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Abstract

The dissertation addresses the optimization of the placement of critical functions in net-

work nodes to ensure the resilience of network services. Network services providing users

with data transmission capabilities over the network (e.g., voice, video, e-mail, web, dis-

tributed file system) are vulnerable to various cyber-attacks. The three research studies

propose new methods of protecting network services and increasing their resilience to at-

tacks on availability. All three research areas concern the deployment of critical network

functions in network nodes in a way that increases the network’s resilience to selected

availability attacks.

The first research area concerns the placement of SDN (Software Defined Network)

controllers in a multi-controller design model and the identification of nodes most vulner-

able to attacks. The goal of the network operator is to maximize network survivability,

while the adversary’s goal is to minimize network survivability. The measure of network

survivability is the number of attack-surviving switches, i.e., those for which there is a

path to the attack-surviving controller.

The second research area focuses on placing sensors detecting DDoS attacks (Dis-

tributed Denial of Service) in network nodes. The goal of optimization is to find such

sensor placement that ensures that the largest possible part of the traffic directed to the

set of target nodes (from the set of source nodes) is subject to analysis.

The third research area addresses the simultaneous optimization of routing and place-

ment of traffic processing functions (selection of data centers) while building network

function chains (service chains) that form the network services infrastructure. Selected

functions in the service chain may be protective against attacks (e.g., firewall or intrusion

detection system).

The research uses graph theory, mathematical programming, and game theory. MIP

models (Mixed Linear Programming) and heuristics for large-scale networks were devel-

oped. The algorithms were implemented, and based on computational experiments, their

effectiveness was compared.

Keywords: software defined network, control placement problem, network function

virtualization, distributed denial of service, service function chaining





Streszczenie

Praca dotyczy optymalizacji rozmieszczenia funkcji krytycznych w węzłach sieci dla za-

pewnienia odporności usług sieciowych. Usługi sieciowe (ang. network services) zapew-

niające użytkownikom możliwość przesyłania danych przez sieć (np. głos, wideo, e-mail,

www, rozproszony system plików) są podatne na różnorodne ataki cybernetyczne. Bada-

nia prowadzi się w trzech obszarach proponując nowe metody ochrony usług sieciowych

i zwiększania ich odporności (ang. resilience) na ataki na dostępność. Wszystkie trzy

obszary badawcze dotyczą rozmieszczenia krytycznych funkcji sieciowych (ang. network

function) w węzłach sieci, w sposób zwiększający odporność sieci na wybrane ataki na

dostępność.

Pierwszy obszar badań dotyczy rozlokowania sterowników SDN (ang. Software Defi-

ned Network) w modelu wielu sterowników (ang. multi-controller design) oraz identyfikacji

węzłów najbardziej podatnych na ataki. Celem operatora jest maksymalizacja przeżywal-

ności sieci, podczas gdy celem atakującego jest minimalizacja przeżywalności sieci. Miarą

przeżywalności sieci jest liczba przełączników, które przetrwały atak, czyli takich dla któ-

rych istnieje ścieżka do kontrolera który przetrwał atak.

Drugi obszar badawczy koncentruje się na rozmieszczeniu czujników wykrywających

ataki DDoS (Distributed Denial of Service) w węzłach sieciowych. Celem optymalizacji

jest znalezienie takiego rozmieszczenia czujników, które zapewni analizę jak największej

części ruchu kierowanego do zbioru węzłów docelowych (ze zbioru węzłów źródłowych).

Trzeci obszar badawczy podejmuje jednoczesną optymalizację routingu i rozmieszcze-

nia funkcji przetwarzania ruchu (wybór centrów danych) przy budowie łańcuchów funkcji

sieciowych (ang. service chains) tworzących infrastrukturę usług sieciowych. Wybrane

funkcje w łańcuchu mogą mieć charakter ochrony przed atakami (np. firewall, czy system

wykrywania intruzów (ang. Intrusion Detection System)).

W badaniach wykorzystano teorię grafów, programowanie matematyczne oraz teorię

gier. Opracowano modele programowania liniowego MIP (ang. Mixed Linear Program-

ming) oraz heurystyki dla sieci o dużej skali. Algorytmy zostały zaimplementowane i na

podstawie eksperymentów obliczeniowych porównano ich efektywność.



Słowa kluczowe: sieci sterowane programowo, rozmieszczenie sterowników, wirtuali-

zacja funkcji sieciowych, rozproszony atak na dostępność usługi, rozmieszczenie łańcuchów

funkcji sieciowych
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Chapter 1

Introduction

1.1 Motivation and goal of the research

Network Service Systems are complex telecommunications systems primarily focused on

delivering services that utilize the network’s capability to transport data. These systems

cover a wide range of solutions, from the simplest ones that provide point-to-point delivery

of data (P2P), through more complex systems that offer isolated L2 (e.g., Ethernet) or

L3 (IP) tenant networks based on shared infrastructure (e.g., Virtual Private Routed

Networks (VPRN)), to the most complex, heterogeneous network service systems (such

as Content Delivery Networks (CDN), Software-Defined Wide Area Networks (SD-WAN)

or mobile communication networks) that deliver complete sophisticated service chains.

Although the general principles of designing and implementing network service systems

are known, organizing these systems requires careful planning each time, considering

both technical and environmental conditions, as well as the business goals of the system

operator. A primary requirement is to estimate the type and size of customer demand

and equip the system with the means (resources and algorithms) to satisfy it effectively.

Furthermore, it is critical to ensure the uninterrupted operation of the system in the

face of environmental threats recognized by the operator (failures, random events), as

well as deliberate attacks on the network infrastructure of the system and its processing

functions.

The research presented in this thesis focuses on the planning and optimizing network

service systems. The main goal of the study is to develop models, methods, and tools

that allow for the optimal placement (in network and processing nodes) of functions that

1
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are critical to ensuring efficient and resistant to attacks (and random events) functioning

of these systems. Many attacks lead to the degradation of network services, causing their

limited availability. This work addresses selected attacks on availability and methods

of mitigating the effects of these attacks. The research concentrates on three selected

problems, described below:

The first problem – Robust Controller Placement – considers the state-of-the-art

Software-Defined Networks (SDN). SDN separates the control plane from the data plane

to enable the construction of logically centralized control functions (network controllers)

and efficient traffic management. Conversely, such architecture becomes vulnerable to

new attack vectors, such as attacks on the control plane (control nodes or other nodes

participating in control plane flows). The objective is to position network controllers to

maximize the availability of network services provided by the SDN, w.r.t. the considered

classes of attacks.

The second problem – Traffic Sentinel Placement – refers to the general class of IP

transport networks whose raison d’être is to provide the end-users with access to the

resources (e.g., data, web, processing, and storage services) exposed by the selected set of

network nodes (target nodes). The network service system must secure the target nodes

against DDoS attacks to ensure the uninterrupted availability of end-user resources. For

this purpose, the system is to deploy a (limited) set of traffic sentinels whose task is to

analyze traffic and signal the threat of a DDoS attack as early as possible. The goal of

optimization is to find such sentinel placement that ensures that the largest possible part

of the traffic directed to the target nodes is subject to analysis.

The third problem – Multi-Domain Service Function Chain Placement – concerns

service systems whose task is to dynamically create and provide Service Function Chains

(SFC) that are compliant with user requirements in an environment composed of many

cooperating administrative domains (served by many operators). The research aims to

simultaneously optimize network and computation resources while satisfying SFC require-

ments. Selected functions in the service chain may be protective against attacks (e.g.,

firewall or intrusion detection system).

To solve the above optimization problems, we used graph theory, mathematical pro-

gramming, and game theory. Graph theory naturally models network structures, while

traffic flow is typically represented using linear programming, which seamlessly inte-
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grates with decision variables to determine the optimal placement of critical network

function – such as controllers, sensors, or processing functions. We also applied a game-

theoretic approach to capture the opposing objectives of the network operator and the

attacker. Given the complexity of large-scale networks, heuristic algorithms were de-

veloped to provide near-optimal solutions when exact methods become computationally

infeasible. These heuristics are often supported by MILP solvers, which help refine so-

lutions by leveraging mathematical optimization techniques. The developed algorithms

were implemented and tested through computational experiments, allowing for a thor-

ough comparison of their effectiveness across different network configurations and attack

scenarios.

In the following subsections 1.1.1-1.1.3, we provide a more detailed introduction to

the three selected problems and present an overview of the proposed solutions.

1.1.1 Robust Controller Placement

Software-defined networking (SDN) is a network architecture that separates the control

plane (controllers) from the data plane (switching devices). Deploying a single controller

for the whole network is not scalable (delays, controller capacity, etc.) and not resilient

(single point of failure).

We assume that any network node can host a controller. Following the work (Tomaszewski

et al. [117]), a node can be controlled either by the local controller placed in the same

location or, if the location does not house a controller, a remote controller. In the latter

case, a node (e.g., a switch) communicates via an existing network path with the remote

controller.

Here, we deal with the multi-controller design, where a logically centralized control

plane is deployed by placing multiple controllers at different locations. How many con-

trollers and where in the topology to put them is known as the controller placement

problem (CPP). It is a facility location type of problem known to be NP-hard (Heller et

al. [49]) (Non-deterministic Polynomial-time hard).

In general, the CPP may address various criteria, e.g., delay (Dou et al. [32], Mycek et

al. [84], Santos et al. [110], Wang et al. [123], Li et al. [74], controller capacity (Ibrahim

et al. [54], Rath et al. [106], Yao et al.[131]), dynamics of network and traffic conditions

(Toufga et al. [118], He et al. [48], Bari et al. [11], Dixit et al. [31]), reliability and
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failures (Wang and Chen [126], Santos et al. [108], Tohidi et al. [116], Chaudhary and

Kumar [23], Killi and Rao [69], Perrot and Reynaud [96], Vizaretta et al. [122], Zhang et

al. [135]) and scalability (Lange et al. [72]).

Our focus is the CPP resilient to targeted attacks on nodes (Calle et al. [19][20], Pióro

et al. [100][99], Rueda et al. [107], Santos et al. [109]).

Attacks on SDN nodes can be modeled as a two-player zero-sum game between the

network operator and the attacker (DeVos and Kent [30]). The operator places M con-

trollers, while the attacker selects K nodes to attack (disrupt connectivity), with both

players acting under uncertainty (they do not know each other’s moves).

The network is represented as a graph, where an attack removes nodes, potentially

fragmenting the network. Surviving nodes remain connected to a controller, while non-

surviving nodes lose routing capability. The game-theoretic objective is to optimize payoff,

defined as the number of surviving nodes – the attacker seeks to minimize it, while the

operator aims to maximize it.

Initially, a single strategy (min-max) approach is considered, but if the network re-

covers over time, a mixed-strategy framework is more suitable. In this case, both players

assign probabilities to their choices. The attacker minimizes the maximum average payoff,

while the operator maximizes the minimum average payoff (DeVos and Kent [30]).

This work introduces two novel mathematical models – one from the operator’s and

one from the attacker’s perspective – for optimizing these probability distributions. A

key challenge is the exponential growth of the game matrix, making pre-computation

impractical. The study aims to develop an efficient optimization procedure for large-scale

game scenarios.

1.1.2 Traffic Sentinel Placement

Denial of Service (DoS) attacks are intended to stop legitimate users from accessing a

specific network resource [133]. A DoS attack is an attack on availability, one of the

three dimensions of the well-known CIA security triad - Confidentiality, Integrity, and

Availability. Availability is a guarantee of reliable access to information by authorized

people. In 1999, the Computer Incident Advisory Capability (CIAC) reported the first

Distributed DoS (DDoS) attack incident [27]. In a DDoS attack, the attacker gains control

of a large number of users through a virus and then simultaneously performs a large
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number of requests to a victim server via infected machines. As a result of this large

number of tasks, the victim server is overwhelmed, out of resources, and unable to provide

services to legitimate users.

DDoS attacks are a problem not only on the Internet [104] but also in the context of

a Smart Grid (Wang et al. [124], Cameron et al. [21] and Huseinovic et al. [52]), Cloud

(Bonguet and Bellaiche [17]) and Control Systems (Cetinkaya et al. [22]). According

to [21], availability is more critical than integrity and confidentiality for Smart Grid

environments.

DDoS attacks are difficult to defend against because of the large number of machines

that can be controlled by botnets and participate in an attack. In consequence, an attack

may be launched from many directions. A single bot (compromised machine) sends a

small amount of traffic, which looks legitimate, but the total traffic at the target from

the whole botnet is very high. This leads to an exhaustion of resources and disruption

to legitimate users (Mirkovic and Reiher [80], Ranjan et al. [105]). Another difficulty is

that the attack pattern may be changed frequently. Typically, only a subset of botnet

nodes conduct an attack at the same time (Belabed et al. [13]). After a certain time, the

botnet commander switches to another subset of nodes that conduct the attack.

As pointed out by Zargar et al. [133], there are basically two types of DDoS flooding

attacks:

i) Disruption of a legitimate user’s connectivity by exhausting bandwidth, router process-

ing capacity, or network resources. These are essentially link-flooding attacks. Within this

group, we have Coremelt attacks (Studer and Perrig [112]), and Crossfire attacks (Kang

et al. [65]). These attacks aim at intermediate network links between attack sources

and targets. Traditional target-based defenses do not work with these types of attacks

(Liaskos and Ioannidis [76], and Gkounis et al. [46]).

ii) Disruption of a legitimate user’s service by exhausting server resources (e.g., CPU,

memory, bandwidth). These are essentially target-flooding attacks conducted at the ap-

plication layer.

This work addresses target-flooding attacks with the assumption that there are multiple

targets.

Some other well-known attacks are: Reflector attacks (Ramanathan et al. [104]) - an

attacker sends a request with a fake address (of a victim) to DNS server, and the server



CHAPTER 1. INTRODUCTION 6

responds to the victim; Spoofed attacks (Armbruster et al. [9]) - an attacker forges the

true origin of packets. Detailed classifications of DDoS attacks are discussed in, e.g.,

Mirkovic and Reiher [80], Douligeris and Mitrokotsa [33], Peng et al. [94], Zargar et al.

[133], Bonguet and Bellaiche [17], and Huseinovic et al. [52].

A detection algorithm for DDoS attacks and the identification of an attack signature

are out of the scope of this research. Various works have been published in the literature

in this field, many of which use Machine Learning (ML) or Artificial Intelligence (AI) tech-

niques. A combination of various ML/AI techniques (e.g., Logistic Regression, Decision

Trees, Random Forest, K-Nearest Neighbors, Support Vector Machines (SVM), Multilayer

Perceptron, Naive Bayes, Ada Boost) is used in Garcia et al. [42], Maksimovic et al. [78]

and Rios et al. [79]. Aljebreen et al. [5] use an ensemble of three Deep Learning (DL)

approaches namely Long Short-Term Memory (LSTM), Bidirectional LSTM, and Deep

Belief Network. Al Dunainawi et al. [4] develop a DL model based on one-dimensional

Convolutional Neural Network (CNN). Almadhor et al. [6] concentrate on Explainable

Artificial Intelligence together with Federated Deep Neural Networks. Saini and Somani

[71] use the Artificial Neural Network and Random Forest. Daya et al. [29] incorporate

graph-based features into ML. Other works focus on general methods of anomaly detec-

tion, including signature-based and profile-based methods. Huang et al. [51] propose a

multi-channel network traffic anomaly detection method combined with multi-scale de-

composition. Hwang et al. [53] present an anomaly traffic detection mechanism, which

consists of a CNN and an unsupervised DL. Zang et al. [132] use the Ant Colony Opti-

mization to construct the baseline profile of the normal traffic behavior. Other related

works are present e.g., Liu et al. [77], Gera and Battula [44], Jiao et al. [59], Zekri et

al. [134], Assis et al. [10], Kallitsis et al. [64], and Afek et al. [3]. Comprehensive sur-

veys of DDoS detection are also available: Jafarian et al. [56] overview anomaly detection

mechanisms in software-defined networks; Khala et al. [67] focus on the defense methods

that adopt artificial intelligence and statistical approaches.

