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Abstract

Quadratic harnesses are Markov polynomial processes with linear conditional expecta-
tions and quadratic conditional variances with respect to past-future filtrations. Typically,
they are determined by five numerical constants: 7, 6, 7, o, and ¢, hidden in the form
of the conditional variances. In the thesis, we derive infinitesimal generators of these
processes, extending the previously known results.

The infinitesimal generator of the quadratic harness is related to a solution
of a g-commutation equation in the algebra Q of infinite sequences of polynomials.
The coordinates of the desired solution satisfy a three-term recurrence, defining a system
of orthogonal polynomials. The corresponding moment functional uniquely determines
the infinitesimal generator and, in certain cases, can be expressed as an integro-differential
operator (acting on polynomials or bounded continuous functions with bounded
continuous second derivatives) with an explicit kernel, where the integration is with

respect to a probabilistic orthogonality measure.

Keywords: polynomial processes, quadratic harnesses, infinitesimal generators,

orthogonal polynomials, algebra of polynomial sequences, three-term recurrence






Streszczenie

Kwadratowe harnessy to procesy Markowa bedace jednocze$nie procesami
wielomianowymi o liniowych warunkowych warto$ciach oczekiwanych i kwadratowych
wariancjach warunkowych wzgledem przeszto-przysztej filtracji. Sa one zwykle okreslone
poprzez pieé¢ stalych numerycznych n, 6, 7, o i g, ktére wystepuja w postaci warunkowej
wariancji. W rozprawie doktorskiej znajdziemy generatory infinitezymalne tych procesow,
rozszerzajac znane wezesniej wyniki.

Generator infinitezymalny kwadratowego harnessu powiazany jest z rozwiazaniem
rownania ¢-komutacyjnego w algebrze ©Q nieskonczonych ciagéw wielomiandw.
Wspoétrzedne szukanego rozwiazania spelniaja formute trojcztonows, wiec definiuja
rodzine wielomianéw ortogonalnych. Odpowiadajacy im funkcjonal momentowy
jednoznacznie wyznacza generator infinitezymalny, ktéry w pewnych sytuacjach mozna
przedstawi¢ jako operator catkowo-rézniczkowy (dziatajacy na wielomianach lub
ograniczonych funkcjach ciaglych z ciaglta i ograniczona druga pochodna) z jawnym

jadrem, gdzie catkowanie odbywa sie wzgledem probabilistycznej miary ortogonalizujace;.

Slowa kluczowe: procesy wielomianowe, kwadratowe harnessy, generatory
infinitezymalne, wielomiany ortogonalne, algebra ciggéow wielomianéw, formuta

trojeztonowa
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Introduction

Harnesses, introduced in the 1960s, were proposed to model long-range misorientation
in the crystalline structure of metals, see [34]. These objects have been extensively ana-
lyzed, even in various abstract settings; however, they are defined using only a first-order
conditional structure.

In [18], analogous objects with a specified second-order conditional structure have
been introduced. These processes, known as quadratic harnesses, are characterized by five
numerical constants. Some well-known examples of quadratic harnesses include Wiener,
Poisson, and Gamma processes.

Transition probabilities of quadratic harnesses can be expressed as the orthogonal-
ity measures of some polynomial sequences associated with Askey-Wilson polynomials,
see [22]. The connection to the orthogonal polynomials is also reflected in free
probability ([3], [4]), and free quadratic harnesses can serve as classical counterparts
of non-commutative processes.

Furthermore, the relationship between quadratic harnesses and asymmetric simple
exclusion processes (ASEPs) has attracted considerable interest. It turns out that the
joint generating function of the invariant measure of ASEP can be expressed in a concise
form using the joint moments of the corresponding quadratic harness, as shown in [25].
This fact is often applied to analyze the asymptotic behavior of ASEP as the number
of sites tends to infinity. The form of the infinitesimal generator of quadratic harness
is helpful in analyzing some of these asymptotics, see Section 4.2 of [25].

Extensive research has been conducted on quadratic harnesses over the years, covering
various aspects, such as their construction, uniqueness, and infinitesimal generators.

However, a universal method for obtaining a formula for the infinitesimal generator in all



possible cases has not yet been proposed. This thesis aims to fill this gap by generalizing
the previously known cases.

The thesis is divided into two parts. The first part is an introduction to the topic.
It also presents a comprehensive proof of the main result along with its conclusions.
The second part focuses on the analysis of infinitesimal generators of quadratic harnesses
for specially chosen parameters.

Let us now introduce a notation that will be used in the thesis.

Notation

Throughout the thesis, we use the following notation: IN denotes the set of natural
numbers, i.e., IN = {1,2,3,...}, R is the set of real numbers, and C is the set of complex
numbers. Additionally, we define Ny as the set IN U {0}.

Let A < R? for some d € IN. By C(A), we denote the set of continuous functions
f: A — R, and by C*(A), we refer to the set of continuously differentiable functions,
i.e., functions f : A — R that are continuously differentiable in the interior of A and can
be continuously extended along with all their partial derivatives to the boundary of A.
Similarly, C%(A) represents the set of twice continuously differentiable functions, where
[ A — Rsatisfies f € C!(A) and all its (continuously extended to the boundary) partial
derivatives are also in C'(A).

Furthermore, we consider and fix a probability space (£2,F,P) and use standard
mathematical notation related to the probability theory. For example, the expected
value with respect to P is denoted as E. Moreover, we will consider a stochastic process
(X})i=0 defined on this probability space. The support of the one-dimensional distribution
of the process at time ¢t > 0 will be denoted as supp(Xt).

Some additional notations, which do not necessarily coincide with standard conven-

tions, will be introduced and explained as needed throughout the thesis.
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Chapter 1

Preliminaries

In the thesis, we study quadratic harnesses, which are Markov processes with specified
first and second conditional moments. Our main objective is to determine the form
of infinitesimal generators of these processes, particularly when they act on polynomials.

To achieve this, we will introduce all relevant concepts here.

1.1. Harnesses

In [34], several concepts of processes that enjoy certain properties of conditional expec-
tations have been introduced. Of particular interest among these concepts are harnesses.
Let us consider an integrable stochastic process (X;);>o with past-future filtrations defined
as

Fsu:=0{X: :t€[0,s] Ulu,0)}, 0<s<u.

Definition 1.1.1. We say that (X;);>0 is a harness if it satisfies the following linearity

of regression property for all 0 < s <t < u:

E(Xi|Fou) = =X, + 22X, (1.1)

u—s

Harnesses have been encountered by many authors in their research, often without
realizing it. For instance, [38, Theorem 2| states that every integrable Lévy pro-
cess is a harness. Notably, the Wiener process and the Poisson process are examples
of harnesses.

Harnesses have many interesting properties and applications, see e.g. [8], [33], [35].

We are particularly interested in the case when the second moments of (X;);>o are fi-



CHAPTER 1. PRELIMINARIES

nite. To avoid ambiguity (see the comment below Proposition 2.1 in [18]), we assume

throughout the thesis that
E(Xy) =0 and Cov (X, X;) = min{s, t}, s,t>=0. (1.2)

Under this assumption, harnesses satisfy martingale and reverse martingale conditions.

That is, for all 0 < s < ¢,
E(Xi|F<s) = X and E(X | Fse) = 32X,

where Fe, := 0{X, : 0 <r < s} and Fss := o{X, : u = s}. Consequently, the following

limits exist almost surely:

lim X, =0  and lim X, = 0. (1.3)

t—o0 t—0+

Moreover, it is easy to verify that if (X;);>0 is a harness, then a time inverse process
(tX1/t)i=0 is also a harness. The time inverse process at time 0 should be understood
according to the almost sure limit, i.e., it is equal to zero almost surely. Proofs of the afore-

mentioned facts can be found in [18§].

1.2. Quadratic harnesses

Let us consider a square integrable stochastic process (X;);>0. The linearity of condi-

tional first moments for harnesses suggests the form of conditional second moments.

Definition 1.2.1. We say that (X;);>0 is a quadratic harness if it is a harness and for all

0<s<t<u
E(X?‘«Fs,u) = AAt,s,u)(s2 + Bt,s,quXu + CVt,s,u)(s + Dt,s,qu + Et,s,uXu + Ft,s,u> (14)

where Ay 5., . .., F s, are some deterministic functions depending only on times s, ¢ and w.

Under assumption (1.2), we get

2
Ats’us + Bt,s,us + Ct7s7uu + Ft,s,u =t.

16



1.2. QUADRATIC HARNESSES

Moreover, it turns out that these coefficients can be written explicitly in terms of certain

five numerical constants, as stated in [18, Theorem 2.2| (generalized later in [26, Theorem

4.4]):

Theorem 1.2.1. Let (X;)i=0 be a quadratic harness satisfying (1.2). Suppose that
Fisu # 0 for all0 < s <t < u and that 1, X, X;, X2, X2, and XX, are linearly

independent as functions on 2 for all 0 < s < t. Then there exist
n,0eR, o7=0 and ¢g<1+2\/oT (1.5)
such that for all0 < s <t <wu

Va’r(Xt|]:s,u> = Ft,s,uK (XU_XS UXs—qu) :

u—s u—Ss

where Fy, = =0 gnd K(z,y) == 14 0z + 122 + ny + 0y — (1 — q)y.

u(l4+ot)+7—gs

Moreover, taking the limits v — o0 and s — 0, respectively, leads to the following
identities:

Var(X;|Fes) = T2 (0 X2 +nX, + 1), (1.6)

1+0os

Var(Xy|Fsy) = Hut) (Tf—; + 6% 4 1) ,

u+T

see [18, (2.27)—(2.28)]. From the form of the conditional variance, we can easily calculate

the second conditional moment and obtain formulas for the coefficients appearing in (1.4)

as follows:
A _ (u=t)(u(l+ot)+7—qt) _ (14+q) (u—t)(t—s) _ (=s)(t(1+os)+7—qs)
t,8,u (u—s)(u(140s)+7—gs)’ “Hsu (u—s)(u(14+0s)+7—gs)? ~t:SU (u—s)(u(l+os)+7—gs)’ (1 7)
Dy oy = (u—t)(t—s)(nu—"0) _ (U*t)g —s)(0—ns)

18U T (u—s)(u(l+os)+7—gs) LU T (u—s)(u

In the thesis, we will consider only quadratic harnesses for which all moments exist.
In particular, this assumption is satisfied when o7 = 0, see |18, Theorem 2.5]. In all known
cases when all moments exist, the quadratic harness (X;);=0 is a uniquely determined
Markov process with parameters 7, 6, o, 7, and ¢, compare with the comment below
Theorem 2.4 in [18]|. Hence, in order to refer to a quadratic harness with the appropriate
parameters, we will use QH (n,0;0,7;q).

While every integrable Lévy process is a harness, not every square integrable Lévy process

17



CHAPTER 1. PRELIMINARIES

is a quadratic harness. The second-order conditional structure depends on the distribution

of the process.

Example 1.2.2. The Wiener process (Wy)i=o0 is a harness satisfying (1.2) and

Var(Wt|~7:s,u) = w, 0<s<t<u.

uU—s

Indeed, it is obvious that (1.2) is satisfied. Moreover, by the Markov property we have:
E(Wi| Fsu) = E(W W5, W) and  Var(Wi|Fs.) = Var(Wy| Wy, Wy,). (1.8)

To find formulas for these expressions, let us consider a characteristic function

of the random vector (W, W3, W,,):
o(x,y, z) := Eexp(izW + iyW, + izW,,),

where W = (u— )W, — (u—t)Ws— (t — s)W,. Since (W})i=0 has independent increments,

we get:

o(x,y,z) =Eexp (i(z —x(t — 5)) (W, — Wy)) - Eexp (i(x(u — t) + 2) (W, — Wy))

-Eexp (i(y + 2)Wy).

Applying the formulas for characteristic functions of normal distributions with zero means

and variances equal to uw —t, t — s, and s, respectively, we obtain

p(,y,2) = exp(—(u—t)(t — s)(u — 5)a”/2 — uz®/2 — sy*/2 = syz) = @1 (2)p2(y, 2),

where @1 () = exp(—(u—1t)(t —s)(u—s)x?/2) and p(y, 2) := exp(—uz?/2—sy*/2 — syz).
As a result, W is independent of (W, W) and ¢ is the characteristic function of W.

Moreover,

EW = ¢1(0) =0 and  Var(W) = EW? = ¢](0) = (u—t)(t — s)(u — s).

18



1.2. QUADRATIC HARNESSES

Therefore, in view of (1.8),

E(WiFsu) = ﬁE(WH/VS, W) + =W, + =W, = “Lw, 4+ =2,

and

Var(W,|F,.) = —=5Var(W|W,, W,) = ﬁVar(W) _ (w)t=s)

(u—s)? u—Ss

As a result, (Wy)i=o ts QH(0,0;0,0;1), with the parameters identified from the formula

for the conditional variance.
Moreover, we can show the following:

Example 1.2.3. Let (N;);0 be a Poisson process with rate A > 0 and consider

Then (Yy;)i=o is a harness satisfying (1.2) and

Var(Vi| Fou) = 8522 (14 £%2%) 0 0<s<t<u

Hence (Yy)ss0 is QH(0,1/4/X;0,0;1).

Moreover, in the class of quadratic harnesses we can find also the following processes:
— QH(0,0;0,7;1) — Lévy-Meixner process [43],
— QH(0,0;0,0;q) — classical version of the g-Brownian motion [14]| (free Brownian

motion [10] when g = 0),

— QH(n,0;0,0;q) — bi-Poisson process [19] (quantum Bessel process [9] when ¢ = 1),
— QH(n,0;0,7;—07) — free quadratic harness [20].

With harnesses or quadratic harnesses, certain algebraic structures known as near
algebras are associated, which capture changes in conditional expectations that arise from
applying the tower property, as shown in [26]. The algebraic methods described in that
paper facilitate the analysis of these processes, enabling their parametric description.
Similarly, an algebraic language of polynomial sequences has proven to be useful for

quadratic harnesses in other contexts as well, see [24].

19



CHAPTER 1. PRELIMINARIES

1.3. Construction of a quadratic harness

The question of existence of quadratic harnesses for a given set of parameters
is non-trivial. Some constructions have been carried out for a rather wide range of
parameters, see [19], [16], [22], [20], [17], [44], but not for the full range. Moreover, the
parameters in the constructions are given in a complicated and abstruse way, especially

when o7 > 0, compare with [22, Theorem 1.1].

Quadratic harnesses are typically Markov processes with all moments finite. As it can
be found in Section 3.2 of [22], transition probabilities orthogonalize a system of poly-
nomials, specifically Askey-Wilson polynomials with appropriately chosen parameters
and linearly transformed arguments.

It is important to emphasize that the support of a quadratic harness must satisfy

an additional condition.

Remark 1.3.1. For all x € supp(X,), the inequality

l+nr+or?=0

holds, as the conditional variance is non-negative almost surely, see (1.6).

In the thesis, we assume that all moments of the quadratic harness we are considering
are finite. However, this assumption may not hold in certain cases. For example, there
exists a quadratic harness with o7 > 0 and ¢ > 1, where E|X,|?*° = oo for all ¢t > 0
and 0 > 0, see [37].

An example of a wide range of parameters for which the corresponding quadratic harness
exists is

-1<q¢<1-2yor1 and 0<or <1, (1.9)

see [22, Remark 1.3] and [16, Proposition 4.2]. When (1.9) holds with n = 6 = 0,
the quadratic harnesses have all moments finite. However, it is worth mentioning that
the range of n and 6 for which the quadratic harness with all moments finite exists may
be broader. In the thesis, we will make no additional assumptions on n and #, other than

they are reals.

20



1.3. CONSTRUCTION OF A QUADRATIC HARNESS

If all moments are finite, then there exist martingale polynomials, see [24, Section 1.2],

i.e., there exist polynomials {p,(x;t)}_, satisfying
E(pn(Xt;t)LFSS) :pn(Xs;3> (110)

for every t > s > 0.
Under assumptions (1.9), we have explicit expressions for these polynomials, see [18|.

As given in [18, (4.13)], the first three polynomials are:

0o T+0
po(it) =1, pilwst) =x,  palast) = phga? - GO, L (110)

The subsequent polynomials satisfy a three-step recurrence for n € IN:

2pn (25 1) = (041t + Bui1)Prs1 (T3 1) + (It + 03)Pn (5 1) + (Bt + 7o )wnpp_1 (2; 1), (1.12)

e 0] o0 e 0]

where {au, 121, {Bntoy, {nti_y, {0n}, and {w,}r_, are some sequences of coefficients

given in Theorem 4.1. in [18|. Particularly,

1—o7)? 0o)(0+nT
w2 = (1 + q)( (1—0)7)—"2_[(;71_07()5-%27)7] ) (113)

Lemma 4.2 in [18] ensures that
Bn > oTa, =0 and a, =0, n € IN.

Therefore, the coefficient of p,, 1 in (1.12) is positive for all ¢ > 0, and thus the polynomials
{pn(x; )}, are well-defined. Moreover, it is worth mentioning that {p,(;t)}r_, are

orthogonal with respect to the distribution of Xy, ¢t > 0.

For more on martingale polynomials and their relations to the quadratic harness, see [40],

41], [42).
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CHAPTER 1. PRELIMINARIES

1.4. Quadratic harness as a polynomial process

Since the coefficients in the recurrence (1.12) are affine functions of ¢ > 0, and the coeffi-

cient at p,1 is positive, the martingale polynomials {p,(z;t)}>_, satisfy for all n € N:

t) =) agn(t)s,
k=0

and
:Z (t)pr(z; ),

where ay, and by, are some rational functions of ¢, well-defined for all ¢ > 0,

k=0,1,...,n, hence they are in C'([0,20)). Consequently,

E(XPIX,) = E[ECX]IF2)|X,] = 3 b (Ope(X,:9),
k=0

and

E<th|Xs = CL’ Z bkn pk T S Z bkn (Z al,k(3)$l) = Z <Z al,k(S)bk,n(t)) 2t

=0 =0 \k=l

Hence for any polynomial f of degree at most n,
E(f(X0)|Xs = x)
is a polynomial in variable x of degree at most n. Furthermore, the function
(s,t) = E(f(Xy)| X, = 2)

is in CY(T"), where

[:={(s,t)eR?:0<s<t} (1.14)

Processes with these properties are called polynomial processes. Let us recall the formal

definition of polynomial processes, based on definitions provided in [1] and [2].

Definition 1.4.1. We say that (X;)>¢ is an m-polynomial process, m € Ny, if for any

polynomial f of degree at most k < m, the following two conditions hold:

22



1.5. INFINITESIMAL GENERATORS OF QUADRATIC HARNESSES

1. E(f(Xy)|Xs = x) is a polynomial in variable z of degree at most k,
2. (s,t) = E(f(X})| X, = 2) is in CY(T).

Definition 1.4.2. We say that (X;)i=0 is a polynomial process if (X;)i=o Iis

an m-polynomial process for all m € INy.

Polynomial processes were first introduced by Cuchiero [29] in the time-homogeneous
case. In that case, the second condition in the definition of an m-polynomial process can
be relaxed to functions belonging to C(T") instead of C'(T).

Applications of polynomial processes in finance and insurance mathematics, as discussed
in [30], have generated significant interest and extensive research over the past decade.
Furthermore, some extensions of polynomial processes to more abstract settings have been
proposed in [31], [32], [7], and [6]. In these papers, substantial effort has been dedicated to
investigating properties of infinitesimal generators of polynomial processes. Specifically,
they aim to use infinitesimal generators in the context of a martingale problem and thus
simplify the computation of certain expectations.

Consequently, providing explicit formulas for infinitesimal generators for a wide class

of polynomial processes is of considerable interest.

1.5. Infinitesimal generators of quadratic harnesses

Denote by {P;(z,dy) : z € R,0 < s < t} the transition probabilities of a quadratic
harness (X;);>0. Since, in general, (X;)¢o is a non-homogeneous Markov process, we have
to consider right and left infinitesimal generators indexed by a time variable ¢ > 0.

We say that A} is a weak right infinitesimal generator if

(A} f)(x) = lim BSEX=07@) _ iy | SO, (0 dy) (1.15)
h—0t h—0+ R

for all ¢ = 0 and for all functions f for which this limit exists pointwise. Then we say
that f is in the domain of A; and denote this fact as f € D(A]).

Analogously, A; is a weak left infinitesimal generator if

(A; f)(x) := lim EGXOIXsn=a)=f (@) _ hh%l+ Mlﬂw,t(%dy) (1.16)
-0t Jr
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for t > 0 and f as above. The domain of A; is denoted by D(A; ). For homogeneous
processes, the two operators coincide and do not depend on time ¢. However, in general,
these two operators may not coincide, see [13, Example 2.1].

For quadratic harnesses, the infinitesimal generators act nicely on martingale polynomi-
als. Indeed, the Markov property implies that E(p, (X, t)|F<—n) = E(pn(Xi, 1) Xi—n),

and according to (1.10), we have

E(pn(Xe; )| Xin = 2) — pul(x;t)

A7 (pa(a:1)) = lim

h—0*t h
. pn<x;t_h) _pn<x;t)
= h = —aipa(@it).

With some additional effort (see Section 1.4 in [24] or Lemma 2.1 in [23]), it can be shown

that

A (pn(z, ) = —Lpalz;t).

Hence, by linearity, for any polynomial f, we have f € D(A;) n D(A}) and
Alf=A T

Thus, when considering polynomials, we can use the same symbol A; for both operators.
Furthermore, Agoitia-Hurtado proved that for any polynomial process (a quadratic har-
ness in particular), there exists a Banach space of polynomials up to degree m € Ny
such that pointwise convergence of A; implies convergence in the norm of this space.
For more details, refer to Proposition 2.2.10 in [1|. Moreover, Lemma 2.2.8 therein pro-

vides a formula for A; acting on any polynomial f: if

E(f(X))|X, = ) = > af (s, )2 (1.17)

1=0
then o (s,t) € C'(I) (vecall (1.14)) for all [ = 0,1,...,k, and
(A f)(x) = Z %a{(57t)$l|s=t- (1.18)
1=0

This representation strongly depends on the form of the polynomial f, in particular

on the coefficients presented on the right-hand side of (1.17). Our objective is to find
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1.5. INFINITESIMAL GENERATORS OF QUADRATIC HARNESSES

an alternative form of the infinitesimal generator that is independent of f and instead
reflects an underlying structure of the stochastic process under investigation.

