℓ block consisting of only zeros is at most(
h

ℓ

)2 (1
2

)ℓ2

⩽

(
eh

ℓ

)2ℓ (1
2

)ℓ2

. (4.5.1)

79

Since ℓ ⩾ 2 log2 h, the above can be upperbounded (see Appendix for details) by
(

eh

2 log2 h

)4 log2 h (1
2

)(2 log2 h)2

=
(

eh

2 log2 h

)4 log2 h (1
h

)4 log2 h

=
(

e

2 log2 h

)4 log2 h

, (4.5.2)

which tends to 0 when h tends to infinity. So for h sufficiently large, such a block does

not exist in M with high probability. Since M and M ′ have the same distribution, the

same holds for M ′. We set

A =

M M ′

M ′ M

 .
Then A has no 2ℓ × 2ℓ block of zeros. At the same time, A⊗2 contains the Hadamard

product M ·M ′ as submatrix, which is the h× h identity matrix. So

him(A⊗ A) ⩾ mim(A⊗ A) mim(M ·M ′) = h.

We showed that for all h sufficiently large, there is a matrix A without 2⌈2 log2 h⌉ ×

2⌈2 log2 h⌉ block of zeros yet him(A⊗2) ⩾ h, as desired.

The property of being a half-induced matching can also be weakened to M [i, i] = 1

and M [i, j] +M [j, i] ⩽ 1 for all i ̸= j (‘sub-antisymmetric’). Let g(M) denote the largest

submatrix with this property. Then g(M) ⩾ him(M) and him(M) ⩾ ⌊log2(g(M))⌋ by

greedily selecting the row r with the most zeros, removing the columns that have a 1

entry in row r. Each time we remove at most half of the remaining columns, so this can

continue for at least ⌊log2(g(M))⌋ steps. This shows these two parameters are functionally

equivalent.

4.5.2 Comparing him and support rank

Our algorithm in Lemma 4.6 is based on the size of the largest half-induced matching,

while the algorithm in Corollary ?? is based on the support-rank. We next show that

him and the support rank are not functionally equivalent. In particular, this shows that

bounds from Theorem 1.6 can be significantly better than the ones from Corollary ??

when k is small (when H may be chosen arbitrarily from the infinite family of matrices

below).

Theorem 4.31. For each field F and integer t ⩾ 3, for all n sufficiently large, there exists

a symmetric matrix A ∈ {0, 1}n×n with ones on the diagonal, such that

80

• him(A) ⩽ 2t, and

• any matrix B ∈ Fn×n with the same support as A has rank at least n1−2/t.

Rather than proving this result directly, we will conclude it from results for a related

notion. The minrank of a graph G on the set of vertices [n] over a field F, denoted by

minrankF(G), is the minimum possible rank of a matrix M ∈ Fn×n with nonzero diagonal

entries such that Mi,j = 0 whenever i and j are distinct non-adjacent vertices of G. Note

that here, in contrary to the support-rank of the adjacency matrix of G, we do not demand

that Mi,j ̸= 0 whenever i and j are distinct adjacent vertices of G. The minrank gives

an upper bound on the Shannon capacity of the graph (see Section 4.5.3 for definition),

but can also be used to give lower bounds on the smallest dimension d for which the

graph admits certain geometric representations in Rd, e.g. orthogonal representations,

unit distance graphs or touching spheres (see [1, 69, 76]).

If we denote by A ∈ {0, 1}n×n the adjacency matrix of G and write

M(A,F) = {M ∈ Fn×n | A[i, j] = 0 =⇒ M [i, j] = 0 for i ̸= j and M [i, i] ̸= 0 for all i},

then the minrank of G is min{rank(M) | M ∈M(A,F)}. With

M′(A,F) = {M ∈ Fn×n | M [i, j] = 0 ⇐⇒ A[i, j] = 0},

the support rank of A is min{rank(M) | M ∈ M′(A)}. We see that the set M(A,F)

remains the same when all the diagonal entries of A are changed to ones. When A has

ones on the diagonal, thenM′(A,F) ⊆M(A,F) and so the support-rank is lower bounded

by minrank.

For a graph H with h ⩾ 3 vertices, let m2(H) denote the maximum value of |E(H′)|−1
|V (H′)|−2

over all subgraphs H ′ of H on at least 3 vertices. We will use the following result of Alon,

Balla, Gishboliner, Mond and Mousset [1].

Theorem 4.32 ([1, Theorem 5.3]). Let H be a graph with h ⩾ 3 vertices. Then there is

a constant c = c(H) > 0 such that for every (finite or infinite) field F and every integer

n there is a graph G on n vertices whose complement contains no copy of H, so that

minrankF(G) ⩾ cn1−1/m2(H)

log2 n
.

Now we can prove Theorem 4.31.

81

Proof of Theorem 4.31. Let t ⩾ 3. For Kt,t, the complete bipartite graph with sides of

size t, it holds that

m2(Kt,t) ⩾
t2 − 1

2(t− 1) = t+ 1
2 .

Applying Theorem 4.32 with H = Kt,t, we find that there is a graph G on n vertices, such

that G does not contain Kt,t, and

minrank(G) ⩾ c(Kt,t)n1−1/m2(Kt,t)

log2 n
.

When n is chosen to be sufficiently large,

c(Kt,t)n1−1/m2(Kt,t)

log2 n
> n1−2/t.

Let A be the matrix obtained from an adjacency matrix AG of G by setting all diagonal

entries to ones. By our previous discussion, the support rank of A is lower-bounded by

the minrank of A, and thus is at least n1−2/t.

We claim that him(A) < 2t. Indeed, if A contained a half-induced matching of size

2t, then there are t rows r1, . . . , rt and t columns c1, . . . , ct that form an all-zero block in

A. In particular, this contains no diagonal entries so ri ̸= cj for all i, j ∈ [t]. But then

G[{r1, . . . , rt, c1, . . . , ct}] has a complete bipartite graph Kt,t as subgraph, a contradiction.

This completes the proof.

4.5.3 Comparing mimsup and Shannon capacity

In this section, we shortly discuss the relation between our new parameter and the Shan-

non capacity [103, 132]. For two graphs G,H, the strong product G ⊠ H has vertex set

V (G)× V (H) and two vertices (u, x), (v, y) are adjacent if one of the following holds: (i)

uv ∈ E(G) and xy ∈ E(H), or (ii) uv ∈ E(G) and x = y, or (iii) u = v and xy ∈ E(H).

This can be naturally generalized to more factors. Then by G⊠k we denote the strong

product of k copies of G. The Shannon capacity is defined as

Θ(G) = lim sup
k→∞

α(G⊠k),

where α(G) is the independence number of G .

Let G be a graph with line graph L(G), i.e., V (L(G)) = E(G) and ef ∈ E(L(G)) if

and only if e ∩ f ̸= ∅. Denote by L(G)2 the square of the line graph: the vertex set is

E(G) where e, e′ ∈ E(G) are adjacent if e ∩ e′′ and e′ ∩ e′′ are both non-empty for some

82

e′′ ∈ E(G) (possibly e′′ ∈ {e, e′}). Then there is a one-to-one correspondence between

independent sets in L(G)2 and induced matchings of G: two edges e ̸= e′ can be together

in an induced matching if and only if no edge e′′ intersects both e and e′. Therefore, we

observe the following.

Observation 4.33. Let G be a graph. Then we have α(L(G)2) = mim(G).

However, L(G⊗2)2 is not isomorphic to (L(G)2)⊠2 and in fact mimsup(G) cannot be

upperbounded in terms of Θ(L(G)2) as the following example shows. Let H be a half-

graph on vertices v1, . . . , vr on one side and w1, . . . , wr on the other, where the edges are

viwj for i ⩽ j. Consider two edges e = viwj and f = vswr (so i ⩽ j and s ⩽ r). If i = s

or j = r, then ef is an edge in L(H), and thus in L(H)2. Otherwise, without loss of

generality assume that i < s ⩽ r. Then there is an edge viwr in H, and thus ef is an

edge in L(H)2. So (L(H))2 is the complete graph on r(r+1)
2 vertices. Any strong product

power ((L(H))2)⊠k is also a complete graph, so the Shannon capacity of (L(H))2 is 1,

while mimsup(H) ⩾ him(H) = r.

On the other hand, we do find the following relationship.

Lemma 4.34. For any bipartite graph G it holds that Θ(L(G)2) ⩽ mimsup(G).

Proof. Let G be a bipartite graph with bipartition classes U, V . Let A be the bi-adjacency

matrix of G. Let k ⩾ 1 be an integer. Recall that G⊗k is the bipartite graph on vertex

set Uk ∪ V k whose bi-adjacency matrix is A⊗k. It suffices to show that

α((L(G)2)⊠k) ⩽ α(L(G⊗k)2) = mim(G⊗k) = mim(A⊗k),

where the first equality follows from Observation 4.33 and the second is by definition. We

prove the inequality above by showing that G1 = L(G⊗k)2 is isomorphic to a subgraph

of G2 = (L(G)2)⊠k – note that both graphs have the same number of vertices, which is

|E(G)|k, so in fact we will show that G2 is isomorphic to a graph obtained by adding some

(possibly zero) edges to G1, and thus every independent set in G2 is also an independent

set in G1.

The vertices of G1 are of the form {u, v} with u = (u1, . . . , uk) ∈ Uk and v =

(v1, . . . , vk) ∈ V k and ei = uivi ∈ E(G) for all i ∈ [k]. We let µ({u, v}) = (e1, . . . , ek) ∈

V ((L(G)2)⊠k). Then µ : V (G1)→ V (G2) is an injective function. It remains to show that

µ(e)µ(f) ∈ E(G2) when ef ∈ E(G1). Let ef ∈ E(G1), and let e = {u, v} and f = {u′, v′}

83

for u, u′ ∈ Uk and v, v′ ∈ V k. Since ef ∈ E(L(G⊗k)2), either {u, v′} or {u′, v} must be

an element of E(G⊗k) (note that this is also the case if u = u′ or v = v′). By symmetry,

we may assume g = {u, v′} ∈ E(G⊗k). But by definition, that means that for all i ∈ [k],

gi := uiv
′
i ∈ E(G) is incident with both ei := uivi ∈ E(G) and fi := u′

iv
′
i ∈ E(G). So

(e1, . . . , ek) is adjacent to (f1, . . . , fk) in G2. The claim now follows as µ(e) = (e1, . . . , ek)

and µ(f) = (f1, . . . , fk).

Let us point out that since for non-bipartite graphs H we defined mimsup(H) =

mimsup(H∗), Lemma 4.34 implies that for every non-bipartite graph H, it holds that

Θ(L(H∗)2) ⩽ mimsup(H).

4.5.4 Support rank, covering by bicliques, and Prague dimen-

sion

In this section we compare the support-rank with parameters cov (introduced in Sec-

tion 4.2.3) and the so-called Prague dimension.

Let H be a graph on n vertices. The Prague dimension of a graph H (sometimes also

called product dimension or just dimension) introduced by Nešetřil, Pultr, and Rödl [118,

119] is the least integer p such that there exist integers n1, . . . , np for which H is an induced

subgraph of the direct product of p cliques, i.e., Kn1 × . . .×Knp . Note that without loss

of generality we may assume that n1 = n2 = . . . = np = n. We denote the Prague

dimension of H by dim(H). Note that for two vertices u = (u1, . . . , up), v = (v1, . . . , vp)

of Kn × . . . × Kn, they are adjacent if and only if ui ̸= vi for every i ∈ [p]. Therefore

equivalently we can say that dim(H) ⩽ p if we can encode each vertex of H as a sequence

of length p so that the vertices are adjacent if and only if their corresponding sequences

differ on every coordinate.

Theorem 4.35. Let H be a bipartite graph.

(1) There exists a family B that dim(H)-covers Hc.

(2) If Hc can be r-covered, then dim(H) ⩽ r2 + 2.

Proof of (1). Let n = |V (H)|, r = dim(H), and let µ : V (H)→ [n]r be a mapping whose

image induces a copy of H in r-fold direct product of Kn with vertex set [n]; it exists by

the definition of dim(H). For i ∈ [r], j ∈ [n], let Bi,j be the subgraph of Hc induced by

84

these vertices v ∈ V (H) for which the projection of µ(v) to the i-th coordinate is equal

to j. We define B = {Bi,j | i ∈ [r], j ∈ [n]}.

Observe that all vertices of Bi,j are pairwise non-adjacent in H since for all tuples

µ(v) their i-th coordinate is the same. Therefore Bi,j is a biclique of Hc.

Now let us verify that B r-covers Hc. First consider a vertex v ∈ V (Hc) = V (H) and

let µ(v) = (v1, . . . , vp). The vertex v is contained only in bicliques Bi,vi
for i ∈ [r], so v

is in at most r bicliques. So now consider any edge uv of Hc, and let µ(u) = (u1, . . . , ur)

and µ(v) = (v1, . . . , vr). By the definition of Hc, we have that uv /∈ E(H) and therefore

there exists i ∈ [r] such that ui = vi. Thus both u, v are contained in the biclique Bi,ui
.

This completes the proof.

Proof of (2). Let the bipartition classes of H be X, Y . Let B be a family of bicliques

that r-covers Hc and let B1, . . . , Bs be fixed arbitrary ordering of B. Define I = [r]2 ∪

{(0, 1), (1, 0)}, which will be our set of indices. Note that |I| = r2 + 2. Let q =

max(|V (H)|, s + 2). We aim to define a mapping µ : V (H) → [q]|I| which will define

an induced copy of H in |I|-fold direct product of Kq with vertex set [q] (here it will be

convenient not to assume that the cliques have |V (H)| vertices).

Fix a pair (i, j) ∈ [r]2 and consider u ∈ X (resp. v ∈ Y). Let u (resp. v) be covered

by r′ ⩽ r bicliques in B. We define

µi,j(u) =



ℓ if i ⩽ r′ and Bℓ is the

i-th biclique covering u

s+ 1 if i > r′,

µi,j(v) =



ℓ if j ⩽ r′ and Bℓ is the

j-th biclique covering v

s+ 2 if i > r′.

Moreover, we define µ1,0 : V (H) → [q] so that each vertex receives distinct value (this is

possible as q ⩾ |V (H)|), and µ0,1 : V (H)→ [q] that maps all vertices from X to 1 and all

vertices from Y to 2.

Now, µ : V (H) → [q]I is defined in a way that the projection of µ on the coordinate

(i, j) ∈ I is precisely µi,j. This completes the definition of µ.

Let us verify that the image µ(V (H)) induces a copy of H. By the definition of µ1,0,

the mapping is injective and by the definition of µ0,1 for u, v from the same bipartition

class we have that µ(u) and µ(v) are non-adjacent in Kq × . . .×Kq (we remark that µ1,0

is not needed if all vertices have pairwise distinct neighborhoods).

85

Consider uv ∈ E(H) with u ∈ X, v ∈ Y . This means that uv /∈ E(Hc) and thus there

is no biclique that contains both u, v. Therefore µ(u) and µ(v) differ on every coordinate

and hence are adjacent.

So now consider uv /∈ E(H) with u ∈ X, v ∈ Y . Since uv ∈ E(Hc), there must be

at least one biclique Bℓ ∈ B that contains uv. Therefore for some pair (i, j) we defined

µi,j(u) = µi,j(v) = ℓ, so µ(u) is non-adjacent to µ(v). This completes the proof.

We conclude this section with the following bound.

Corollary 4.36. The following bounds hold.

1. If H is not bipartite, then the support rank of the adjacency matrix of H is at most

(dim(H∗) + 1)dim(H∗).

2. If H is bipartite, then the support rank of the bi-adjacency matrix of H is at most

(dim(H) + 1)dim(H).

Proof. The first statement is an immediate corollary of Lemma 4.9 and Theorem 4.35 (1).

We point out that Lemma 4.9 holds, if we consider covering Hc instead of (H∗)c and the

bi-adjacency matrix of H instead the adjacency matrix. Therefore, the second statement

follows as well.

86

mim

him

mimsup

support-rank

dim(·∗) cov((·∗)c)

Figure 4.5: Relations between the parameters considered in Section 4.5. Let us point

out that for a non-bipartite graph H, we compare parameters mim, him, and mimsup of

H with (i) the support rank of the adjacency matrix AH of H, (ii) the dimension of H∗,

and (iii) the covering number of the bipartite complement (H∗)c of H∗. A black arrow

from a parameter p1 to a parameter p2 denotes that p1 can be bounded by a function of

p2. A dashed red arrow from a parameter p1 to a parameter p2 denotes that p1 cannot

be bounded by a function of p2. For some pairs of parameters, we do not know if they

are functionally equivalent, i.e., we do not know if: (i) mimsup can be bounded by some

function of him, (ii) support-rank can be bounded by some function of mimsup, (iii) dim

can be bounded by some function of support-rank.

87

Chapter 5

Diameter

In this chapter we consider the diameter as the parameter of the input graph. Throughout

this chapter, whenever H is a target graph, we will always consider it as fixed, and thus

its size will be always constant. Let us first define some additional notions and present

basic tools used in this chapter.

Cycles. Whenever C2k+1 is the target graph, we will denote its vertex set by [2k]0,

unless explicitly stated otherwise. Moreover, whenever we refer to the vertices of the

(2k + 1)-cycle, i.e., cycle on 2k + 1 vertices, by + and − we denote respectively the

addition and the subtraction modulo 2k+ 1. We say that a list L(v) is of type (ℓ1, . . . , ℓr)

if |L(v)| = r + 1 and its vertices can be ordered c0, . . . , cr so that for every i ∈ [r − 1]0,

we have that ci+1 = ci + ℓi. For example, for k ⩾ 4, one of the types of the list {1, 4, 6, 7}

is (3, 2, 1).

Subinstances. Let H be a graph, let (G,L) be an instance of the LHom(H) problem,

and let x, y be two distinct vertices of G. By identifying x and y into z we mean the

operation of adding a new vertex z to the graph, making it adjacent to every vertex in

N(u) ∪N(v), and removing u and v. We will always identify non-adjacent vertices. The

list of z becomes equal to L(x) ∩ L(y). The following observation is straightforward.

Observation 5.1. Let G be a graph, let x, y ∈ V (G), and let G′ be the graph obtained

from G by identifying x and y. Then diam(G′) ⩽ diam(G).

For two instances (G,L) and (G′, L′) of LHom(H), we say that (G′, L′) is a subinstance

of (G,L) if it can be obtained from (G,L) by a (possibly empty) sequence consisting of

88

two types of operations: (i) removing some colors from the list of a vertex, and (ii)

identifying two non-adjacent vertices with the same list. Intuitively, a subinstance is

formed by a series of decisions: that some vertex will not be colored with certain color

(this corresponds to operation (i)), and that some pair of vertices will receive the same

color (this corresponds to operation (ii)). Note that if (G,L) is a no-instance of LHom(H),

then each subinstance of (G,L) is a no-instance as well.

Observe that if (G′, L′) is a subinstance of (G,L), then there is a surjective mapping

trace : V (G)→ V (G′), which can be defined as follows. Let (G1, L1), (G2, L2), . . . , (Gℓ, Lℓ)

be a sequence of subinstances such that (G1, L1) = (G,L), (Gℓ, Lℓ) = (G′, L′), and for

i ∈ [ℓ−1], the instance (Gi+1, Li+1) can be obtained from (Gi, Li) by a single application of

one of the operations (i) and (ii). For i ∈ [ℓ], we define tracei : V (G)→ V (Gi) recursively

as follows.

1. We set trace1 to be the identity function.

2. If i > 1 and (Gi, Li) is obtained from (Gi−1, Li−1) by operation (i), then V (Gi) =

V (Gi−1), and for every v ∈ V (G), we set tracei(v) = tracei−1(v).

3. If i > 1 and (Gi, Li) is obtained from (Gi−1, Li−1) by identifying vertices x, y into

z, then for v ∈ V (G), if tracei−1(v) ∈ {x, y}, we set tracei(v) = z, otherwise we set

tracei(v) = tracei−1(v).

Finally we can define trace = traceℓ.

Let (G,L), (G′, L′), and trace be as above. A list homomorphism φ : (G,L) → H is

compatible with (G′, L′) if

• for each x, y ∈ V (G), if trace(x) = trace(y), then φ(x) = φ(y),

• for each x ∈ V (G) it holds that φ(x) ∈ L′(trace(x)).

Intuitively, φ is compatible with (G′, L′) if it agrees will all decisions we made when

forming (G′, L′) from (G,L).

Reduction rules. Let H be a graph and let (G,L) be an instance of LHom(H). We

define the following reduction rules.

(R1) If there is v ∈ V (G) such that L(v) = ∅, then return NO.

89

(R2) For a vertex x ∈ V (H), and vertices u, v ∈ V (G) such that L(u) = L(v) = {x}, if

uv ∈ E(G), then return NO, otherwise identify u with v.

(R3) For every uv ∈ E(G), if there is x ∈ L(u) such that NH(x)∩L(v) = ∅, then remove

x from L(u).

Clearly, each of the above reduction rules can be applied in polynomial time, we can

bound this time by O(|G|2). Moreover, in each reduction rule we either decrease the

number of vertices, decrease the size of a list, or return NO – therefore the reduction

rules can be applied at most O(|G|) times in total. Thus the exhaustive application of

the reduction rules to an instance of LHom(H) with n vertices can be performed in time

O(n3).

Let us consider a special case of LHom(H), i.e., List 3-Coloring. Then the reduc-

tion rule (R3) can be read as follows:

(R3) if there is v ∈ V (G) such that L(v) = {a}, then remove a from L(u) for every

u ∈ NG(v).

Let us verify that the reduction rules are safe.

Lemma 5.2. After applying each reduction rule to an instance (G,L) of LHom(H), we

obtain an equivalent instance with diameter at most diam(G).

Proof. (R1) If any list of a vertex is an empty set, then we are dealing with a no-instance

and thus (R1) is safe.

