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Abstract

Quadratic harnesses are Markov polynomial processes with linear conditional expecta-

tions and quadratic conditional variances with respect to past-future filtrations. Typically,

they are determined by five numerical constants: η, θ, τ , σ, and q, hidden in the form

of the conditional variances. In the thesis, we derive infinitesimal generators of these

processes, extending the previously known results.

The infinitesimal generator of the quadratic harness is related to a solution

of a q-commutation equation in the algebra Q of infinite sequences of polynomials.

The coordinates of the desired solution satisfy a three-term recurrence, defining a system

of orthogonal polynomials. The corresponding moment functional uniquely determines

the infinitesimal generator and, in certain cases, can be expressed as an integro-differential

operator (acting on polynomials or bounded continuous functions with bounded

continuous second derivatives) with an explicit kernel, where the integration is with

respect to a probabilistic orthogonality measure.

Keywords: polynomial processes, quadratic harnesses, infinitesimal generators,

orthogonal polynomials, algebra of polynomial sequences, three-term recurrence

5





Streszczenie

Kwadratowe harnessy to procesy Markowa będące jednocześnie procesami

wielomianowymi o liniowych warunkowych wartościach oczekiwanych i kwadratowych

wariancjach warunkowych względem przeszło-przyszłej filtracji. Są one zwykle określone

poprzez pięć stałych numerycznych η, θ, τ , σ i q, które występują w postaci warunkowej

wariancji. W rozprawie doktorskiej znajdziemy generatory infinitezymalne tych procesów,

rozszerzając znane wcześniej wyniki.

Generator infinitezymalny kwadratowego harnessu powiązany jest z rozwiązaniem

równania q-komutacyjnego w algebrze Q nieskończonych ciągów wielomianów.

Współrzędne szukanego rozwiązania spełniają formułę trójczłonową, więc definiują

rodzinę wielomianów ortogonalnych. Odpowiadający im funkcjonał momentowy

jednoznacznie wyznacza generator infinitezymalny, który w pewnych sytuacjach można

przedstawić jako operator całkowo-różniczkowy (działający na wielomianach lub

ograniczonych funkcjach ciągłych z ciągłą i ograniczoną drugą pochodną) z jawnym

jądrem, gdzie całkowanie odbywa się względem probabilistycznej miary ortogonalizującej.

Słowa kluczowe: procesy wielomianowe, kwadratowe harnessy, generatory

infinitezymalne, wielomiany ortogonalne, algebra ciągów wielomianów, formuła

trójczłonowa
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Introduction

Harnesses, introduced in the 1960s, were proposed to model long-range misorientation

in the crystalline structure of metals, see [34]. These objects have been extensively ana-

lyzed, even in various abstract settings; however, they are defined using only a first-order

conditional structure.

In [18], analogous objects with a specified second-order conditional structure have

been introduced. These processes, known as quadratic harnesses, are characterized by five

numerical constants. Some well-known examples of quadratic harnesses include Wiener,

Poisson, and Gamma processes.

Transition probabilities of quadratic harnesses can be expressed as the orthogonal-

ity measures of some polynomial sequences associated with Askey-Wilson polynomials,

see [22]. The connection to the orthogonal polynomials is also reflected in free

probability ([3], [4]), and free quadratic harnesses can serve as classical counterparts

of non-commutative processes.

Furthermore, the relationship between quadratic harnesses and asymmetric simple

exclusion processes (ASEPs) has attracted considerable interest. It turns out that the

joint generating function of the invariant measure of ASEP can be expressed in a concise

form using the joint moments of the corresponding quadratic harness, as shown in [25].

This fact is often applied to analyze the asymptotic behavior of ASEP as the number

of sites tends to infinity. The form of the infinitesimal generator of quadratic harness

is helpful in analyzing some of these asymptotics, see Section 4.2 of [25].

Extensive research has been conducted on quadratic harnesses over the years, covering

various aspects, such as their construction, uniqueness, and infinitesimal generators.

However, a universal method for obtaining a formula for the infinitesimal generator in all



possible cases has not yet been proposed. This thesis aims to fill this gap by generalizing

the previously known cases.

The thesis is divided into two parts. The first part is an introduction to the topic.

It also presents a comprehensive proof of the main result along with its conclusions.

The second part focuses on the analysis of infinitesimal generators of quadratic harnesses

for specially chosen parameters.

Let us now introduce a notation that will be used in the thesis.

Notation

Throughout the thesis, we use the following notation: N denotes the set of natural

numbers, i.e., N “ t1, 2, 3, . . .u, R is the set of real numbers, and C is the set of complex

numbers. Additionally, we define N0 as the set NY t0u.

Let A Ď Rd for some d P N. By CpAq, we denote the set of continuous functions

f : A Ñ R, and by C1pAq, we refer to the set of continuously differentiable functions,

i.e., functions f : A Ñ R that are continuously differentiable in the interior of A and can

be continuously extended along with all their partial derivatives to the boundary of A.

Similarly, C2pAq represents the set of twice continuously differentiable functions, where

f : A Ñ R satisfies f P C1pAq and all its (continuously extended to the boundary) partial

derivatives are also in C1pAq.

Furthermore, we consider and fix a probability space pΩ,F ,Pq and use standard

mathematical notation related to the probability theory. For example, the expected

value with respect to P is denoted as E. Moreover, we will consider a stochastic process

pXtqtě0 defined on this probability space. The support of the one-dimensional distribution

of the process at time t ě 0 will be denoted as supppXtq.

Some additional notations, which do not necessarily coincide with standard conven-

tions, will be introduced and explained as needed throughout the thesis.
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Chapter 1

Preliminaries

In the thesis, we study quadratic harnesses, which are Markov processes with specified

first and second conditional moments. Our main objective is to determine the form

of infinitesimal generators of these processes, particularly when they act on polynomials.

To achieve this, we will introduce all relevant concepts here.

1.1. Harnesses

In [34], several concepts of processes that enjoy certain properties of conditional expec-

tations have been introduced. Of particular interest among these concepts are harnesses.

Let us consider an integrable stochastic process pXtqtě0 with past-future filtrations defined

as

Fs,u :“ σtXt : t P r0, ss Y ru,8qu, 0 ď s ă u.

Definition 1.1.1. We say that pXtqtě0 is a harness if it satisfies the following linearity

of regression property for all 0 ď s ă t ă u:

EpXt|Fs,uq “ u´t
u´s

Xs ` t´s
u´s

Xu. (1.1)

Harnesses have been encountered by many authors in their research, often without

realizing it. For instance, [38, Theorem 2] states that every integrable Lévy pro-

cess is a harness. Notably, the Wiener process and the Poisson process are examples

of harnesses.

Harnesses have many interesting properties and applications, see e.g. [8], [33], [35].

We are particularly interested in the case when the second moments of pXtqtě0 are fi-



CHAPTER 1. PRELIMINARIES

nite. To avoid ambiguity (see the comment below Proposition 2.1 in [18]), we assume

throughout the thesis that

EpXtq “ 0 and CovpXs, Xtq “ mints, tu, s, t ě 0. (1.2)

Under this assumption, harnesses satisfy martingale and reverse martingale conditions.

That is, for all 0 ď s ă t,

EpXt|Fďsq “ Xs and EpXs|Fětq “ s
t
Xt,

where Fďs :“ σtXr : 0 ď r ď su and Fěs :“ σtXu : u ě su. Consequently, the following

limits exist almost surely:

lim
tÑ8

1
t
Xt “ 0 and lim

tÑ0`
Xt “ 0. (1.3)

Moreover, it is easy to verify that if pXtqtě0 is a harness, then a time inverse process

ptX1{tqtě0 is also a harness. The time inverse process at time 0 should be understood

according to the almost sure limit, i.e., it is equal to zero almost surely. Proofs of the afore-

mentioned facts can be found in [18].

1.2. Quadratic harnesses

Let us consider a square integrable stochastic process pXtqtě0. The linearity of condi-

tional first moments for harnesses suggests the form of conditional second moments.

Definition 1.2.1. We say that pXtqtě0 is a quadratic harness if it is a harness and for all

0 ď s ă t ă u

EpX2
t |Fs,uq “ At,s,uX

2
s ` Bt,s,uXsXu ` Ct,s,uX

2
u ` Dt,s,uXs ` Et,s,uXu ` Ft,s,u, (1.4)

where At,s,u, . . . , Ft,s,u are some deterministic functions depending only on times s, t and u.

Under assumption (1.2), we get

At,s,us
2

` Bt,s,us ` Ct,s,uu ` Ft,s,u “ t.

16



1.2. QUADRATIC HARNESSES

Moreover, it turns out that these coefficients can be written explicitly in terms of certain

five numerical constants, as stated in [18, Theorem 2.2] (generalized later in [26, Theorem

4.4]):

Theorem 1.2.1. Let pXtqtě0 be a quadratic harness satisfying (1.2). Suppose that

Ft,s,u ‰ 0 for all 0 ď s ă t ă u and that 1, Xs, Xt, X2
s , X2

t , and XsXt are linearly

independent as functions on Ω for all 0 ă s ă t. Then there exist

η, θ P R, σ, τ ě 0 and q ď 1 ` 2
?
στ (1.5)

such that for all 0 ă s ă t ă u

VarpXt|Fs,uq “ Ft,s,uK
`

Xu´Xs

u´s
, uXs´sXu

u´s

˘

,

where Ft,s,u “
pu´tqpt´sq

up1`σtq`τ´qs
and Kpx, yq :“ 1 ` θx ` τx2 ` ηy ` σy2 ´ p1 ´ qqxy.

Moreover, taking the limits u Ñ 8 and s Ñ 0, respectively, leads to the following

identities:

VarpXt|Fďsq “ t´s
1`σs

pσX2
s ` ηXs ` 1q, (1.6)

VarpXt|Fěuq “
tpu´tq
u`τ

´

τ X2
u

u2 ` θXu

u
` 1

¯

,

see [18, (2.27)–(2.28)]. From the form of the conditional variance, we can easily calculate

the second conditional moment and obtain formulas for the coefficients appearing in (1.4)

as follows:

At,s,u “
pu´tqpup1`σtq`τ´qtq
pu´sqpup1`σsq`τ´qsq

, Bt,s,u “
p1`qqpu´tqpt´sq

pu´sqpup1`σsq`τ´qsq
, Ct,s,u “

pt´sqptp1`σsq`τ´qsq

pu´sqpup1`σsq`τ´qsq
,

Dt,s,u “
pu´tqpt´sqpηu´θq

pu´sqpup1`σsq`τ´qsq
, Et,s,u “

pu´tqpt´sqpθ´ηsq

pu´sqpup1`σsq`τ´qsq
.

(1.7)

In the thesis, we will consider only quadratic harnesses for which all moments exist.

In particular, this assumption is satisfied when στ “ 0, see [18, Theorem 2.5]. In all known

cases when all moments exist, the quadratic harness pXtqtě0 is a uniquely determined

Markov process with parameters η, θ, σ, τ , and q, compare with the comment below

Theorem 2.4 in [18]. Hence, in order to refer to a quadratic harness with the appropriate

parameters, we will use QHpη, θ;σ, τ ; qq.

While every integrable Lévy process is a harness, not every square integrable Lévy process

17
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is a quadratic harness. The second-order conditional structure depends on the distribution

of the process.

Example 1.2.2. The Wiener process pWtqtě0 is a harness satisfying (1.2) and

VarpWt|Fs,uq “
pu´tqpt´sq

u´s
, 0 ď s ă t ă u.

Indeed, it is obvious that (1.2) is satisfied. Moreover, by the Markov property we have:

EpWt|Fs,uq “ EpWt|Ws,Wuq and VarpWt|Fs,uq “ VarpWt|Ws,Wuq. (1.8)

To find formulas for these expressions, let us consider a characteristic function

of the random vector pW,Ws,Wuq:

φpx, y, zq :“ E exppixW ` iyWs ` izWuq,

where W :“ pu´sqWt ´pu´ tqWs ´pt´sqWu. Since pWtqtě0 has independent increments,

we get:

φpx, y, zq “ E exp pipz ´ xpt ´ sqqpWu ´ Wtqq ¨ E exp pipxpu ´ tq ` zqpWt ´ Wsqq

¨ E exp pipy ` zqWsq .

Applying the formulas for characteristic functions of normal distributions with zero means

and variances equal to u ´ t, t ´ s, and s, respectively, we obtain

φpx, y, zq “ expp´pu ´ tqpt ´ sqpu ´ sqx2{2 ´ uz2{2 ´ sy2{2 ´ syzq “ φ1pxqφ2py, zq,

where φ1pxq :“ expp´pu´ tqpt´sqpu´sqx2{2q and φ2py, zq :“ expp´uz2{2´sy2{2´syzq.

As a result, W is independent of pWs,Wuq and φ1 is the characteristic function of W .

Moreover,

EW “ φ1
1p0q “ 0 and VarpW q “ EW 2

“ φ2
1p0q “ pu ´ tqpt ´ sqpu ´ sq.

18



1.2. QUADRATIC HARNESSES

Therefore, in view of (1.8),

EpWt|Fs,uq “ 1
u´s

EpW |Ws,Wuq ` u´t
u´s

Ws ` t´s
u´s

Wu “ u´t
u´s

Ws ` t´s
u´s

Wu

and

VarpWt|Fs,uq “ 1
pu´sq2

VarpW |Ws,Wuq “ 1
pu´sq2

VarpW q “
pu´tqpt´sq

u´s
.

As a result, pWtqtě0 is QHp0, 0; 0, 0; 1q, with the parameters identified from the formula

for the conditional variance.

Moreover, we can show the following:

Example 1.2.3. Let pNtqtě0 be a Poisson process with rate λ ą 0 and consider

Yt :“
Nt´λt?

λ
, t ě 0.

Then pYtqtě0 is a harness satisfying (1.2) and

VarpYt|Fs,uq “
pu´tqpt´sq

u´s

´

1 ` 1?
λ
Yu´Ys

u´s

¯

, 0 ď s ă t ă u.

Hence pYtqtě0 is QHp0, 1{
?
λ; 0, 0; 1q.

Moreover, in the class of quadratic harnesses we can find also the following processes:

— QHp0, θ; 0, τ ; 1q – Lévy-Meixner process [43],

— QHp0, 0; 0, 0; qq – classical version of the q-Brownian motion [14] (free Brownian

motion [10] when q “ 0),

— QHpη, θ; 0, 0; qq – bi-Poisson process [19] (quantum Bessel process [9] when q “ 1),

— QHpη, θ;σ, τ ;´στq – free quadratic harness [20].

With harnesses or quadratic harnesses, certain algebraic structures known as near

algebras are associated, which capture changes in conditional expectations that arise from

applying the tower property, as shown in [26]. The algebraic methods described in that

paper facilitate the analysis of these processes, enabling their parametric description.

Similarly, an algebraic language of polynomial sequences has proven to be useful for

quadratic harnesses in other contexts as well, see [24].

19



CHAPTER 1. PRELIMINARIES

1.3. Construction of a quadratic harness

The question of existence of quadratic harnesses for a given set of parameters

is non-trivial. Some constructions have been carried out for a rather wide range of

parameters, see [19], [16], [22], [20], [17], [44], but not for the full range. Moreover, the

parameters in the constructions are given in a complicated and abstruse way, especially

when στ ą 0, compare with [22, Theorem 1.1].

Quadratic harnesses are typically Markov processes with all moments finite. As it can

be found in Section 3.2 of [22], transition probabilities orthogonalize a system of poly-

nomials, specifically Askey-Wilson polynomials with appropriately chosen parameters

and linearly transformed arguments.

It is important to emphasize that the support of a quadratic harness must satisfy

an additional condition.

Remark 1.3.1. For all x P supppXtq, the inequality

1 ` ηx ` σx2 ě 0

holds, as the conditional variance is non-negative almost surely, see (1.6).

In the thesis, we assume that all moments of the quadratic harness we are considering

are finite. However, this assumption may not hold in certain cases. For example, there

exists a quadratic harness with στ ą 0 and q ą 1, where E|Xt|
2`δ “ 8 for all t ą 0

and δ ą 0, see [37].

An example of a wide range of parameters for which the corresponding quadratic harness

exists is

´1 ď q ď 1 ´ 2
?
στ and 0 ď στ ă 1, (1.9)

see [22, Remark 1.3] and [16, Proposition 4.2]. When (1.9) holds with η “ θ “ 0,

the quadratic harnesses have all moments finite. However, it is worth mentioning that

the range of η and θ for which the quadratic harness with all moments finite exists may

be broader. In the thesis, we will make no additional assumptions on η and θ, other than

they are reals.
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1.3. CONSTRUCTION OF A QUADRATIC HARNESS

If all moments are finite, then there exist martingale polynomials, see [24, Section 1.2],

i.e., there exist polynomials tpnpx; tqu8
n“0 satisfying

EppnpXt; tq|Fďsq “ pnpXs; sq (1.10)

for every t ą s ě 0.

Under assumptions (1.9), we have explicit expressions for these polynomials, see [18].

As given in [18, (4.13)], the first three polynomials are:

p0px; tq “ 1, p1px; tq “ x, p2px; tq “ 1
1`σt

x2 ´
pη`θσqt`ητ`θ
p1´στqp1`σtq

x ´ t
1`σt

. (1.11)

The subsequent polynomials satisfy a three-step recurrence for n P N:

xpnpx; tq “ pσαn`1t`βn`1qpn`1px; tq`pγnt`δnqpnpx; tq`pβnt`ταnqωnpn´1px; tq, (1.12)

where tαnu8
n“1, tβnu8

n“1, tγnu8
n“1, tδnu8

n“1 and tωnu8
n“1 are some sequences of coefficients

given in Theorem 4.1. in [18]. Particularly,

ω2 “ p1 ` qq p1´στq2`pη`θσqpθ`ητq

p1´στq2r1´στp2`qqs
. (1.13)

Lemma 4.2 in [18] ensures that

βn ą
?
σταn ě 0 and αn ě 0, n P N.

Therefore, the coefficient of pn`1 in (1.12) is positive for all t ě 0, and thus the polynomials

tpnpx; tqu8
n“0 are well-defined. Moreover, it is worth mentioning that tpnp¨; tqu8

n“0 are

orthogonal with respect to the distribution of Xt, t ě 0.

For more on martingale polynomials and their relations to the quadratic harness, see [40],

[41], [42].

21



CHAPTER 1. PRELIMINARIES

1.4. Quadratic harness as a polynomial process

Since the coefficients in the recurrence (1.12) are affine functions of t ě 0, and the coeffi-

cient at pn`1 is positive, the martingale polynomials tpnpx; tqu8
n“0 satisfy for all n P N0:

pnpx; tq “

n
ÿ

k“0

ak,nptqxk,

and

xn “

n
ÿ

k“0

bk,nptqpkpx; tq,

where ak,n and bk,n are some rational functions of t, well-defined for all t ě 0,

k “ 0, 1, . . . , n, hence they are in C1pr0,8qq. Consequently,

EpXn
t |Xsq “ ErEpXn

t |Fďsq|Xss “

n
ÿ

k“0

bk,nptqpkpXs; sq,

and

EpXn
t |Xs “ xq “

n
ÿ

k“0

bk,nptqpkpx; sq “

n
ÿ

k“0

bk,nptq

˜

k
ÿ

l“0

al,kpsqxl

¸

“

n
ÿ

l“0

˜

n
ÿ

k“l

al,kpsqbk,nptq

¸

xl.

Hence for any polynomial f of degree at most n,

EpfpXtq|Xs “ xq

is a polynomial in variable x of degree at most n. Furthermore, the function

ps, tq ÞÑ EpfpXtq|Xs “ xq

is in C1pΓq, where

Γ :“ tps, tq P R2 : 0 ď s ď tu. (1.14)

Processes with these properties are called polynomial processes. Let us recall the formal

definition of polynomial processes, based on definitions provided in [1] and [2].

Definition 1.4.1. We say that pXtqtě0 is an m-polynomial process, m P N0, if for any

polynomial f of degree at most k ď m, the following two conditions hold:
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1. EpfpXtq|Xs “ xq is a polynomial in variable x of degree at most k,

2. ps, tq ÞÑ EpfpXtq|Xs “ xq is in C1pΓq.

Definition 1.4.2. We say that pXtqtě0 is a polynomial process if pXtqtě0 is

an m-polynomial process for all m P N0.

Polynomial processes were first introduced by Cuchiero [29] in the time-homogeneous

case. In that case, the second condition in the definition of an m-polynomial process can

be relaxed to functions belonging to CpΓq instead of C1pΓq.

Applications of polynomial processes in finance and insurance mathematics, as discussed

in [30], have generated significant interest and extensive research over the past decade.

Furthermore, some extensions of polynomial processes to more abstract settings have been

proposed in [31], [32], [7], and [6]. In these papers, substantial effort has been dedicated to

investigating properties of infinitesimal generators of polynomial processes. Specifically,

they aim to use infinitesimal generators in the context of a martingale problem and thus

simplify the computation of certain expectations.

Consequently, providing explicit formulas for infinitesimal generators for a wide class

of polynomial processes is of considerable interest.

1.5. Infinitesimal generators of quadratic harnesses

Denote by tPs,tpx, dyq : x P R, 0 ď s ă tu the transition probabilities of a quadratic

harness pXtqtě0. Since, in general, pXtqtě0 is a non-homogeneous Markov process, we have

to consider right and left infinitesimal generators indexed by a time variable t ě 0.

We say that A`
t is a weak right infinitesimal generator if

pA`
t fqpxq :“ lim

hÑ0`

EpfpXt`hq|Xt“xq´fpxq

h
“ lim

hÑ0`

ż

R

fpyq´fpxq

h
Pt,t`hpx, dyq (1.15)

for all t ě 0 and for all functions f for which this limit exists pointwise. Then we say

that f is in the domain of A`
t and denote this fact as f P DpA`

t q.

Analogously, A´
t is a weak left infinitesimal generator if

pA´
t fqpxq :“ lim

hÑ0`

EpfpXtq|Xt´h“xq´fpxq

h
“ lim

hÑ0`

ż

R

fpyq´fpxq

h
Pt´h,tpx, dyq (1.16)
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for t ą 0 and f as above. The domain of A´
t is denoted by DpA´

t q. For homogeneous

processes, the two operators coincide and do not depend on time t. However, in general,

these two operators may not coincide, see [13, Example 2.1].

For quadratic harnesses, the infinitesimal generators act nicely on martingale polynomi-

als. Indeed, the Markov property implies that EppnpXt, tq|Fďt´hq “ EppnpXt, tq|Xt´hq,

and according to (1.10), we have

A´
t ppnpx; tqq “ lim

hÑ0`

EppnpXt; tq|Xt´h “ xq ´ pnpx; tq

h

“ lim
hÑ0`

pnpx; t ´ hq ´ pnpx; tq

h
“ ´ B

Bt
pnpx; tq.

With some additional effort (see Section 1.4 in [24] or Lemma 2.1 in [23]), it can be shown

that

A`
t ppnpx, tqq “ ´ B

Bt
pnpx; tq.

Hence, by linearity, for any polynomial f , we have f P DpA´
t q X DpA`

t q and

A`
t f “ A´

t f.

Thus, when considering polynomials, we can use the same symbol At for both operators.

Furthermore, Agoitia-Hurtado proved that for any polynomial process (a quadratic har-

ness in particular), there exists a Banach space of polynomials up to degree m P N0

such that pointwise convergence of At implies convergence in the norm of this space.

For more details, refer to Proposition 2.2.10 in [1]. Moreover, Lemma 2.2.8 therein pro-

vides a formula for At acting on any polynomial f : if

EpfpXtq|Xs “ xq “

k
ÿ

l“0

αf
l ps, tqxl, (1.17)

then αf
l ps, tq P C1pΓq (recall (1.14)) for all l “ 0, 1, . . . , k, and

pAtfqpxq “

k
ÿ

l“0

B

Bt
αf
l ps, tqxl|s“t. (1.18)

This representation strongly depends on the form of the polynomial f , in particular

on the coefficients presented on the right-hand side of (1.17). Our objective is to find
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1.5. INFINITESIMAL GENERATORS OF QUADRATIC HARNESSES

an alternative form of the infinitesimal generator that is independent of f and instead

reflects an underlying structure of the stochastic process under investigation.

Over the years, various approaches have been proposed to derive explicit formu-

las for the infinitesimal generators of quadratic harnesses, with different restrictions

on the parameters η, θ, σ, τ , and q, see [11], [5], [15], [23] (generalized later in [25]),

and [24]. All these representations lead to an integro-differential operator of the form

pAtfqpxq “
1`ηx`σx2

1`σt

ż

R

B

Bx

´

fpyq´fpxq

y´x

¯

νx,tpdyq, (1.19)

where νx,t is a probability measure. Within this approach, in order to determine the

infinitesimal generator At, one needs to determine the measure νx,t.

Let us analyze the Wiener process as an example.