One of the ways to defend against a DDoS attack is to place traffic sentinels (sensors,

in short) in the network that recognize and stop unauthorized demands (e.g., Defrawy et

al. [35], Armbruster et al. [9], Jeong et al. [58], Islam et al. [55] and Fayaz et al. [39])).

However, placing such sensors in every network node would be expensive and inefficient.

We propose a method to solve it efficiently.
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A DDoS attack can be modeled as a flow from multiple sources to a single target

(single commodity flow). Defined are directed graph with a capacity function on edges,

a set of sources (S), and a set of targets (T ). An attacker can conduct an attack on any

vertex t ∈ T . The strength of an attack is given by a value of a maxflowG(S, t), i.e., the

value of the maximum flow from S to t in the network G. In this DDoS defense approach,

sensors are placed in network nodes to recognize and stop unwanted traffic. If a sensor is

placed in a vertex v ∈ V , then all the edges incident to v are assumed to be controlled.

A set D ⊆ V is called a set of sensors. The goal of this defense is to limit maximum

uncontrolled flow towards each t ∈ T . Having a placement D, a maximum uncontrolled

flow is determined and easy to compute. For that purpose, for each t ∈ T max-flow

algorithm (see, for example (Goldberg and Tarjan [47])) can be used for a graph G \ D

(|T | runs of the algorithm). A super vertex ss is added to G, connected with a directed

edge to each s ∈ S. For each run of the algorithm, (t ∈ T ) maximum flow from ss to t is

computed. Finally, maximum uncontrolled flow as maxt∈T maxflowG(ss, t) is computed.

For computational reasons, two variants of the sensor placement problem are given.

First, the PQ problem, where a tolerable amount a ∈ R of uncontrolled flow is set, and a

minimum number of sensors needed to achieve it is required. Second is the PC problem,

where the number of sensors is set, and the question of how much uncontrolled flow we

can reduce with such a number of sensors is asked. The main result of this work is two

mixed integer models describing PQ and PC problems of optimal sensor placement against

DDoS attacks. Moreover, two efficient heuristics (one for each problem) are presented on

a large scale.

1.1.3 Multi-Domain Service Function Chain Placement

With the advent of network function virtualization, software networks are no longer lim-

ited to providing connectivity (i.e., a path with QoS) but also offer computational capabil-

ities (i.e., network functions) along the path. A network service can then be represented

as an Service Function Chain (SFC) composed of a set of Virtual Network Functions

(VNFs) and directional links that connect them (a flow of packets goes through the chain

of VNFs composing the SFC). Selected functions in the chain may be protective against

attacks (e.g., firewall or intrusion detection system). By constructing network services

this way, we can achieve increased attack resistance. The problem of embedding service
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chains onto the substrate network is called SFC embedding.

In the literature, multiple existing works are applied in the single-domain context. Ad-

dis et al. [2] formulate via mathematical programming the VNF Placement and Routing

optimization problem, including compression constraints. Each demand requests a subset

of VNFs; the order of network functions is not required (as opposed to this work). The

formulation minimizes the maximum network link utilization (TE goal) and minimizes

the number of cores (CPU) used by the instantiated VNFs. The two competing goals are

prioritized. In Wion et al. [127], the SFC routing problem is formulated as the Integer

Linear Program (ILP) model. The goal is to minimize the service function cost (propor-

tional to the requests’ bandwidth) and network link cost (static, proportional to the used

bandwidth). Each demand requests a subset of VNFs, and the order of network functions

is required (as in this work). The work compares centralized and decentralized compu-

tation of SFC paths. However, the bitrate of each demand flow doesn’t change along a

VNF chain. Peng and Di [95] maximize the compute resource utilization efficiency by

jointly optimizing the VNF deployment, power, and spectrum resource allocation. Yang

et al. [130] address the risk of network attacks and allocate SFC based on honeypots

and backup technology to reduce the resource cost of protecting air traffic information

networks while enhancing network security. They deploy SFC VNFs close to the short-

est path between the source and destination endpoints, aiming to reduce SFC latency

and save bandwidth. Murray et al. [83] presents a VNF placement and routing algo-

rithm based on a column generation method that iterates between generating improved

paths and optimizing VNF placement based on the generated paths. They optimize

throughput, latency, and availability in a multi-layer radio access network (RAN). Ko

et al. [70] assume a network of service nodes, where each service node is exposing SFs

by means of network function virtualization (NFV). They propose an integer non-linear

model that considers link latency and compute/storage resources (e.g., CPU, storage,

and memory capacity). The goal is to optimize latency. For example, the chain for the

latency-sensitive service, such as multimedia streaming and voice over IP (VoIP), has a

tight latency requirement. In contrast, the chain for the file download service has a loose

latency requirement. Popokh et al. [103] address efficient resource allocation for VNF

placement while minimizing the communications latencies between VMs that are part of

the VNF deployment.
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A related problem to the SFC is virtual network embedding. Embedding virtual

networks in a substrate network (SN) is the main resource allocation challenge in network

virtualization. It is usually referred to as the Virtual Network Embedding problem (VNE)

(Herrera et al. [45], Belbekkouche et al. [14]). VNE concentrates on the allocation of

virtual resources both in nodes (mapping to substrate nodes and their compute resources)

and links (mapping to substrate network resources - links/paths) (Botero et al. [18]).

Computing optimal VNE is an NP-hard optimization problem (Herrera et al. [45], Fischer

et al. [40]). Even in the case when we map only virtual links (without information about

node resources, e.g., VNFs, CPUs, etc.) to the substrate network links, in the single-

path setting (i.e., the flow of a user in the SN follows a single path), the problem is

NP-complete. Such a problem reduces to the decision version of the m-commodity flow

problem with fixed rates and a single-path setting which is NP-complete (Drwal [34],

Junosza-Szaniawski and Nogalski [61]). This is proved by the reduction from the decision

version of the bin-packing problem. Even et al. [37] show that even the decision version of

the two-commodity integral flow problem is NP-complete by reduction from the boolean

satisfiability problem (SAT) problem.

In literature, multiple existing works are applied in the large-scale network context.

Following Beck and Botero [12], resource allocation algorithms for setting up virtual

network services should scale with the size of the substrate network. A solution should

be found in the range of minutes or seconds – even in larger scenarios [12]. Tastevin et

al. [115] propose the ILP formulation for SFC. Each network node is a PoP (Point of

Presence) and can possibly host VNFs. It also has a limited CPU capacity, thus, multiple

PoPs should be needed to serve all traffic demands. The work minimizes OPEX composed

of two components: i) the VNF deployment cost, which is directly linked to the number

of PoPs hosting VNF instances, and ii) the cost of forwarding traffic, which is linked to

the number of hops in a traffic request path and its bandwidth usage. The longer the

SFC path is, the more it will cost. SFC request is an ordered logical sequence of VNFs.

They also propose a graph-based heuristic that combines graph centrality and multi-stage

graphs. Beck and Botero [12] propose an NFV resource allocation problem (NFV-RA),

that is divided into two problem stages: 1) service chain composition, to find VNF-

FGs (VNF Forwarding Graph, a directed acyclic graph representing the request) to be

embedded in the substrate network and 2) service chain embedding (VNF-FG embedding
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in the substrate network). They propose a heuristic method to solve the composition of

VNF chains and their embedding into the substrate network, in one coordinated step.

Obadia et al. [88] present ILP formulation of SFC placement problem. Since the problem

is NP-complete, they provide a heuristic based on game theory and implemented in a

best response algorithm. They assume different NFV operating costs: a) VNF license

cost (operating cost) (some VNF can have a license cost that depends on whether the

VNF is running or not) b) energy cost (operating cost) of having a server with the VNF

software running in idle mode. c) processing cost, a piece-wise linear function of the load,

d) link cost. This work addresses the SFC problem on a large scale by proposing efficient

heuristic for large network instances. However, our formulation is different from that of

the above-cited works.

In a multi-domain network, NFV may be deployed and hosted by different domains.

These latter may belong to the same (or other) authority and correspond to different

network technologies or segments (access, backhaul, core). In this work, we deal with

SFC embedding in a multi-domain (multi-administrative) environment and compose E2E

multi-domain SFC services based on available national network and compute resources

(slices, VNFs). In particular, we consider the case of federated military coalition networks.

Although the SFC embedding problem is largely investigated in the literature, only a few

works address it in a sliced collaborative multi-administrative network federation. We

provide an exact ILP model, which is different from previous works (Addis et al. [2],

Wion et al. [127]). We use a different goal function (a combination of slice deployment

cost and link utility minimization). We use a (de)compression VNF and SFC ordering.

Each topology link can represent a domain-level slice. In addition, since the problem is

NP-hard (Addad et al. [1]), we provide an efficient heuristic for a large scale.

1.2 Contribution

The original contributions of the dissertation consist of the following elaborations:

• Models and algorithm of the control placement against attacks on nodes. The algo-

rithm is based on column generation and iterates to find an optimal set of placements

of controllers and attacks (dual problem) together with probability functions. To our

knowledge, this novel research is the first work on optimal mixed-strategy control
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placement. Game theory is used to find these optimal mixed strategies for operator

and attacker (dual problem).

• Models and algorithms for the placement of detection sensors to counter DDoS

attacks. To our knowledge, only a few existing studies focus on the placement of

detection sensors to defend against DDoS attacks, and our algorithms tackle this

problem from a different perspective.

• Models and algorithms of the service function chain placement in multi-domain.

The novel optimization model is one of the first to address service function chain

embedding in a sliced multi-administrative network federation. Additionally, to

show the future research directions on SFC embedding, we provide novel optimiza-

tion algorithms to solve a simplified problem (only network resources, no compute

resources) based on relaxation and rounding. The heuristics are iterative; we set

the best path (demand) embedding in each iteration and continue until all demands

are set.

1.3 Thesis of the dissertation

The proposed optimization framework provides an efficient modeling means for optimizing

critical function placement to ensure resilient network services.

1.4 Layout

The following three chapters present the results of our studies.

• Chapter 2 presents the control placement against attacks on nodes.

This chapter is based on the following publications:

Michał Pióro, Mariusz Mycek, Artur Tomaszewski, Konstanty Junosza-Szaniawski and

Dariusz Nogalski, “Finding optimal mixed strategies in a matrix game between the

attacker and the network operator”, RNDM, 2023 - [101].

Konstanty Junosza-Szaniawski and Dariusz Nogalski, “Game-theoretic approach to at-

tack planning and controller placement in software defined networks”, ICMCIS, 2023 -

[62].
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• Chapter 3 addresses the sensor placement against DDoS attacks

This chapter is based on the following publications:

Konstanty Junosza-Szaniawski, Dariusz Nogalski and Paweł

Rzążewski, “Exact and Approximation Algorithms for Sensor Placement Against DDoS

Attacks”, AMCS, 32.1 (2022) - [63].

Konstanty Junosza-Szaniawski, Dariusz Nogalski and Agnieszka

Wójcik, “Exact and Approximation Algorithms for Sensor Placement Against DDoS At-

tacks”, FedCSIS WCO, 2020 - [60].

• Chapter 4 focuses on the service function chain placement in multi-domain.

This chapter is based on the following publications:

Dariusz Nogalski, Dallal Belabed, Alexandre Triollet, Konstanty Junosza-Szaniawski,

Slim Abdellatif, Pascal Berthou, Stanislas Pedebearn, Adam Dudko, “Critical function

placement based on service chains in multi-administrative federated networks”, JCOMSS,

21.1 (2025) - [85].

Dariusz Nogalski, Dallal Belabed, Alexandre Triollet, Konstanty Junosza-Szaniawski,

Slim Abdellatif, Pascal Berthou, Stanislas Pedebearn, Adam Dudko, “Federated SFC

Placement in Sliced Collaborative Multi-administrative Multi-Domain Networks”, Soft-

COM, 2024 - [86].

Konstanty Junosza-Szaniawski, Dariusz Nogalski, “Exact and approximation algo-

rithms for joint routing and flow rate optimization”, FedCSIS WCO, 2019 - [61].

All the above chapters have a similar structure: introduction to the problem (state

of the art, motivation, contribution), problem description, model description, algorithm

description, computational results, and finally conclusions and future works.



Chapter 2

Robust Controller Placement

2.1 Introduction

2.1.1 CPP against targeted attacks on nodes

Existing Control Placement Problem (CPP) studies (Calle et al. [20], Santos et al. [109])

distinguish two network states: the regular state - network with all nodes operational and

delay requirements satisfied; and the failure state - one or more nodes are shut down, as

a consequence of targeted attacks. In the latter state, the operator will not achieve the

same level of availability as in the regular state. For example, in a failure state, he can

sacrifice delay requirements but may still try to preserve node survivability (e.g., each

switch has a connection to a surviving controller, most likely a different one than the one

assigned for regular state (Santos et al. [109])). Depending on the topology and the size

of an attack, preserving survivability may not be guaranteed, and the operator may only

try to maximize it. The work (Calle et al. [20]) proposes the efficient placement of backup

controllers for failure states.

As stated by Rath et al. [106], in SDN, the controllers can run either on virtual or

physical machines. Placing controllers can be made possible by dynamically adding or

removing controllers as needed, i.e., adding a controller by invoking a new Virtual Machine

(VM) and removing a controller by shutting down the VM.

The dual to CPP problem is the attack planning problem. The problem is related

to the Critical Node Detection (CND) problem, which aims to identify a set of optimal

nodes (the critical nodes) on a given network that, if removed, minimize or restrict a given

13
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metric of network connectivity (Faramondi et al. [38], Calle et al. [20]). Attack planning

may be based on local, node-related, topological centrality measures (e.g., a node degree)

or global measures (Calle et al. [20]). The problem of finding a critical attack for a

pairwise connectivity measure was found NP-hard (Santos et al. [110]).

Attacks on SDN can be conducted via various means, e.g., fiber cuts, power outages,

jamming, viruses and worms, configuration errors, and Distributed Denial of Service at-

tack (DDoS) on SDN controller (Chapter 3, based on Szaniawski, Nogalski, Rzazewski

[63]). In addition, as reported by Scott and Hayward [111], the control plane in SDN is

exposed to various kinds of potentially malicious attacks.

Our focus is the CPP resilient to targeted attacks on nodes (Calle et al. [19][20], Pióro

et al. [100][99], Rueda et al. [107], Santos et al. [109]).

Pióro et al. [99] introduce a set of probabilistic network availability measures and for-

mulate an optimization model that determines the potentially most dangerous attacks the

attacker might launch. They also formulate a counter-part optimization model that al-

lows the network operator to derive the optimal placement of controllers, which maximizes

availability of services with respect to a given set of network attacks.

Tomaszewski et al. [117] consider two complementary optimization problems. The

first of them consists in finding a placement of a given number of controllers that maxi-

mizes the number of nodes that survive the worst case attack from a given list of attacks

(max-min). The complementary problem, in turn, is to find an attack targeted at a given

number of locations that minimizes the number of surviving nodes for any placement from

a given list of controller placements (min-max).