(R2) If two vertices have the same one-element list, then they must be mapped to

the same vertex. Recall that we only consider loopless graphs H, adjacent vertices of

G cannot be mapped to the same vertex. Therefore, if two vertices u, v of G have lists

L(v) = L(u) = {x} for some x ∈ V (H), then, if uv ∈ E(G), we are dealing with a

no-instance. Otherwise, we can identify u and v and thus (R2) is safe.

(R3) Let uv ∈ E(G) be such that there is x ∈ L(u) such that N(x) ∩ L(v) = ∅.

Suppose that there is a list homomorphism φ : (G,L)→ C2k+1 such that φ(u) = x. Then

v must be mapped to a vertex from N(x)∩L(v) = ∅, a contradiction. Thus we can safely

remove x from L(u), and (R3) is safe.

An instance (G,L) for which none of the reduction rules (R1)–(R3) can be applied is

called reduced. Note that after applying the reduction rules we obtain a subinstance of

the original instance.

90

Layer structure. Let (G,L) be a reduced instance of LHom(H). For i ∈ [|H|], let

Vi be the set of vertices v of G, such that |L(v)| = i. We also define V⩾i = ⋃
j⩾i Vj.

Sometimes we will refer to vertices of V1 as precolored vertices as their colors are uniquely

determined by the lists. Note that (V1, . . . , V|H|) is a partition of V (G); we will call it the

layer structure of (G,L). If H is a cycle, then since (R3) cannot be applied to a reduced

instance, we can observe the following.

Observation 5.3. Let ℓ ⩾ 3 and let (G,L) be a reduced instance of LHom(Cℓ). Then

N(V1) ⊆ V2, i.e., there are no edges between V1 and Vi for i ⩾ 3.

Binary CSP and 2-Sat. The Binary Constraint Satisfaction Problem, denoted by

BCSP, is a special case of CSP(q, r) where r = 2. It will be convenient for us to (i) treat

the set of constraints as a function, i.e., C : V × V → 2D×D, and (ii) consider instances

which are equipped with a list function L : V → 2D, although L can be easily encoded

in C by removing from C(v, v) pairs (a, a) ∈ D × D such that a /∈ L(v). Therefore,

for a given set (domain) D, an instance of BCSP consists of a set V of variables, a list

function L : V → 2D, and a constraint function C : V × V → 2D×D. The task is to

determine whether there exists an assignment f : V → D such that for every v ∈ V , we

have f(v) ∈ L(v) and for every pair (u, v) ∈ V × V , we have (f(u), f(v)) ∈ C(u, v).

Clearly, any instance of LHom(H) can be seen as an instance of BCSP, where the

domain D is V (H), the list function remains the same, and for every edge uv ∈ E(G)

we set C(u, v) = {(x, y) | xy ∈ E(H)} and for every uv /∈ E(G) we set C(u, v) =

V (H) × V (H). We will denote by BCSP(H,G,L) the instance of BCSP corresponding

to the instance (G,L) of LHom(H).

Edwards [50] proved that an instance of List q-Coloring with all lists of size at

most two can be solved in polynomial time by a reduction to 2-Sat. In fact, with the

same approach, this result can be generalized to instances of BCSP with all list of size

at most two.

Theorem 5.4 (Edwards [50]). Let (V, L, C) be an instance of BCSP over the domain D.

Assume that for every v ∈ V it holds |L(v)| ⩽ 2. Then we can solve the instance (V, L, C)

in polynomial time.

Proof. We will construct in polynomial time an instance ϕ of 2-Sat with at most 2|V |

variables and such that ϕ is a yes-instance of 2-Sat if and only if (V, L, C) is a yes-instance

91

of BCSP. Since 2-Sat is polynomial-time solvable [95], the statement will follow.

Note that we can assume that every list is of size exactly two. Indeed, if there is

v ∈ V with L(v) = ∅, we immediately can conclude that (V, L, C) is a no-instance.

Furthermore, for v with L(v) = {a}, for every u ∈ V \ {v}, and for every b ∈ L(u) such

that (a, b) /∈ C(v, u), we can remove b from L(u), and then we can remove v from V . We

can repeat these operations until all variables have lists of size two or we return NO.

For each v ∈ V , we arbitrarily fix the order of the two elements of L(v). For every

v, we introduce two variables, xv,1 and xv,2, which correspond, respectively, to setting v

to the first and the second element of L(v). We also introduce clauses (xv,1 ∨ xv,2) and

(¬xv,1 ∨¬xv,2). Finally, for every pair (u, v) ∈ V 2, for every (a, b) ∈ L(u)×L(v) \C(u, v)

such that a is the ith element of L(u) and b is the jth element of L(v), we introduce the

clause (¬xv,i∨¬xu,j). The formula ϕ is obtained by taking the conjuction of all introduced

clauses.

Observe that in any satisfying truth assignment of the variables of ϕ, for every v ∈

V , exactly one of the variables xv,1, xv,2 must be set to true. Indeed, since the clause

(xv,1 ∨ xv,2) has to be satisfied, at least one of them must be set to true, and since the

clause (¬xv,1 ∨ ¬xv,2) has to be satisfied, at most one of them can be set to true.

Clearly, ϕ is an instance of 2-Sat as each clause contains precisely two literals. More-

over, ϕ has at most 2|V | variables and the construction of ϕ can be performed in poly-

nomial time. Let us verify the equivalence of instances. First assume that there is a

satisfying truth assignment ψ of the variables of ϕ. Let us construct a satisfying assign-

ment f : V → D. Let v ∈ V , let L(v) = {a1, a2} and assume that a1 is the first element of

v. If ψ(xv,1) = 1, then set f(v) = a1, otherwise set f(v) = a2. Clearly, f respects the lists

L. Let (u, v) ∈ V 2 and suppose that (f(u), f(v)) /∈ C(u, v). Let f(u) be the ith element

of L(u) and let f(v) be the jth element of L(v). Recall that in such case we introduced

a clause (¬xu,i ∨ ¬xv,j). On the other hand, since we set u and v to, respectively, ith

element of L(u) and jth element of L(v), we must have ψ(xu,i) = 1 and ψ(xv,j) = 1, a

contradiction.

So now assume that there is a satisfying assignment f : V → D. We define the truth

assignment ψ of the variables of ϕ as follows. For every v ∈ V , if f(u) is the first element of

L(v), we set ψ(xv,1) = 1 and ψ(xv,2) = 0. Otherwise, we set ψ(xv,1) = 0 and ψ(xv,2) = 1.

Let us verify that ψ satisfies ϕ. Since for every v ∈ V , we set precisely one of xv,1 and

92

xv,2 to true, all clauses of type (xv,1 ∨ xv,2) and (¬xv,1 ∨¬xv,2) are satisfied. It remains to

consider a clause (¬xu,i∨¬xv,j) introduced for a pair (u, v) and a pair (a, b) ∈ L(u)×L(v)

such that a, b are, respectively, the ith element of L(u) and the jth element of L(v), and

(a, b) /∈ C(u, v). Since f is a satisfying assignment, we have (f(u), f(v)) ̸= (a, b), and, by

the definition, at least one of xu,i, xv,j must be set to false. Thus the clause (¬xu,i∨¬xv,j)

is satisfied, which completes the proof.

Clearly, Theorem 5.4 in particular implies that an instance (G,L) of LHom(H) with

all lists of size at most 2 can be solved in polynomial time.

5.1 List 3-Coloring

In this section we study the complexity of List 3-Coloring, i.e., LHom(K3), on diameter-

2 and -3 graphs, and we prove Theorem 1.12 and Theorem 1.11.

The following proposition describes important properties of layer structures of graphs

with diameter at most 3.

Proposition 5.5. Let (G,L) be a reduced instance of List 3-Coloring, where G has

diameter d ⩽ 3, and let (V1, V2, V3) be the layer structure of G. Then, for any u, v ∈ V2∪V3,

at least one of the following holds:

a) u and v are at distance at most d in G[V2 ∪ V3], or

b) {u, v} ∩ V2 ̸= ∅.

Proof. If V1 = ∅, then the first outcome follows, since G = G[V2 ∪ V3]. So assume that

V1 ̸= ∅. Consider u, v ∈ V3 and suppose that they are not at distance at most d in

G[V2 ∪ V3]. Since they are at distance at most d in G, all shortest u-v-paths in G must

intersect V1. However, by Observation 5.3, for any x ∈ V1, it holds that dist(u, x) ⩾ 2

and dist(v, x) ⩾ 2. Thus dist(u, v) ⩾ 4, contradicting the fact that diam(G) ⩽ 3.

Observe that Proposition 5.5 does not generalize to diameter-4 graphs: consider, e.g.,

a 5-vertex path P5 with consecutive vertices v1, v2, v3, v4, v5, where V1 = {v3}. Vertices v1

and v5 are in V3, they are at distance 4 in P5, but not in P5[V2 ∪ V3] = P5 − {v3}.

Proposition 5.5 immediately yields the following corollary.

93

Corollary 5.6. Let (G,L) be a reduced instance of List 3-Coloring, where G has

diameter d ∈ {2, 3}, and let (V1, V2, V3) be the layer structure of (G,L). For every v ∈ V3,

the set N⩽d−1
G[V2∪V3][v] dominates V3.

5.1.1 Diameter-3 graphs

In this section we present a simple proof of Theorem 1.11. Actually, we will show the

following more general result, which also yields a 2O(
√

n log n)-algorithm for diameter-2

graphs; it implies the result of Mertzios and Spirakis [111], but the proof is different than

the original one. This will serve as a warm-up before showing the more complicated proof

of Theorem 1.12.

Theorem 5.7. The List 3-Coloring problem on n-vertex graphs G can be solved in

time:

1. 2O(n1/2 log1/2 n), if diam(G) = 2,

2. 2O(n2/3 log2/3 n), if diam(G) = 3.

Proof. Let (G,L) be an instance of List 3-Coloring, where G has n vertices and di-

ameter d ∈ {2, 3}, and let (V1, V2, V3) be the layer structure of (G,L). Without loss of

generality we may assume that (G,L) is reduced. If V3 = ∅, then the problem can be

solved in polynomial time using Theorem 5.4. Thus let us assume that V3 ̸= ∅. Let us

define a measure µ := 2|V2|+ 3|V3|.

First, consider the case that there is a vertex v ∈ V2 ∪ V3 with at least (µ log µ)1/d

neighbors in V2 ∪ V3. Since each vertex of V2 ∪ V3 has one of four possible lists – {1, 2},

{1, 3}, {2, 3}, and {1, 2, 3} – there is a subset of at least (µ log µ)1/d

4 neighbors of v that

all have the same list L′. Note that there is a ∈ L(v) ∩ L′ since both are subsets of size

at least 2 of a set of size 3. We branch on coloring the vertex v with color a or not. In

other words, in the first branch we remove from L(v) all elements but a, and in the other

one we remove a from L(v). Note that in the first branch, after reducing the obtained

instance, at least (µ log µ)1/d

4 vertices will lose at least one element from their list.

We can bound the number of instances produced by applying this step exhaustively

as follows:

F (µ) ⩽ F

(
µ− (µ log µ)1/d

4

)
+ F (µ− 1).

94

Solving this inequality, we obtain that F (µ) = µ
O
(

µ

(µ log µ)1/d

)
= 2O((µ log µ)1−1/d). For more

details on how we solve this and other recursions, we refer the reader to the Appendix at

the end of the dissertation.

Now consider the remaining case that ∆(G[V2∪V3]) < (µ log µ)1/d. Recall that V3 ̸= ∅;

pick any vertex v ∈ V3. Define X := N⩽d−1
G[V2∪V3][v]; by Corollary 5.6, the set X dominates

V3. Furthermore

|X| ⩽ 1 + ∆(G[V2 ∪ V3])d−1 = O((µ log µ)(d−1)/d).

We exhaustively guess the coloring of X, which results in at most 3|X| = 2O((µ log µ)1−1/d)

branches. As X dominates V3, after applying the reduction rule (R3) to every vertex of

X, in each branch there are no vertices with three-element lists. Therefore, the instance

obtained in each of the branches is solved in polynomial time using Theorem 5.4. The total

running time comes from multiplying the bounds obtained in both cases and is bounded

by 2O((µ log µ)1−1/d) · nO(1) = 2O((µ log µ)1−1/d). The claimed bound follows since µ ⩽ 3n.

5.1.2 Diameter-2 graphs

In this section we prove Theorem 1.12. Let us recall the following variant of the Chernoff

concentration bound.

Theorem 5.8 ([109, Theorem 2.3]). Let X1, . . . , Xn be independent random variables with

0 ⩽ Xi ⩽ 1 for each i. Let X = ∑n
i=1 Xi and X = E[X].

(1) For any ε > 0,

Pr
(
X ⩾ (1 + ε)X

)
⩽ e− ε2X

2(1+ε/3) .

(2) For any ε > 0,

Pr
(
X ⩽ (1− ε)X

)
⩽ e− ε2X

2 .

It will be more convenient to work with random variables for which we only know

bounds on the expected value. For this reason we will use the following corollary of

Theorem 5.8.

Corollary 5.9. Let X1, . . . , Xn be independent random variables with 0 ⩽ Xi ⩽ 1 for

each i. Let X = ∑n
i=1 Xi.

95

(1) For any ε > 0 and X̂ ⩾ E[X],

Pr
(
X ⩾ (1 + ε)X̂

)
⩽ e− ε2X̂

2(1+ε/3) .

(2) For any ε > 0 and X̂ ⩽ E[X],

Pr
(
X ⩽ (1− ε)X̂

)
⩽ e− ε2X̂

2 .

Proof. Clearly, if X̂ = E[X], then (1) and (2) follow directly from Theorem 5.8. So since

now assume that this is not the case. In order to prove (1) let us consider a random

variable Y = X + Y1 + Y2 + . . . + Yk, where k =
⌈
X̂ − E[X]

⌉
and each Yi is a constant

equal to X̂−E[X]
k

. Clearly Y can be written as a sum of independent random variables

Y ′
1 , . . . , Y

′
r such that 0 ⩽ Y ′

i ⩽ 1. Furthermore,

E[Y] = E[X + Y1 + Y2 + . . .+ Yk] = E[X] +
k∑

i=1
E[Yi] = E[X] + k · X̂ − E[X]

k
= X̂,

and Y ⩾ X, so by Theorem 5.8 (1), we have

Pr
(
X ⩾ (1 + ε)X̂

)
⩽ Pr

(
Y ⩾ (1 + ε)X̂

)
⩽ e− ε2X̂

2(1+ε/3) ,

,

and thus (1) follows.

For (2), we can define Y = X · X̂
E[X] – again, since X̂ ⩽ E[X], the random variable Y

can be written as a sum ∑n
i=1 Y

′
i , where Y ′

i = Xi · X̂
E[X] and thus 0 ⩽ Y ′

i ⩽ 1. Furthermore,

the expected value of Y is equal

E[Y] = E
[
X · X̂

E[X]

]
= X̂

E[X] · E[X] = X̂,

and since Y ⩽ X, by Theorem 5.8 (2), we obtain that

Pr
(
X ⩽ (1− ε)X̂

)
⩽ Pr

(
Y ⩽ (1− ε)X̂

)
⩽ e− ε2X̂

2 ,

which completes the proof.

We start with a technical lemma that is the crucial ingredient of our algorithm.

Lemma 5.10. There exists an absolute constant K such that the following is true. Let

G be a 3-colorable graph with n vertices such that

96

(i) ∆(G) ⩽ n2/3,

(ii) for every v ∈ V (G), the set N⩽2
G (v) contains at least n− 1

36n
2/3 vertices,

(iii) for every two vertices u, v ∈ V (G) there are at most n2/3 vertices w such that

NG(u) ∩NG(v) ∩NG(w) ̸= ∅.

Let ϕ be a proper 3-coloring of G, where a ∈ [3] is the color that appears most frequently.

Define A := ϕ−1(a). Then there exist sets S ⊆ A and S̃ ⊆ V (G) \A, each of size at most

K · n1/3 log n, such that S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
dominates at least n

6 vertices.

Before we prove Lemma 5.10, let us explain its purpose. Suppose that G is a graph

with diameter at most 2 and we are trying to find a list 3-coloring of G under the promise

that it exists. Note that if we correctly guess a set S of vertices of the most frequent color

a and a set S̃ of vertices together with its coloring using colors [3] \ {a}, then we can

deduce the color of each vertex in N(S) ∩N(S̃). Hence, our reduction rules will remove

at least one color from the list of each vertex in V3 dominated by S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
.

If the sets S and S̃ are as in the lemma, then we have just removed at least n
6 colors from

all the lists by guessing the coloring of only O(n1/3 log n) vertices. This is roughly why

our algorithm is much faster than an exhaustive search.

The assumptions of the lemma can be read as follows: (i) vertices in G do not have

too many neighbors, (ii) G is almost a graph with diameter 2 and (iii) common neighbors

of every two vertices u and v do not dominate too many vertices of the graph. As we

will see later, these assumptions arise naturally when trying to solve the problem using

simple branching rules – if any of them is violated, then searching for a list 3-coloring of

G becomes easier because of other reasons.

Proof of Lemma 5.10. Note that we can assume that n ⩾ n0, where n0 is a constant

that implicitly follows from the reasoning below. Indeed, otherwise it is sufficient to set

K := n0, S := A, and S̃ := V (G) \A. Thus from now on we assume that n is sufficiently

large.

For every two vertices u, v ∈ V (G) such that N [u]∩N [v] ̸= ∅, let xuv be a fixed vertex

from N [u] ∩ N [v]. Fix some vertex va ∈ A and a function f : N⩽2(va) → N(va) defined

such that f(u) ∈ N [u] ∩N(va).

We start by selecting S̃ as a subset of neighbors of va. For such a set S̃ we say that a

vertex u ∈ A threatens a vertex w ∈ A if

97

u w

xuw f(xuw) va

u w

xuw = f(xuw) va

Figure 5.1: The vertex u threatens w: if f(xuw) ∈ S̃ and u ∈ S, then w has a neighbor

with uniquely determined color. The vertex f(xuw) can be either a neighbor of xuv (left)

or be the same vertex as xuv (right).

(1) N [u] ∩N [w] ̸= ∅,

(2) xuw ∈ N⩽2(va), and

(3) f(xuw) ∈ S̃.

Note that the definition depends on the choice of xuv and f (fixed earlier). Intuitively,

u threatens w if selecting u to S would undoubtedly cause w to be dominated by S ∪

S̃ ∪
(
N(S) ∩N(S̃)

)
, see Figure 5.1. The following claim gives us a set S̃ such that each

vertex of A is threatened by many vertices.

Claim 5.10.1. There exists a set S̃ ⊆ N(va) of size at most 200n1/3 log n such that for

at least half of vertices w ∈ A there are at least 8n2/3 log n vertices from A that threaten

w.

Proof of Claim: We select S̃ randomly in such a way that each neighbor of va is included

in S̃ independently with probability p̃ = 100n−1/3 log n. We will show that S̃ satisfies the

desired properties with positive probability.

Note that the size of S̃ is a sum of deg(va) independent random Boolean variables

and the expected value of |S̃| is deg(va) · p̃. Recall that by the assumption (i) we have

deg(va) ⩽ n2/3. Therefore by Corollary 5.9 (1) applied with ε = 1 we deduce that

Pr
(
|S̃| > 200n1/3 log n

)
⩽ e−37.5n1/3 log n.

Let A′ ⊆ A be the set of those v ∈ A, for which the set N (N(v) \N⩽2(va)) contains

fewer than half of vertices from A. We will show that |A′| ⩾ 1
2 |A|. First, let us estimate

the number P of ordered pairs of vertices (u, v) such that u and v have a common neighbor

outside of N⩽2(va). By (i) each vertex outside of N⩽2(va) can be a common neighbor for

at most n4/3 pairs of vertices, so (ii) implies that P ⩽ 1
36n

2. Note that a vertex from A

is not contained in A′ only if it is in at least |A| ordered pairs that contribute to P , i.e.,

98

there are at least |A|
2 pairs with v on the first position and at least |A|

2 with v on the second

position. It follows that A′ contains at least |A| − 2P
|A| vertices. Since a is most frequent

color used by the 3-coloring ϕ, we have |A| ⩾ 1
3n, and thus |A′| ⩾ 1

2 |A|, as desired.

We will show that, with high probability, A′ is a subset of A required to prove the

claim. Fix a vertex w from A′. Consider a random variable Xw that counts the number

of vertices u from A such that u threatens w and N(u) ∩ N(w) ⊆ N⩽2(va). Our plan is

to use Corollary 5.9 to show that Xw is at least 8n2/3 log n with high probability.

We start by estimating the expected value of Xw. Let U be the set of vertices u ∈ A

such that N(u) ∩N(w) ⊆ N⩽2(va); note that by the definition of U , there is a vertex in

N [u]∩N [w]∩N⩽2(va), so xuw and f(xuw) exist for all vertices u ∈ U . Each vertex u ∈ U

contributes 1 to Xw if and only if f(xuw) ∈ S̃, i.e., with probability p̃. Since w ∈ A′, the

size of U is at least 1
2 |A| minus the number of vertices outside of N⩽2(w), which totals to

at least n
6 −

1
36n

2/3 by (ii). Therefore, E[Xw] ⩾ 16n2/3 log n for large enough n.

Now we express Xw as a sum of a number of independent random variables. Fix an

ordering t1, t2, . . . , tdeg(va) of neighbors of va and define Ui as the set of vertices u from U

such that xuw ∈ N⩽2(va) and f(xuw) = ti. For i = 1, 2, . . . , deg(va) let Xi be a random

variable that is equal to |Ui| if ti ∈ S̃ and 0 otherwise. Clearly Xw = ∑
i Xi and all the

variables X1, . . . , Xdeg(va) are independent by the independent selection of S̃.