Over the years, various approaches have been proposed to derive explicit formu-
las for the infinitesimal generators of quadratic harnesses, with different restrictions
on the parameters 1, 0, o, 7, and ¢, see [11], [5], [15], [23] (generalized later in [25]),

and [24]. All these representations lead to an integro-differential operator of the form

X O'.T2 - xX
(Af)(w) = 25 | 4 (100 (), (1.19)

where v,; is a probability measure. Within this approach, in order to determine the

infinitesimal generator A, one needs to determine the measure v, ;.
Let us analyze the Wiener process as an example.

Example 1.5.1. Recall that the Wiener process (W;)i=0 is a quadratic harness
QH(0,0;0,0;1), see Example 1.2.2. Since (W})i=o is also a Markov process with inde-

pendent and stationary increments, we have
E(WFW, = 2) = E(W, — W, + 2)"|W, = 2) = E(W;—s + 2)*

for allt > s = 0. Using the binomial formula, we obtain

k
EW W, =2) =),
1=0

k e

(l)xk_lEths = 2 <l)xk_l(t — 5)2EWL,
1=0

where in the last equality we used the fact that Wy_g 4 Jt= sWy. Since EW; = 0 and

EW? =1, formula (1.18) implies

0, k=01,

2 =4

A (2 =

This formula can also be obtained by direct calculation, recall (1.15). It is worth noting

that A(x*) can be rewritten as
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where 0, is a Dirac measure concentrated at x. In fact, this holds true for k = 0,1.

Moreover, for k = 2, we have

k—1 k—1

[ & ()t = X, [ ittty = ot 31 = e

=1 YR 1

o~

As a result, by linearity, we get

(Acf) (@) = f 2 (M=) 6, (ay).

R

Thus, for the Wiener process, equation (1.19) holds with v, = 0,.

Our aim in this thesis is to derive a formula for the measure v,; appearing in (1.19)
in the general case of any quadratic harness QH (n, 0; o, T; q) satisfying (1.9). This measure
will be expressed as the orthogonality measure of a certain family of polynomials that

satisfy a three-step recurrence.

1.6. Main result of the thesis

In [44], we extended the algebraic approach from [24] to incorporate the framework
of orthogonal polynomials established in [23]. This extension enabled us to close the prob-
lem of finding the infinitesimal generators in the case ¢ = 0. However, in order to
obtain formulas for the infinitesimal generators in all relevant cases, including those
that are currently unknown or difficult to derive directly, as will be seen in the thesis,
a considerable effort is required to develop the methodology of [24] and [44].

Before we state our main theorem, let us introduce the ¢g-notation:
[n],=1+q+...+¢" " for n e N and, by convention, [n], = 0 for n < 0. (1.20)

For the sake of brevity, we will also use the following notation:

E:=14q++/(1—q)?—4dor, (1.21)

and

T — ot?
g 1= ArtO-gitror) Iz

= : £y = 20t (1.22)



1.6. MAIN RESULT OF THE THESIS

Under assumptions (1.9), we clearly have ¢ > 0. Consequently, &, &, and & are
well-defined.

Now we are ready to present the main result of the thesis (the notions related to
orthogonal polynomial theory, that appear in the statement of the theorem, are explained

in the appendix):

Theorem 1.6.1. Assume (1.9). Then the infinitesimal generator of QH(n,0;0,7;q)

acting on an arbitrary polynomial f is given by

(A f)(2) = HEEEEL o [%M] ’

Yy—x

where L4000 15 a normalized moment functional for a weak orthogonal polynomial

sequence {Wn(, x, 1)}, satisfying a three-step recurrence:

W—l(y;$7t) = 07 Wo(y,$,t) = 17

N N N o (1.23)
yWoly; o, t) = W (y; 2, 1) + Gn(z)Wo(y; 2, ) + b ()W (y; 2,1),  n e Ny,
with
~ nlg|n+1 ~ ~ ~
in(7) = ottt (0 (s (2) + Fu()) + 1) + Fna (),
7 n)s[n+1]7(14+€ 1+¢€ ~ ~
ba(w) 1= &t Pl (143, () (07 () + 1),
where
~ . aq"+ngo[nli+E2(nlg(1+&(nly)
’Yn(l’) T 1+&1[2n]4
and
g:= . (1.24)

Moreover, if 1 +nx + ox® > 0, then we have an integro-differential representation:

Yy—x

(A ) = St | 2 (M) 1)

where Vginoor.q @5 the probabilistic orthogonality measure for the polynomials
(W 2.0}

Note that the polynomials {Wn(y; x,t)}°_, depend on t through the parameters &, &,
and §2.
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Furthermore, every x from the support of X;, t > 0, satisfies 1 + nz + oz? = 0, as stated
in Remark 1.3.1. If the inequality is strict, Theorem 1.6.1 gives an integro-differential
representation.  In the case of equality, the conditional variance (1.6) vanishes,

so x is an absorbing state and A, is a zero operator.

Remark 1.6.2. When ot = 0, conditions (1.9) reduce to the assumption that —1 < ¢ < 1.
In this case, we have £ =1 +q+ |1 —q| =2 and

£0=T+(1—Q)t+0t2, gl:0t7 62:9_77757 QNZC]

Let us now consider the example of the Wiener process again and see what the theorem

implies in this case.

Example 1.6.3. Recall that the Wiener process is a quadratic harness QH (0,0;0,0;1).

Hence, we have & = 0, and the formulas for a, and 571 simplify to
Ap = T and b, =0, n € INy.

Therefore, the three-step recurrence takes the following form:

~ ~

W,1<y;l’,t> = 07 WO(y7x7t) = 17

YWy ,t) = Wi (y; 2, 1) + aW, (y; 2, 1),  n e Ny,

Consequently, Wn(y; x,t) = (y—x)", n € Ny, and the polynomial sequence {Wn(y, xz, )},

15 orthogonal with respect to the Dirac measure at x. Indeed, it is easy to see that

J W, (y; 2, ) Wi(y; 2, 1)6,(dy) = J (y — 2)"*6,(dy) = 1inot—o)-
R R

Therefore, in the case of the Wiener process, Theorem 1.6.1 provides the results that

are consistent with those presented in Fxample 1.5.1.

1.7. Organization of the thesis

The thesis is organized as follows.
In the next chapter, we will provide an overview of the algebra O of all infinite se-

quences of polynomials and give the necessary tools for the subsequent analysis in this
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chapter. Then, we will present the proof of Theorem 1.6.1, which we will divide into
two parts. In the first part, we are going to show that the case o7 > 0 can be re-
duced to the case 7 = 0. In the second part, we will give a proof for the remaining
case o7 = 0 under additional assumptions (Assumptions A1-A3). The reason for using
Assumptions A1-A3 here is that they make the proof of Theorem 1.6.1 much easier;
we will put a great deal of effort later to show that these assumptions are, in fact, implied
by (1.9) along with o7 = 0.

Chapter 3 is devoted to extending the domain of the infinitesimal generator by in-
cluding a class of bounded continuous functions with bounded continuous second deriva-
tives. To do this, we will be using weak convergence of certain measures to the measure
Vatm0,0mq, appearing in Theorem 1.6.1.

As it was mentioned earlier, extensive additional work is required to prove that
Assumptions A1-A3 are implied by (1.9) combined with o7 = 0. This work is done
in Chapters 4—6.

Chapters 4 and 5 present some additional results on the algebra Q that were not
covered in Chapter 2. In particular, we introduce there certain linear subspaces of Q,
define some linear operators on Q, and study properties of specially chosen elements of Q.

The results on Q introduced in Chapters 4 and 5 are crucial for the task of proving
that Assumptions A1-A3 follow from (1.9) and o7 = 0, what is the content of Chapter 6.

In Chapters 7-9 we study the infinitesimal generators of quadratic harnesses in special
cases: QH(n,0;0,7;—071), QH(n,0;0,7;—1), QH(n,0;0,7;1 — 24/o7). We will analyze
their properties, and verify that the relevant results obtained in Chapters 2 and 3 coincide
with those known from the literature.

Chapter 10 is a short summary with a discussion of the conclusions drawn from the re-
sults presented in the thesis.

In the appendix, we recall some basic results from the theory of orthogonal poly-
nomials. We also clarify and unify certain terminological issues resulting from various

approaches found in the literature.
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Chapter 2

Proof of Theorem 1.6.1

In this chapter, we present a proof of the main theorem of the thesis. The presented
proof works under additional assumptions (Assumptions A1-A3). This allows us to high-
light the main steps of the proof and, hopefully, enhance its readability. A very technical
task of replacing Assumptions A1-A3 with assumptions (1.9) appearing in Theorem 1.6.1
is postponed to Chapters 4-6.

We start by introducing the algebra Q of infinite sequences of polynomials, which

plays a crucial role in our analysis.

2.1. Algebra of infinite sequences of polynomials

The algebra Q of all infinite sequences of polynomials was introduced in [24] to study
the properties of polynomial processes. It is defined as a linear space of all infinite se-

quences of polynomials in a real variable x, with a non-commutative multiplication R = PQ

for P = (P, P1,...), Q = (Qo,Q1,...), and R = (R, Ry,...) € Q given by
deg(Qx)
Rk(x) = Z [Qk]JPJ(‘T)’ k=0, (2'1)
=0
where [Qy]; denotes the coefficient at 27 in the polynomial Q. The element
E=(1,2,2%2%...) (2.2)

is then the identity in Q. Furthermore, if deg P, = n for all n € Ny, then P = (P, P, .. .)

is invertible in Q, see e.g. Proposition 1.2 in [24].
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We single out two elements of Q that will play a fundamental role in the subsequent
analysis:

D:=(0,1,2,2°%...) and Fo=(z,2% 2% ..)). (2.3)

It can be easily verified that
DF = E, (2.4)

but E— FD = (1,0,0,...), so D and F do not commute. Moreover, for any element

P=(Fy,P,...)e Q we have
P(E — FD) = Py(z)(E — FD). (2.5)
Another key element under study is defined as follows:

00]
D, := ) ¢"F*D**1. (2.6)
k=0

Since D* has zeros in the first k coordinates, the series in the above expression consists
of finite sums in each coordinate. Consequently, D, is well-defined as an element of Q.

Moreover, in terms of the g-notation, recall (1.20), we can express it as:

D, = (0, [1], [2]47, [3]427%, - - .)- (2.7)

In particular,

D, = (0,1, 2x,32%,...) (2.8)

represents the classical derivative. Furthermore, in view of (2.5),
D,(E—FD) =0. (2.9)

By 0 we will denote the element of Q with all entries equal to zero, i.e., 0 := (0,0,0,...).
If X € Q additionally depends on a parameter z € R, we will write X(z). It should be
understood that each coordinate of X(z) is a polynomial in the variable x with coefficients
that depend on z.

In the thesis, we will need to evaluate the product X(z)Y(z) at z := z. However,
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this operation requires caution, as even if X(2)|,—z, Y(2)|szo € Q, the equality

(X(2)Y(2))|s:2 = X(2)|2:22 Y(2)|2:= may not hold, as shown in the following example.
Example 2.1.1. Let X(z) = Y(2) = 2(E — FD). Then X(2)|...x = F(E — FD) € Q, and
X(2)| 222 Y(2)|2:ze = 0 by (2.4). However,
(X(2)Y(2))|s:2e = (2*(E — FD))|..c, = F*(E — FD).
On the other hand, the following identity holds:
(X(2)]2=2Y(2)) lzi=2 = (2F(E = FD))|..ez = F*(E — FD).

It is not a coincidence that the last two expressions in the above example are equal.

Remark 2.1.2. Let X(2),Y(z) € Q for all z € R. Suppose that all coordinates of X(z)

are polynomials in z. Then X(z)|..—. € Q, and

Proof. Given the assumption that all coordinates of X(z) are polynomials in z, we see that
the nth coordinate of X(z) evaluated at z := z is a polynomial in z, i.e., X(2)|,.—, € Q.
Note that X, (z) and Y, (z), the nth coordinates of X(z) and Y(z), respectively, can be

written as

M, Nn
Xn(z) = Z apn(2)z" and Yo(z) = Z bpn(2) 2"
k=0 k=0

for some M, N, € Ny and some coefficients {ay,,(2)}rry € R+ (b (2)}07, € RV

n € Ny. Then, by (2.1), the nth coordinate of X(2)Y(z) is equal to

N, M,
Z brn(2) Z A i (2)2™,
k=0 m=0

while the nth coordinate of X(z)|..—.Y(z) is equal to

N M,
Z bin(2) Z A ()™,
k=0 m=0
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Therefore, by looking at these two objects as functions of z and inserting z := z, we

obtain the desired equality coordinate-wise. O]

2.2. Infinitesimal generator as an element of the algebra Q

As mentioned in the introduction, the infinitesimal generator A; of the quadratic
harness QH (n,0;0,7;q) when acting on a polynomial also gives a polynomial. As a
result, we can represent A;, t > 0, as an element A, € Q with the nth coordinate given

by A(x™) for n € Ny, i.e.,
At = (At(l), At(l'), At(xz), .. ) >

see [24, Section 1.4|. Furthermore, it is obvious how to recover the formula for A; acting
on polynomials from the element A, (by using the linearity of A;).

As [24] shows, using the language of the abstract algebra can be beneficial as it makes
it easier to encode and represent some properties of quadratic harnesses. Also, algebraic
formulations make proofs of many facts simpler and more universal. Moreover, it seems
difficult to directly observe some of the relations proved in [24] without employing the
algebraic framework.

In particular, it turns out that

Ht = AtF — FAt, (210)

which will be called a pre-generator, satisfies the q-commutation equation:
(1+0t)H;F—(q—ot)FH; = E4+nF+oF*+(0—nt)Hi+(7+(1—q)t+ot*)HZ, t=0, (2.11)

with the initial condition

H.(E — FD) = 0, (2.12)

compare with [24, Theorem 2.1]. Proposition 2.4 in [24] states that if o7 # 1, then H; is
the unique solution of the g-commutation equation (2.11) with the initial condition (2.12).

From this fact, we can recover A; using the formula:

0
A = > FFH,D*!, (2.13)
k=0
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see [24, (3.8)]. The series (2.13) is well-defined since D*! has zeros on the first
k + 1 coordinates (and consequently, the series has a finite number of nonzero summands
coordinate-wise).

Direct, purely algebraic solutions of the g-commutation equation have been found in
only two cases: free quadratic harnesses QH(n,0;0,7; —o7) and the classical version
of quantum Bessel processes QH (n,0;0,0;1), which are discussed in Chapters 7 and 9,
respectively. A solution is also known when o = 0, see [44]. However, this one does not
follow from the g-commutation equation only; instead, it requires an additional object—an
auxiliary family of certain orthogonal polynomials.

The goal of this thesis is to show that the approach presented in [44], combining the
g-commutation equation with some supplemental orthogonal polynomials, can be applied
in general. However, the extension is far from being straightforward. Therefore, in this
chapter, we provide an outline of the main ideas used to prove Theorem 1.6.1. This
will also motivate the introduction of various auxiliary tools and highlight some useful
identities involving special elements of the algebra O.

We consider two cases separately: o7 > 0 and o7 = 0. Firstly, we will show that the
case o1 > 0 can be reduced to the case 7 = 0. Secondly, we will provide the proof when

o1 = 0 under additional assumptions (Assumptions A1-A3).

2.2.1. Algebraic infinitesimal generator when o7 > 0.

Let us consider the pre-generator H, of QH (n, 0; o, T; q) with the parameters satisfying
ot > 0 and (1.9). Under these conditions, H; is uniquely determined by (2.11) and (2.12)

since o7 # 1. We will show that the case o7 > 0 can be reduced to the case 7 = 0.

Proposition 2.2.1. Assume ot > 0 and (1.9). Then the infinitesimal generator Ay of

QH(n,0;0,7;q) at time t = 0 is given by
(2.14)

where A; € Q is an infinitesimal generator of QH (n, 5; 0,0;q) at time t > 0.
The expressions for & and § can be found in (1.21) and (1.24), respectively. Additionally,
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) along with t are defined as:

n._ 20 anr
0:==%+ ¢(1-a+4/(1—q)2~407) (2.15)

and

T 4(1+(1—q)t+ot?)
b §<l—q+20t+ (1_q)2_407_>' (2.16)

We will prove an auxiliary lemma that ensures that the parameters mentioned in the

statement of Proposition 2.2.1 are well-defined under the given assumptions.

Lemma 2.2.2. Assuming ot > 0 and (1.9), the parameters 5, t, and § are well-defined
and satisfy
t>0 and §e[-1,1].

Proof. As explained in the introduction, ¢ given in (1.21) is positive. Furthermore,

1—q++/(1—¢q)?— 407 > 0 since

1—q=>=2yor>0. (2.17)

Moreover, 1 —q+20t+4/(1 — q)2 — 407 > 0 because 20¢ > 0. As a result, all denominators
used in the expressions for g, HN, and ¢ are nonzero. Thus §, g and 7 are well defined.

Let us proceed to the second part of the proof. Note that ¢ > 0 since t >0, 1 —¢ > 0 and
o,7 =0, see (1.5).

Moreover, (2.17) yields that (1 — ¢)? = 407, hence

(1—q)? =40+ (1+q)\/(1 —q)2 — 407 = 0.

The above implies that ¢ < 1. On the other hand, the condition ¢ = —1 is equivalent to

(1+¢)?+ 1+ g/ (1—q)2—4dor = (1 +q)¢ >0,

which follows from (1.9). O

Since all parameters are well-defined, the remaining task is to prove the formula (2.14).
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Proof of Proposition 2.2.1. Direct calculations show that:

S1+o0t)=1+oat, §(G—ot) =q—ot, (2.18)
2.18
$(0—nt) =0 —nt, %(1—(7+05t~=7+(1—q)t+0t2.

Define G := %Ht. In terms of G, the g-commutation equation (2.11) takes the form:
(1+ 0f)GF — (§— 08)FG = E + nF + oF? + (0 — )G + (1 — § + 01)1 G

with the initial condition G(E — FD) = 0. Therefore, from the uniqueness of the solution
of the g-commutation equation, G is the pre-generator of QH (7, 5; 0,0;q) at time t=0.
In view of (2.13), we get the desired result. O

Summing up, we have shown that it is sufficient to find the solution to the g-commutation
equation only in the case when o7 = 0 and ¢ € [—1,1]. By choosing the parameters
appropriately and applying the time scaling (2.16), we can then obtain the formula for

the pre-generator (or equivalently the infinitesimal generator) in the general case.

2.2.2. Algebraic infinitesimal generator when o7 = 0.

In this case, we prove the result under additional assumptions (Assumptions A1-A3).
To formulate these assumptions, we need to introduce some additional objects. According
to Remark 1.6.2, the parameters & and & simplify considerably when o7 = 0. To
avoid confusion and the need for frequent referencing to the assumption o7 = 0, we will

introduce new parameters:
Ko =T+ (1 —q)t + ot? and Ko =0 —nt, (2.19)

which are versions of &, and & with o7 = 0 applied. Similarly, by {W,,(+; z, )}, we will
mean the polynomials {ﬁ//n(7 2, 1)}, when o7 = 0. Thus, the three-step recurrence for

{Wi(s 2, 1)}, takes the form:

W_i(x;z,t) =0, Wolz; z,t) = 1,
1(z;2,1) o(z; 2, 1) (2.20)
aWy(z; 2,t) = Wi (x5 2, 1) + an(2) Wi (x; 2, 1) 4+ bp(2)Wioa(x; 2,8), n =0,
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with
an(z) = HO% [U(7n+1(z) + ’Yn(z)) + 77] + 7n+1(z)7
nlq[n+1]q(1+0t|n—1],)(1+0t|n]q
bu(2) 1= o B LML) [1 () (0,(2) + )
and
2q"+nro[n)2+r2[n]g(1+ot[n]q)
W(2) == T , (2.21)

Instead of the original g-commutation equation (2.11), we consider a similar version given
by:

with the initial condition

~

H:(E — FD) = 0, (2.23)

where R : @ — Q acts on any element X € Q as follows:
R(X) := E + nXF + o(XF)?. (2.24)

If H, satisfies (2.22) and (2.23), then H, = R(E)H, satisfies (2.11) and (2.12). Con-
sequently, such H; is the pre-generator of QH(n,0;0,7;q) due to the uniqueness
of the solution of the g-commutation equation, as stated in Proposition 2.4 in [24].
Therefore, we will focus on solving (2.22). We will associate H, with the polynomials
{W,(;2,t)}2_, in the variable x given by (2.20). In the algebra Q, we represent these
polynomials as W(z, t):

W(z,t) := (Wo(z; 2, t), Wi(x; 2, t), Wa(z; 2, t),...) . (2.25)

Every polynomial W, is a monic polynomial of degree n in the variable z, so |24, Propo-
sition 1.2| implies that W(z, ) is invertible (with the inverse denoted as W(z,)™1).
From the definition of multiplication in Q, we can express the three-step recurrence (2.20)

algebraically as follows:

FW(z,t)D + E — FD = W(z, £)S(z, ), (2.26)
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where S(z,t) € Q with its nth coordinate given by

" 4 oy ()2 4 by (2)2" 2, n € WNo. (2.27)

According to the assumed g¢-notation convention (recall (1.20)), the above expression

should be interpreted as 1 when n = 0, and x + a¢(z) when n = 1. Consequently,
S(z,t)(E—FD) =E —FD

by (2.5). As a result, in view of (2.4), multiplying (2.26) from the right by E — FD and

F, respectively, leads to the following equations:
W(z,t)(E—FD) =E—-FD (2.28)

and

FW(z,t) = W(z,1)S(z, t)F. (2.29)

After collecting all the necessary identities for W(z,t), we can return to the question of

finding a solution of (2.22) satisfying the initial condition (2.23). Let
Z .= (E + otFD,)D,. (2.30)

Below we present Assumptions A1-A3 that have been mentioned at the beginning of

Chapter 2.