2.1.2 Our proposal

Our placement approach (the operator’s point of view) offers to protect the network

against mixed-attack strategies (Szaniawski and Nogalski [62], Pióro et al. [101]).

Attacks against the SDN nodes can be viewed as a two-player game between the

attacker and the network operator. The network operator chooses a set of nodes (for

example an M -element set) where the controllers are placed while the attacker chooses

a set (for example a K-element set) of nodes to attack. We assume that the attacker

is unaware of where the controllers are actually placed and the operator is unaware of

which nodes will be attacked. The network is modeled with a graph and the attack is
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modeled by the set of nodes that are removed from the graph. The resulting graph may

be disconnected and in general, not all of its components contain a controller. The nodes

of a component containing a controller are called surviving nodes. All the nodes in a

component without a controller are non-surviving nodes because they lose the capability

of traffic routing.

We can model this situation with a zero-sum matrix game (DeVos and Kent [30])

where the payoff is the number of surviving nodes. The attacker strives to minimize his

payoff whatever placement of M controllers is actually applied. The network operator,

in turn, strives to maximize his payoff regardless of which K-node attack occurs. Such a

min-max strategy corresponds to the pure (single) strategy in game theory.

However, if we assume that as a result of the attack, the network will fail only tem-

porarily, and after some time it will return to its normal operation, then the next round

of the game will start. For such a scenario, the so-called mixed strategy (DeVos and Kent

[30]) is more appropriate. In such a strategy, each player assigns a probability to each

possible move (by move we mean the choice of an attack or a controllers’ placement), and

in subsequent rounds, he draws his move according to its probability.

The attacker chooses the probability distribution of his attacks so as to minimize the

maximum average payoff (over all possible placements), where the average payoff for a

given placement is the sum (over all attacks) of the attacks’ payoffs for the given place-

ment, weighted by the attacks’ probabilities. The operator, in turn, uses the probability

distribution of his controllers’ placements which maximizes the minimum average payoff

(over all possible attacks), where the average payoff for a given attack is the sum (over all

placements) of the placements payoffs for the given attack, weighted by the placements’

probabilities.

In this chapter we introduce two novel mathematical models for optimizing the proba-

bility distributions of the mixed strategy. First model, P[S, A], from the operator’s point

of view, finds optimal probability distribution q∗, which maximizes average survivability

of the network regardless of an attack a ∈ A. Second model, A[A, S], from the attacker’s

point of view, finds optimal probability distribution p∗, which minimizes average surviv-

ability of the network regardless of a controllers’ placement s ∈ S. We denote S as the

set of (allowable) controllers’ placements, and A as the set of attacks targeted on network

nodes. In compact formulation of the optimization procedure, the game matrix is fixed
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and a parameter to the problem. Each element of the game matrix expresses the num-

ber of surviving nodes for a given placement and a given attack V = [V (s, a)]a∈A
s∈S . Such

approach however may be problematic for large networks, since it requires to generate

payoff matrix of the size
(

V
M

)
×

(
V
K

)
, where V is the number of network vertices (nodes),

M number of vervices of a single controllers’ placement, K number of vertices of a single

attack.

Another novelty of the work is a column generation procedure that optimizes the

considered distributions and can be applied to games with large game matrices. The

procedure is based on two linear programming master problems (one for each player -

above P[S, A] and A[A, S]) and two corresponding integer programming pricing problems

(CP[A, p∗] and NA[S, q∗]). The efficiency of the proposed procedure is illustrated with a

numerical study.

2.2 Problem description

2.2.1 Notation

Below we describe the notation (summarized in Table 2.1) used throughout the chapter.

The considered network is represented by an undirected graph G = (V , E), with the set

of nodes V = {1, 2, . . . , V } and the set of links E ⊆ {{u, v} ⊆ V : u ̸= v} interconnecting

the nodes. For each e ∈ E , α(e), β(e) ∈ V denote the end nodes of link e.

The set of (allowable) controllers’ placements will be denoted by S. Each placement

s ∈ S is characterized by the set V(s), in which the controllers are actually placed. A

typical example of such a set S is the set of all M -node placements, i.e., the set of all

placements s with |V(s)| = M ; such a set will be denoted by S(M).

We consider a set A of attacks targeted on network nodes. Hence, each attack a ∈ A

is characterized by the set V(a) of attacked node locations, which defines the set C(a)

of (non-empty) connected components of graph G(a) resulting from attack a. For each

component, c ∈ C(a), V(c) will denote the set of its nodes. A typical example of such a

set A is the set of all K-node attacks, i.e., the set of all attacks a with |V(a)| = K, for a

given integer parameter K; such a set will be denoted by A(K).

When a node belongs to a component in C(a) that contains at least one controller, it

is called a surviving node. All other nodes will not survive the attack because they are
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either directly attacked (i.e., belong to V(a)) or have no connection (via a path in the

network graph) to any of the controllers that are not directly attacked.

For a given controllers’ placement s ∈ S and a given attack a ∈ A, we define V(s, a)

– the set of nodes surviving attack a when controllers’ placement s is deployed and

V (s, a) := |V(s, a)| – the number of nodes surviving attack a when controllers’ place-

ment s is deployed. The quantity V (s, a) will be used as the resilience measure in the

considerations of this chapter.

Table 2.1: Summary of general notation
V , E set of nodes and links (V := |V|, E := |E|)

G = (V , E) network graph

α(e), β(e) end nodes of link e ∈ E

S set of allowable controllers’ placements

S(M) set of all placements composed of M controllers

V(s) set of controllers locations in placement s ∈ S (V (s) := |V(s)|)

A set of expected attacks

A(K) set of all k-node attacks

V(a) set of nodes affected by attack a ∈ A (V (a) := |V(a)|)

G(a) graph surviving attack a, G − V(a)

C(a) set of components of G(a) for a ∈ A

V(c) set of nodes of component c ∈ C(a) (V (c) := |V(c)|)

V(s, a) set of nodes that survive attack a ∈ A when placement s ∈ S is

assumed (V (s, a) := |V(s, a)|)

V = [V (s, a)]a∈A
s∈S payoff matrix

2.2.2 Game description

Consider the two-player zero-sum matrix game, where the move of the network operator

is to choose the controllers’ placement s ∈ S, the move of the attacker is to choose the

attack a ∈ A, and both players are unaware of the opponent’s choice. The payoff of the

game, denoted by V (s, a), is equal to the number of nodes surviving attack a for place-

ment s. Hence V = [V (s, a)]a∈A
s∈S is the matrix of the game, hereinafter referred to as the

payoff matrix (or outcome matrix). Clearly, the operator seeks to maximize the number
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of surviving nodes while the attacker seeks to minimize it.

Min-max and max-min strategy. One strategy the players can adopt is the so-called

min-max (for the attacker) and max-min (for the defender). The attacker selects a single

attack a ∈ A that minimizes the number of surviving nodes over all possible placements,

assuming the operator simultaneously maximizes the availability measure. This is done

by first selecting the maximum value for each column of V, and then choosing the column

(denoted as a∗) with the minimum value

Vmin−max = mina∈A maxs∈S V (s, a) = maxs∈S V (s, a∗). (2.1)

Choosing such an attack a∗ will be called attacker’s MM decision. Note that there can

be multiple attacks a∗ satisfying equality (2.1), so the decision is generally not unique.

The operator selects a single placement s ∈ S that maximizes the number of surviv-

ing nodes over all possible attacks, assuming the attacker simultaneously minimizes the

availability measure. This is done by first selecting the minimum value for each row of V,

and then choosing the row (denoted as s∗) with the maximum value

Vmax−min = maxs∈S mina∈A V (s, a) = mina∈A V (s∗, a). (2.2)

Choosing such a placement s∗ will be called defender’s MM decision; the decision defined

this way may not be unique.

These strategies, considered in Tomaszewski et al. [117] and Junosza-Szaniawski and

Nogalski [62], will be called MM strategy in short.

Given the way the outcomes of V identifying the values of Vmax−min and Vmin−max are

found, it is not difficult to show that the inequality

Vmax−min ≤ Vmin−max (2.3)

always holds, and Vmax−min = Vmin−max if, and only if, the outcome matrix contains at

least one saddle point, i.e., an element (s∗, a∗) whose outcome V (s∗, a∗) is the smallest in

its row (i.e., in row s∗) and the largest in its column (i.e., in column a∗). It is also easy

to show that V (s∗, a∗) = Vmax−min = Vmin−max and thus the decision for the defender and

attacker is to choose s∗ and a∗, respectively. Moreover, when the outcome matrix con-

tains multiple saddle points (which is possible), then their respective outcomes are equal

to each other. Therefore, choosing any placement s∗ and any attack a∗ are MM decisions,
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provided that s∗ and a∗ appear in some, perhaps different, saddle points (Figure 2.1 and

Table 2.2 in Section 2.2.3).

Optimal mixed strategy. Here, we study another strategy, namely the optimal mixed

strategy, where each player assigns to each of his possible moves (choices of a particular

attack or controllers’ placement, respectively) the probability with which the move is

actually selected. Then, each player optimizes the expected payoff of the game, again

assuming the worst, from his point of view, move of his opponent.

Thus, the attacker needs to find the probability distribution p = (pa : a ∈ A)

according to which the attacks are launched (where p ∈ P(A) := {p : ∑
a∈A pa = 1; pa ≥

0, a ∈ A}), which minimizes the expected number of surviving nodes for the worst (from

attacker’s viewpoint) placements in S. More precisely, assuming a placement s ∈ S as

the move of the operator, the expected payoff of the attacker is

V (s, A, p) = ∑
a∈A V (s, a) · pa, p ∈ P(A). (2.4)

and the probability distribution in question minimizes the value of V (s, A, p) over all

s ∈ S. Hence, this minimized value, denoted by V ∗(A, S), is expressed as follows

V ∗(A, S) = minp∈P(A) maxs∈S V (s, A, p) (2.5)

and distribution p∗ ∈ P(A) is optimal if, and only if,

max s∈S V (s, A, p∗) = min p∈P(A) max s∈S V (s, A, p). (2.6)

Note that since V ∗(A, S) is the minimum expected game outcome over all p ∈ P(A),

the inequality V ∗(A, S) ≤ Vmin−max holds. This is because Vmin−max = max s∈S V (s, A, p)

for any one-point distribution p such that pa∗ = 1 for some attack a∗ ∈ A for which the

minimum in formula (2.1) is reached and pa = 0 for a ∈ A \ {a∗}.

Analogously, the operator finds a probability distribution q = (qs : s ∈ S) according

to which the controllers are placed (where q ∈ Q(S) := {q : ∑
s∈S qs = 1; qs ≥ 0, s ∈ S}),

which maximizes the expected number of surviving nodes for the worst (from operator’s

viewpoint) attacks in A. Thus, for a given attack a ∈ A, the expected payoff of the

operator is equal to

V (S, q, a) = ∑
s∈S V (s, a) · qs, q ∈ Q(S), (2.7)
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and the probability distribution in question maximizes the value V (S, q, a) over all a ∈ A.

Hence, the maximized value, denoted by V ∗(S, A), is expressed as follows:

V ∗(S, A) = maxq∈Q(S) mina∈A V (S, q, a). (2.8)

and distribution q∗ ∈ Q(S) is optimal if, and only if,

min a∈A V (S, q∗, a) = max q∈Q(S) min a∈A V (S, q, a). (2.9)

Note that since V ∗(S, A) is the maximum expected game outcome over all q ∈ Q(S),

the inequality V ∗(S, A) ≥ Vmax−min holds. This is because Vmax−min = min a∈A V (S, q, a)

for any one-point distribution q such that qs∗ = 1 for some placement s∗ ∈ S for which

the maximum in formula (2.2) is reached and qs = 0 for s ∈ S \ {s∗}.

As shown in Section 2.3, the values of the two optimized expected outcomes are always

equal, i.e., V ∗(S, A) = V ∗(A, S). Therefore, taking this equality and previous inequalities

into account, we obtain the following relationship:

Vmax−min ≤ V ∗(S, A) = V ∗(A, S) ≤ Vmin−max. (2.10)

Thus, if the outcome matrix has a saddle point, then the values of all four quantities in

(2.10) are equal to each other. Otherwise, the above formula shows that using mixed

strategies increases the payoffs of both players compared to the payoffs obtained with

MM strategies; in fact this is the main reason for considering mixed strategies in gen-

eral. Moreover, the numerical results presented in Section 2.5 show that the gain under

consideration can be substantial.

Mathematical programming formulations optimizing the probability distributions in

P(A) and Q(S), i.e., the payoffs V ∗(A, S) and V ∗(S, A), will be discussed in Section 2.3.

2.2.3 Examples

In this section we will illustrate the notions introduced above for three simple network

topologies. Below, we will identify controllers placements and attacks with the sets of

controller locations and the sets of attacked nodes, respectively.

Small network with saddle points. Consider a network in Figure 2.1, 2-node con-

troller placements and 1-element attacks. In this case the outcome matrix contains four
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saddle points V (s, a) for placements s with V(s) ∈
{
{1, 3}, {1, 4}, {3, 5}, {4, 5}

}
and at-

tack a with V(a) = {2} (Table 2.2). Hence, as discussed in the Section 2.2.2 there are

four defender’s MM deterministic decisions and one attacker’s MM deterministic decision.

1

2

3

4 5

Figure 2.1: 5-node network with saddle point

{1} {2} {3} {4} {5} min

{1, 2} 4 1 4 4 4 1

{1, 3} 4 3 4 4 4 3

{1, 4} 4 3 4 4 4 3

{1, 5} 4 2 4 4 4 2

{2, 3} 4 2 4 4 4 2

{2, 4} 4 2 4 4 4 2

{2, 5} 4 1 4 4 4 1

{3, 4} 4 2 4 4 4 2

{3, 5} 4 3 4 4 4 3

{4, 5} 4 3 4 4 4 3

max 4 3 4 4 4
Attacker’s min-max = 3

Defender’s max-min = 3

Table 2.2: Game matrix for 5-node network with saddle point (bold).

Line network. Consider a line network consisting of V nodes (V = {1, 2, . . . , V }),

assuming 1-node controllers placements (S(1)) and 1-node attacks (A(1)). In this case,

there is no max-min strategy solution that would give the defender a positive payoff,

simply because any location chosen for the controller can be attacked directly (hence

Vmax−min = 0). On the other hand, the attacker can secure the payoff Vmin−max = ⌊V
2 ⌋ by

choosing the middle node for odd V (node 3 in Figure 2.2) and one of the two middle

nodes for even V (node 3 or node 4 in Figure 2.3).