By (iii), applied for w and ti, we obtain that Xi ⩽ n2/3 for all i. Therefore the sequence

of random variables Xi

n2/3 satisfies the assumptions of Corollary 5.9 (2); since it sums up

to X = Xw

n2/3 , by setting X̂ = 16n2/3 log n and ε = 1
2 in the referenced corollary we deduce

that

Pr
(
Xw

n2/3 ⩽ 8 log n
)
⩽ e− 16

8 log n,

which gives that

Pr
(
Xw ⩽ 8n2/3 log n

)
⩽ n−2.

By the union bound we obtain that the probability that S̃ has more than 200n1/3 log n

vertices or that Xw < 8n2/3 log n for any w ∈ A′ is at most n−37.5n1/3 + n · n−2. It follows

that S̃ (together with the subset A′ of A) satisfies the properties required in the claim with

probability at least 1− n−37.5n1/3 − n · n−2, which is positive for large enough n; therefore,

the proof is complete. ⌟

Having selected S̃, we proceed to selecting S as a subset of A that guarantees the

desired domination property.

99

Claim 5.10.2. There exists a set S ⊆ A of order at most 2n1/3 such that at least half of

the vertices w ∈ A are dominated by S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
.

Proof of Claim: We randomly select S so that each vertex from A is in S independently

with probability p = n−2/3. Note that by Corollary 5.9 (1) the size of S is at most 2n1/3

with probability at least 1− e− 3
8 n2/3 .

Let w be a vertex from A that is threatened by at least 8n2/3 log n vertices from A.

The probability that w is not dominated by N(S) ∩N(S̃) is at most

(1− p)8n2/3 log n ⩽ e−8pn2/3 log n ⩽ e−8 log n ⩽ n−8.

By the union bound it follows that with probability at least 1−n−7 all vertices threatened

by at least 8n2/3 log n vertices from A are dominated by N(S)∩N(S̃). Claim 5.10.1 implies

that there are at least 1
2 |A| such vertices. This completes the proof of claim. ⌟

Set K := max(n0, 200). Now the statement of the lemma follows from Claim 5.10.2

by observing that since A is the most frequent color, we have 1
2 |A| ⩾

1
6n.

Our algorithm for diameter-2 graphs consists of two phases. The following lemma

encapsulates the outcome of the first phase.

Lemma 5.11. Let (G,L) be an instance of the List 3-Coloring problem, where G has

n vertices and is of diameter at most 2. In time 2O(n1/3 log2 n) we can enumerate a family

X of subinstances of (G,L), such that:

1. |X | = 2O(n1/3 log2 n),

2. for each (G′, L′) ∈ X and every v ∈ V (G′) it holds that |L′(v)| ⩽ 2,

3. for any 3-coloring φ of G, respecting the lists L, there is (G′, L′) ∈ X , such that φ

is compatible with (G′, L′).

Proof. Let (G,L) be an instance of the List 3-Coloring problem, where G has n vertices

and is of diameter at most 2. Again, we start by applying reduction rules exhaustively,

so we can assume that (G,L) is reduced. Let (V1, V2, V3) be the layer structure of (G,L).

If V3 = ∅, then we can return X = {(G,L)} and terminate; clearly X satisfies all required

properties. So from now on let us assume that V3 ̸= ∅ and set µ := |V3|.

100

We use one of the four branching rules to produce a number of subinstances of the

problem, each with fewer vertices with lists of size 3. The family X consists of all subin-

stances obtained in the leaves of the recursion tree.

The following branching rules are applied in the given order – it is essential that (B4)

is executed only if the rules (B1), (B2), and (B3) cannot be applied.

(B1) If there exists a vertex v ∈ V2 ∪ V3 such that v has more than µ2/3 neighbors in

V3, then for every color a ∈ L(v) call the algorithm recursively for a subinstance

obtained by replacing L(v) with {a} and exhaustively applying the reduction rules.

(B2) If there exists a vertex v ∈ V3 such that for at least 1
36µ

2/3 vertices u ∈ V3 a common

neighbor of u and v is in V2, then for every color a ∈ L(v) call the algorithm

recursively for a subinstance obtained by replacing L(v) with {a} and exhaustively

applying the reduction rules.

(B3) If there are two vertices u, v ∈ V3 such that for at least µ2/3 vertices w from V3

the set N(u) ∩ N(v) ∩ N(w) is nonempty, then for every two distinct colors a, b

construct a subinstance by setting L(u) := {a} and L(v) := {b} and, if uv /∈ E(G),

one additional instance obtained by identifying u with v. Apply the reduction rules

to each of those subinstances and call the algorithm recursively.

(B4) Let K be the constant from Lemma 5.10. For every tuple (a, S, S̃, φ), where

• a ∈ [3] is a color,

• S ⊆ V3 is a set of size at most K · µ1/3 log µ,

• S̃ ⊆ V3 \ S is a set of size at most K · µ1/3 log µ,

• φ is a list coloring of (S̃, L) using colors [3] \ {a},

construct a subinstance by setting L(v) := {a} for each v ∈ S and L(v) = {φ(v)}

for v ∈ S̃. Apply the reduction rules to each of those subinstances for which S ∪

S̃ ∪
(
N(S) ∩N(S̃)

)
dominates at least 1

6µ vertices from V3 and call the algorithm

recursively.

Let us show that the above algorithm is correct. Branching rules (B1) and (B2) are clearly

correct, because if there is a solution to the given instance of the List 3-Coloring

problem, then it assigns to v one color from L(v). The rule (B3) is correct because if

101

there is a solution f to the given instance of the problem, then it either assigns two

different colors to u and v, or assigns the same color to u and v, hence at least one of

the constructed subinstances will admit a compatibile solution. Recall that identifying

the vertices u and v does not increase the diameter. Now consider the branching rule

(B4). Recall that it is applied only when rules (B1), (B2) and (B3) are inapplicable, so

in this case the graph G[V3] satisfies the assumptions (i)-(iii) of Lemma 5.10. Indeed, it

is immediate for (i) and (iii), and to see (ii) suppose that G[V3] does not satisfy (ii), i.e.,

there is a vertex v ∈ V3 such that N⩽2
G[V3](v) contains fewer than µ− 1

36µ
2/3 vertices. Then

there are at least 1
36µ

2/3 vertices u such that u has a common neighbor with v in V2 – this

follows from the fact that G has diameter at most 2, and if two vertices of V3 are not at

distance at most two in G[V3], they must have a common neighbor in V2. In this case we

would apply branching rule (B2), a contradiction. Therefore, if the original instance has

a solution f , then by Lemma 5.10 at least one subinstance constructed in (B4) admits

a compatibile solution. On the other hand, each subinstance is obtained by fixing the

colors of vertices in S ∪ S̃ and both sets are contained in V3, so every vertex of S ∪ S̃ has

all 3 colors on its lists, and thus each such a coloring respects lists L. Furthermore, if this

coloring is improper, then the application of reductions rules (R1) and (R2) will cause

the algorithm to reject the instance. Hence, the branching rule (B4) is correct.

Let us denote by F (x) the maximum running time of the algorithm on an instance

with at most x vertices with lists of size 3.

Now we will bound the running time of the algorithm on our instance (G,L) with µ

vertices with lists of size 3, depending on which branching rule was applied.

Case 1: (B1) was applied Note that this branching produced at most three in-

stances of the problem, each with at most µ − µ2/3 vertices with lists of size 3. This is

because for every vertex u ∈ V3 that is a neighbor of v the color a was removed from

L(u). Therefore, in this case the running time is at most

3F
(
µ− µ2/3

)
+ 3p(n),

where p(n) = O(n3) is a polynomial such that we can exhaustively apply the reduction

rules to an n-vertex instance of List 3-Coloring in time p(n).

102

Case 2: (B2) was applied Let {a, b, c} = [3] and let Na (respectively Nb or Nc)

be the number of vertices u ∈ V3 such that the list of a common neighbor of v and u in V2

does not contain a (respectively b or c). We can assume that Na ⩽ Nb ⩽ Nc. Note that if

a vertex u contributes to Nc, then after the application of reduction rules b (respectively

a) is removed from L(u) in the instance constructed for the color a (respectively b). It

follows that the running time of the algorithm in this case is at most

F (µ− 1) + 2F
(
µ− 1

108µ
2/3
)

+ 3p(n).

Case 3: (B3) was applied Let w be a vertex from V3 such that the set N(u) ∩

N(v) ∩ N(w) is nonempty. Note that if we set L(u) to {a} and L(v) to {b}, for a ̸= b,

then after applying the reduction rules common neighbors of u and v will have lists of

size 1, hence the size of the list of w will be at most 2. Therefore, in this case the running

time is at most

F (µ− 1) + 6F
(
µ− µ2/3

)
+ 7p(n),

where the first term corresponds to the subinstance with two vertices identified into

one, and the second term corresponds to the six subinstances obtained by fixing the colors

of two vertices.

Case 4: (B4) was applied Note that in the constructed instances, after applying

the reduction rules, all vertices from S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
have lists of size 1, so all

vertices dominated by S ∪ S̃ ∪
(
N(S) ∩N(S̃)

)
have lists of size at most 2. Therefore,

all instances that are solved recursively have at most µ− 1
6µ vertices with lists of size 3.

The total number of those instances can be upper bounded by the number of all possible

tuples (a, S, S̃, φ). Recall that a is one of 3 possible colors, S and S̃ are subsets of V3,

each of size at most K ·µ1/3 · log µ, and thus there are at most µKµ1/3 log µ choices for each

of them, and φ is a 2-coloring of S̃, so for a fixed S̃, there are at most 2Kµ1/3 log µ choices

for φ. Therefore, the total number of instances created in this case is at most

3 · µ2Kµ1/3 log µ · 2Kµ1/3 log µ < 2K′µ1/3 log2 µ,

for some constant K ′. Furthermore, the total running time in this case is at most

2K′µ1/3 log2 µF
(5

6µ
)

+ 2K′µ1/3 log2 µp(n)

103

As the considered cases cover all possibilities, we conclude that F (µ) is bounded by the

maximum of the expressions obtained in all four cases. Solving these recursions and using

that µ ⩽ n (again, see the Appendix for details) we obtain that the overall complexity of

the algorithm is bounded by 2O(n1/3 log2 n). From the bound on the running time we also

obtain |X | = 2O(n1/3 log2 n).

Now Theorem 1.12 follows easily from Lemma 5.11 and Theorem 5.4.

Theorem 1.12. The List 3-Coloring problem on n-vertex graphs with diameter 2 can

be solved in time 2O(n1/3·log2 n).

Proof. Let (G,L) be an instance of the List 3-Coloring problem, where G has n ver-

tices and is of diameter at most 2. Apply Lemma 5.11 to (G,L) to obtain a family X of

subinstances. By statement 2 of Lemma 5.11, each (G′, L′) ∈ X can be solved in poly-

nomial time using Theorem 5.4. Since elements of X are subinstances of (G,L) and by

statement 3 of Lemma 5.11 we observe that (G,L) is a yes-instance of List 3-Coloring

if and only if at least one element of X is a yes-instance. The time bound follows from

the time bound in Lemma 5.11 (needed to construct the family X) and the size bound

on X from statement 1. of Lemma 5.11.

5.1.3 Weighted coloring

In this section we consider a generalization of List 3-Coloring, called Weighted 3-

Coloring. Actually, we consider Weighted List 3-Coloring, where the instance has

both, weights and lists.
Weighted List q-Coloring

Input: Graph G with weight function w : V (G)× [q]→ N, list function L : V (G)→ 2[q],

and an integer k.

Question: Is there a proper q-coloring of G, which respects the lists L, and such that∑
v∈V (G) w(v, c(v)) ⩽ k?
Observe that Weighted List q-Coloring is equivalent to Weighted q-Coloring,

as lists can be easily expressed with weights: to indicate that i /∈ L(v) we can set w(v, i)

to some large value (larger than k). However, introducing lists gives us an easy way to

indicate that some neighbors of a vertex are already colored, without the need of updating

the weight function.

104

Let us discuss which of the phases of the algorithms from Theorem 1.11 and Theo-

rem 1.12 can be simply applied in the weighted version.

Subinstances. We can generalize the notion of subinstances to the case of Weighted

List 3-Coloring, where the only difference is the following: for an instance (G,L,w, k)

of Weighted List 3-Coloring, when identifying some vertices u, v of G into z, we set

w(z, i) = w(u, i) + w(v, i) for i ∈ [3]. Thus, in case of Weighted List 3-Coloring,

we can also say that I ′ = (G′, L′,w′, k′) is a subinstance of I = (G,L,w, k), if I ′ can

be obtained from I by a series of operations: (i) removing some colors from the list of a

vertex, and (ii) identifying two non-adjacent vertices with the same list. Observe that we

actually have k′ = k as none of the two operations changes the budget k. Similarly, we

can generalize the notion of compatible colorings. Let trace : V (G) → V (G′) be defined

as in the non-weighted setting, i.e., trace : V (G)→ V (G′) is a surjective mapping, where

a) if x ∈ V (G)∩V (G′), i.e., x was never identified with some other vertex when (G′, L′)

was obtained from (G,L), then trace(x) = x,

b) if x ∈ V (G) \ V (G′), i.e., there is some z ∈ V (G′), such that x was identified into z

(note that it is possible that x was identified with x′ into y and then y was identified

with y′ into z), then trace(x) = z.

Again, we can say that a coloring c certifying that (G,L,w, k) is a yes-instance of

Weighted List 3-Coloring is compatible with (G′, L′,w′, k) if

(1) for each x, y ∈ V (G), if trace(x) = trace(y), then c(x) = c(y),

(2) for each x ∈ V (G) it holds that c(x) ∈ L′(trace(x)).

Let us point out that the coloring c′ obtained by restricting c to vertices of G′ (we can use

the name “restriction” because of (1)) has the same total weight as c, which is at most k.

Reduction rules. Observe that all of the reduction rules (R1), (R2), and (R3) are safe

when solving Weighted List 3-Coloring, as they only identify the vertices that have

to obtain the same color, or remove a color that cannot be used, or return NO, if there is

a vertex with empty list.

105

Branching rules. Now we claim that the branching phases in our algorithms from

Theorem 1.11 and Theorem 1.12 can handle the weights: in each branching rule, except

(B4), we simply guess a coloring for some set of vertices, and thus branching rules (B1),

(B2), and (B3) can be safely applied when solving Weighted List 3-Coloring. In

case of (B4) we guess some sets of vertices and their coloring, but we also discard some

instances – the ones where the guessed sets S, S̃ are such that S∪ S̃∪ (N(S)∩N(S̃)) does

not dominate sufficiently many vertices. However, by Lemma 5.10, if I = (G,L,w, k) is

a yes-instance of Weighted List 3-Coloring, and c is a coloring certifying that I is a

yes-instance, then whenever (B4) produces an instance I ′ = (G′, L′,w′, k) compatible with

c, then I ′ will not be discarded. Therefore, (B4) can be also safely applied in weighted

setting.

Therefore, we can write the following strenghtening of Lemma 5.11

Lemma 5.12. Let I = (G,L,w, k) be an instance of the Weighted List 3-Coloring

problem, where G has n vertices and is of diameter at most 2. In time 2O(n1/3 log2 n) we

can enumerate a family X of subinstances of (G,L,w, k), such that:

1. |X | = 2O(n1/3 log2 n),

2. for each (G′, L′,w′, k′) ∈ X and every v ∈ V (G′) it holds that |L′(v)| ⩽ 2,

3. for any 3-coloring c of G, certifying that I is a yes-instance of Weighted List 3-

Coloring, there is (G′, L′,w′, k) ∈ X , such that c is compatible with (G′, L′,w′, k).

However, when solving Weighted List 3-Coloring we cannot simply apply the

last phase, when the problem of coloring a graph with all lists of size at most two is

reduced to 2-Sat using Theorem 5.4. It is known that a weighted variant of 2-Sat is

NP-complete and admits no subexponential-time algorithm, unless the ETH fails [129].

It turns out that we can substitute the second phase of Theorem 1.12 with another

procedure that can handle weights.

Lemma 5.13. The Weighted List 3-Coloring problem on n-vertex diameter-2 graphs

can be solved in time nO(log n), if the list of every vertex has at most 2 elements.

Proof. Let (G,w, L, k) be an instance of Weighted List 3-Coloring such that G has

n vertices and is of diameter at most 2, and for each v ∈ V (G) it holds that |L(v)| ⩽ 2.

106

Assume that none of the reduction rules (R1), (R2), (R3) can be applied. Furthermore,

we introduce two more reduction rules and apply them in this order; clearly it can be

done in polynomial time.

(R4) If there is an odd cycle whose all vertices have the same list, then terminate and

report a no-instance.

(R5) If vertices u, v, w have the same 2-element list and uv, vw ∈ E(G), then identify u

and w.

The reduction rule (R4) is justified, as there is no way to color an odd cycle with (at

most) two colors. Now let us discuss reduction rule (R5). Note that since (R4) cannot be

applied, we have uw /∈ E(H). Since L(u) = L(v) = L(w), we note that in any coloring

respecting lists, u and w have the same color.

Suppose that no reduction rule can be applied and let (V1, V2, ∅) be the layer structure.

Define µ := |V2|.

Clearly if µ = 0, the problem can be trivially solved in polynomial time. So from now

on assume that µ > 0. Since each vertex from V2 has one of three possible lists – {1, 2},

{1, 3}, or {2, 3} – there is a set V ′
2 ⊆ V2 of size at least µ/3, such that every vertex from

V ′
2 has the same list. By symmetry let us assume that this list is {1, 2}.

First, consider the case that V ′
2 = V2. Let C be the family of connected components

of G[V2]. Since (R4) cannot be applied, each C ∈ C is bipartite and thus has exactly two

possible colorings. Furthermore, the coloring of C ∈ C does not influence the coloring of

other elements of C. Thus for each C ∈ C we can independently choose the coloring with

smaller weight and check if the coloring of G obtained this way has total weight at most

k. Summing up, in this case we can solve the problem in polynomial time.

Now consider the case that there is some vertex x ∈ V2 \V ′
2 ; by symmetry assume that

L(x) = {1, 3}. We introduce two branching rules, and we apply them in the given order.

(B1) Suppose there is a vertex v ∈ V2 adjacent to at least µ/18 vertices in V2. For each

a ∈ L(v) we recursively solve the instance obtained by setting L(v) = {a} and

exhaustively applying the reduction rules.

(B2) For each a ∈ L(x) we recursively solve the instance obtained by setting L(x) = {a}

and exhaustively applying the reduction rules.

107

Again, in both branching rules we simply guess coloring of some vertex, and thus the

corectness of the algorithm follows.

Now let us analyze the complexity of our algorithm. Let F (ℓ) denote the maximum

possible running time on an instance with at most ℓ vertices having a list of size 2, and

let p(ℓ) denote a polynomial such that the reduction rules (R1), (R2), (R3), (R4), and

(R5) can be exhaustively applied for an ℓ-vertex instance. Consider the cases.

Case 1: (B1) was applied Note that at least µ/(18 · 3) neighbors of v in V2 have

the same list L′, and there is a ∈ L′ ∩ L(v). Thus, in this case F (µ) is at most

F (µ) ⩽ F (µ− µ/54) + F (µ− 1) + 2p(µ).

The first term corresponds to a branch where we set L(v) = {a} such that a ∈ L′

so the reduction rule (R3) will decrease sizes of lists of at least µ/54 vertices of V2. The

second term corresponds to the other branch – we know that we at least decrease the size

of L(v).

Case 2: (B2) was applied Note that each vertex from V ′
2 is at distance at most 2

from x. Let A be the set of vertices in V ′
2 which are adjacent to x. For every v ∈ V ′

2 \ A

fix a common neighbor yv of v and x. We claim that |L(yv)| = 2. Suppose otherwise and

let L(yv) = {a}, for some a ∈ [3]. Observe that since v ∈ V ′
2 , x /∈ V ′

2 , lists L(v), L(x) are

distinct lists of size 2, and thus L(v) ∪ L(x) = [3], so a is in at least one of L(v), L(x).

But then, the reduction rule (R3) could be applied to remove a from one of the lists, a

contradiction. Therefore, we have |L(yv)| = 2. Let us partition V ′
2 \ A into sets B,C,D

defined as follows

B := {v ∈ V ′
2 \ A | L(yv) = {1, 2}},

C := {v ∈ V ′
2 \ A | L(yv) = {1, 3}},

D := {v ∈ V ′
2 \ A | L(yv) = {2, 3}}.

Note that V ′
2 = A ∪ B ∪ C ∪ D and it is indeed a partition, since the vertex yv has

been fixed for every v.

As (B1) could not be applied, we observe that |A| ⩽ µ/18, otherwise x would be a

vertex with more than µ/18 neighbors in V2. As (R5) and (B1) could not be applied,

we observe that |B| ⩽ µ/18 and |C| ⩽ µ/18. Indeed, observe first that for any distinct

108

vertices v, u ∈ B, it cannot hold that yv = yu since then we would apply (R5). Therefore,

|B| ⩾ µ/18 implies that x has at least µ/18 neighbors in V2 and we would apply (B1).

For the upper bound on |C|, if for two distinct vertices u, v ∈ C we have yu ̸= yv, then we

would apply (R5) to yu, yv, x. Therefore, we have that for any distinct u, v ∈ C we have

yu = yv and |C| ⩾ µ/18 implies that yv is a vertex with at least µ/18 neighbors in V2 – a

contradiction with a fact that (B1) cannot be applied. Thus, since |V ′
2 | ⩾ µ/3, we obtain

that |D| ⩾ µ/6.

Note that in the branch where we set L(x) = {3}, for every v ∈ D, the reduction rules

force L(yv) to be {2} and thus the list of v is set to {1}. Thus the running time in this

case is at most

F (µ) ⩽ F (µ− 1) + F (µ− µ/6) + 2p(µ).