Example 1.5.1. Recall that the Wiener process pWtqtě0 is a quadratic harness

QHp0, 0; 0, 0; 1q, see Example 1.2.2. Since pWtqtě0 is also a Markov process with inde-

pendent and stationary increments, we have

EpW k
t |Ws “ xq “ EppWt ´ Ws ` xq

k
|Ws “ xq “ EpWt´s ` xq

k

for all t ą s ě 0. Using the binomial formula, we obtain

EpW k
t |Ws “ xq “

k
ÿ

l“0

ˆ

k

l

˙

xk´lEW l
t´s “

k
ÿ

l“0

ˆ

k

l

˙

xk´l
pt ´ sql{2EW l

1,

where in the last equality we used the fact that Wt´s
d
“

?
t ´ sW1. Since EW1 “ 0 and

EW 2
1 “ 1, formula (1.18) implies

Atpx
k
q “

$

&

%

0, k “ 0, 1,

kpk´1q

2
xk´2, k ě 2.

This formula can also be obtained by direct calculation, recall (1.15). It is worth noting

that Atpx
kq can be rewritten as

Atpx
k
q “

ż

R

B

Bx

´

yk´xk

y´x

¯

δxpdyq, k P N0,
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where δx is a Dirac measure concentrated at x. In fact, this holds true for k “ 0, 1.

Moreover, for k ě 2, we have

ż

R

B

Bx

´

yk´xk

y´x

¯

δxpdyq “

k´1
ÿ

l“1

ż

R

lxl´1yk´1´lδxpdyq “ xk´2
k´1
ÿ

l“1

l “
kpk´1q

2
xk´2.

As a result, by linearity, we get

pAtfqpxq “

ż

R

B

Bx

´

fpyq´fpxq

y´x

¯

δxpdyq.

Thus, for the Wiener process, equation (1.19) holds with νx,t “ δx.

Our aim in this thesis is to derive a formula for the measure νx,t appearing in (1.19)

in the general case of any quadratic harness QHpη, θ;σ, τ ; qq satisfying (1.9). This measure

will be expressed as the orthogonality measure of a certain family of polynomials that

satisfy a three-step recurrence.

1.6. Main result of the thesis

In [44], we extended the algebraic approach from [24] to incorporate the framework

of orthogonal polynomials established in [23]. This extension enabled us to close the prob-

lem of finding the infinitesimal generators in the case σ “ 0. However, in order to

obtain formulas for the infinitesimal generators in all relevant cases, including those

that are currently unknown or difficult to derive directly, as will be seen in the thesis,

a considerable effort is required to develop the methodology of [24] and [44].

Before we state our main theorem, let us introduce the q-notation:

rnsq “ 1 ` q ` . . . ` qn´1 for n P N and, by convention, rnsq “ 0 for n ď 0. (1.20)

For the sake of brevity, we will also use the following notation:

ξ :“ 1 ` q `
a

p1 ´ qq2 ´ 4στ, (1.21)

and

ξ0 :“
4pτ`p1´qqt`σt2q

ξ2
, ξ1 :“

2p1`σtq
ξ

´ 1, ξ2 :“
2pθ´ηtq

ξ
. (1.22)
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Under assumptions (1.9), we clearly have ξ ą 0. Consequently, ξ0, ξ1, and ξ2 are

well-defined.

Now we are ready to present the main result of the thesis (the notions related to

orthogonal polynomial theory, that appear in the statement of the theorem, are explained

in the appendix):

Theorem 1.6.1. Assume (1.9). Then the infinitesimal generator of QHpη, θ;σ, τ ; qq

acting on an arbitrary polynomial f is given by

pAt fqpxq “
1`ηx`σx2

1`σt
Lx,t,η,θ,σ,τ,q

”

B

Bx
fpyq´fpxq

y´x

ı

,

where Lx,t,η,θ,σ,τ,q is a normalized moment functional for a weak orthogonal polynomial

sequence tĂWnp¨;x, tqu8
n“0 satisfying a three-step recurrence:

ĂW´1py;x, tq “ 0, ĂW0py;x, tq “ 1,

yĂWnpy;x, tq “ ĂWn`1py;x, tq ` ranpxqĂWnpy;x, tq ` rbnpxqĂWn´1py;x, tq, n P N0,
(1.23)

with

ranpxq :“ ξ0
rns

rqrn`1s
rq

1`ξ1r2n`1s
rq

pσprγn`1pxq ` rγnpxqq ` ηq ` rγn`1pxq,

rbnpxq :“ ξ0
rns

rqrn`1s
rqp1`ξ1rn´1s

rqqp1`ξ1rns
rqq

p1`ξ1r2n´1s
rqqp1`ξ1r2n`1s

rqq
p1 ` rγnpxqpσrγnpxq ` ηqq ,

where

rγnpxq :“
xrqn`ηξ0rns2

rq`ξ2rns
rqp1`ξ1rns

rqq

1`ξ1r2ns
rq

and

rq :“ 4pq`στq

ξ2
. (1.24)

Moreover, if 1 ` ηx ` σx2 ą 0, then we have an integro-differential representation:

pAt fqpxq “
1`ηx`σx2

1`σt

ż

R

B

Bx

´

fpyq´fpxq

y´x

¯

νx,t,η,θ,σ,τ,qpdyq,

where νx,t,η,θ,σ,τ,q is the probabilistic orthogonality measure for the polynomials

tĂWnp¨;x, tqu8
n“0.

Note that the polynomials tĂWnpy;x, tqu8
n“0 depend on t through the parameters ξ0, ξ1,

and ξ2.
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Furthermore, every x from the support of Xt, t ě 0, satisfies 1 ` ηx` σx2 ě 0, as stated

in Remark 1.3.1. If the inequality is strict, Theorem 1.6.1 gives an integro-differential

representation. In the case of equality, the conditional variance (1.6) vanishes,

so x is an absorbing state and At is a zero operator.

Remark 1.6.2. When στ “ 0, conditions (1.9) reduce to the assumption that ´1 ď q ď 1.

In this case, we have ξ “ 1 ` q ` |1 ´ q| “ 2 and

ξ0 “ τ ` p1 ´ qqt ` σt2, ξ1 “ σt, ξ2 “ θ ´ ηt, rq “ q.

Let us now consider the example of the Wiener process again and see what the theorem

implies in this case.

Example 1.6.3. Recall that the Wiener process is a quadratic harness QHp0, 0; 0, 0; 1q.

Hence, we have ξ0 “ 0, and the formulas for ran and rbn simplify to

ran “ x and rbn “ 0, n P N0.

Therefore, the three-step recurrence takes the following form:

ĂW´1py;x, tq “ 0, ĂW0py;x, tq “ 1,

yĂWnpy;x, tq “ ĂWn`1py;x, tq ` xĂWnpy;x, tq, n P N0.

Consequently, ĂWnpy;x, tq “ py´xqn, n P N0, and the polynomial sequence tĂWnpy;x, tqu8
n“0

is orthogonal with respect to the Dirac measure at x. Indeed, it is easy to see that

ż

R

ĂWnpy;x, tqĂWkpy;x, tqδxpdyq “

ż

R

py ´ xq
n`kδxpdyq “ 1tn“k“0u.

Therefore, in the case of the Wiener process, Theorem 1.6.1 provides the results that

are consistent with those presented in Example 1.5.1.

1.7. Organization of the thesis

The thesis is organized as follows.

In the next chapter, we will provide an overview of the algebra Q of all infinite se-

quences of polynomials and give the necessary tools for the subsequent analysis in this
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chapter. Then, we will present the proof of Theorem 1.6.1, which we will divide into

two parts. In the first part, we are going to show that the case στ ą 0 can be re-

duced to the case τ “ 0. In the second part, we will give a proof for the remaining

case στ “ 0 under additional assumptions (Assumptions A1–A3). The reason for using

Assumptions A1–A3 here is that they make the proof of Theorem 1.6.1 much easier;

we will put a great deal of effort later to show that these assumptions are, in fact, implied

by (1.9) along with στ “ 0.

Chapter 3 is devoted to extending the domain of the infinitesimal generator by in-

cluding a class of bounded continuous functions with bounded continuous second deriva-

tives. To do this, we will be using weak convergence of certain measures to the measure

νx,t,η,θ,σ,τ,q, appearing in Theorem 1.6.1.

As it was mentioned earlier, extensive additional work is required to prove that

Assumptions A1–A3 are implied by (1.9) combined with στ “ 0. This work is done

in Chapters 4–6.

Chapters 4 and 5 present some additional results on the algebra Q that were not

covered in Chapter 2. In particular, we introduce there certain linear subspaces of Q,

define some linear operators on Q, and study properties of specially chosen elements of Q.

The results on Q introduced in Chapters 4 and 5 are crucial for the task of proving

that Assumptions A1–A3 follow from (1.9) and στ “ 0, what is the content of Chapter 6.

In Chapters 7–9 we study the infinitesimal generators of quadratic harnesses in special

cases: QHpη, θ;σ, τ ;´στq, QHpη, θ;σ, τ ;´1q, QHpη, θ;σ, τ ; 1 ´ 2
?
στq. We will analyze

their properties, and verify that the relevant results obtained in Chapters 2 and 3 coincide

with those known from the literature.

Chapter 10 is a short summary with a discussion of the conclusions drawn from the re-

sults presented in the thesis.

In the appendix, we recall some basic results from the theory of orthogonal poly-

nomials. We also clarify and unify certain terminological issues resulting from various

approaches found in the literature.
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Chapter 2

Proof of Theorem 1.6.1

In this chapter, we present a proof of the main theorem of the thesis. The presented

proof works under additional assumptions (Assumptions A1–A3). This allows us to high-

light the main steps of the proof and, hopefully, enhance its readability. A very technical

task of replacing Assumptions A1–A3 with assumptions (1.9) appearing in Theorem 1.6.1

is postponed to Chapters 4–6.

We start by introducing the algebra Q of infinite sequences of polynomials, which

plays a crucial role in our analysis.

2.1. Algebra of infinite sequences of polynomials

The algebra Q of all infinite sequences of polynomials was introduced in [24] to study

the properties of polynomial processes. It is defined as a linear space of all infinite se-

quences of polynomials in a real variable x, with a non-commutative multiplication R “ PQ

for P “ pP0, P1, . . .q, Q “ pQ0, Q1, . . .q, and R “ pR0, R1, . . .q P Q given by

Rkpxq “

degpQkq
ÿ

j“0

rQksjPjpxq, k ě 0, (2.1)

where rQksj denotes the coefficient at xj in the polynomial Qk. The element

E “ p1, x, x2, x3, . . .q (2.2)

is then the identity in Q. Furthermore, if degPn “ n for all n P N0, then P “ pP0, P1, . . .q

is invertible in Q, see e.g. Proposition 1.2 in [24].
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We single out two elements of Q that will play a fundamental role in the subsequent

analysis:

D :“ p0, 1, x, x2, . . .q and F :“ px, x2, x3, . . .q. (2.3)

It can be easily verified that

DF “ E, (2.4)

but E ´ FD “ p1, 0, 0, . . .q, so D and F do not commute. Moreover, for any element

P “ pP0, P1, . . .q P Q we have

PpE ´ FDq “ P0pxqpE ´ FDq. (2.5)

Another key element under study is defined as follows:

Dq :“
8
ÿ

k“0

qkFkDk`1. (2.6)

Since Dk has zeros in the first k coordinates, the series in the above expression consists

of finite sums in each coordinate. Consequently, Dq is well-defined as an element of Q.

Moreover, in terms of the q-notation, recall (1.20), we can express it as:

Dq “ p0, r1sq, r2sqx, r3sqx
2, . . .q. (2.7)

In particular,

D1 “ p0, 1, 2x, 3x2, . . .q (2.8)

represents the classical derivative. Furthermore, in view of (2.5),

DqpE ´ FDq “ 0. (2.9)

By 0 we will denote the element of Q with all entries equal to zero, i.e., 0 :“ p0, 0, 0, . . .q.

If X P Q additionally depends on a parameter z P R, we will write Xpzq. It should be

understood that each coordinate of Xpzq is a polynomial in the variable x with coefficients

that depend on z.

In the thesis, we will need to evaluate the product XpzqYpzq at z :“ x. However,
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this operation requires caution, as even if Xpzq|z:“x, Ypzq|z:“x P Q, the equality

pXpzqYpzqq|z:“x “ Xpzq|z:“x Ypzq|z:“x may not hold, as shown in the following example.

Example 2.1.1. Let Xpzq “ Ypzq “ zpE ´ FDq. Then Xpzq|z:“x “ FpE ´ FDq P Q, and

Xpzq|z:“x Ypzq|z:“x “ 0 by (2.4). However,

pXpzqYpzqq|z:“x “ pz2pE ´ FDqq|z:“x “ F2
pE ´ FDq.

On the other hand, the following identity holds:

`

Xpzq|z:“xYpzq
˘

|z:“x “ pzFpE ´ FDqq|z:“x “ F2
pE ´ FDq.

It is not a coincidence that the last two expressions in the above example are equal.

Remark 2.1.2. Let Xpzq,Ypzq P Q for all z P R. Suppose that all coordinates of Xpzq

are polynomials in z. Then Xpzq|z:“x P Q, and

pXpzqYpzqq|z:“x “
`

Xpzq|z:“xYpzq
˘

|z:“x.

Proof. Given the assumption that all coordinates of Xpzq are polynomials in z, we see that

the nth coordinate of Xpzq evaluated at z :“ x is a polynomial in x, i.e., Xpzq|z:“x P Q.

Note that Xnpzq and Ynpzq, the nth coordinates of Xpzq and Ypzq, respectively, can be

written as

Xnpzq “

Mn
ÿ

k“0

ak,npzqxk and Ynpzq “

Nn
ÿ

k“0

bk,npzqxk

for some Mn, Nn P N0 and some coefficients tak,npzqu
Mn
k“0 P RMn`1, tbk,npzqu

Nn
k“0 P RNn`1,

n P N0. Then, by (2.1), the nth coordinate of XpzqYpzq is equal to

Nn
ÿ

k“0

bk,npzq

Mk
ÿ

m“0

am,kpzqxm,

while the nth coordinate of Xpzq|z:“xYpzq is equal to

Nn
ÿ

k“0

bk,npzq

Mk
ÿ

m“0

am,kpxqxm.
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Therefore, by looking at these two objects as functions of z and inserting z :“ x, we

obtain the desired equality coordinate-wise.

2.2. Infinitesimal generator as an element of the algebra Q

As mentioned in the introduction, the infinitesimal generator At of the quadratic

harness QHpη, θ;σ, τ ; qq when acting on a polynomial also gives a polynomial. As a

result, we can represent At, t ě 0, as an element At P Q with the nth coordinate given

by Atpx
nq for n P N0, i.e.,

At “
`

Atp1q,Atpxq,Atpx
2
q, . . .

˘

,

see [24, Section 1.4]. Furthermore, it is obvious how to recover the formula for At acting

on polynomials from the element At (by using the linearity of At).

As [24] shows, using the language of the abstract algebra can be beneficial as it makes

it easier to encode and represent some properties of quadratic harnesses. Also, algebraic

formulations make proofs of many facts simpler and more universal. Moreover, it seems

difficult to directly observe some of the relations proved in [24] without employing the

algebraic framework.

In particular, it turns out that

Ht :“ AtF ´ FAt, (2.10)

which will be called a pre-generator, satisfies the q-commutation equation:

p1`σtqHtF´pq´σtqFHt “ E`ηF`σF2
`pθ´ηtqHt`pτ`p1´qqt`σt2qH2

t , t ě 0, (2.11)

with the initial condition

HtpE ´ FDq “ 0, (2.12)

compare with [24, Theorem 2.1]. Proposition 2.4 in [24] states that if στ ‰ 1, then Ht is

the unique solution of the q-commutation equation (2.11) with the initial condition (2.12).

From this fact, we can recover At using the formula:

At “

8
ÿ

k“0

FkHtD
k`1, (2.13)
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see [24, (3.8)]. The series (2.13) is well-defined since Dk`1 has zeros on the first

k` 1 coordinates (and consequently, the series has a finite number of nonzero summands

coordinate-wise).

Direct, purely algebraic solutions of the q-commutation equation have been found in

only two cases: free quadratic harnesses QHpη, θ;σ, τ ;´στq and the classical version

of quantum Bessel processes QHpη, θ; 0, 0; 1q, which are discussed in Chapters 7 and 9,

respectively. A solution is also known when σ “ 0, see [44]. However, this one does not

follow from the q-commutation equation only; instead, it requires an additional object—an

auxiliary family of certain orthogonal polynomials.

The goal of this thesis is to show that the approach presented in [44], combining the

q-commutation equation with some supplemental orthogonal polynomials, can be applied

in general. However, the extension is far from being straightforward. Therefore, in this

chapter, we provide an outline of the main ideas used to prove Theorem 1.6.1. This

will also motivate the introduction of various auxiliary tools and highlight some useful

identities involving special elements of the algebra Q.

We consider two cases separately: στ ą 0 and στ “ 0. Firstly, we will show that the

case στ ą 0 can be reduced to the case τ “ 0. Secondly, we will provide the proof when

στ “ 0 under additional assumptions (Assumptions A1–A3).

2.2.1. Algebraic infinitesimal generator when στ ą 0.

Let us consider the pre-generator Ht of QHpη, θ;σ, τ ; qq with the parameters satisfying

στ ą 0 and (1.9). Under these conditions, Ht is uniquely determined by (2.11) and (2.12)

since στ ‰ 1. We will show that the case στ ą 0 can be reduced to the case τ “ 0.

Proposition 2.2.1. Assume στ ą 0 and (1.9). Then the infinitesimal generator At of

QHpη, θ;σ, τ ; qq at time t ě 0 is given by

At “ 2
ξ
pA

rt, (2.14)

where pA
rt P Q is an infinitesimal generator of QHpη, rθ;σ, 0; rqq at time rt ě 0.

The expressions for ξ and rq can be found in (1.21) and (1.24), respectively. Additionally,
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rθ along with rt are defined as:

rθ :“ 2θ
ξ

`
4ητ

ξ
´

1´q`
?

p1´qq2´4στ
¯ (2.15)

and

rt :“ 4pτ`p1´qqt`σt2q

ξ
´

1´q`2σt`
?

p1´qq2´4στ
¯ . (2.16)

We will prove an auxiliary lemma that ensures that the parameters mentioned in the

statement of Proposition 2.2.1 are well-defined under the given assumptions.

Lemma 2.2.2. Assuming στ ą 0 and (1.9), the parameters rθ, rt, and rq are well-defined

and satisfy

rt ě 0 and rq P r´1, 1s.

Proof. As explained in the introduction, ξ given in (1.21) is positive. Furthermore,

1 ´ q `
a

p1 ´ qq2 ´ 4στ ą 0 since

1 ´ q ě 2
?
στ ą 0. (2.17)

Moreover, 1´q`2σt`
a

p1 ´ qq2 ´ 4στ ą 0 because 2σt ě 0. As a result, all denominators

used in the expressions for rq, rθ, and rt are nonzero. Thus rq, rθ and rt are well defined.

Let us proceed to the second part of the proof. Note that rt ě 0 since t ě 0, 1´ q ą 0 and

σ, τ ě 0, see (1.5).

Moreover, (2.17) yields that p1 ´ qq2 ě 4στ , hence

p1 ´ qq2 ´ 4στ ` p1 ` qq
a

p1 ´ qq2 ´ 4στ ě 0.

The above implies that rq ď 1. On the other hand, the condition rq ě ´1 is equivalent to

p1 ` qq2 ` p1 ` qq
a

p1 ´ qq2 ´ 4στ “ p1 ` qqξ ě 0,

which follows from (1.9).

Since all parameters are well-defined, the remaining task is to prove the formula (2.14).
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Proof of Proposition 2.2.1. Direct calculations show that:

ξ
2
p1 ` σrtq “ 1 ` σt, ξ

2
prq ´ σrtq “ q ´ σt,

ξ
2
prθ ´ ηrtq “ θ ´ ηt, ξ2

4
p1 ´ rq ` σrtqrt “ τ ` p1 ´ qqt ` σt2.

(2.18)

Define G :“ ξ
2
Ht. In terms of G, the q-commutation equation (2.11) takes the form:

p1 ` σrtqGF ´ prq ´ σrtqFG “ E ` ηF ` σF2
` prθ ´ ηrtqG ` p1 ´ rq ` σrtqrtG2

with the initial condition GpE ´ FDq “ 0. Therefore, from the uniqueness of the solution

of the q-commutation equation, G is the pre-generator of QHpη, rθ;σ, 0; rqq at time rt ě 0.

In view of (2.13), we get the desired result.

Summing up, we have shown that it is sufficient to find the solution to the q-commutation

equation only in the case when στ “ 0 and q P r´1, 1s. By choosing the parameters

appropriately and applying the time scaling (2.16), we can then obtain the formula for

the pre-generator (or equivalently the infinitesimal generator) in the general case.

2.2.2. Algebraic infinitesimal generator when στ “ 0.

In this case, we prove the result under additional assumptions (Assumptions A1–A3).

To formulate these assumptions, we need to introduce some additional objects. According

to Remark 1.6.2, the parameters ξ0 and ξ2 simplify considerably when στ “ 0. To

avoid confusion and the need for frequent referencing to the assumption στ “ 0, we will

introduce new parameters:

κ0 :“ τ ` p1 ´ qqt ` σt2 and κ2 :“ θ ´ ηt, (2.19)

which are versions of ξ0 and ξ2 with στ “ 0 applied. Similarly, by tWnp¨; z, tqu8
n“0 we will

mean the polynomials tĂWnp¨; z, tqu8
n“0 when στ “ 0. Thus, the three-step recurrence for

tWnp¨; z, tqu8
n“0 takes the form:

W´1px; z, tq “ 0, W0px; z, tq “ 1,

xWnpx; z, tq “ Wn`1px; z, tq ` anpzqWnpx; z, tq ` bnpzqWn´1px; z, tq, n ě 0,
(2.20)
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with

anpzq :“ κ0
rnsqrn`1sq

1`σtr2n`1sq
rσpγn`1pzq ` γnpzqq ` ηs ` γn`1pzq,

bnpzq :“ κ0
rnsqrn`1sqp1`σtrn´1sqqp1`σtrnsqq

p1`σtr2n´1sqqp1`σtr2n`1sqq
r1 ` γnpzqpσγnpzq ` ηqs

and

γnpzq :“
zqn`ηκ0rns2q`κ2rnsqp1`σtrnsqq

1`σtr2nsq
. (2.21)

Instead of the original q-commutation equation (2.11), we consider a similar version given

by:

p1 ` σtqrHtF ´ pq ´ σtqFrHt “ E ` κ2rHt ` κ0rHtRpEqrHt (2.22)

with the initial condition
rHtpE ´ FDq “ 0, (2.23)

where R : Q Ñ Q acts on any element X P Q as follows:

RpXq :“ E ` ηXF ` σpXFq
2. (2.24)

If rHt satisfies (2.22) and (2.23), then Ht “ RpEqrHt satisfies (2.11) and (2.12). Con-

sequently, such Ht is the pre-generator of QHpη, θ;σ, τ ; qq due to the uniqueness

of the solution of the q-commutation equation, as stated in Proposition 2.4 in [24].

Therefore, we will focus on solving (2.22). We will associate rHt with the polynomials

tWnp¨; z, tqu8
n“0 in the variable x given by (2.20). In the algebra Q, we represent these

polynomials as Wpz, tq:

Wpz, tq :“ pW0px; z, tq,W1px; z, tq,W2px; z, tq, . . .q . (2.25)

Every polynomial Wn is a monic polynomial of degree n in the variable x, so [24, Propo-

sition 1.2] implies that Wpz, tq is invertible (with the inverse denoted as Wpz, tq´1).

From the definition of multiplication in Q, we can express the three-step recurrence (2.20)

algebraically as follows:

FWpz, tqD ` E ´ FD “ Wpz, tqSpz, tq, (2.26)
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where Spz, tq P Q with its nth coordinate given by

xn ` an´1pzqxn´1
` bn´1pzqxn´2, n P N0. (2.27)

According to the assumed q-notation convention (recall (1.20)), the above expression

should be interpreted as 1 when n “ 0, and x ` a0pzq when n “ 1. Consequently,

Spz, tqpE ´ FDq “ E ´ FD

by (2.5). As a result, in view of (2.4), multiplying (2.26) from the right by E ´ FD and

F, respectively, leads to the following equations:

Wpz, tqpE ´ FDq “ E ´ FD (2.28)

and

FWpz, tq “ Wpz, tqSpz, tqF. (2.29)

After collecting all the necessary identities for Wpz, tq, we can return to the question of

finding a solution of (2.22) satisfying the initial condition (2.23). Let

Z :“ pE ` σtFDqqDq. (2.30)

Below we present Assumptions A1–A3 that have been mentioned at the beginning of

Chapter 2.

Assumption A1:

For all z P R and t ě 0, there exist invertible elements Upz, tq,Ypz, tq P Q satisfying

DqYpz, tq “ Upz, tqZ.

Assumption A2:

For every z P R, t ě 0, and for Upz, tq and Ypz, tq from Assumption A1, we have

p1 ` σtqDqSpz, tqFYpz, tq ´ pq ´ σtqUpz, tqSpz, tqFZ

“ Upz, tqYpz, tq ` κ2DqYpz, tq ` κ0DqRpSpz, tqqZ.
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Assumption A3:

For all z P R and t ě 0, and for Upz, tq from Assumption A1, there exists rUpz, tq P Q such

that

Upz, tq´1DqSpz, tqF ´ Spz, tqFUpz, tq´1Dq “ pSpz, tqF ´ zEqrUpz, tq ` 1
1`σt

pE ´ FDq.