1 2 3 4 5

Figure 2.2: 5-node line network
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{1} {2} {3} {4} {5} min q∗
s V (s, p∗)

{1} 0 1 2 3 4 0 0.5 2

{2} 4 0 2 3 4 0 0 2

{3} 4 3 0 3 4 0 0 0

{4} 4 3 2 0 4 0 0 2

{5} 4 3 2 1 0 0 0.5 2

max 4 3 2 3 4
Attacker’s min-max = 2

Defender’s max-min = 0
-

Attacker’s V ∗(A, S) = 2

p∗
a 0 0 1 0 0 - - -

V (q∗, a) 2 2 2 2 2 Defender’s V ∗(S, A) = 2 - -

Table 2.3: Game matrix for the 5-node line network, where V (q∗, a) = V (S, q∗, a), and

V (s, p∗) = V (s, A, p∗)

1 2 3 4 5 6

Figure 2.3: 6-node line network

{1} {2} {3} {4} {5} {6} min q∗
s V (s, p∗)

{1} 0 1 2 3 4 5 0 0.5 2.5

{2} 5 0 2 3 4 5 0 0 2.5

{3} 5 4 0 3 4 5 0 0 1.5

{4} 5 4 3 0 4 5 0 0 1.5

{5} 5 4 3 2 0 5 0 0 2.5

{6} 5 4 3 2 1 0 0 0.5 2.5

max 5 4 3 3 4 5
Attacker’s min-max = 3

Defender’s max-min = 0
-

Attacker’s V ∗(A, S) = 2.5

p∗
a 0 0 0.5 0.5 0 0 - - -

V (q∗, a) 2.5 2.5 2.5 2.5 2.5 2.5 Defender’s V ∗(S, A) = 2.5 - -

Table 2.4: Game matrix for the 6-node line network, where V (q∗, a) = V (S, q∗, a), and

V (s, p∗) = V (s, A, p∗)

An optimal solution for the mixed strategy is obtained as follows. To place a controller,

the defender can choose the leftmost node with probability 1
2 and the rightmost node with

the same probability (no matter whether V is odd or even). Assuming an attack on node

i, the expected value of the payoff is i−1
2 + V −i

2 = V −1
2 , which is independent of the choice

of i ∈ V (Table 2.3-2.4). In effect, the expected payoff for the defender increases to

V ∗(S(1), A(1)) = V −1
2 . The attacker, in turn, can improve his strategy only in the case

of even V by choosing one of the two middle nodes with probability 1
2 ; this decreases

the game outcome (and thus increases the attacker’s payoff) to V ∗(A(1), S(1)) = V −1
2

(Table 2.3-2.4).
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To sum up, the solution obtained by optimizing the mixed strategy allows for a dra-

matic improvement of the defender’s payoff, while improvement of the attacker’s outcome

is marginal (Table 2.3-2.4).

Cycle network. Now we move on to another example – a cycle network consisting of

V nodes (V = {1, 2, . . . , V }), this time assuming 2-node placements (S(2)) and 2-node

attacks (A(2)). In this case we have Vmax−min = 0 (as before) and Vmin−max = V − 2.

However, finding optimal solutions for the mixed strategy is more tricky. To illustrate

this is point, let us consider a cycle network with V = 4n for some n ≥ 4.

It turns out that the safe probabilistic decisions for the defender is to place the con-

trollers in a randomly selected set of 2 nodes from the following set: S =
{
{i, V

2 + i} :

i = 1, 2, . . . , V
2

}
with probability q(s) = 2

V
for s ∈ S, and q(s) = 0 for s ∈ S(2) \ S. The

attacker, in turn, should attack a randomly selected set of 2 nodes from the following

set: A =
{
{i, (V

4 + i + 1)(mod V )} : i = 1, 2, . . . , V
}

with probability p(a) = 1
V

, a ∈ A,

and p(a) = 0, a ∈ A(2) \ A. For the so defined optimal solutions the payoff equal

V ∗(A(2)) = V ∗(S(2)) = 7
8V − 2.

116
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Figure 2.4: A 16-node cycle network and the selected placements

We will prove that the solution given above is optimal for both the defender and the

attacker. To do this, we will show that the solution under consideration guarantees that

the payoffs V (S, q, a) ≥ 7
8V − 2 for any attack a ∈ A(2), and V (A, p, s) ≤ 7

8V − 2 for

any placement s ∈ S(2), and that the payoff 7
8V − 2 (the same for the defender and the

attacker) is reached by this solution.



CHAPTER 2. ROBUST CONTROLLER PLACEMENT 24

116
15

14

13

12

11
10 9 8

7

6

5

4

3
2

Figure 2.5: A 16-node cycle network and the selected attacks

First, we will show that V (S, q, a) ≥ 7
8V − 2 for all a ∈ A(2). Due to the symmetry of

set S, without loss of generality, we can limit our considerations to attacks a(j) ∈ A(2),

where V(a(j)) = {1, j}, j = 2, 3, . . . , V
2 + 1, and consider two cases.

1. j = V
2 +1: For placement {1, V

2 +1}, the payoff is equal 0 and this happens with

probability 2
V

. For the remaining placements in S (i.e., for placements {i, V
2 +i}, i =

2, 3, . . . , V
2 ), the payoff is equal to V − 2, and this happens with probability 1 − 2

V
.

Hence, the expected payoff is equal to (V − 2)(1 − 2
V

) = V − 4 + 4
V

, and this value

is greater than 7
8V − 2 for all V ≥ 14.

2. 2 ≤ j ≤ V
2 : For placements {i, V

2 + i}, i = 2, 3, . . . , j − 1, the payoff is equal to

V − 2 and this happens with probability 2(j−2)
V

. For placements {i, V
2 + i} for i = 1

or i = j, j + 1, . . . , V
2 , in turn, the payoff is equal to V − j and this happens with

probability 2( V
2 −j+2)

V
. So the expected payoff is equal to

(V − 2)2(j−2)
V

+ (V − j)2( V
2 −j+2)

V
=

= 2
V

j2 −
(

8
V

+ 1
)

j + V + 8
V

.

The above expression is minimized for j = V
4 + 2 and its minimal value is 7

8V − 2.

Hence, the considered solution guarantees the payoff at least 7
8V − 2 for any attack

a ∈ A(2).

Note that also in this case the solution obtained by optimizing the mixed strategy

allows for a dramatic improvement in the defender’s payoff (from 0 to 7
8V − 2), while
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the improvement in the attacker’s payoff (from V − 2 to 7
8V − 2) becomes asymptotically

equal to 12.5%.

The so defined optimal 2-node placements and 2-node attacks are illustrated in Fig-

ure 2.4 and Figure 2.5, respectively, for V = 16 (i.e., n = 4). In both cases, the two nodes

that make up a given 2-node set V(s), s ∈ S, or V(a), a ∈ A, are joined by a dotted line.

It is easy to see that for any pair (s, a) ∈ S × A, the payoff V (s, a) is either 10 or 14,

and in each column and each row of the outcome matrix V = [V (s, a)]a∈A
s∈S exactly half of

the elements (i.e., 4 elements in each column, and 8 elements in each row) are equal to

10 and the remaining half to 14. And since q(s) = 1
8 for all s ∈ S and p(a) = 1

16 for all

a ∈ A, V (s, A, p) = 1
16(80 + 112) = 12, and for all a ∈ A, V (a, S, q) = 1

8(40 + 56) = 12.

Hence, V ∗(S(2)) = V ∗(A(2)) = 12 = 7
816 − 2, as it should be.

Notice that optimal mixed strategies are not unique. Another example of optimal

mixed strategies are given in the Figure 2.6 and in the table 2.5.
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Figure 2.6: A 16-node cycle network and the selected four placements (doted lines) and

four attacks (dashed lines)

Yet another example of optimal mixed strategies are given in the Figure 2.7 and in

the Table 2.6.
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{3, 8} {4, 15} {7, 12} {11, 16} q∗
s V (s, p∗)

{1, 9} 10 14 14 10 0.25 12

{2, 10} 10 14 14 10 0.25 12

{5, 13} 14 10 10 14 0.25 12

{6, 14} 14 10 10 14 0.25 12

p∗
a 0.25 0.25 0.25 0.25 - Attacker’s V ∗(A, S) = 12

V (q∗, a) 12 12 12 12 Defender’s V ∗(S, A) = 12 -

Table 2.5: Game matrix for the 16-node cycle network, where V (q∗, a) = V (S, q∗, a), and

V (s, p∗) = V (s, A, p∗)
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Figure 2.7: A 16-node cycle network and the selected four placements (doted lines) and

two attacks (dashed lines)

{7, 12} {11, 16} q∗
s V (s, p∗)

{1, 9} 14 10 0.25 12

{2, 10} 14 10 0.25 12

{5, 13} 10 14 0.25 12

{6, 14} 10 14 0.25 12

p∗
a 0.5 0.5 - Attacker’s V ∗(A, S) = 12

V (q∗, a) 12 12 Defender’s V ∗(S, A) = 12 -

Table 2.6: Game matrix for the 16-node cycle network, where V (q∗, a) = V (S, q∗, a), and

V (s, p∗) = V (s, A, p∗)

2.3 Model description

2.3.1 Optimizing p and q with compact formulations

Below we present two effective linear programming formulations that find an optimal prob-

ability distribution in P(A). The problem (abbreviated by A[A, S]) of finding an optimal



CHAPTER 2. ROBUST CONTROLLER PLACEMENT 27

probability distribution p∗, for which maxs∈S V (s, A, p∗) = V ∗(S), can be formulated as

a linear program (LP) in the following way.

A[A, S] : min x (2.12a)

[y] ∑
a∈A pa = 1 (2.12b)

[qs ≥ 0] ∑
a∈A V (s, a)pa ≤ x s ∈ S (2.12c)

x ∈ R; pa ∈ R+ a ∈ A. (2.12d)

The (continuous) variables used in the formulation, i.e., x and p = (pa, a ∈ A) are primal

variables, and the (continuous) variables y and q = (qs, s ∈ S) are dual variables.

Note that in any vertex solution of A[A, S], no more (and usually less) than |S| + 1

of pa variables are positive (because |S| + 1 is the number of constraints in (2.12)).

The problem (abbreviated by P[S, A]) of finding an optimal probability distribution

q∗, for which mina∈A V (S, q∗, a) = V ∗(A), is formulated as the following LP.

P[S, A] : max y (2.13a)

[x] ∑
s∈S qs = 1 (2.13b)

[pa ≥ 0] y ≤ ∑
s∈S V (s, a)qs a ∈ A (2.13c)

y ∈ R; qs ∈ R+ s ∈ S. (2.13d)

This time, for the same reason as before, in any vertex solution of (2.13), no more (and

usually less) than |A| + 1 of qs variables are positive.

Clearly, problem P[S, A] is the dual of A[A, S] and vice versa (this why the primal

variables x, p in A[A, S] become dual variables in P[S, A] and vice versa). This means

that for any p ∈ P(A) and q ∈ Q(S), the following relation holds:

maxs∈S V (s, A, p) ≥ V ∗(S) = x∗ =

= y∗ = V ∗(A) ≥ mina∈A V (S, q, a), (2.14)

where x∗ and y∗ denote the optimal values of the objective functions of A[A, S] and

P[S, A].

The inequalities in (2.14) imply that

• the mixed strategy guaranties the same payoff for both players: V ∗ = V ∗(S) =

V ∗(A)
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• in the MM strategy the operator’s payoff is never greater than the attacker’s payoff:

Vmax−min ≤ Vmin−max

• the common payoff of the mixed-strategy is between Vmax−min and Vmin−max.

As we have seen in Section 2.2.3, the inequality in the second item above can be sharp and

the resulting gap can be significant. We will come back to this observation in Section 2.5.

Thus, the mixed strategy is more efficient than its max-min counterpart when we think

of the game composed of multiple rounds, where the attacker will launch each consecutive

attack using distribution p∗, while the operator will rearrange the controllers’ locations

cyclically or after each attack. This will equalize the average payoffs for both players,

at the same time increasing the payoff of the operator and decreasing the attacker’s

payoff, which is beneficial for both of them. This is illustrated in Section 2.2.3 and in the

numerical study in Section 2.5.

2.3.2 Optimizing p and q through column generation

Having the payoff matrix V = [V (s, a)]a∈A
s∈S in hand, it is easy to determine V ∗(S) (and,

for that matter, V ∗(A)) since computing a single entry V (s, a) of the payoff matrix for

given s ∈ S, a ∈ A is very fast and can be accomplished by applying a depth-first search

algorithm. However, in general calculating the entire payoff matrix V = [V (s, a)]a∈A
s∈S

is challenging since both |S| and |A| can grow exponentially with the number of nodes

V . In the following sections, we show how to alleviate this issue using column generation

when simultaneously solving formulations A[A(K), S(M)] and P[S(M), A(K)] for a given

attack size K and a controllers’ placement size M .

2.3.3 Pricing problem for A[A, S]

Suppose we have solved the linear program A[A, S] for a given set of attacks A ⊂ A(K)

and a given set of placements S ⊂ S(M) to obtain an optimal primal solution x∗, p∗ and

an optimal dual solution y∗, q∗ (x∗ = y∗). (Note that the optimal dual solution is easily

obtained from the optimal primal solution and vice versa.) Then, formulation (2.13) of

the dual P[S, A] implies that if there exists an attack a′ ∈ A(K) \ A for which constraint

(2.13c) is broken, i.e., if y∗ >
∑

s∈S V (s, a′)q∗
s , then adding this attack to A (and inequality

y ≤ ∑
s∈S V (s, a′)qs to formulation (2.13)) will cut off the current optimal solution from
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the domain of P[S, A] and in this way will likely decrease the maximum y∗ of the dual

objective function (2.13a). But since y∗ = x∗, this will decrease the minimum x∗ of the

primal objective function (2.12a), i.e., will improve the payoff of the attacker. If such a′

does not exist, the current solution of A[A, S] solves A[A(K), S].

Finding such an attack a′ is called the pricing problem for A[A, S] (which in this con-

text is called the master problem). Using binary variables av, zs
v for s ∈ S, v ∈ V , can be

formulated as an integer program (IP) as follows.

Attack generation problem NA[S, q∗]:

min ∑
s∈S′ q∗

s · Fs (2.15a)∑
v∈V av = K (2.15b)

zs
v = 1 − av s ∈ S ′, v ∈ V(s) (2.15c)

zs
β(e) ≥ zs

α(e) − aβ(e) e ∈ E , s ∈ S ′ (2.15d)

zs
α(e) ≥ zs

β(e) − aα(e) e ∈ E , s ∈ S ′ (2.15e)

Fs = ∑
v∈V zs

v s ∈ S ′ (2.15f)

av, zs
v, ∈ B s ∈ S ′, v ∈ V , (2.15g)

Fs ∈ Z+ s ∈ S ′, (2.15h)

where S ′ = {s ∈ S : q∗(s) > 0}. In the formulation, av = 1 when node v is attacked,

and zs
v = 1 means that node v is surviving the constructed attack when s ∈ S is used.

Then, integer variable Fs expresses the number of surviving nodes when attack a with

V(a) = {v ∈ V : av = 1} against placement s ∈ S ′ is applied, i.e., V (s, a).

2.3.4 Pricing problem for P[S, A]

The pricing problem for P[S, A] is obtained in an analogous way. Using the same notation

as above, we notice that if there exists a placement s′ ∈ S(M) \ S for which constraint

(2.12c) is broken, i.e., if ∑
a∈A V (s′, a)p∗

a > x∗, then adding this placement to S (and

inequality ∑
a∈A V (s′, a)pa ≤ x to formulation (2.12)) will cut off the current optimal

solution from the domain of A[A, S] and in this way will likely increase the minimum

x∗ of the primal objective function (2.12a). And since x∗ = y∗, this will increase the

maximum y∗ of the dual objective function (2.13a), i.e., will improve the payoff of the

operator. If such s′ does not exist, the current solution of P[S, A] solves P[S(M), A].
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Finding such a placement s′ is the pricing problem for the master problem P[S, A],

which, using binary variables sv, ya
v for v ∈ V , a ∈ A, can be formulated as the following IP.