Consequently, we obtain that F (µ) = µO(log µ) (again, see the Appendix for details). Since

µ ⩽ n, the proof is complete.

Now, combining Lemma 5.12 with Lemma 5.13, we obtain the following strengthening

of Theorem 1.12.

Theorem 1.13. The Weighted 3-Coloring problem on n-vertex diameter-2 graphs

can be solved in time 2O(n1/3 log2 n).

In stark contrast, we show that it is not possible to strengthen Theorem 1.11 in a

similar way.

Theorem 1.14. The Weighted 3-Coloring problem on n-vertex diameter-3 graphs

cannot be solved in time 2o(n), unless the ETH fails.

Proof. First, let us show the following claim.

Claim 1.14.1. Let (G,w, L, k) be an instance of the Weighted List 3-Coloring

problem, where for each v ∈ V (G) we have |L(v)| = 2. Then in polynomial time we can

construct an instance (G′,w′, k) of the Weighted 3-Coloring problem, such that:

a) (G,w, L, k) is a yes-instance of Weighted List 3-Coloring if and only if (G′,w′, k)

is a yes-instance of Weighted 3-Coloring,

b) |G′| = |G|+ 3,

c) G′ is of diameter at most 3.

109

Proof of Claim: Define (G′,w′, k) as follows:

V (G′) =V (G) ∪ {v1, v2, v3},

E(G′) =E(G) ∪ {v1v2, v1v3, v2v3} ∪
⋃

i∈[3]

{
vvi | v ∈ V (G) and L(v) = [3] \ {i}

}
,

and for every v ∈ V (G′) and i ∈ [3] we have

w′(v, i) =



w(v, i) if v ∈ V (G),

0 if v = vi,

k + 1 if v ∈ {v1, v2, v3} \ {vi}.

Clearly, |G′| = |G| + 3. Furthermore, each vertex of G′ is adjacent to one vertex of

the triangle v1v2v3, and thus diam(G′) ⩽ 3. It remains to verify the equivalence. First

assume that there is a list coloring c : V (G) → [3] of total weight at most k. We define

c′ : V (G′) → [3] so that c′(v) = c(v) for v ∈ V (G), and c′(vi) = i for i ∈ [3]. Since

w(vi, i) = 0, the total weight of c′ is at most k. It remains to verify that c′ is a proper

coloring. Suppose there is uv ∈ E(G′) such that c′(u) = c′(v). Since c is a proper coloring,

u, v cannot be both in V (G), so let u = vi for some i ∈ [3]. Since v1, v2, v3 are colored

with three distinct colors, it must hold that v ∈ V (G). But then L(v) = [3] \ {i} and

since c respects the lists, c′(v) = c(v) ̸= i = c′(vi), a contradiction.

So now assume that there is a coloring c′ : V (G′) → [3] of total weight at most k.

Define c = c′|V (G). Note that for every i ∈ [3], it holds that c′(vi) = i. Therefore, for every

v ∈ V (G) ∩NG′(vi), we have that c(v) ∈ [3] \ {i} = L(v), and thus c respects the lists L.

Moreover, the total weight of c′ is at most k, which completes the proof of the claim. ⌟

By Claim 1.14.1 it is sufficient to prove the following claim.

Claim 1.14.2. Assuming the ETH, there is no algorithm that solves every n-vertex in-

stance of Weighted List 3-Coloring with all lists of size 2 in time 2o(n).

Proof of Claim: We reduce from the Vertex Cover problem. Let (G′, k) be an arbitrary

instance with N vertices and M edges. It is known that the existence of an algorithm

solving (G′, k) in time 2o(N+M) would contradict the ETH [37, Theorem 14.6]. Let V (G′) =

{u1, u2, . . . , uN}.

We construct an instance (G,w, L, k) of Weighted List 3-Coloring as follows.

For each i ∈ [N] we introduce a vertex xi; this vertex corresponds to the vertex ui of G′.

110

We set L(xi) = {1, 2}, w(xi, 1) = w(xi, 3) = 0 and w(xi, 2) = 1. Note that the value

of w(xi, 3) is irrelevant, as 3 /∈ L(xi). We will interpret coloring xi with the color 2 as

choosing ui to a vertex cover in G′.

Now for every 1 ⩽ i < j ⩽ N such that uiuj ∈ E(G′) we join xi and xj with a four-

edge path with internal vertices aij, bij, cij and set L(aij) = {1, 2}, L(bij) = {2, 3}, L(cij) =

{1, 3}; all weights associated with aij, bij, cij are 0. It is straightforward to verify that this

gadget ensures that at least one of xi, xj will be colored 2 in every proper coloring of G

respecting lists L.

It follows that G admits a proper coloring, respecting lists L, with total cost at most

k if and only if G′ has a vertex cover of size at most k. As the number of vertices of G is

linear in N +M , the claim follows. ⌟

By Claims 1.14.1 and 1.14.2, an algorithm solving Weighted 3-Coloring problem

on n-vertex graphs with diameter at most 3 in time 2o(n) would falsify the ETH, which

completes the proof.

5.2 Other target graphs

In this section we turn our attention to other target graphs than triangles. We study the

complexity of Hom(H) and LHom(H) on diameter-d graphs for special pairs (H, d): (i)

triangle-free graphs H and diameter 2, and (ii) odd cycles C2k+1 other than the triangle

and the diameter depending on k. All our algorithms work for the more general LHom(H)

problem, while the lower bounds hold even in the non-list problem.

Triangle-free target graphs

First we focus on traingle-free target graphs and we restrict ourselves to input graphs with

diameter at most 2. Since homomorphisms preserve edges, for graphs G,H, a homomor-

phism φ : G→ H and a sequence of vertices v1, . . . , vk forming a path in G, the sequence

φ(v1), . . . , φ(vk) forms a walk in H. The following observation is straightforward.

Observation 5.14. Let G,H be graphs such that G is connected. If there exists a homo-

morphism φ : G → H, then the image φ(V (G)) induces in H a subgraph with diameter

at most diam(G).

111

Therefore, for G with diameter at most 2, in order to determine whether (G,L)→ H,

it suffices to verify whether (G,L) → H ′ for at least one diameter-2 subgraph H ′ of H.

Hence, we can assume that the target graph H has also diameter at most 2.

Let us introduce one more reduction rule.

(R6) For every v ∈ V (G), if there are x, y ∈ L(v) such that for every u ∈ NG(v), we have

NH(x) ∩ L(u) ⊆ NH(y) ∩ L(u), then remove x from L(v).

Clearly (R6) can be applied in polynomial time. Let us verify that it is safe. Assume

there is v ∈ V (G) and x, y ∈ L(v) such that for every u ∈ NG(v), it holds NH(x)∩L(u) ⊆

NH(y) ∩ L(u), and suppose there is a list homomorphism φ : (G,L) → H such that

φ(v) = x. Then φ′ defined so that φ′(v) = y and φ′(w) = φ(w) for w ∈ V (G) \ {v} is also

a list homomorphism (G,L)→ H. Therefore, (R6) is safe.

We prove Theorem 1.15.

Theorem 1.15. Let H be a triangle-free graph. Then the LHom(H) problem can be

solved in polynomial time on diameter-2 graphs.

Proof. Let (G,L) be an instance of LHom(H). We guess the set of colors that will be

used – by Observation 5.14 they should induce a diameter-2 subgraph H ′ of H. For each

such H ′, we guess h′ = |H ′| vertices v1, . . . , vh′ of G that will be injectively mapped to

V (H ′) = {x1, . . . , xh′}. For each tuple (H ′, v1, . . . , vh′) such that xi ∈ L(vi) for i ∈ [h′],

we solve the instance (G,L′) of LHom(H ′), where L′(v) = {xi} for v = vi, i ∈ [h′] and

L′(v) = L(v) otherwise. Note that (G,L) is a yes-instance if and only if at least one

instance (G,L′) is a yes-instance.

First, for every edge xixj ∈ E(H ′), if vi, vj are non-adjacent, we add the edge vivj

to G – note that this operation is safe, since we cannot increase the diameter by adding

edges and we only add edges between vertices that must be mapped to neighbors in H ′.

Therefore, we can assume that the set V ′ = {v1, . . . , vh′} induces a copy of H ′ in G (if

not, then we have an extra edge, which means that we are dealing with a no-instance and

we reject immediately). Furthermore, we exhaustively apply reduction rules (R1), (R2),

(R3), and (R6).

So from now on we assume that for the instance (G,L′), none of the reduction rules

(R1), (R2), (R3), (R6) can be applied. We claim that either (G,L′) is a no-instance or

112

V (G) = {v1, . . . , vh′}, i.e., after exhaustive application of the reduction rules, the graph

G is isomorphic to H ′. Note that in the latter case we can return YES as an answer.

Suppose there is v ∈ V (G)\V ′. Moreover, we choose such v which is adjacent to some

vertex of V ′ (see Figure 5.2). Suppose that there exists φ : (G,L′)→ H ′ and let xi = φ(v).

Then v cannot be adjacent to vi since there are no loops in H ′. Furthermore, the only

neighbors of v in V ′ can be the neighbors of vi. Suppose that there is vj ∈ NG(vi) ∩ V ′

which is non-adjacent to v. Since the diameter of G is at most 2, then there must be

u ∈ NG(v) ∩ NG(vj). Observe that u /∈ V ′. Indeed, v does not have any neighbors in

V ′\NG(vi) and if u ∈ NG(v), then there is a triangle uvivj in a copy of H ′, a contradiction.

Furthermore, it must hold that φ(u) is adjacent to xi in H ′ as u is adjacent to v and

φ(v) = xi, and similarly, φ(u) must be adjacent to xj as u is adjacent to vj. Then

φ(u)xixj forms a triangle in H ′, a contradiction. Thus v must be adjacent to all vertices

of N(vi) ∩ V ′.

vi

vj

v u

H ′

Figure 5.2: The copy of H ′ in G and a vertex v such that for some homomorphism φ, it

holds φ(vi) = φ(v). We show that a vertex u which is a common neighbor of v and some

neighbor vj of vi in the copy of H ′ cannot exist.

Since (R3) cannot be applied, each vertex of L′(v) is adjacent to all vertices of NH(xi).

Moreover, since (R6) cannot be applied, it holds that L′(v) = {xi}. Indeed, otherwise

there is xi′ ̸= xi such that xi′ ∈ L′(v). Recall that xi′ is adjacent to all vertices of NH(xi).

Therefore, NH(xi) ⊆ NH(xi′), and thus one of xi, xi′ should have been removed from

L′(v) by (R6). Furthermore, since (R2) cannot be applied, we must have v = vi ∈ V ′, a

contradiction. This completes the proof.

113

5.2.1 Odd cycles

Before we prove the main results of this section, we make a series of observations about

the case where the target graph is an odd cycle other than the triangle. First, we describe

the lists of vertices that are at some small distance of a precolored vertex.

Lemma 5.15. Let k ⩾ 1 and let (G,L) be a reduced instance of LHom(C2k+1). Let

u ∈ V (G) be such that L(u) = {i} and let v ∈ V (G) be such that dist(u, v) = d. Then

a) L(v) ⊆ {i− d, i− d+ 2, . . . , i− 2, i, i+ 2, . . . , i+ d− 2, i+ d} if d is even,

b) L(v) ⊆ {i− d, i− d+ 2, . . . , i− 1, i+ 1, . . . , i+ d− 2, i+ d} if d is odd.

In particular, if d ⩽ k − 1, then L(v) is an independent set.

Proof. Let P be a shortest u-v path such that the consecutive vertices of P are u =

p0, p1, . . . , pd = v. We have L(p0) = {i}. Since the reduction rule (R3) cannot be applied

for p0p1, we must have L(p1) ⊆ {i−1, i+ 1}. Suppose now that there is j ∈ [d] such that:

L(pj) ⊆ {i− j, i− j + 2, . . . , i− 2, i, i+ 2, . . . , i+ j − 2, i+ j},

if j is even, and

L(pj) ⊆ {i− j, i− j + 2, . . . , i− 1, i+ 1, . . . , i+ j − 2, i+ j},

if j is odd.

Then for pj+1, which is adjacent to pj and thus each vertex of L(pj+1) must be adjacent

to some vertex of L(pj), we have

L(pj+1) ⊆ {i− j − 1, i− j + 1, . . . , i− 1, i+ 1, . . . , i+ j − 1, i+ j + 1},

if j is even, and

L(pj+1) ⊆ {i− j − 1, i− j + 1, . . . , i− 2, i, i+ 2, . . . , i+ j − 1, i+ j + 1},

if j is odd. By the principle of induction the theorem follows.

The next lemma immediately follows from Lemma 5.15.

Lemma 5.16. Let k ⩾ 1 and let (G,L) be a reduced instance of LHom(C2k+1). Let

u,w ∈ V (G) be such that L(u) = {i} and L(w) = {i + 1}. Let v ∈ V (G) be such that

dist(u, v) = dist(w, v) = k + ℓ for some ℓ ⩾ 0. Then L(v) ⊆ {i + k − ℓ + 1, i + k − ℓ +

2, . . . , i+ k + ℓ+ 1}.

114

In the following lemma we show that for a partial mapping φ : V (G) → [2k]0 for

k ⩾ 2, for some vertex v ∈ V (G), if every pair (a, b) of its neighbors is precolored so that

φ(a) and φ(b) have a common neighbor in L(v), then φ can be extended to v so that it

preserves the edges containing v.

Lemma 5.17. Let k ⩾ 2, let (G,L) be an instance of LHom(C2k+1) and let v ∈ V (G).

Let φ : N(v) → [2k]0 be a mapping such that for every u,w ∈ N(v), we have that

NC2k+1(φ(u)) ∩NC2k+1(φ(w)) ∩ L(v) ̸= ∅. Then ⋂
u∈N(v) NC2k+1(φ(u)) ∩ L(v) ̸= ∅.

Proof. Define A = {φ(u) | u ∈ N(v)}. If |A| ⩽ 2, then the statement clearly follows.

We will show that this is the only case. So suppose that |A| ⩾ 3. If two distinct

vertices of C2k+1 for k ⩾ 2 have a common neighbor, then they must be at distance

exactly two. Without loss of generality, let 0, 2 ∈ A and 1 ∈ L(v). Moreover, let i ∈

A \ {0, 2}. By assumption NC2k+1(i) ∩NC2k+1(0) ̸= ∅, so i = 2k − 1. On the other hand,

NC2k+1(i) ∩NC2k+1(2) ̸= ∅, so i = 4. Thus 2k − 1 = 4, a contradiction.

In the next lemma we show that for an odd cycle C and a vertex v there is at least

one pair of consecutive vertices of C with equal distances to v.

Lemma 5.18. Let G be a connected graph, let C be a cycle in G with consecutive vertices

c0, . . . , c2k (indices computed modulo 2k + 1), and let v ∈ V (G) \ V (C). Then there is

i ∈ [2k]0 such that dist(v, ci) = dist(v, ci+1).

Proof. First observe, that for all i, we have | dist(v, ci) − dist(v, ci+1)| ⩽ 1 since cici+1 ∈

E(G). Therefore, going around the cycle, the distance from v to ci can increase by 1,

decrease by 1, or remain the same. Since we have to end up with the same value at the

end and the length of the cycle is odd, there is at least one pair of consecutive vertices

ci, ci+1 such that dist(v, ci) = dist(v, ci+1).

We will also use the result of Feder, Hell, and Huang [57].

Lemma 5.19 ([57]). Let t ⩾ 1. Then every instance (G,L) of LHom(Pt) can be solved

in polynomial time.

Odd cycles – polynomial-time algorithm

In this section we prove Theorem 1.16.

115

Theorem 1.16. Let k ⩾ 2. Then LHom(C2k+1) can be solved in polynomial time on

diameter-(k + 1) graphs.

Proof. Let (G,L) be an instance of LHom(C2k+1) such that G has diameter at most k+1.

First, for every i ∈ [2k]0, we check whether there is a list homomorphism φ : (G,L) →

C2k+1 such that no vertex is mapped to i. So we look for a list homomorphism to a path

which can be done in polynomial time by Lemma 5.19.

If there is no such a homomorphism, then we know that all colors have to be used

and thus we guess 2k + 1 vertices that will be mapped to distinct vertices of C2k+1.

Let c0, . . . , c2k be the vertices such that ci is precolored with i. We check whether such a

partial assignment respects the lists and satisfies the edges with both endpoints precolored.

Moreover, for i ∈ [2k]0, if ci, ci+1 are non-adjacent, we add the edge cici+1 – this operation

is safe as ci, ci+1 are precolored with consecutive vertices of C2k+1 and adding an edge

does not increase the diameter. Furthermore, we exhaustively apply the reduction rules.

Finally, we check if G contains an odd cycle of length at most 2k − 1, and if so, then we

reject the instance – recall that by Observation 3.2, there is no homomorphism from G

to C2k+1.

So since now we can assume that the instance (G,L) is reduced and G does not contain

an odd cycle of length at most 2k − 1. Let us analyze (G,L).

Observe that the vertices c0, . . . , c2k induce a (2k + 1)-cycle C. Suppose there is a

vertex v that is not on C. By Lemma 5.18, there is i ∈ [2k]0 such that dist(v, ci) =

dist(v, ci+1) =: ℓ.

First, we show that we cannot have ℓ < k. Suppose otherwise. Let P1, P2 be shortest

v-ci-, and v-ci+1-paths, respectively. Let u be the their last common vertex (it cannot be

ci or ci+1 as the distances are the same and ci, ci+1 are adjacent). Note that since P1, P2

are shortest, the u-ci-path P ′
1 obtained from P1 and the u-ci+1-path P ′

2 obtained from P2

have the same length. Therefore we can construct a cycle by taking P ′
1, P

′
2 and the edge

cici+1. The length of this cycle is odd, and it is at most 2k − 1, which is a contradiction.

Now suppose that ℓ = k. By Lemma 5.16, we have L(v) ⊆ {i + k + 1}. If L(v) = ∅,

then the reduction rule (R1) would return NO, a contradiction. If L(v) = {i + k + 1},

then (R2) would identify v with ci+k+1 or would return NO, a contradiction. Therefore

we cannot have ℓ ⩽ k, and thus, since diam(G) ⩽ k + 1, we have ℓ = k + 1.

By Lemma 5.16, we have that L(v) ⊆ {i + k, i + k + 1, i + k + 2}. Since v is an

116

arbitrary vertex outside C, we can conclude that all lists of our instance have size at most

3. Moreover, each vertex of V3 (recall that by Vr we denote the set of vertices of V (G)

with lists of size r) has list of type (1, 1). Furthermore, since (R3) cannot be applied,

for a vertex with list {j, j + 1, j + 2}, the possible lists of its neighbors in G[V3] are then

{j − 1, j, j + 1}, {j, j + 1, j + 2}, and {j + 1, j + 2, j + 3}.

For a list {j−1, j, j+1} of type (1, 1), we will call j the middle vertex of {j−1, j, j+1}.

For a homomorphism φ, we will say that a vertex v ∈ V3 is φ-middle, if φ maps v to the

middle vertex of its list.

Now consider a connected component S of G[V3], let v ∈ V (S), and let L(v) =

{j − 1, j, j + 1}. The following claim is straightforward.

Claim 1.16.1. Suppose there is a list homomorphism φ : (S, L)→ C2k+1. Then

(1.) if v is φ-middle, then any u ∈ NS(v) with list {j − 1, j, j + 1} cannot be φ-middle,

and every w ∈ NS(v) with list {j−2, j−1, j} or {j, j+1, j+2} has to be φ-middle,

(2.) if v is not φ-middle, then every u ∈ NS(v) with list {j − 1, j, j + 1} has to be φ-

middle, and any w ∈ NS(v) with list {j − 2, j − 1, j} or {j, j + 1, j + 2} cannot be

φ-middle.

Thus deciding if one vertex of S is φ-middle, already determines for every vertex of S

if it is φ-middle or not. It is described more formally in the following claim.

Claim 1.16.2. In polynomial time we can either (1) construct a partition (U1, U2) of

V (S) (U1, U2 might be empty) such that for every list homomorphism φ : (S, L)→ C2k+1,

either all vertices of U1 are φ-middle and no vertex of U2 is φ-middle, or all vertices of

U2 are φ-middle and no vertex of U1 is φ-middle, or (2) conclude that we are dealing with

a no-instance.

Proof of Claim: Fix v ∈ V (S). We start with U1 := {v} and U2 := ∅. Let U = U1 ∪ U2

and j = |U | + 1. We set v1 := v. As long as j ⩽ |S|, we proceed as follows. We set vj

to be a vertex in N(U1 ∪ U2) – since U1 is non-empty, j ⩽ |S|, and S is connected, such

vj always exists. Moreover, let N1
j be the set of neighbors of vj with list L(vj) and let

N2
j = N(vj) \N1

j .

If (a) N1
j ∩ U ⊆ U1 and N2

j ∩ U ⊆ U2, then add vj to U2. If (b) N1
j ∩ U ⊆ U2 and

N2
j ∩ U ⊆ U1, then add vj to U1. If none of the two cases holds, return NO. In the first

117

two cases we repeat the procedure. Clearly, the above procedure can be performed in

polynomial time.

Let us verify the correctness. We will show the following.

(⋆) For every j ∈ [|S|], for every list homomorphism φ : (S[{v1, . . . , vj}], L)→ C2k+1,

it holds that either (i) all vertices of U1 ∩ {v1, . . . , vj} are φ-middle and no vertex of

U2 ∩ {v1, . . . , vj} is φ-middle, or (ii) all vertices of U2 ∩ {v1, . . . , vj} are φ-middle and no

vertex of U1 ∩ {v1, . . . , vj} is φ-middle.

We prove it by induction on j. For j = 1, we have U1 = {v} and U2 = ∅, so the

statement clearly follows. So now assume that the statement is true for some i ∈ [|S|−1].