Assumption Al:
For all z € R and ¢ > 0, there exist invertible elements U(z,t),Y(z,t) € Q satisfying

D,Y(z,t) = U(z,t)Z.

Assumption A2:
For every z € R, t = 0, and for U(z,¢) and Y(z,t) from Assumption Al, we have

(14 0t)D,S(z,t)FY(z,t) — (¢ — ot)U(2,t)S(2,t)FZ
=U(2,1)Y(2,t) + kaD,Y(2,t) + koD R(S(z, t))Z.
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Assumption A3:

~

For all z € R and t > 0, and for U(z,¢) from Assumption Al, there exists U(z,t) € Q such
that

U(z,t)'D,S(z, t)F — S(z,t)FU(z,1)'D, = (S(z, t)F — 2E)U(z, t) + —— (E — FD).

140t
Throughout this chapter, we will proceed under these assumptions.

Proposition 2.2.3. Given Assumptions A1-A3, for all z€ R and t = 0, we have:

~

H; = W(z,t)U(2,t) 'D,W(z,t) ", (2.31)

M, := H,F — FH, = (F — 2E)W(z, t)U(z, )W(z, 1) ' + - (E — FD)W(z,¢)"'.  (2.32)

1+ot

Proof. Fix z € R and t = 0. From now on, we suppress (z,t) as arguments of functions
with values in Q.

To prove (2.31), we need to show that WU'D,W~! satisfies both (2.23) and (2.22). Let
us begin with the initial condition. Using (2.28) and (2.9), we have

wu~'D,W'(E - FD) = WU 'D,(E — FD) = 0,

so (2.23) holds.
Next, we will show that (2.22) is also satisfied. Multiplying the formula from Assump-
tion A2 from the left by WU~! and from the right by Y"'W~!, and using Assumption A1,

we obtain

(1+ ot)WU'D,SFW ' —(q — ot)WSFU'D,W*

— E + kWU 'D,W ™" + 5,WU'D,R(S)U'D,W .

According to (2.29), we have R(E)W = WR(S). Hence we can rewrite the above equation

as
(1+ ot)WU'D,W™'F — (¢ — ot)FWU~'D W

=E + kWU 'D,W ™! + koWU'D,W'R(E)\WU'D,W ™.

This equation is exactly (2.22) with H, replaced by WU~'D,W~!. Therefore, we have
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2.2. INFINITESIMAL GENERATOR AS AN ELEMENT OF THE ALGEBRA Q

proven that (2.31) holds.
To prove (2.32), we multiply the formula in Assumption A3 from the left by W and from
the right by W~! to obtain

WU~'D,SFW~" — WSFU™'D,W~" = W(SF — 2E)UW~" + —L_W(E — FD)W .

1+ot

Formulas (2.29) and (2.28) lead to

WU~'D,W~'F — FWU"'D,W ™! = (F — zE)WOW™" + L (E — FD)W ",

Finally, by substituting (2.31) into the above equation, we obtain (2.32). This completes
the proof. O

Thus, we have found the solution H, of (2.22) satisfying (2.23). However, we have done so
under the additional assumptions. As it will be shown in Chapters 4-6, these assumptions
are in fact implied by (1.9). Also in Chapters 5 and 6, some explicit formulas for U(z,t),
Y(z,t), and U(z, ¢) will be revealed.

The solution H, is given in terms of W(z,¢) and U(z,¢). However, due to com-
plicated formulas for these elements, a direct deduction of Theorem 1.6.1 from
the formula (2.31) seems to be challenging. Surprisingly, a more effective approach follows
via the identity (2.32). A striking feature of this approach is that the explicit formula
for U(z, t) is irrelevant.

The most important term is F — zE, since F — 2E|,._, = 0. In fact, note that the left-hand
side of (2.32) does not depend on z, while the right-hand side does (z appears not only
in the expression F — zE, but also in W = W(z, ¢) and U = U(z,t)). Hence,

M, = My|.cep = (F — 2E)W(2, 6)U(z, O)W(2, 1) " oime + == (E — FD)W(z,8) ...

140t

Consequently, Remark 2.1.2 yields

M, = == (E — FD)W(z, ) "|.._o. (2.33)

1+ot
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CHAPTER 2. PROOF OF THEOREM 1.6.1

From the initial condition for ﬁt, we obtain It|tFD = ﬁt. Therefore, we can easily recover

ﬁt from I\7It by iterating the equality ﬁt = MtD + FﬁtD. This immediately leads to
~ (D ~
Ht _ Z FkMtDk—H,
k=0

where, coordinate-wise, all sums have finite numbers of nonzero terms. Hence,
~ (X) ~
H, = R(E)H, = R(E) ) F*M,D"*! (2.34)
k=0

is a solution of the g-commutation equation (2.11). By (2.13) we get a formula for A,
from (2.34).
However, the form of A; stemming from (2.13) is not our ultimate aim. To complete the

proof of Theorem 1.6.1, we need to derive an integro-differential representation of A;.

2.3. Integro-differential representation for infinitesimal

generators

This section builds on the results from the previous section and completes our proof
of Theorem 1.6.1 under Assumptions A1-A3. As before, the cases o7 = 0 and o7 > 0
will be considered separately.
Definitions of a weakly orthogonal polynomial sequence and a moment functional, which

will be frequently used in this section, are provided in the appendix.

2.3.1. The final part of the proof of Theorem 1.6.1 when o7 = 0.

Fix t > 0 and 2z € R. By generalized Favard’s theorem, see Theorem A.0.1, the
polynomials {W,,(z; z,t)}>_, given in (2.20) are weakly orthogonal (see Definition A.0.3)
with respect to a moment functional L. ¢, 94, Which acts on polynomials in a variable

ye R, ie.,

L.ino.orqWaly; 2, ) Wi(y; 2, t)] = xn1(n = k), n, k € N,
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where xyo # 0. Without any loss of generality, we assume that the moment functional

L. tn0.07q 1 normalized, i.e., xo = 1. When n = 0, the above formula becomes:
£27t7777970,7'7Q[Wk(y; Z’ t)] = ]l(k = O)? k € ]NO (235>

To translate (2.35) into the language of the algebra Q, we introduce an element
E, :=(1,y,4% ...), y € R (so all coordinates are polynomials of degree zero in the generic
variable x). Clearly, E, is a well-defined element in Q. Note that multiplication from the
left by E, is a change of the variable from x to y in the polynomials in each coordinate.

Therefore, (2.35) can be written as
L. in00mq E;W(z,t)] = E—FD, (2.36)

where L, ¢, on the left-hand side of (2.36) acts coordinate-wise on E,W(z,t) (recall
that W(z,t) is given by (2.25)). It is important to emphasize that £, ;0.4 acts only
on polynomials in the variable y, while in the algebra Q we consider polynomials in the
generic variable x. This distinction between the two variables is crucial.

Now, define J(z,t) as follows:

J(Z, t) = <£z,t,n,9,a,7’,q[1]7 Lz,t,’q,@,a,T,q [9]7 Lz,t,n,@,a,T,q [?JQ], cee ) = 'Cz,t,nﬂ,aﬂ',q [Ey] .

Note that J(z,t) is a well-defined element of the algebra Q since all coordinates are
constant with respect to z. It encodes all moments of the moment functional L. ¢, 5. q-

Using the linearity of L., 0., and equation (2.36), we obtain:
J(z,t)W(2,t) = L1000 E,W(2,t)] = E—FD. (2.37)

In the first equality above, we used the definition of multiplication (recall (2.1)) and the
fact that W(z,t) does not depend on y. Equation (2.37) is equivalent to:

J(2,t) = (E — FD)W(z,t)~.

43



CHAPTER 2. PROOF OF THEOREM 1.6.1

Since this equality holds for all fixed z € R, comparing it with (2.33) implies that
J(z,t)|,.=z € Q and

Mt = ﬁ\](z, t)|z::w = ﬁﬁz,t,n,G,o’,T,q[Ey“z::z = ﬁ‘cz,t,n,e,a,r,q[Ey]-

After inserting this into (2.34), we get

o0
H, = -1 R(E) 2 F*Lotmo.orqlEy]DFL.
k=0

Our goal is to simplify the above expression; however, this is a delicate task that requires

some careful justification.

Remark 2.3.1. Suppose that X € Q do not depend on y € R. In general, the equality

Xﬁx,tmﬁﬂmq[Ey] = Ew,t,nﬁ,amq[XEy] (2-38)

does not hold. For instance, when X = D, we have
DE, = 0, (2.39)

since all coordinates of E, do not depend on x. Hence Ly;,00-4DE,] = 0, while

DLy tmo.0rqlEyl # O if only Ly14.00r4 Ey] has some entries that are polynomials in the

generic variable x of degree at least 1.

However, (2.38) holds true for X = F*, k € Ny, as F* only multiplies each coordinate by
k

x¥, and Ly tp0.07.q 15 a linear operator acting solely on polynomials in the variable y.

On the other hand, for any X, X € Q that do not depend on y, we observe that

~

Lz,t,n,@,a,ﬂ-,q [XEy];( = Lx,t,'r},@,aﬂ',q [XEyX] .

The above equation follows from (2.1) and the fact that X does not depend on y.

In view of Remark 2.3.1 and the linearity of L, ¢, 004,

H, = ﬁR(E)E:ﬂ,tmﬁ,mm [Qy]7
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where
°9)
- > F*g, D1
k=0

Using (2.13) and arguments analogous to those presented in Remark 2.3.1, we can quickly

justify that

e}
A = 1+crt(E + nF + oF? VLot 10,070 [Z FjQyDjJrl] )

7=0
It turns out that the expression in the square brackets can be considerably simplified to

the form D;Q,. This follows from the fact that the identities (2.6) for ¢ = 1 and (2.39)

yield
0 0 . 0 .
Dle — (Z JD]+1> <Z Fk Dk-‘rl) _ Z FJ ( 2 Fk—j—lEka+1>
Jj=0 j=0 k=j+1
e} a0
— Z ( Z Fk J— 1E Dk ]) D]+1 2 FjQyDj+1.
j=0 k=j+1 J=0
Consequently,
A = 1+at(E +nF + oF? )L t.1.0,0,7.4[D1Qy]-

Since E,D*™! has the nth coordinate equal to zero for n < k, and equal to y" %! for

n = k + 1, the nth coordinate of Q, has the form

—_ _ _ n__,.n
n—2 n2+$n1:yr TLEIN.

y—x

y Uty P 4y

The 0th coordinate is zero. Differentiating with respect to x leads to

YR (0= 2)ya T (n - 1)a R = S

the left-hand side is the nth coordinate of D;Q, by (2.1) and (2.8). Therefore, the nth
coordinate of D;Q, is equal to = y . Consequently, the nth coordinate of A; takes the

following form:

1+gm+az2 0 yt—x"
140t z,t,n,0,0,7.9 | 3z y—x :
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Recall that the nth coordinate of A; is also equal to A;(z™). As a result, from the linearity
of A;, we have that for any polynomial f

(Asf)(z) = Betosp 0 M] (2.40)

1+ot %tﬂ%e,amq [% Yy—x

This ends the proof of the first part of Theorem 1.6.1.
We will now proceed to show that the moment functional £, ; , ¢+ -4 s nOn-negative when

1+ nz + ox? > 0. Note that

AF? — 2FAF + F?A, = H,F — FH, = ——(E + F + oF?)M,.

1+t

Coordinate-wise, this can be expressed as

n+2_pn+2 n+1 Zn+l
3 Yy
h11%1+ —Ptt+h(x dy) — 2z hh%{r —]Pt t+n(7, dy)
R R
2 7: yr—a” _ 14nz+ox? n
+x hli>1[1)1+ h ]Pt’t+h(x7dy) 1+O’t E%tﬂ]ﬁ#fﬂ',q[y ]
R

for all n € INy. The left-hand side can be simplified to hm Sy

h—0

sequently, from the linearity of L ;, 9.0,7, it follows that for any non-negative polynomial

f (e, f(y) =0 for all y € R), we have

]Pt t+h(z,dy). Con-

0< lim j F) ISPy, dy) = ML) (2.41)
The inequality holds true because the integral under the limit is non-negative for all A > 0.
Since o = 0 (see (1.5)), t = 0 and 1+ nx + oz? > 0, formula (2.41) implies that L, ¢, 0074
is a non-negative definite moment functional. Remark A.0.2 (in the appendix) implies
that the product of consecutive coefficients at W,,_; from the three-step recurrence (2.20)
is non-negative. Therefore, by [22, Theorem A.l.], there exists a probability measure

Vz.tn,0,0m¢ Such that for all polynomials f we have

Loantonal§) = [ 1) Vesnaoralds) (242
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Putting together (2.40) and (2.42) finishes the second part of the proof of Theorem 1.6.1

when o7 = 0.

2.3.2. The final part of the proof of Theorem 1.6.1 when o7 > 0.

Let us fix n,0 e R, 0,7 >0 and g€ [—1,1 — 24/o7].

Recall that Lemma 2.2.2 states that ¢ given by (1.24) belongs to [—1,1]. Therefore,
the previous subsection provides, in particular, a formula (see (2.40)) for the infinitesimal
generator of QH (n, 5; 0,0;q) for any ¢t > 0, where 0 is defined in (2.15); we will denote
the infinitesimal generator for this particular choice of parameters by At.

In particular, we can evaluate At at time ¢ = ¢ (recall that the rescaled version tof tis

given in (2.16)). Then, Proposition 2.2.1, read coordinate-wise, implies that
Aua") = EAa"),  ne N,

where by A; we mean the infinitesimal generator of QH(n,0;0,7;q). Theorem 1.6.1
applied to QH (n, 5; 0,0;q) gives

N z+or? —f(z
(Af)(@) = 2Asf) () = Bz o[ 2 0]

— Lnatoa® po 2 fy—f(z)
1+ot z,t,n,0,0,0,q | ox y—x :

The third equality comes from the first identity in (2.18).
Therefore, by replacing £
in Theorem 1.6.1.

e .00 with £, ¢, 00,4, We obtain the representation stated
Moreover, we observe that L,;,0,., makes the polynomials {Wn(, z, )}, given
in (1.23) orthogonal since these polynomials are derived from the polynomials
{W,( x, tN)};OZO by inserting the appropriate parameters.

To obtain the expressions for the three-term recursion coefficients a,,, Zn, and 7,, appearing
in Theorem 1.6.1, we once again apply (2.18) and use the notation introduced in (1.22).

If 1 4+ nx + ox? > 0 then there exists an integral representation of £ Hence,

x7£n7970707a.

Le 00,079 8150 has the integral representation with vein6.0.r0 = Vi3, 5.504-
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Chapter 3

Extension of the domain of the infinitesimal

generator

The main objective is to include in the domain of the infinitesimal generator a class
of bounded continuous functions with bounded continuous second derivatives. For this
purpose, we assume that

1+nr+ox* >0, (3.1)

Under this condition, the polynomials {WN/,L(, x, 1)}, are orthogonal with respect to a
probability measure v, ;6.0 q-

The chapter is organized as follows:

1. Recall that {Ps;(z,dy) : = € R,0 < s < t} denotes the transition probabilities of

the considered quadratic harness. We will prove that all moments of the measures

(y_hm)QIPt,Hh(:E,dy) and (y_hx)2 P;_p+(z,dy) converge to the corresponding moments of

1+gx+ax2
140t vat:n»e,U:qu‘

2. We will discuss conditions under which v, 9.5 -4 is determined by its moments.
3. We will extend the domain of the infinitesimal generator for certain parameters of
quadratic harnesses by including a class of bounded continuous functions with bounded

continuous second derivatives.

The first two steps are necessary to establish the weak convergence of the measures

2 2 2
y—x Yy—x 14+nx+ox .
( h) P;yin(x,dy) and %]Pt,h,t(x,dy) to T Veinorg Weak convergence in

turn is crucial for extending the domain of the infinitesimal generator.

3.1. Moment convergence

We will start by showing that the respective moments converge.
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Lemma 3.1.1. For all t = 0 and x satisfying (3.1), all moments of the measure
(y—z)?
h

. 2
Piyin(x,dy) converge to the corresponding moments of 1i;’ﬁj;%ugc,tw,(;,c,mq(dy) as

h approaches O from the right.

Similarly, fort > 0 all moments of ]Pt nt(z,dy) tend to the corresponding moments

Of 1+nx+aac

T Vet nb.0mq(dy) as h goes to 0 fmm the right.

Proof. Fix t = 0. The definition of the right infinitesimal generator, see (1.15), implies
that
lim yn@Pt,t+h($a dy) = Ay(z"*?) = 20 A, (2" 1) + 2® Ay (a").

h—0+
R

Theorem 1.6.1 and the identity

o yrtt—gntt (y—z)y"+a(y"—a™) _

y—x — Yo y—=

0
o y-=x ox

yield

. n —x 2
lim ) < h ) ]Pt,t-i-h(x? dy)

h—0+
R
_ 14nz+ozx? yttl_gn+tl 14+nz4oz? Yy —x"
= T i+ot f y—z Vi tn,0,0mq(dY) — 1tot L = Vi, 6,0,m,q(dY)
R R
_ 14nztox? n
- 140t Jy Vx7t1n7010—777q(dy)7 ne ]NO'
R
N2
Analogously, we can show the same for (y hz) P;_p(x,dy) when ¢t > 0. O

Observe that (y_hm)Z) P;,n(x,dy) is a nonnegative measure. From (1.6) we get for all

h > 0 that
Il

This, together with similar arguments for

Var(X1p|Xe=2) _ 14nz4oz?
P, w+n(T,dy) = h = T itat

(yf)z P;_p+(z,dy), justifies the following re-

mark:

Remark 3.1.2. Let z satisfy (3.1). Then

at)(y—x)? o(t— —x)?
R saen Poen(m,dy) and SRR (v, dy)
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are probability measures for all h > 0 (the first measure) and for h such thatt = h > 0

(the second measure).

3.2. Moment determinacy and weak convergence

We say that a probability measure p is determined by its moments if p is the only

probability measure that has the moments

Jxkp(dy), k € No.

R
This problem of moment determinacy is known as the Hamburger moment problem, see
[27, Section 2.6]. It is well-known that if ¢ has a bounded support, then it is determined
by its moments.
Now we will quickly verify that v, 6 0r4 is determined by its moments in the following

cases:

% qe€[—1,1—24/o7). Under this condition, we have

0<+/(1—q)?2—4or(1+q++/(1—q)—4oT),

so ¢ < 1, recall (1.24). Combining this with Lemma 2.2.2, we conclude that g € [—1,1).
Consequently, the coefficients in the recurrence (1.23) are uniformly bounded in n for
any fixed ¢t and x (since [n]; is uniformly bounded in n for such g). Therefore, the
polynomials {Wn(y;x,t) *_, are orthogonal with respect to a boundedly supported
measure (consult e.g. Theorems 2.5.4 and 2.5.5 in [36]). Hence, vyt 0.0 1S deter-
mined by its moments.

% ¢=1,0=7=0.In this case & = 0 (sec (1.22)), which implies b, = 0 for all n € IN.
Consequently, the polynomials {Wn(, x,t)}r_, are orthogonal with respect to a Dirac

measure (see Theorem A.1 in [22]), which is obviously determined by its moments.

As a result, in such cases, we can apply [12, Theorem 30.2|, which states that under the
moment determinacy, the convergence of moments implies weak convergence of probability

measures. Therefore, we obtain the following corollary:
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Corollary 3.2.1.  Probability measures %Ptﬂh(z, dy) and
%PFM(% dy) converge weakly to Vy41.0.0.r.q-

When ¢ = 1-24/07,and 0 # 0 or 7 # 0, it is not known whether moment determinacy
(and consequently weak convergence) holds. Therefore, in our further considerations, we
will restrict ourselves to the parameters of quadratic harnesses that satisfy the conditions

mentioned above.

3.3. Extension of the domain

In this section, we will show that not only polynomials belong to the domain of the

infinitesimal generator of certain quadratic harnesses.

Theorem 3.3.1. Let us consider QH(n,0;0,7;q) with ¢ € [—1,1 — 24/o71). For any
bounded continuous function g : R — R with a bounded continuous second derivative, we

have

X O'mQ
(A:_rg)(x) = %g”(@Vﬂc,tmﬁyamq({x})

x+ox? a - 32
pupgs [ L(W), Ly 62

oz Yy—x
R\{z}

for x satisfying (3.1), where Vy .y 0.0.r,q i the probability measure defined in Theorem 1.6.1.