Throughout this chapter, we will proceed under these assumptions.

Proposition 2.2.3. Given Assumptions A1–A3, for all z P R and t ě 0, we have:

rHt “ Wpz, tqUpz, tq´1DqWpz, tq´1, (2.31)

rMt :“ rHtF ´ FrHt “ pF ´ zEqWpz, tqrUpz, tqWpz, tq´1
` 1

1`σt
pE ´ FDqWpz, tq´1. (2.32)

Proof. Fix z P R and t ě 0. From now on, we suppress pz, tq as arguments of functions

with values in Q.

To prove (2.31), we need to show that WU´1DqW´1 satisfies both (2.23) and (2.22). Let

us begin with the initial condition. Using (2.28) and (2.9), we have

WU´1DqW
´1

pE ´ FDq “ WU´1DqpE ´ FDq “ 0,

so (2.23) holds.

Next, we will show that (2.22) is also satisfied. Multiplying the formula from Assump-

tion A2 from the left by WU´1 and from the right by Y´1W´1, and using Assumption A1,

we obtain

p1 ` σtqWU´1DqSFW´1
´pq ´ σtqWSFU´1DqW

´1

“ E ` κ2WU´1DqW
´1

` κ0WU´1DqRpSqU´1DqW
´1.

According to (2.29), we have RpEqW “ WRpSq. Hence we can rewrite the above equation

as

p1 ` σtqWU´1DqW
´1F ´ pq ´ σtqFWU´1DqW

´1

“ E ` κ2WU´1DqW
´1

` κ0WU´1DqW
´1RpEqWU´1DqW

´1.

This equation is exactly (2.22) with rHt replaced by WU´1DqW´1. Therefore, we have
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proven that (2.31) holds.

To prove (2.32), we multiply the formula in Assumption A3 from the left by W and from

the right by W´1 to obtain

WU´1DqSFW´1
´ WSFU´1DqW

´1
“ WpSF ´ zEqrUW´1

` 1
1`σt

WpE ´ FDqW´1.

Formulas (2.29) and (2.28) lead to

WU´1DqW
´1F ´ FWU´1DqW

´1
“ pF ´ zEqWrUW´1

` 1
1`σt

pE ´ FDqW´1.

Finally, by substituting (2.31) into the above equation, we obtain (2.32). This completes

the proof.

Thus, we have found the solution rHt of (2.22) satisfying (2.23). However, we have done so

under the additional assumptions. As it will be shown in Chapters 4–6, these assumptions

are in fact implied by (1.9). Also in Chapters 5 and 6, some explicit formulas for Upz, tq,

Ypz, tq, and rUpz, tq will be revealed.

The solution rHt is given in terms of Wpz, tq and Upz, tq. However, due to com-

plicated formulas for these elements, a direct deduction of Theorem 1.6.1 from

the formula (2.31) seems to be challenging. Surprisingly, a more effective approach follows

via the identity (2.32). A striking feature of this approach is that the explicit formula

for rUpz, tq is irrelevant.

The most important term is F ´zE, since F ´zE|z:“x “ 0. In fact, note that the left-hand

side of (2.32) does not depend on z, while the right-hand side does (z appears not only

in the expression F ´ zE, but also in W “ Wpz, tq and rU “ rUpz, tq). Hence,

rMt “ rMt|z:“x “ pF ´ zEqWpz, tqrUpz, tqWpz, tq´1
|z:“x ` 1

1`σt
pE ´ FDqWpz, tq´1

|z:“x.

Consequently, Remark 2.1.2 yields

rMt “ 1
1`σt

pE ´ FDqWpz, tq´1
|z:“x. (2.33)
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From the initial condition for rHt, we obtain rHtFD “ rHt. Therefore, we can easily recover
rHt from rMt by iterating the equality rHt “ rMtD ` FrHtD. This immediately leads to

rHt “

8
ÿ

k“0

Fk
rMtD

k`1,

where, coordinate-wise, all sums have finite numbers of nonzero terms. Hence,

Ht “ RpEqrHt “ RpEq

8
ÿ

k“0

Fk
rMtD

k`1 (2.34)

is a solution of the q-commutation equation (2.11). By (2.13) we get a formula for At

from (2.34).

However, the form of At stemming from (2.13) is not our ultimate aim. To complete the

proof of Theorem 1.6.1, we need to derive an integro-differential representation of At.

2.3. Integro-differential representation for infinitesimal

generators

This section builds on the results from the previous section and completes our proof

of Theorem 1.6.1 under Assumptions A1–A3. As before, the cases στ “ 0 and στ ą 0

will be considered separately.

Definitions of a weakly orthogonal polynomial sequence and a moment functional, which

will be frequently used in this section, are provided in the appendix.

2.3.1. The final part of the proof of Theorem 1.6.1 when στ “ 0.

Fix t ě 0 and z P R. By generalized Favard’s theorem, see Theorem A.0.1, the

polynomials tWnpx; z, tqu8
n“0 given in (2.20) are weakly orthogonal (see Definition A.0.3)

with respect to a moment functional Lz,t,η,θ,σ,τ,q, which acts on polynomials in a variable

y P R, i.e.,

Lz,t,η,θ,σ,τ,qrWnpy; z, tqWkpy; z, tqs “ χn1pn “ kq, n, k P N0,
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where χ0 ‰ 0. Without any loss of generality, we assume that the moment functional

Lz,t,η,θ,σ,τ,q is normalized, i.e., χ0 “ 1. When n “ 0, the above formula becomes:

Lz,t,η,θ,σ,τ,qrWkpy; z, tqs “ 1pk “ 0q, k P N0. (2.35)

To translate (2.35) into the language of the algebra Q, we introduce an element

Ey :“ p1, y, y2, . . .q, y P R (so all coordinates are polynomials of degree zero in the generic

variable x). Clearly, Ey is a well-defined element in Q. Note that multiplication from the

left by Ey is a change of the variable from x to y in the polynomials in each coordinate.

Therefore, (2.35) can be written as

Lz,t,η,θ,σ,τ,qrEyWpz, tqs “ E ´ FD, (2.36)

where Lz,t,θ,τ,η,q on the left-hand side of (2.36) acts coordinate-wise on EyWpz, tq (recall

that Wpz, tq is given by (2.25)). It is important to emphasize that Lz,t,η,θ,σ,τ,q acts only

on polynomials in the variable y, while in the algebra Q we consider polynomials in the

generic variable x. This distinction between the two variables is crucial.

Now, define Jpz, tq as follows:

Jpz, tq :“

ˆ

Lz,t,η,θ,σ,τ,qr1s,Lz,t,η,θ,σ,τ,qrys,Lz,t,η,θ,σ,τ,qry
2
s, . . .

˙

“ Lz,t,η,θ,σ,τ,qrEys.

Note that Jpz, tq is a well-defined element of the algebra Q since all coordinates are

constant with respect to x. It encodes all moments of the moment functional Lz,t,η,θ,σ,τ,q.

Using the linearity of Lz,t,η,θ,σ,τ,q and equation (2.36), we obtain:

Jpz, tqWpz, tq “ Lz,t,η,θ,σ,τ,qrEyWpz, tqs “ E ´ FD. (2.37)

In the first equality above, we used the definition of multiplication (recall (2.1)) and the

fact that Wpz, tq does not depend on y. Equation (2.37) is equivalent to:

Jpz, tq “ pE ´ FDqWpz, tq´1.
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Since this equality holds for all fixed z P R, comparing it with (2.33) implies that

Jpz, tq|z:“x P Q and

rMt “ 1
1`σt

Jpz, tq|z:“x “ 1
1`σt

Lz,t,η,θ,σ,τ,qrEys|z:“x “ 1
1`σt

Lx,t,η,θ,σ,τ,qrEys.

After inserting this into (2.34), we get

Ht “ 1
1`σt

RpEq

8
ÿ

k“0

FkLx,t,η,θ,σ,τ,qrEysDk`1.

Our goal is to simplify the above expression; however, this is a delicate task that requires

some careful justification.

Remark 2.3.1. Suppose that X P Q do not depend on y P R. In general, the equality

XLx,t,η,θ,σ,τ,qrEys “ Lx,t,η,θ,σ,τ,qrXEys (2.38)

does not hold. For instance, when X “ D, we have

DEy “ 0, (2.39)

since all coordinates of Ey do not depend on x. Hence Lx,t,η,θ,σ,τ,qrDEys “ 0, while

DLx,t,η,θ,σ,τ,qrEys ‰ 0 if only Lx,t,η,θ,σ,τ,qrEys has some entries that are polynomials in the

generic variable x of degree at least 1.

However, (2.38) holds true for X “ Fk, k P N0, as Fk only multiplies each coordinate by

xk, and Lx,t,η,θ,σ,τ,q is a linear operator acting solely on polynomials in the variable y.

On the other hand, for any X, rX P Q that do not depend on y, we observe that

Lx,t,η,θ,σ,τ,qrXEysrX “ Lx,t,η,θ,σ,τ,qrXEy
rXs.

The above equation follows from (2.1) and the fact that rX does not depend on y.

In view of Remark 2.3.1 and the linearity of Lx,t,η,θ,σ,τ,q,

Ht “ 1
1`σt

RpEqLx,t,η,θ,σ,τ,qrQys,
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where

Qy :“
8
ÿ

k“0

FkEyD
k`1.

Using (2.13) and arguments analogous to those presented in Remark 2.3.1, we can quickly

justify that

At “ 1
1`σt

pE ` ηF ` σF2
qLx,t,η,θ,σ,τ,q

«

8
ÿ

j“0

FjQyD
j`1

ff

.

It turns out that the expression in the square brackets can be considerably simplified to

the form D1Qy. This follows from the fact that the identities (2.6) for q “ 1 and (2.39)

yield

D1Qy “

˜

8
ÿ

j“0

FjDj`1

¸ ˜

8
ÿ

k“0

FkEyD
k`1

¸

“

8
ÿ

j“0

Fj

˜

8
ÿ

k“j`1

Fk´j´1EyD
k`1

¸

“

8
ÿ

j“0

Fj

˜

8
ÿ

k“j`1

Fk´j´1EyD
k´j

¸

Dj`1
“

8
ÿ

j“0

FjQyD
j`1.

Consequently,

At “ 1
1`σt

pE ` ηF ` σF2
qLx,t,η,θ,σ,τ,qrD1Qys.

Since EyDk`1 has the nth coordinate equal to zero for n ď k, and equal to yn´k´1 for

n ě k ` 1, the nth coordinate of Qy has the form

yn´1
` yn´2x ` . . . ` yxn´2

` xn´1
“

yn´xn

y´x
, n P N.

The 0th coordinate is zero. Differentiating with respect to x leads to

yn´2
` . . . ` pn ´ 2qyxn´3

` pn ´ 1qxn´2
“ B

Bx
yn´xn

y´x
;

the left-hand side is the nth coordinate of D1Qy by (2.1) and (2.8). Therefore, the nth

coordinate of D1Qy is equal to B

Bx
yn´xn

y´x
. Consequently, the nth coordinate of At takes the

following form:
1`ηx`σx2

1`σt
Lx,t,η,θ,σ,τ,q

”

B

Bx
yn´xn

y´x

ı

.
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Recall that the nth coordinate of At is also equal to Atpx
nq. As a result, from the linearity

of At, we have that for any polynomial f

pAtfqpxq “
1`ηx`σx2

1`σt
Lx,t,η,θ,σ,τ,q

”

B

Bx
fpyq´fpxq

y´x

ı

. (2.40)

This ends the proof of the first part of Theorem 1.6.1.

We will now proceed to show that the moment functional Lx,t,η,θ,σ,τ,q is non-negative when

1 ` ηx ` σx2 ą 0. Note that

AtF
2

´ 2FAtF ` F2At “ HtF ´ FHt “ 1
1`σt

pE ` ηF ` σF2
qrMt.

Coordinate-wise, this can be expressed as

lim
hÑ0`

ż

R

yn`2´xn`2

h
Pt,t`hpx, dyq ´ 2x lim

hÑ0`

ż

R

yn`1´xn`1

h
Pt,t`hpx, dyq

`x2 lim
hÑ0`

ż

R

yn´xn

h
Pt,t`hpx, dyq “

1`ηx`σx2

1`σt
Lx,t,η,θ,σ,τ,qry

n
s

for all n P N0. The left-hand side can be simplified to lim
hÑ0`

ş

R

yn py´xq2

h
Pt,t`hpx, dyq. Con-

sequently, from the linearity of Lx,t,η,θ,σ,τ,q it follows that for any non-negative polynomial

f (i.e., fpyq ě 0 for all y P R), we have

0 ď lim
hÑ0`

ż

R

fpyq
py´xq2

h
Pt,t`hpx, dyq “

1`ηx`σx2

1`σt
Lx,t,η,θ,σ,τ,qrf s. (2.41)

The inequality holds true because the integral under the limit is non-negative for all h ą 0.

Since σ ě 0 (see (1.5)), t ě 0 and 1`ηx`σx2 ą 0, formula (2.41) implies that Lx,t,η,θ,σ,τ,q

is a non-negative definite moment functional. Remark A.0.2 (in the appendix) implies

that the product of consecutive coefficients at Wn´1 from the three-step recurrence (2.20)

is non-negative. Therefore, by [22, Theorem A.1.], there exists a probability measure

νx,t,η,θ,σ,τ,q such that for all polynomials f we have

Lx,t,η,θ,σ,τ,qrf s “

ż

R

fpyq νx,t,η,θ,σ,τ,qpdyq. (2.42)
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Putting together (2.40) and (2.42) finishes the second part of the proof of Theorem 1.6.1

when στ “ 0.

2.3.2. The final part of the proof of Theorem 1.6.1 when στ ą 0.

Let us fix η, θ P R, σ, τ ą 0 and q P r´1, 1 ´ 2
?
στ s.

Recall that Lemma 2.2.2 states that rq given by (1.24) belongs to r´1, 1s. Therefore,

the previous subsection provides, in particular, a formula (see (2.40)) for the infinitesimal

generator of QHpη, rθ;σ, 0; rqq for any t ě 0, where rθ is defined in (2.15); we will denote

the infinitesimal generator for this particular choice of parameters by pAt.

In particular, we can evaluate pAt at time t “ rt (recall that the rescaled version rt of t is

given in (2.16)). Then, Proposition 2.2.1, read coordinate-wise, implies that

Atpx
n
q “ 2

ξ
pA

rtpx
n
q, n P N0,

where by At we mean the infinitesimal generator of QHpη, θ;σ, τ ; qq. Theorem 1.6.1

applied to QHpη, rθ;σ, 0; rqq gives

pAtfqpxq “ 2
ξ
p pA

rtfqpxq “ 2
ξ
1`ηx`σx2

1`σrt
Lx,rt,η,rθ,σ,0,rq

”

B

Bx
fpyq´fpxq

y´x

ı

“
1`ηx`σx2

1`σt
Lx,rt,η,rθ,σ,0,rq

”

B

Bx
fpyq´fpxq

y´x

ı

.

The third equality comes from the first identity in (2.18).

Therefore, by replacing Lx,rt,η,rθ,σ,0,rq with Lx,t,η,θ,σ,τ,q, we obtain the representation stated

in Theorem 1.6.1.

Moreover, we observe that Lx,t,η,θ,σ,τ,q makes the polynomials tĂWnp¨;x, tqu8
n“0 given

in (1.23) orthogonal since these polynomials are derived from the polynomials

tWnp¨;x,rtqu8
n“0 by inserting the appropriate parameters.

To obtain the expressions for the three-term recursion coefficients ran, rbn, and rγn appearing

in Theorem 1.6.1, we once again apply (2.18) and use the notation introduced in (1.22).

If 1 ` ηx ` σx2 ą 0 then there exists an integral representation of Lx,rt,η,rθ,σ,0,rq. Hence,

Lx,t,η,θ,σ,τ,q also has the integral representation with νx,t,η,θ,σ,τ,q “ νx,rt,η,rθ,σ,0,rq.

47





Chapter 3

Extension of the domain of the infinitesimal

generator

The main objective is to include in the domain of the infinitesimal generator a class

of bounded continuous functions with bounded continuous second derivatives. For this

purpose, we assume that

1 ` ηx ` σx2 ą 0. (3.1)

Under this condition, the polynomials tĂWnp¨;x, tqu8
n“0 are orthogonal with respect to a

probability measure νx,t,η,θ,σ,τ,q.

The chapter is organized as follows:

1. Recall that tPs,tpx, dyq : x P R, 0 ď s ă tu denotes the transition probabilities of

the considered quadratic harness. We will prove that all moments of the measures
py´xq2

h
Pt,t`hpx, dyq and py´xq2

h
Pt´h,tpx, dyq converge to the corresponding moments of

1`ηx`σx2

1`σt
νx,t,η,θ,σ,τ,q.

2. We will discuss conditions under which νx,t,η,θ,σ,τ,q is determined by its moments.

3. We will extend the domain of the infinitesimal generator for certain parameters of

quadratic harnesses by including a class of bounded continuous functions with bounded

continuous second derivatives.

The first two steps are necessary to establish the weak convergence of the measures
py´xq2

h
Pt,t`hpx, dyq and py´xq2

h
Pt´h,tpx, dyq to 1`ηx`σx2

1`σt
νx,t,η,θ,σ,τ,q. Weak convergence in

turn is crucial for extending the domain of the infinitesimal generator.

3.1. Moment convergence

We will start by showing that the respective moments converge.
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Lemma 3.1.1. For all t ě 0 and x satisfying (3.1), all moments of the measure
py´xq2

h
Pt,t`hpx, dyq converge to the corresponding moments of 1`ηx`σx2

1`σt
νx,t,η,θ,σ,τ,qpdyq as

h approaches 0 from the right.

Similarly, for t ą 0 all moments of py´xq2

h
Pt´h,tpx, dyq tend to the corresponding moments

of 1`ηx`σx2

1`σt
νx,t,η,θ,σ,τ,qpdyq as h goes to 0 from the right.

Proof. Fix t ě 0. The definition of the right infinitesimal generator, see (1.15), implies

that

lim
hÑ0`

ż

R

yn py´xq2

h
Pt,t`hpx, dyq “ Atpx

n`2
q ´ 2xAtpx

n`1
q ` x2Atpx

n
q.

Theorem 1.6.1 and the identity

B

Bx
yn`1´xn`1

y´x
“ B

Bx
py´xqyn`xpyn´xnq

y´x
“ x B

Bx
yn´xn

y´x
`

yn´xn

y´x
, n P N0,

yield

lim
hÑ0`

ż

R

yn py´xq2

h
Pt,t`hpx, dyq

“
1`ηx`σx2

1`σt

ż

R

yn`1´xn`1

y´x
νx,t,η,θ,σ,τ,qpdyq ´

1`ηx`σx2

1`σt

ż

R

xyn´xn

y´x
νx,t,η,θ,σ,τ,qpdyq

“
1`ηx`σx2

1`σt

ż

R

ynνx,t,η,θ,σ,τ,qpdyq, n P N0.

Analogously, we can show the same for py´xq2

h
Pt´h,tpx, dyq when t ą 0.

Observe that py´xq2

h
Pt,t`hpx, dyq is a nonnegative measure. From (1.6) we get for all

h ą 0 that
ż

R

py´xq2

h
Pt,t`hpx, dyq “

VarpXt`h|Xt“xq

h
“

1`ηx`σx2

1`σt
.

This, together with similar arguments for py´xq2

h
Pt´h,tpx, dyq, justifies the following re-

mark:

Remark 3.1.2. Let x satisfy (3.1). Then

p1`σtqpy´xq2

hp1`ηx`σx2q
Pt,t`hpx, dyq and p1`σpt´hqqpy´xq2

hp1`ηx`σx2q
Pt´h,tpx, dyq
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are probability measures for all h ą 0 (the first measure) and for h such that t ě h ą 0

(the second measure).

3.2. Moment determinacy and weak convergence

We say that a probability measure µ is determined by its moments if µ is the only

probability measure that has the moments

ż

R

xkµpdyq, k P N0.

This problem of moment determinacy is known as the Hamburger moment problem, see

[27, Section 2.6]. It is well-known that if µ has a bounded support, then it is determined

by its moments.

Now we will quickly verify that νx,t,η,θ,σ,τ,q is determined by its moments in the following

cases:

¸ q P r´1, 1 ´ 2
?
στq. Under this condition, we have

0 ă
a

p1 ´ qq2 ´ 4στp1 ` q `
a

p1 ´ qq2 ´ 4στq,

so rq ă 1, recall (1.24). Combining this with Lemma 2.2.2, we conclude that rq P r´1, 1q.

Consequently, the coefficients in the recurrence (1.23) are uniformly bounded in n for

any fixed t and x (since rns
rq is uniformly bounded in n for such rq). Therefore, the

polynomials tĂWnpy;x, tqu8
n“0 are orthogonal with respect to a boundedly supported

measure (consult e.g. Theorems 2.5.4 and 2.5.5 in [36]). Hence, νx,t,η,θ,σ,τ,q is deter-

mined by its moments.

¸ q “ 1, σ “ τ “ 0. In this case ξ0 “ 0 (see (1.22)), which implies rbn “ 0 for all n P N.

Consequently, the polynomials tĂWnp¨;x, tqu8
n“0 are orthogonal with respect to a Dirac

measure (see Theorem A.1 in [22]), which is obviously determined by its moments.

As a result, in such cases, we can apply [12, Theorem 30.2], which states that under the

moment determinacy, the convergence of moments implies weak convergence of probability

measures. Therefore, we obtain the following corollary:
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Corollary 3.2.1. Probability measures p1`σtqpy´xq2

hp1`ηx`σx2q
Pt,t`hpx, dyq and

p1`σpt´hqqpy´xq2

hp1`ηx`σx2q
Pt´h,tpx, dyq converge weakly to νx,t,η,θ,σ,τ,q.

When q “ 1´2
?
στ , and σ ‰ 0 or τ ‰ 0, it is not known whether moment determinacy

(and consequently weak convergence) holds. Therefore, in our further considerations, we

will restrict ourselves to the parameters of quadratic harnesses that satisfy the conditions

mentioned above.

3.3. Extension of the domain

In this section, we will show that not only polynomials belong to the domain of the

infinitesimal generator of certain quadratic harnesses.

Theorem 3.3.1. Let us consider QHpη, θ;σ, τ ; qq with q P r´1, 1 ´ 2
?
στq. For any

bounded continuous function g : R Ñ R with a bounded continuous second derivative, we

have

pA˘
t gqpxq “

1`ηx`σx2

2p1`σtq
g2

pxqνx,t,η,θ,σ,τ,qptxuq

`
1`ηx`σx2

1`σt

ż

Rztxu

B

Bx

ˆ

gpyq ´ gpxq

y ´ x

˙

νx,t,η,θ,σ,τ,qpdyq
(3.2)

for x satisfying (3.1), where νx,t,η,θ,σ,τ,q is the probability measure defined in Theorem 1.6.1.

Proof. We will prove (3.2) only for A`
t , because exactly the same arguments apply also

to A´
t .

Fix x satisfying (3.1). Define a function hx : R Ñ R by

hxpyq :“

$

&

%

B

Bx
gpyq´gpxq

y´x
for y ‰ x,

1
2
g2pxq for y “ x.

Taylor’s theorem yields

gpyq ´ gpxq “ py ´ xqg1
pxq `

ż y

x

g2
pzqpy ´ zqdz, (3.3)

so for y ‰ x we get

hxpyq “ B

Bx

ˆ

g1
pxq ` 1

y´x

ż y

x

g2
pzqpy ´ zqdz

˙

“ 1
py´xq2

ż y

x

g2
pzqpy ´ zqdz. (3.4)
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Thus hx is a bounded continuous function. Indeed, formula (3.4) gives

|hxpyq| ď 1
2
sup
yPR

|g2
pyq|

and l’Hospital’s rule implies that

lim
yÑx

hxpyq “ 1
2
g2

pxq.

Because of (3.3),

ż

R

gpyq´gpxq

h
Pt,t`hpx, dyq “ g1

pxq

ż

R

y´x
h
Pt,t`hpx, dyq ` Jph, xq, (3.5)

where Jph, xq :“
ş

R

şy
x g2pzqpy´zqdz

h
Pt,t`hpx, dyq. The integrand is zero when y “ x, hence

Jph, xq “

ż

Rztxu

şy
x g2pzqpy´zqdz

py´xq2
¨

py´xq2

h
Pt,t`hpx, dyq “

ż

Rztxu

hxpyq ¨
py´xq2

h
Pt,t`hpx, dyq,

recall (3.4). Consequently, using again the fact that the integrand is zero when y “ x, we

get

Jph, xq “

ż

R

hxpyq
py´xq2

h
Pt,t`hpx, dyq.

Therefore, the weak convergence of py´xq2

h
Pt,t`hpx, dyq to 1`ηx`σx2

1`σt
νx,t,η,θ,σ,τ,qpdyq, recall

Corollary 3.2.1, gives

Jph, xq
hÑ0`

ÝÝÝÑ
1`ηx`σx2

1`σt

ż

R

hxpyqνx,t,η,θ,σ,τ,qpdyq.