Controllers’ placement generation problem CP[A, p∗]:

max ∑
a∈A p∗

a · Ya (2.16a)∑
v∈V sv = M (2.16b)

ya
v = 0 a ∈ A, v ∈ V(a) (2.16c)∑

v∈V(c) ya
v ≤ V (c) · ∑

v∈V(c) sv a ∈ A, c ∈ C(a) (2.16d)

Ya = ∑
v∈V ya

v a ∈ A (2.16e)

sv, ya
v ∈ B v ∈ V , a ∈ A (2.16f)

Ya ∈ Z+ a ∈ A. (2.16g)

Above, sv = 1 when is chosen to host a controller, ya
v = 1 means that node v is surviving

attack a when the constructed placement with V(s) = {v ∈ V : sv = 1} is used, and Ya

expresses the total number of nodes surviving attack a.

2.4 Algorithm description

2.4.1 Column generation procedure for finding optimal p and q

Below we formulate a pseudo-code of the column generation procedure for finding p and

q. The Algorithm 1 solves the problem iteratively (in a while loop, line 3-17). In a single

iteration, the algorithm executes the following models in the following order:

• first, in line 5, it solves the model A[A, S] (Section 2.3.1) to find the optimal payoffs

y∗ = x∗ and the optimal probability distributions q∗ and p∗, for the current sets S

and A.

• Second, in line 6, it solves the model CP[A, p∗] (Section 2.3.4) to generate a new

placement s′ ∈ S(M). If the newly generated placement s′ improves the payoff x∗

computed in line 5 (the check is done in line 7), such placement s′ is added to the

set S (line 8).
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• Third, in line 11, it solves the model P[S, A] (Section 2.3.1) to find the optimal

payoff x∗ = y∗ and the optimal probability distribution p∗ and q∗, for the current

sets A and S.

• Forth, in line 12, it solves the model NA[S, q∗] (Section 2.3.3) to generate a new

attack a′ ∈ A(K). If the newly generated attack a′ improves the payoff y∗ computed

in line 11 (the check is done in line 13), such attack a′ is added to the set A (line 14).

Algorithm 1 FMS(M, K)
1: Initialize S, A;

2: continue := true;

3: while continue do

4: continue := false;

5: Solve A[A, S] to get x∗, p∗ and y∗, q∗;

6: Solve CP[A, p∗] to get s′ ∈ S(M);

7: if ∑
a∈A V (s′, a)p∗

a > x∗ then

8: S := S ∪ {s′};

9: continue := true

10: end if

11: Solve P[S, A] to get y∗, q∗ and x∗, p∗;

12: Solve NA[S, q∗] to get a′ ∈ A(K);

13: if y∗ >
∑

s∈S V (s, a′)q∗
s then

14: A := A ∪ {a′}

15: continue := true;

16: end if

17: end while

18: return A, S, x∗, p∗, y∗, q∗

Our algorithm can be modified by repeatedly performing the addition of a placement

(and an attack correspondingly) in a single iteration. We could generate new placements

in an internal while loop (repeat lines 5-10 in the while loop) until there is no further

improvement of the payoff with a given set A. We could also generate new attacks in

an internal while loop (repeat lines 11-16 in the while loop) until there is no further

improvement of the payoff with a given set S. This approach yields four versions of the
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algorithm: (1) single placement and single attack, (2) multiple placements with a single

attack, (3) multiple placements with multiple attacks, and (4) single placement with

multiple attacks. Since numerical experiments showed very similar results in terms of

algorithm runtime across these variations, we chose to proceed with the single placement,

single attack version.

2.5 Computational results

For the purpose of numerical experiments, we implemented Algorithm 1 in AMPL and

run it on a standard laptop using the CPLEX 22.1 package for solving the optimization

problems.

2.5.1 Experiments of “cost266” network

Below we present computational results for the average payoff obtained by Algorithm 1 for

the “cost266” mesh network composed of 37 nodes and 57 links shown in Figure 2.8 (see

SNDlib (Orlowski et al. [90])) for M = 1, 2, . . . , 15 and K = 2, 3, . . . , 6.

We conducted two experiments cases to see the impact of the algorithm start point:

• case 1: start with 100 worst topological attacks computed separately for each K =

2, 3, 4, 5, 6. The topological attacks were computed according to the model given

in Appendix A.2 of the work by Pióro et al. [102]. Received results are given in

Table 2.7-2.11.

• case 2: start with 1 random attack and 1 random placement. Received results are

given in Table 2.12-2.16.

The two experiment cases, demonstrate that the payoff does not depend on the start

point (Table 2.7 (case 1), Table 2.12 (case 2)). For each combination (M, K), the com-

mon operator’ and attacker’s payoff obtained with the mixed strategy (denoted by V ∗) is

compared with the payoff of the operator Vmax−min and the payoff the attacker (Vmin−max)

obtained with the MM strategy.

Thus, each element of the table in given row M shows the values Vmax−min, V ∗(A(K)) =

V ∗(S(M)), Vmin−max, for each K under consideration. The payoffs of the operator and the
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Table 2.7: Network “cost266” (case 1 - start from topological attacks): operator’s and

attacker’s payoffs resulting from the MM strategy and the mixed strategy

M \ K 2 3 4 5 6 payoffs

0 0 0 0 0 Vmax−min

1 29 19 15.55 12.36 9.88 V ∗

29 19 17 13 13 Vmin−max

0 0 0 0 0 Vmax−min

2 33.58 31.01 26.5 23.1 19.08 V ∗

34 32 27 25 20 Vmin−max

34 0 0 0 0 Vmax−min

3 34.14 32.18 29.79 26.97 23.83 V ∗

35 34 31 29 26 Vmin−max

34 29 0 0 0 Vmax−min

4 34.29 32.69 30.51 28.18 25.7 V ∗

35 34 32 31 29 Vmin−max

34 32 29 0 0 Vmax−min

5 34.43 32.92 30.84 28.84 26.81 V ∗

35 34 33 32 30 Vmin−max

34 32 29 25 0 Vmax−min

6 34.57 33.04 31.08 29.19 27.41 V ∗

35 34 33 32 31 Vmin−max

34 32 29 26 19 Vmax−min

7 34.71 33.09 31.27 29.49 27.78 V ∗

35 34 33 32 31 Vmin−max

34 32 30 26 23 Vmax−min

8 34.86 33.14 31.39 29.71 28.05 V ∗

35 34 33 32 31 Vmin−max

35 33 30 27 25 Vmax−min

9 35 33.19 31.5 29.88 28.26 V ∗

35 34 33 32 31 Vmin−max

35 33 30 28 25 Vmax−min

10 35 33.24 31.61 30.04 28.42 V ∗

35 34 33 32 31 Vmin−max

35 33 30 28 26 Vmax−min

11 35 33.29 31.72 30.17 28.56 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 26 Vmax−min

12 35 33.33 31.82 30.28 28.7 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 27 Vmax−min

13 35 33.38 31.92 30.38 28.82 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 27 Vmax−min

14 35 33.42 32.01 30.47 28.94 V ∗

35 34 33 32 31 Vmin−max

35 33 31 30 27 Vmax−min

15 35 33.46 32.07 30.57 29.06 V ∗

35 34 33 32 31 Vmin−max
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Figure 2.8: Network “cost266”

payoffs of the attacker in the MM strategy were obtained with the algorithms described

in Tomaszewski et al. [117].

The relationship between these three payoff values is illustrated in Figure 2.9 for

attack size fixed to K = 6 and the full range of placements sizes M = 1, 2, . . . , 15. The

three functions depicted there show that the mixed strategy improves (i.e., reduces) the

attacker’s payoff obtained by the MM strategy by no more than 12% for M = 2, . . . , 15

(24% for the special case M = 1). The operator’s analogous profit is much clearer,

especially in the range of M , where the MM strategy payoff is equal to 0 (i.e., for M =

1, . . . , 6). For M = 7, 8 the mixed strategy improves the operator payoff (compared to

MM) by 46%, 22% respectively. In range M = 9, . . . , 15 the improvement is up to 14%.

Since similar relationship is observed for the remaining values of K, we can conclude that

although both players benefit from the mixed strategy, the operator’s profit is clearly

better.

The computational times are presented in Table 2.8 (case 1) and 2.13 (case 2). The

computation time of whole matrix Table 2.13 (case 2) is about 30% higher than of matrix

Table 2.8 (case 1). It clearly shows the benefit of using the worst topological attacks

as input (assuming we have them precomputed). For K = 6 we show the difference

depending on the start point, for the two cases (Figure 2.10).

The number of iterations of Algorithm 1 are presented in Table 2.9 (case 1), Ta-
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Figure 2.9: Network “cost266”: optimized payoffs as functions of M (for fixed attack size

K = 6)
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Figure 2.10: Network “cost266”: K = 6, computational times [s] of Algo-

rithm 1 depending on starting point

Table 2.8: Network “cost266” (case 1 - start from topological attacks): computational

times [s] of Algorithm 1

M \ K 2 3 4 5 6

1 19 12 23 63 80

2 41 587 193 498 221

3 15 189 1315 1797 2108

4 16 77 550 1003 2332

5 17 85 121 761 1284

6 17 253 115 270 1037

7 30 220 128 270 467

8 31 146 143 269 489

9 1 156 127 307 515

10 1 138 133 352 402

11 1 118 159 361 349

12 1 114 114 233 312

13 1 107 142 134 306

14 1 90 309 132 188

15 1 91 288 213 190

ble 2.14 (case 2).

Table 2.10 (case 1) and Table 2.15 (case 2) show the sizes (|S| × |A|) of the payoff
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Table 2.9: Network “cost266” (case 1 - start from topological attacks): number of itera-

tions of Algorithm 1

M \ K 2 3 4 5 6

1 20 16 22 45 52

2 34 86 82 91 66

3 16 60 175 199 161

4 17 37 124 168 262

5 19 38 49 151 168

6 18 61 43 77 163

7 30 61 48 70 94

8 31 53 52 72 93

9 2 61 52 76 98

10 2 60 55 82 88

11 2 56 63 89 84

12 2 58 53 73 87

13 2 57 60 58 85

14 2 52 92 58 71

15 2 53 90 75 75

matrices V = [V (s, a)]a∈A
s∈S for the sets S and A generated by Algorithm 1. These sizes

are considerably smaller than the sizes of the full payoff matrices which are equal to(
37
M

)
×

(
37
K

)
for M = 1, 2, . . . , 15 and K = 2, . . . , 6. The fact that in the case 1, a 100

topological attacks is given as input is reflected in the sizes of the payoff matrices (see

Table 2.10, as compared to Table 2.15 (case 2)).

It should be noted, however, that the number of non-zero strategies computed for both

players, the operator and the attacker (Table 2.11 (case 1) and Table 2.16 (case 2)), is

much smaller than the size of the payoff matrix (Table 2.10 (case 1) and Table 2.15 (case

2)), for any M = 1, 2, . . . , 15 and K = 2, . . . , 6.

2.5.2 Experiments of “coronet conus” network

Below we present computational results for the average payoff obtained by Algorithm 1 for

the CORONET continental United States topology (in short “coronet conus”) mesh net-

work composed of 75 nodes and 99 links shown in Figure 2.11 (Amorim and Pavani [8],

Clapp et al. [26]) for M = 1, 2, . . . , 10 and K = 2, 3, 4.

The Algorithm 1 was started with 100 worst topological attacks computed separately

for each K = 2, 3, 4. The topological attacks were computed according to the model given

in Appendix A.2 of the work by Pióro et al. [102].

In Table 2.17, for each combination (M, K), the common operator’ and attacker’s

payoff obtained with the mixed strategy (denoted by V ∗) is compared with the payoff
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Table 2.10: Network “cost266” (case 1 - start from topological attacks): size |S| × |A| of

the payoff matrix for S and A generated by Algorithm 1

M \ K 2 3 4 5 6

1 17 × 115 11 × 114 21 × 114 24 × 143 25 × 150

2 33 × 127 59 × 185 37 × 181 66 × 190 49 × 165

3 15 × 100 58 × 152 106 × 274 117 × 298 108 × 260

4 16 × 100 36 × 114 108 × 223 120 × 267 129 × 361

5 18 × 100 37 × 115 48 × 146 132 × 250 127 × 267

6 17 × 100 60 × 127 42 × 139 76 × 175 152 × 262

7 29 × 100 60 × 130 46 × 146 69 × 167 86 × 193

8 30 × 100 52 × 132 49 × 151 71 × 169 88 × 190

9 1 × 100 60 × 132 51 × 148 75 × 168 92 × 197

10 1 × 100 59 × 131 53 × 149 81 × 160 84 × 187

11 1 × 100 55 × 130 62 × 155 88 × 178 78 × 183

12 1 × 100 57 × 130 52 × 147 72 × 170 75 × 186

13 1 × 100 56 × 128 59 × 145 57 × 156 77 × 184

14 1 × 100 51 × 131 91 × 156 57 × 156 64 × 170

15 1 × 100 52 × 126 89 × 154 74 × 166 66 × 174

Table 2.11: Network “cost266” (case 1 - start from topological attacks): the number of

non-zero strategies for the operator and the attacker generated by Algorithm 1

M \ K 2 3 4 5 6

1 14 × 1 7 × 1 15 × 9 20 × 17 22 × 21

2 26 × 6 44 × 15 24 × 4 31 × 24 26 × 22

3 7 × 7 21 × 5 33 × 10 27 × 14 33 × 23

4 7 × 7 14 × 11 21 × 10 26 × 13 21 × 14

5 6 × 7 15 × 12 14 × 12 29 × 18 24 × 20

6 7 × 7 28 × 26 18 × 11 25 × 23 28 × 22

7 6 × 7 28 × 25 21 × 11 26 × 25 28 × 23

8 7 × 7 24 × 22 24 × 12 25 × 23 27 × 26

9 1 × 1 25 × 22 19 × 12 27 × 24 27 × 25

10 1 × 1 24 × 22 22 × 12 29 × 25 29 × 26

11 1 × 1 24 × 22 20 × 13 26 × 24 33 × 23

12 1 × 1 25 × 22 16 × 13 29 × 22 26 × 18

13 1 × 1 26 × 24 19 × 13 25 × 22 25 × 22

14 1 × 1 24 × 24 28 × 21 27 × 24 25 × 19

15 1 × 1 24 × 24 30 × 21 32 × 32 24 × 13

of the operator Vmax−min and the payoff the attacker (Vmin−max) obtained with the MM

strategy.