Proof. We will prove (3.2) only for A/, because exactly the same arguments apply also
to A; .
Fix x satisfying (3.1). Define a function h, : R — R by

2 9(y)—g(@)

o ox  y—x
ha(y) : o o
59" () ory = x.

for y # z,

Taylor’s theorem yields

oy) — 9(z) = (y — 2)g'(x) + j §'(2)(y - 2)dz, (3.3)
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Thus h, is a bounded continuous function. Indeed, formula (3.4) gives

|ha(y)| < 3suplg”(y)]
yeR

and I’'Hospital’s rule implies that

lim h,(y) = 2¢"(2).

y—u
Because of (3.3),
Jg(y);g(x) Pz, dy) = ¢'(z) J Y2Pyyin (2, dy) + J(h, ), (3.5)
]R/ ]R/

where J(h,z) := § wﬂ,mh(% dy). The integrand is zero when y = z, hence
R

Y g"(2)(y—2)dz —x)? —x)?
Iy = [ BEOLE 0 ndy) = [ b)),
R\{x} R\{x}

recall (3.4). Consequently, using again the fact that the integrand is zero when y = z, we

get

J(h,r) = fhm (y) (y_hm)Z ]Pt,t-l-h(x? dy).
R

Therefore, the weak convergence of (y_hm)QIPt,Hh(x,dy) to Hﬁ%ﬁ%,m,gm,q(dy), recall

Corollary 3.2.1, gives

h—0% z+oz?
J(h, x) e fhx(y)vx,t,n,e,a,T,q(dy)-
R

Consequently, taking the limit A — 0% in (3.5) yields (3.2) because Theorem 1.6.1 states
that

h—0+

lim J%Pt,ﬂh(:v, dy) = Ay(x) = 0.
R

It is worth mentioning that for all cases of quadratic harnesses QH (n,0;0,7;q) with

q € [—1,1—24/o7) such that for any fixed ¢ and z, and all small enough h the supports of
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the transition probabilities Py, (z, dy) and Py 4(x, dy) are contained in some interval,
we obtain a stronger assertion of Theorem 3.3.1, namely that the domain of A] contains
C?(R). On the other hand, for ¢ € [-1,1 — 24/07), all the cases of quadratic harnesses
known from the literature satisfy the support conditions mentioned above (see [22] or
Section 1.3 in the thesis).

From the proof of Theorem 3.3.1, we automatically obtain the same result for ¢ = 1 and

o =1 = 0, as the proof relies solely on the weak convergence which in turn is shown to

hold in Section 3.2:

Theorem 3.3.2. Consider QH(n,0;0,0;1). Then for any bounded continuous function
g : R — R with a bounded continuous second derivative, formula (3.2) holds for all x

satisfying (3.1) with o =7 =0 and ¢ = 1.

In particular, Theorem 3.3.2 applies to the Wiener process (Example 1.2.2) and the stan-
dardized Poisson process (Example 1.2.3).
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Chapter 4

Properties of the algebra O

In this chapter:

(i) certain subspaces of Q are defined in order to facilitate the analysis of the special
elements of Q introduced in Chapter 2,
(ii) certain linear operators acting on Q are presented; they will be responsible for

changing the order of operands in the multiplication (2.1).

Furthermore, we will focus on studying some properties of the introduced objects. The
results presented in this chapter will play a crucial role in the process of removing

Assumptions A1-A3 carried on in the subsequent two chapters.

4.1. Subspaces of the algebra O

In @, we consider a family of linear subspaces of Q given by:
Q= span{FED“k : 0 e N}, k € Ny.

From the definition (2.1) of multiplication, it is easy to see that Qj contains only ele-
ments that have a monomial 2"~* with some coefficient (which can be zero) on their nth
coordinate, n > k. Moreover, elements of Q, have zeros on the first £ — 1 entries. In
particular, D* € Q; (here and in the remainder of the thesis, we interpret X* as E when
k =0 for any element X € Q).

Next we define the left and right cosets of Qy:

XQo :={XY:Ye Qy} and QoX 1= {YX:Y € Qp},
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where X € Q. We can express Qy as certain left and right cosets of Q.

Lemma 4.1.1. For all m € Ny, we have
D™Qy = QD™ = Oy, QnF™ = Qy, F"Qm S Qo.

o0

Proof. Let X € D™Qy. Then there exist coefficients {z,}7, such that X = Y x,D™F‘D*.
i=0

Then (2.4) implies

m [o0] m oo
X=> D"+ > xF"D =) D"+ > we, FDE
£=0 t=m+1 =0 =1

This representation shows that X € Q,,. Conversely, for X € Q,,,, we can find coefficients

{Z}F, such that
o0 o0 o0
X — Z %@Ffo+m — D™ Z %ng+sz+m - D™ Z .%g,mFeDg.
/=0 (=0 l=m

Hence, we can conclude that X € D™ Q. The remaining cases can be proved in a similar

way. 0

Clearly, F°Qy = Qy. On the other hand, there exist no m € IN such that F"Q,, = Q,.
To see this, consider E € Qy. If F™X = E for some X € Q,,, then using (2.4), we would

have X = D™. However, this leads to a contradiction since

me = FmDm - (0, .« o 70, $m7$m+17xm+27 i ')7

m times

which is not equal to E.
Next, we can determine the subspace to which a product of elements from the given

subspaces belongs. Namely:

Remark 4.1.2. If X € O, and Y € Q,, where k,l € Ng, then XY € Qp.y. Furthermore,
XY =YX when k = ¢ = 0.

Proof. First, we will prove the case k = ¢ = 0. For 0 < m < n, using (2.4), we have

F D™F"D" = F™*"~ D" = F"D" = F"D"~"™""™ — F"D"F"D"™, (4.1)
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which shows that F"D™ and F"D" commute.
Now, let X and Y be arbitrary elements from Oy, which can be written as

o0 0
X=> z,F'D" € Qpand Y = > y,,F"D™ € Qy with coefficients {z,}:"_, and {y,,}7_,,
n=0 m=0

respectively. Then, according to (4.1),

e} o0 e} o0
XY = > > 2ymF"D"F"D™ = Y Y 2,y F"DMFD" = YX.
n=0m=0

n=0m=0

Additionally, the second equality in (4.1) shows that XY € Q. In fact,

0¢] n o0 o0
XY = ZO Z_OxnymF"D” + > D) TaymF"D™ € Q.

n=0m=n+1

If either k£ or £ is nonzero, then from Lemma 4.1.1, we know that there exist X e Qo and
Y e Qp such that X = DX and Y = D'Y. Moreover, the first equality in Lemma 4.1.1
implies that XD! = D*X for some X € Qy. Consequently,

XY = DEXDYY = DF(XY),

where the term in the brackets belongs to Qg according to the first part of our arguments

in this proof. Consequently, XY € D**Q,, and Lemma 4.1.1 ends the proof. O

Note that the second part of the above remark implies that Qg is a commutative
subalgebra of Q. This fact will be extensively used throughout the remainder of the
thesis. In addition, Lemma 4.1.1 and Remark 4.1.2 will be used to quickly determine the
subspace to which a given element belongs. These results will be extensively used further
without direct reference.

Moreover, let us state the following lemma for future reference:
Lemma 4.1.3. For each 0 < ¢ < k and X € Qy,, we have
XFD’ = X,
Proof. Note that for 0 < ¢ < k, identity (2.4) implies that
o0 0
XF'D' = ) 2, F"D"FD = Y 2, F"D™HE = X,

m=0 m=0
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o0

where we have represented X as Y. z,,F"D™"* with some coefficients {z,,}%_,. O
m=0

A linear combination of the identities presented in Lemma 4.1.3 leads to the following

conclusion:
k
Corollary 4.1.4. Consider some real numbers ay, ..., ax satisfying >, a; = 0, k € Ny.
=0
k
Then for X e Q. and Y = Y. a,F*D*
=0

XY = 0.

We will close this section with two remarks on the invertibility of elements of Q. Firstly,
according to |24, Proposition 1.2, it is clear that all elements of Q, with all nonzero
coordinates are invertible. Secondly, let us single out the following observation for further

reference:

Remark 4.1.5. Assume that X; € Q; for all j € Ny and that X, is invertible. Then

0
X:= > X is also invertible.
j=0

The above fact follows also from Proposition 1.2 in [24].

4.2. Linear operators on QO

We will now introduce certain linear operators that facilitate changing the order of

operands in the multiplication (2.1).

4.2.1. Linear operator S

Define a linear operator S : Q@ — Q as follows:
S(X) := DXF. (4.2)

Lemma 4.1.1 implies that S : Qp — Q. In the following, we will consider the k-fold
composition of S denoted as S*, k € IN;. For k = 0, we interpret it as the identity
operator.

It turns out that S acts on a product of elements from the linear subspaces introduced in

Section 4.1 in the following way:

o8
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Remark 4.2.1. For Xe Q; and Y € Qp, where k,{ € Ny,

S(XY) = S(X)S(Y).

Proof. Note that DX € Q1. Lemma 4.1.3 gives that DX = DXFD. Consequently,

S(XY) = DXYF = DXFDYF = S(X)S(Y).

[l
Hence, for any invertible X € O, we have
SX)S(X™1) =8S(X1S(X) =E. (4.3)
Therefore, there exists the inverse of S(X) satisfying
(SO)! = S, (4.4)

It turns out that the operator S is useful in a task of changing the order of multiplication

of some elements of O:

Lemma 4.2.2. Let X€ Qq and Y € Qy, k€ Ny. Then
SHF(X)Y = YX.

Proof. Lemma 4.1.1 yields that F¥Y € Qy. The second part of Remark 4.1.2 used with
X e Qy and F¥Y € Q, implies that X and F*Y commute. As a result,

SF(X)Y = D*XF*Y = DF(FFY)X = YX.

Using the properties of S we can also deduce the following;:

Lemma 4.2.3. Let X,Y € Q,., k€ Ny. Then

XFFY = YFFX,
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Proof. Lemma 4.2.2 used with Y € Q;, and FFX € Q, gives
YF*X = SF(FFX)Y = XFFY.

The last equality holds due to the definition of S and the relation (2.4) between D and F.
O

Moreover, the operators § and R sometimes commute.

Lemma 4.2.4. For every k € IN, the operators S and R commute on Qy, where R is

defined in (2.24).
Proof. Let X € Q) be arbitrary. Using the definition of R, we get

R(S(X)) = E + nS(X)F + o(S(X)F)? = E + nD(XF)F + ¢S (X)FDXF?.
Since S(X) € Q, Lemma 4.1.3 says that S(X)FD = S(X). Consequently,

R(S(X)) = E + nS(XF) + 0S(X)XF2 = E + nS(XF) + oD(XF)?F = S(R(X)).

4.2.2. Linear operator 7

Now we define a linear operator 7 : Q@ — Q by the following formula:
T (X) := FXD.

Lemma 4.1.1 yields that T : Q) — Q. Moreover, directly from the definitions of opera-
tors S and T and identity (2.4) we obtain S(7 (X)) = X.
In general, 7(S(X)) # X. However, we can prove the following:

Lemma 4.2.5. I[f X€ Oy and Y € Qy, k, L € IN, then

XT(S(Y)) = XY.
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Proof. Since X € Qy, k € IN, we get that XFD = X by Lemma 4.1.3. Analogously,
YFD =Y. As a result,

XT(S(Y)) = XF(DYF)D = (XFD)(YFD) = XY.

Moreover, with help of S and 7 we can easily change the order of multiplication of ele-

ments of the subspaces Q.

Lemma 4.2.6. For Xe Q. and Y € Qy, k,{ € Ny, we have

XY = SF()TH(X).

Proof. Lemma 4.2.2 applied to Y € Q, and FF*XD € Q, gives

S*(Y)T*(X) = DFYFFHXD! = D*S*(FF*XDY)Y = XY

(above we have used (2.4)). O

4.2.3. Commutator

Apart from S and 7, we will also use the commutator:
[X,Y] := XY =YX, X,Y e Q.
It is obvious that for all X,Y,Y;,Yo € Q and o, € R
[X,aY1 + BYs] = o[X, Y] + B[X, Ya], (4.5)

and

[X,Y] = —[Y, X].

Moreover, in view of Remark 4.2.1,

S([X,Y]) = [8(X), S(Y)]. (4.6)
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Furthermore, using the definition of the commutator along with Remark 4.1.2, we have:

Remark 4.2.7. For X,Y € Q,
[X,Y] =0.

In particular,

[X,E] = 0. (4.7)
Moreover, the commutator has the following properties:

Lemma 4.2.8. For all X,Y € Q

[XY, X] = X[Y, X] and [XY,Y] = [X,Y]Y.
Proof. The definition of the commutator implies that

[XY, X] = XYX — X2Y = X(YX — XY) = X[Y, X].

We proceed similarly with the proof of the second assertion. O

In addition, we present below an observation that will be used later several times:

Remark 4.2.9. For any X,Y € Q and a € R we have

(E + aY)XY — YX(E + aY) = [X,Y].
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Chapter 5

Some important elements of O

In this chapter, we are going to introduce some special elements of Q that will prove
to be very useful in our task of removing Assumptions A1-A3.

Recall that we are working under assumptions (1.9) with o7 = 0. Define
Ky = ot(1l — q + ot). (5.1)
Using (2.19) and the fact that o7 = 0, we have
K1 = OKyg. (5.2)

Chapter 5 is divided into two sections.

Section 5.1 introduces a number of special elements of Q which will serve as building
blocks for some more complicated elements. Even though it might be hard to grasp
the importance of these elements within this chapter, their usefulness will become clear
in Chapter 6, when we will be able to represent S(z,t), recall (2.26) and (2.27), in their
terms.

The aim of Section 5.2 is to provide some explicit formulas for the elements U(z,t)
and Y(z,t), which appear in Assumption Al. Again, these formulas will be based on the
building blocks presented in Section 5.1.

Undoubtedly, the content of this chapter is quite complicated, so in order to make
it easier to digest, we provide a diagram in Figure 5.1. The diagram presents the main
results of the next two chapters along with their interdependencies.

Recall that our primary objective is to prove the identities from Assumptions A1-A3

(highlighted in gray in the diagram).
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Assumption A3

/\

Lemma 6.3.1 Lemma 5.2.2
q)

Simplified version of Assumption A3 S(Z)P =US(D
A

Representatlon for X5 and S(Xs)
Lemma 5.2.3

Nontrivial identity
for K; and K3
Lemma 5.1.6

Lemma 5 2 5

[ Lemma 5.2.4
[P,FD,] = FD,XZ; — 22XFD + ZQ Relations between
P3, X3, and X3
Propertios of Z presented in (5.33)—(5.35)
Lemma 5.1.2

Theorem 6.2.2
Slmphﬁed version of Assumption A2

[ Assumption A2 ] [ Assumption Al
A
Lemma 6.2.3
Part of Assumption A2 Lemma 5.2.1
Formula for S X3 Formula for K3
Lemma 5.2.3 presented in (5.26)

Figure 5.1: Scheme of relations between the main lemmas and theorems
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Throughout Chapter 5, z € R and t > 0 are some fixed, but arbitrary, parameters. For
simplicity, we will suppress them as arguments, so, for example, we will write U instead
of U(z,t), even though U in fact depends on z and t.

In addition, we will make extensive use of the tools presented in Chapter 4. Occasionally,
for brevity, we will use these tools without explicit reference (especially Remark 4.2.1

and Remark 4.1.2).
5.1. Basic elements of O

5.1.1. Element D,

The definition of D, was given in (2.6), which yields that D, € Q; D, can also be

represented coordinate-wise as in (2.7).

Lemma 5.1.1. Element D, satisfies the following equation:
D,F = ¢FD, + E. (5.3)
Proof. Using (2.4) and (2.6) we get
0 0
D,F — ¢FD, = > ¢*F*D* - ¢*F*D* = E.

k=0 k=1

Formula (5.3) can be rewritten as
[Dy, F] = (¢ — 1)FD, + E. (5.4)

5.1.2. Elements Z;, : =0,1,2,3

Let us consider the elements

Zy:=E+otF’D,D?  Zy:=8%(Zy), k=1,23,
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recall the definition (4.2) of S. All Z;, i = 0,1, 2,3, belong to Qq. It is easy to see that

Z;, = E + otF**D,D**F, k=0,1,23.

(5.5)

Hence, we notice that the nth coordinate of Z;, is equal to (1+ot[n+k—2],)2", recall (2.7)

and the convention that [n], = 0 for n < 0. Under the assumptions on the parameters,

we obtain that ot > 0 and [n], = 0 for all n € Ny (since ¢ € [—1,1]). As a result, the

coefficient 1 + ot[n + k — 2], is nonzero for all n € Ny, so Z;, is invertible, k = 0,1, 2,3,

which is assured by [24, Proposition 1.2].

Below we present some important identities that are satisfied by Z, and Zs.

Lemma 5.1.2 (Properties of Z;, i=2,3). The following identities hold:

Zy + (¢ — ot)FD, = D,F,

(1 + O't)ZQ = Zg + K,lFDq,
Zs = (1 + Ut)DqF —qFDy,
(q — ot)Zs + k1D,F = ¢Zs.

Proof. Formulas (5.5) (for k£ = 2) and (5.3) give (5.6) since

Z, + (¢ — ot)FD, = E + ¢FD, = D,F.

Assertion (5.7) follows from (5.1) together with (5.3) and (5.5) for k = 3:

(5.6)

(5.7)
(5.8)

(5.9)

(14 ot)Zy — k1FD, = (1 + ot)E + qotFD, = E + ot(E + ¢FD,) = E + 0tD,F = Zs.

Furthermore, applying the same identities as above, we obtain (5.8) and (5.9) as

(1+ ot)D,F — ¢FD, = D,F — ¢FD, + otD,F = Z;
and
(¢ — ot)Z3 + k1DyF = (¢ — ot)E 4 0tD,F = ¢E + ot(D,F — E) = ¢Z,
— in the last step we have used (5.3) and (5.5) for k = 2.
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Observe that the element Z given by (2.30) can be expressed in terms of Z, as
Z = 7Z,D,.

Thus Z € Q; by Remark 4.1.2.

Furthermore, since Zy = §(Z;), Lemma 4.2.2 implies
Z=127,b,=S5(Z,)D, = D,Z;. (5.10)

5.1.3. Element Q

We will also consider an element Q € Q given by
Q:=D,—-FD,De Q;.
It turns out that the operator § acts nicely on Q:

Lemma 5.1.3. The following identity is satisfied:
S(Q) = Q. (5.11)
Proof. In view of (2.9) and (5.3),
D, = ¢FD,D+D and Q = [D,, F|D.
Consequently, from (5.4),

S(Q) = D[Dq» F] = (q - 1)Dq +D =¢Q+ qFDqD +D - Dq = ¢Q.

It is worth noting that Q naturally arises as a result of taking the commutator of FD,
and any element X of the subspace Q;. Indeed, Lemma 4.2.2 applied to X € Q; and
F?D,D € Q, yields

[X,FD,] = XFD, — FD,X = XF(D, — FD,D) = XFQ. (5.12)
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Furthermore, we have another representation of Q in terms of Z and Z,:

Q = Z - FD,DZ,. (5.13)

This follows from Remark 4.2.9 applied to D, FD,, along with Z,:

Q = [D,FD,] = Z,D, — FD,DZ, = Z — FD,DZ,.

5.1.4. Elements T;, 1 =1,2,3

Let us introduce three other elements of O:

T1 = Z% - I{1(F2DqD)2, (514)
T2 = S(Tl) = Z% - Kl(FDq)Q, (515)
T3 = leg - KJ1F2D2. (516)

Note that they all belong to Qg, and the nth coordinate of each of them is a monomial

of degree n with a nonzero leading coefficient, which (after simplification) is equal to
1 +ot[2n—2];,  1+o0t2n], and 1+ o0ot[2n—1], (5.17)

respectively. In deriving these coefficients, we have used (5.1) and (1.20). Consequently,
Proposition 1.2 in [24] implies that Ty, Ty, and T3 are invertible elements of Q, since
ot = 0 and ¢ € [—1, 1] (which implies that [n], > 0 for all n > 0).

Now we will present some properties of these elements.

Lemma 5.1.4. The following representation of To holds true:
T, = D,FZ, — gFZ. (5.18)
Proof. Formula (5.6) implies:

D,FZ; — Ty = (D,F — Z3)Z; + 1 (FD,)? = (¢ — 0t)FD,Z3 + 1 (FD,)?

= FD,[(q — ot)Zy + k1FD,].
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Lemma 4.2.2 applied to D, € Q; and to the expression in the square brackets (which

represents an element of Q) yields

D,FZ, — Ty = FS((¢ — ot)Zy + x1FD,)D, = F((q¢ — ot)Z3 + x:D,F)D, = ¢FZ,D,,

where the last equality follows from (5.9). O

Lemma 5.1.5. Element T3 satisfies the following equations:
S(T3) = S(FD,Z, — ¢F*’D,DZ,), (5.19)
S*(T3) = S*(D,FZ, — gFD,Zy). (5.20)
Proof. By the definition of T3, we get
T; — FD,Z, + ¢F*D,DZ, = (Z, — FD,)Z, — F*D,D(k,FD, — ¢Z;).
Thus, by Remark 4.2.1,
S(T; — FD,Z, + ¢F*D,DZ,) = (Z, — D,F)Z3 — FD,(x1D,F — qZ5) = 0,

where the last equality follows from (5.6) and (5.9). It ends the proof of (5.19).
Now we will show (5.20). We use the definition of T3 and the fact that Qy is commutative

(in particular, FD, and F?D,D commute) to write

T; — D,FZ, + ¢FD,Zy = (Z, — D,F)Z, + FD,(qZy — x,F*D,D)

= —FD,((q — ot)Z, — qZy + x,F*D,D),

where the last equality holds due to (5.6). In view of Remark 4.2.1, applying S*

to the above expression yields
S*(T; — D,FZ, + ¢FD,Zy) = —S*(FD,)((q — ot)Z3 — qZ5 + k1D, F).

Formula (5.9) completes the proof of (5.20). O
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5.1.5. Elements K;, i =1,2,3
Using the notation given in (2.19), we define an auxiliary element
V= nkoT (FD,) + ka2,

which is in Q. The elements Z; and Z, commute as the elements of Qy, so according to

(5.10) and (5.13), we have

S(V)Zl = nlioFZ + KJQZQZl = 77/10(F2DqDZQ + FQ) + /<;22122 = VZQ + T]li()FQ. (521)
We will now use V to define two important elements:
Ky :=T,'(2Q + T(D,)V), (5.22)

Kq := oKy + 7D. (5.23)

Both K; and Ky belong to Qq, see Remark 4.1.2. Moreover, the nth coordinate of K; is

equal to

zq" 1+ [n—1]q (nro[n—1]g+r2(1+0t[n—1]q) ) ,,_ .
q(lfgt[%‘}]q? : ):c b=y, (2)a" nelN, (5.24)

recall the definition (2.21) of ,. The 0th coordinate of K; is zero.