Consequently, taking the limit h Ñ 0` in (3.5) yields (3.2) because Theorem 1.6.1 states

that

lim
hÑ0`

ż

R

y´x
h
Pt,t`hpx, dyq “ Atpxq “ 0.

It is worth mentioning that for all cases of quadratic harnesses QHpη, θ;σ, τ ; qq with

q P r´1, 1´2
?
στq such that for any fixed t and x, and all small enough h the supports of
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the transition probabilities Pt,t`hpx, dyq and Pt´h,tpx, dyq are contained in some interval,

we obtain a stronger assertion of Theorem 3.3.1, namely that the domain of A˘
t contains

C2pRq. On the other hand, for q P r´1, 1 ´ 2
?
στq, all the cases of quadratic harnesses

known from the literature satisfy the support conditions mentioned above (see [22] or

Section 1.3 in the thesis).

From the proof of Theorem 3.3.1, we automatically obtain the same result for q “ 1 and

σ “ τ “ 0, as the proof relies solely on the weak convergence which in turn is shown to

hold in Section 3.2:

Theorem 3.3.2. Consider QHpη, θ; 0, 0; 1q. Then for any bounded continuous function

g : R Ñ R with a bounded continuous second derivative, formula (3.2) holds for all x

satisfying (3.1) with σ “ τ “ 0 and q “ 1.

In particular, Theorem 3.3.2 applies to the Wiener process (Example 1.2.2) and the stan-

dardized Poisson process (Example 1.2.3).
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Chapter 4

Properties of the algebra Q

In this chapter:

(i) certain subspaces of Q are defined in order to facilitate the analysis of the special

elements of Q introduced in Chapter 2,

(ii) certain linear operators acting on Q are presented; they will be responsible for

changing the order of operands in the multiplication (2.1).

Furthermore, we will focus on studying some properties of the introduced objects. The

results presented in this chapter will play a crucial role in the process of removing

Assumptions A1–A3 carried on in the subsequent two chapters.

4.1. Subspaces of the algebra Q

In Q, we consider a family of linear subspaces of Q given by:

Qk :“ spantFℓDℓ`k : ℓ P N0u, k P N0.

From the definition (2.1) of multiplication, it is easy to see that Qk contains only ele-

ments that have a monomial xn´k with some coefficient (which can be zero) on their nth

coordinate, n ě k. Moreover, elements of Qk have zeros on the first k ´ 1 entries. In

particular, Dk P Qk (here and in the remainder of the thesis, we interpret Xk as E when

k “ 0 for any element X P Q).

Next we define the left and right cosets of Q0:

XQ0 :“ tXY : Y P Q0u and Q0X :“ tYX : Y P Q0u,
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where X P Q. We can express Qk as certain left and right cosets of Q0.

Lemma 4.1.1. For all m P N0, we have

DmQ0 “ Q0D
m

“ Qm, QmFm
“ Q0, FmQm Ď Q0.

Proof. Let X P DmQ0. Then there exist coefficients txℓu
8
ℓ“0 such that X “

8
ř

ℓ“0

xℓDmFℓDℓ.

Then (2.4) implies

X “

m
ÿ

ℓ“0

xℓD
m

`

8
ÿ

ℓ“m`1

xℓF
ℓ´mDℓ

“

m
ÿ

ℓ“0

xℓD
m

`

8
ÿ

ℓ“1

xℓ`mFℓDℓ`m.

This representation shows that X P Qm. Conversely, for X P Qm, we can find coefficients

trxℓu
8
ℓ“0 such that

X “

8
ÿ

ℓ“0

rxℓF
ℓDℓ`m

“ Dm
8
ÿ

ℓ“0

rxℓF
ℓ`mDℓ`m

“ Dm
8
ÿ

ℓ“m

rxℓ´mFℓDℓ.

Hence, we can conclude that X P DmQ0. The remaining cases can be proved in a similar

way.

Clearly, F0Q0 “ Q0. On the other hand, there exist no m P N such that FmQm “ Q0.

To see this, consider E P Q0. If FmX “ E for some X P Qm, then using (2.4), we would

have X “ Dm. However, this leads to a contradiction since

FmX “ FmDm
“ p0, . . . , 0

loomoon

m times

, xm, xm`1, xm`2, . . .q,

which is not equal to E.

Next, we can determine the subspace to which a product of elements from the given

subspaces belongs. Namely:

Remark 4.1.2. If X P Qk and Y P Qℓ, where k, ℓ P N0, then XY P Qk`ℓ. Furthermore,

XY “ YX when k “ ℓ “ 0.

Proof. First, we will prove the case k “ ℓ “ 0. For 0 ď m ď n, using (2.4), we have

FmDmFnDn
“ Fm`n´mDn

“ FnDn
“ FnDn´m`m

“ FnDnFmDm, (4.1)
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which shows that FmDm and FnDn commute.

Now, let X and Y be arbitrary elements from Q0, which can be written as

X “
8
ř

n“0

xnFnDn P Q0 and Y “
8
ř

m“0

ymFmDm P Q0 with coefficients txnu8
n“0 and tymu8

m“0,

respectively. Then, according to (4.1),

XY “

8
ÿ

n“0

8
ÿ

m“0

xnymFnDnFmDm
“

8
ÿ

n“0

8
ÿ

m“0

xnymFmDmFnDn
“ YX.

Additionally, the second equality in (4.1) shows that XY P Q0. In fact,

XY “

8
ÿ

n“0

n
ÿ

m“0

xnymFnDn
`

8
ÿ

n“0

8
ÿ

m“n`1

xnymFmDm
P Q0.

If either k or ℓ is nonzero, then from Lemma 4.1.1, we know that there exist rX P Q0 and
rY P Q0 such that X “ Dk

rX and Y “ Dℓ
rY. Moreover, the first equality in Lemma 4.1.1

implies that rXDℓ “ Dℓ
qX for some qX P Q0. Consequently,

XY “ Dk
rXDℓ

rY “ Dk`ℓ
pqXrYq,

where the term in the brackets belongs to Q0 according to the first part of our arguments

in this proof. Consequently, XY P Dk`ℓQ0, and Lemma 4.1.1 ends the proof.

Note that the second part of the above remark implies that Q0 is a commutative

subalgebra of Q. This fact will be extensively used throughout the remainder of the

thesis. In addition, Lemma 4.1.1 and Remark 4.1.2 will be used to quickly determine the

subspace to which a given element belongs. These results will be extensively used further

without direct reference.

Moreover, let us state the following lemma for future reference:

Lemma 4.1.3. For each 0 ď ℓ ď k and X P Qk, we have

XFℓDℓ
“ X.

Proof. Note that for 0 ď ℓ ď k, identity (2.4) implies that

XFℓDℓ
“

8
ÿ

m“0

xmFmDm`kFℓDℓ
“

8
ÿ

m“0

xmFmDm`k
“ X,
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where we have represented X as
8
ř

m“0

xmFmDm`k with some coefficients txmu8
m“0.

A linear combination of the identities presented in Lemma 4.1.3 leads to the following

conclusion:

Corollary 4.1.4. Consider some real numbers a0, . . . , ak satisfying
k

ř

ℓ“0

aℓ “ 0, k P N0.

Then for X P Qk and Y “
k

ř

ℓ“0

aℓFℓDℓ

XY “ 0.

We will close this section with two remarks on the invertibility of elements of Q. Firstly,

according to [24, Proposition 1.2], it is clear that all elements of Q0 with all nonzero

coordinates are invertible. Secondly, let us single out the following observation for further

reference:

Remark 4.1.5. Assume that Xj P Qj for all j P N0 and that X0 is invertible. Then

X :“
8
ř

j“0

Xj is also invertible.

The above fact follows also from Proposition 1.2 in [24].

4.2. Linear operators on Q

We will now introduce certain linear operators that facilitate changing the order of

operands in the multiplication (2.1).

4.2.1. Linear operator S

Define a linear operator S : Q Ñ Q as follows:

SpXq :“ DXF. (4.2)

Lemma 4.1.1 implies that S : Qk Ñ Qk. In the following, we will consider the k-fold

composition of S denoted as Sk, k P N0. For k “ 0, we interpret it as the identity

operator.

It turns out that S acts on a product of elements from the linear subspaces introduced in

Section 4.1 in the following way:
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Remark 4.2.1. For X P Qk and Y P Qℓ, where k, ℓ P N0,

SpXYq “ SpXqSpYq.

Proof. Note that DX P Qk`1. Lemma 4.1.3 gives that DX “ DXFD. Consequently,

SpXYq “ DXYF “ DXFDYF “ SpXqSpYq.

Hence, for any invertible X P Q, we have

SpXqSpX´1
q “ SpX´1

qSpXq “ E. (4.3)

Therefore, there exists the inverse of SpXq satisfying

pSpXqq
´1

“ SpX´1
q. (4.4)

It turns out that the operator S is useful in a task of changing the order of multiplication

of some elements of Q:

Lemma 4.2.2. Let X P Q0 and Y P Qk, k P N0. Then

Sk
pXqY “ YX.

Proof. Lemma 4.1.1 yields that FkY P Q0. The second part of Remark 4.1.2 used with

X P Q0 and FkY P Q0 implies that X and FkY commute. As a result,

Sk
pXqY “ DkXFkY “ Dk

pFkYqX “ YX.

Using the properties of S we can also deduce the following:

Lemma 4.2.3. Let X,Y P Qk, k P N0. Then

XFkY “ YFkX.
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Proof. Lemma 4.2.2 used with Y P Qk and FkX P Q0 gives

YFkX “ Sk
pFkXqY “ XFkY.

The last equality holds due to the definition of S and the relation (2.4) between D and F.

Moreover, the operators S and R sometimes commute.

Lemma 4.2.4. For every k P N, the operators S and R commute on Qk, where R is

defined in (2.24).

Proof. Let X P Qk be arbitrary. Using the definition of R, we get

RpSpXqq “ E ` ηSpXqF ` σpSpXqFq
2

“ E ` ηDpXFqF ` σSpXqFDXF2.

Since SpXq P Qk, Lemma 4.1.3 says that SpXqFD “ SpXq. Consequently,

RpSpXqq “ E ` ηSpXFq ` σSpXqXF2
“ E ` ηSpXFq ` σDpXFq

2F “ SpRpXqq.

4.2.2. Linear operator T

Now we define a linear operator T : Q Ñ Q by the following formula:

T pXq :“ FXD.

Lemma 4.1.1 yields that T : Qk Ñ Qk. Moreover, directly from the definitions of opera-

tors S and T and identity (2.4) we obtain SpT pXqq “ X.

In general, T pSpXqq ‰ X. However, we can prove the following:

Lemma 4.2.5. If X P Qk and Y P Qℓ, k, ℓ P N, then

XT pSpYqq “ XY.

60



4.2. LINEAR OPERATORS ON Q

Proof. Since X P Qk, k P N, we get that XFD “ X by Lemma 4.1.3. Analogously,

YFD “ Y. As a result,

XT pSpYqq “ XFpDYFqD “ pXFDqpYFDq “ XY.

Moreover, with help of S and T we can easily change the order of multiplication of ele-

ments of the subspaces Qk:

Lemma 4.2.6. For X P Qk and Y P Qℓ, k, ℓ P N0, we have

XY “ Sk
pYqT ℓ

pXq.

Proof. Lemma 4.2.2 applied to Y P Qℓ and Fk`ℓXDℓ P Q0 gives

Sk
pYqT ℓ

pXq “ DkYFk`ℓXDℓ
“ DkSℓ

pFk`ℓXDℓ
qY “ XY

(above we have used (2.4)).

4.2.3. Commutator

Apart from S and T , we will also use the commutator:

rX,Ys :“ XY ´ YX, X,Y P Q.

It is obvious that for all X,Y,Y1,Y2 P Q and α, β P R

rX, αY1 ` βY2s “ αrX,Y1s ` βrX,Y2s, (4.5)

and

rX,Ys “ ´rY,Xs.

Moreover, in view of Remark 4.2.1,

SprX,Ysq “ rSpXq,SpYqs. (4.6)
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Furthermore, using the definition of the commutator along with Remark 4.1.2, we have:

Remark 4.2.7. For X,Y P Q0

rX,Ys “ 0.

In particular,

rX,Es “ 0. (4.7)

Moreover, the commutator has the following properties:

Lemma 4.2.8. For all X,Y P Q

rXY,Xs “ XrY,Xs and rXY,Ys “ rX,YsY.

Proof. The definition of the commutator implies that

rXY,Xs “ XYX ´ X2Y “ XpYX ´ XYq “ XrY,Xs.

We proceed similarly with the proof of the second assertion.

In addition, we present below an observation that will be used later several times:

Remark 4.2.9. For any X,Y P Q and α P R we have

pE ` αYqXY ´ YXpE ` αYq “ rX,Ys.
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Chapter 5

Some important elements of Q

In this chapter, we are going to introduce some special elements of Q that will prove

to be very useful in our task of removing Assumptions A1–A3.

Recall that we are working under assumptions (1.9) with στ “ 0. Define

κ1 :“ σtp1 ´ q ` σtq. (5.1)

Using (2.19) and the fact that στ “ 0, we have

κ1 “ σκ0. (5.2)

Chapter 5 is divided into two sections.

Section 5.1 introduces a number of special elements of Q which will serve as building

blocks for some more complicated elements. Even though it might be hard to grasp

the importance of these elements within this chapter, their usefulness will become clear

in Chapter 6, when we will be able to represent Spz, tq, recall (2.26) and (2.27), in their

terms.

The aim of Section 5.2 is to provide some explicit formulas for the elements Upz, tq

and Ypz, tq, which appear in Assumption A1. Again, these formulas will be based on the

building blocks presented in Section 5.1.

Undoubtedly, the content of this chapter is quite complicated, so in order to make

it easier to digest, we provide a diagram in Figure 5.1. The diagram presents the main

results of the next two chapters along with their interdependencies.

Recall that our primary objective is to prove the identities from Assumptions A1–A3

(highlighted in gray in the diagram).



CHAPTER 5. SOME IMPORTANT ELEMENTS OF Q

Theorem 6.2.2
Simplified version of Assumption A2

Lemma 5.2.1
UZ “ DqY

Assumption A2 Assumption A1

Lemma 6.2.3
Part of Assumption A2

Formula for SprX3q

Lemma 5.2.3
Formula for K3

presented in (5.26)

Lemma 5.2.4
rrP,FDqs “ FDqXZ2 ´ Z2

rXFDq ` zQ

Lemma 5.2.5
SprXqrP “ SprPqX

Properties of Zi

Lemma 5.1.2

Nontrivial identity
for K1 and K3

Lemma 5.1.6

Lemma 6.3.1
Simplified version of Assumption A3

Representation for X3 and SprX3q

Lemma 5.2.3

Relations between
rP3, X3, and rX3

presented in (5.33)–(5.35)

Assumption A3

Lemma 5.2.2
SpZqP “ USpDqq

Figure 5.1: Scheme of relations between the main lemmas and theorems
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Throughout Chapter 5, z P R and t ě 0 are some fixed, but arbitrary, parameters. For

simplicity, we will suppress them as arguments, so, for example, we will write U instead

of Upz, tq, even though U in fact depends on z and t.

In addition, we will make extensive use of the tools presented in Chapter 4. Occasionally,

for brevity, we will use these tools without explicit reference (especially Remark 4.2.1

and Remark 4.1.2).

5.1. Basic elements of Q

5.1.1. Element Dq

The definition of Dq was given in (2.6), which yields that Dq P Q1; Dq can also be

represented coordinate-wise as in (2.7).

Lemma 5.1.1. Element Dq satisfies the following equation:

DqF “ qFDq ` E. (5.3)

Proof. Using (2.4) and (2.6) we get

DqF ´ qFDq “

8
ÿ

k“0

qkFkDk
´

8
ÿ

k“1

qkFkDk
“ E.

Formula (5.3) can be rewritten as

rDq,Fs “ pq ´ 1qFDq ` E. (5.4)

5.1.2. Elements Zi, i “ 0, 1, 2, 3

Let us consider the elements

Z0 :“ E ` σtF3DqD
2, Zk :“ Sk

pZ0q, k “ 1, 2, 3,
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recall the definition (4.2) of S. All Zi, i “ 0, 1, 2, 3, belong to Q0. It is easy to see that

Zk “ E ` σtF3´kDqD
3´kF, k “ 0, 1, 2, 3. (5.5)

Hence, we notice that the nth coordinate of Zk is equal to p1`σtrn`k´2sqqx
n, recall (2.7)

and the convention that rnsq “ 0 for n ď 0. Under the assumptions on the parameters,

we obtain that σt ě 0 and rnsq ě 0 for all n P N0 (since q P r´1, 1s). As a result, the

coefficient 1 ` σtrn ` k ´ 2sq is nonzero for all n P N0, so Zk is invertible, k “ 0, 1, 2, 3,

which is assured by [24, Proposition 1.2].

Below we present some important identities that are satisfied by Z2 and Z3.

Lemma 5.1.2 (Properties of Zi, i=2,3). The following identities hold:

Z2 ` pq ´ σtqFDq “ DqF, (5.6)

p1 ` σtqZ2 “ Z3 ` κ1FDq, (5.7)

Z3 “ p1 ` σtqDqF ´ qFDq, (5.8)

pq ´ σtqZ3 ` κ1DqF “ qZ2. (5.9)

Proof. Formulas (5.5) (for k “ 2) and (5.3) give (5.6) since

Z2 ` pq ´ σtqFDq “ E ` qFDq “ DqF.

Assertion (5.7) follows from (5.1) together with (5.3) and (5.5) for k “ 3:

p1 ` σtqZ2 ´ κ1FDq “ p1 ` σtqE ` qσtFDq “ E ` σtpE ` qFDqq “ E ` σtDqF “ Z3.

Furthermore, applying the same identities as above, we obtain (5.8) and (5.9) as

p1 ` σtqDqF ´ qFDq “ DqF ´ qFDq ` σtDqF “ Z3

and

pq ´ σtqZ3 ` κ1DqF “ pq ´ σtqE ` σtDqF “ qE ` σtpDqF ´ Eq “ qZ2

– in the last step we have used (5.3) and (5.5) for k “ 2.
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Observe that the element Z given by (2.30) can be expressed in terms of Z2 as

Z “ Z2Dq.

Thus Z P Q1 by Remark 4.1.2.

Furthermore, since Z2 “ SpZ1q, Lemma 4.2.2 implies

Z “ Z2Dq “ SpZ1qDq “ DqZ1. (5.10)

5.1.3. Element Q

We will also consider an element Q P Q given by

Q :“ Dq ´ FDqD P Q1.

It turns out that the operator S acts nicely on Q:

Lemma 5.1.3. The following identity is satisfied:

SpQq “ qQ. (5.11)

Proof. In view of (2.9) and (5.3),

Dq “ qFDqD ` D and Q “ rDq,FsD.

Consequently, from (5.4),

SpQq “ DrDq,Fs “ pq ´ 1qDq ` D “ qQ ` qFDqD ` D ´ Dq “ qQ.

It is worth noting that Q naturally arises as a result of taking the commutator of FDq

and any element X of the subspace Q1. Indeed, Lemma 4.2.2 applied to X P Q1 and

F2DqD P Q0 yields

rX,FDqs “ XFDq ´ FDqX “ XFpDq ´ FDqDq “ XFQ. (5.12)
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Furthermore, we have another representation of Q in terms of Z and Z2:

Q “ Z ´ FDqDZ2. (5.13)

This follows from Remark 4.2.9 applied to D, FDq, along with Z2:

Q “ rD,FDqs “ Z2Dq ´ FDqDZ2 “ Z ´ FDqDZ2.

5.1.4. Elements Ti, i “ 1, 2, 3

Let us introduce three other elements of Q:

T1 :“ Z2
1 ´ κ1pF

2DqDq
2, (5.14)

T2 :“ SpT1q “ Z2
2 ´ κ1pFDqq

2, (5.15)

T3 :“ Z1Z2 ´ κ1F
2D2

q. (5.16)

Note that they all belong to Q0, and the nth coordinate of each of them is a monomial

of degree n with a nonzero leading coefficient, which (after simplification) is equal to

1 ` σtr2n ´ 2sq, 1 ` σtr2nsq, and 1 ` σtr2n ´ 1sq, (5.17)

respectively. In deriving these coefficients, we have used (5.1) and (1.20). Consequently,

Proposition 1.2 in [24] implies that T1, T2, and T3 are invertible elements of Q, since

σt ě 0 and q P r´1, 1s (which implies that rnsq ě 0 for all n ě 0).

Now we will present some properties of these elements.

Lemma 5.1.4. The following representation of T2 holds true:

T2 “ DqFZ2 ´ qFZ. (5.18)

Proof. Formula (5.6) implies:

DqFZ2 ´ T2 “ pDqF ´ Z2qZ2 ` κ1pFDqq
2

“ pq ´ σtqFDqZ2 ` κ1pFDqq
2

“ FDqrpq ´ σtqZ2 ` κ1FDqs.
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Lemma 4.2.2 applied to Dq P Q1 and to the expression in the square brackets (which

represents an element of Q0) yields

DqFZ2 ´ T2 “ FSppq ´ σtqZ2 ` κ1FDqqDq “ Fppq ´ σtqZ3 ` κ1DqFqDq “ qFZ2Dq,

where the last equality follows from (5.9).

Lemma 5.1.5. Element T3 satisfies the following equations:

SpT3q “ SpFDqZ2 ´ qF2DqDZ1q, (5.19)

S2
pT3q “ S2

pDqFZ1 ´ qFDqZ0q. (5.20)

Proof. By the definition of T3, we get

T3 ´ FDqZ2 ` qF2DqDZ1 “ pZ1 ´ FDqqZ2 ´ F2DqDpκ1FDq ´ qZ1q.

Thus, by Remark 4.2.1,

SpT3 ´ FDqZ2 ` qF2DqDZ1q “ pZ2 ´ DqFqZ3 ´ FDqpκ1DqF ´ qZ2q “ 0,

where the last equality follows from (5.6) and (5.9). It ends the proof of (5.19).

Now we will show (5.20). We use the definition of T3 and the fact that Q0 is commutative

(in particular, FDq and F2DqD commute) to write

T3 ´ DqFZ1 ` qFDqZ0 “ pZ2 ´ DqFqZ1 ` FDqpqZ0 ´ κ1F
2DqDq

“ ´FDqppq ´ σtqZ1 ´ qZ0 ` κ1F
2DqDq,

where the last equality holds due to (5.6). In view of Remark 4.2.1, applying S2

to the above expression yields

S2
pT3 ´ DqFZ1 ` qFDqZ0q “ ´S2

pFDqqppq ´ σtqZ3 ´ qZ2 ` κ1DqFq.

Formula (5.9) completes the proof of (5.20).
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5.1.5. Elements Ki, i “ 1, 2, 3

Using the notation given in (2.19), we define an auxiliary element

V :“ ηκ0T pFDqq ` κ2Z1,

which is in Q0. The elements Z1 and Z2 commute as the elements of Q0, so according to

(5.10) and (5.13), we have

SpVqZ1 “ ηκ0FZ ` κ2Z2Z1 “ ηκ0pF
2DqDZ2 ` FQq ` κ2Z1Z2 “ VZ2 ` ηκ0FQ. (5.21)

We will now use V to define two important elements:

K1 :“ T´1
2 pzQ ` T pDqqVq, (5.22)

K2 :“ σK1 ` ηD. (5.23)

Both K1 and K2 belong to Q1, see Remark 4.1.2. Moreover, the nth coordinate of K1 is

equal to

zqn´1`rn´1sq

`

ηκ0rn´1sq`κ2p1`σtrn´1sqq

˘

1`σtr2n´2sq
xn´1

“ γn´1pzqxn´1, n P N, (5.24)

recall the definition (2.21) of γn. The 0th coordinate of K1 is zero.

Furthermore, we will prove the following:

Lemma 5.1.6. The element K1 satisfies

T2K1FDqZ2 ´ FDqZ2SpT2K1q “ zSpT3qQ ´ ηκ0QF2D2
q.

Proof. The definitions of K1 and V give

SpT2K1q “ zSpQq ` DqSpVq “ zSpQq ` Z´1
2 DqSpVqZ1 “ qzQ ` Z´1

2 DqVZ2 ` ηκ0Z
´1
2 DqFQ,

where in the penultimate equality we used Lemma 4.2.2 applied to DqSpVq P Q1

and Z1 P Q0. In the last equality, we used identities (5.11) and (5.21). Multiplying
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the above formula by FDqZ2 from the left and using (5.19), we get

FDqZ2SpT2K1q “ zSpqF2DqDZ1qQ ` FD2
qVZ2 ` ηκ0FD2

qFQ

“ zSpFDqZ2 ´ T3qQ ` T pDqqFDqVZ2 ` ηκ0SpF2D2
qqQ.

Lemma 4.2.2 applied to Q P Q1 along with FDqZ2 P Q0 and F2D2
q P Q0, respectively,

yields

FDqZ2SpT2K1q “ zQFDqZ2 ´ zSpT3qQ ` T pDqqFDqVZ2 ` ηκ0QF2D2
q.