Suppose there is a list homomorphism φ : (S[{v1, . . . , vi+1}], L) → C2k+1. By inductive

assumption, for φ|{v1,...,vi}, either (i) every vertex of {v1, . . . , vi} ∩ U1 is φ-middle and no

vertex of {v1, . . . , vi} ∩U2 is φ-middle or (ii) every vertex of {v1, . . . , vi} ∩U2 is φ-middle

and no vertex of {v1, . . . , vi} ∩ U1 is φ-middle.

Case 1: vi+1 is φ-middle. By Claim 1.16.1 (1.), all neighbors of vi+1 in {v1, . . . , vi}

with lists different than L(vi+1) have to be φ-middle, so in case (i) all such neigbors

have to be in U1, and in case (ii) all such neighbors have to be in U2. Furthermore, by

Claim 1.16.1 (1.), all neighbors of v in {v1, . . . , vi} with list L(vi+1) cannot be φ-middle,

so in case (i) all such neigbors have to be in U2, and in case (ii) all such neighbors have

to be in U1. Recall, that if N1
j ∩ U ⊆ U2 and N2

j ∩ U ⊆ U1 which is the case in (i), we

added vi+1 to U1, so the claim follows. Similarly, if N1
j ∩U ⊆ U1 and N2

j ∩U ⊆ U2 which

is the case in (ii), we added vi+1 to U2, and the claim also follows in this case.

Case 2: vi+1 is not φ-middle. By Claim 1.16.1 (2.), any neighbor of vi+1 in {v1, . . . , vi}

with list different than L(vi+1) cannot be φ-middle, so in case (i) all such neighbors

have to be in U2, and in case (ii) all such neighbors have to be in U1. Furthermore, by

Claim 1.16.1 (2.), all neighbors of v in {v1, . . . , vi} with list L(vi+1) have to be φ-middle,

so in case (i) all such neighbors have to be in U1, and in case (ii) all such neighbors have

to be in U2. But then in cases (i) and (ii), respectively, we added vi+1 to U2 and U1, and

in each of the cases the claim follows.

This completes the proof of (⋆).

Finally, observe that since (⋆) is true, if (G,L) is a yes-instance, then for any j ∈ [|S|],

for a vertex vj ∈ Ui, where {i, i′} = {1, 2}, all neighbors of vj with list L(vj) have to be

118

in Ui′ and all neighbors of vj with list different than L(vj) have to be in Ui. Therefore,

if we returned NO, then indeed, (G,L) is a no-instance. This completes the proof of the

claim. ⌟

Therefore, for every connected component S of G[V3] we solve two subinstances:

1. I1(S) = (S, L1), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0,

L1(v) = {i} if v ∈ U1 and L1(v) = {i− 1, i+ 1} if v ∈ U2,

2. I2(S) = (S, L2), where for every v ∈ V (S) with list {i−1, i, i+1} for some i ∈ [2k]0,

L2(v) = {i} if v ∈ U2 and L2(v) = {i− 1, i+ 1} if v ∈ U1.

Note that both subinstances have all lists of size at most two and thus can be solved

in polynomial time by Theorem 5.4. If for some component in both cases we obtain NO,

then we return NO.

Creating a BCSP instance. Let (V (G), L, C) = BCSP(C2k+1, G[V1 ∪ V2], L) – note

that since we only consider vertices of V1 ∪ V2, all lists have size at most two. We will

now modify the instance (V (G), L, C) so that it is equivalent to the instance (G,L) of

LHom(C2k+1). For every v ∈ V3 and for every pair of u,w ∈ N(v) ∩ V2, we leave in

C(u,w) only these pairs of vertices that have a common neighbor in L(v) – recall that

by Lemma 5.17 this ensures us that there will be a color left for v. Furthermore, for

every connected component S of G[V3], we add constraints according to which of the two

possibilities S can be properly colored (possibly S can be colored in both cases) as follows.

Let {p, p′} = {1, 2}.

1. If there is no list homomorphism φ : (S, L) → C2k+1 such that all vertices of Up

are φ-middle and all vertices of Up′ are not φ-middle, then for v ∈ V (S) with

L(v) = {i− 1, i, i + 1}, if v ∈ Up, we remove i− 1, i+ 1 from the lists of neighbors

of v, and if v ∈ Up′ , we remove i from the lists of neighbors of v.

2. Moreover, for every pair u, v ∈ V (S) with L(u) = {j − 1, j, j + 1} and L(v) =

{i− 1, i, i+ 1}, for every u′ ∈ V2 ∩N(u), and for every v′ ∈ V2 ∩N(v), if u, v ∈ Up,

then we remove from C(u′, v′) the pairs (j, i + 1), (j, i − 1), (j − 1, i), (j + 1, i),

and if v ∈ Up, v ∈ Up′ , then we remove from C(u′, v′) the pairs (j, i), (j − 1, i− 1),

(j − 1, i+ 1), (j + 1, i− 1), (j + 1, i+ 1).

119

Let us describe the intuition behind both types of constraints. Suppose that we have

colored G[V1 ∪ V2] so that all added constraints are satisfied and let S be a connected

of G[V3]. Constraints added in 1. ensure that if one of the instances I1(S) and I2(S)

is a no-instance, then the colors left for vertices of S correspond only to that Ip(S) for

p ∈ {1, 2}, which is a yes-instance. Furthermore, 2. ensures us that the colors left for

vertices of S correspond to the same instance Ip(S).

This completes the construction of BCSP instance (V (G), L, C). Recall that all lists

have size at most 2 and thus by Theorem 5.4 we solve (V (G), L, C) in polynomial time.

Correctness. It remains to show that (V (G), L, C) is equivalent to (G,L). First sup-

pose that there is a list homomorphism φ : (G,L) → C2k+1. Let us define f = φ|V1∪V2 .

Clearly f respects the lists and the constraints coming from BCSP(C2k+1, G, L). Further-

more, since φ is a homomorphism, for every v ∈ V3 and every pair u,w ∈ V2 of neighbors

of v, it holds that f(u) and f(w) have a common neighbor in L(v). Suppose now that

for some vertex v with L(v) = {i− 1, i, i+ 1}, for v′ ∈ V2 ∩N(v), we removed from L(v′)

color φ(v′). Let S be the connected component of G[V3] containing v. If φ(v′) = i, then

we must have φ(v) ∈ {i− 1, i+ 1} – but we only removed i from L(v′) if there was no list

homomorphism from (G[S], L) to C2k+1 mapping v to one of {i−1, i+1}, a contradiction.

Similarly, if φ(v′) ∈ {i − 1, i + 1}, then we must have φ(v) = i, but we only removed

i−1, i+1 from L(v′) if there was no list homomorphism from (G[S], L) to C2k+1 mapping

v to i, a contradiction.

Finally, let us verify the constraints added in the last step. Let S be a connected

component of G[V3], let u, v ∈ V (S) with L(v) = {i−1, i, i+1} and L(u) = {j−1, j, j+1},

let v′ ∈ N(v) ∩ V2 let u′ ∈ N(u) ∩ V2. Suppose that (f(u′), f(v′)) /∈ C(u′, v′) because of

the last step. Let {p, p′} = {1, 2} and let v ∈ Up. If u ∈ Up, then either both u, v are

φ-middle or none of them. In the first case φ(v′) = i and φ(u′) = j and in the second case

φ(v′) ∈ {i−1, i+1} and φ(u′) ∈ {j−1, j+1}. Recall that for u, v ∈ Up, we did not remove

any pair from ({i− 1, i+ 1} × {j − 1, j + 1}) ∪ {(i, j)}, a contradiction. So suppose that

u ∈ Up′ . Then v is φ-middle if and only if u is not φ-middle. Therefore, we either have

φ(v′) ∈ {i− 1, i+ 1} and φ(u′) = j, or φ(v′) = i and φ(v′) = i and φ(u′) ∈ {j − 1, j + 1},

but again no such a pair was removed in the last step, a contradiction.

So now suppose that there is f : V (G) → [2k]0 that satisfies all constraints of

(V (G), L, C). Define φ(v) = f(v) for v ∈ V1 ∪ V2. Note that since f satisfies all con-

120

straints, φ is a list homomorphism on G[V1∪V2]. We have to show that φ can be extended

to vertices of V3. Consider a connected component S of G[V3]. Since the algorithm did

not return NO, there is a list homomorphism φS : (S, L) → C2k+1. First, note that for

any v ∈ V3, its neighbors from V2 are colored so that there is a color left on L(v) for v.

Moreover, recall that if L(v) = {i− 1, i, i+ 1}, then the possible lists of neighbors of v in

V2 are {i− 1, i} and {i, i+ 1}. Therefore, either all neighbors of v in V2 are colored with

i or with i− 1 and i + 1. In the first case, colors left for v are both i− 1 and i + 1, and

in the second case i is left for v. Furthermore, let {p, p′} = {1, 2} and let u, v ∈ V (S). If

u, v ∈ Up, then by the constraints added in 2., the colors left for u, v allow both of them

to be φ-middle, or both of them to be not φ-middle. Similarly, if v ∈ Up and u ∈ Up′ ,

then the colors left for u, v allow one of them to be φ-middle and the other to be not

φ-middle. Therefore, if we leave on the lists of vertices of S only those colors that match

φ[V1 ∪ V2], we obtain one of the instances I1(S), I2(S), and by the constraints added in

1., we can only obtain a yes-instance. Thus we can extend φ to all vertices of S. This

completes the proof.

Odd cycles – subexponential-time algorithm

In this section we prove Theorem 1.17. Recall that for k = 1 Theorem 1.17 is precisely

Theorem 1.11.

Theorem 1.17. Let k ⩾ 1. Then LHom(C2k+1) can be solved in time exp
(
O
(
(n log n)

k+1
k+2
))

on diameter-(k + 2) n-vertex graphs.

We start with defining branching rules crucial for our algorithm – actually they are

analogous to the ones in Theorem 1.11. Recall that for an instance (G,L) of LHom(C2k+1),

by Vℓ we denote the subset of V (G) such that for every v ∈ Vℓ, we have |L(v)| = ℓ, and

V⩾ℓ = ⋃
i⩾ℓ Vi.

Branching rules. Let k ⩾ 2, let I = (G,L) be an instance of LHom(C2k+1), and let

d ⩾ diam(G) – note that for Theorem 1.17 it suffices to consider only d = k + 1, but we

do it more generally so we can later use it also for other values of d. Let µ = ∑2k+1
ℓ=2 ℓ · |Vℓ|.

We define the following branching rules.

(B1) For a vertex v ∈ V⩾2 and for a color a ∈ L(v), we branch on coloring v with

a or not, i.e., we create two subinstances of I: Ia = (G,La), I ′
a = (G,L′

a) such

121

that La(u) = L′
a(u) = L(u) for every u ∈ V (G) \ {v}, and La(v) = {a} and

L′
a(v) = L(v) \ {a}.

(B2) For a vertex v we branch on the coloring of N⩽d−1[v]∩V⩾2, i.e., for every mapping f

of N⩽d−1[v] ∩ V⩾2 that respects the lists, we create a new subinstance If = (G,Lf)

such that Lf (u) = L(u) for u /∈ N⩽d−1[v] ∩ V⩾2 and Lf (w) = {f(w)} for w ∈

N⩽d−1[v] ∩ V⩾2.

Algorithm Recursion Tree. Let us describe an algorithm that for fixed d takes an

instance (G,L) of LHom(C2k+1) with a fixed precolored (2k + 1)-cycle C and such that

diam(G) ⩽ d, and returns a rooted tree R whose nodes are labelled with subinstances

of (G,L). We first introduce the root r of R and we label it with (G,L). Then for

every node we proceed recursively as follows. Let s be a node labelled with an instance

(G′, L′) of LHom(C2k+1). We first exhaustively apply to (G′, L′) reduction rules (R1),

(R2), (R3), and if some of the reduction rules returns NO, then s does not have any

children. Otherwise, if there is a vertex v ∈ V⩾2 with at least (µ log µ)1/d neighbors in

V⩾2, then we will apply (B1) for v and for a ∈ L(v) chosen as follows. If on NG′[V⩾2](v)

there are no lists of type (2), then we take any a ∈ L(v). Otherwise, let S be the most

frequent list of type (2) on NG′[V⩾2](v), and let S = {j−1, j+ 1} for some j ∈ [2k]0. Then

we take any a ∈ L(v) \ {j}. After application of (B1), we exhausively apply reduction

rules (R1), (R2), (R3), to each instance. Furthermore, for each instance created by (B1),

we create a child node of s and we label it with that instance.

If there is no vertex v ∈ V⩾2 with at least (µ log µ)1/d neighbors in V⩾2, then we apply

the branching rule (B2) for some v ∈ V⩾2, we exhausively apply reduction rules (R1), (R2),

(R3), and again for each instance created by (B2), we introduce a child node of s. The

choice of v is not completely arbitrary. If possible, we choose v so that dist(v, C) ⩾ ⌈d
2⌉

– note that the cycle C is present in all instances of R. The nodes corresponding to

instances created by (B2) are leaves, i.e., we do not recurse on the children of s for which

we applied (B2).

Let us analyze the running time of the algorithm Recursion Tree and properties of

the constructed tree R.

Lemma 5.20. Given an instance (G,L) of LHom(C2k+1) with a fixed precolored (2k +

1)-cycle C and such that n = |G|, diam(G) ⩽ d, the algorithm Recursion Tree in

122

time exp
(
O((n log n) d−1

d)
)

returns a tree R whose nodes are labelled with subinstances of

(G,L), and (G,L) is a yes-instance if and only if at least one subinstance corresponding

to a leaf of R is a yes-instance.

Proof. First, we show that for every node s of R the corresponding instance is a yes-

instance if and only if at least one instance corresponding to a child of s is a yes-instance.

Let s be a node of R and let (G′, L′) be the corresponding instance. The algorithm

Recursion Tree first applies reduction rules to (G′, L′) and by Lemma 5.2, we obtain an

equivalent instance. Furthermore, we applied to (G′, L′) either (B1) or (B2) where the

branches correspond to all possible colorings of some set of vertices, so indeed (G′, L′)

is a yes-instance if and only if at least one instance corresponding to a child of s is a

yes-instance. Since the root of R is labelled with (G,L), we conclude that (G,L) is a yes-

instance if and only if at least one instance corresponding to a leaf of R is a yes-instance.

It remains to analyze the running time. Let F (µ) be an upper bound on the running

time of Recursion Tree applied to an instance (G′, L′) with µ = ∑2k+1
ℓ=2 ℓ · |Vℓ| and let

p(n) = O(n3) be a polynomial such that exhaustive application of reduction rules (R1),

(R2), (R3) to an n-vertex instance can be performed in time p(n). Observe that if we

apply (B1) to (G′, L′), then we obtain

F (µ) ⩽ F

(
µ− (µ log µ)1/d

2k + 1

)
+ F (µ− 1) + 2 · p(n).

Indeed, let v, a be, respectively, the vertex and the color to which we apply (B1)

– recall that v has at least (µ log µ)1/d neighbors in V⩾2 If there are no lists of type

(2) on NG′[V⩾2](v), then in the branch where we set L(v) = {a}, after application of

reduction rules, every neighbor of v must have L(v) ⊆ {a − 1, a + 2}. If |L(v)| ⩾ 2 and

L(v) ̸= {a − 1, a + 1}, then |L(v)| ∩ {a − 1, a + 1}| < |L(v)|. Therefore, in this case

we decrease sizes of all lists on NG′[V⩾2](v). Otherwise, we chose a ∈ L(v) \ {j}, where

{j − 1, j + 1} is the most frequent list of type (2) on NG′[V⩾2](v). Since there are exactly

2k + 1 lists of type (2), at least 1
2k+1 -fraction of NG′[V⩾2](v) has list of different type than

(2) or has list {j − 1, j + 1}. Thus, for the branch where we set L(v) = {a}, the sizes

of lists of at least 1
2k+1 · (µ log µ)1/d vertices decrease. In the branch where we remove a

from L(v), we decrease the size of L(v) at least by one. In both branches we apply the

reduction rules, so the desired inequality follows.

123

If we apply (B2) to (G′, L′) – recall that we stop recursing in this case – then we obtain

F (µ) ⩽ (2k + 1)(µ log µ)
d−1

d · p(n),

since we guess the coloring on N⩽d−1
G′[V⩾2](v) whose size is bounded by (µ log µ) d−1

d (in this

case the degrees in G′[V⩾2] are bounded by (µ log µ)1/d) and the number of possible colors

is at most 2k + 1.

We can conclude that F (µ) ⩽ 2O((µ log µ)
d−1

d) (see Appendix) which, combined with the

inequality µ ⩽ (2k + 1)n = O(n), completes the proof.

In the following lemma we show that we can solve every instance corresponding to a

leaf of R in polynomial time.

Lemma 5.21. Let (G′, L′) be an instance of LHom(C2k+1) such that diam(G′) ⩽ k + 2

and let C be a fixed precolored (2k + 1)-cycle. Assume that we applied the algorithm

Recursion Tree to (G′, L′) and let R be the resulting recursion tree. Let (G,L) be an

instance corresponding to a leaf in R. Then (G,L) can be solved in polynomial time.

In order to prove Lemma 5.21, we first prove that we can solve every instance whose

lists are of special form in polynomial time.

Lemma 5.22. Let k ⩾ 2 and let (G,L) be a reduced instance of LHom(C2k+1) such that

G is connected and for every vertex v ∈ V (G), the list L(v) either has size at most 2 or

is of type (2, 2). Then (G,L) can be solved in polynomial time.

Proof. If there are no lists of size 3, then we only have lists of size at most 2, and thus

(G,L) can be solved in polynomial time by Theorem 5.4. So let v ∈ V3 be a vertex with

list L(v) = {i− 2, i, i + 2} for some i ∈ [2k]0 and let u be a neighbor of v. Observe that

since the reduction rule (R3) cannot be applied, if u ∈ V2, then u must have one of the

lists: {i − 1, i + 1} {i − 3, i + 1}, {i − 1, i + 3}, and if u ∈ V⩾3, then u must have one of

the lists {i− 3, i− 1, i+ 1}, or {i− 1, i+ 1, i+ 3} (see Figure 5.3).

If for some vertex v with list {i − 2, i, i + 2} there is no u ∈ N(v) with one of lists

{i− 1, i+ 1}, {i− 3, i+ 1}, {i− 1, i+ 3}, then we add such a vertex u to G and make it

adjacent to u. Note that now the diameter of G might increase, but in this lemma we only

need G to be connected. Moreover, any list homomorphism on G− u can be extended to

u, since each color on L(v) has a neighbor on L(u). So since now, we can assume that

124

Figure 5.3: Case k = 4. Orange vertices denote a list of some vertex v ∈ V3, blue vertices

denote all possible lists of a neighbor u of v when (R3) cannot be applied, i.e., every

vertex of L(u) is a neighbor of a vertex of L(v) and every vertex of L(v) is a neighbor of

a vertex of L(u).

(⋆) for a vertex v with list {i−2, i, i+2}, all lists {i−1, i+1}, {i−3, i+1}, {i−1, i+3}

are present on N(v).

Constructing a BCSP instance. We construct an instance of BCSP as follows. We

start with BCSP(C2k+1, G−V3, L) – note that in this instance all lists have size at most 2.

First, for every vertex v ∈ V3 and for every v′, v′′ ∈ V2 ∩N(v), we leave in C(v′, v′′) only

such pairs that have a common neighbor in L(v). Furthermore, for every edge uv with

u, v ∈ V3 such that L(u) = {i − 2, i, i + 2}, L(v) = {i − 1, i + 1, i + 3}, and for every

pair u′, v′ ∈ V2 such that uu′, vv′ ∈ E(G), we remove (if they are present) from C(u′, v′)

the following pairs: (i − 3, i + 2), (i − 1, i + 4), and (i + 3, i − 2). This completes the

construction of the instance (V, L, C) of BCSP.

Clearly the instance (V, L, C) is constructed in polynomial time. Moreover, since all

lists of (V, L, C) have size at most 2, by Theorem 5.4, this instance can be solved in

polynomial time.

Correctness. It remains to show that the instance (G,L) is equivalent to the instance

(V, L, C). First suppose that there is a list homomorphism φ : (G,L)→ C2k+1. Consider

the assignment f = φ|V1∪V2 . We have to verify that f satisfies all constraints of the

instance (V, L, C). Clearly f satisfies all constraints coming from BCSP(C2k+1, G−V3, L).

Furthermore, since φ is a homomorphism from G to C2k+1, for every v ∈ V3 and every

125

pair v′, v′′ ∈ N(v) ∩ V2, we have that f(v′) and f(v′′) must have a common neighbor

in L(v). Finally, we have to verify that f satisfies constraints that were introduced for

edges of G[V3]. Suppose that there are u′, v′ such that (f(u′), f(v′)) was removed from

C(u′, v′) for an edge uv of G[V3] such that uu′, vv′ ∈ E(G). Let L(u) = {i−2, i, i+2} and

L(v) = {i− 1, i+ 1, i+ 3}. Suppose first that f(u′) = i− 3 and f(v′) = i+ 2. Since φ is

a list homomorphism and uu′ ∈ E(G), we must have φ(u) = i− 2, and since uv ∈ E(G)

we must have φ(v) = i − 1. However, i − 1 is non-adjacent to i + 2 and thus the edge

vv′ cannot be properly colored, a contradiction. Now suppose that f(u′) = i − 1 and

f(v′) = i + 4. Similarly, we must have φ(v) = i + 3 and φ(u) ∈ {i− 2, i} so the edge uv

cannot be properly colored. Finally, suppose that f(u′) = i + 3 and f(v′) = i− 2. Then

we must have φ(u) = i + 2 and φ(v) = i − 1 so again uv cannot be properly colored, a

contradiction. Therefore, f satisfies all constraints.