Furthermore, we will prove the following;:

Lemma 5.1.6. The element Ky satisfies
ToKFD,Zy — FD,Z5S(T2K;) = 25(T3)Q — n/@OQFZDg.
Proof. The definitions of K; and V give
S(ToK;) = 28(Q) + D,S(V) = 28(Q) + Z,'D,S(V)Z; = q2Q + Z;'D,VZ, + nroZ; 'D,FQ,

where in the penultimate equality we used Lemma 4.2.2 applied to D,S(V) € O,
and Z; € Qp. In the last equality, we used identities (5.11) and (5.21). Multiplying
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the above formula by FD,Z, from the left and using (5.19), we get

FD,Z58(T2Ky) = 28(qF*D,DZ,)Q + FD2VZ, + 1roFD2FQ

= 28(FD,Z> — T3)Q + T(D,)FD,VZ, + oS (F?D2)Q.

Lemma 4.2.2 applied to Q € Q; along with FD,Z; € Qq and F?D? € Qj, respectively,
yields
FD,Z5S8(T2Ky) = 2QFD,Z; — 28(T3)Q + T (D,)FD,VZ; + nkoQF°Dy.

Since FD, € Qy and V € Q, commute, putting together the first and the third term on
the right-hand side above into K; (compare with (5.22)), completes the proof. O

Additionally, it turns out that the following special element of Q will play a key role in
the sequel:
K3 = (O'S(K1> + KQ)Tgl (525)

The element K3 is symmetric with respect to oK; and Ky, that is, it satisfies the following
equation:

K3 = (S(KQ - T]D) + Kg)Tgl = (S(Kg) + K2 - T]D)Tgl = (O'K1 + S(KQ))T§17 (526)

see (5.23).
It is worth noting that the element K3 belongs to Q; by Remark 4.1.2. Moreover, using
(5.23), (5.24) and (5.17), the nth coordinate of K; is equal to

a"/nl(j)a':[’g;_ll(i)-i-nxn—lj nel. (527)

The 0th coordinate of K3 is zero.

Let us record the following lemma for further reference:

Lemma 5.1.7. The following identity holds:

IioFDq[Kg, FDq]FDq = FDqS(Kl)ZQ — ZgKlFDq + ZQ.
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Proof. Formulas (5.15) and (5.16) imply that
ngg — Zng = (2122 — KlFQDg)ZQ — Zl(Zg — Hl(FDq)Q) = KlFDq(FZ — FQDqDZQ),

where in the last step, as in the proof of Lemma 5.1.5, we have used the fact that Q is
commutative, in particular, FD, and F?D,D commute. From (5.13), the expression in the

parentheses is equal to FQ. Lemma 4.2.3 applied to Q € Q; and D, € Q; yields

T322 — ZITQ = lilFQFDq.
Analogously, we can show that
leQ — T321 = :‘ilFQFQDqD.

Before we use the last two expressions, note that using (5.12) first and then applying

(5.25) and (5.23) yields:

roFDy[Ks, FD,]FD, = koFD,K3FQFD,

= k,FD,K, T; 'FQFD, + %,FD,S(K;)T; 'FQFD, + nkoFD,DT; 'FQFD,.

Lemma 4.2.2 used twice (in the first term with FD,K; € Q; and T3_1FQ € Qp, and in the
third term with S(T;")Q € Q; and F?D,D € Qy) yields

koFD,[K3, FD,]FD, = x;S(T;'FQF*D,D)K,FD, + x,FD,S(K;)T; 'FQFD,

+1roS(T5)QF?DL.
Now we are in a position to use the two expressions derived earlier:

rkoFD,[Ks, FD,JFD, = S(T3'T1Zy — Z,)K,FD, + FD,S(K,)(Zy—T5'Z,Ty)
+ T]IQOS(TPTI)QFQD;

Lemma 4.2.2 y1€ldS that S(ZQ)KIFD(I = KlFDqZQ and S(Kl)Tg_lleg = S(TgllegKl)
Furthermore, the commutativity of S(T3') € Qy and FD, € Qo, and the first equality in
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(5.15) imply

koFD,[Ks, FD,JFD, =S(T;)ToKiFD,Zs — S(T51)FD,ZoS(ToKy) + 1rioS (T3 1) QF?D?
+ FD,S(K1)Zy — Z,K FD,.

The assertion of Lemma 5.1.7 follows from Lemma 5.1.6 and (4.3). O

5.1.6. Element B

Finally, we introduce an element
B := xoS(T;')D,R(K:)D,T5",

where R is defined by (2.24). Note that (2.24) implies that R(K;) € Qq, so B € Qy by
Remark 4.1.2.
Moreover, in view of (5.17) and (5.24), the nth coordinate of B is equal to

1 n—1(2)+0vn_1(2)? n—
syl — o e ™ e Mo (528)

interpreted as zero for n € {0, 1}.

Lemma 5.1.8. The element B can be represented as
B = koD T (R(K)T5")T5

Proof. Lemma 4.2.2 applied to D,R(K;) € Q; and T;' € Q yields
B = koD,R(K;)T;'D,T5".

Lemma 4.2.2, used this time with D, € Q; and T(R(K,)T;"') € Qq, ends the proof. O

5.2. More elements of Q and the representation of U and Y

In the current section, we will focus on more complicated elements of Q, derived from
the building blocks introduced in the previous section. We will analyze their properties,

which are crucial for our future considerations.
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5.2.1. Element P with its relatives

The primary object of our interest is
ﬁ = ﬁl + ﬁg + F~)3

with
P :=E,  Py:=#koFD?FKs,  Pj:=x FD?FB.

In addition, we will consider some elements closely related to P. Namely, let us define
ﬁ2=§1+ﬁ2+§3 and PZ=P1+P2+P3

with

P,:=E,  Py:=rD,FKsFD,,  Ps:= x,D,FBFD,,

P,:=E,  Py:=roFD,KsD,F,  Pj:= r;FD,BD,F.

Remark 4.1.2 states that all elements I3i, ISZ-, P; belong to Q; 1, i = 1,2,3. Moreover,
Remark 4.1.5 shows that 5, E’, and P are invertible.
By the commutativity of Qq (in particular, by the fact that FD, and D,F commute), we

have:

FD,P =PFD, and PD,F = D,FP. (5.29)

Furthermore, in view of (2.4),
(E—FD)P = E — FD. (5.30)

Now we are ready to introduce the elements U and Y whose existence was postulated

in Assumption Al. We define them as:
U:=8(Z,;P) and  Y:=Z,PZ,. (5.31)

The elements U and Y are invertible as products of invertible elements (recall (4.4)).

By the following lemma, U and Y defined by (5.31) confirm the validity of Assumption Al.
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Lemma 5.2.1. The elements U and Y satisfy
D,Y = UZ

Proof. Note that DqZQ\F/) is a sum of certain elements of Qy, k = 1,2,3, so Lemma 4.1.3
gives that qugﬁFD = DqZQE’. Consequently,

D,Y = D,Z,PZ, = D,Z,PFDZ, = S(FD,Z,P)DZ,.

Commutation of FD, € Qy and Zy € Q,, combined with the first identity in (5.29), leads
to
D,Y = 8(Z,FD,P)DZ, = §(Z,PFD,)DZ, = S(Z,P)D,FDZ, = UD,FDZ;.

Lemma 4.1.3 applied to D, € Q; implies that D,FDZ; = D,Z; = Z, see (5.10). O
We record the identity given by the following lemma for further reference:

Lemma 5.2.2. The elements P and U satisfy
S(Z)P = US(D,).
Proof. From (5.29) and Remark 4.2.1, we get

S(Z)P = DZ,D,FP = DZ,PD,F = §(Z,PD,) = US(D,).

5.2.2. Element X with its relatives

We will introduce new elements X and X to concisely describe the relation between P and

S(P). Set:

X:=Xo+ X5 and )N(:=)~(2+X3
with

Xy = S(Ky), X3 := 5(T3)B, (5.32)

~

Xy =Ky, )~(3 = KOT(DZ,R(Kl)Tgl)'
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Remark 4.1.2 shows that all elements X; and )N(Z indexed by 7 belong to Q; 1, i = 2, 3.

Now, let us discuss some properties of these elements.

Lemma 5.2.3. The following identities are satisfied:

X3 =koDyR(X2)D, T3,
S(X3) =koD,R(X2)D,T5 ",
R<>~(2) =R(Xz) + (%2 — Xo)FK3TsF.

Proof. The first identity is a direct consequence of (5.32), the definition of B, and identity
(4.3). Additionally, applying Lemma 4.2.2 to D, € Q7 and R(K;) € Qp we get

S(X3) = koD2R(K)T3" = koD, S(R(K1))D,T5

Lemma 4.2.4 completes the proof of the second identity. To prove the third formula, note

that XoF € Qg and )~(2F € Qp, so they commute. Consequently,
(X2F)? — (XoF)? = (XoF — XoF)(XoF + XoF) = (Xo — Xo)F(Xz + Xo)F.
By the definition of R given by (2.24), we obtain
R(Xy) — R(Xz) = n(XsF — XoF) 4 o((XoF)? — (XoF)?) = (X3 — Xo)F(nD + 0 Xy + 0X;)F.

The third identity follows from the definitions of Xy and Xs, along with formulas (5.25)
and (5.23). O

5.2.3. Relations between ﬁ, X, and their relatives

This subsection discusses some relations between the objects introduced in the previous
sections.

Referring to the definition of X3, it is straightforward to observe that (4.3) leads to

Py = r,S(FD,T; ' )XsFD,, Ps = ki S(F?D2T;1)X;. (5.33)
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Moreover, the commutativity of T(R(Ky)T5")T5' € Qp and F?D?2 € Qy yields
k1 X3 T3 F?D2 = k1o T (D2)F?D2T (R(Ky) T3 H)T5! = P, (5.34)

where the last step holds due to Lemma 5.1.8 and the definition of 7. Furthermore, the
definitions of X3 and T~ give that

S(T5)X3FD, = koS(T3)FDZR(K,)T5'D,.
Lemma 4.2.2 used with FD2R(K;) € Q; and T5' € Qp, together with identity (4.3) imply:

S(T3)XsFD, = koFD?R(K,)D, = FDX5Ts, (5.35)

where the last step follows from the definitions of B and Xs.

Moreover, the elements X and X are related to P as follows:

Lemma 5.2.4. The following identity is satisfied:
[P,FD,] = FD,XZ, — Z,XFD, + 2Q.

Proof. Since the elements E’, X and X are certain linear combinations of some elements
from Q, k = 0,1, 2, the asserted equality will be proved by comparing the summands

from these subspaces.

1. Elements of Q,. Restricted to Qy, the identity from Lemma 5.2.4 states that
[Py, FD,] = 0, which is implied by Remark 4.2.7.
2. Elements of Q1. When restricted to Q;, the asserted identity becomes

[Py, FD,] = FD X2Z5 — Z,X,FD, + 2Q.

This can be proved in the following way. Lemma 4.2.2 applied to K3 € Q; and FD, € Q
yields that ISQ = HoFDgFKg = koFD,K3FD,. Next, in view of Lemma 4.2.8, we get

[Py, FD,] = koFD,[Ks, FD,]FD, = FD,X,Z5 — ZoXoFD, + 2Q,

where the last equality is satisfied because of Lemma 5.1.7.

77



CHAPTER 5. SOME IMPORTANT ELEMENTS OF Q

3. Elements of Qy. Finally, Lemma 5.2.4 restricted to Qs says
[Ps, FD,] = FD,XsZ5 — Z,XsFD,. (5.36)

The proof relies on the following arguments. Remark 4.2.9 applied to |33, FD,, and
(5.5) for k = 2, gives
[Ps, FD,] = Z,P3sFD, — FD,P3Z,.

Due to (5.34) and (5.33), we get
[P3,FD,] = #1ZoX3 T3 F*D2FD, — #1FD,S(F*D2T5")X3Zs.
Formula (5.16) applied to x4 FQDE which appears twice above gives
[Ps,FD,] = ZyX3T;5'Z1Z,FD, — ZyXsFD, — FD,S(Z1Z,T5 ") X525 + FDX5Z,. (5.37)
Since FD, € Qj and Tg12122 € Qg commute,
Z,X3T5'Z,Z,FD, = ZyXsFD,T5'2,Z5 = Z,8(T5 " )FD X521 Zs,

see (5.35) and (4.3). Lemma 4.2.2 applied to S(T;')FD, X3 € Q, and Z;, € Qy
yields that ZQS(Tgl)FDqX:ngZQ = S(lengl)Fqugzg. By the commutativity of
S8(Z2,Z,T;") € Qp and FD, € Qy, the right-hand side of (5.37) simplifies to (5.36).

Moreover, we can change the order of multiplication of & (IS) and X as follows:

Lemma 5.2.5. The following identity is satisfied:
S(X)P = S(P)X.

Proof. As in the proof of Lemma 5.2.4, we will prove the asserted identity for elements
restricted to the subspaces Q1, Qo, Q3, and Qy, respectively. Recall that the elements ISZ-,
Xi, )N(Z belong to Q; 1, and that a product of two elements belongs to the corresponding

subspace as described in Remark 4.1.2.
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1. Elements of Q;. We will show that S(X5)P; = S(P1)Xs. In order to see this, it is
enough to use the definitions of 51, y(g, and Xs.

2. Elements of Q5. When restricted to Qs, Lemma 5.2.5 says
S(X2)Ps + S(X5) = S(P3)Xs + X. (5.38)
We will prove it as follows. Lemma 5.2.3 gives
X3 — S(X3) = koDy(Xs — Xo)FKsTsFD, T3 = koD, (Xs — X2)FK3FD,,

where the last step is satisfied since T3 € Qy and FD, € Oy commute. Lemma 4.2.6

applied to D, € Q; and )~(2 — Xy € Q1 yields
D, (X5 — X5)F = S(Xy — X,)FD,

whereas Lemma 4.2.3 used with K3 € Q; and D, € Q; implies that KsFD, = D,FKj3.
Consequently, X5 — S()N(g) = S()N(Q — Xz)f’z. Lemma 4.2.6 (used with S(X3) € Q; and
P, € Q1) and Lemma 4.2.5 yield (5.38).

3. Elements of Q3. Here our task is to prove
S(X3)Py + S(X2)P3 = S(P3)Xz + S(P2)Xs. (5.39)

In order to do so, we proceed as follows. Lemma 4.2.2 applied to X, € O and
F°D? € Q yields that )~(2F2D2 = FDgF)~(2. Consequently, the second identity from
(5.33) implies

S(P2)Xs — S(Xo)P3 = S(P2 — w1 FD2FXo T3 1) X5 = koS(FD2F(Ks — oK T31))Xs,

where in the last equality we have used the definitions of Py and X,. Formula (5.26)
gives S(P2)X3 — S(Xo)P3 = roS(FD2FS(Ky)T5")Xs. Remark 4.2.1 and Lemma 4.2.2
(applied to S?2(FD,K5)S(T5') € Q; and FD, € Q) give

S(Py)X3 — S(X9)Ps = koS> (FDK2)S(T5 ' )FD,Xs.
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In view of (5.35),
S(Py)X3 — S(Xo)Ps = r0S?(FD,Ko)XsFD, T3 L.
Lemma 4.2.6 (applied to S()N(gFDq) € Qy and FD,Ky € Q) and Lemma 4.2.5 yield
S(Py)X3 — S(X9)Ps = koS(XsFD,)FD,KyT5 .
Note that the elements FD, € Q, and D,F € Q; commute. Moreover, (5.26) implies
S(Py)X3—S(X2)P3 = roS(X3)FD2F(Ks —0S(Ki) T3 1) = S(X3)Py — k1 S(Xs T3 'F?D2) Xo.

Above we have used Lemma 4.2.2 again, this time applied to FDgFS(Kl) € Q; and
T;! € Qp. Finally, formula (5.34) implies (5.39).

. Elements of Q4. Finally, we have to show that S(P3)Xs = S(X3)Ps. Using the formula
for |53 given by (5.34) and the fact that T5' € Qg and FzDg € Qp commute, we get

~

S(ﬁg)Xg = S(I{l)?ngleDg)Xg = S(H1>~(3F2D§T§1)X3 = S(Xg)lsg,

where the last equality comes from (5.33).
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Chapter 6

Removing Assumptions A1, A2 and A3

In this chapter we will show that Assumptions A1-A3 are implied by (1.9) with o7 = 0.
Our arguments will heavily rely on the results derived in Chapters 4 and 5. Therefore,
as in Chapter 5, we will work under assumptions (1.9) with o7 = 0.

Recall that z € R and ¢t > 0 are fixed and all arguments (z,t) are suppressed,

e.g.in U, Y.

6.1. Assumption Al

The elements U and Y (given by (5.31)) are invertible (see the line below (5.31)). The

equality in Assumption Al is an immediate consequence of Lemma 5.2.1.

6.2. Assumption A2

Before going to the proof of how Assumption A2 follows from (1.9) with o7 = 0, we
will represent the element S, given by (2.27), in terms of the objects presented in the
previous chapter.

The following lemma verifies that P+ Xis equal to S, which means that P + X encodes

the Jacobi matrix for the orthogonal polynomials {W,,(-;z,t)}5_, in Q.

Lemma 6.2.1. The following identity is satisfied:
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Proof. Using the definitions of P and X, we can write
P+ X = E + (koFD2FKs + S(K1)) + S(r:F?D? + T3)B,
which, in view of (5.16), can be simplified to
P + X = E + (koFD2FKs + S(Ky)) + Z»Z3B.

Using (5.24), (5.27), and (5.28), we get that the nth coordinate of P+ X is equal to (2.27),

n € INg. Since S and P + X coincide coordinate-wise, we get the desired result. O

Recall that P and X are certain sums of elements of Q, k=0,1,2. By (6.1), the same is

true for S, so Lemma 4.1.3 implies

S(E — FD) = P,(E — FD) = E — FD. (6.2)

We are now ready to present a result justifying that S is indeed related to the solution of

the g-commutation equation, compare with Assumption A2.
Theorem 6.2.2. The following identity is satisfied:

(1 + ot)D,SFY = (¢ — 0t)USFZ + UY + koD, (R(S) — R(X))Z

+ (12D, Zs + S*(T3)S(X3))PZ, o
where U and Y are defined in (5.31).
Proof. 1t is sufficient to prove each of the following four identities:
(1+ ot)D,SFY — UY = D,XFZsPZ, + #;D,XFPFZ + ¢Z,S(P)PFZ 6.4)
—q[S(P),FD,JPZ,,
(¢ — 0t)USFZ + koD, (R(S) — R(X))Z = qZ,S(P)PFZ + ¢Z,S(X)FD,PZ, 65)

+ k1D, XFPFZ + 1oD,FD,PZ;,
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D,XFZ5 — ¢[S(P),FD,] = ZsS(X)D,F — 25(Q), (6.6)
Z3S(X)D,F — ¢Z,S(X)FD, = 28(Q) + 1koD,FD, + r9DyZs + S%(T3)S(Xs), (6.7)

as they imply the desired result after obvious calculations.

1. Proof of (6.4). Remark 4.2.1 implies that DqFS(E’) = S(FDqE’). Moreover, identities
(5.8) and (6.1) yield that

UY = Z;8(P)Y = ((1 + ot)D,F — ¢FD,) S(P)Y

~

— (1+ ot)S(FD,(S — X))Y — ¢FD,S(P)Y
— (14 0t)D,(S — X)FY — ¢FD,S(P)Y.

The definition of Y and formula (5.7) lead to

UY = (1 + ot)D,SFY — D, XFZ5PZ, — ;D ,XF?D,PZ; — ¢FD,S(P)Z,PZ,

— (1 4 0t)D,SFY — D,XFZ3PZ, — 11D, XFPFZ — ¢FD,S(P)Z,PZ;,

where the last step follows from (5.29) and (5.10). Remark 4.2.9 applied to S(P), FD,,
and Z, yields

FD,S(P)Z, = Z,8(P)FD, — [S(P),FD,].

Substituting the above into (6.8) and using (5.29) again gives (6.4).
2. Proof of (6.5). Identity (5.9) together with the definition of U gives

(¢ — ot)USFZ = (¢Z, — k:D,F)S(P)SFZ = ¢Z,S(P)SFZ — £, S(FD,P)SFZ.
Formula (6.1) implies
(¢ — ot)USFZ = ¢Z,S(P)(P + X)FZ — 51D,(SF)?Z + kD XF(P + X)FZ.
Lemma 5.2.5 and then (5.29) with (5.10) yield that

qZ>8(P)(P + X)FZ = qZ,S(P)PFZ + ¢Z,S(X)PFZ = ¢Z,8(P)PFZ + qZ,S(X)FD,PZ;.
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Moreover, note that formulas (2.24), (5.2) and (6.1) give

}1D4(XF)?Z — k1D, (SF)?Z = koDy(R(X) — R(S))Z + koD, (S — X)FZ

[
=
o
@,
S
A
X
|

R(S))Z + nroD,PFZ

I
=
o
@,
S
A
X
|

R(S))Z + nroD,FD,PZ,

where the last step is satisfied due to (5.29) and (5.10).
3. Proof of (6.6). Note that

a[S(P),FD,] = [S(P),qFD,] = [S(P),D,F — E] = [S(P), D,F] = S([P.FD,]),

where we used (4.5), (5.3), (4.7), (4.6) in each consecutive equality, respectively.
Lemma 5.2.4, used with Remark 4.2.1 and the fact that Z3 = S(Z,), ends the proof
of (6.6).

4. Proof of (6.7). Note that Lemma 4.2.2 implies that

Z38(X,)D,F = 8" 1(D,F)ZsS(X), Z,8(X;)FD, = 8" 1(FD,)Z,8(X;), i =23
Moreover, the identities Z; = S(Z;_1), i = 1,2,3, and (5.10) yield

Z38(X)D,F — ¢Z,S(X)FD, = S(D,FZy — qFZ)S(Xy) + S*(D,FZy — qFD,Zo)S(Xs)
= S(ToKy) + S2(T5)S(X3),

see (5.18), (5.32), and (5.20). In view of (5.22) and the definition of V,

S(TgKl) = ZS(Q) + nlﬂquFDq + I{QDqZQ.