The relationship between these three payoff values is illustrated in Figure 2.12 for

attack size fixed to K = 4 and the full range of placements sizes M = 1, 2, . . . , 10. The

three functions depicted there show that the mixed strategy improves (i.e., reduces) the

attacker’s payoff obtained by the MM strategy by no more than 7% for all placement sizes

considered. The operator’s analogous profit is much clearer, especially in the range of M ,

where the MM strategy payoff is equal to 0 (i.e., for M = 1, . . . , 4). For M = 5, . . . , 10
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Table 2.12: Network “cost266” (case 2 - start from random attack and placement): op-

erator’s and attacker’s payoffs resulting from the MM strategy and the mixed strategy

M \ K 2 3 4 5 6 payoffs

0 0 0 0 0 Vmax−min

1 29 19 15.55 12.36 9.88 V ∗

29 19 17 13 13 Vmin−max

0 0 0 0 0 Vmax−min

2 33.58 31.01 26.5 23.1 19.08 V ∗

34 32 27 25 20 Vmin−max

34 0 0 0 0 Vmax−min

3 34.14 32.18 29.79 26.97 23.83 V ∗

35 34 31 29 26 Vmin−max

34 29 0 0 0 Vmax−min

4 34.29 32.69 30.51 28.18 25.7 V ∗

35 34 32 31 29 Vmin−max

34 32 29 0 0 Vmax−min

5 34.43 32.92 30.84 28.84 26.81 V ∗

35 34 33 32 30 Vmin−max

34 32 29 25 0 Vmax−min

6 34.57 33.04 31.08 29.19 27.41 V ∗

35 34 33 32 31 Vmin−max

34 32 29 26 19 Vmax−min

7 34.71 33.09 31.27 29.49 27.78 V ∗

35 34 33 32 31 Vmin−max

34 32 30 26 23 Vmax−min

8 34.86 33.14 31.39 29.71 28.05 V ∗

35 34 33 32 31 Vmin−max

35 33 30 27 25 Vmax−min

9 35 33.19 31.5 29.88 28.26 V ∗

35 34 33 32 31 Vmin−max

35 33 30 28 25 Vmax−min

10 35 33.24 31.61 30.04 28.42 V ∗

35 34 33 32 31 Vmin−max

35 33 30 28 26 Vmax−min

11 35 33.29 31.72 30.17 28.56 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 26 Vmax−min

12 35 33.33 31.82 30.28 28.7 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 27 Vmax−min

13 35 33.38 31.92 30.38 28.82 V ∗

35 34 33 32 31 Vmin−max

35 33 31 29 27 Vmax−min

14 35 33.42 32.01 30.47 28.94 V ∗

35 34 33 32 31 Vmin−max

35 33 31 30 27 Vmax−min

15 35 33.46 32.07 30.57 29.06 V ∗

35 34 33 32 31 Vmin−max
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Table 2.13: Network “cost266” (case 2 - start from random attack and placement): com-

putational times [s] of Algorithm 1

M \ K 2 3 4 5 6

1 20 28 116 154 173

2 240 1523 568 636 412

3 16 417 1951 2530 4248

4 17 63 1218 1636 3743

5 16 65 102 873 1994

6 19 192 83 322 1279

7 16 189 144 284 497

8 28 140 138 218 397

9 19 111 101 224 536

10 21 107 118 313 369

11 11 84 109 289 366

12 18 90 123 174 319

13 11 84 134 145 241

14 12 88 223 155 220

15 8 66 256 177 131

Table 2.14: Network “cost266” (case 2 - start from random attack and placement): num-

ber of iterations of Algorithm 1

M \ K 2 3 4 5 6

1 31 45 117 137 142

2 139 226 197 160 149

3 23 154 256 291 320

4 24 40 238 256 334

5 23 39 55 209 270

6 28 69 55 113 231

7 25 65 76 99 109

8 40 64 67 86 110

9 29 60 57 87 131

10 31 60 62 108 108

11 19 58 71 99 113

12 30 60 69 74 116

13 20 60 79 77 95

14 21 65 92 88 103

15 16 56 108 85 78

the mixed strategy improves the operator payoff (compared to MM) by up to 5%. Since

similar relationship is observed for the remaining values of K, we can conclude that

although both players benefit from the mixed strategy, the operator’s profit is clearly

better.

The computational times are presented in Table 2.18.

The number of iterations of Algorithm 1 are presented in Table 2.19.

Table 2.20 shows the sizes (|S| × |A|) of the payoff matrices V = [V (s, a)]a∈A
s∈S for the

sets S and A generated by Algorithm 1. These sizes are considerably smaller than the
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Table 2.15: Network “cost266” (case 2 - start from random attack and placement): size

|S| × |A| of the payoff matrix for S and A generated by Algorithm 1

M \ K 2 3 4 5 6

1 20 × 31 21 × 45 36 × 117 36 × 137 35 × 142

2 135 × 139 120 × 226 80 × 197 104 × 160 108 × 149

3 22 × 14 146 × 154 170 × 256 181 × 291 213 × 320

4 23 × 13 39 × 34 206 × 238 193 × 255 193 × 334

5 22 × 13 38 × 31 53 × 55 197 × 209 223 × 270

6 27 × 13 68 × 47 54 × 54 105 × 113 217 × 231

7 24 × 11 64 × 38 74 × 73 96 × 98 94 × 109

8 39 × 13 63 × 45 62 × 67 85 × 86 102 × 110

9 28 × 11 59 × 46 56 × 57 86 × 83 121 × 131

10 30 × 14 60 × 45 61 × 54 107 × 94 103 × 108

11 18 × 11 57 × 44 70 × 66 98 × 85 106 × 113

12 29 × 10 59 × 40 68 × 61 74 × 72 100 × 116

13 19 × 10 59 × 45 78 × 68 76 × 77 81 × 95

14 20 × 10 64 × 48 92 × 64 87 × 87 88 × 103

15 15 × 10 55 × 38 107 × 61 84 × 78 69 × 77

Table 2.16: Network “cost266” (case 2 - start from random attack and placement): the

number of non-zero strategies for the operator and the attacker generated by Algorithm 1

M \ K 2 3 4 5 6

1 13 × 1 8 × 1 16 × 9 21 × 17 22 × 21

2 28 × 6 41 × 15 20 × 4 31 × 24 23 × 22

3 8 × 7 22 × 5 34 × 10 30 × 14 42 × 23

4 7 × 7 13 × 13 21 × 10 27 × 13 20 × 14

5 7 × 7 14 × 12 13 × 12 26 × 18 29 × 20

6 7 × 7 26 × 26 16 × 11 26 × 23 25 × 22

7 5 × 7 25 × 25 21 × 11 30 × 25 30 × 24

8 7 × 7 24 × 22 21 × 12 25 × 23 29 × 25

9 1 × 1 26 × 22 18 × 12 27 × 24 28 × 25

10 1 × 1 25 × 22 23 × 12 27 × 25 31 × 26

11 1 × 1 24 × 22 21 × 13 26 × 24 29 × 29

12 1 × 1 25 × 22 21 × 14 26 × 22 26 × 18

13 1 × 1 25 × 24 20 × 13 29 × 22 29 × 22

14 1 × 1 26 × 24 27 × 21 27 × 24 26 × 19

15 1 × 1 25 × 24 30 × 21 30 × 25 26 × 13

sizes of the full payoff matrices which are equal to
(

75
M

)
×

(
75
K

)
for M = 1, 2, . . . , 10 and

K = 2, 3, 4.

It should be noted, however, that the number of non-zero strategies computed for both

players, the operator and the attacker (Table 2.21), is much smaller than the size of the

payoff matrix (Table 2.20), for any M = 1, 2, . . . , 10 and K = 2, 3, 4.
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Table 2.17: Network “coronet conus” (start from topological attacks): operator’s and

attacker’s payoffs resulting from the MM strategy and the mixed strategy

M \ K 2 3 4 payoffs

0 0 0 Vmax−min

1 68 62.39 35.03 V ∗

68 64 36 Vmin−max

0 0 0 Vmax−min

2 71.11 67.89 63.35 V ∗

73 70 66 Vmin−max

71 0 0 Vmax−min

3 71.35 68.52 65.12 V ∗

73 72 69 Vmin−max

71 67 0 Vmax−min

4 71.55 68.95 66.15 V ∗

73 72 71 Vmin−max

71 67 64 Vmax−min

5 71.73 69.32 66.67 V ∗

73 72 71 Vmin−max

71 68 64 Vmax−min

6 71.91 69.63 67.13 V ∗

73 72 71 Vmin−max

71 68 64 Vmax−min

7 72.03 69.87 67.52 V ∗

73 72 71 Vmin−max

71 68 65 Vmax−min

8 72.09 70.07 67.83 V ∗

73 72 71 Vmin−max

71 68 65 Vmax−min

9 72.14 70.21 68.08 V ∗

73 72 71 Vmin−max

71 68 66 Vmax−min

10 72.19 70.34 68.29 V ∗

73 72 71 Vmin−max

Table 2.18: Network “coronet conus” (start from topological attacks): computational

times [s] of Algorithm 1

M \ K 2 3 4

1 313 1052 431

2 2255 33211 72824

3 67 1763 34317

4 109 315 9025

5 102 457 3891

6 104 679 2911

7 598 763 3834

8 392 1914 3916

9 802 1528 6267

10 797 1617 5777
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Figure 2.11: Network “coronet conus”
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Figure 2.12: Network “coronet conus”: optimized payoffs as functions of M (for fixed

attack size K = 4)

Table 2.19: Network “coronet conus” (start from topological attacks): number of itera-

tions of Algorithm 1

M \ K 2 3 4

1 47 67 109

2 103 144 287

3 26 92 313

4 28 29 270

5 28 36 84

6 34 44 85

7 72 47 91

8 67 66 99

9 80 67 109

10 81 74 119
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Table 2.20: Network “coronet conus” (start from topological attacks): size |S| × |A| of

the payoff matrix for S and A generated by Algorithm 1

M \ K 2 3 4

1 42 × 145 46 × 166 44 × 208

2 99 × 184 112 × 243 110 × 386

3 25 × 100 91 × 188 180 × 412

4 27 × 100 28 × 118 234 × 369

5 27 × 100 35 × 125 66 × 183

6 33 × 100 43 × 133 84 × 180

7 71 × 100 46 × 138 89 × 190

8 66 × 100 64 × 153 91 × 198

9 79 × 100 66 × 161 108 × 202

10 80 × 100 73 × 166 118 × 207

Table 2.21: Network “coronet conus” (start from topological attacks): the number of

non-zero strategies for the operator and the attacker generated by Algorithm 1

M \ K 2 3 4

1 34 × 1 34 × 32 36 × 35

2 45 × 10 63 × 46 52 × 4

3 13 × 10 26 × 9 34 × 5

4 16 × 12 17 × 9 25 × 9

5 15 × 12 19 × 12 24 × 10

6 12 × 12 23 × 19 25 × 20

7 25 × 24 23 × 19 26 × 20

8 26 × 24 30 × 27 29 × 24

9 33 × 24 35 × 27 38 × 33

10 33 × 27 31 × 27 42 × 36

2.5.3 Algorithm convergence results

In this section we present several examples on how fast the Algorithm 1 converges to the

optimal payoff, in function of the iteration number. First, we explain the search of the

solution on a simple network “cycle16” (16-node cycle graph), for K = 2 and M = 2

(Figure 2.13). In this case, the Algorithm 1 was started with 1 random attack and 1

random placement.

In a single iteration the algorithm executes the following models in the following

order: first, it solves the model A[A, S] (Section 2.3.1) to find the optimal payoffs y∗ =

x∗ and the optimal probability distributions q∗ and p∗. Second, it solves the model

CP[A, p∗] (Section 2.3.4) to generate a new placement s′. Third, it solves the model

P[S, A] (Section 2.3.1) to find the optimal payoff x∗ = y∗ and the optimal probability

distribution p∗ and q∗. Forth, it solves the model NA[S, q∗] (Section 2.3.3) to generate a

new attack a′. Thus, in a single iteration we plot four measurements on the diagram.
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In Figure 2.13, a single iteration of the algorithm is marked with vertical dashed lines.

The top (blue) series shows the payoff obtained by the placement generation procedure.

The bottom (red) series shows the payoff obtained by the attack generation procedure.

The middle (green) series shows the payoff values for the optimal probability distribution,

p∗ and q∗, for current sets A, S. For the middle (green) series, in each iteration there’re

two measurements shown: first, the result of the model A[A, S], and second, the result

of the model P[S, A]. As one can observe, within the first iteration, the addition of the

new placement increases the following middle (green) payoff value from 7 to 14. On

the other hand, the addition of the attack (at the end of the first iteration) decreases the

following middle (green) payoff value from 14 to 7. In the second iteration, the situation is

different. Adding a new placement results in a top (blue) payoff of 14, but re-computation

of placement probabilities procedure gives the middle (green) payoff of 7. However, in

general, the addition of a new placement in most of the cases increases the middle (green)

payoff, while the addition of a new attack decreases the middle (green) payoff, what is

reflected in the figure. Nevertheless, the addition of a new placement never decreases, and

the addition of a new attack never increases, the middle (green) payoff. As expected, the

middle (green) payoff (the payoff we are searching for) cannot exceed the top payoff, and

will always be not lower than the bottom payoff.
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Figure 2.13: Network “cycle16”: convergence of the Algorithm 1 for K = 2, M = 2

Figure 2.14 presents search of the solution for network “cost266” for K = 3 and
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M = 3, while Figure 2.15 presents search of the solution for network “cost266” for K = 4

and M = 3.
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Figure 2.14: Network “cost266”: convergence of the Algorithm 1 for K = 3, M = 3
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Figure 2.15: Network “cost266”: convergence of the Algorithm 1 for K = 4, M = 3

Figure 2.16 presents search of the solution for network “coronet conus” for K = 3 and

M = 2, while Figure 2.17 presents search of the solution for network “coronet conus” for

K = 3 and M = 3.
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Figure 2.16: Network “coronet conus”: convergence of the Algorithm 1 for K = 3, M = 2
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Figure 2.17: Network “coronet conus”: convergence of the Algorithm 1 for K = 3, M = 3

2.6 Conclusions

The computational results reveal that:

• Optimal mixed strategies are more efficient than the MM strategy for both players,

especially for the network operator.

• The average payoffs and probabilities for which they are achieved can be effectively

computed with the column generation approach.
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• The sizes of the sets of placements and attacks generated by Algorithm 1 are much

smaller than |S(M)| =
(

V
M

)
and |A(K)| =

(
V
K

)
. Additionally, it should be noted,

that the number of non-zero strategies computed for both players, the operator and

the attacker, is much smaller than the size of the payoff matrix, for any M and K.

• Starting the algorithm with the worst topological attacks reduces the computation

time compared to starting with a random attack and random placement. The

computed payoff does not depend on initial attacks/placements.

As for future work, the following extensions to our optimization model are worth

considering:

• Adding other availability measures, such as the total number of node pairs in sur-

viving components.

• Consideration of constraints on node-to-controller and controller-to-controller de-

lays.

• Making a distinction between primary and backup controllers.

The other elements might also be further studied:

• The convergence results of the algorithm suggest that the algorithm reaches a payoff

close to optimal quite quickly, but this is an invalid conclusion, and interrupting the

algorithm for one of the players (and allowing the other player to search) could lead

to a solution far from the one obtained by our algorithm. However, the stop condi-

tion may be analyzed in more detail to reduce the number of algorithm iterations

(e.g. by slightly compromising the precision).

• Analyzing the consequences of abandoning a low-probability strategy (e.g. close to

zero), for the players, the attacker, and the operator.



Chapter 3

Traffic Sentinel Placement

3.1 Introduction

3.1.1 Sensor placement against DDoS attacks

One of the ways to defend against a DDoS attack is to place traffic sentinels (sensors, in

short) in the network which recognize and stop unauthorized demands. However, placing

such sensors in every node of the network would be very expensive and inefficient. Com-

mercial IPS (Intrusion Prevention Systems)/Firewalls solutions that detect and eliminate

DDoS attacks have a high acquisition price (Fayaz et al. [39], Blazek et al. [16]). Hence, a

natural question arises concerning what the number of sensors should be, and where they

should be placed. The detection precision may be higher closer to attack sources since it

is easier to detect spoofed addresses and other anomalies. On the other hand, the traffic

closer to targets is large enough to accurately recognize an actual flooding attack. In order

to efficiently control the flooding, sensors should be placed in the core of the network,

where most of the traffic can be observed. A taxonomy of defense mechanisms against

DDoS flooding attacks - including source-based, destination-based, network-based, and

hybrid (a.k.a. distributed) defense mechanisms is discussed by Zargar et al. [133].

Defrawy et al. [35] formulate the problem of the optimal allocation of DDoS filters.