Since FDq P Q0 and V P Q0 commute, putting together the first and the third term on

the right-hand side above into K1 (compare with (5.22)), completes the proof.

Additionally, it turns out that the following special element of Q will play a key role in

the sequel:

K3 :“ pσSpK1q ` K2qT´1
3 . (5.25)

The element K3 is symmetric with respect to σK1 and K2, that is, it satisfies the following

equation:

K3 “ pSpK2 ´ ηDq ` K2qT
´1
3 “ pSpK2q ` K2 ´ ηDqT´1

3 “ pσK1 ` SpK2qqT´1
3 , (5.26)

see (5.23).

It is worth noting that the element K3 belongs to Q1 by Remark 4.1.2. Moreover, using

(5.23), (5.24) and (5.17), the nth coordinate of K3 is equal to

σγnpzq`γn´1pzq`η
1`σtr2n´1sq

xn´1, n P N. (5.27)

The 0th coordinate of K3 is zero.

Let us record the following lemma for further reference:

Lemma 5.1.7. The following identity holds:

κ0FDqrK3,FDqsFDq “ FDqSpK1qZ2 ´ Z2K1FDq ` zQ.
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Proof. Formulas (5.15) and (5.16) imply that

T3Z2 ´ Z1T2 “ pZ1Z2 ´ κ1F
2D2

qqZ2 ´ Z1pZ
2
2 ´ κ1pFDqq

2
q “ κ1FDqpFZ ´ F2DqDZ2q,

where in the last step, as in the proof of Lemma 5.1.5, we have used the fact that Q0 is

commutative, in particular, FDq and F2DqD commute. From (5.13), the expression in the

parentheses is equal to FQ. Lemma 4.2.3 applied to Q P Q1 and Dq P Q1 yields

T3Z2 ´ Z1T2 “ κ1FQFDq.

Analogously, we can show that

T1Z2 ´ T3Z1 “ κ1FQF2DqD.

Before we use the last two expressions, note that using (5.12) first and then applying

(5.25) and (5.23) yields:

κ0FDqrK3,FDqsFDq “ κ0FDqK3FQFDq

“ κ1FDqK1T
´1
3 FQFDq ` κ1FDqSpK1qT´1

3 FQFDq ` ηκ0FDqDT´1
3 FQFDq.

Lemma 4.2.2 used twice (in the first term with FDqK1 P Q1 and T´1
3 FQ P Q0, and in the

third term with SpT´1
3 qQ P Q1 and F2DqD P Q0) yields

κ0FDqrK3,FDqsFDq “ κ1SpT´1
3 FQF2DqDqK1FDq ` κ1FDqSpK1qT´1

3 FQFDq

` ηκ0SpT´1
3 qQF2D2

q.

Now we are in a position to use the two expressions derived earlier:

κ0FDqrK3,FDqsFDq “ SpT´1
3 T1Z2 ´ Z1qK1FDq ` FDqSpK1qpZ2´T´1

3 Z1T2q

` ηκ0SpT´1
3 qQF2D2

q.

Lemma 4.2.2 yields that SpZ2qK1FDq “ K1FDqZ2 and SpK1qT´1
3 Z1T2 “ SpT´1

3 Z1T2K1q.

Furthermore, the commutativity of SpT´1
3 q P Q0 and FDq P Q0, and the first equality in
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(5.15) imply

κ0FDqrK3,FDqsFDq “SpT´1
3 qT2K1FDqZ2 ´ SpT´1

3 qFDqZ2SpT2K1q ` ηκ0SpT´1
3 qQF2D2

q

` FDqSpK1qZ2 ´ Z2K1FDq.

The assertion of Lemma 5.1.7 follows from Lemma 5.1.6 and (4.3).

5.1.6. Element B

Finally, we introduce an element

B :“ κ0SpT´1
3 qDqRpK1qDqT

´1
3 ,

where R is defined by (2.24). Note that (2.24) implies that RpK1q P Q0, so B P Q2 by

Remark 4.1.2.

Moreover, in view of (5.17) and (5.24), the nth coordinate of B is equal to

κ0rnsqrn ´ 1sq
1`ηγn´1pzq`σγn´1pzq2

p1`σtr2n´1sqqp1`σtr2n´3sqq
xn´2, n P N0, (5.28)

interpreted as zero for n P t0, 1u.

Lemma 5.1.8. The element B can be represented as

B “ κ0D
2
qT pRpK1qT

´1
3 qT´1

3 .

Proof. Lemma 4.2.2 applied to DqRpK1q P Q1 and T´1
3 P Q0 yields

B “ κ0DqRpK1qT´1
3 DqT

´1
3 .

Lemma 4.2.2, used this time with Dq P Q1 and T pRpK1qT
´1
3 q P Q0, ends the proof.

5.2. More elements of Q and the representation of U and Y

In the current section, we will focus on more complicated elements of Q, derived from

the building blocks introduced in the previous section. We will analyze their properties,

which are crucial for our future considerations.
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5.2.1. Element rP with its relatives

The primary object of our interest is

rP :“ rP1 ` rP2 ` rP3

with
rP1 :“ E, rP2 :“ κ0FD2

qFK3, rP3 :“ κ1FD2
qFB.

In addition, we will consider some elements closely related to rP. Namely, let us define

qP :“ qP1 ` qP2 ` qP3 and P :“ P1 ` P2 ` P3

with

qP1 :“ E, qP2 :“ κ0DqFK3FDq, qP3 :“ κ1DqFBFDq,

P1 :“ E, P2 :“ κ0FDqK3DqF, P3 :“ κ1FDqBDqF.

Remark 4.1.2 states that all elements rPi, qPi, Pi belong to Qi´1, i “ 1, 2, 3. Moreover,

Remark 4.1.5 shows that rP, qP, and P are invertible.

By the commutativity of Q0 (in particular, by the fact that FDq and DqF commute), we

have:

FDq
qP “ rPFDq and rPDqF “ DqFP. (5.29)

Furthermore, in view of (2.4),

pE ´ FDqP “ E ´ FD. (5.30)

Now we are ready to introduce the elements U and Y whose existence was postulated

in Assumption A1. We define them as:

U :“ SpZ2
rPq and Y :“ Z2

qPZ1. (5.31)

The elements U and Y are invertible as products of invertible elements (recall (4.4)).

By the following lemma, U and Y defined by (5.31) confirm the validity of Assumption A1.
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Lemma 5.2.1. The elements U and Y satisfy

DqY “ UZ.

Proof. Note that DqZ2
qP is a sum of certain elements of Qk, k “ 1, 2, 3, so Lemma 4.1.3

gives that DqZ2
qPFD “ DqZ2

qP. Consequently,

DqY “ DqZ2
qPZ1 “ DqZ2

qPFDZ1 “ SpFDqZ2
qPqDZ1.

Commutation of FDq P Q0 and Z2 P Q0, combined with the first identity in (5.29), leads

to

DqY “ SpZ2FDq
qPqDZ1 “ SpZ2

rPFDqqDZ1 “ SpZ2
rPqDqFDZ1 “ UDqFDZ1.

Lemma 4.1.3 applied to Dq P Q1 implies that DqFDZ1 “ DqZ1 “ Z, see (5.10).

We record the identity given by the following lemma for further reference:

Lemma 5.2.2. The elements P and U satisfy

SpZqP “ USpDqq.

Proof. From (5.29) and Remark 4.2.1, we get

SpZqP “ DZ2DqFP “ DZ2
rPDqF “ SpZ2

rPDqq “ USpDqq.

5.2.2. Element X with its relatives

We will introduce new elements X and rX to concisely describe the relation between rP and

SprPq. Set:

X :“ X2 ` X3 and rX :“ rX2 ` rX3

with

X2 :“ SpK1q, X3 :“ SpT3qB,

rX2 :“ K1, rX3 :“ κ0T pD2
qRpK1qT´1

3 q.
(5.32)
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Remark 4.1.2 shows that all elements Xi and rXi indexed by i belong to Qi´1, i “ 2, 3.

Now, let us discuss some properties of these elements.

Lemma 5.2.3. The following identities are satisfied:

X3 “κ0DqRprX2qDqT
´1
3 ,

SprX3q “κ0DqRpX2qDqT
´1
3 ,

RprX2q “RpX2q ` prX2 ´ X2qFK3T3F.

Proof. The first identity is a direct consequence of (5.32), the definition of B, and identity

(4.3). Additionally, applying Lemma 4.2.2 to Dq P Q1 and RpK1q P Q0 we get

SprX3q “ κ0D
2
qRpK1qT´1

3 “ κ0DqSpRpK1qqDqT
´1
3 .

Lemma 4.2.4 completes the proof of the second identity. To prove the third formula, note

that X2F P Q0 and rX2F P Q0, so they commute. Consequently,

prX2Fq
2

´ pX2Fq
2

“ prX2F ´ X2FqprX2F ` X2Fq “ prX2 ´ X2qFprX2 ` X2qF.

By the definition of R given by (2.24), we obtain

RprX2q ´ RpX2q “ ηprX2F ´ X2Fq ` σpprX2Fq
2

´ pX2Fq
2
q “ prX2 ´ X2qFpηD ` σrX2 ` σX2qF.

The third identity follows from the definitions of X2 and rX2, along with formulas (5.25)

and (5.23).

5.2.3. Relations between rP, X, and their relatives

This subsection discusses some relations between the objects introduced in the previous

sections.

Referring to the definition of X3, it is straightforward to observe that (4.3) leads to

qP3 “ κ1SpFDqT
´1
3 qX3FDq, rP3 “ κ1SpF2D2

qT
´1
3 qX3. (5.33)
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Moreover, the commutativity of T pRpK1qT´1
3 qT´1

3 P Q0 and F2D2
q P Q0 yields

κ1rX3T
´1
3 F2D2

q “ κ1κ0T pD2
qqF

2D2
qT pRpK1qT

´1
3 qT´1

3 “ rP3, (5.34)

where the last step holds due to Lemma 5.1.8 and the definition of T . Furthermore, the

definitions of rX3 and T give that

SpT3qrX3FDq “ κ0SpT3qFD2
qRpK1qT´1

3 Dq.

Lemma 4.2.2 used with FD2
qRpK1q P Q1 and T´1

3 P Q0, together with identity (4.3) imply:

SpT3qrX3FDq “ κ0FD2
qRpK1qDq “ FDqX3T3, (5.35)

where the last step follows from the definitions of B and X3.

Moreover, the elements X and rX are related to rP as follows:

Lemma 5.2.4. The following identity is satisfied:

rrP,FDqs “ FDqXZ2 ´ Z2
rXFDq ` zQ.

Proof. Since the elements rP, X and rX are certain linear combinations of some elements

from Qk, k “ 0, 1, 2, the asserted equality will be proved by comparing the summands

from these subspaces.

1. Elements of Q0. Restricted to Q0, the identity from Lemma 5.2.4 states that

rrP1,FDqs “ 0, which is implied by Remark 4.2.7.

2. Elements of Q1. When restricted to Q1, the asserted identity becomes

rrP2,FDqs “ FDqX2Z2 ´ Z2
rX2FDq ` zQ.

This can be proved in the following way. Lemma 4.2.2 applied to K3 P Q1 and FDq P Q0

yields that rP2 “ κ0FD2
qFK3 “ κ0FDqK3FDq. Next, in view of Lemma 4.2.8, we get

rrP2,FDqs “ κ0FDqrK3,FDqsFDq “ FDqX2Z2 ´ Z2
rX2FDq ` zQ,

where the last equality is satisfied because of Lemma 5.1.7.
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3. Elements of Q2. Finally, Lemma 5.2.4 restricted to Q2 says

rrP3,FDqs “ FDqX3Z2 ´ Z2
rX3FDq. (5.36)

The proof relies on the following arguments. Remark 4.2.9 applied to rP3, FDq, and

(5.5) for k “ 2, gives

rrP3,FDqs “ Z2
rP3FDq ´ FDq

rP3Z2.

Due to (5.34) and (5.33), we get

rrP3,FDqs “ κ1Z2
rX3T

´1
3 F2D2

qFDq ´ κ1FDqSpF2D2
qT

´1
3 qX3Z2.

Formula (5.16) applied to κ1F2D2
q which appears twice above gives

rrP3,FDqs “ Z2
rX3T

´1
3 Z1Z2FDq ´ Z2

rX3FDq ´ FDqSpZ1Z2T
´1
3 qX3Z2 ` FDqX3Z2. (5.37)

Since FDq P Q0 and T´1
3 Z1Z2 P Q0 commute,

Z2
rX3T

´1
3 Z1Z2FDq “ Z2

rX3FDqT
´1
3 Z1Z2 “ Z2SpT´1

3 qFDqX3Z1Z2,

see (5.35) and (4.3). Lemma 4.2.2 applied to SpT´1
3 qFDqX3 P Q2 and Z1 P Q0

yields that Z2SpT´1
3 qFDqX3Z1Z2 “ SpZ1Z2T

´1
3 qFDqX3Z2. By the commutativity of

SpZ1Z2T
´1
3 q P Q0 and FDq P Q0, the right-hand side of (5.37) simplifies to (5.36).

Moreover, we can change the order of multiplication of SprPq and X as follows:

Lemma 5.2.5. The following identity is satisfied:

SprXqrP “ SprPqX.

Proof. As in the proof of Lemma 5.2.4, we will prove the asserted identity for elements

restricted to the subspaces Q1, Q2, Q3, and Q4, respectively. Recall that the elements rPi,

Xi, rXi belong to Qi´1, and that a product of two elements belongs to the corresponding

subspace as described in Remark 4.1.2.
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1. Elements of Q1. We will show that SprX2qrP1 “ SpP1qX2. In order to see this, it is

enough to use the definitions of rP1, rX2, and X2.

2. Elements of Q2. When restricted to Q2, Lemma 5.2.5 says

SprX2qrP2 ` SprX3q “ SprP2qX2 ` X3. (5.38)

We will prove it as follows. Lemma 5.2.3 gives

X3 ´ SprX3q “ κ0DqprX2 ´ X2qFK3T3FDqT
´1
3 “ κ0DqprX2 ´ X2qFK3FDq,

where the last step is satisfied since T3 P Q0 and FDq P Q0 commute. Lemma 4.2.6

applied to Dq P Q1 and rX2 ´ X2 P Q1 yields

DqprX2 ´ X2qF “ SprX2 ´ X2qFDq

whereas Lemma 4.2.3 used with K3 P Q1 and Dq P Q1 implies that K3FDq “ DqFK3.

Consequently, X3 ´ SprX3q “ SprX2 ´ X2qrP2. Lemma 4.2.6 (used with SpX2q P Q1 and
rP2 P Q1) and Lemma 4.2.5 yield (5.38).

3. Elements of Q3. Here our task is to prove

SprX3qrP2 ` SprX2qrP3 “ SprP3qX2 ` SprP2qX3. (5.39)

In order to do so, we proceed as follows. Lemma 4.2.2 applied to rX2 P Q1 and

F2D2
q P Q0 yields that rX2F2D2

q “ FD2
qFrX2. Consequently, the second identity from

(5.33) implies

SprP2qX3 ´ SprX2qrP3 “ SprP2 ´ κ1FD2
qFrX2T

´1
3 qX3 “ κ0SpFD2

qFpK3 ´ σK1T
´1
3 qqX3,

where in the last equality we have used the definitions of rP2 and rX2. Formula (5.26)

gives SprP2qX3 ´ SprX2qrP3 “ κ0SpFD2
qFSpK2qT´1

3 qX3. Remark 4.2.1 and Lemma 4.2.2

(applied to S2pFDqK2qSpT´1
3 q P Q1 and FDq P Q0) give

SprP2qX3 ´ SprX2qrP3 “ κ0S2
pFDqK2qSpT´1

3 qFDqX3.
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In view of (5.35),

SprP2qX3 ´ SprX2qrP3 “ κ0S2
pFDqK2qrX3FDqT

´1
3 .

Lemma 4.2.6 (applied to SprX3FDqq P Q2 and FDqK2 P Q1) and Lemma 4.2.5 yield

SprP2qX3 ´ SprX2qrP3 “ κ0SprX3FDqqFDqK2T
´1
3 .

Note that the elements FDq P Q0 and DqF P Q0 commute. Moreover, (5.26) implies

SprP2qX3´SprX2qrP3 “ κ0SprX3qFD2
qFpK3´σSpK1qT

´1
3 q “ SprX3qrP2´κ1SprX3T

´1
3 F2D2

qqX2.

Above we have used Lemma 4.2.2 again, this time applied to FD2
qFSpK1q P Q1 and

T´1
3 P Q0. Finally, formula (5.34) implies (5.39).

4. Elements of Q4. Finally, we have to show that SprP3qX3 “ SprX3qrP3. Using the formula

for rP3 given by (5.34) and the fact that T´1
3 P Q0 and F2D2

q P Q0 commute, we get

SprP3qX3 “ Spκ1rX3T
´1
3 F2D2

qqX3 “ Spκ1rX3F
2D2

qT
´1
3 qX3 “ SprX3qrP3,

where the last equality comes from (5.33).
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Chapter 6

Removing Assumptions A1, A2 and A3

In this chapter we will show that Assumptions A1-A3 are implied by (1.9) with στ “ 0.

Our arguments will heavily rely on the results derived in Chapters 4 and 5. Therefore,

as in Chapter 5, we will work under assumptions (1.9) with στ “ 0.

Recall that z P R and t ě 0 are fixed and all arguments pz, tq are suppressed,

e.g. in U, Y.

6.1. Assumption A1

The elements U and Y (given by (5.31)) are invertible (see the line below (5.31)). The

equality in Assumption A1 is an immediate consequence of Lemma 5.2.1.

6.2. Assumption A2

Before going to the proof of how Assumption A2 follows from (1.9) with στ “ 0, we

will represent the element S, given by (2.27), in terms of the objects presented in the

previous chapter.

The following lemma verifies that rP ` X is equal to S, which means that rP ` X encodes

the Jacobi matrix for the orthogonal polynomials tWnp¨; z, tqu8
n“0 in Q.

Lemma 6.2.1. The following identity is satisfied:

S “ rP ` X. (6.1)
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Proof. Using the definitions of rP and X, we can write

rP ` X “ E ` pκ0FD2
qFK3 ` SpK1qq ` Spκ1F

2D2
q ` T3qB,

which, in view of (5.16), can be simplified to

rP ` X “ E ` pκ0FD2
qFK3 ` SpK1qq ` Z2Z3B.

Using (5.24), (5.27), and (5.28), we get that the nth coordinate of rP`X is equal to (2.27),

n P N0. Since S and rP ` X coincide coordinate-wise, we get the desired result.

Recall that rP and X are certain sums of elements of Qk, k “ 0, 1, 2. By (6.1), the same is

true for S, so Lemma 4.1.3 implies

SpE ´ FDq “ rP1pE ´ FDq “ E ´ FD. (6.2)

We are now ready to present a result justifying that S is indeed related to the solution of

the q-commutation equation, compare with Assumption A2.

Theorem 6.2.2. The following identity is satisfied:

p1 ` σtqDqSFY “ pq ´ σtqUSFZ ` UY ` κ0DqpRpSq ´ RpXqqZ

` pκ2DqZ2 ` S2
pT3qSprX3qqqPZ1,

(6.3)

where U and Y are defined in (5.31).

Proof. It is sufficient to prove each of the following four identities:

p1 ` σtqDqSFY ´ UY “ DqXFZ3
qPZ1 ` κ1DqXFrPFZ ` qZ2SprPqrPFZ

´ qrSprPq,FDqsqPZ1,
(6.4)

pq ´ σtqUSFZ ` κ0DqpRpSq ´ RpXqqZ “ qZ2SprPqrPFZ ` qZ2SprXqFDq
qPZ1

` κ1DqXFrPFZ ` ηκ0DqFDq
qPZ1,

(6.5)
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DqXFZ3 ´ qrSprPq,FDqs “ Z3SprXqDqF ´ zSpQq, (6.6)

Z3SprXqDqF ´ qZ2SprXqFDq “ zSpQq ` ηκ0DqFDq ` κ2DqZ2 ` S2
pT3qSprX3q, (6.7)

as they imply the desired result after obvious calculations.

1. Proof of (6.4). Remark 4.2.1 implies that DqFSprPq “ SpFDq
rPq. Moreover, identities

(5.8) and (6.1) yield that

UY “ Z3SprPqY “ pp1 ` σtqDqF ´ qFDqqSprPqY

“ p1 ` σtqSpFDqpS ´ XqqY ´ qFDqSprPqY

“ p1 ` σtqDqpS ´ XqFY ´ qFDqSprPqY.

The definition of Y and formula (5.7) lead to

UY “ p1 ` σtqDqSFY ´ DqXFZ3
qPZ1 ´ κ1DqXF2Dq

qPZ1 ´ qFDqSprPqZ2
qPZ1

“ p1 ` σtqDqSFY ´ DqXFZ3
qPZ1 ´ κ1DqXFrPFZ ´ qFDqSprPqZ2

qPZ1,
(6.8)

where the last step follows from (5.29) and (5.10). Remark 4.2.9 applied to SprPq, FDq,

and Z2 yields

FDqSprPqZ2 “ Z2SprPqFDq ´ rSprPq,FDqs.

Substituting the above into (6.8) and using (5.29) again gives (6.4).

2. Proof of (6.5). Identity (5.9) together with the definition of U gives

pq ´ σtqUSFZ “ pqZ2 ´ κ1DqFqSprPqSFZ “ qZ2SprPqSFZ ´ κ1SpFDq
rPqSFZ.

Formula (6.1) implies

pq ´ σtqUSFZ “ qZ2SprPqprP ` XqFZ ´ κ1DqpSFq
2Z ` κ1DqXFprP ` XqFZ.

Lemma 5.2.5 and then (5.29) with (5.10) yield that

qZ2SprPqprP ` XqFZ “ qZ2SprPqrPFZ ` qZ2SprXqrPFZ “ qZ2SprPqrPFZ ` qZ2SprXqFDq
qPZ1.
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Moreover, note that formulas (2.24), (5.2) and (6.1) give

κ1DqpXFq
2Z ´ κ1DqpSFq

2Z “ κ0DqpRpXq ´ RpSqqZ ` ηκ0DqpS ´ XqFZ

“ κ0DqpRpXq ´ RpSqqZ ` ηκ0Dq
rPFZ

“ κ0DqpRpXq ´ RpSqqZ ` ηκ0DqFDq
qPZ1,

where the last step is satisfied due to (5.29) and (5.10).

3. Proof of (6.6). Note that

qrSprPq,FDqs “ rSprPq, qFDqs “ rSprPq,DqF ´ Es “ rSprPq,DqFs “ SprrP,FDqsq,

where we used (4.5), (5.3), (4.7), (4.6) in each consecutive equality, respectively.

Lemma 5.2.4, used with Remark 4.2.1 and the fact that Z3 “ SpZ2q, ends the proof

of (6.6).

4. Proof of (6.7). Note that Lemma 4.2.2 implies that

Z3SprXiqDqF “ S i´1
pDqFqZ3SprXiq, Z2SprXiqFDq “ S i´1

pFDqqZ2SprXiq, i “ 2, 3.

Moreover, the identities Zi “ SpZi´1q, i “ 1, 2, 3, and (5.10) yield

Z3SprXqDqF ´ qZ2SprXqFDq “ SpDqFZ2 ´ qFZqSprX2q ` S2
pDqFZ1 ´ qFDqZ0qSprX3q

“ SpT2K1q ` S2
pT3qSprX3q,

see (5.18), (5.32), and (5.20). In view of (5.22) and the definition of V,

SpT2K1q “ zSpQq ` ηκ0DqFDq ` κ2DqZ2.

Expression (6.3) derived in Theorem 6.2.2 is almost identical to that in Assumption A2,

see (5.31). Fortunately, the terms in (6.3) that do not appear in Assumption A2 cancel

out:

Lemma 6.2.3. The following identity is satisfied:

κ0DqRpXqZ “ S2
pT3qSprX3qqPZ1.
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Proof. Note that Lemma 4.2.2 used with K3 P Q1 and T3 P Q0 yields that

SpT´1
3 qK3T3 “ K3. Next, referring to the definitions of qP2 and qP3, and to formula (5.2)

we get

S2
pT3qSprX3qpqP2 ` qP3qZ1 “ κ0S2

pT3qSprX3FDqT
´1
3 qpK3T3 ` σSpT3qBqFZ

“ κ0SpFDqX3qpK3T3 ` σX3qFZ,

where the last step holds true due to (5.35) and the definition of X3. Identities (5.25) and

(5.23) yield

S2
pT3qSprX3qpqP2 ` qP3qZ1 “ κ1DqX3FXFZ ` κ0DqX3FpσK1 ` ηDqFZ

“ κ1DqX3FXFZ ` κ1DqX2FX3FZ ` ηκ0DqX3FZ.

Above we have used Lemma 4.2.2 applied to X3 P Q2 and FK1 P Q0 and the fact that

S2pFK1q “ X2F. By the definition of X, we get

S2
pT3qSprX3qpqP2 ` qP3qZ1 “ κ1DqpXFq

2Z ´ κ1DqpX2Fq
2Z ` ηκ0DqXFZ ´ ηκ0DqX2FZ

“ κ0DqRpXqZ ´ κ0DqRpX2qZ,

see (2.24). Adding S2pT3qSprX3qqP1Z1 to both sides of the above equation and using

the second identity from Lemma 5.2.3, we obtain

S2
pT3qSprX3qqPZ1 “ κ0DqRpXqZ ` κ0S2

pT3qDqRpX2qDqT
´1
3 Z1 ´ κ0DqRpX2qZ.