]

Expression (6.3) derived in Theorem 6.2.2 is almost identical to that in Assumption A2,
see (5.31). Fortunately, the terms in (6.3) that do not appear in Assumption A2 cancel

out:

Lemma 6.2.3. The following identity is satisfied:

koDyR(X)Z = 8%(T3)S(X3)PZ;.
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Proof. Note that Lemma 4.2.2 used with K3 € Q; and T3 € Qg yields that
S(T;)K3Ty = Ky, Next, referring to the definitions of Py and P, and to formula (5.2)

we get

S2(T3)S(X3)(Py + P3)Zy = koS%(T35)S(XsFD, T3 1) (Ks T3 + 0S(T5)B)FZ

= Hos(Fqud)(Kng + 0X3)FZ,

where the last step holds true due to (5.35) and the definition of X3. Identities (5.25) and
(5.23) yield

S?(T3)S(X3)(Py + P3)Zy = k1D XsFXFZ + koD XsF(cKy + nD)FZ

= K1 DqX3FXFZ + K1 DqXQFX3FZ + n/fquX;gFZ.

Above we have used Lemma 4.2.2 applied to X5 € Q5 and FK; € Oy and the fact that
S?(FK;) = XyF. By the definition of X, we get

S?(T3)S(X3)(Py + P3)Zy = k1Dy(XF)?Z — k1D (XsF)2Z + 1D XFZ — gD XsFZ

= IiquR(X)Z - Ii@DqR(Xg)Z,

see (2.24). Adding S%(T5)S(X3)P1Z; to both sides of the above equation and using

the second identity from Lemma 5.2.3, we obtain
32(T3)S(;(3)|521 = HquR(X>Z + ﬁ082(T3)DqR(X2)Dnglzl - :‘iquR(X2>Z.

Lemma 4.2.2 (used with D,R(X3)D, € Q; and T3 € Qy), together with formulas (4.4) and
(5.10), ends the proof. O

6.3. Assumption A3

We will first prove an auxiliary equality that, after some rearrangement, shows that

Assumption A3 is implied by (1.9) with o7 = 0.

Lemma 6.3.1. We have the following identity:

D,SFZ5P = USFS(D,) — q2QP + —L-U(E — FD)ZsP.

1+ot
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Proof. Lemma 5.2.5 with (5.29) yields
S(Z,XFD,)P = S(Z,P)XD,F. (6.9)
According to Remark 4.2.9, we have
[P,FD,] = Z,PFD, — FD,PZ,,
recall formula (5.5) for k£ = 2. Consequently, Lemma 5.2.4 gives
S(FD,PZ, — Z,PFD, + FD,XZ, + 2Q)P = S(Z,XFD,)P = S(Z,P)XD,F,
where the last equality follows from (6.9). As a result, see (5.11), (5.31), and (6.1),
D,SFZ;P — UD,FP + ¢zQP = UXD,F.

Taking into account formulas (5.29) and (6.1), we obtain

D,SFZ5P + qzQP = USD,F = USFS(D,) + US(E — FD)D,F 610
6.10
— USFS(D,) + U(E — FD),

where the last equality is satisfied because of (6.2) and (5.3). Moreover, formula (5.5) for
k = 3 and identity (5.3) give

(E — FD)Z; = (E — FD)(E + otD,F) = (1 + ot)(E — FD),

and (5.30) implies that (E — FD)Z3P = (1 + ot)(E — FD). Since 1+ ot > 0, we can divide
by this factor and insert the last expression into (6.10). This gives the desired result. [

From (5.11) and (5.13), it follows that

D, + ¢QZ;" = S(FD,DZ, + Q)Z;' = S(2)Z; "
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Thus, the expression from Lemma 6.3.1, multiplied from the left by U™ and from the

right by P71Z;!, yields, in view of Lemma 5.2.2, the following:
U~'D,SF — SFU™'D, = ¢(SF — zE)U~'QZ;* + L. (E — FD).

1+ot

Hence we get the identity from Assumption A3 with U= qU™QZ; .
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Chapter 7

Free quadratic harnesses

In this chapter, we will study free quadratic harnesses QH (1, 0; 0, 7; —o7). The adjec-
tive 'free’ comes from the relations of this process with free probability, especially with
free convolutions when o7 = 0, see |21, Section 4.3] for more details.

Our main aim is to describe the measure vg ¢, 0.0.r—or appearing in Theorem 1.6.1
in the case of the free quadratic harness. Our description gives a more explicit formula
for the infinitesimal generator of QH (n,0;0,7;—0T).

In the first section, we show that for all z € R, the polynomials {V[N/n(, x, 1)}, are
orthogonal with respect to a probability measure. We provide an explicit form of this
measure.

In the second part, we represent this measure as a (modified) univariate distribution of
the considered free quadratic harness. This representation, which was previously obtained
in Remark 4.2 of [24], is valid only for ¢ > 0. In the concluding part of this chapter, we

will provide another representation of v, 9.7 —or that holds for all ¢ > 0.

7.1. Description of the orthogonality measure v, ;957 —or

If g = —oT, then the assumptions (1.9) are reduced to the condition
0<or <1, (7.1)

and therefore ¢ from (1.21) is equal to £ = 2(1 — o7). The remaining parameters defined

in (1.22) take the form

60 _ (T(—Et_)(alsgt)’ 51 _ ot+7) and 52 _ bt ‘
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Moreover, g given in (1.24) is zero, hence [n]; = 1 for all n € IN. As a result,

Ay & _ nT+0
Tn 52 + T+&  l-or ne ]N7

and
O + 1 = 12, nelN
Denote
X1 = ?f—zi and X2 1= %, (7.2)
and recall that [0]; = 0. Thus
ao(x) = Xo, ay () = 1+§ (0Yn+1 + X1) + X2, n =1,

and

~ ~

bi(z) = 15051 (1+x1x2), bu(z) = &o(1 + x1X2), n=2.

Therefore, {W, (y; z, )}, satisfies the following three-step recurrence:

Wo(y; z,t) = 1, Wiy, t) = y — xa,

yWi(y; 2, t) = Waly; o, 1) + aWs (y; 2, t) + b0 7 Wo(y; ., t),

1+0't

yWn(y;xat) = Wn+1(y;x>t) + &Wn(ywr?t) + an,l(y;x,t), n = 27

where @ : (UX2+X11)t;TX1+X2 and b := W(l + X1X2)-

Note that the coefficients in the three-step recurrence do not depend on z, so the polyno-
mials do not depend on z as well. As a result, the same applies to the moment functional
that makes these polynomials orthogonal.

In particular, we know from Theorem 1.6.1 that for x satisfying 1 + nx + oc2? > 0, the

moment functional is non-negative definite, so Remark A.0.2 implies that

~

bi(z) = tj—T(l + x1x2) =0

l—oT

for all ¢ = 0. Since 7 = 0 (recall (1.5)) and (7.1) is satisfied, the above inequality implies
that
1+ x1x2 = 0. (7.3)
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Under (7.3), the quadratic harness QH(n,0;0,7;—0o7) was constructed in [20, The-
orem 1.1.].  Furthermore, from (7.3) we conclude that the free quadratic harness
QH(n,0;0,7,—o7) (with all moments finite) does not exist when 1 + x1x2 < 0.

When (7.3) holds, {Wn(y, x, 1)}, are orthogonal with respect to some probability mea-
SUre Vg ¢y 6,0r—or- Silce orthogonal polynomials are determined up to multiplicative con-

stants, polynomials {Vn(y; x,t)}r, satisfying the following three-step recurrence:

~

Vb(y,l’,t) = 11::,;7 ‘/l(yaxat) =Y~ X2

yV(y; 2, t) = Vioa (y; 2, 1) + @V (y; 2, 1) + bV, 1 (y; 2, 1), n=1,

are orthogonal with respect to the same probability measure as the polynomials
AACEROI

If b = 0, then {V,(-;z, t)}r_, are orthogonal with respect to the Dirac measure concen-
trated at xo.

If b > 0, then the orthogonality measure for {V,, (- z, t)}%_, is fully described in Theorem 3
in [28]. It has an absolutely continuous part and possibly (for some parameters of the
quadratic harness) at most two atoms. Indeed, for the function f introduced in [28,

Theorem 3|, we have after simplification that

f(z) = ltj:;t(azz +nz+1).

/o

Therefore f has two real roots z* = o 7 if only n? > 40 > 0 (the superscript + or
— indicates that we are taking + or —, respectively, in each expression). If n* > 40 = 0,
then f has aroot in —%. As aresult, with (z), := %'Z' for z € R, the measure v, ¢ 0.0.r—or

can be decomposed as follows:

i) the absolutely continuous part . is proportional to

4b—(y—a)>

G (ENGRNG (w)dy,

ii) the discrete part py may appear only in two cases:

a) if n > 40 > 0, then a discrete part is proportional to

1+ (14at)|2t —x2| 1+ (I40t)|z2~ —x2|
<\z+>il>?22| - t+1 X >+ 5Z+ (dy) + <|z*>i1)>(<22\ B t+1 = >+ 627 (dy)7
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b) if n* > 40 = 0, then a discrete part is proportional to

(1 N WL 5,%(dy),

iii) there is no singular part p,.

Therefore, the orthogonality measure can be written as:

Vatmo.or—or(AY) = Cete(dy) + Capta(dy),

where (. and (; are some real constants uniquely determined by the requirement that

{vn(‘;x,t)};’f:o are orthogonal with respect to v, 007-0r- In particular, integrating

l—0o1

‘70(1 x,t) and 171(, x,t) with respect to V10,07 —or giVves T

and 0, respectively.

Note that if 0 = n = 0, then

Vz,t,o,e,o,r,o(dy) = m\ﬂl(t +7)—(y — 9)2]1(9—2\/1@,%2\/1:47) (y)dy,

that is v4.4.0,0,0,-0 i a probability density function of a Wigner semicircle distribution with

mean 0 and variance t + 7.

7.2. Relation to the univariate distributions

We continue under assumptions (7.1) and (7.3). Recall that for free quadratic har-
nesses, the polynomials {Wn(% z,t)}>_, do not depend on . Therefore, the probabilistic
orthogonality measure v, ;4 -y 0 —or also does not depend on z.

Now we will represent { I/IN/n(y, x, 1)}, in terms of the monic martingale polynomials
{pn(y; t)}C_, for QH (n,0;0,7; —oT), which satisfy the following three-step recurrence (see
Proposition 2.2 in [20]):

YPn(Y;t) = a1 (Y t) + apn(y; t) + bpa_1(y;t), n = 3.
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7.2. RELATION TO THE UNIVARIATE DISTRIBUTIONS

We will also consider polynomials {U,(y;t)}>_, defined by

Tp2(y;t) + Xao(t + T)pr(y; t) + t(t + 7)po(y; 1), n =0,
Un(y,t) = { pa(y;t) + AT, (44 4 Wp (y;1), n=1,
Thnsa(y; 1) + CHOATES) gy 4 LT gy > 9,

It turns out that U, is connected with Wn in the following way:

Lemma 7.2.1. For all n € Ny we have
Unlys t) = (8 + 0ty + 72 ) Wo(ys 2, 1).

Proof. A direct calculation shows that the assertion is true for n = 0,1, i.e., it is easy to

check that
Uo(y; t) = 2 + Oty + 1¢° and Ui(y;t) = (2 + 0ty + 7y (y — x2).
Next, the definition of U; and the three-step recurrence for {p,(y;t)}w_, imply

yUy (y; t) =T (pa(y; t) + aps(y; 1) + bpa(y; 1))
+ W(pg(y; t) + apa(y; t) + b(1 — om)pi(y; t))

1+0't

Using the definition of U, for n = 0,1,2 and collecting the expressions with ps, py, and

Do, respectively, we get

yUL(y; t) =Us(y;t) + AU (y; 1) + 522 Un(yit) — (587 + 55— 7) bpa(yst)
— (5% + 5% — (at +x2)) (t+ )b (y;t)

9% (¢ )tbpo(y; t) + T bypy (1),

After simplification and in view of the second line in (7.4) we get

yUr(yt) = Us(ys t) + aly(yst) + 222U (ys t).
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Analogously, we can obtain

yUs(yit) = Us(yst) — C0lps(yst) + 3 (Ug(y;t) — A o (y; t))

+b (Ul(y;t) - Wpl(y;t)) + WD (ys t).

The third formula in (7.4) implies yUs(y;t) = Us(y;t) + aUs(y; t) + bUy (y: ). Moreover,
directly from the last line in (7.4) we see that

~

yUp(y;t) = Unsa(y:t) + aUy(ys5t) + bUn—1 (y;t), n=3.

Since the sequence {U,(y;t)}r_, satisfies the same three-step recurrence
as {(t* + Oty + Ty2)Wn(y;x,t) * , with the same initial conditions, we get the
desired result. O

Let m; be a univariate distribution of QH (n, §; o, 7; —o7) at time t > 0. The martingale
polynomials {p,(-;t)}_, are orthogonal with respect to m;. Consequently, Lemma 7.2.1
implies

2 T 2
J}R : J::?ﬁi) W (y; 2, )m(dy) = Lin=o}

where above we have used the fact that § p,(y;¢)m(dy) = L,—0;. Then Exercise 4.14 in
R
[27] yields:

Corollary 7.2.2. Polynomials {W,(-: t)}r_, associated with the infinitesimal generator

t2 4 0ty+7y>

of QH(n,0;0,7;—0T) are orthogonal with respect to )

m(dy), t > 0, where m; is

the univariate distribution of QH(n,0;0,7;—071). That is,
2 T 2
V:E,t,o',f,n,e,—o-r(dy) = t—:?f+—:)yﬂ't(dy) (75)

Consequently, in the case of free quadratic harnesses, Theorem 1.6.1 coincides with
[24, Remark 4.2], which was established using an alternative method based on the
Cauchy-Stieltjes transformation.

However, the representation (7.5) does not work for ¢t = 0, since then m,(dy) = do(dy), see

(1.2), and

f (t* + Oty + Ty2)f/[v/n(y; z, t)m(dy) = J Tyzf/fvfn(y; z,0)d(dy) = 0, n € Ny,
R R
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7.2. RELATION TO THE UNIVARIATE DISTRIBUTIONS

which makes the normalization impossible for n = 0.
To overcome this normalization problem and determine the measure vy 0.0.r,—or for all
t > 0, we will consider a free quadratic harness with slightly modified parameters. Namely,

we obtain the following result:

Proposition 7.2.3. Let T; be an univariate distribution of QH (n, x2;0,0;0) at time
t = 0 (recall (7.2)). Then the infinitesimal generator of QH(n,0;0,7;—0T) acting on

polynomials can be represented as in Theorem 1.6.1 with

T

V:c,t,n,@,a,r,—ar(dy) = (1 + Gt-:i

y) T ter (dy), when t + 7 >0,

l—oT

and

Vatnb.0m—or(dY) = 6y, (dy), whent =1 = 0.

Proof. Denote by {V,,(y; z,t)}x_, the polynomials associated with infinitesimal generator

of QH (1, x2;0,0;0), i.e., {V,(y;z, 1)}, satisfies the following three-step recurrence:

Voly; @, t) = 1, Vily;@,t) = y — X,
Vily; 2, t) = Valys 2, t) + aVi(y; . t) + —=Voly: o, t),

1+ot

Walys2,t) = Vi (g, 0) + @Va (g, 6) + Wi (s 2,1),  n>2,

where

a=(ox2+n+ox2)t+ x2=(ox2+ x1)t + Xo2,
b

t(1+ot)(1+ (n+ oxa)x2) = t(1 + ot)(1 + x1x2)-

Comparing this with the three-step recurrences for {Wn(y, x, 1)}, leads to the conclusion
that

~

Wn(.%%t) :Vn(y7x7av TLEIN(),

t+T

where t := .
—oT

As we have already proved, the polynomials {V,,(-; :E,B}%O:O are orthogonal with respect
to (1 + yxg/z?) 7p(dy) if only t > 0 (equivalently ¢ + 7 > 0), see Corollary 7.2.2.

If t = 7 = 0, then the three-step recurrence for {Wn(, x,0)}5_, significantly simplifies, in
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particular by = 0. Hence according to Theorem A.1 in [22], {Wn(-; x,0)}*_, are orthogonal

with respect to the Dirac measure concentrated at y-». O]

It is worth emphasizing that Proposition 7.2.3 is true for 0 < o7 < 1. Observe that
for o7 > 0 its assertion is covered by Proposition 2.2.1. However, Proposition 2.2.1 does
not cover the case o7 = 0. In particular, the result obtained in Proposition 7.2.3 is not
evident in the case of ¢ = 0 and 7 > 0. For this reason, we decided to include the
proof of Proposition 7.2.3, even though it partially covers the previously considered case

of Proposition 2.2.1.
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Chapter 8

Quadratic harnesses with ¢ = —1

In this chapter, we will examine a quadratic harness with ¢ = —1. We will show that
for each ¢t > 0, X; can only take on two distinct values. Our main goal is to construct
this process in previously unknown cases and to derive a formula for the infinitesimal
generator directly from the definition. Additionally, we will compare the derived formula
with the one implied by Theorem 3.3.1.

The construction of quadratic harnesses with ¢ = —1 was previously carried out in
[19, Section 3.2], only in the case ¢ = 7 = 0 (the bi-Poisson process case).

Before we tackle the general case of ¢ = —1 (which will be done in Section 8.2), we

will devote the next section to analyzing the bi-Poisson process with ¢ = —1.

8.1. Bi-Poisson process QH(n,0;0,0; —1)

Let us now recall the construction from [19, Section 3.2] in detail. Assume that
1+n6=0.

and consider a Markov process (X;);>o, starting from zero, with univariate distributions

given by

P(Xt = zt,-i—) = I;;—((tt)), P(Xt = l’t7_) = p+(t)

where x4 = (0 + nt + y(t)) and
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with y(t) := 4/4t + (6 + nt)*. The form of the support ensures that for all ¢ > 0
—(O+nt)X, =t a.s. (8.1)

The transition probabilities for 0 < s < t are given by

P(Xt _ xt,+|Xs _ fEs,-ﬁ-) _ Zl?f(t)ﬂw(s)7 P(Xt _ $t7—|Xs _ :L,s’_i_) _ p+(®O)—p+(s)

2y(t) 2y(t) ! (82)
P(Xt = xt,+|Xs = xs,—) = p_(gzj(?)_(S)a P(Xt = It,—|Xs = xs,—) = p+(tg);(i))_(8)‘

Such a process is a quadratic harness QH (7, 0;0,0; —1), meaning that (X;);>¢ satisfies
(1.2) and (1.1), and for all 0 < s < t < u,

E(X7?|F.u) =E(X7|Xs, Xu)

_ (u=t)(u+?t) 2 4 (t—s)(t+s) 2
 (u—s)(u+s) X (u 8)(u+s) X (83)
(u—t)(t—s) (u—t)(t—s) (u—t)(t—s)
sy urs) (10— 0) X + mw ns)Xu + =25

8.1.1. Infinitesimal generator by direct calculation

We will now obtain a formula for the infinitesimal generator of QH(n,6;0,0; —1) in a
direct way (without appealing to Theorem 3.3.1) using the above explicit construction.

For ¢t >0

E(f(Xt+h)|Xt _ xt,+) :f(ﬂft+h,+)(1’7(t+h)+p+g;)(:fé;fwh,—)(lu(t+h)—P+(t))

=Lt W+ h) = () = SR (e + h) — y(1)

2y(t+h) 2y(t+h)

+ nth:EZjh) —nh fzzf;}f;: + f(@ign+)-

If f is differentiable at z; . and continuous at x; _ , then the limit on the right-hand side

of (1.15) exists and

(AF ) () =5dy (1) = Loty (6) + 525 (F () = o)) + /(@) S (@)

)+
24+n(0 — 24-n(6
- (b 2) B ) (i 24652).
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8.1. BI-POISSON PROCESS QH (,6;0,0; —1)

Since 17 + 2+;’?59(:3"t) = 1+y"(gtc)t’+, we finally obtain

(AL Do) = s (o) o pa,.) ).

- A A0+ \ A/4t+(0+1t)2

Analogously, we can show that if f is differentiable at x; _ and continuous at z; , then

(AL Do) = e (L) - pa, ).

- A AtHO+n)2 \ A/4t+(0+1t)2

As a result, if f is differentiable at x; ; and z;_, then f € D(A}).
Furthermore, for a fixed t > 0, we observe that z; + ¢ supp(X,_;) for all 0 < h < t.

Therefore, for 0 < h < t, we can choose
E(Xt’thh = xt,i) = E(XtJrh’Xt = xt’i).
Consequently, if f is differentiable at x; . and z; _, then f e D(A; ) and

(A7 f)(es) = (A f)(2e2).

When t = 0, the expression under the limit on the right-hand side of (1.15) is equal to

EGXu)lX0=0)=f(0) _ (F@n)=fO)p-(h) | (f(@n)=/(O)p+(h) (8.4)

h o 2hy(h) 2hy(h)

To find the limit of (8.4), we will consider several cases:

1) 6 =0. If f is differentiable twice at 0, then by Taylor’s theorem

(7/©@en, - +51"(0)23, _+o(a, ))p+ ()
2hy(h) ’

EG(XIXo=0)—f0) _ (IO +37" @, +olad ))p- ()
h = Sy (h) +

where o(x} | ) is a function that divided by 7 , goes to zero when h goes to zero

(interpretation of o(z _) is analogous). Furthermore, since x . p_(h)+xp,-py(h) = 0,

2

E(f(X34)|Xo=0)—f(0 o(z7 )\ 25  p—(h) o(xz _)\ =5 _p+(h)
ORI = (37(0) + 232) Fger” + (10700 + 2= Sy

Since
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the limit of the above expression exists as h goes to zero and therefore f € D(A7) and

(A7 £)(0) = 5£7(0).