Now suppose that there is a satisfying assignment f : V → V (H) of (V, L, C). Observe

that if we consider φ = f on V1 ∪ V2, then φ is a list homomorphism on G[V1 ∪ V2]. It

remains to show that φ can be extended to vertices of V3. Consider a vertex v ∈ V3

with list {i− 2, i, i+ 2} for some i ∈ [2k]0. Recall that by (⋆), v has neighbors with lists

{i−3, i+1} and {i−1, i+3}. Since f satisfies the constraints, for every pair of neighbors

v′, v′′ of v in V2, f(v′) ∩ f(v′′) ∩ L(v) ̸= ∅, and thus by Lemma 5.17, there is a common

neighbor of the colors on N(v) in L(v). Furthermore, we claim that this common neighbor

is unique. Indeed, if the neighbor of v with list {i− 3, i+ 1} is colored with i− 3, then we

already know that v has to be mapped to i− 2. Otherwise, v has to be mapped to one of

i, i + 2. If the neighbor of v with list {i − 1, i + 3} is mapped to i + 3, then v has to be

mapped to i+2, otherwise, v has to be mapped to i. Therefore, we extend φ to vertices of

V3 in the only possible way. It remains to show that φ respects the edges of V3. Suppose

not and let uv be an edge which is not properly colored. Let L(u) = {i− 2, i, i+ 2} and

L(v) = {i− 1, i+ 1, i+ 3}. First suppose that φ(u) = i− 2 and φ(v) ∈ {i+ 1, i+ 3}. A

neighbor of u with list {i− 3, i+ 1} has to be mapped to i− 3 and a neighbor of v with

list {i− 2, i+ 2} has to be mapped to i+ 2, but then the mapping f does not satisfy the

constraints since we removed the pair (i− 3, i+ 2). So now suppose that u is mapped to

i and v is mapped to i + 3. Then a neighbor of v with list {i, i + 4} is mapped to i + 4

and a neighbor of u with list {i− 1, i+ 3} is mapped to i− 1, but the pair (i− 1, i+ 4)

was removed. Finally suppose that u is mapped to i+ 2 and v is mapped to i− 1. Then

126

a neighbor of u with list {i − 1, i + 3} is mapped to i + 3 and a neighbor of v with list

{i − 2, i + 2} is mapped to i − 2, which is a contradiction because we removed the pair

(i+ 3, i− 2). Therefore φ is a list homomorphism, which completes the proof.

Now we can prove Lemma 5.21.

Proof of Lemma 5.21. Recall that the instance (G,L) is reduced. Moreover, we check

if G contains an odd cycle of length at most 2k − 1, and if so, we return NO since by

Observation 3.2, there is no homomorphism from G to C2k+1 By Lemma 5.22, it is enough

to show that every vertex of V⩾3 has list of type (2, 2). First observe that for every vertex

u outside the cycle C, we have that L(u) ⊆ {i− 2, i− 1, i, i+ 1, i+ 2} for some i ∈ [2k]0.

Indeed, by Lemma 5.18, there must be i ∈ [2k]0 such that dist(u, ci) = dist(u, ci+1) =: ℓ ⩽

diam(G) = k+2. Similarly as in the proof of Theorem 1.16, it holds that ℓ ∈ {k+1, k+2},

so by Lemma 5.16, L(u) ⊆ {i− 2, i− 1, i, i+ 1, i+ 2}, for some i ∈ [2k]0.

Furthermore, observe that since for the branching rule (B2), if we could, we chose

vertex v whose distance from C is at least ⌈d
2⌉, each vertex of G is at distance ⌊k+2

2 ⌋ from

C. Indeed, every vertex u′ that was in N⩽k+2
G[V ⩾2][v] either is already precolored or has a

precolored neighbor after guessing the coloring on N⩽k+1
G[V ⩾2][v], and thus each such vertex

u′ has list of size at most 2. So for any vertex u that is still in V⩾3, the shortest u-v

path (whose length is at most the diameter diam(G)) should contain a vertex from C

and length of that path is at least dist(v, C) + dist(u,C). So either all vertices outside C

were at distance at most ⌊k+2
2 ⌋, or v was at distance at least ⌈k+2

2 ⌉, and thus dist(u,C) ⩽

diam(G)− dist(v, C) ⩽ k + 2− ⌈k+2
2 ⌉ = ⌊k+2

2 ⌋, so u is at distance at most ⌊k+2
2 ⌋ from C.

For k = 1, we obtain that every vertex of G is at distance at most ⌊3
2⌋ = 1 from C.

Therefore, by Lemma 5.15, we obtain that every vertex of G has list of size at most 2,

and thus (G,L) can be solved in polynomial time by Theorem 5.4. So since now we can

assume that k ⩾ 2. If k > 2, then ⌊k+2
2 ⌋ < k. Recall that by Lemma 5.15, for a vertex

u that is at distance at most k − 1 from a precolored vertex (and all vertices of C are

precolored), the set L(u) is an independent set. Combining it with the fact that each list

of a vertex in V⩾3 is contained in {i− 2, i− 1, i, i+ 1, i+ 2}, for some i ∈ [2k]0, we obtain

that for every u ∈ V⩾3 we have L(u) ⊆ {i− 2, i, i+ 2}, for some i ∈ [2k]0. If k = 2, then

each vertex is at distance at most 2 from C, and by Lemma 5.15, we obtain that for every

u ∈ V⩾3, the list L(u) is of type (2, 2), i.e., L(u) = {i− 2, i, i+ 2} for some i ∈ [2k]0.

127

Therefore, every vertex of V⩾3 has list of type (2, 2), and thus, by Lemma 5.22, the

instance (G,L) can be solved in polynomial time, which completes the proof.

Now we are ready to prove Theorem 1.17.

Proof of Theorem 1.17. Let (G,L) be an instance of LHom(C2k+1) such that the diameter

of G is at most k+2. As in Theorem 1.16, first for every i ∈ [2k]0, we check in polynomial

time whether there is a list homomorphism φ : (G,L) → C2k+1 such that no vertex

is mapped to i – recall that this can be done by Lemma 5.19. If there is no such list

homomorphism, we guess 2k + 1 vertices c0, . . . , c2k which will be colored so that ci is

mapped to i. We add the edges cici+1 and we obtain an induced (2k + 1)-cycle C (if

not, then we are dealing with a no-instance). Note that adding edges cannot increase

the diameter and since the edges are added between vertices precolored with consecutive

vertices, we obtain an equivalent instance.

Now for (G,L) and C as the fixed precolored (2k + 1)-cycle we use the algorithm

Recursion Tree, which by Lemma 5.20 in time 2O((n log n)
k+1
k+2) returns a treeR. Moreover,

in order to solve the instance (G,L) it is enough to solve every instance corresponding

to a leaf of R by Lemma 5.20, and by Lemma 5.21, we can solve each such instance in

polynomial time. Furthermore, since the size of R is bounded by the running time, the

instance (G,L) can be solved in time exp
(
O((n log n)

k+1
k+2)

)
·nO(1) = exp

(
O((n log n)

k+1
k+2)

)
,

which completes the proof.

We finish this section with a result which shows that it is sometimes possible to have

a subexponential-time algorithm for LHom(C2k+1) for diameter-(k + 3) graphs, i.e., we

show that LHom(C5) can be solved in polynomial time on diameter-5 graphs. It is not

clear if this can be generalized to other values of k – here we use the fact that after

standard branchings, every vertex is at distance at most ⌊k+3
2 ⌋, which for k = 2 is 2, from

a precolored vertex. By Lemma 5.15, the list of every vertex is either of size at most two

or of type (2, 2), and thus the instance can be solved in polynomial time by Lemma 5.22.

For all larger values of k, we have ⌊k+3
2 ⌋ ⩾ 3, and thus the same argument does not work.

Theorem 5.23. Every diameter-5 n-vertex instance (G,L) of LHom(C5) can be solved

in time O
(
exp

(
(n log n) 4

5
))

.

Proof. Let (G,L) be an n-vertex instance of LHom(C5) such that diam(G) ⩽ 6. First,

as in Theorem 1.17, for every i ∈ {0, 1, 2, 3, 4}, by applying Lemma 5.19, we check in

128

polynomial time whether there is a list homomorphism φ : (G,L) → C5 such that no

vertex is mapped to i. If no, we guess 5 vertices c0, c1, c2, c3, c4 which will be colored so

that ci is mapped to i. We add the edges cici+1 and we obtain an induced 5-cycle C (if

not, then we are dealing with a no-instance).

We use the algorithm Recursion Tree for (G,L) and C, which by Lemma 5.20 in

time 2O((n log n)
4
5) returns a tree R such that in order to solve the instance (G,L) it is

enough to solve every instance corresponding to a leaf of R.

Let (G′, L′) be an instance corresponding to a leaf inR. As in the proof of Lemma 5.21,

since in (B2), if we could, we chose a vertex whose distance from C is at least ⌈5
2⌉, each

vertex of G′ is at distance at most ⌊5
2⌋ = 2 from C. By Lemma 5.15, each vertex of V⩾3

has list of type (2, 2), and thus by Lemma 5.22, (G′, L′) can be solved in polynomial time.

This completes the proof.

5.2.2 Hardness result

In this section we prove Theorem 1.18.

Theorem 1.18. Let k ⩾ 1. The Hom(C2k+1) problem is NP-hard on graphs of radius

k + 1 (and thus diameter (2k + 2)) and cannot be solved in subexponential time, unless

the ETH fails.

Proof. We reduce from 3-Sat. Let Φ be an instance of 3-Sat with n variables x1, . . . , xn

and m clauses γ1, . . . , γm. We assume that each clause has precisely three literals. We

construct G as follows.

We start with a (2k+ 1)-cycle C on vertices {v0, . . . , v2k}. For every clause γj we add

a copy of C2k+1 on vertices aj, bj, c
1
j , c

2
j , . . . , c

2k−1
j and we add edges v1aj, bjv2. For every

variable xi, we add a copy of C2k+1 with vertices x0
i , . . . , x

2k
i and identify x0

i with v0.

For every clause γj, we fix ordering of its variables. Furthermore, for every variable xi

of γj we add a path Pij as follows.

1. If xi is the first variable of γj we add a path Pij on 2k + 1 vertices, identify its first

vertex with aj. Furthermore, for ℓ = 2, . . . , 2k, we make the ℓ-th vertex of the path

adjacent to vℓ. Finally, if the occurence of xi in γj is positive, then we identify the

(2k+ 1)th vertex of the path with x2k
i . Otherwise, we identify the (2k+ 1)th vertex

with x1
i .

129

2. If xi is the second variable of γj, then we add a path Pij on three vertices, identify

the first vertex with bj, and make the second vertex adjacent to v1. Finally, if the

occurence of xi in γj is positive we identify the third vertex of the path with x1
i .

Otherwise, we identify it with x2k
i .

3. If xi is the third variable of γj, then we add a path Pij on k + 2 vertices, identify

the first one with ck
j , and make the (k + 1)-th one adjacent to v1. Finally, if the

occurence of xi in γj is positive, then we identify the last vertex of the path with

x1
i , and otherwise, we identify it with x2k

i .

This completes the construction of G (see Figure 5.4). Note that |V (G)| = O(n+m).

We first prove that ϕ is satisfiable if and only if G→ C2k+1.

v0

v1

v2v3

v4 aj

bj c1
j

c2
j

c3
j

x1
2

x2
2 x3

2

x4
2x1

1

x2
1 x3

1

x4
1 x1

3

x2
3 x3

3

x4
3

Figure 5.4: Construction of G for k = 2 and clause γj = (¬x1∨x2∨¬x3). Green vertices

belong to the cycle C, blue vertices are those introduced for variables, and yellow ones

are those introduced for the clause γj. Remaining vertices belong to paths Pij.

Claim 1.18.1. If G→ C2k+1, then Φ is satisfiable.

Proof of Claim: First suppose that there exists φ : G → C2k+1. Since C2k+1 is a core,

φ is an automorphism. Without loss of generality, assume that φ(vi) = i for i ∈ [2k]0.

Note that for every variable, there are exactly two ways of coloring its corresponding copy

of C2k+1, i.e., one with φ(x2k
i) = 2k, and the other with φ(x2k

i) = 1. We define a truth

assignment ψ of the variables, so that xi is true if and only if φ(x2k
i) = 2k.

Let us verify that ψ is a satisfying assignment of Φ. Consider a clause γj and its

corresponding copy of C2k+1. Observe that aj is adjacent to vertex colored with 1 and

130

bj is adjacent to a vertex colored with 2. Therefore, the pair (aj, bj) must be colored in

one of three ways: (0, 1), (2, 3), (2, 1). First assume that (aj, bj) is colored with (0, 1) and

let xi be the first variable of Cj. Recall that Pij is a path on 2k + 1 vertices with aj as

the first vertex. Moreover, for every ℓ = 2, . . . , 2k, the ℓth vertex of Pij is adjacent to vℓ

and we have φ(vℓ) = ℓ. Thus ℓth vertex of Pij has to be mapped to one of {ℓ− 1, ℓ+ 1}.

Furthermore, φ(aj) = 0, so the second vertex of Pij has to be mapped to 1. Then ℓth

vertex has to be mapped to ℓ − 1, and thus the last vertex has to be mapped to 2k.

Recall that the last vertex of the path Pij is x2k
i if the occurence of xi is positive and x1

i ,

otherwise. In both cases by the definition of the truth assignment ψ, xi satisfies Cj.

Now assume that the pair (aj, bj) is colored with (2, 3) and let xi be the second

variable of Cj. Then observe that the consecutive vertices of Pij must be colored with

3, 2, 1, respectively. Recall that the last vertex of Pij is x1
i if the occurence of xi is positive

and x2k
i , otherwise. In both cases by the definition of truth assignment ψ, xi satisfies Cj.

Finally assume that the pair (aj, bj) is colored with (2, 1) and let xi be the third

variable of Cj. Observe that in this case ck
j , which is also the first vertex of Pij, must be

colored with k + 2. Since the (k + 1)th vertex of Pij is adjacent to v1 colored with 1, it

can be colored only with one of 0, 2. However, if it is colored with 0, then there must be

a walk in C2k+1 from 0 to k + 2 of length exactly k, a contradiction. Therefore, the last

vertex of Pij must be colored with 1. As in the previous cases, xi satisfies Cj. ⌟

Claim 1.18.2. If Φ is satisfiable, then G→ C2k+1.

Proof of Claim: Let ψ be a truth assignment satisfying Φ. We define φ : G → C2k+1

as follows. First, we set φ(vi) := i. Moreover, for every variable xi, we extend φ to the

vertices of the cycle introduced for xi, so that φ(x1
i) = 1 if ψ(xi) = 1, and φ(x1

i) = 2k

otherwise. Furthermore, for each clause γj we fix one variable xi that satisfies γj in

assignment ψ. Then, if the first variable satisfies γj, we color (aj, bj) with (0, 1), if it is

the second variable, we color (aj, bj) with (2, 3), and if it is the third one, we color (aj, bj)

with (2, 1). We extend φ to the remaining vertices of the cycle introduced for γj in the

only possible way.

Observe that so far, φ respect all the edges. It remains to extend φ to vertices of

paths Pij. Consider such a path Pij introduced for a clause γj and its variable xi.

131

Case 1: xi is the first variable of γj. In this case Pij is a path on 2k + 1 vertices

with aj as the first vertex and x1
i or x2k

i as the last vertex depending on the sign of the

occurence of xi in γj. Moreover, for ℓ = 2, . . . , 2k, the ℓth vertex of Pij is adjacent to vℓ,

so it has to be mapped to one of ℓ−1, ℓ+1. If aj is colored with 2, then φ can be extended

to Pij so that the 2k consecutive vertices are mapped respectively to 2, 3, 4 . . . , 2k, 0. Now

note that this respects all the edges of Pij as the last vertex is colored either with 1 or 2k,

both adjacent to 0. So now assume that aj is colored with 0. By the definition of φ, the

variable xi must satisfy γj, and thus the last vertex of Pij has to be mapped to 2k. Then

we can extend φ to Pij so that the consecutive vertices of Pij are mapped respectively to

0, 1, . . . , 2k.

Case 2: xi is the second variable of γj. Then Pij is a path on 3 vertices with bj being

the first vertex. Moreover, the second vertex is adjacent to v1, so it has to be mapped

to 0 or 2. If bj is mapped to 1, then we set φ on the second vertex of Pij to 0, which is

adjacent to both 1, 2k, and thus φ respects the edges of Pij. If bj is mapped to 3, then the

variable xi satisfies γj and thus the last vertex of Pij has to be mapped to 1. Therefore

we can set φ on the second vertex of Pij to 2.

Case 3: xi is the third variable of γj. In this case Pij is a path on k + 2 vertices

with ck
j being the first vertex and the (k+ 1)th vertex adjacent to v1. Note that if (aj, bj)

is mapped to (0, 1), (2, 3), or (2, 1) , then ck
j is mapped respectively to k+ 1, k+ 3, k+ 2.

In the first case, we can extend φ so that consecutive k + 1 vertices of Pij are mapped

respectively to k+1, k+2, . . . , 2k, 0 and since the (k+1)th vertex is mapped to 0 adjacent

to both 1, 2k, φ respects all the edges of Pij. In the second case we extend φ to Pij so

that consecutive k+1 vertices of Pij are mapped respectively to k+3, k+4, . . . , 2k, 0, 1, 0

and again φ respects the edges of Pij. So let us consider the third case. Recall that this

happens when xi satisfies Cj and thus the last vertex of Pij is mapped to 1. We extend φ

so that the consecutive vertices of Pij are mapped respectively to k + 2, k + 1, k, . . . , 2, 1,

which clearly respects the edges of Pij. This completes the proof of the claim. ⌟

Now we show that the radius (and thus the diameter) of G is bounded.

Claim 1.18.3. The radius of G is at most k + 1.

Proof of Claim: We show that each vertex is at distance at most k + 1 from v1. It holds

132

for every vertex of the cycle C and every vertex that is adjacent to C. The remaining

vertices are those introduced for variables, the vertices of cycles introduced for clauses,

and those of paths Pij introduced for clauses and their third variables.

The vertices introduced for variables are at distance at most k from v0, and thus at

most k+1 from v1. For a cycle introduced for a clause γj, each its vertex is at distance at

most k from aj, which is adjacent to v1. Finally, it remains to check the internal vertices

of the paths introduced in the third case. Recall that each such a path consist of k + 2

vertices (k internal vertices) and the (k + 1)-th vertex is adjacent to v1. This completes

the proof of the claim. ⌟

Therefore the Hom(C2k+1) problem is NP-hard on diameter-(2k+2) graphs. Moreover,

since |G| = O(n + m), there is no algorithm solving Hom(C2k+1) in time 2o(|G|) · |G|O(1),

unless the ETH fails. This completes the proof.

133

Chapter 6

Other results

In this chapter we shortly describe other results of the author that were not selected for

the dissertation, which are the following.

[121] K. Okrasa, M. Piecyk, and P. Rzążewski. Full Complexity Classification of the List

Homomorphism Problem for Bounded-Treewidth Graphs. ESA 2020, volume 173 of

LIPIcs, pages 74:1–74:24, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[46] M. Dębski, Z. Lonc, K. Okrasa, M. Piecyk, and P. Rzążewski. Computing Homo-

morphisms in Hereditary Graph Classes: The Peculiar Case of the 5-Wheel and

Graphs with No Long Claws. ISAAC 2022, volume 248 of LIPIcs, pages 14:1–14:16,

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[90] K. Kluk, H. La, and M. Piecyk. Graph Reconstruction with Connectivity Queries.

To appear in WG 2024 Proceedings.

List homomorphisms and treewidth. The problem considered in [121] is LHom(H)

parameterized by the treewidth tw(G) of the input graph G. Arguably, treewidth is one

of the most studied graph parameters [9, 52, 55, 55, 61, 62, 101, 108, 121, 124]. Recall,

that for LHom(H) it makes sense to consider H that contains a vertex with a loop or is

bipartite. The dichotomy for LHom(H) was proven in three steps: (i) for reflexive target

graphs [56], (ii) for bipartite target graphs [57], and (iii) for general target graphs [58].

In case of LHom(H) parameterized by treewidth, the problem was first studied by

Egri, Marx, and Rzążewski [52] for reflexive graphs. In the paper [121], we consider

134

general target graphs H. For every H such that LHom(H) is NP-hard, we define an

invariant i∗(H) and show the following.

Theorem 6.1 ([121]). Let H be a graph such that LHom(H) is NP-hard.

1. Even if H is part of the input, every instance (G,L) of LHom(H) given along with

tree decomposition of G of width t can be solved in time i∗(H)t · |V (G)|O(1).

2. Even if H is fixed, for any ε > 0, there is no algorithm that solves every instance

(G,L) of LHom(H) in time i∗(H)t · |V (G)|O(1), unless the SETH fails.

Let us briefly discuss the definition of i∗. This invariant is related to incomparable

sets and bipartite decompositions (see Section 3.2 to recall the definitions). First, for

every connected bipartite graph H, we define i(H) as the maximum size of a one-sided

incomparable set of vertices of H. This definition is motivated by the fact that for an

instance (G,L) of LHom(H), we can assume that list of every vertex of G is one-sided and

incomparable. Furthermore, we define i∗(H) for every bipartite graph H to be maximum

i(H ′) over all induced subgraphs H ′ of H such that H is connected, undecomposable,

and such that LHom(H ′) is NP-hard – this in turn is motivated by the fact that if H

admits a decomposition, then we can solve an instance (G,L) of LHom(H) by solving

some small number of instances (G′, L′) of LHom(H ′), where G′ is induced subgraph of

G and H ′ is a proper induced subgraph of H. Finally, we define i∗(H) for non-bipartite H

by setting i∗(H) = i∗(H∗), which is connected to a correspondence between some special

homomorphisms G∗ → H∗ and G→ H.