Lemma 4.2.2 (used with DqRpX2qDq P Q2 and T3 P Q0), together with formulas (4.4) and

(5.10), ends the proof.

6.3. Assumption A3

We will first prove an auxiliary equality that, after some rearrangement, shows that

Assumption A3 is implied by (1.9) with στ “ 0.

Lemma 6.3.1. We have the following identity:

DqSFZ3P “ USFSpDqq ´ qzQP ` 1
1`σt

UpE ´ FDqZ3P.
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Proof. Lemma 5.2.5 with (5.29) yields

SpZ2
rXFDqqP “ SpZ2

rPqXDqF. (6.9)

According to Remark 4.2.9, we have

rrP,FDqs “ Z2
rPFDq ´ FDq

rPZ2,

recall formula (5.5) for k “ 2. Consequently, Lemma 5.2.4 gives

SpFDq
rPZ2 ´ Z2

rPFDq ` FDqXZ2 ` zQqP “ SpZ2
rXFDqqP “ SpZ2

rPqXDqF,

where the last equality follows from (6.9). As a result, see (5.11), (5.31), and (6.1),

DqSFZ3P ´ UDqFP ` qzQP “ UXDqF.

Taking into account formulas (5.29) and (6.1), we obtain

DqSFZ3P ` qzQP “ USDqF “ USFSpDqq ` USpE ´ FDqDqF

“ USFSpDqq ` UpE ´ FDq,
(6.10)

where the last equality is satisfied because of (6.2) and (5.3). Moreover, formula (5.5) for

k “ 3 and identity (5.3) give

pE ´ FDqZ3 “ pE ´ FDqpE ` σtDqFq “ p1 ` σtqpE ´ FDq,

and (5.30) implies that pE ´ FDqZ3P “ p1` σtqpE ´ FDq. Since 1` σt ą 0, we can divide

by this factor and insert the last expression into (6.10). This gives the desired result.

From (5.11) and (5.13), it follows that

Dq ` qQZ´1
3 “ SpFDqDZ2 ` QqZ´1

3 “ SpZqZ´1
3 .
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Thus, the expression from Lemma 6.3.1, multiplied from the left by U´1 and from the

right by P´1Z´1
3 , yields, in view of Lemma 5.2.2, the following:

U´1DqSF ´ SFU´1Dq “ qpSF ´ zEqU´1QZ´1
3 ` 1

1`σt
pE ´ FDq.

Hence we get the identity from Assumption A3 with rU “ qU´1QZ´1
3 .
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Chapter 7

Free quadratic harnesses

In this chapter, we will study free quadratic harnesses QHpη, θ;σ, τ ;´στq. The adjec-

tive ’free’ comes from the relations of this process with free probability, especially with

free convolutions when στ “ 0, see [21, Section 4.3] for more details.

Our main aim is to describe the measure νx,t,η,θ,σ,τ,´στ appearing in Theorem 1.6.1

in the case of the free quadratic harness. Our description gives a more explicit formula

for the infinitesimal generator of QHpη, θ;σ, τ ;´στq.

In the first section, we show that for all x P R, the polynomials tĂWnp¨;x, tqu8
n“0 are

orthogonal with respect to a probability measure. We provide an explicit form of this

measure.

In the second part, we represent this measure as a (modified) univariate distribution of

the considered free quadratic harness. This representation, which was previously obtained

in Remark 4.2 of [24], is valid only for t ą 0. In the concluding part of this chapter, we

will provide another representation of νx,t,η,θ,σ,τ,´στ that holds for all t ě 0.

7.1. Description of the orthogonality measure νx,t,η,θ,σ,τ,´στ

If q “ ´στ , then the assumptions (1.9) are reduced to the condition

0 ď στ ă 1, (7.1)

and therefore ξ from (1.21) is equal to ξ “ 2p1 ´ στq. The remaining parameters defined

in (1.22) take the form

ξ0 “
pτ`tqp1`σtq

p1´στq2
, ξ1 “

σpt`τq

1´στ
, and ξ2 “

θ´ηt
1´στ

.
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Moreover, rq given in (1.24) is zero, hence rns
rq “ 1 for all n P N. As a result,

rγn “ ξ2 `
ηξ0
1`ξ1

“
ητ`θ
1´στ

, n P N,

and

σrγn ` η “
η`σθ
1´στ

, n P N.

Denote

χ1 :“
η`θσ
1´στ

and χ2 :“
θ`ητ
1´στ

, (7.2)

and recall that r0s
rq “ 0. Thus

ra0pxq “ χ2, ranpxq “
ξ0

1`ξ1
pσrγn`1 ` χ1q ` χ2, n ě 1,

and
rb1pxq “

ξ0
1`ξ1

p1 ` χ1χ2q, rbnpxq “ ξ0p1 ` χ1χ2q, n ě 2.

Therefore, tĂWnpy;x, tqu8
n“0 satisfies the following three-step recurrence:

ĂW0py;x, tq “ 1, ĂW1py;x, tq “ y ´ χ2,

yĂW1py;x, tq “ ĂW2py;x, tq ` raĂW1py;x, tq `
rbp1´στq

1`σt
ĂW0py;x, tq,

yĂWnpy;x, tq “ ĂWn`1py;x, tq ` raĂWnpy;x, tq ` rbĂWn´1py;x, tq, n ě 2,

where ra :“ pσχ2`χ1qt`τχ1`χ2

1´στ
and rb :“ pt`τqp1`σtq

p1´στq2
p1 ` χ1χ2q.

Note that the coefficients in the three-step recurrence do not depend on x, so the polyno-

mials do not depend on x as well. As a result, the same applies to the moment functional

that makes these polynomials orthogonal.

In particular, we know from Theorem 1.6.1 that for x satisfying 1 ` ηx ` σx2 ą 0, the

moment functional is non-negative definite, so Remark A.0.2 implies that

rb1pxq “ t`τ
1´στ

p1 ` χ1χ2q ě 0

for all t ě 0. Since τ ě 0 (recall (1.5)) and (7.1) is satisfied, the above inequality implies

that

1 ` χ1χ2 ě 0. (7.3)
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Under (7.3), the quadratic harness QHpη, θ;σ, τ ;´στq was constructed in [20, The-

orem 1.1.]. Furthermore, from (7.3) we conclude that the free quadratic harness

QHpη, θ;σ, τ ;´στq (with all moments finite) does not exist when 1 ` χ1χ2 ă 0.

When (7.3) holds, tĂWnpy;x, tqu8
n“0 are orthogonal with respect to some probability mea-

sure νx,t,η,θ,σ,τ,´στ . Since orthogonal polynomials are determined up to multiplicative con-

stants, polynomials trVnpy;x, tqu8
n“0 satisfying the following three-step recurrence:

rV0py;x, tq “ 1´στ
1`σt

, rV1py;x, tq “ y ´ χ2,

yrVnpy;x, tq “ rVn`1py;x, tq ` rarVnpy;x, tq ` rbrVn´1py;x, tq, n ě 1,

are orthogonal with respect to the same probability measure as the polynomials

tĂWnp¨;x, tqu8
n“0.

If rb “ 0, then trVnp¨;x, tqu8
n“0 are orthogonal with respect to the Dirac measure concen-

trated at χ2.

If rb ą 0, then the orthogonality measure for trVnp¨;x, tqu8
n“0 is fully described in Theorem 3

in [28]. It has an absolutely continuous part and possibly (for some parameters of the

quadratic harness) at most two atoms. Indeed, for the function f introduced in [28,

Theorem 3], we have after simplification that

fpzq “ t`τ
1`σt

pσz2 ` ηz ` 1q.

Therefore f has two real roots z˘ “
´η˘

?
η2´4σ

2σ
if only η2 ą 4σ ą 0 (the superscript ` or

´ indicates that we are taking ` or ´, respectively, in each expression). If η2 ą 4σ “ 0,

then f has a root in ´ 1
η
. As a result, with pzq` :“ z`|z|

2
for z P R, the measure νx,t,η,θ,σ,τ,´στ

can be decomposed as follows:

i) the absolutely continuous part µc is proportional to

?
4rb´py´raq2

σy2`ηy`1
1ˆ

ra´2

?
rb,ra`2

?
rb

˙pyqdy,

ii) the discrete part µd may appear only in two cases:

a) if η2 ą 4σ ą 0, then a discrete part is proportional to

´

1`χ1χ2

|z`´χ2|
´

p1`σtq|z`´χ2|

t`τ

¯

`
δz`pdyq `

´

1`χ1χ2

|z´´χ2|
´

p1`σtq|z´´χ2|

t`τ

¯

`
δz´pdyq,
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b) if η2 ą 4σ “ 0, then a discrete part is proportional to

´

1 ´
rb

η2pt`τq2

¯

`
δ

´
1
η

pdyq,

iii) there is no singular part µs.

Therefore, the orthogonality measure can be written as:

νx,t,η,θ,σ,τ,´στ pdyq “ ζcµcpdyq ` ζdµdpdyq,

where ζc and ζd are some real constants uniquely determined by the requirement that

trVnp¨;x, tqu8
n“0 are orthogonal with respect to νx,t,η,θ,σ,τ,´στ . In particular, integrating

rV0p¨;x, tq and rV1p¨;x, tq with respect to νx,t,η,θ,σ,τ,´στ gives 1´στ
1`σt

and 0, respectively.

Note that if σ “ η “ 0, then

νx,t,0,θ,0,τ,0pdyq “ 1
2πpt`τq

a

4pt ` τq ´ py ´ θq21pθ´2
?
t`τ ,θ`2

?
t`τqpyqdy,

that is νx,t,0,θ,0,τ,0 is a probability density function of a Wigner semicircle distribution with

mean θ and variance t ` τ .

7.2. Relation to the univariate distributions

We continue under assumptions (7.1) and (7.3). Recall that for free quadratic har-

nesses, the polynomials tĂWnpy;x, tqu8
n“0 do not depend on x. Therefore, the probabilistic

orthogonality measure νx,t,σ,τ,η,θ,´στ also does not depend on x.

Now we will represent tĂWnpy;x, tqu8
n“0 in terms of the monic martingale polynomials

tpnpy; tqu8
n“0 for QHpη, θ;σ, τ ;´στq, which satisfy the following three-step recurrence (see

Proposition 2.2 in [20]):

p0py; tq “ 1, p1py; tq “ y,

yp1py; tq “ p2py; tq ` pχ1t ` χ2qp1py; tq ` tp0py; tq,

yp2py; tq “ p3py; tq ` rap2py; tq ` rbp1 ´ στqp1py; tq,

ypnpy; tq “ pn`1py; tq ` rapnpy; tq ` rbpn´1py; tq, n ě 3.

(7.4)
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We will also consider polynomials tUnpy; tqu8
n“0 defined by

Unpy, tq :“

$

’

’

’

&

’

’

’

%

τp2py; tq ` χ2pt ` τqp1py; tq ` tpt ` τqp0py; tq, n “ 0,

τp3py; tq `
pτ`tqpχ1τ`χ2q

1´στ
p2py; tq `

pt`τqp1´στqrb
1`σt

p1py; tq, n “ 1,

τpn`2py; tq `
pτ`tqpχ1τ`χ2q

1´στ
pn`1py; tq `

pt`τqrb
1`σt

pnpy; tq, n ě 2.

It turns out that Un is connected with ĂWn in the following way:

Lemma 7.2.1. For all n P N0 we have

Unpy; tq “ pt2 ` θty ` τy2qĂWnpy;x, tq.

Proof. A direct calculation shows that the assertion is true for n “ 0, 1, i.e., it is easy to

check that

U0py; tq “ t2 ` θty ` τy2 and U1py; tq “ pt2 ` θty ` τy2qpy ´ χ2q.

Next, the definition of U1 and the three-step recurrence for tpnpy; tqu8
n“0 imply

yU1py; tq “τpp4py; tq ` rap3py; tq ` rbp2py; tqq

`
pτ`tqpχ1τ`χ2q

1´στ
pp3py; tq ` rap2py; tq ` rbp1 ´ στqp1py; tqq

`
pt`τqp1´στq

1`σt
rbyp1py; tq.

Using the definition of Un for n “ 0, 1, 2 and collecting the expressions with p2, p1, and

p0, respectively, we get

yU1py; tq “U2py; tq ` raU1py; tq `
rbp1´στq

1`σt
U0py; tq ´

`

1´στ
1`σt

τ ` t`τ
1`σt

´ τ
˘

rbp2py; tq

´
`

1´στ
1`σt

χ2 ` ra1´στ
1`σt

´ pχ1τ ` χ2q
˘

pt ` τqrbp1py; tq

´ 1´στ
1`σt

pt ` τqtrbp0py; tq `
pt`τqp1´στq

1`σt
rbyp1py; tq.

After simplification and in view of the second line in (7.4) we get

yU1py; tq “ U2py; tq ` raU1py; tq `
rbp1´στq

1`σt
U0py; tq.
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Analogously, we can obtain

yU2py; tq “ U3py; tq ´
pt`τqt
1`σt

p3py; tq ` ra
´

U2py; tq ´
rbpt`τq

1`σt
p2py; tq

¯

` rb
´

U1py; tq ´
rbpt`τqp1´στq

1`σt
p1py; tq

¯

`
pt`τqrb
1`σt

yp2py; tq.

The third formula in (7.4) implies yU2py; tq “ U3py; tq ` raU2py; tq ` rbU1py; tq. Moreover,

directly from the last line in (7.4) we see that

yUnpy; tq “ Un`1py; tq ` raUnpy; tq ` rbUn´1py; tq, n ě 3.

Since the sequence tUnpy; tqu8
n“0 satisfies the same three-step recurrence

as tpt2 ` θty ` τy2qĂWnpy;x, tqu8
n“0 with the same initial conditions, we get the

desired result.

Let πt be a univariate distribution of QHpη, θ;σ, τ ;´στq at time t ą 0. The martingale

polynomials tpnp¨; tqu8
n“0 are orthogonal with respect to πt. Consequently, Lemma 7.2.1

implies
ż

R

t2`θty`τy2

tpt`τq
ĂWnpy;x, tqπtpdyq “ 1tn“0u,

where above we have used the fact that
ş

R

pnpy; tqπtpdyq “ 1tn“0u. Then Exercise 4.14 in

[27] yields:

Corollary 7.2.2. Polynomials tĂWnp¨;x, tqu8
n“0 associated with the infinitesimal generator

of QHpη, θ;σ, τ ;´στq are orthogonal with respect to t2`θty`τy2

tpt`τq
πtpdyq, t ą 0, where πt is

the univariate distribution of QHpη, θ;σ, τ ;´στq. That is,

νx,t,σ,τ,η,θ,´στ pdyq “
t2`θty`τy2

tpt`τq
πtpdyq. (7.5)

Consequently, in the case of free quadratic harnesses, Theorem 1.6.1 coincides with

[24, Remark 4.2], which was established using an alternative method based on the

Cauchy-Stieltjes transformation.

However, the representation (7.5) does not work for t “ 0, since then πtpdyq “ δ0pdyq, see

(1.2), and

ż

R

pt2 ` θty ` τy2qĂWnpy;x, tqπtpdyq “

ż

R

τy2ĂWnpy;x, 0qδ0pdyq “ 0, n P N0,
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7.2. RELATION TO THE UNIVARIATE DISTRIBUTIONS

which makes the normalization impossible for n “ 0.

To overcome this normalization problem and determine the measure νx,t,η,θ,σ,τ,´στ for all

t ě 0, we will consider a free quadratic harness with slightly modified parameters. Namely,

we obtain the following result:

Proposition 7.2.3. Let rπt be an univariate distribution of QH pη, χ2;σ, 0; 0q at time

t ě 0 (recall (7.2)). Then the infinitesimal generator of QHpη, θ;σ, τ ;´στq acting on

polynomials can be represented as in Theorem 1.6.1 with

νx,t,η,θ,σ,τ,´στ pdyq “
`

1 `
θ`ητ
t`τ

y
˘

rπ t`τ
1´στ

pdyq, when t ` τ ą 0,

and

νx,t,η,θ,σ,τ,´στ pdyq “ δχ2pdyq, when t “ τ “ 0.

Proof. Denote by tVnpy;x, tqu8
n“0 the polynomials associated with infinitesimal generator

of QH pη, χ2;σ, 0; 0q, i.e., tVnpy;x, tqu8
n“0 satisfies the following three-step recurrence:

V0py;x, tq “ 1, V1py;x, tq “ y ´ χ2,

yV1py;x, tq “ V2py;x, tq ` qaV1py;x, tq `
qb

1`σt
V0py;x, tq,

yVnpy;x, tq “ Vn`1py;x, tq ` qaVnpy;x, tq ` qbVn´1py;x, tq, n ě 2,

where

qa “ pσχ2 ` η ` σχ2qt ` χ2 “ pσχ2 ` χ1qt ` χ2,

qb “ tp1 ` σtqp1 ` pη ` σχ2qχ2q “ tp1 ` σtqp1 ` χ1χ2q.

Comparing this with the three-step recurrences for tĂWnpy;x, tqu8
n“0 leads to the conclusion

that
ĂWnpy;x, tq “ Vnpy;x,rtq, n P N0,

where rt :“ t`τ
1´στ

.

As we have already proved, the polynomials tVnp¨;x,rtqu8
n“0 are orthogonal with respect

to
`

1 ` yχ2{rt
˘

rπ
rtpdyq if only rt ą 0 (equivalently t ` τ ą 0), see Corollary 7.2.2.

If t “ τ “ 0, then the three-step recurrence for tĂWnp¨;x, 0qu8
n“0 significantly simplifies, in
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particular rb0 “ 0. Hence according to Theorem A.1 in [22], tĂWnp¨;x, 0qu8
n“0 are orthogonal

with respect to the Dirac measure concentrated at χ2.

It is worth emphasizing that Proposition 7.2.3 is true for 0 ď στ ă 1. Observe that

for στ ą 0 its assertion is covered by Proposition 2.2.1. However, Proposition 2.2.1 does

not cover the case στ “ 0. In particular, the result obtained in Proposition 7.2.3 is not

evident in the case of σ “ 0 and τ ą 0. For this reason, we decided to include the

proof of Proposition 7.2.3, even though it partially covers the previously considered case

of Proposition 2.2.1.
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Chapter 8

Quadratic harnesses with q “ ´1

In this chapter, we will examine a quadratic harness with q “ ´1. We will show that

for each t ą 0, Xt can only take on two distinct values. Our main goal is to construct

this process in previously unknown cases and to derive a formula for the infinitesimal

generator directly from the definition. Additionally, we will compare the derived formula

with the one implied by Theorem 3.3.1.

The construction of quadratic harnesses with q “ ´1 was previously carried out in

[19, Section 3.2], only in the case σ “ τ “ 0 (the bi-Poisson process case).

Before we tackle the general case of q “ ´1 (which will be done in Section 8.2), we

will devote the next section to analyzing the bi-Poisson process with q “ ´1.

8.1. Bi-Poisson process QHpη, θ; 0, 0;´1q

Let us now recall the construction from [19, Section 3.2] in detail. Assume that

1 ` ηθ ě 0.

and consider a Markov process pXtqtě0, starting from zero, with univariate distributions

given by

PpXt “ xt,`q “
p´ptq
2yptq

, PpXt “ xt,´q “
p`ptq
2yptq

,

where xt,˘ :“ 1
2
pθ ` ηt ˘ yptqq and

p˘ptq :“ yptq ˘ pθ ` ηtq.
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with yptq :“
b

4t ` pθ ` ηtq2. The form of the support ensures that for all t ě 0

X2
t ´ pθ ` ηtqXt “ t a.s. (8.1)

The transition probabilities for 0 ă s ă t are given by

PpXt “ xt,`|Xs “ xs,`q “
p´ptq`p`psq

2yptq
, PpXt “ xt,´|Xs “ xs,`q “

p`ptq´p`psq

2yptq
,

PpXt “ xt,`|Xs “ xs,´q “
p´ptq´p´psq

2yptq
, PpXt “ xt,´|Xs “ xs,´q “

p`ptq`p´psq

2yptq
.

(8.2)

Such a process is a quadratic harness QHpη, θ; 0, 0;´1q, meaning that pXtqtě0 satisfies

(1.2) and (1.1), and for all 0 ď s ă t ă u,

EpX2
t |Fs,uq “EpX2

t |Xs, Xuq

“
pu´tqpu`tq
pu´sqpu`sq

X2
s `

pt´sqpt`sq

pu´sqpu`sq
X2

u

`
pu´tqpt´sq

pu´sqpu`sq
pηu ´ θqXs `

pu´tqpt´sq

pu´sqpu`sq
pθ ´ ηsqXu `

pu´tqpt´sq

u`s
.

(8.3)

8.1.1. Infinitesimal generator by direct calculation

We will now obtain a formula for the infinitesimal generator of QHpη, θ; 0, 0;´1q in a

direct way (without appealing to Theorem 3.3.1) using the above explicit construction.

For t ą 0

EpfpXt`hq|Xt “ xt,`q “
fpxt`h,`qpp´pt`hq`p`ptqq`fpxt`h,´qpp`pt`hq´p`ptqq

2ypt`hq

“
fpxt`h,´q

2ypt`hq
pypt ` hq ´ yptqq ´

fpxt`h,`q

2ypt`hq
pypt ` hq ´ yptqq

` ηh
fpxt`h,´q

2ypt`hq
´ ηh

fpxt`h,`q

2ypt`hq
` fpxt`h,`q.

If f is differentiable at xt,` and continuous at xt,´ , then the limit on the right-hand side

of (1.15) exists and

pA`
t fqpxt,`q “

fpxt,´q

2yptq
y1

ptq ´
fpxt,`q

2yptq
y1

ptq `
η

2yptq
pfpxt,´q ´ fpxt,`qq ` f 1

pxt,`q d
dt

pxt,`q

“

´

1
2
η `

2`ηpθ`ηtq
2yptq

¯

fpxt,´q´fpxt,`q

yptq
` f 1

pxt,`q

´

1
2
η `

2`ηpθ`ηtq
2yptq

¯

.
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8.1. BI-POISSON PROCESS QHpη, θ; 0, 0;´1q

Since 1
2
η `

2`ηpθ`ηtq
2yptq

“
1`ηxt,`

yptq
, we finally obtain

pA`
t fqpxt,`q “

1`ηxt,`?
4t`pθ`ηtq2

ˆ

fpxt,´q´fpxt,`q?
4t`pθ`ηtq2

` f 1
pxt,`q

˙

.

Analogously, we can show that if f is differentiable at xt,´ and continuous at xt,`, then

pA`
t fqpxt,´q “

1`ηxt,´?
4t`pθ`ηtq2

ˆ

fpxt,`q´fpxt,´q?
4t`pθ`ηtq2

´ f 1
pxt,´q

˙

.

As a result, if f is differentiable at xt,` and xt,´, then f P DpA`
t q.

Furthermore, for a fixed t ą 0, we observe that xt,˘ R supppXt´hq for all 0 ă h ď t.

Therefore, for 0 ă h ď t, we can choose

EpXt|Xt´h “ xt,˘q :“ EpXt`h|Xt “ xt,˘q.

Consequently, if f is differentiable at xt,` and xt,´, then f P DpA´
t q and

pA´
t fqpxt,˘q “ pA`

t fqpxt,˘q.

When t “ 0, the expression under the limit on the right-hand side of (1.15) is equal to

EpfpXhq|X0“0q´fp0q

h
“

pfpxh,`q´fp0qqp´phq

2hyphq
`

pfpxh,´q´fp0qqp`phq

2hyphq
. (8.4)

To find the limit of (8.4), we will consider several cases:

1) θ “ 0. If f is differentiable twice at 0, then by Taylor’s theorem

EpfpXhq|X0“0q´fp0q

h
“

´

f 1p0qxh,``
1
2
f2p0qx2

h,``opx2
h,`q

¯

p´phq

2hyphq
`

´

f 1p0qxh,´`
1
2
f2p0qx2

h,´`opx2
h,´q

¯

p`phq

2hyphq
,

where opx2h,`q is a function that divided by x2h,` goes to zero when h goes to zero

(interpretation of opx2h,´q is analogous). Furthermore, since xh,`p´phq`xh,´p`phq “ 0,

EpfpXhq|X0“0q´fp0q

h
“

´

1
2
f2

p0q `
opx2

h,`q

x2
h,`

¯

x2
h,`p´phq

2hyphq
`

´

1
2
f2

p0q `
opx2

h,´q

x2
h,´

¯

x2
h,´p`phq

2hyphq
.

Since
x2
h,˘p¯phq

2hyphq
“ 1

2

´

1 ˘
ηh
yphq

¯

,
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the limit of the above expression exists as h goes to zero and therefore f P DpA`
0 q and

pA`
0 fqp0q “ 1

2
f2

p0q.