Note that the existence of the first derivative at zero is not sufficient to ensure that f
is in D(A{). For example, for f(z) := |x|*2, the expression in (8.4) goes to infinity
when h goes to zero.

¢ > 0. Under this assumption, as h tends to zero, xj 4 goes to 6 while z; _ goes to 0.

Since
p_(h) 2 h—07t 1
2hy(h) — y(h)(@+nh+y(h)) 62>
and
znop+(h) _ 1 k20T g
2hy(h) y(h) 6

the limit of formula (8.4) when h goes to zero exists if only f is differentiable at 0 and

continuous at 6. In such case, f € D(A{)

(Ag £)(0) = LOZ10 — Lg/(0).

where f is differentiable at 0 and continuous at 6.

8.1.2. Infinitesimal generator by the algebraic approach

In this section, we clarify certain issues which arise with the approach used in [24]

for the infinitesimal generator of the bi-Poisson process when ¢ = —1. All the results

from [24] were obtained under the assumption that the considered process is polynomial,

with an infinite state space. This applies, in particular, to the g-commutation equation.

We have found a solution to this equation in Theorem 1.6.1, also for ¢ = —1. However, in

order to apply Theorem 1.6.1 to the bi-Poisson process with ¢ = —1, one needs to exercise

more caution, as it is a process with a finite state space.

More specifically, for QH (n, 6;0,0; —1), the element P, € Q given in [24, Definition 1.3,
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8.1. BI-POISSON PROCESS QH (,6;0,0; —1)

whose nth coordinate corresponds to E(X}'| X = x), n € Ny, is not uniquely determined
(as described in [24, Section 1.1]). To illustrate this difficulty, let us consider the following

example:

Example 8.1.1. Let (X;)i=0 be a bi-Poisson process with ¢ = —1. Using (8.2), tedious

calculations show
E(X}|X,) = X2 +n(t—s) X2+ (t—s)[n(nt +0) + 1] X, + (t — s)(nt + 6).
However, in view of (8.1) we also have
E(XJ|X,) = X2 — (0 +ns) X2+ (t — s+ (0 +nt)*) Xy + (6 + nt).
Hence, the third coordinate of Py can be represented as the polynomial (in x)
2>+t —s)z? + (t — s)[n(nt + 0) + 1z + (t — s)(nt +0)

and also as

2’ — (0 +ns)z” + (t— s+ (0 +nt)*) z + (0 + nt). (8.5)

Howewver, if we impose the additional condition that the nth coordinate of Ps; is a monic
polynomial of degree n, then the first three polynomials of Ps; are uniquely determined.

They are then given by:
1, x, 22+t —s)z +t—s. (8.6)

The uniqueness arises from the fact that for any two given points only one parabola of the

form % + bz + ¢ passes through them.

The problem with uniqueness implies that the family {Ps;}o<s<¢ may not satisfy the
condition stated in [24, Definition 1.3], which serves as a foundation for the subsequent

arguments in the cited paper.

Example 8.1.2 (Continuation of Example 8.1.1). Suppose that the first four polynomials
for Psy are given by (8.6) and (8.5). Then the third coordinate of Py Py, is equal to (recall
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(2.1)):

2® — (0 +ns)z” + (t — s+ (0 +nt)*) x + t(0 + nt)

—O+nt)(@® +nt—s)z+t—s)+ (u—1t+ 0 +nu)?) z+ul+ nu).

Upon simplification, we observe that the coefficient of x? is equal to —(s + t)n — 20. By
appropriately choosing values for s and t, we can ensure that this coefficient is not equal
to 0 + ns. Consequently, the third coordinate of Py ,P,,, does not coincide with the third

coordinate of Py, for all0 < s <t <.

Despite the aforementioned problems, we will now find a specific family {P;}o<s<t
that satisfies the conditions stated in Definition 1.3 of [24], even in the case ¢ = —1.
In [19], the authors introduced orthogonal polynomials {Q,(y; z,t,s)}°_,, t > s = 0, that
are orthogonal with respect to the transition probabilities of the bi-Poisson process when
g € (—1,1). Since this process has an infinite state space, the corresponding elements
P,: are uniquely determined. Specifically, the nth coordinate of P,;, which represents
E(X]'|Xs = z), can be expressed as a monic polynomial in the variable x in a unique
manner.

The conditional expectations E(X}'| X = x) can be obtained recursively from the monic

polynomials {Q,(y; x,t, s)}r_, due to:
E(Qn(Xt;xvtvs”XS :x) :Oa TLEINO)

which follows from the fact that {Q,(y;z,t,s)} ", are orthogonal with respect to the

conditional distributions.

o0
n=0

The polynomials {Q,(y; z,t, s) do depend on the parameter q. Moreover, the co-
efficients appearing in the three-step recurrence for {Q,(y;z,t,s)}"_, have a limit as ¢
approaches —1, see [19, (7) and (8)]. This allows us to define a new family of polynomials
{Qn(y: x,t, )12, such that

~

Qn(y;x,t,s) = lim Qn(y;z,t,5).

g——17
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It turns out that the polynomials {@n(y; x,t,$)}e_, satisfy the following three-step recur-

rence:

~

Qilyiw,t,5) =0, Qoly;z,t,s) =1,
yQuly2.t.) =Quan (i, tos) + (<1 + G20 + 1)) Qulyia.t,5)

+ =5 (- s)(1 + USC)@nq(y; z,t,s),  neN,.

It was proved in [19, Section 3.2] that {Q,(y;z,t ,8) 1, are orthogonal with respect to
the transition probabilities of QH (), d;0,0; —1), see (8.2). Furthermore, we can construct
the corresponding ISS’t from {@n(y, z,t,s)}r, in the same way as we obtained Py, from
{Quly; 2,1, 5) 1.

It is important to note that ISS,t obtained this way coincides in fact with the limit of Py,
as ¢ approaches —1. This follows from the fact that the coordinates of P, are ob-

tained from the polynomials {Q,(y;x,t,s)}*_,, and all coefficients in each polynomial

n=0
Qn(y; z,t,s) depend continuously on g.

Since the family {P;;}o<s<: satisfies the conditions from the Definition 1.3 in [24],
and the multiplication given in (2.1) is a continuous operation, {|337t}0<s<t also satisfies
the same conditions.

Consequently, all arguments presented in [24] remain valid without any modification for
qg = —1. In particular, the g-commutation equation holds in this case. Therefore, we
can apply the method described in Chapter 2 to derive a formula for the infinitesimal

generator when ¢ = —1. Thus, according to Theorems 1.6.1 and 3.3.1, for any function

g € C*(R) (see the comment below Theorem 3.3.1), we have the following result:

14nz _n B
9" () when 0 + nt = 2z,

(Aig)(z) = 12+m o / 87
0+nt—2x ( 0+nt—2z -9 (l'>> when 6 + nt # 21.

Indeed, the three-step recurrence for polynomials {W (y;z,t)}o, takes the form:

Wo(y; z,t) = 1,

~

Wi (y;z,t) = (y +(=1)"x — (0 + Wt)lf(;w Woly; 2,t), n=0.

Hence, according to [22, Theorem A.1|, the polynomials {I/wan(-;x,t)};‘fzo are orthogonal
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with respect to the Dirac measure 0pi—, concentrated at ¢ + nt — x since
Wl(y;x,t) =y+x—0—nt.

It is easy to verify that the formula for the infinitesimal generator given in (8.7) coincides
with the formulas derived in the previous subsection. However, it is worth noting that
a range of admissible functions obtained through the algebraic approach is a proper subset

of that obtained through direct calculations.

8.2. Quadratic harnesses QH(n,0;0,7;—1)

Recall that we proceed under assumptions (1.9), which reduce to

0<or <1 (8.8)
when ¢ = —1. Recall the notation introduced in (7.2) and assume that
1+ xix2 = 0. (8.9)

For such y; and x», there exists a quadratic harness QH(x1, x2;0,0; —1) denoted by

(Yi)i=0- It is noteworthy that (Y;);=0 is also a quadratic harness with modified parameters:

Lemma 8.2.1. The stochastic process (Yi)i=o is QH(n, 0;0,7;—1).

Proof. Since (Y;)i=0 is QH (X1, x2;0,0; —1), formulas (1.2) and (1.1) are satisfied. There-
fore, it is sufficient to check that the quadratic harness condition (1.4) holds with (1.7)

and ¢ = —1. Note that for 0 < s <t < u:

(u=t)(utt) _ (u=t)(u(lt+ot)+7+1) (u—t)(t—s)(T—0u?)
(u—s)(u+s) (u—s)(u(l4+0s)+71+s5) (u—s)(u+s)(u(l+os)+1+s)’
(t=s)(t+s) _ (t=s)(t(1+os)+7+s) (u—t)(t—s)(T—0s?)
(u—s)(u+s) (u—s)(u(l+os)+7+s) (u—s)(u+s)(u(l+os)+7+s)’
(u=t)(t=s)Otau—x2) _ _(u=t)(t=s)(qu=0)  (u—t)(t—s)(r—ou?)(x2+x15)
(u—s)(u+s) (u—s)(u(l+os)+7+s) (u—s)(u+s)(u(l+os)+7+s) ’
(u=t)(t=s)(xa—x18) _ _(u=t)(t=5)(6—ns) (u—t)(t—s)(—05*) (x2+x11)
(u—s)(u+s) (u—s)(u(l4+os)+71+s) (u—s)(u+s)(u(l+os)+7+s) ’
(u=t)(t=s) _ _(u—t)(t=s) (u—t)(t—s)(T+osu)
u+s u(l4+os)T+s (u+s)(u(l4+os)+7+s) "
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So (8.3) used with y; and y» instead of  and 6, respectively, implies

2 _ (u—t(ul+ot)+7+t) v 2 | (t—s)(t(1+08)+T+s) -2
E(Yt |Fs’“) _(U7S)(u(1+08)+T+S)}/S + (u—s)(u(l+os)+7+s) YU

(u—t)(t—s)(nu—"0) (u—t)(t—s)(6—ns) (u—t)(t—s)
+ (u—s)(u(l-i-as)-‘r’l’-‘rs)YvS + (u—s)(u(14+0s)+71+s5) Yo + u(l+os)T+s
(u—t)(t—s)(T+osu)
u+s)(u(l+os)+7+s)

1

(u—t)(t—s)(T—ou?) 2
+ (u—s)(u+s)(u(l+os)+7+s) (YS - (XQ + XIS)Y;’)

— el —e) (V2 — (x + xau)Ya):

(u—s)(u+s)(u(l+os)+1+s u

Using (8.1), we observe that the last three terms cancel out. Consequently, we conclude

that (Yi)i=0 is QH(n, 0;0,7;—1). ]

Therefore, all the results discussed in the previous section, with 7 and 6 replaced by
x1 and s, respectively, hold for QH (n, 6;0,7; —1).
Under assumption (8.9), a family of elements {FN’SJ}KSQ associated with QH (n, 0;0,7;—1)
satisfies Definition 1.3 in [24]. This is because we have only modified the parameters
of the bi-Poisson process, preserving all the relationships discussed in Section 8.1. There-
fore, the solution of the g-commutation equation actually corresponds to the pre-generator
of the quadratic harness with ¢ = —1.
So now we will use Theorem 1.6.1 and Theorem 3.3.1 to verify that we have the same
formula for the infinitesimal generator as the one in (8.7). Under assumption (8.8),

T ot? a —
E=01—or, =Tl gLt 3 g Lot

l—ot

see (1.21) and (1.22). Moreover, ¢, given in (1.24), is equal to —1. Because [2n]; = 0 and

[n]2 = [n]g n € No, we get the following three-step recurrence:

I//[\/JYO(ya xz, t) = 17

Wa(gs,t) = (y+ (~1)"2 = & + &0 + &) =520 ) Walyse,t), n>0,

It is easy to check that n&y + &(1 + &) = x2 + x1t. According to [22, Theorem A.1],
this implies that the polynomials {Wn(-;x,t)}n>0 are orthogonal with respect to the
Dirac measure d,,1y,1—,. Lherefore, we obtain formula (8.7) with n and € replaced by

X1 and xs, respectively.

105



8.3. Existence of QH(n,0;0,7;—1) when 1 + x1x2 <0

In the previous section, we constructed a quadratic harness assuming (8.9). The ques-
tion arises whether the quadratic harnesses exists for the remaining range of parameters,
that is, when 1 + y1x2 < 0.

We consider only quadratic harnesses with all moments finite. As a consequence, mar-
tingale polynomials exist, although they may not be uniquely determined, as explained
in Section 8.1.2. In particular, there is ambiguity when ¢ = —1 because the coefficient
at p,—1 vanishes for n = 2 in the three-step recurrence, as shown in (1.12) and (1.13).
Therefore, if the corresponding quadratic harness exists, the distribution of X; must be

supported on the zeros of the polynomial po(+;¢) (given in (1.11)):

Tit =3 (Xlt +x2 VAL + (at + X2)2) :

Then, by (1.6),

s—0t

Var(X,| X, = 2,4) = =5 (14+nzs g +oxl )

1tos t(1+ 3n(x2 £ [x2l) + Sx2(x2 + x2l)) -

We will show that the above limiting expression leads to a contradiction when 1+ x;y2 < 0.

If xo = 0, then the expression taken with plus signs is equal to

t1+nx2 + ox3) = t(1 + x1x2) < 0.

Since the conditional variance is nonnegative almost surely, this implies that

P(Xs = x5 +) = 0 for all small s, and hence P(X; = z5_) = 1. As a result,

EX;=2,_ = —2s < 0.

X18+X2+\/45+(X15+X2)2

The last inequality holds since 4/4s + (x15 + Xx2)% > /(x15 + x2)2 = —(x15 + Xx2). This
contradicts (1.2).

Similarly, the case of xo < 0 leads to an analogous contradiction.

Consequently, we can conclude that there exist no quadratic harnesses QH (n,0;0,7; —1)

when 1 + y1x2 < 0.
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Chapter 9

Classical quadratic harnesses

In this chapter, we focus on classical quadratic harnesses QH (n,0;0,7;1 — 2/oT).
The term ’classical’ is justified by the fact that when o7 = 0, quadratic harnesses become
some well-known Lévy processes such as the Wiener or the standardized Poisson process
(see [21, Section 4.2]).

The first part of this chapter discusses the results of Theorems 1.6.1 and 3.3.2 when
g = 1 —2y/or. In the second part, we derive an alternative representation of the
pre-generator that does not rely on orthogonal polynomials. Furthermore, we compare
the obtained formula with some results known from the literature, specifically for Lévy

processes and bi-Poisson processes.

9.1. Infinitesimal generator through the orthogonal polynomials

We continue to work under assumptions (1.5) and (1.9), which reduce to
o, 7 =0, or <1 (9.1)

when ¢ = 1 — 24/o7. Moreover, after simplification, we obtain

T4++/ot)? o oT — ~
§:2(]‘_ VO-T)’ 50:%7 51: 1tj_\<;7 52: 1?&7(%—7 q:]-7

see (1.21), (1.22) and (1.24). Consequently, [n]; = n for all n € IN,.
When ot?> = 7 = 0, then & = 0 and consequently 'En = (0 for all n € Ng. Then according
to Theorem A.1 in [22], the polynomials {Wn(, x, 1)}, are orthogonal with respect to

the Dirac measure concentrated at x + 6 — nt, which is a root of I/Iw/l(-; z,t). As a result,
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we obtain:

1+nz+oz? rn W =
(A f)(x) = > /1) hen 6 =1, (9.2)

(14 7 + 0a?) LELMSOS WO yhen g £ 1,

for any polynomial (Theorem 1.6.1) and any bounded function with a bounded and con-
tinuous second derivative (Theorem 3.3.2). In particular, when 0 = 7 =0 =n = 0, we

get the infinitesimal generator of the Wiener process, compare with Example 1.6.3.

As the next example shows the domain of A; for the standardized Poisson process is larger

than the one appearing in Theorem 3.3.2.

Example 9.1.1. Recall that the standardized Poisson process (Y;)i=o0 defined
i Example 1.2.3 is QH <0, %\; 0, 0; 1), A>0.

We will derive the infinitesimal generator of (Y)i=o directly from the definition. In order
to do so, note that fort =0 and h > 0 we have

_ Negn—Ne—Ah
§/t+h - Yt + oY

and the summands on the right-hand side are independent since (Ny)i=o is a classical
Poisson process with parameter X > 0. Consequently, for any bounded function f on R,

we have

E(f(Yesn)[Ye = 2) — f(2)

(B ) g

YT IS
k=0

N——
|
-
—
8
N—
N———
=¥

S
o

>

>

where in the last step we used the fact that Ny, — Ny has a Poisson distribution with

parameter \h. Assume that f is differentiable (thus continuous). Then we have

and
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Furthermore,

<2 - ~Ahe—1-h _ 0.
iﬁg'f( z)|- lim e P

lim
h—07t

=

5% (7 (130 +2) - ) Bt

As a result, the limit of the right-hand side of (1.15) exists. Hence f € D(A]) fort =0

and

(A7 1)) = A (Fla+ &) = f@)) = VAL (@),

The above formula coincides with the one from (9.2), however, in the above reasoning,
there was no need to assume that f has a bounded second derivative.

A similar result can be obtained for A, .

If ot2> > 0 or 7 > 0, then & > 0 and & > 0. Consequently, since the polyno-
mials {Wn(-;x,t)};‘fzo are orthogonal with respect to some probability measure when
1 +nx +ox? > 0 (and the corresponding moment functional is non-negative definite), the

following conditions hold:

N
H L+ k(2)(03k(z) +1)] = 0, NeN,

compare with identity (A.5).
In particular, as ¢t and x approach zero, the above formula for N = 1 implies that the
classical quadratic harnesses QH (n,0;0,7;1 — 24/o7) with all moments finite can exist
only if

14+ x1x2 =0, (9.3)

where x; and y» are given in (7.2) (recall the analogous reasoning from page 90).

The construction of a classical quadratic harness QH (1, 8; o, 7; 1—24/07) was done only for
some parameters in [16], but not for the full admissible range of parameters given in (9.3).
Nevertheless, a three-step recurrence for martingale polynomials under assumption (9.3)

is known ([18, Proposition 4.4]).

9.2. Infinitesimal generator through the cotangent function

In this section, we aim to derive an alternative, algebraic representation of

the infinitesimal generator of QH (n,0;0,7;1 — 24/oT) that differs from the one obtained
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in Theorem 1.6.1. To achieve this, let us recall the algebra Q along with its subspaces
Q;, i € Ny, and the elements E, F and D; defined in (2.2), (2.3) and (2.6), respectively.
Recall that in the algebraic approach, the main objective is to find a solution of the
g-commutation equation (2.11) that satisfies the initial condition (2.12). In the following,
we will present this solution when ¢ = 1 — 24/07 without making use of orthogonal
polynomials.

For this purpose, let us consider the following function of a complex variable z € C:

f(z):= \/gcot <\/§> : (9.4)

which is well-defined in a neighborhood U of zero. Note that we do not need to be precise
about the branch of the square root function in (9.4), since there are only even powers of
z in the Taylor expansion of z cot(z). Moreover, f is analytic in U.

Furthermore, we can check, after some calculations, that for all z € U:
F)(f(2) = 1) +22f'(2) + 532 = 0, (9.5)
21'(2)(f(z) = 1) + 3f'(2) + 22f"(2) + % =0. (9.6)
In order to apply f to elements of Q, we introduce the notation:

F(G) =) dG
k=0

where {d}72, are the coefficients of the Taylor expansion of f around zero; it is important
to observe that this expression gives a well-defined element of Q when G € Q is such that
in each coordinate the series has only a finite number of summands.

Moreover, using L’Hépital’s rule, we can find the first coefficient dy:
dy = lim f(z) = lim cos® ( %) =1. (9.7)

z—0 z—0

Let us define a function of g, analytic in the neighbourhood U:

e}
g(z) = —f(zgfl = 2 dpz*! (9.8)
k=1
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9.2. INFINITESIMAL GENERATOR THROUGH THE COTANGENT FUNCTION

(so g is the zeroth Jackson derivative of f).

[ee}

As before, we will apply g to elements G € Q for which > d,G*! consists of only finite
k=1

sums in each coordinate.

The following element G € Q will play an important role in solving the g-commutation

equation when ¢ = 1 — 24/07:
G:= €f(C) + 5FD1 + ")/Dl (99)

with C := D;N, N := «a(2FD; — E) + D, for some real coefficients «, 3, 4, v and ¢ to be
specified later. Here and in the remainder of this section, f denotes the function given
by (9.4). The element G is well-defined since C is a sum of certain elements from Q; and

Q,, and consequently, the series f(C) consists of finite sums coordinate-wise.
Lemma 9.2.1. Element G € Q satisfies the following identities:
GN = eNf(C) + 2acf'(C)C + dFC + 1C,
FG — GF = eNf(C)g(C) + 2asf'(C)Cy(C) + acFD; + $3cDy — 6F — HE,
where g is given by (9.8).

Proof. We begin with the proof of the first identity. Note that (5.3) when g = 1 gives
C= DlN = (O{(2D1F - E) + ﬁDl)Dl = NDl + 2OZD1.

Multiplying both sides by N from the right, we get that CN = NC + 2aC. Using a simple
induction, we obtain:

C*N = NC* 4 2akCF, k € INo. (9.10)

Consequently, by the definition of G we finally get

[oe}
GN = eNf(C) + 202 Y kdyC* + 6FD;N + 7D N,

k=0

which immediately implies the first identity:.