Let us point out that techniques developed in [121] are quite powerful and the gadgets

introduced in [121] are used in this dissertation as basic building blocks in hardness

reductions in Section 4.4.

Precoloring extension and forbidden induced subgraphs. In [46] we study the

complexity of the graph homomorphism problem for another type of restriction on the

class of the input graphs: instead of bounding some parameter of G, we forbid some fixed

graph F as an induced subgraph. If G does not contain F as an induced subgraph, we

say that G is F -free. Let us point out that if F ′ is an induced subgraph of F , then every

F ′-free graph is also F -free. Therefore, every problem that is polynomial-time solvable

for F -free graphs is also polynomial-time solvable for F ′-free graphs, and every problem

that is NP-hard for F ′-free graphs is also NP-hard for F -free graphs.

135

In the problem we considered in [46], called H-ColoringExt, we are given a graph

G with some vertices already precolored, and we have to determine if there is a homo-

morphism from G to H that extends this partial mapping. Note that H-ColoringExt

lies in between of Hom(H) and LHom(H), i.e., we can think of H-ColoringExt as

LHom(H) where every vertex of the input graph has either full list (equal to V (H)) or a

one-element list.

For a, b, c ∈ N, by Sa,b,c we denote the graph obtained from three paths Pa+1, Pb+1,

Pc+1 by identifying their first vertices into one. For k ∈ N, by Wk we denote the k-wheel,

i.e., a graph obtained from Ck by adding a new vertex and connecting it to every vertex

of Ck.

Let F be a connected graph. Piecyk and Rzążewski proved that for H such that

LHom(H) is NP-hard, LHom(H) is NP-hard and cannot be solved in subexponential

time on F -free graphs if F is not a path nor Sa,b,c for some a, b, c ∈ N [128]. Furthermore,

the complexity dichotomy of LHom(H) was provided in case of Pt-free graphs [122].

Therefore, it is interesting to consider LHom(H) on Sa,b,c-graphs as an open case.

The main result of [46] is a polynomial-time algorithm for W5-ColoringExt for

S2,1,1-free graphs. This is complemented with the proof that W5-ColoringExt is NP-

hard in S3,3,3-free graphs. This shows a very unusal behavior of the complexity of the

problem. It is known that 3-Coloring is NP-hard on claw-free graphs, and so is the

more general 3-ColoringExt problem (K3-ColoringExt). On the other hand, K3 is

an induced subgraph of W5, so this shows that the complexity of H-ColoringExt is

not monotone with respect to taking induced subgraphs. In contrast, this is not the case

of LHom(H), as for an induced subgraph H ′ of H, every instance (G,L) of LHom(H ′)

can be seen as an instance of LHom(H) where no vertex from V (H) \ V (H ′) appears

on a list. Thus if LHom(H) is polynomial-time solvable on some class of graphs C, then

LHom(H ′) is polynomial-time solvable on C, and if LHom(H ′) is NP-hard on C, then

so is LHom(H ′). Finally, usually problems that are hard on Sa,b,c-free graphs for some

a, b, c ∈ N are already hard for claw-free (S1,1,1-free) graphs, which is not the case for

W5-ColoringExt.

Graph reconstruction. The problem considered in [90] is not related to graph homo-

morphisms. The general concept is that instead of a graph, we are given the information

which subsets of vertices induce connected subgraphs and which do not. The question is

136

whether such information can uniquely describe the graph. Now let us define the problem

formally. Let k be a fixed integer. In the k-Reconstruction problem, we are given a

triple (V,Sk,Sk), where Sk,Sk ⊆
(

V
k

)
and Sk,Sk form a partition of

(
V
k

)
, i.e., the family

of k-element subsets of V . The task is to determine if there exists a graph G consistent

with (Sk,Sk), i.e., V (G) = V , for every S ∈ Sk, the graph G[S] is connected, and for

every S ′ ∈ Sk, the graph G[S ′] is disconnected. Another possible goals are: (i) determine

whether such a graph is unique, and (ii) enumerate all such graphs. The problem was

introduced in [4] for special case of k = 3.

In [90], for every k ⩾ 4, we show the following.

1. Given (V,Sk,Sk), in time polynomial in |V |, we can determine whether there exists

a triangle-free connected graph G consistent with (V,Sk,Sk), and if the answer is

positive, then we can actually find G. Moreover, for some function f , if |V | ⩾ f(k),

there is at most one connected triangle-free graph G consistent with (V,Sk,Sk).

Therefore, for every given (V,Sk,Sk), in time polynomial in |V | we can enumerate

all consistent connected triangle-free graphs – if |V | < f(k), then we can brute-force,

and if |V | ⩾ f(k), then, if we find G, we know that it is unique.

2. Let d ∈ N. Given (V,Sk,Sk) in time polynomial in |V |, we can determine whether

there exists a connected graph G with ∆(G) ⩽ d and consistent with (V,Sk,Sk).

Moreover, our algorithm “enumerates” all such graphs G. Let us explain the ex-

pression “enumerate” here. In this case we can have exponentially many consistent

graphs, so we cannot have a polynomial-time algorithm that actually enumerates

all of them. Instead, we describe all consistent graphs in a compact way i.e., our

algorithm returns a set:

G = {(G′, V1, . . . , Vℓ, C1, . . . , Cℓ) | Vi ⊆ V (G), |Vi| ⩽ d, Ci is a set of graphs on Vi},

where the connected graphs G with ∆(G) ⩽ d consistent with (V,Sk,Sk) are pre-

cisely the graphs G that for some tuple (G′, V1, . . . , Vℓ, C1, . . . , Cℓ) ∈ G, either G = G′

or G can be obtained from G′ by replacing G′[Vi] with some Gi ∈ Ci for i ∈ [ℓ].

137

Bibliography

[1] Noga Alon, Igor Balla, Lior Gishboliner, Adva Mond, and Frank Mousset. The

minrank of random graphs over arbitrary fields. Israel Journal of Mathematics,

235:63–77, 2020.

[2] Noga Alon and Eyal Lubetzky. The shannon capacity of a graph and the indepen-

dence numbers of its powers. IEEE Trans. Inf. Theory, 52(5):2172–2176, 2006.

[3] Srinivasan Arunachalam, Péter Vrana, and Jeroen Zuiddam. The asymptotic in-

duced matching number of hypergraphs: Balanced binary strings. The Electronic

Journal of Combinatorics, 27(3), 2020.

[4] Paul Bastide, Linda Cook, Jeff Erickson, Carla Groenland, Marc J. van Kreveld, Isja

Mannens, and Jordi L. Vermeulen. Reconstructing graphs from connected triples. In

Daniël Paulusma and Bernard Ries, editors, Graph-Theoretic Concepts in Computer

Science - 49th International Workshop, WG 2023, Fribourg, Switzerland, June 28-

30, 2023, Revised Selected Papers, volume 14093 of Lecture Notes in Computer

Science, pages 16–29. Springer, 2023.

[5] Laurent Beaudou, Florent Foucaud, and Reza Naserasr. Smallest c2l+1-critical

graphs of odd-girth 2k+1. Discret. Appl. Math., 319:564–575, 2022.

[6] Sujoy Bhore, Paz Carmi, Sudeshna Kolay, and Meirav Zehavi. Parameterized study

of steiner tree on unit disk graphs. Algorithmica, 85(1):133–152, 2023.

[7] Csaba Biró, Édouard Bonnet, Dániel Marx, Tillmann Miltzow, and Paweł

Rzążewski. Fine-grained complexity of coloring unit disks and balls. J. Comput.

Geom., 9(2):47–80, 2018.

138

[8] Andreas Björklund and Thore Husfeldt. Inclusion-exclusion based algorithms for

graph colouring. Electron. Colloquium Comput. Complex., TR06-044, 2006.

[9] Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Determin-

istic single exponential time algorithms for connectivity problems parameterized by

treewidth. Inf. Comput., 243:86–111, 2015.

[10] Hans L. Bodlaender, Erik Jan van Leeuwen, Johan M. M. van Rooij, and Martin

Vatshelle. Faster algorithms on branch and clique decompositions. In Petr Hlinený

and Antonín Kucera, editors, Mathematical Foundations of Computer Science 2010,

35th International Symposium, MFCS 2010, Brno, Czech Republic, August 23-27,

2010. Proceedings, volume 6281 of Lecture Notes in Computer Science, pages 174–

185. Springer, 2010.

[11] Narek Bojikian, Vera Chekan, Falko Hegerfeld, and Stefan Kratsch. Tight bounds

for connectivity problems parameterized by cutwidth. In Petra Berenbrink, Patricia

Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th International

Symposium on Theoretical Aspects of Computer Science, STACS 2023, March 7-9,

2023, Hamburg, Germany, volume 254 of LIPIcs, pages 14:1–14:16. Schloss Dagstuhl

- Leibniz-Zentrum für Informatik, 2023.

[12] Marthe Bonamy, Konrad K. Dabrowski, Carl Feghali, Matthew Johnson, and Daniël

Paulusma. Independent feedback vertex sets for graphs of bounded diameter. Inf.

Process. Lett., 131:26–32, 2018.

[13] Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Wa-

trigant. Twin-width III: max independent set, min dominating set, and coloring.

In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, 48th International

Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16,

2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 35:1–

35:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[14] Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, Stéphan Thomassé, and Rémi

Watrigant. Twin-width and polynomial kernels. Algorithmica, 84(11):3300–3337,

2022.

139

[15] Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-

width I: tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

[16] Christoph Brause, Petr A. Golovach, Barnaby Martin, Pascal Ochem, Daniël

Paulusma, and Siani Smith. Acyclic, star, and injective colouring: Bounding the

diameter. Electron. J. Comb., 29(2), 2022.

[17] Csilla Bujtás, Akbar Davoodi, Ervin Győri, and Zsolt Tuza. Clique coverings and

claw-free graphs. European Journal of Combinatorics, 88:103114, 2020. Selected

papers of EuroComb17.

[18] Andrei A. Bulatov and Amirhossein Kazeminia. Complexity classification of count-

ing graph homomorphisms modulo a prime number. In Stefano Leonardi and Anu-

pam Gupta, editors, STOC 2022, pages 1024–1037. ACM, 2022.

[19] Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination

distance to bounded degree. CoRR, abs/1406.4718, 2014.

[20] Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph

classes. Algorithmica, 79(1):139–158, 2017.

[21] Jin-Yi Cai and Ashwin Maran. The complexity of counting planar graph homo-

morphisms of domain size 3. In Barna Saha and Rocco A. Servedio, editors, STOC

2023, pages 1285–1297. ACM, 2023.

[22] Leizhen Cai. Parameterized complexity of vertex colouring. Discret. Appl. Math.,

127(3):415–429, 2003.

[23] Victor A. Campos, Guilherme de C. M. Gomes, Allen Ibiapina, Raul Lopes, Ignasi

Sau, and Ana Silva. Coloring problems on bipartite graphs of small diameter.

Electron. J. Comb., 28(2):2, 2021.

[24] Airlie Chapman and Mehran Mesbahi. On strong structural controllability of net-

worked systems: A constrained matching approach. In 2013 American Control

Conference, pages 6126–6131, 2013.

[25] Prasad Chaugule, Nutan Limaye, and Aditya Varre. Variants of homomorphism

polynomials complete for algebraic complexity classes. ACM Trans. Comput. The-

ory, 13(4):21:1–21:26, 2021.

140

[26] Rajesh Chitnis, László Egri, and Dániel Marx. List h-coloring a graph by removing

few vertices. Algorithmica, 78(1):110–146, 2017.

[27] Maria Chudnovsky, Jan Goedgebeur, Oliver Schaudt, and Mingxian Zhong. Ob-

structions for three-coloring and list three-coloring H-free graphs. SIAM J. Discret.

Math., 34(1):431–469, 2020.

[28] Maria Chudnovsky, Shenwei Huang, Pawel Rzazewski, Sophie Spirkl, and Mingxian

Zhong. Complexity of Ck -coloring in hereditary classes of graphs. Inf. Comput.,

292:105015, 2023.

[29] Maria Chudnovsky, Marcin Pilipczuk, Michal Pilipczuk, and Stéphan Thomassé.

Quasi-polynomial time approximation schemes for the maximum weight indepen-

dent set problem in \(\boldsymbol{H}\)-free graphs. SIAM J. Comput., 53(1):47–

86, 2024.

[30] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. List 3-coloring Pt-

free graphs with no induced 1-subdivision of K1,s. Discrete Mathematics,

343(11):112086, 2020.

[31] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring

\(\boldsymbol{P_6}\)-free graphs. II. finding an excellent precoloring. SIAM J.

Comput., 53(1):146–187, 2024.

[32] Maria Chudnovsky, Sophie Spirkl, and Mingxian Zhong. Four-coloring \(p_6\)-

free graphs. i. extending an excellent precoloring. SIAM J. Comput., 53(1):111–145,

2024.

[33] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms, 3rd Edition. MIT Press, 2009.

[34] Jean-François Couturier, Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma.

On the parameterized complexity of coloring graphs in the absence of a linear forest.

J. Discrete Algorithms, 15:56–62, 2012.

[35] Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis

for counting small subgraphs. In Hamed Hatami, Pierre McKenzie, and Valerie King,

editors, STOC 2017, pages 210–223. ACM, 2017.

141

[36] Radu Curticapean and Dániel Marx. Tight conditional lower bounds for counting

perfect matchings on graphs of bounded treewidth, cliquewidth, and genus. In

Robert Krauthgamer, editor, SODA 2016, pages 1650–1669. SIAM, 2016.

[37] Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx,

Marcin Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms.

Springer, 2015.

[38] Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via

bases of perfect matchings. J. ACM, 65(3):12:1–12:46, 2018.

[39] Clément Dallard, Fedor V. Fomin, Petr A. Golovach, Tuukka Korhonen, and Martin

Milanic. Computing tree decompositions with small independence number. In Karl

Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st In-

ternational Colloquium on Automata, Languages, and Programming, ICALP 2024,

July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 51:1–51:18. Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[40] Clément Dallard, Martin Milanic, and Kenny Storgel. Treewidth versus clique num-

ber. II. tree-independence number. J. Comb. Theory B, 164:404–442, 2024.

[41] Ronald de Wolf. Nondeterministic quantum query and communication complexities.

SIAM Journal on Computing, 32(3):681–699, 2003.

[42] Matt DeVos, O-joung Kwon, and Sang-il Oum. Branch-depth: Generalizing tree-

depth of graphs. Eur. J. Comb., 90:103186, 2020.

[43] Jinquan Dong and Yanpei Liu. On the decomposition of graphs into complete

bipartite graphs. Graphs Comb., 23(3):255–262, 2007.

[44] Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. New algorithms for

mixed dominating set. Discret. Math. Theor. Comput. Sci., 23(1), 2021.

[45] Louis Dublois, Michael Lampis, and Vangelis Th. Paschos. Upper dominating set:

Tight algorithms for pathwidth and sub-exponential approximation. In Tiziana

Calamoneri and Federico Corò, editors, Algorithms and Complexity - 12th Inter-

national Conference, CIAC 2021, Virtual Event, May 10-12, 2021, Proceedings,

volume 12701 of Lecture Notes in Computer Science, pages 202–215. Springer, 2021.

142

[46] Michał Dębski, Zbigniew Lonc, Karolina Okrasa, Marta Piecyk, and Paweł

Rzążewski. Computing homomorphisms in hereditary graph classes: The peculiar

case of the 5-wheel and graphs with no long claws. In Sang Won Bae and Hee-

jin Park, editors, 33rd International Symposium on Algorithms and Computation,

ISAAC 2022, December 19-21, 2022, Seoul, Korea, volume 248 of LIPIcs, pages

14:1–14:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[47] Michał Dębski, Marta Piecyk, and Paweł Rzążewski. Faster 3-coloring of small-

diameter graphs. In Petra Mutzel, Rasmus Pagh, and Grzegorz Herman, editors,

29th Annual European Symposium on Algorithms, ESA 2021, September 6-8, 2021,

Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 37:1–37:15.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[48] Michał Dębski, Marta Piecyk, and Paweł Rzążewski. Faster 3-coloring of small-

diameter graphs. SIAM J. Discret. Math., 36(3):2205–2224, 2022.

[49] Oliver Ebsen and Mathias Schacht. Homomorphism thresholds for odd cycles.

Comb., 40(1):39–62, 2020.

[50] Keith Edwards. The complexity of colouring problems on dense graphs. Theor.

Comput. Sci., 43:337–343, 1986.

[51] László Egri, Andrei A. Krokhin, Benoît Larose, and Pascal Tesson. The com-

plexity of the list homomorphism problem for graphs. In Jean-Yves Marion and

Thomas Schwentick, editors, STACS 2010, volume 5 of LIPIcs, pages 335–346.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2010.

[52] László Egri, Dániel Marx, and Paweł Rzążewski. Finding list homomorphisms from

bounded-treewidth graphs to reflexive graphs: a complete complexity characteriza-

tion. In Rolf Niedermeier and Brigitte Vallée, editors, STACS 2018, volume 96 of

LIPIcs, pages 27:1–27:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[53] Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what

matters: A hybrid approach to dynamic programming with treewidth. J. Comput.

Syst. Sci., 121:57–75, 2021.

143

[54] Paul Erdős and George Szekeres. A combinatorial problem in geometry. Compositio

mathematica, 2:463–470, 1935.

[55] Baris Can Esmer, Jacob Focke, Dániel Marx, and Pawel Rzazewski. List homo-

morphisms by deleting edges and vertices: Tight complexity bounds for bounded-

treewidth graphs. In Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz

Herman, editors, 32nd Annual European Symposium on Algorithms, ESA 2024,

September 2-4, 2024, Royal Holloway, London, United Kingdom, volume 308 of

LIPIcs, pages 39:1–39:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[56] Tomás Feder and Pavol Hell. List homomorphisms to reflexive graphs. J. Comb.

Theory B, 72(2):236–250, 1998.

[57] Tomás Feder, Pavol Hell, and Jing Huang. List homomorphisms and circular arc

graphs. Comb., 19(4):487–505, 1999.

[58] Tomás Feder, Pavol Hell, and Jing Huang. Bi-arc graphs and the complexity of list

homomorphisms. J. Graph Theory, 42(1):61–80, 2003.

[59] M. Fekete. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen

mit ganzzahligen Koeffizienten. Mathematische Zeitschrift, 17(1):228–249, Decem-

ber 1923.

[60] Peter C. Fishburn and Peter L. Hammer. Bipartite dimensions and bipartite degrees

of graphs. Discrete Mathematics, 160(1):127–148, 1996.

[61] Jacob Focke, Dániel Marx, Fionn Mc Inerney, Daniel Neuen, Govind S. Sankar,

Philipp Schepper, and Philip Wellnitz. Tight complexity bounds for counting

generalized dominating sets in bounded-treewidth graphs. In Nikhil Bansal and

Viswanath Nagarajan, editors, SODA 2023, pages 3664–3683. SIAM, 2023.

[62] Jacob Focke, Dániel Marx, and Paweł Rzążewski. Counting list homomorphisms

from graphs of bounded treewidth: tight complexity bounds. In Joseph (Seffi)

Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium

on Discrete Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA,

January 9 - 12, 2022, pages 431–458. SIAM, 2022.

144

[63] Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient

computation of representative families with applications in parameterized and exact

algorithms. J. ACM, 63(4):29:1–29:60, 2016.

[64] Jakub Gajarský, Michael Lampis, and Sebastian Ordyniak. Parameterized algo-

rithms for modular-width. In Gregory Z. Gutin and Stefan Szeider, editors, Pa-

rameterized and Exact Computation - 8th International Symposium, IPEC 2013,

Sophia Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume

8246 of Lecture Notes in Computer Science, pages 163–176. Springer, 2013.

[65] Robert Ganian, Thekla Hamm, Viktoriia Korchemna, Karolina Okrasa, and Kirill

Simonov. The fine-grained complexity of graph homomorphism parameterized by

clique-width. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,

editors, 49th International Colloquium on Automata, Languages, and Programming,

ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 66:1–66:20.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[66] Robert Ganian, Petr Hlinený, Jaroslav Nesetril, Jan Obdrzálek, and Patrice Ossona

de Mendez. Shrub-depth: Capturing height of dense graphs. CoRR, abs/1707.00359,

2017.

[67] A. M. H. Gerards. Homomorphisms of graphs into odd cycles. J. Graph Theory,

12(1):73–83, 1988.

[68] Chris Godsil. Problems in algebraic combinatorics. Electr. J. Comb., 2, 01 1995.

[69] Alexander Golovnev, Oded Regev, and Omri Weinstein. The minrank of random

graphs. IEEE Transactions on Information Theory, 64(11):6990–6995, 2018.

[70] Carla Groenland, Isja Mannens, Jesper Nederlof, Marta Piecyk, and Paweł

Rzążewski. Towards tight bounds for the graph homomorphism problem param-

eterized by cutwidth via asymptotic matrix parameters. In Karl Bringmann, Mar-

tin Grohe, Gabriele Puppis, and Ola Svensson, editors, 51st International Col-

loquium on Automata, Languages, and Programming, ICALP 2024, July 8-12,

2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 77:1–77:21. Schloss Dagstuhl -

Leibniz-Zentrum für Informatik, 2024.

145

[71] Carla Groenland, Isja Mannens, Jesper Nederlof, and Krisztina Szilágyi. Tight

bounds for counting colorings and connected edge sets parameterized by cutwidth.

In Petra Berenbrink and Benjamin Monmege, editors, STACS 2022, volume 219 of

LIPIcs, pages 36:1–36:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[72] Martin Grohe and Daniel Neuen. Isomorphism for tournaments of small twin width.