Note that the existence of the first derivative at zero is not sufficient to ensure that f

is in DpA`
0 q. For example, for fpxq :“ |x|3{2, the expression in (8.4) goes to infinity

when h goes to zero.

2) θ ą 0. Under this assumption, as h tends to zero, xh,` goes to θ while xh,´ goes to 0.

Since
p´phq

2hyphq
“ 2

yphqpθ`ηh`yphqq

hÑ0`

ÝÝÝÑ 1
θ2
,

and
xh,´p`phq

2hyphq
“ ´ 1

yphq

hÑ0`

ÝÝÝÑ ´1
θ
,

the limit of formula (8.4) when h goes to zero exists if only f is differentiable at 0 and

continuous at θ. In such case, f P DpA`
0 q

pA`
0 fqp0q “

fpθq´fp0q

θ2
´ 1

θ
f 1

p0q.

3) θ ă 0. We proceed similarly as when θ ą 0 to obtain

pA`
0 fqp0q “

fpθq´fp0q

θ2
´ 1

θ
f 1

p0q,

where f is differentiable at 0 and continuous at θ.

8.1.2. Infinitesimal generator by the algebraic approach

In this section, we clarify certain issues which arise with the approach used in [24]

for the infinitesimal generator of the bi-Poisson process when q “ ´1. All the results

from [24] were obtained under the assumption that the considered process is polynomial,

with an infinite state space. This applies, in particular, to the q-commutation equation.

We have found a solution to this equation in Theorem 1.6.1, also for q “ ´1. However, in

order to apply Theorem 1.6.1 to the bi-Poisson process with q “ ´1, one needs to exercise

more caution, as it is a process with a finite state space.

More specifically, for QHpη, θ; 0, 0;´1q, the element Ps,t P Q given in [24, Definition 1.3],
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whose nth coordinate corresponds to EpXn
t |Xs “ xq, n P N0, is not uniquely determined

(as described in [24, Section 1.1]). To illustrate this difficulty, let us consider the following

example:

Example 8.1.1. Let pXtqtě0 be a bi-Poisson process with q “ ´1. Using (8.2), tedious

calculations show

EpX3
t |Xsq “ X3

s ` ηpt ´ sqX2
s ` pt ´ sqrηpηt ` θq ` 1sXs ` pt ´ sqpηt ` θq.

However, in view of (8.1) we also have

EpX3
t |Xsq “ X3

s ´ pθ ` ηsqX2
s `

`

t ´ s ` pθ ` ηtq2
˘

Xs ` tpθ ` ηtq.

Hence, the third coordinate of Ps,t can be represented as the polynomial (in x)

x3 ` ηpt ´ sqx2 ` pt ´ sqrηpηt ` θq ` 1sx ` pt ´ sqpηt ` θq

and also as

x3 ´ pθ ` ηsqx2 `
`

t ´ s ` pθ ` ηtq2
˘

x ` tpθ ` ηtq. (8.5)

However, if we impose the additional condition that the nth coordinate of Ps,t is a monic

polynomial of degree n, then the first three polynomials of Ps,t are uniquely determined.

They are then given by:

1, x, x2 ` ηpt ´ sqx ` t ´ s. (8.6)

The uniqueness arises from the fact that for any two given points only one parabola of the

form x2 ` bx ` c passes through them.

The problem with uniqueness implies that the family tPs,tu0ďsăt may not satisfy the

condition stated in [24, Definition 1.3], which serves as a foundation for the subsequent

arguments in the cited paper.

Example 8.1.2 (Continuation of Example 8.1.1). Suppose that the first four polynomials

for Ps,t are given by (8.6) and (8.5). Then the third coordinate of Ps,tPt,u is equal to (recall
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(2.1)):

x3 ´ pθ ` ηsqx2 `
`

t ´ s ` pθ ` ηtq2
˘

x ` tpθ ` ηtq

´ pθ ` ηtqpx2 ` ηpt ´ sqx ` t ´ sq `
`

u ´ t ` pθ ` ηuq
2
˘

x ` upθ ` ηuq.

Upon simplification, we observe that the coefficient of x2 is equal to ´ps ` tqη ´ 2θ. By

appropriately choosing values for s and t, we can ensure that this coefficient is not equal

to θ ` ηs. Consequently, the third coordinate of Ps,tPt,u does not coincide with the third

coordinate of Ps,u for all 0 ď s ă t ă u.

Despite the aforementioned problems, we will now find a specific family tPs,tu0ďsăt

that satisfies the conditions stated in Definition 1.3 of [24], even in the case q “ ´1.

In [19], the authors introduced orthogonal polynomials tQnpy;x, t, squ8
n“0, t ą s ě 0, that

are orthogonal with respect to the transition probabilities of the bi-Poisson process when

q P p´1, 1q. Since this process has an infinite state space, the corresponding elements

Ps,t are uniquely determined. Specifically, the nth coordinate of Ps,t, which represents

EpXn
t |Xs “ xq, can be expressed as a monic polynomial in the variable x in a unique

manner.

The conditional expectations EpXn
t |Xs “ xq can be obtained recursively from the monic

polynomials tQnpy;x, t, squ8
n“0 due to:

E pQnpXt;x, t, sq|Xs “ xq “ 0, n P N0,

which follows from the fact that tQnpy;x, t, squ8
n“0 are orthogonal with respect to the

conditional distributions.

The polynomials tQnpy;x, t, squ8
n“0 do depend on the parameter q. Moreover, the co-

efficients appearing in the three-step recurrence for tQnpy;x, t, squ8
n“0 have a limit as q

approaches ´1, see [19, (7) and (8)]. This allows us to define a new family of polynomials

t rQnpy;x, t, squ8
n“0 such that

rQnpy;x, t, sq :“ lim
qÑ´1`

Qnpy;x, t, sq.
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It turns out that the polynomials t rQnpy;x, t, squ8
n“0 satisfy the following three-step recur-

rence:

rQ´1py;x, t, sq “0, rQ0py;x, t, sq “ 1,

y rQnpy;x, t, sq “ rQn`1py;x, t, sq `

´

p´1q
nx `

1´p´1qn

2
pθ ` ηtq

¯

rQnpy;x, t, sq

`
1´p´1qn

2
pt ´ sqp1 ` ηxq rQn´1py;x, t, sq, n P N0.

It was proved in [19, Section 3.2] that t rQnpy;x, t, squ8
n“0 are orthogonal with respect to

the transition probabilities of QHpη, θ; 0, 0;´1q, see (8.2). Furthermore, we can construct

the corresponding rPs,t from t rQnpy;x, t, squ8
n“0 in the same way as we obtained Ps,t from

tQnpy;x, t, squ8
n“0.

It is important to note that rPs,t obtained this way coincides in fact with the limit of Ps,t

as q approaches ´1. This follows from the fact that the coordinates of Ps,t are ob-

tained from the polynomials tQnpy;x, t, squ8
n“0, and all coefficients in each polynomial

Qnpy;x, t, sq depend continuously on q.

Since the family tPs,tu0ďsăt satisfies the conditions from the Definition 1.3 in [24],

and the multiplication given in (2.1) is a continuous operation, trPs,tu0ďsăt also satisfies

the same conditions.

Consequently, all arguments presented in [24] remain valid without any modification for

q “ ´1. In particular, the q-commutation equation holds in this case. Therefore, we

can apply the method described in Chapter 2 to derive a formula for the infinitesimal

generator when q “ ´1. Thus, according to Theorems 1.6.1 and 3.3.1, for any function

g P C2pRq (see the comment below Theorem 3.3.1), we have the following result:

pAtgqpxq “

$

&

%

1`ηx
2
g2pxq when θ ` ηt “ 2x,

1`ηx
θ`ηt´2x

´

gpθ`ηt´xq´gpxq

θ`ηt´2x
´ g1pxq

¯

when θ ` ηt ‰ 2x.
(8.7)

Indeed, the three-step recurrence for polynomials tĂWnpy;x, tqu8
n“0 takes the form:

ĂW0py;x, tq “ 1,

ĂWn`1py;x, tq “

´

y ` p´1q
nx ´ pθ ` ηtq1´p´1qn

2

¯

ĂWnpy;x, tq, n ě 0.

Hence, according to [22, Theorem A.1], the polynomials tĂWnp¨;x, tqu8
n“0 are orthogonal
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with respect to the Dirac measure δθ`ηt´x concentrated at θ ` ηt ´ x since
ĂW1py;x, tq “ y ` x ´ θ ´ ηt.

It is easy to verify that the formula for the infinitesimal generator given in (8.7) coincides

with the formulas derived in the previous subsection. However, it is worth noting that

a range of admissible functions obtained through the algebraic approach is a proper subset

of that obtained through direct calculations.

8.2. Quadratic harnesses QHpη, θ;σ, τ ;´1q

Recall that we proceed under assumptions (1.9), which reduce to

0 ď στ ă 1 (8.8)

when q “ ´1. Recall the notation introduced in (7.2) and assume that

1 ` χ1χ2 ě 0. (8.9)

For such χ1 and χ2, there exists a quadratic harness QHpχ1, χ2; 0, 0;´1q denoted by

pYtqtě0. It is noteworthy that pYtqtě0 is also a quadratic harness with modified parameters:

Lemma 8.2.1. The stochastic process pYtqtě0 is QHpη, θ;σ, τ ;´1q.

Proof. Since pYtqtě0 is QHpχ1, χ2; 0, 0;´1q, formulas (1.2) and (1.1) are satisfied. There-

fore, it is sufficient to check that the quadratic harness condition (1.4) holds with (1.7)

and q “ ´1. Note that for 0 ď s ă t ă u:

pu´tqpu`tq
pu´sqpu`sq

“
pu´tqpup1`σtq`τ`tq
pu´sqpup1`σsq`τ`sq

`
pu´tqpt´sqpτ´σu2q

pu´sqpu`sqpup1`σsq`τ`sq
,

pt´sqpt`sq

pu´sqpu`sq
“

pt´sqptp1`σsq`τ`sq

pu´sqpup1`σsq`τ`sq
´

pu´tqpt´sqpτ´σs2q

pu´sqpu`sqpup1`σsq`τ`sq
,

pu´tqpt´sqpχ1u´χ2q

pu´sqpu`sq
“

pu´tqpt´sqpηu´θq

pu´sqpup1`σsq`τ`sq
´

pu´tqpt´sqpτ´σu2qpχ2`χ1sq

pu´sqpu`sqpup1`σsq`τ`sq
,

pu´tqpt´sqpχ2´χ1sq

pu´sqpu`sq
“

pu´tqpt´sqpθ´ηsq

pu´sqpup1`σsq`τ`sq
`

pu´tqpt´sqpτ´σs2qpχ2`χ1uq

pu´sqpu`sqpup1`σsq`τ`sq
,

pu´tqpt´sq

u`s
“

pu´tqpt´sq

up1`σsqτ`s
`

pu´tqpt´sqpτ`σsuq

pu`sqpup1`σsq`τ`sq
.
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So (8.3) used with χ1 and χ2 instead of η and θ, respectively, implies

EpY 2
t |Fs,uq “

pu´tqpup1`σtq`τ`tq
pu´sqpup1`σsq`τ`sq

Y 2
s `

pt´sqptp1`σsq`τ`sq

pu´sqpup1`σsq`τ`sq
Y 2
u

`
pu´tqpt´sqpηu´θq

pu´sqpup1`σsq`τ`sq
Ys `

pu´tqpt´sqpθ´ηsq

pu´sqpup1`σsq`τ`sq
Yu `

pu´tqpt´sq

up1`σsqτ`s

`
pu´tqpt´sqpτ`σsuq

pu`sqpup1`σsq`τ`sq

`
pu´tqpt´sqpτ´σu2q

pu´sqpu`sqpup1`σsq`τ`sq
pY 2

s ´ pχ2 ` χ1sqYsq

´
pu´tqpt´sqpτ´σs2q

pu´sqpu`sqpup1`σsq`τ`sq
pY 2

u ´ pχ2 ` χ1uqYuq.

Using (8.1), we observe that the last three terms cancel out. Consequently, we conclude

that pYtqtě0 is QHpη, θ;σ, τ ;´1q.

Therefore, all the results discussed in the previous section, with η and θ replaced by

χ1 and χ2, respectively, hold for QHpη, θ;σ, τ ;´1q.

Under assumption (8.9), a family of elements trPs,tu0ďsăt associated with QHpη, θ;σ, τ ;´1q

satisfies Definition 1.3 in [24]. This is because we have only modified the parameters

of the bi-Poisson process, preserving all the relationships discussed in Section 8.1. There-

fore, the solution of the q-commutation equation actually corresponds to the pre-generator

of the quadratic harness with q “ ´1.

So now we will use Theorem 1.6.1 and Theorem 3.3.1 to verify that we have the same

formula for the infinitesimal generator as the one in (8.7). Under assumption (8.8),

ξ “ 2
?
1 ´ στ, ξ0 “ τ`2t`σt2

1´στ
, ξ1 “ 1`σt?

1´στ
´ 1, ξ2 “

θ´ηt
?
1´στ

.

see (1.21) and (1.22). Moreover, rq, given in (1.24), is equal to ´1. Because r2ns
rq “ 0 and

rns2
rq “ rns

rq, n P N0, we get the following three-step recurrence:

ĂW0py;x, tq “ 1,

ĂWn`1py;x, tq “

´

y ` p´1q
nx ´ pηξ0 ` ξ2p1 ` ξ1qq

1´p´1qn

2

¯

ĂWnpy;x, tq, n ě 0.

It is easy to check that ηξ0 ` ξ2p1 ` ξ1q “ χ2 ` χ1t. According to [22, Theorem A.1],

this implies that the polynomials tĂWnp¨;x, tquně0 are orthogonal with respect to the

Dirac measure δχ2`χ1t´x. Therefore, we obtain formula (8.7) with η and θ replaced by

χ1 and χ2, respectively.
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In the previous section, we constructed a quadratic harness assuming (8.9). The ques-

tion arises whether the quadratic harnesses exists for the remaining range of parameters,

that is, when 1 ` χ1χ2 ă 0.

We consider only quadratic harnesses with all moments finite. As a consequence, mar-

tingale polynomials exist, although they may not be uniquely determined, as explained

in Section 8.1.2. In particular, there is ambiguity when q “ ´1 because the coefficient

at pn´1 vanishes for n “ 2 in the three-step recurrence, as shown in (1.12) and (1.13).

Therefore, if the corresponding quadratic harness exists, the distribution of Xt must be

supported on the zeros of the polynomial p2p¨; tq (given in (1.11)):

xt,˘ “ 1
2

´

χ1t ` χ2 ˘
a

4t ` pχ1t ` χ2q
2
¯

.

Then, by (1.6),

VarpXt|Xs “ xs,˘q “ t´s
1`σs

p1`ηxs,˘`σx2s,˘q
sÑ0`

ÝÝÝÑ t
`

1 ` 1
2
ηpχ2 ˘ |χ2|q ` σ

2
χ2pχ2 ˘ |χ2|q

˘

.

We will show that the above limiting expression leads to a contradiction when 1`χ1χ2 ă 0.

If χ2 ě 0, then the expression taken with plus signs is equal to

tp1 ` ηχ2 ` σχ2
2q “ tp1 ` χ1χ2q ă 0.

Since the conditional variance is nonnegative almost surely, this implies that

PpXs “ xs,`q “ 0 for all small s, and hence PpXs “ xs,´q “ 1. As a result,

EXs “ xs,´ “ ´2s

χ1s`χ2`
?

4s`pχ1s`χ2q2
ă 0.

The last inequality holds since
a

4s ` pχ1s ` χ2q
2 ą

a

pχ1s ` χ2q2 ě ´pχ1s ` χ2q. This

contradicts (1.2).

Similarly, the case of χ2 ă 0 leads to an analogous contradiction.

Consequently, we can conclude that there exist no quadratic harnesses QHpη, θ;σ, τ ;´1q

when 1 ` χ1χ2 ă 0.
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Chapter 9

Classical quadratic harnesses

In this chapter, we focus on classical quadratic harnesses QHpη, θ;σ, τ ; 1 ´ 2
?
στq.

The term ’classical’ is justified by the fact that when στ “ 0, quadratic harnesses become

some well-known Lévy processes such as the Wiener or the standardized Poisson process

(see [21, Section 4.2]).

The first part of this chapter discusses the results of Theorems 1.6.1 and 3.3.2 when

q “ 1 ´ 2
?
στ . In the second part, we derive an alternative representation of the

pre-generator that does not rely on orthogonal polynomials. Furthermore, we compare

the obtained formula with some results known from the literature, specifically for Lévy

processes and bi-Poisson processes.

9.1. Infinitesimal generator through the orthogonal polynomials

We continue to work under assumptions (1.5) and (1.9), which reduce to

σ, τ ě 0, στ ă 1 (9.1)

when q “ 1 ´ 2
?
στ . Moreover, after simplification, we obtain

ξ “ 2p1 ´
?
στq, ξ0 “

p
?
τ`

?
σtq2

p1´
?
στq2

, ξ1 “
σt`

?
στ

1´
?
στ
, ξ2 “

θ´ηt
1´

?
στ
, rq “ 1,

see (1.21), (1.22) and (1.24). Consequently, rns
rq “ n for all n P N0.

When σt2 “ τ “ 0, then ξ0 “ 0 and consequently rbn “ 0 for all n P N0. Then according

to Theorem A.1 in [22], the polynomials tĂWnp¨;x, tqu8
n“0 are orthogonal with respect to

the Dirac measure concentrated at x ` θ ´ ηt, which is a root of ĂW1p¨;x, tq. As a result,
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we obtain:

pAtfqpxq “

$

&

%

1`ηx`σx2

2
f2pxq when θ “ ηt,

p1 ` ηx ` σx2q
fpx`θ´ηtq´fpxq´f 1pxqpθ´ηtq

pθ´ηtq2
when θ ‰ ηt,

(9.2)

for any polynomial (Theorem 1.6.1) and any bounded function with a bounded and con-

tinuous second derivative (Theorem 3.3.2). In particular, when σ “ τ “ θ “ η “ 0, we

get the infinitesimal generator of the Wiener process, compare with Example 1.6.3.

As the next example shows the domain of At for the standardized Poisson process is larger

than the one appearing in Theorem 3.3.2.

Example 9.1.1. Recall that the standardized Poisson process pYtqtě0 defined

in Example 1.2.3 is QH
´

0, 1?
λ
; 0, 0; 1

¯

, λ ą 0.

We will derive the infinitesimal generator of pYtqtě0 directly from the definition. In order

to do so, note that for t ě 0 and h ą 0 we have

Yt`h “ Yt `
Nt`h´Nt´λh

?
λ

and the summands on the right-hand side are independent since pNtqtě0 is a classical

Poisson process with parameter λ ą 0. Consequently, for any bounded function f on R,

we have

EpfpYt`hq|Yt “ xq ´ fpxq “ Ef
´

Nt`h´Nt´λh
?
λ

` x
¯

´ fpxq

“

8
ÿ

k“0

´

f
´

k´λh?
λ

` x
¯

´ fpxq

¯

pλhqk

k!
e´λh,

where in the last step we used the fact that Nt`h ´ Nt has a Poisson distribution with

parameter λh. Assume that f is differentiable (thus continuous). Then we have

lim
hÑ0`

f

ˆ

x´
λh?
λ

˙

´fpxq

h
e´λh

“ ´
?
λf 1

pxq

and

lim
hÑ0`

f

ˆ

x`
1´λh?

λ

˙

´fpxq

h
λhe´λh

“ λ
´

fpx ` 1?
λ

q ´ fpxq

¯

.
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Furthermore,

lim
hÑ0`

1
h

ˇ

ˇ

ˇ

ˇ

ˇ

8
ÿ

k“2

´

f
´

k´λh?
λ

` x
¯

´ fpxq

¯

pλhqk

k!
e´λh

ˇ

ˇ

ˇ

ˇ

ˇ

ď 2 sup
xPR

|fpxq| ¨ lim
hÑ0`

e´λh eλh´1´h
h

“ 0.

As a result, the limit of the right-hand side of (1.15) exists. Hence f P DpA`
t q for t ě 0,

and

pA`
t fqpxq “ λ

´

fpx ` 1?
λ

q ´ fpxq

¯

´
?
λf 1

pxq.

The above formula coincides with the one from (9.2), however, in the above reasoning,

there was no need to assume that f has a bounded second derivative.

A similar result can be obtained for A´
t .

If σt2 ą 0 or τ ą 0, then ξ0 ą 0 and ξ1 ě 0. Consequently, since the polyno-

mials tĂWnp¨;x, tqu8
n“0 are orthogonal with respect to some probability measure when

1` ηx`σx2 ą 0 (and the corresponding moment functional is non-negative definite), the

following conditions hold:

N
ź

k“1

r1 ` rγkpxqpσrγkpxq ` ηqs ě 0, N P N,

compare with identity (A.5).

In particular, as t and x approach zero, the above formula for N “ 1 implies that the

classical quadratic harnesses QHpη, θ;σ, τ ; 1 ´ 2
?
στq with all moments finite can exist

only if

1 ` χ1χ2 ě 0, (9.3)

where χ1 and χ2 are given in (7.2) (recall the analogous reasoning from page 90).

The construction of a classical quadratic harnessQHpη, θ;σ, τ ; 1´2
?
στq was done only for

some parameters in [16], but not for the full admissible range of parameters given in (9.3).

Nevertheless, a three-step recurrence for martingale polynomials under assumption (9.3)

is known ([18, Proposition 4.4]).

9.2. Infinitesimal generator through the cotangent function

In this section, we aim to derive an alternative, algebraic representation of

the infinitesimal generator of QHpη, θ;σ, τ ; 1 ´ 2
?
στq that differs from the one obtained
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in Theorem 1.6.1. To achieve this, let us recall the algebra Q along with its subspaces

Qi, i P N0, and the elements E, F and D1 defined in (2.2), (2.3) and (2.6), respectively.

Recall that in the algebraic approach, the main objective is to find a solution of the

q-commutation equation (2.11) that satisfies the initial condition (2.12). In the following,

we will present this solution when q “ 1 ´ 2
?
στ without making use of orthogonal

polynomials.

For this purpose, let us consider the following function of a complex variable z P C:

fpzq :“
b

z
2
cot

´b

z
2

¯

, (9.4)

which is well-defined in a neighborhood U of zero. Note that we do not need to be precise

about the branch of the square root function in (9.4), since there are only even powers of

z in the Taylor expansion of z cotpzq. Moreover, f is analytic in U .

Furthermore, we can check, after some calculations, that for all z P U :

fpzqpfpzq ´ 1q ` 2zf 1
pzq ` 1

2
z “ 0, (9.5)

2f 1
pzqpfpzq ´ 1q ` 3f 1

pzq ` 2zf 2
pzq ` 1

2
“ 0. (9.6)

In order to apply f to elements of Q, we introduce the notation:

fpGq :“
8
ÿ

k“0

dkG
k

where tdku8
k“0 are the coefficients of the Taylor expansion of f around zero; it is important

to observe that this expression gives a well-defined element of Q when G P Q is such that

in each coordinate the series has only a finite number of summands.

Moreover, using L’Hôpital’s rule, we can find the first coefficient d0:

d0 “ lim
zÑ0

fpzq “ lim
zÑ0

cos2
´b

z
2

¯

“ 1. (9.7)

Let us define a function of g, analytic in the neighbourhood U :

gpzq :“ fpzq´1
z

“

8
ÿ

k“1

dkz
k´1 (9.8)
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(so g is the zeroth Jackson derivative of f).

As before, we will apply g to elements G P Q for which
8
ř

k“1

dkGk´1 consists of only finite

sums in each coordinate.

The following element G P Q will play an important role in solving the q-commutation

equation when q “ 1 ´ 2
?
στ :

G :“ εfpCq ` δFD1 ` γD1 (9.9)

with C :“ D1N, N :“ αp2FD1 ´ Eq ` βD1 for some real coefficients α, β, δ, γ and ε to be

specified later. Here and in the remainder of this section, f denotes the function given

by (9.4). The element G is well-defined since C is a sum of certain elements from Q1 and

Q2, and consequently, the series fpCq consists of finite sums coordinate-wise.

Lemma 9.2.1. Element G P Q satisfies the following identities:

GN “ εNfpCq ` 2αεf 1
pCqC ` δFC ` γC,

FG ´ GF “ εNfpCqgpCq ` 2αεf 1
pCqCgpCq ` αεFD1 ` 1

2
βεD1 ´ δF ´ γE,

where g is given by (9.8).

Proof. We begin with the proof of the first identity. Note that (5.3) when q “ 1 gives

C “ D1N “ pαp2D1F ´ Eq ` βD1qD1 “ ND1 ` 2αD1.

Multiplying both sides by N from the right, we get that CN “ NC ` 2αC. Using a simple

induction, we obtain:

CkN “ NCk
` 2αkCk, k P N0. (9.10)

Consequently, by the definition of G we finally get

GN “ εNfpCq ` 2αε
8
ÿ

k“0

kdkC
k

` δFD1N ` γD1N,

which immediately implies the first identity.