They model single-tier filter allocation as a 0-1 knapsack problem and two-tier filter

allocation as a cardinality-constrained knapsack. However, both models assume a single

victim, while the models in this study allow for multiple victims.

Armbruster et al. [9] analyze the problem of packet filter placement to defend a

48
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network against spoofed denial of service attacks. They examine the optimization problem

(NP-hard) of finding a minimum cardinality set of nodes (filter placements) that filter

packets so that no spoofed packet (with forged origin) can reach its destination. They

relate the problem to the vertex cover problem and identify topologies and routing policies

for which a polynomial-time solution to the minimum filter placement problem exists.

They prove that under certain routing conditions a greedy heuristic for the filter placement

problem yields an optimal solution. The paper addresses specific version of DDoS - a

Spoofed attack.

Jeong et al. [58] and Islam et al. [55] minimize the number of sensors such that every

path of a given length (r) contains a sensor. Any node less than r hops away is permitted

to attack another node, since the impact of the attack is regarded as low, especially for a

low r. This paper considers the problem of sensor placement under a different assumption.

Fayaz et al. [39] propose a Bohatei system for DDoS defense within a single ISP

(Internet Service Provider). They use modern network architectures - software-defined

networking (SDN) and network function virtualization (NFV) and develop the system or-

chestration capability to defend against a DDoS. The system addresses a resource manage-

ment problem (NP-hard) to determine the number and location of defense VMs (Virtual

Machines). These VMs detect and block attack traffic. After VMs are fixed, the system

routes the traffic through these VMs. The goal of the resource manager is to efficiently

assign available network resources to the defense, (1) minimizing the latency experienced

by legitimate traffic, and (2) minimizing network congestion. The authors formulate an

Integer Linear Program (ILP) to solve the resource management problem. However, due

to the long computation time they apply hierarchical decomposition as well. For that pur-

pose, they designed two heuristics, the first for data-center selection, and the second for

server selection at the data-center. When it comes to routing, this paper doesn’t assume

any specific routing protocol, it simply assumes that it is multi-path. Additionally, traffic

is not steered through a network; it is assumed that routing is an independent problem.

Mowla et al. [82] assume SDN architecture for their proposal. They propose a cognitive

detection and defense mechanism to distinguish DDoS attacks and Flash Crowd traffic.

The detection sensors are placed in the OpenFlow Switches, where approaching traffic is

identified and specific features are extracted. The extracted data is handed over to the

SDN controller for analysis and production of security rules to defend against the attack.
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They use two classification techniques, namely SVM and Logistic Regression. It must be

noted that such an approach has its drawbacks specifically, a centralized SDN controller

is a potential single-point-of-failure (security risk).

Ramanathan et al. [104] propose a collaboration system SENSS to protect against

DDoS. SENSS enables the victim of an attack to request an attack monitoring and filtering

on demand from an ISP. Requests can be sent both to the immediate and to remote ISPs,

where SENSS servers are located. The victim drives all the decisions, such as what to

monitor and which actions to take to mitigate attacks (e.g., monitor, allow, filter). The

number and location of monitoring sensors is not thoroughly analyzed in the research. For

certain types of attack (direct floods without transport/network signature), the article

suggests a location-based filtering approach that compares traffic volumes for ISP-ISP

links during normal operation and during an attack.

Monnet et al. [81] place control nodes (CN) in a clustered WSN (Wireless Sensor

Network). CN detects abnormal behavior (DoS) and reports it to a cluster leader up

in the WSN hierarchy. The authors propose three methods of CN placement. The first

uses a distributed self-election process. A node chooses a pseudo-random number, checks

the number against the threshold and potentially self-elects itself as a CN. The second

method is based on the residual energy of nodes. Cluster heads select nodes with the

highest residual energy. The third method is based on democratic election. Nodes vote

for the nodes that will be selected as a CN.

A related problem, the design of sensor networks for measuring the surrounding en-

vironment (natural floods, pollution etc.), is addressed in many works. Khapalov [68]

addresses source location and sensor placement in environmental monitoring. The first

problem here is linked to finding an unkown contamination source. The second concerns

the placement of sensors to obtain adequate data. Ucinski [120] focuses on the design of a

monitoring sensor network to provide proper diagnostic information about the functioning

of a distributed parameter system. Patan [91] determines a scheduling policy for a sensor

network monitoring a spatial domain in order to identify unknown parameters of a dis-

tributed system. Suchanski et al. [113] study the dependency between density of a sensor

network and map quality in the radio environment map concept. There have been a large

number of works on developing methods and technology of person’s activity recognition

and monitoring. Some use wearable devices to collect vital sign signals, some use video
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analysis and an accelerometer to recognize the activity pattern, other use thermal sensors.

Chou et al. [25] develop a framework to measure gait velocity (walking speed) using dis-

tributed tracking services deployed indoors (home, nursing institute). The work aims to

minimize the sensing errors caused by thermal noise and overlapping sensing regions. The

other goal is to minimize the data volume to be stored or transmitted. One fundamental

question is how many sensors should be deployed and how these sensors work together

seamlessly to provide accurate gait velocity measurements.

In the literature there is well-known class of interdiction problems, which can be related

to our DDoS problem. Altner et al. [7] study the Maximum Flow Network Interdiction

Problem (MFNIP). In the MFNIP a capacitated s − t (directed) network is given, where

each arc has a cost of deletion, and a budget for deleting arcs. The objective is to choose

a subset of arcs to delete, without exceeding the budget, that minimizes the maximum

flow that can be routed through the network induced on the remaining arcs. The special

case of the MFNIP when an the interdictor removes exactly k arcs from the network to

minimize the maximum flow in the resulting network is known as the Cardinality Maximum

Flow Network Interdiction Problem (CMFNIP) (Wood [128]). One of the recent works on

the interdiction problem addresses a two-stage defender-attacker game that takes place

on a network whose nodes can be influenced by competing agents (Hemmati et al. [50]).

A more general problem on graphs was proposed by Omer and Mucherino [89], and it

includes the interdiction problem. In our DDoS problem we delete vertices instead of arcs

in the CMFNIP.

Defense mechanisms against DDoS flooding attacks address specific attack types: link-

flooding (Studer and Perrig [112], Kang et al. [65]) or target-flooding (Zargar et al. [133]).

Link-flooding attacks aim at intermediate network links located between attack sources

and targets. Target-flooding directly attack targets. This research concentrates on the lat-

ter one. The attacks may use reflection (Ramanathan et al. [104]), spoofing (Armbruster

et al. [9]) or other techniques (Zargar et al. [133]). The existing works concentrate on

single-target while we concentrate on multiple-target attacks. The defense mechanisms

against DDoS are complex systems. They need to address: identification of attack signa-

tures and detection algorithms (out of scope of this paper), placing the detection sensors,

and stopping/filtering illegitimate traffic (Ramanathan et al. [104]) (out of scope of this

paper). Some defense approaches use attack load distribution (re-routing of traffic) to
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limit the effect on targets (Belabed et al. [13]). In this paper, the focus is on the placing

of detection sensors. There are several works in this field: Jeong et al. [58] and Islam

et al. [55] minimize the number of sensors such that every path of a given length (r)

contains a sensor; Armbruster et al. [9] analyze the problem of packet filter placement

to defend a network against spoofed denial of service attacks; Monnet et al. [81] place

control nodes in clustered WSN to save the energy of nodes; Fayaz et al. [39] address

the resource management problem to determine the number and location of defense VMs,

which combines detection node placement with a re-routing strategy. This paper con-

centrates on the costly deployment of detection sensors (probes) against multiple-target

flooding attacks. There is no assumption of any specific routing protocol, though it is

assumed that it is multi-path. Additionally, traffic is not steered through a network; it

is assumed that routing is an independent problem. Future work may address sensor

placement with a knowledge of a specific routing protocol to increase performance in a

network.

3.1.2 Our proposal

A DDoS attack can be modeled as a flow from multiple sources to a single target (single

commodity flow). Defined are directed graph with a capacity function on edges, a set of

sources (S) and a set of targets (T ). An attacker can conduct an attack on any vertex

t ∈ T . The strength of an attack is given by a value of a maxflowG(S, t), i.e., the value of

the maximum flow from S to t in the network G.

Within this DDoS defense approach sensors are to be placed in network nodes to

recognize and stop unwanted traffic. If a sensor is placed in a vertex v ∈ V then all the

edges incident to v are assumed controlled. A set D ⊆ V is called a set of sensors. The

goal of this defense is to limit maximum uncontrolled flow towards each t ∈ T . Having

a placement D, a maximum uncontrolled flow is determined and easy to compute. For

that purpose, for each t ∈ T max-flow algorithm (see for example (Goldberg and Tarjan

[47])) can be used for a graph G \ D (|T | runs of the algorithm). A super vertex ss is

added to G, connected with a directed edge to each s ∈ S. For each run of the algorithm

(t ∈ T ) maximum flow from ss to t is computed. Finally, maximum uncontrolled flow as

maxt∈T maxflowG(ss, t) is computed.

In this chapter, the proof is given of the decision problem as to whether d sensors



CHAPTER 3. TRAFFIC SENTINEL PLACEMENT 53

suffice to reduce uncontrolled flow to defined amount a ∈ R. When there is just one

protected node, the proof is based on a reduction from Cardinality Maximum Flow Network

Interdiction Problem (CMFNIP) (Wood [128]). When the number of pairs (S, ti) is more

than one, the reduction goes from Multiway Cut (Garg et al. [43]).

For computational reasons, two variants of the sensor placement problem are given.

First, the PQ problem, where a tolerable amount a ∈ R of uncontrolled flow is set, and

a minimum number of sensors needed to achieve it is required. Second, the PC problem,

where the number of sensors is set, and the question as to how much uncontrolled flow

we can reduce with such a number of sensors is asked.

The main result of this work, presented in this chapter, besides the proofs of NP-

hardness, are two mixed integer models describing PQ and PC problems of optimal sensor

placement against DDoS attacks. Moreover, two efficient heuristics (one for each problem)

are presented. Finally, an experimental comparison of solutions given by the heuristics

and the mixed-integer programming solvers is given.

3.2 Problem definition

3.2.1 The problem of optimal sensor placement

Network model: It is assumed that the network is modeled as a directed graph without

multiple edges. The node (vertex) set and the edge set are denoted, respectively, by V

and E. Every directed edge has a nonnegative capacity assigned by the function c. Each

node in the network can be interpreted as a router or an autonomous system.

Protected nodes: Let T ⊆ V denote a set of protected nodes (a.k.a target nodes) in

the network. Each node v ∈ T contains a protected resource and is a target of a possible

malicious flow.

Attack sources: We assume that network flooding targeted at protected nodes t ∈ T

can start from any network node (source) s ∈ V \ T . In a practical scenario, however,

it may be desirable to limit our attention to a set of sources S ⊆ V \ T . The selection

may be based on a node’s risk analysis. It is simply a case of choosing the vertices with

unacceptable risk.

Attacks: It is not assumed which traffic from a source s ∈ S is legitimate and which is

hostile. Every potential attack starts from S and is modeled as a single-commodity flow
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to some target t ∈ T . Routing policies allow multi-path transmissions from any s ∈ S to

t.

Sensors: When a sensor is placed at a node v ∈ V , then all the incoming and outgoing

edges are assumed controlled. A set of nodes where sensors are placed is called D. For

clarity of NP-completeness proofs it is assumed that the set D is disjoint with S ∪ T .

However, in practice this assumption can be easily omitted by adding artificial copies for

each source and target and joining it with the original vertex (see Figure 3.2 and 3.3).

Definition 1. Attack flow For t ∈ T , a function ft : E → [0, ∞) is called an attack flow

on t ∈ T (or just flow, if t is clear from the context) if both the following conditions are

satisfied:

∀u∈V \(S∪{t})
∑

(v,u)∈E

ft(v, u) =
∑

(u,w)∈E

ft(u, w), (3.1)

and

∀e∈E ft(e) ≤ c(e). (3.2)

The attack flow value is given by

ft =
∑

(v,t)∈E

ft(v, t) −
∑

(t,w)∈E

ft(t, w). (3.3)

The maximum value of an attack flow on t is denoted by maxflowG(S, t).

Definition 2. G \ D For an instance G = (V, E, c, S, T ) and a set D ⊆ V \ (S ∪ T ) of

sensors, by G \ D we denote the instance G′ = (V, E, c′, S, T ), where c′ : E → [0, ∞) is

defined as follows:

c′(e) =


0, if e ∈ ED,

c(e), otherwise,
where ED is the set of edges incident to a node in D.

Definition 3. Uncontrolled flow For an instance G and a set D of sensors, an uncon-

trolled flow to t ∈ T is a flow to t in G \ D with positive value.

For example, in Figure 3.1 all edges incident to nodes 5 and 7 are controlled. However,

there still exists an uncontrolled flow f8 in G \ {5, 7}.

In order to defend against a DDoS attack, sensors in a network should be placed in

such a way that they can observe all or most of the traffic coming from sources S to targets
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T . Placing sensors in every node of the network would be very expensive and inefficient.

Having a limited number of sensors available, it is necessary to find a placement such

that uncontrolled flows are “distributed” among all t ∈ T . The situation in which some

targets are left unprotected and receive a high portion of an uncontrolled traffic, so in

consequence are vulnerable to DDoS attacks, should be avoided.

In the optimization variant two models PQ (Placement with required Quality) and

PC (Placement with required Cardinality) are considered. In the PQ model, we want to

minimize the number k of sensors under the assumption that the amount of uncontrolled

flow does not exceed a given value. Formally, for a given number a ∈ Q, it is asked what

a minimum integer k is such that there exists a k-element set D ⊆ V \ (S ∪ T ) such that

max
t∈T

maxflowG\D(S, t) ≤ a.

For a = 0 the question follows: what is the minimum number of sensors that guarantees

the total control in the network.

In the second model, denoted by PC , it is assumed the number k of sensors and the

task is to find a k-element set D ⊆ V \ (S ∪ T ) such that maxt∈T maxflowG\D(S, t) is

minimum. Such a model is important from a practical perspective. In many cases the

number of available sensors is limited and one needs to find an optimal placement.

2

3
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5

6

7

1

8

A_t A’_t

Figure 3.1: An instance G with source (attack) nodes S = {1, 2, 3, 4}, protected nodes

T = {8} and sensors D = {5, 7}. The dotted vertical line denotes a possible cut for

t = 8 ∈ T . Dashed lines denote the uncontrolled flow f8.
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3.2.2 Complexity of the optimal sensor placement

For the complexity analysis a decision problem Flow Prevention is defined:

Input: directed graph G = (V, E), capacity function c : E → [0, ∞), disjoint sets

S, T ⊆ V , integer k, real number a,

Question: Does there exist a set D ⊆ V \ (S ∪ T ) of size at most k, such that for every

t ∈ T it holds that maxflowG\D(S, t) ≤ a?

The problem has several natural parameters, including k, a, |S|, and |T |. Its complex-

ity is studded under different combinations of these parameters.

First, simple boundary cases. If a = 0, then the problem asks for an S-T -separator of

size at most k and thus can be solved in polynomial time using standard flow techniques.

If k is a constant, then the problem can be solved in polynomial time by exhaustive

enumeration combined with finding the maximum flow.

Now, consider the case that |T | = 1. This will show a reduction from CMFNIP, which

is known to be NP-hard (Wood [128]). An instance of this problem is a graph G = (V, E)

with edge capacities c : E → [0, ∞), two distinct distinguished vertices s, t ∈ V , an

integer k and a real a. The question is whether we can remove at most k edges so that

the maximum s-t-flow in the resulting graph is at most a. Observe that the difference

between this problem and Flow Prevention is that nodes, not edges, are removed.