In order to prove the second identity, observe that formula (5.3) for ¢ = 1 gives

NF — FN = 2aF(D;F — FD,) + 3(D;F — FD,) = 20F + E.
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Multiplying by D; from the left yields CF—(FD;+E)N = 2«a(FD;+E)+/D;. Consequently,
CF — FC = 2N + 3aE
and using induction together with (9.10), we can show:
C*F — FCF = 2kNC*! 4 ak(2k + 1)C*, ke N
Hence, by (5.3), we finally obtain

a0 a0 o0
GF — FG = 2eN Y kdiCF ' + 2ae > k(k — 1)diC* ' + 3ae ) kdC*' + 0F + E
k=1

k=1 = k=1

= 2eNf'(C) + 2aeCf"(C) + 3aef'(C) + 6F + 1E.

From (9.5), we get f(2)g(z)+2f'(z)+3 = 0, which in terms of elements of Q is understood
as f(C)g(C) + 2f'(C) + sE = 0. This, together with formula (9.6) and the definition of
N, proves the second identity. O

Now we specify the parameters «, 3, v, d, and ¢ appearing in (9.9). We do so to
establish a close relationship between the element G and the pre-generator of quadratic

harness QH (n,0;0,7;q) when g = 1 — 24/o7. Namely, we set the parameters as follows:

_ Oot+nT++/oT(0+nt) 8= 2(ﬁ+\/c7t)27’y2 . 6-nt
T avenr e 0 T T T (9.11)

0 :=ot++JoT, g:=1—4/oT.

Under assumptions (9.1), = 0 and € > 0 for ¢ = 0. Moreover, it is easy to check that

the following identities are satisfied:

€ — 0 = q—ot, T+ (1 — @)t + ot? = (V7 + Vot)?, 8% = (/T ++/ot)?,
V30 = (VT Vot 290 +ag® = (VT + Vot)

(9.12)

Now we are in a position to prove the following formula for the pre-generator of

QH(n,0;0,7;1 —2y/oT):

Theorem 9.2.2. Let us consider G as given in (9.9) with parameters (9.11), where

0 < o7 < 1. Then the pre-generator of QH(n,0;0,7;1 — 24/oT) at time t > 0 can
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be represented as

H; = (E + nF + oF*)D,G ™. (9.13)

Proof. We will show that (E + nF + oF?)D;G™! satisfies (2.11) with (2.12). So, by the
uniqueness of the solution of the g-commutation equation, we will get the desired result.
Firstly, note that G is a sum of certain elements from Qj, k € INg. The summand of G
coming from Q is equal to eE+JFDy, see (9.7). Since ¢ > 0 and § > 0, the nth coordinate
of eE + 0FD; is a monomial of degree n with nonzero leading coefficients equal to € 4+ dn.
Hence G is invertible due to Remark 4.1.5 and (E + nF + oF?)D;G™! is well-defined.

To see that (2.12) is satisfied, observe first that Lemma 4.1.3 yields that
G(E — FD) = (¢E + 6FD;)(E — FD) = ¢(E — FD), see (2.9). Consequently, in view of
(2.9)

(E 4+ nF + oF*)D,G'(E -~ FD) = %(E +nF + oF*)D,(E — FD) = 0.

As a result, the initial condition (2.12) is satisfied.

In order to prove (2.11), it is enough to show

(1 + Ut)DlGilF — (q — Ut)FDlel =E + (0 — nt)Dlel

+ (14 (1 = @)t + ot*)D,G*(E + nF + oF*)D,G 1,

since multiplying the latter from the left by E + nF + oF? gives (2.11) with H; given by
(9.13).

Since G is invertible, we equivalently need to show
DG ! ((1+0t)FG—(7+(1—q)t+0t*)(E+nF+0F*)D,) = (¢—ot)FD;+G+(60—nt)D;. (9.14)

Due to the definition (9.8) of g, we see that f(C) = Cg(C) + E, and thus the right-hand

side of the above formula is equal to

eE+ (0 + ¢ — ot)FDy + eCyq(C) + (0 — nt + v)Dy
=cE+ (0 +q—ot)FDy + (0 —nt + ~)Dy

+eD;G 7 (eNf(C) + 202 f/(C)C + 6FC + C)g(C),
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where in the last equality we used the first formula from Lemma 9.2.1. Next the second

formula from the same lemma yields that the right-hand side of (9.14) is equal to

e(E—DyF) + (6§ + g — ot)FDy + (0 — nt + ~)Dy

+eD,G 1 (FG — acFD; — +8eDy + 6F f(C) + v f(C)),

where we have used f(C) = Cg(C) + E again. The definition of C and identity (5.3) imply

(0 +q— ot —e)FDy + (0 — nt + 2v)Dy

+ DG ((¢ + §)FG — ae®FD; — 18e°Dy — 6F(0FD; + D1) — v(6FD; + 7Dy)).

Recalling how the parameters «, (3, 7, d, and ¢ were specified in (9.12), we get that
the right-hand side of (9.14) simplifies to:

DG (1 + 0t)FG — (7 + (1 — q)t + ot*)(E + nF + oF*)Dy)

and this is exactly the left-hand side of (9.14), which is what we were supposed to show.
m

While the pre-generator H; has a simple form, finding a similarly simple formula for the
generator A; seems to be challenging. We have only succeeded for o = § = 0, as it will
be shown later. Recall, however, that the algebraic representation (2.13) remains valid in
general, without the restriction o = 6 = 0.

We will now show that Theorem 9.2.2 is consistent with the results known previously

from the literature.

Example 9.2.3 (Infinitesimal generators of Lévy processes QH (0,0;0,7;1)). In this case,
we get a = 0 = 0, which implies that Hy is in fact a function of Dy only. Specifically,

~

H; = h(Dy), (9.15)

where %(z) = is well-defined in some neighborhood of zero.

22—z

Taking the principal square root function in the definition (9.4) of f, we can write

f(=2(+* = 7)2%) = iza/7? — T cot(izn/72 — 7),
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where 1 is the imaginary unit. The fact that we have the same z on both sides of the above

equation and that we do not need to care for its argument, follows from the identity:
—zcot(—z) = zcot(z),

which holds in a neighborhood of zero.
Moreover, h is an analytic function in its domain. Indeed, let a := 0% — 47. Then the

well-known relation between coth and cot implies

2z
240z

z h 2 _ 2
lNz(z) _ iz when 7y T ) Jacoth(Jar/D 10 when a > 0,

when % # T

when a = 0,

z
iz\/’yQ -7 cot(iZ\/'y2 —T)+vz

2
\ +v—acot(v/—az/2)+6 when a < 0

and the functions appearing on the right-hand side are analytic in the neighborhood of
zero.

In [24, Section 5] it was shown that if H; is of the form (9.15), then A, can be represented
as

~

A; = H(Dy), (9.16)

where H is the antiderivative of h such that H(0) = 0.

The antiderivative H takes the following forms:

a) if 02 = 47 = 0 (Wiener process):
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d) if 0* > 47 > 0 (Pascal type process):

H(z) = —1In <%(1 + \%)exp(—effz) +

e) if 0> < 41 (Meizner type process).
H(z) = £ 2 — LIn(cos(v/—az/2) + \/L_—a sin(v/—az/2)),

If o =n =0, then QH(0,60;0,7;1) is a Lévy process, compare with [21, Remark 3.2].
Hence, the infinitesimal generator of such a process is well-known and does not depend

on t. Moreover, it turns out that the infinitesimal generator can be written as
Ay = A =9(—idy), (9.17)

see [5, Section 8f, where 1 is a cumulant generating function of the considered Lévy
process, more details can be found in [39, Theorem 2]. The right-hand side of the above

expression should be understood as
ee]
k
P
k=1

o0
where Y cx(i2)* is a Taylor expansion of ¥ at 0 and 0¥ is an operator taking the kth

dem’vat%é with respect to x.

Formulas for 1 for quadratic harnesses QH(0,60;0,7;1) are well-known in the literature
and can be obtained by taking the logarithm of the expressions in [21, Theorem 4.2] and
setting t = 1 (since the distribution of X; is considered in [5]). These steps lead to the

conclusion that

Furthermore, using the definition (2.1) of multiplication, it can be easily verified that the
nth coordinate of (9.16) is indeed equal to Ay(z™) as given in (9.17).

Example 9.2.4 (Infinitesimal generators for bi-Poisson processes QH (7, 6;0,0;1)). In
this case, we have:

G = f(~29”D}) +1D1.
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If v =0, then G = f(0) = E. Consequently,
H, = (E + nF)D,. (9.18)
If v # 0, the relations for the hyperbolic functions imply
h(z) := f(—22%) + 2 = iz cot(iz) + z = z(icot(iz) + 1) = z(coth(z) + 1).

Note that the first equality is derived using the same arqguments as discussed in the previous

example. Set

7 ez _ 1 _ l—exp(—22)
h(Z) " qh(z) ~ q(coth(z)+1) 2y ’

Consequently,
H; = (E+nF)h(yD1) = 5 (E+nF)(E —exp(=2yD1)) = 52 (E +nF)(exp((6 —nt)Dy) — E),

where the last step holds due to the formula for «y, see (9.11). The above formula is
consistent with the result derived in [24, Section 5.2]. Furthermore, the limit of the above

expression, when 7y approaches zero, exists and coincides with (9.18).
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Chapter 10

Discussion of the results

The algebraic approach presented in [24| provided a unified framework for an analy-
sis of quadratic harnesses, regardless of their distributions. The key assumption in this
approach is the finiteness of all moments, which is also held throughout this thesis. Im-
portantly, this assumption is not restrictive and often leads to the unique determination
of the process. Another assumption made in [24] is the requirement of infinite state space.
However, as shown in Chapter 8, this assumption is unnecessary.

By considering associated polynomials instead of transition probabilities, the algebraic
approach has allowed a systematization and simplification of previously used concepts,
eliminating the need to refer to their complicated formulas, such as those for the martin-
gale polynomials. Moreover, this approach helps to emphasize the role of the parameters
of quadratic harnesses. Specifically, the influence of these parameters can be observed
in the g-commutation equation, where, for example, setting parameters ¢ = 7 = 0 greatly
simplifies the equation under consideration.

In a general case, finding a solution to the g-commutation equation without re-
ferring to the special family of orthogonal polynomials associated with the infinitesi-
mal generator can be challenging. However, the formulas obtained in Theorem 1.6.1
and Theorem 3.3.1 are straightforward to apply if the form of the moment functional
or the orthogonality measure is known. In many cases, the polynomials {ﬁlfn(7 z,t)}r, are
related to Askey-Wilson polynomials, for which orthogonality measures are well-described
in the literature (see Section 5 in [44]). Additionally, the orthogonality measure for
{WN/n(, x,t)}°_, simplifies to a Dirac measure in many interesting cases, as shown
in Chapter 8 and Chapter 9.

It should also be emphasized that the results obtained in the thesis do not cover



the entire domain of the infinitesimal generator. As shown in Chapters 8 and 9, starting
directly from the definitions (1.15) and (1.16), we can derive formulas for the infinitesimal
generator that apply to a larger domain than the one stated in Theorem 3.3.1. It is
well-known that a domain of the infinitesimal generator, not just a formula itself, plays
a crucial role in the analysis of a stochastic process. For example, the formulas for the
infinitesimal generators of the Wiener process and the absolute value of the Wiener process
are the same, although the domains are different.

Moreover, supports of quadratic harnesses are generally time-dependent, which has an
impact on the domains of their infinitesimal generators. For instance, in the case of the
standard Poisson process, it is not necessary to assume differentiability of domain’s ele-
ments, while for the standardized Poisson process, which belongs to the family of quadratic
harnesses, differentiability is required (see Example 9.1.1).

Results from the literature concerning infinitesimal generators cannot be directly ap-
plied to quadratic harnesses. Not only do we have to deal with inhomogeneous Markov
processes, but the main problem is the time dependency of the supports. In many in-
teresting cases of quadratic harnesses, supp(X;) is bounded for each ¢ = 0, but it is not
uniformly bounded in ¢, i.e. there is no M > 0 such that supp(X;) < [-M, M] for all
t = 0. Therefore, in such a situation, it is not clear how to follow the classical scheme
where the domain of the infinitesimal generator is a subset of some Banach space, and one
can consider not only pointwise convergence but also convergence in the norm. Finding
a suitable Banach space in which convergence for polynomials would imply appropriate
convergence for the corresponding class of functions, seems to be a challenging task.

Despite these challenges, we have obtained some novel results which were previously
unknown in the literature. We have derived the explicit and easily applicable formula for
the infinitesimal generator of quadratic harnesses for a large range of their parameters.
Generally, obtaining such a formula directly from the definition seems to be a very hard
task due to a complicated description of transition probabilities. Additionally, we have
identified a relatively wide class of functions that belong to the domain of the infinitesimal

generator.
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Appendix A

Orthogonal polynomials

This brief summary of some basic facts on orthogonal polynomials is based on [27].
Throughout this appendix, we consider polynomials with complex coefficients in one real

variable z.

Definition A.0.1. Let {u,}, be a sequence of complex numbers and L be a

complex-valued linear operator on the vector space of all polynomials, satisfying
L[Iﬁ] = Hn; n = 0.

Then L is called the moment functional determined by the moment sequence {p,}5.

By linearity of £, for any polynomial f(x) = > cpz® we have
k=0

L[f(z)] = 2 Ch M- (A1)

Definition A.0.2. A sequence {P,(x)}¥_, is called an orthogonal polynomial sequence

with respect to a moment functional £ if two conditions hold:

1. P,(z) is a polynomial of degree n,
2. LIP,(x)Pr(x)] = Xnl{m=ny,
where x,, # 0 for all n > 0.

In the case we are interested in, the second condition of the above definition is too strong.

Hence, we have to introduce a less restrictive definition.

Definition A.0.3. A sequence {P,(x)}%_, is called a weak orthogonal polynomial sequence

with respect to a moment functional £ if two conditions hold:
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1. P,(z) is a polynomial of degree n,

2. LIP,(z)Py(2x)] = 0if n # m.

Thus, in the case of weak orthogonal polynomial sequence, we do not ensure that
L[P?(x)] # 0 for all n > 0.
Note that if { P, (x)}"_, is a weak orthogonal polynomial sequence with respect to £, then
{an, P, () }r., is also a weak orthogonal polynomial sequence with respect to the same £
for any arbitrary complex sequence {a,}>_, such that a, # 0 for all n = 0. Therefore,
without loss of generality, we will be considering monic polynomial sequences, i.e. such
that each element of the sequence has a leading coefficient equal to 1.
Since we are going to work with weak orthogonal polynomial sequences, we need to
slightly modify Favard’s theorem, which plays an essential role in the theory of orthogonal

polynomials (the original statement can be found in [27, Theorem 4.4]).

Theorem A.0.1 (Favard’s theorem). Let {a,}*_, and {b,}*_; be arbitrary sequences of
complex numbers and let { P, (x)}X_, satisfy the tree step recurrence given by:
P_y(x) =0, Py(x) =1,

(A.2)
2P, (z) = Poi1(2) + anPo(x) + by Py (), n = 0.

Then there exists a unique moment functional L such that { P,(x)}¥_, is a weak orthogonal

polynomial sequence with respect to L.

Note that by in the above three-step recurrence is unnecessary and can be chosen arbi-
trarily. However, to determine £ uniquely we have to impose an additional condition on
the value of g = L[1].

Now, we will briefly sketch the proof of the modified Favard’s theorem.

Proof of Theorem A.0.1. In view of (A.2), each P,(z) is a monic polynomial of degree n,

n = 0. Fix pg € C. We define a moment functional £ by the following conditions

L[1] =po,  L[P.(x)]=0, nel. (A.3)

Hence L is uniquely determined up to the choice of pg. Moreover, by linearity, it is

well-defined for any polynomial. Furthermore, £ applied to the second equality in (A.2)
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gives

L[zP,(z)] = L[Pyi1(2)] + an L[ Po(x)] + b L[ Py—1(x)] = 0, n

A\
N

Successive application of £ to the second line in (A.2) multiplied by = leads to
L[2*P,(2)] = L[z P,41(2)] + anL[xP,(2)] + b L[z P,_1(x)] =0 for n > 3.
Consequently, repeating this procedure leads to
L[zFP,(x)] =0 for 0 < k < n,

and

L[z"P,(z)] = b, L[z" ' P,_1(7)] for n > 1.

Since {P,(z)}*_, are monic polynomials, by linearity of £ we conclude that
L[Py(x)P,(x)] =0 for k # n,

and

L[P2(x)] = boL[P2_,(z)]  forn = 0.

Iterating the last equality in the proof shows that for all n € IN
LIP?(x)] = po-by- ... by, (A4)

where o = L[1]. Hence, {P,(x)}¥_, is an orthogonal polynomial sequence with respect
to £ under the additional assumptions that py # 0 and b, # 0 for all n > 0.

Moreover, the construction of £ given in (A.3) implies that £ is a zero operator if only
o = 0. This is not an interesting case, so we always assume that py # 0 and further
considerations are carried out under this additional assumption. Moreover, we say that
L is normalized if py = 1.

In probabilistic settings, nonnegative definite moment functionals play a significant role.

Let us introduce this concept formally:
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Definition A.0.4. We say that a moment functional £ is nonnegative definite if for any

nonnegative polynomial f > 0, i.e. f(z) = 0 for all z € R, we have
L[f(x)] = 0.

If £ is nonnegative definite, then it imposes some additional assumptions on coefficients
{an}r, and {b,}r_, appearing in three-step recurrence (A.2). Indeed, (A.4) says then

that b; -...-b, =0 for all n > 1. Moreover,
0< £[I2k] = U2k, ke ]NQ.

The linearity of £ implies

2% rop
O<£[(:r;+1)2k] ZZ(Z>/~L%Z, k € No.

=0

We can show inductively that jigp4; is real for k € INy. Consequently, {u}i, is a real
sequence. As a result, according to (A.1), L[ f(x)] is also real for any polynomial f with

real coefficients. The three-step recurrence (A.2) multiplied by P,(z) yields
L[z P(x)] = a,L[P(z)], n € WNy.

Let us start with Py. Since L[PZ(z))] = L[1] = po > 0, then

Ia

z]
(1]

ag = =K eR
Ho

|

and (A.2) implies that P, has real coefficients. Hence L[zP?(z)] € R. Moreover, if
L[PE(x)] = poby > 0 (thus by > 0), then we can show that a; is real.

Continuing in this manner, we see that the whole procedure works until b = 0 for some
N > 0. Then we cannot infer anything about the remaining values of the sequence
{an}>_ . However, in this situation, all polynomials P,, n > N, are divisible by Py.

For the convenience of reference, we summarize the above considerations in the following

remark:
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Remark A.0.2. If £ is nonnegative definite and jg > 0, then for alln =0

by-... b, =0 (A.5)
and ay 1s real for every 0 < k < inf{n > 1 : by -... b, = 0}. In particular, when
by... b, >0 for alln =0, then {a,}’_, is a real sequence.

Under the conditions from Remark A.0.2 with py = 1, [22, Theorem A.1l.| says that £
can be expressed as an integral with respect to some probability measure, i.e. there exists

a probability measure v such that for any polynomial f

LU )] = | faptao) (A6)

In particular, all moments of v exist and are given by {ux}i_,- Moreover, if
N :=inf{n > 1:b;-...-b, = 0} < oo, then v is a discrete measure supported on
real distinct zeros of the polynomial Py. Hence, the form of the orthogonality measure

v is not affected by the polynomials P,, n = N, and thus by the sequences {a,}>_5 and

{bn}on-

Terminology

If a moment functional £ is in the form (A.6), then we say that v is an orthogonal-
ity measure for polynomials {P, (z)}r_, or {P,(x)}r_, are orthogonal with respect to the
measure v.

Throughout the thesis, we slightly abuse the definition of orthogonality by which we
always mean the weak orthogonality given in Definition A.0.3. In particular, it will be
of no interest to us whether £[P2(z)] > 0 for all n € IN. We only require that £ is

normalized, i.e. L[1] = 1.
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Appendix B

List of Symbols

Here we list the symbols most frequently used in Chapters 1-6.

N set of natural numbers, i.e. N ={1,2,3,,...}

INg set of natural numbers including zero, i.e. Ng = {0,1,2,3,,...}
R set of real numbers

C set of complex numbers

B.1. Quadratic harness

QH(n,0;0,7;q) quadratic harness with parameters n, 6, o, 7 and ¢, p. 17

A} weak right infinitesimal generator, p. 23

Ay weak left infinitesimal generator, p. 23

A, weak infinitesimal generator, p. 24

{Wn(, x, )}, family of orthogonal polynomials associated with infinitesimal

generator, p. 27
(W (5 2,t) e, auxiliary family of orthogonal polynomials, p. 37

Lot n6.0rq normalized moment functional for {V[an(, z, 1)}, p. 27
Vatn.0,0:mq probabilistic orthogonality measure for {Wn(-;x,t) o, D 27
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B.2. Algebra O

B.2.1. Objects of main interest

Q algebra @) of infinite sequences of polynomials, p. 31

Ok, k=0,1,2,... subspaces of Q, p. 55

A element representing infinitesimal generator in Q, p. 34

H, pre-generator, p. 34

H; p. 38

Mt p- 40

S(z,1), S element corresponding to the Jacobi matrix for {W,,(z; z,t)}>_,, p.
38

W(z,t), W element corresponding to the polynomials {W,,(x; z,t)}°_,, p. 38

B.2.2. Basic elements

B p. 73

D, F shifting elements, p. 32
D, g-derivative, p. 32

E identity, p. 31

Ky, Ko, Kg p- 70, p. 71

Q p. 67

Ty, To, Ty p. 68

4 p- 39

Zy, 2y, Zy, Z3 p. 65

zero element, p. 32

B.2.3. Auxiliary elements

PP P p. 74
ﬁl, E’Q, |53 components of 5, p. 74
Isl, Isg, I53 components of IS, p. 74
P, Py, Ps components of P, p. 74
U p- 74
X, X p. 75
)?2, ;(3 components of )N(, p- 75
Xo, X3 components of X, p. 75
Y p. 74
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B.2. ALGEBRA Q

B.2.4. Operators acting on elements of Q

R p. 38
S p. 58
T p. 60
] commutator, p. 61
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