In order to prove the second identity, observe that formula (5.3) for q “ 1 gives

NF ´ FN “ 2αFpD1F ´ FD1q ` βpD1F ´ FD1q “ 2αF ` βE.
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Multiplying by D1 from the left yields CF´pFD1`EqN “ 2αpFD1`Eq`βD1. Consequently,

CF ´ FC “ 2N ` 3αE

and using induction together with (9.10), we can show:

CkF ´ FCk
“ 2kNCk´1

` αkp2k ` 1qCk´1, k P N.

Hence, by (5.3), we finally obtain

GF ´ FG “ 2εN
8
ÿ

k“1

kdkC
k´1

` 2αε
8
ÿ

k“1

kpk ´ 1qdkC
k´1

` 3αε
8
ÿ

k“1

kdkC
k´1

` δF ` γE

“ 2εNf 1
pCq ` 2αεCf2

pCq ` 3αεf 1
pCq ` δF ` γE.

From (9.5), we get fpzqgpzq`2f 1pzq` 1
2

“ 0, which in terms of elements of Q is understood

as fpCqgpCq ` 2f 1pCq ` 1
2
E “ 0. This, together with formula (9.6) and the definition of

N, proves the second identity.

Now we specify the parameters α, β, γ, δ, and ε appearing in (9.9). We do so to

establish a close relationship between the element G and the pre-generator of quadratic

harness QHpη, θ;σ, τ ; qq when q “ 1 ´ 2
?
στ . Namely, we set the parameters as follows:

α :“ θσt`ητ`
?
στpθ`ηtq

p1´
?
στq2

, β :“ 2 p
?
τ`

?
σtq2´γ2

p1´
?
στq2

, γ :“ ´
θ´ηt
2
,

δ :“ σt `
?
στ, ε :“ 1 ´

?
στ.

(9.11)

Under assumptions (9.1), δ ě 0 and ε ą 0 for t ě 0. Moreover, it is easy to check that

the following identities are satisfied:

ε ´ δ “ q´σt, τ ` p1 ´ qqt ` σt2 “ p
?
τ `

?
σtq2, δ2 “ σp

?
τ `

?
σtq2,

γ2 ` 1
2
βε2 “ p

?
τ `

?
σtq2, 2γδ ` αε2 “ ηp

?
τ `

?
σtq2.

(9.12)

Now we are in a position to prove the following formula for the pre-generator of

QHpη, θ;σ, τ ; 1 ´ 2
?
στq:

Theorem 9.2.2. Let us consider G as given in (9.9) with parameters (9.11), where

0 ď στ ă 1. Then the pre-generator of QHpη, θ;σ, τ ; 1 ´ 2
?
στq at time t ě 0 can
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be represented as

Ht “ pE ` ηF ` σF2
qD1G

´1. (9.13)

Proof. We will show that pE ` ηF ` σF2qD1G´1 satisfies (2.11) with (2.12). So, by the

uniqueness of the solution of the q-commutation equation, we will get the desired result.

Firstly, note that G is a sum of certain elements from Qk, k P N0. The summand of G

coming from Q0 is equal to εE`δFD1, see (9.7). Since ε ą 0 and δ ě 0, the nth coordinate

of εE ` δFD1 is a monomial of degree n with nonzero leading coefficients equal to ε` δn.

Hence G is invertible due to Remark 4.1.5 and pE ` ηF ` σF2qD1G´1 is well-defined.

To see that (2.12) is satisfied, observe first that Lemma 4.1.3 yields that

GpE ´ FDq “ pεE ` δFD1qpE ´ FDq “ εpE ´ FDq, see (2.9). Consequently, in view of

(2.9),

pE ` ηF ` σF2
qD1G

´1
pE ´ FDq “ 1

ε
pE ` ηF ` σF2

qD1pE ´ FDq “ 0.

As a result, the initial condition (2.12) is satisfied.

In order to prove (2.11), it is enough to show

p1 ` σtqD1G
´1F ´ pq ´ σtqFD1G

´1
“ E ` pθ ´ ηtqD1G

´1

` pτ ` p1 ´ qqt ` σt2qD1G
´1

pE ` ηF ` σF2
qD1G

´1,

since multiplying the latter from the left by E ` ηF ` σF2 gives (2.11) with Ht given by

(9.13).

Since G is invertible, we equivalently need to show

D1G
´1

pp1`σtqFG´pτ`p1´qqt`σt2qpE`ηF`σF2
qD1q “ pq´σtqFD1`G`pθ´ηtqD1. (9.14)

Due to the definition (9.8) of g, we see that fpCq “ CgpCq ` E, and thus the right-hand

side of the above formula is equal to

εE ` pδ ` q ´ σtqFD1 ` εCgpCq ` pθ ´ ηt ` γqD1

“ εE ` pδ ` q ´ σtqFD1 ` pθ ´ ηt ` γqD1

` εD1G
´1

pεNfpCq ` 2αεf 1
pCqC ` δFC ` γCqgpCq,
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where in the last equality we used the first formula from Lemma 9.2.1. Next the second

formula from the same lemma yields that the right-hand side of (9.14) is equal to

εpE ´ D1Fq ` pδ ` q ´ σtqFD1 ` pθ ´ ηt ` γqD1

` εD1G
´1

pFG ´ αεFD1 ´ 1
2
βεD1 ` δFfpCq ` γfpCqq,

where we have used fpCq “ CgpCq ` E again. The definition of C and identity (5.3) imply

pδ ` q ´ σt ´ εqFD1 ` pθ ´ ηt ` 2γqD1

` D1G
´1

ppε ` δqFG ´ αε2FD1 ´ 1
2
βε2D1 ´ δFpδFD1 ` γD1q ´ γpδFD1 ` γD1qq.

Recalling how the parameters α, β, γ, δ, and ε were specified in (9.12), we get that

the right-hand side of (9.14) simplifies to:

D1G
´1

pp1 ` σtqFG ´ pτ ` p1 ´ qqt ` σt2qpE ` ηF ` σF2
qD1q

and this is exactly the left-hand side of (9.14), which is what we were supposed to show.

While the pre-generator Ht has a simple form, finding a similarly simple formula for the

generator At seems to be challenging. We have only succeeded for α “ δ “ 0, as it will

be shown later. Recall, however, that the algebraic representation (2.13) remains valid in

general, without the restriction α “ δ “ 0.

We will now show that Theorem 9.2.2 is consistent with the results known previously

from the literature.

Example 9.2.3 (Infinitesimal generators of Lévy processes QHp0, θ; 0, τ ; 1q). In this case,

we get α “ δ “ 0, which implies that Ht is in fact a function of D1 only. Specifically,

Ht “ rhpD1q, (9.15)

where rhpzq :“ z
fp´2pγ2´τqz2q`γz

is well-defined in some neighborhood of zero.

Taking the principal square root function in the definition (9.4) of f , we can write

f
`

´2pγ2 ´ τqz2
˘

“ iz
a

γ2 ´ τ cotpiz
a

γ2 ´ τq,
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9.2. INFINITESIMAL GENERATOR THROUGH THE COTANGENT FUNCTION

where i is the imaginary unit. The fact that we have the same z on both sides of the above

equation and that we do not need to care for its argument, follows from the identity:

´z cotp´zq “ z cotpzq,

which holds in a neighborhood of zero.

Moreover, rh is an analytic function in its domain. Indeed, let a :“ θ2 ´ 4τ . Then the

well-known relation between coth and cot implies

rhpzq “

$

&

%

z
1`γz

when γ2 “ τ ,
z

iz
?

γ2´τ cotpiz
?

γ2´τq`γz
when γ2 ‰ τ

“

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

2z
2`θz

when a “ 0,
2?

a cothp
?
az{2q`θ

when a ą 0,

2?
´a cotp

?
´az{2q`θ

when a ă 0

and the functions appearing on the right-hand side are analytic in the neighborhood of

zero.

In [24, Section 5] it was shown that if Ht is of the form (9.15), then At can be represented

as

At “ rHpD1q, (9.16)

where rH is the antiderivative of rh such that rHp0q “ 0.

The antiderivative rH takes the following forms:

a) if θ2 “ 4τ “ 0 (Wiener process):

rHpzq “ 1
2
z2,

b) if θ2 “ 4τ ą 0 (Gamma type process):

rHpzq “ 2
θ
z ´ 4

θ2
lnp1 ` θz{2q,

c) if θ2 ą 4τ “ 0 (Poisson type process):

rHpzq “ 1
θ
z ´ 1

θ2
` 1

θ2
e´θz,
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d) if θ2 ą 4τ ą 0 (Pascal type process):

rHpzq “ ´ 1
τ
ln

´

1
2
p1 ` θ?

a
q expp´

θ´
?
a

2
zq ` 1

2
p1 ´ θ?

a
q expp´

θ`
?
a

2
zq

¯

,

e) if θ2 ă 4τ (Meixner type process).

rHpzq “ θ
2τ
z ´ 1

τ
lnpcosp

?
´az{2q ` θ?

´a
sinp

?
´az{2qq,

If σ “ η “ 0, then QHp0, θ; 0, τ ; 1q is a Lévy process, compare with [21, Remark 3.2].

Hence, the infinitesimal generator of such a process is well-known and does not depend

on t. Moreover, it turns out that the infinitesimal generator can be written as

At “ A “ ψp´iBxq, (9.17)

see [5, Section 3], where ψ is a cumulant generating function of the considered Lévy

process, more details can be found in [39, Theorem 2]. The right-hand side of the above

expression should be understood as
8
ÿ

k“1

ckB
k
x,

where
8
ř

k“1

ckpizqk is a Taylor expansion of ψ at 0 and Bk
x is an operator taking the kth

derivative with respect to x.

Formulas for ψ for quadratic harnesses QHp0, θ; 0, τ ; 1q are well-known in the literature

and can be obtained by taking the logarithm of the expressions in [21, Theorem 4.2] and

setting t “ 1 (since the distribution of X1 is considered in [5]). These steps lead to the

conclusion that
rHpzq “ ψpizq.

Furthermore, using the definition (2.1) of multiplication, it can be easily verified that the

nth coordinate of (9.16) is indeed equal to Atpx
nq as given in (9.17).

Example 9.2.4 (Infinitesimal generators for bi-Poisson processes QHpη, θ; 0, 0; 1q). In

this case, we have:

G “ fp´2γ2D2
1q ` γD1.
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If γ “ 0, then G “ fp0q “ E. Consequently,

Ht “ pE ` ηFqD1. (9.18)

If γ ‰ 0, the relations for the hyperbolic functions imply

hpzq :“ fp´2z2q ` z “ iz cotpizq ` z “ zpi cotpizq ` 1q “ zpcothpzq ` 1q.

Note that the first equality is derived using the same arguments as discussed in the previous

example. Set
rhpzq :“ z

γhpzq
“ 1

γpcothpzq`1q
“

1´expp´2zq

2γ
.

Consequently,

Ht “ pE `ηFqrhpγD1q “ 1
2γ

pE `ηFqpE ´ expp´2γD1qq “ 1
θ´ηt

pE `ηFqpexpppθ´ηtqD1q ´ Eq,

where the last step holds due to the formula for γ, see (9.11). The above formula is

consistent with the result derived in [24, Section 5.2]. Furthermore, the limit of the above

expression, when γ approaches zero, exists and coincides with (9.18).
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Chapter 10

Discussion of the results

The algebraic approach presented in [24] provided a unified framework for an analy-

sis of quadratic harnesses, regardless of their distributions. The key assumption in this

approach is the finiteness of all moments, which is also held throughout this thesis. Im-

portantly, this assumption is not restrictive and often leads to the unique determination

of the process. Another assumption made in [24] is the requirement of infinite state space.

However, as shown in Chapter 8, this assumption is unnecessary.

By considering associated polynomials instead of transition probabilities, the algebraic

approach has allowed a systematization and simplification of previously used concepts,

eliminating the need to refer to their complicated formulas, such as those for the martin-

gale polynomials. Moreover, this approach helps to emphasize the role of the parameters

of quadratic harnesses. Specifically, the influence of these parameters can be observed

in the q-commutation equation, where, for example, setting parameters σ “ τ “ 0 greatly

simplifies the equation under consideration.

In a general case, finding a solution to the q-commutation equation without re-

ferring to the special family of orthogonal polynomials associated with the infinitesi-

mal generator can be challenging. However, the formulas obtained in Theorem 1.6.1

and Theorem 3.3.1 are straightforward to apply if the form of the moment functional

or the orthogonality measure is known. In many cases, the polynomials tĂWnp¨;x, tqu8
n“0 are

related to Askey-Wilson polynomials, for which orthogonality measures are well-described

in the literature (see Section 5 in [44]). Additionally, the orthogonality measure for

tĂWnp¨;x, tqu8
n“0 simplifies to a Dirac measure in many interesting cases, as shown

in Chapter 8 and Chapter 9.

It should also be emphasized that the results obtained in the thesis do not cover



the entire domain of the infinitesimal generator. As shown in Chapters 8 and 9, starting

directly from the definitions (1.15) and (1.16), we can derive formulas for the infinitesimal

generator that apply to a larger domain than the one stated in Theorem 3.3.1. It is

well-known that a domain of the infinitesimal generator, not just a formula itself, plays

a crucial role in the analysis of a stochastic process. For example, the formulas for the

infinitesimal generators of the Wiener process and the absolute value of the Wiener process

are the same, although the domains are different.

Moreover, supports of quadratic harnesses are generally time-dependent, which has an

impact on the domains of their infinitesimal generators. For instance, in the case of the

standard Poisson process, it is not necessary to assume differentiability of domain’s ele-

ments, while for the standardized Poisson process, which belongs to the family of quadratic

harnesses, differentiability is required (see Example 9.1.1).

Results from the literature concerning infinitesimal generators cannot be directly ap-

plied to quadratic harnesses. Not only do we have to deal with inhomogeneous Markov

processes, but the main problem is the time dependency of the supports. In many in-

teresting cases of quadratic harnesses, supppXtq is bounded for each t ě 0, but it is not

uniformly bounded in t, i.e. there is no M ą 0 such that supppXtq Ď r´M,M s for all

t ě 0. Therefore, in such a situation, it is not clear how to follow the classical scheme

where the domain of the infinitesimal generator is a subset of some Banach space, and one

can consider not only pointwise convergence but also convergence in the norm. Finding

a suitable Banach space in which convergence for polynomials would imply appropriate

convergence for the corresponding class of functions, seems to be a challenging task.

Despite these challenges, we have obtained some novel results which were previously

unknown in the literature. We have derived the explicit and easily applicable formula for

the infinitesimal generator of quadratic harnesses for a large range of their parameters.

Generally, obtaining such a formula directly from the definition seems to be a very hard

task due to a complicated description of transition probabilities. Additionally, we have

identified a relatively wide class of functions that belong to the domain of the infinitesimal

generator.
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Appendix A

Orthogonal polynomials

This brief summary of some basic facts on orthogonal polynomials is based on [27].

Throughout this appendix, we consider polynomials with complex coefficients in one real

variable x.

Definition A.0.1. Let tµnu8
n“0 be a sequence of complex numbers and L be a

complex-valued linear operator on the vector space of all polynomials, satisfying

Lrxns “ µn, n ě 0.

Then L is called the moment functional determined by the moment sequence tµnu8
n“0.

By linearity of L, for any polynomial fpxq “
n
ř

k“0

ckx
k we have

Lrfpxqs “

n
ÿ

k“0

ckµk. (A.1)

Definition A.0.2. A sequence tPnpxqu8
n“0 is called an orthogonal polynomial sequence

with respect to a moment functional L if two conditions hold:

1. Pnpxq is a polynomial of degree n,

2. LrPnpxqPmpxqs “ χn1tm“nu,

where χn ‰ 0 for all n ě 0.

In the case we are interested in, the second condition of the above definition is too strong.

Hence, we have to introduce a less restrictive definition.

Definition A.0.3. A sequence tPnpxqu8
n“0 is called a weak orthogonal polynomial sequence

with respect to a moment functional L if two conditions hold:
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1. Pnpxq is a polynomial of degree n,

2. LrPnpxqPmpxqs “ 0 if n ‰ m.

Thus, in the case of weak orthogonal polynomial sequence, we do not ensure that

LrP 2
npxqs ‰ 0 for all n ě 0.

Note that if tPnpxqu8
n“0 is a weak orthogonal polynomial sequence with respect to L, then

tαnPnpxqu8
n“0 is also a weak orthogonal polynomial sequence with respect to the same L

for any arbitrary complex sequence tαnu8
n“0 such that αn ‰ 0 for all n ě 0. Therefore,

without loss of generality, we will be considering monic polynomial sequences, i.e. such

that each element of the sequence has a leading coefficient equal to 1.

Since we are going to work with weak orthogonal polynomial sequences, we need to

slightly modify Favard’s theorem, which plays an essential role in the theory of orthogonal

polynomials (the original statement can be found in [27, Theorem 4.4]).

Theorem A.0.1 (Favard’s theorem). Let tanu8
n“0 and tbnu8

n“1 be arbitrary sequences of

complex numbers and let tPnpxqu8
n“0 satisfy the tree step recurrence given by:

P´1pxq “ 0, P0pxq “ 1,

xPnpxq “ Pn`1pxq ` anPnpxq ` bnPn´1pxq, n ě 0.
(A.2)

Then there exists a unique moment functional L such that tPnpxqu8
n“0 is a weak orthogonal

polynomial sequence with respect to L.

Note that b0 in the above three-step recurrence is unnecessary and can be chosen arbi-

trarily. However, to determine L uniquely we have to impose an additional condition on

the value of µ0 “ Lr1s.

Now, we will briefly sketch the proof of the modified Favard’s theorem.

Proof of Theorem A.0.1. In view of (A.2), each Pnpxq is a monic polynomial of degree n,

n ě 0. Fix µ0 P C. We define a moment functional L by the following conditions

Lr1s “ µ0, LrPnpxqs “ 0, n P N. (A.3)

Hence L is uniquely determined up to the choice of µ0. Moreover, by linearity, it is

well-defined for any polynomial. Furthermore, L applied to the second equality in (A.2)

122



gives

LrxPnpxqs “ LrPn`1pxqs ` anLrPnpxqs ` bnLrPn´1pxqs “ 0, n ě 2.

Successive application of L to the second line in (A.2) multiplied by x leads to

Lrx2Pnpxqs “ LrxPn`1pxqs ` anLrxPnpxqs ` bnLrxPn´1pxqs “ 0 for n ě 3.

Consequently, repeating this procedure leads to

LrxkPnpxqs “ 0 for 0 ď k ă n,

and

LrxnPnpxqs “ bnLrxn´1Pn´1pxqs for n ě 1.

Since tPnpxqu8
n“0 are monic polynomials, by linearity of L we conclude that

LrPkpxqPnpxqs “ 0 for k ‰ n,

and

LrP 2
npxqs “ bnLrP 2

n´1pxqs for n ě 0.

Iterating the last equality in the proof shows that for all n P N

LrP 2
npxqs “ µ0 ¨ b1 ¨ . . . ¨ bn, (A.4)

where µ0 “ Lr1s. Hence, tPnpxqu8
n“0 is an orthogonal polynomial sequence with respect

to L under the additional assumptions that µ0 ‰ 0 and bn ‰ 0 for all n ě 0.

Moreover, the construction of L given in (A.3) implies that L is a zero operator if only

µ0 “ 0. This is not an interesting case, so we always assume that µ0 ‰ 0 and further

considerations are carried out under this additional assumption. Moreover, we say that

L is normalized if µ0 “ 1.

In probabilistic settings, nonnegative definite moment functionals play a significant role.

Let us introduce this concept formally:

123



APPENDIX A. ORTHOGONAL POLYNOMIALS

Definition A.0.4. We say that a moment functional L is nonnegative definite if for any

nonnegative polynomial f ě 0, i.e. fpxq ě 0 for all x P R, we have

Lrfpxqs ě 0.

If L is nonnegative definite, then it imposes some additional assumptions on coefficients

tanu8
n“0 and tbnu8

n“1 appearing in three-step recurrence (A.2). Indeed, (A.4) says then

that b1 ¨ . . . ¨ bn ě 0 for all n ě 1. Moreover,

0 ď Lrx2ks “ µ2k, k P N0.

The linearity of L implies

0 ď L
“

px ` 1q
2k

‰

“

2k
ÿ

l“0

ˆ

2k

l

˙

µ2k´l, k P N0.

We can show inductively that µ2k`1 is real for k P N0. Consequently, tµku8
k“0 is a real

sequence. As a result, according to (A.1), Lrfpxqs is also real for any polynomial f with

real coefficients. The three-step recurrence (A.2) multiplied by Pnpxq yields

LrxP 2
npxqs “ anLrP 2

npxqs, n P N0.

Let us start with P0. Since LrP 2
0 pxqqs “ Lr1s “ µ0 ą 0, then

a0 “
Lrxs

Lr1s
“

µ1

µ0
P R

and (A.2) implies that P1 has real coefficients. Hence LrxP 2
1 pxqs P R. Moreover, if

LrP 2
1 pxqs “ µ0b1 ą 0 (thus b1 ą 0), then we can show that a1 is real.

Continuing in this manner, we see that the whole procedure works until bN “ 0 for some

N ě 0. Then we cannot infer anything about the remaining values of the sequence

tanu8
n“0. However, in this situation, all polynomials Pn, n ě N , are divisible by PN .

For the convenience of reference, we summarize the above considerations in the following

remark:
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Remark A.0.2. If L is nonnegative definite and µ0 ą 0, then for all n ě 0

b1 ¨ . . . ¨ bn ě 0 (A.5)

and ak is real for every 0 ď k ă inftn ě 1 : b1 ¨ . . . ¨ bn “ 0u. In particular, when

b1 . . . ¨ bn ą 0 for all n ě 0, then tanu8
n“0 is a real sequence.

Under the conditions from Remark A.0.2 with µ0 “ 1, [22, Theorem A.1.] says that L

can be expressed as an integral with respect to some probability measure, i.e. there exists

a probability measure ν such that for any polynomial f

Lrfpxqs “

ż

R

fpxqνpdxq. (A.6)

In particular, all moments of ν exist and are given by tµku8
k“0. Moreover, if

N :“ inftn ě 1 : b1 ¨ . . . ¨ bn “ 0u ă 8, then ν is a discrete measure supported on

real distinct zeros of the polynomial PN . Hence, the form of the orthogonality measure

ν is not affected by the polynomials Pn, n ě N , and thus by the sequences tanu8
n“N and

tbnu8
n“N .

Terminology

If a moment functional L is in the form (A.6), then we say that ν is an orthogonal-

ity measure for polynomials tPnpxqu8
n“0 or tPnpxqu8

n“0 are orthogonal with respect to the

measure ν.

Throughout the thesis, we slightly abuse the definition of orthogonality by which we

always mean the weak orthogonality given in Definition A.0.3. In particular, it will be

of no interest to us whether LrP 2
npxqs ą 0 for all n P N. We only require that L is

normalized, i.e. Lr1s “ 1.
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List of Symbols

Here we list the symbols most frequently used in Chapters 1-6.

N set of natural numbers, i.e. N “ t1, 2, 3, , . . .u

N0 set of natural numbers including zero, i.e. N0 “ t0, 1, 2, 3, , . . .u

R set of real numbers

C set of complex numbers

B.1. Quadratic harness

QHpη, θ;σ, τ ; qq quadratic harness with parameters η, θ, σ, τ and q, p. 17

A`
t weak right infinitesimal generator, p. 23

A´
t weak left infinitesimal generator, p. 23

At weak infinitesimal generator, p. 24

tĂWnp¨;x, tqu8
n“0 family of orthogonal polynomials associated with infinitesimal

generator, p. 27

tWnp¨;x, tqu8
n“0 auxiliary family of orthogonal polynomials, p. 37

Lx,t,η,θ,σ,τ,q normalized moment functional for tĂWnp¨;x, tqu8
n“0, p. 27

νx,t,η,θ,σ,τ,q probabilistic orthogonality measure for tĂWnp¨;x, tqu8
n“0, p. 27
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B.2. Algebra Q

B.2.1. Objects of main interest

Q algebra Q of infinite sequences of polynomials, p. 31

Qk, k “ 0, 1, 2, . . . subspaces of Q, p. 55

At element representing infinitesimal generator in Q, p. 34

Ht pre-generator, p. 34
rHt p. 38
rMt p. 40

Spz, tq, S element corresponding to the Jacobi matrix for tWnpx; z, tqu8
n“0, p.

38

Wpz, tq, W element corresponding to the polynomials tWnpx; z, tqu8
n“0, p. 38

B.2.2. Basic elements

B p. 73

D, F shifting elements, p. 32

Dq q-derivative, p. 32

E identity, p. 31

K1, K2, K3 p. 70, p. 71

Q p. 67

T1, T2, T3 p. 68

Z p. 39

Z0, Z1, Z2, Z3 p. 65

0 zero element, p. 32

B.2.3. Auxiliary elements

rP, pP, P p. 74
rP1, rP2, rP3 components of rP, p. 74
pP1, pP2, pP3 components of pP, p. 74

P1, P2, P3 components of P, p. 74

U p. 74
rX, X p. 75
rX2, rX3 components of rX, p. 75

X2, X3 components of X, p. 75

Y p. 74
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B.2. ALGEBRA Q

B.2.4. Operators acting on elements of Q

R p. 38

S p. 58

T p. 60

r¨, ¨s commutator, p. 61
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