In Karl Bringmann, Martin Grohe, Gabriele Puppis, and Ola Svensson, editors,

51st International Colloquium on Automata, Languages, and Programming, ICALP

2024, July 8-12, 2024, Tallinn, Estonia, volume 297 of LIPIcs, pages 78:1–78:20.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[73] Gregory Z. Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus

Wahlström. Parameterized pre-coloring extension and list coloring problems. SIAM

J. Discret. Math., 35(1):575–596, 2021.

[74] Richard H. Hammack, Wilfried Imrich, and Sandi Klavžar. Handbook of product

graphs. CRC press, 2011.

[75] Elfarouk Harb, Zhengcheng Huang, and Da Wei Zheng. Shortest path separators in

unit disk graphs. In Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz

Herman, editors, 32nd Annual European Symposium on Algorithms, ESA 2024,

September 2-4, 2024, Royal Holloway, London, United Kingdom, volume 308 of

LIPIcs, pages 66:1–66:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[76] Ishay Haviv. On minrank and forbidden subgraphs. ACM Transactions on Com-

putation Theory, 11(4), 2019.

[77] Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized

by treedepth in single-exponential time and polynomial space. In Christophe Paul

and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of

Computer Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume

154 of LIPIcs, pages 29:1–29:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2020.

[78] Pavol Hell and Jaroslav Nesetril. On the complexity of H -coloring. J. Comb. Theory

B, 48(1):92–110, 1990.

146

[79] Pavol Hell and Jaroslav Nešetřil. The core of a graph. Discrete Mathematics, 109(1-

3):117–126, 1992.

[80] Eva-Maria C. Hols, Stefan Kratsch, and Astrid Pieterse. Elimination distances,

blocking sets, and kernels for vertex cover. In Christophe Paul and Markus Bläser,

editors, 37th International Symposium on Theoretical Aspects of Computer Science,

STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages

36:1–36:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[81] Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J.

Comput. Syst. Sci., 62(2):367 – 375, 2001.

[82] Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have

strongly exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001.

[83] Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis

of graph coloring problems. In Dimitris Fotakis, Aris Pagourtzis, and Vangelis Th.

Paschos, editors, Algorithms and Complexity - 10th International Conference, CIAC

2017, Athens, Greece, May 24-26, 2017, Proceedings, volume 10236 of Lecture Notes

in Computer Science, pages 345–356, 2017.

[84] Lars Jaffke and Bart M. P. Jansen. Fine-grained parameterized complexity analysis

of graph coloring problems. Discret. Appl. Math., 327:33–46, 2023.

[85] Bart M. P. Jansen. Personal communication.

[86] Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex dele-

tion parameterized by elimination distance and even less. In Samir Khuller and

Virginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT

Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages

1757–1769. ACM, 2021.

[87] Bart M. P. Jansen and Jesper Nederlof. Computing the chromatic number using

graph decompositions via matrix rank. Theor. Comput. Sci., 795:520–539, 2019.

[88] Ioannis Katsikarelis, Michael Lampis, and Vangelis Th. Paschos. Structurally pa-

rameterized d-scattered set. Discret. Appl. Math., 308:168–186, 2022.

147

[89] Tereza Klimosová and Vibha Sahlot. 3-coloring C4 or C3-free diameter two graphs.

In Pat Morin and Subhash Suri, editors, Algorithms and Data Structures - 18th

International Symposium, WADS 2023, Montreal, QC, Canada, July 31 - August

2, 2023, Proceedings, volume 14079 of Lecture Notes in Computer Science, pages

547–560. Springer, 2023.

[90] Kacper Kluk, Hoang La, and Marta Piecyk. Graph reconstruction with connectivity

queries, 2024.

[91] Kolja Knauer and Torsten Ueckerdt. Three ways to cover a graph. Discrete Math-

ematics, 339(2):745–758, 2016.

[92] Mikko Koivisto. An o*(2ˆn) algorithm for graph coloring and other partitioning

problems via inclusion–exclusion. In 47th Annual IEEE Symposium on Foundations

of Computer Science (FOCS 2006), 21-24 October 2006, Berkeley, California, USA,

Proceedings, pages 583–590. IEEE Computer Society, 2006.

[93] Aleksej Dmitrievich Korshunov. On the diameter of graphs. Soviet Math, 12:302:305,

1971.

[94] Stefan Kratsch and Magnus Wahlström. Representative sets and irrelevant vertices:

New tools for kernelization. J. ACM, 67(3):16:1–16:50, 2020.

[95] M. R. Krom. The decision problem for a class of first-order formulas in which all

disjunctions are binary. Mathematical Logic Quarterly, 13(1-2):15–20, 1967.

[96] Hong-Jian Lai. Unique graph homomorphisms onto odd cycles, II. J. Comb. Theory,

Ser. B, 46(3):363–376, 1989.

[97] Michael Lampis. Finer tight bounds for coloring on clique-width. SIAM J. Discret.

Math., 34(3):1538–1558, 2020.

[98] Benoît Larose. Families of strongly projective graphs. Discuss. Math. Graph Theory,

22(2):271–292, 2002.

[99] Benoit Larose. Strongly projective graphs. Canadian Journal of Mathematics,

54(4):757–768, 2002.

148

[100] Benoit Larose and Claude Tardif. Strongly rigid graphs and projectivity. Multiple-

Valued Logic, 7:339–361, 2001.

[101] Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs

of bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2):13:1–

13:30, 2018.

[102] Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, Jie Xue, and Meirav Zehavi.

A 1.9999-approximation algorithm for vertex cover on string graphs. In Wolfgang

Mulzer and Jeff M. Phillips, editors, 40th International Symposium on Computa-

tional Geometry, SoCG 2024, June 11-14, 2024, Athens, Greece, volume 293 of

LIPIcs, pages 72:1–72:11. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2024.

[103] L. Lovasz. On the shannon capacity of a graph. IEEE Transactions on Information

Theory, 25(1):1–7, 1979.

[104] Tomasz Łuczak and Jaroslav Nešetřil. Note on projective graphs. Journal of Graph

Theory, 47(2):81–86, 2004.

[105] Barnaby Martin, Daniël Paulusma, and Siani Smith. Colouring H-free graphs of

bounded diameter. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen,

editors, 44th International Symposium on Mathematical Foundations of Computer

Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs,

pages 14:1–14:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[106] Barnaby Martin, Daniël Paulusma, and Siani Smith. Colouring graphs of bounded

diameter in the absence of small cycles. Discret. Appl. Math., 314:150–161, 2022.

[107] Dániel Marx, Govind S. Sankar, and Philipp Schepper. Degrees and gaps: Tight

complexity results of general factor problems parameterized by treewidth and

cutwidth. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, ICALP

2021, volume 198 of LIPIcs, pages 95:1–95:20. Schloss Dagstuhl - Leibniz-Zentrum

für Informatik, 2021.

[108] Dániel Marx, Govind S. Sankar, and Philipp Schepper. Anti-Factor Is FPT Param-

eterized by Treewidth and List Size (But Counting Is Hard). In Holger Dell and

149

Jesper Nederlof, editors, IPEC 2022, volume 249 of Leibniz International Proceed-

ings in Informatics (LIPIcs), pages 22:1–22:23, Dagstuhl, Germany, 2022. Schloss

Dagstuhl – Leibniz-Zentrum für Informatik.

[109] Colin McDiarmid. Concentration. In J. Ramirez-Alfonsin M. Habib, C. McDiarmid

and B. Reed, editors, Probabilistic methods for algorithmic discrete mathematics,

volume 16 of Algorithms and Combinatorics, pages 195–248. Springer, 1998.

[110] Ralph McKenzie. Cardinal multiplication of structures with a reflexive relation.

Fundamenta Mathematicae, 70(1):59–101, 1971.

[111] George B. Mertzios and Paul G. Spirakis. Algorithms and almost tight results for

3-colorability of small diameter graphs. Algorithmica, 74(1):385–414, 2016.

[112] Burkhard Monien. The complexity of determining paths of length k. In Manfred

Nagl and Jürgen Perl, editors, WG ’83, pages 241–251. Universitätsverlag Rudolf

Trauner, Linz, 1983.

[113] Jan Mycielski. Sur le coloriage des graphs. Colloquium Mathematicae, 3(2):161–162,

1955.

[114] Jesper Nederlof. Algorithms for np-hard problems via rank-related parameters of

matrices. In Fedor V. Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors,

Treewidth, Kernels, and Algorithms - Essays Dedicated to Hans L. Bodlaender on

the Occasion of His 60th Birthday, volume 12160 of Lecture Notes in Computer

Science, pages 145–164. Springer, 2020.

[115] Jesper Nederlof. Bipartite TSP in O(1.9999n) time, assuming quadratic time matrix

multiplication. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani,

Gautam Kamath, and Julia Chuzhoy, editors, STOC 2020, pages 40–53. ACM,

2020.

[116] Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki.

Hamiltonian cycle parameterized by treedepth in single exponential time and poly-

nomial space. In Isolde Adler and Haiko Müller, editors, Graph-Theoretic Concepts

in Computer Science - 46th International Workshop, WG 2020, Leeds, UK, June

150

24-26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer

Science, pages 27–39. Springer, 2020.

[117] Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and

Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012.

[118] Jaroslav Nešetřil and Aleš Pultr. A Dushnik - Miller type dimension of graphs and

its complexity. In Marek Karpiński, editor, Fundamentals of Computation Theory,

pages 482–493, Berlin, Heidelberg, 1977. Springer Berlin Heidelberg.

[119] Jaroslav Nešetřil and Vojtéch Rödl. A simple proof of the Galvin-Ramsey property

of the class of all finite graphs and a dimension of a graph. Discrete Mathematics,

23(1):49–55, 1978.

[120] Karolina Okrasa. Graph homomorphisms: From structure to algorithms. PhD

thesis, Warsaw University of Technology, 2024.

[121] Karolina Okrasa, Marta Piecyk, and Paweł Rzążewski. Full complexity classifica-

tion of the list homomorphism problem for bounded-treewidth graphs. In Fabrizio

Grandoni, Grzegorz Herman, and Peter Sanders, editors, 28th Annual European

Symposium on Algorithms, ESA 2020, September 7-9, 2020, Pisa, Italy (Virtual

Conference), volume 173 of LIPIcs, pages 74:1–74:24. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2020.

[122] Karolina Okrasa and Pawel Rzążewski. Complexity of the list homomorphism prob-

lem in hereditary graph classes. In Markus Bläser and Benjamin Monmege, editors,

38th International Symposium on Theoretical Aspects of Computer Science, STACS

2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume 187

of LIPIcs, pages 54:1–54:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

2021.

[123] Karolina Okrasa and Paweł Rzążewski. Subexponential algorithms for variants of

the homomorphism problem in string graphs. J. Comput. Syst. Sci., 109:126–144,

2020.

[124] Karolina Okrasa and Paweł Rzążewski. Fine-grained complexity of the graph homo-

151

morphism problem for bounded-treewidth graphs. SIAM J. Comput., 50(2):487–508,

2021.

[125] D.D. Olesky, Michael Tsatsomeros, and P. van den Driessche. Qualitative control-

lability and uncontrollability by a single entry. Linear Algebra and its Applications,

187:183–194, 1993.

[126] Christos H. Papadimitriou. Computational complexity. Addison-Wesley, 1994.

[127] Marta Piecyk. C2k+1-coloring of bounded-diameter graphs. In Rastislav Královic

and Antonín Kucera, editors, 49th International Symposium on Mathematical Foun-

dations of Computer Science, MFCS 2024, August 26-30, 2024, Bratislava, Slovakia,

volume 306 of LIPIcs, pages 78:1–78:15. Schloss Dagstuhl - Leibniz-Zentrum für In-

formatik, 2024.

[128] Marta Piecyk and Paweł Rzążewski. Fine-grained complexity of the list homomor-

phism problem: Feedback vertex set and cutwidth. In Markus Bläser and Benjamin

Monmege, editors, 38th International Symposium on Theoretical Aspects of Com-

puter Science, STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual

Conference), volume 187 of LIPIcs, pages 56:1–56:17. Schloss Dagstuhl - Leibniz-

Zentrum für Informatik, 2021.

[129] Stefan Porschen. On variable-weighted exact satisfiability problems. Ann. Math.

Artif. Intell., 51(1):27–54, 2007.

[130] Marc Roth and Philip Wellnitz. Counting and finding homomorphisms is universal

for parameterized complexity theory. In Shuchi Chawla, editor, SODA 2020, pages

2161–2180. SIAM, 2020.

[131] Sebastian Schnettler. A structured overview of 50 years of small-world research.

Soc. Networks, 31(3):165–178, 2009.

[132] Claude E. Shannon. The Zero Error Capacity of a Noisy Channel, pages 221–238.

1993.

[133] Petra Sparl and Janez Zerovnik. Homomorphisms of hexagonal graphs to odd cycles.

Discret. Math., 283(1-3):273–277, 2004.

152

[134] Maguy Trefois and Jean-Charles Delvenne. Zero forcing number, constrained match-

ings and strong structural controllability. Linear Algebra and its Applications,

484:199–218, 2015.

[135] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New

bounds for matrix multiplication: from alpha to omega. In David P. Woodruff,

editor, Proceedings of the 2024 ACM-SIAM Symposium on Discrete Algorithms,

SODA 2024, Alexandria, VA, USA, January 7-10, 2024, pages 3792–3835. SIAM,

2024.

153

Chapter 7

Appendix

7.1 Inequality from Lemma 4.30

In this section we prove inequality from the proof of Lemma 4.30. Recall that we want to

upperbound the right-hand side of (4.5.1) with the expression from (4.5.2), i.e., we want

to show that (
eh

ℓ

)2ℓ (1
2

)ℓ2

⩽

(
eh

2 log2 h

)4 log2 h (1
2

)(2 log2 h)2

,

when ℓ = ⌈2 log2 h⌉ and h is a sufficiently large positive integer.

We will actually prove that for sufficiently large h, for x ⩾ y ⩾ 2 log2 h and t = eh,

we have: (
t

x

)2x (1
2

)x2

⩽

(
t

y

)2y (1
2

)y2

,

which implies the desired inequality since ℓ ⩾ 2 log2 h.

In other words, we will show that the function

f(x) =
(
t

x

)2x (1
2

)x2

is non-increasing for x ⩾ 2 log2 h.

Equivalently, we can show that the function g(x) = log2 f(x) is non-increasing for

x ⩾ 2 log2 h. In order to do that we will show that g′(x) ⩽ 0, for x ⩾ 2 log2 h.

First, let us rewrite the function g.

g(x) = log2 f(x) = 2x · (log2 t− log2 x)+x2 · (log2 1− log2 2) = 2x · log2 t−2x · log2 x−x2.

154

Now let us compute g′(x).

g′(x) =
(
2x · log2 t− 2x · log2 x− x2

)′
= 2 log2 t− (2x · log2 x)′ − 2x

= 2 log2 t−
(

2 log2 x+ 2x
x · log 2

)
− 2x = 2 log2 t− 2 log2 x−

1
log 2 − 2x

= 2 (log2 t− x) +
(
−2 log2 x−

1
log 2

)

Since h is sufficiently large, we can safely assume that h ⩾ e, and log2 t = log2 e+log2 h ⩽

2 log2 h ⩽ x, so the first term is at most 0. Similarly, we can assume that h is sufficiently

large, so that for x ⩾ 2 log2 h, the second term is negative. Therefore g′(x) ⩽ 0 for

x ⩾ 2 log2 h as desired.

7.2 Solving recursive inequalities

In this section we provide the detailed description on how we solve recursive inequalities

that describe the complexity of our algorithms in Theorem 5.7 and Lemma 5.11. By

F (µ) we denote the complexity of an algorithm on instances of measure µ, and we always

assume that n is the number of vertices of the whole graph. We assume that F is non-

decreasing. In what follows we also assume that µ is sufficiently large, as we can deal

with the case of bounded µ by adjusting the constants accordingly. Finally, we note that

we make no attempt to optimize the constants in the final complexity bound.

Solving the recursion in Theorem 5.7 and Lemma 5.20. In order to solve the

recursions in Theorem 5.7 and Lemma 5.20, is enough to find, for any fixed constant

c ∈ N and for any fixed polynomial p(µ), an upper bound on F (µ), where F satisfies the

inequality:

F (µ) ⩽ F

(
µ− (µ log µ)1/d

c

)
+ F (µ− 1) + p(n).

We solve the recursion as follows.

155

F (µ) ⩽ F

(
µ− (µ log µ)1/d

c

)
+ F (µ− 1) + p(n)

⩽ 2F
(
µ− (µ log µ)1/d

c

)
+ F (µ− 2) + 2p(n) ⩽ · · ·

⩽ µF

(
µ− (µ log µ)1/d

c

)
+ µ · p(n) = µ

O
(

µ

(µ log µ)1/d

)

= 2O((µ log µ)1−1/d).

Solving the recursion in Lemma 5.11 Here N0, N1, . . . are appropriately chosen

constants. Recall that we have:

F (µ) ⩽ max



3F (µ− µ2/3) + 3p(n),

F (µ− 1) + 2F (µ− 1
108µ

2/3) + 3p(n),

F (µ− 1) + 6F (µ− µ2/3) + 7p(n),

2K′µ1/3 log2 µF
(

5
6µ
)

+ 2K′µ1/3 log2 µp(n),

where n is the number of vertices of the whole graph and p is some polynomial function.

As µ is large, µ ⩽ n and we can assume that p(n) = o(F (n)) (in fact, the function F is

superpolynomial), we can write the following.

F (µ) ⩽ F (n) ⩽ max
(
F (n− 1) + 6F

(
n− n2/3

108

)
, 2N0n1/3 log2 nF

(5
6n
))

.

Clearly we have

F (n) ⩽ F (n− 1) + 6F
(
n− n2/3

108

)
+ 2N0n1/3 log2 nF

(5
6n
)
.

We apply this inequality n times to the first expression, obtaining:

F (n) ⩽F (n− 1) + 6F
(
n− n2/3

108

)
+ 2N0n1/3 log2 nF

(5
6n
)

⩽F (n− 2) + 2 · 6F
(
n− n2/3

108

)
+ 2 · 2N0n1/3 log2 nF

(5
6n
)

⩽F (n− 3) + 3 · 6F
(
n− n2/3

108

)
+ 3 · 2N0n1/3 log2 nF

(5
6n
)

⩽ . . . ⩽N1 + n · 6F
(
n− n2/3

108

)
+ n · 2N0n1/3 log2 nF

(5
6n
)
.

As n is large and F is non-decreasing, we can write

F (n) ⩽ n · 7F
(
n− n2/3

108

)
+ n · 2N0n1/3 log2 nF

(5
6n
)
.

156

Now let us apply the above expression to its first term.

F (n) ⩽n · 7F
(
n− n2/3

108

)
+ n · 2N0n1/3 log2 nF

(5
6n
)

⩽7n
n · 7F

n− n2/3

108 −
1

108

(
n− n2/3

108

)2/3+ n · 2N0n1/3 log2 nF
(5

6n
)

+ n · 2N0n1/3 log2 nF
(5

6n
)

⩽(7n)2F

n− n2/3

108 −
1

108

(
n− n2/3

108

)2/3+ 8n2 · 2N0n1/3 log2 nF
(5

6n
)

⩽(7n)2F

(
n− n2/3

108 −
0.99n2/3

108

)
+ 8n2 · 2N0n1/3 log2 nF

(5
6n
)

Let us repeat this N2 · n1/3 times, until the argument in the first term drops to at most
5
6n.

F (n) ⩽ . . . ⩽ (7n)N2n1/3 · F
(5

6n
)

+ (8n)N2n1/3 · 2N0n1/3 log2 nF
(5

6n
)
.

By choosing N3 sufficienly large, we can thus write

F (n) ⩽2N3n1/3 log2 nF
(5

6n
)
.

Now we solve the recursion as follows.

F (n) ⩽ 2N3n1/3 log2 nF
(5

6n
)

+ 2N3n1/3 log2 n

⩽ 2N3n1/3 log2 n·(1+(5/6)1/3)F

((5
6

)2
n

)
+ 2 · 2N3n1/3 log2 n ⩽ · · · ⩽

⩽ 2N3n1/3 log2 n·
∑∞

i=0(5/6)i/3 ·N4 + log6/5 n · 2N3n1/3 log2 n = 2O(n1/3 log2 n).

Solving the recursion in Lemma 5.13

F (µ) ⩽ max
(
F (µ− 1) + F (µ− µ/54), F (µ− 1) + F (µ− µ/6)

)
= F (µ− 1) + F (µ− µ/54) = F (µ− 1) + F (53/54 µ)

⩽ F (µ− 2) + 2F (53/54 µ)

⩽ · · · ⩽ µ · F (53/54 µ)

⩽ µ2 · F ((53/54)2µ) ⩽ µlog54/53 µ · O(1) = µO(log µ).

157

	Introduction
	Graph coloring
	Cutwidth
	Diameter
	Graph homomorphisms
	Results
	Cutwidth
	Diameter
	Organization of the dissertation

	Preliminaries
	Graph homomorphisms – basic tools
	Non-list variant
	Projective graphs and constructions

	List homomorphisms
	Expressing relations

	Cutwidth
	Algorithm
	Connection to Mimsup
	Exploiting Representative Sets in Dynamic Programming

	Representative sets
	Computing representative sets via half-induced matchings
	Computing representative sets via support rank
	Bounding support rank via local biclique covers

	Prime factorizations and algorithms
	Lower bound
	List homomorphisms and bipartite target graphs
	Gadgets
	Reduction
	List homomorphisms and general target graphs
	Hardness of Hom(H)

	Comparison of parameters
	Comparing him and mimsup
	Comparing him and support rank
	Comparing mimsup and Shannon capacity
	Support rank, covering by bicliques, and Prague dimension

	Diameter
	List 3-Coloring
	Diameter-3 graphs
	Diameter-2 graphs
	Weighted coloring

	Other target graphs
	Odd cycles
	Hardness result

	Other results
	Appendix
	Inequality from Lemma 4.30
	Solving recursive inequalities