Theorem 1. Flow Prevention is NP-complete, even if |S| = |T | = 1.

Proof. Let (G = (V, E), c, s, t, a, k) be an instance of CMFNIP. Let Ḡ = (V̄ , Ē) be the

graph obtained from G in the following way. For every v ∈ V we create its k + 1 copies

v1, v2, .., vk+1. For every arc e = (u, v) ∈ E we define two vertices eu, ev and edges:

u1eu, u2eu, . . . , uk+1eu, euev, evv1, evv2, . . . , evvk+1. Moreover we add vertices s0, t0 and

edges s0s1, s0s2, . . . , s0sk+1, t1t0, t2t0, . . . , tk+1t0. We set S = {s0} and T = {t0}. Finally,

we define the capacity function c̄ as follows. For e ∈ E, we set c̄(euev) = c(e), and the

capacities of all other arcs of Ḡ are set to some large integer, e.g., ∑
e∈E c(e). Observe that

maxflow(Ḡ, s, t) = maxflow(G, s, t). Furthermore, since our budget is only k, it makes no

sense to remove any copy of a vertex v of G, and there will always be at least one copy

left. Finally, for e = (u, v) ∈ E, removing eu or ev in Ḡ corresponds to removing e in

G, and it is sufficient to remove one of these vertices. Summing up, it is straightforward
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to verify that (V̄ , Ē, c̄, S, T, k, a) is a yes-instance of Flow Prevention if and only if

(G, c, s, t, k, a) is a yes-instance of CMFNIP.

Now consider the case that |T | ≥ 2. This time we will reduce from Node Multiway

Cut with 2 terminals, which is known to be NP-hard (Garg et al. [43]). In this problem

we are given a directed graph G with two distinguished vertices x, y and an integer k. We

ask whether we can remove at most k vertices to destroy all x-y- and all y-x-paths.

Theorem 2. Flow Prevention is NP-complete, even if a = 1, |S| = |T | = 2, and

all capacities are unit. Furthermore, it is even NP-hard to distinguish yes-instances and

those for which, for every set D′ of size at most k, it holds that

max
t∈T

maxflowG\D′(S, t) = 2.

Proof. Let G = (V, E), x, y, k, be an instance of Node Multiway Cut with 2

terminals. We may safely assume that G contains a directed x − y-path and a directed

y − x-path, as otherwise the problem can be solved in polynomial time by finding a

minimum vertex separator.

We construct an instance of Flow Prevention as follows. We start with a graph

G. Next we add two new vertices x′ and y′, and edges x′x, y′y with unit capacity. We set

S = {x′, y′} and T = {x, y}.

We observe that for every t ∈ T it holds that maxflowG(S, t) = 2, as G contains a

directed x − y-path and a directed y − x-path. Furthermore, for D ⊆ V \ (S ∪ T ), it holds

that maxt∈T maxflowG\D(S, t) = 1 if and only if D is a multiway cut in G.

Corollary 1. The following optimization problem admits no polynomial-time 2-approximation

algorithm, unless P = NP.

Input: directed graph G = (V, E), disjoint sets S, T ⊆ V , integer k,

Question: What is the minimum a, for which there is some D ⊆ V \ (S ∪ T ) of size at

most k, such that for every t ∈ T it holds that maxflowG\D(S, t) ≤ a?

Finally, let us consider parameterization by k. The problem is clearly in XP (i.e., can

be solved in polynomial time if k is fixed), so it is interesting if the problem is FPT (i.e.,

can be solved in time f(k) · nO(1) on instances of size n, where f is some computable
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function) and, if so, if it admits a polynomial kernel. See Gygan et al. [28] for more

information about parameterized complexity classes.

Let us point out that a natural generalization of the problem is not in FPT under

standard complexity assumptions. Consider a variant of Flow Prevention where to

each sink t ∈ T we have assigned a possibly distinct set St of sources, and we ask if there

is a set D ⊆ V \ ⋃
t∈T (St ∪ {t}) of size at most k, such that for every t ∈ T it holds

that maxflowG\D(St, t) ≤ a. It turns out that this problem is W[1]-hard, even if a = 0,

|T | = 4, and |St| = 1 for every t ∈ T . Indeed, one can readily verify that the problem is

equivalent to the well known Node Multicut problem. The instance of this problem

is a directed graph G, a set of pairs of vertices (si, ti)p
i=1 called terminals, and an integer

k. The question is whether we can remove at most k nonterminal vertices so that in the

resulting graph there is no si-ti path, for any i. As shown by Pilipczuk and Wahlström

[98], this problem is W[1]-hard even for p = 4. This is a strong evidence that the problem

is not in FPT (Cygan et al. [28]).

3.3 Model description

3.3.1 Basic formulation of PQ and PC models

To solve the problem of optimal sensor placement in the sense of models PQ and PC

we use mix-integer programming. Our solution is based on a well-known Ford-Fulkerson

Theorem [41] stating that the maximum flow cannot exceed the minimum cut and actually,

in our solution the min-cuts are minimized. To compute minimum cuts for every target

t ∈ T we introduce a set At such that any edge u, v is in a cut for t if and only if u ∈ At

and v ̸∈ At (Figure 3.1). The set D ⊆ V denotes the set of vertices in which sensors are

placed.

Formally, we define the following variables:

• For every v ∈ V a binary variable d[v] with the meaning d[v] = 1 if and only if

v ∈ D (there is a sensor in the vertex v).

• For every t ∈ T and v ∈ V a binary variable a[t, v] with the meaning a[t, v] = 1 if

and only if v ∈ At. The sets At allow us to compute a cut for the target t ∈ T .
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• For every t ∈ T, e ∈ E a binary variable cutT [t, e] with the meaning cutT [t, e] = 1

if and only if e ∈ E belongs to a cut in G \ D for t.

• A real variable M ∈ R, that denotes the value of the minimum cut in G \ D.

In PQ model, a function to minimize is ∑
v∈V d[v] with respect to the below restrictions

(3.4)(3.5)(3.6)(3.7)(3.8)(3.9). The meaning of restrictions is as follows. For every target

t ∈ T each vertex s ∈ S belongs to At (3.4). For every target t ∈ T the vertex t does not

belong to At (3.5). The restriction (3.6) guarantees that an edge belongs to a cut if none

of its ends is in a set D, the first vertex is in At and the second vertex is not. The equation

(3.7) bounds the value of the cut with a = (1 − q) · maxt∈T maxflowG(t), where q ∈ [0, 1]

is a quality factor (parameter to the problem), q = 1 signifies total control (100% traffic

controlled), q = 0 signifies no control (zero sensors placed); and maxt∈T maxflowG(t) is

equal to the value of max minimum cut Mt in G. The restrictions (3.8)(3.9) make sure

that sensors cannot be placed in either s ∈ S or t ∈ T . Obviously, the above statement

which assumes 100% control of traffic (q = 1) gives a theoretical value, while in practice

it depends on the volume of traffic flowing via links, and on the processing capacity of a

detection sensor (technology).

∀t∈T ∀s∈S a[t, s] == 1 (3.4)

∀t∈T a[t, t] == 0 (3.5)

∀t∈T ∀(u,v)∈E

cutT [t, u, v] ≥ a[t, u] − a[t, v] − d[u] − d[v]
(3.6)

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤ a (3.7)

∀s ∈ S d[s] = 0 (3.8)

∀t ∈ T d[t] = 0 (3.9)
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In PC model, a function to minimize is just M with respect to the restrictions

(3.4)(3.5)(3.6)(3.8)(3.9)(3.10)(3.11). The meaning of restrictions is as follows. The re-

striction (3.10) makes sure that the number of sensors is fixed, and given as parameter k

to the problem. The equation (3.11) bounds the value of the cut with M .

∑
v∈V

d[v] = k (3.10)

∀t ∈ T
∑

(u,v)∈E

cutT [t, u, v] · c[u, v] ≤ M (3.11)

As shown in Section 3.5 (Computational results), the above models are very efficient in

terms of the number of deployed sensors and a volume of uncontrolled flow. On the other

hand, when the number of vertices is high (large scale networks) the models may suffer

from increased execution time. That is why we designed and implemented two efficient

heuristics (one for each model, Section 3.4). They are reasonably efficient in terms of a

goal value, but much faster than the models.

3.4 Algorithm description

3.4.1 Relaxed formulation of PQ and PC models

In this formulation we relax two types of variables to allow the fractional sensor placement

(first bullet) and fractional traffic control (second bullet). Let us notice that fractional

sensor placement is an artificial concept without physical interpretation and defined only

as an intermediate step, not present in the final step of the algorithm.

• For every v ∈ V a real variable d[v] ∈ [0, 1]

• For every t ∈ T, e ∈ E a real variable cutT [t, e] ∈ [0, 1].

In the basic model formulation (Section 3.3) when an edge u, v is in a cut for some t

(u ∈ At and v ̸∈ At), placing a sensor in either u or v classifies such an edge as fully

controlled. When no sensor is placed in either u nor v such an edge is uncontrolled.

However, in the relaxed formulation we allow fractional sensor placement (d variables)

and fractional control of edges in a cut (cutT variables).
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To solve the PQ and PC problems, additionally to our two models (Section 3.3), we

have designed and implemented two algorithms:

• PQIterativeBestSensor (see Algorithm 2)

• PCIterativeBestSensor (see Algorithm 3).

Both algorithms assume the following common input parameters: G graph represent-

ing a network with c capacity function, T set of targets and S set of sources. Additionally,

PQIterativeBestSensor heuristic takes q (quality factor) as input and PCIterativeBestSen-

sor heuristic k (number of sensors) as input.

3.4.2 PQ Iterative Best Sensor Placement

The preparatory step of the algorithm PQIterativeBestSensor is a computation of the

value of a = (1 − q) · maxt∈T maxflowG(t) (line 1). In each while loop, linear program

relaxation is solved (line 5). From the relaxed LP solution a subset of vertices L is

selected from the set V \ D such that d[v] ̸= 0 and d[v] == max{d[j]}j∈V \D (line 6).

Among the |L| best sensor locations, the single best (max) one vmax is selected and added

to the model as a constraint (line 8). The constraint fixes a sensor in the location vmax in

the next iterations.

3.4.3 PC Iterative Best Sensor Placement

The algorithm PCIterativeBestSensor constitutes k + 1 iterations. In each {1, .., k} iter-

ation, linear program relaxation is solved (line 4). From the relaxed LP solution a subset

of vertices L is selected from the set V \D such that d[v] ̸= 0 and d[v] == max{d[j]}j∈V \D

(line 5). Among the |L| best sensor locations, the single best (max) one vmax is selected

and added to the model as a constraint (line 7). The constraint fixes a sensor in the

location vmax in the next iterations.

In the last iteration, the LP relaxation is solved assuming fixed sensor placements for all

v ∈ D (line 10) to compute the final value of M .

We show that the algorithm PCIterativeBestSensor may give a result 2 · OPT . In

Figure 3.2 we compare the optimal solution OPT given by PC model (a) to the solution

given by PCIterativeBestSensor (b)(c). We assume two sources S = {1, 2} and two targets
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Algorithm 2 PQIterativeBestSensor
Require: G, c, T, S, q

1: Compute a value of a = (1 − q) · maxt∈T maxflowG(t)

2: Create the relaxed PQ problem (Section 3.4.1) with goal minimize
∑

v∈V d[v]. Add

constraints {(3.4),(3.5),(3.6),(3.7),(3.8),(3.9)} to the problem

3: Initiate a set of vertices in which we place sensors D = ∅

4: while (∃t ∈ T
∑

(u,v)∈E cutT [t, u, v] · c[u, v] > (1 − q) · maxt∈T maxflowG(t)) do

5: Solve the problem

6: Let L = {v, s.t. v ∈ V \ D and d[v] ̸= 0 and d[v] == max{d[j]}j∈V \D}

7: Choose randomly vmax ∈ L, where probability of selecting an element vmax equals
1

|L|

8: Add constraint d[vmax] == 1 to the problem

9: D = D ∪ {vmax}

10: end while

11: return D

T = {7, 8}, and we require to place k = 1 sensors. The optimal solution is M = 1 (a).

Then one fractional solution given by the heuristic with its corresponding rounding is

given. The (b)(c) results in a sub-optimal solution M = 2, which is equal to 2 · OPT . An

additional example where the algorithm PCIterativeBestSensor gives a result 3
2 · OPT , is

given in Figure 3.3.

However, for practical scenarios the heuristic exposes a solid ratio (see Chapter 3.5

Computational results).

3.5 Computational results

3.5.1 Experiment Setup

The following experiments compare efficiency of the models with the algorithms. The

PQ model is compared with PQIterativeBestSensor algorithm, and the PC model with

the PCIterativeBestSensor algorithm. The comparison assumes ideal (theoretical) sen-

sors, which means that if a sensor is placed in a node it controls 100% of in/out traffic.

However, in practice it depends on the volume of traffic flowing via links, and on the pro-
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Algorithm 3 PCIterativeBestSensor
Require: G, c, T, S, k

1: Create the relaxed PC problem (Section 3.4.1) with goal minimize M . Add con-

straints {(3.4),(3.5),(3.6),(3.8),(3.9),(3.10),(3.11)} to the problem.

2: Initiate a set of vertices in which we place sensors D = ∅

3: for i = 1, .., k do

4: Solve the problem

5: Let L = {v, s.t. v ∈ V \ D and d[v] ̸= 0 and d[v] == max{d[j]}j∈V \D}

6: Choose randomly vmax ∈ L, where probability of selecting an element vmax equals
1

|L|

7: Add constraint d[vmax] == 1 to the problem

8: D = D ∪ {vmax}

9: end for

10: Solve the problem to compute M

11: return (D, M)

cessing capacity of a detection sensor (technology). In practice, for high volume networks,

typically only selected samples are analyzed due to processing limitations.

The two models PQ and PC and two algorithms PQIterativeBestSensor and PCIt-

erativeBestSensor were run with the use of CPLEX 12.10 for Python. Python 3.7 was

utilized to implement heuristics and automate simulations. The simulations were run on

a personal computer with 1.9GHz CPU, 16GB RAM and 64-bit Windows platform.

The experiments were conducted on the following types of grid networks: “gridnetV ”,

where V = {64, 81, 100, 121, 144, 169, 196, 225, 256, 289} indicates the number of vertices

in a network. All these networks are directed graphs, with a single edge in each direction

u, v and v, u. An example of a small grid network is demonstrated in Figure 3.4. Each

vertex in a graph may correspond to a router or an autonomous system in a telecommu-

nication network.

For simulation scenarios, for each network type, four random instances of each network

type were generated, each with randomly selected capacities (c). Each edge capacity was

randomly selected from the range c(e)e∈E ∈ [100, 200] (random selection with uniform

distribution). Additionally, for each simulation scenario, four random instances of target

locations (Ti=1..4 ⊆ V ) were generated (all vertices V have equal probabilities). For each
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target instance Ti, four random instances of source locations were generated (Sj=1..4 ⊆

V \ Ti) (all vertices V \ Ti have equal probabilities). As a result, each value (volume of

uncontrolled flow; execution time) presented on each diagram is an average computed

from 64 measurements. Finally, we assumed the following number of targets and sources:

Scenario1-4: |T | = 10, |S| = 40; Scenario1b,2b: |T | = 10; Scenario3b,4b: |T | = 20.

3.5.2 Scenario1 PC problem, “gridnet100” network, increasing

number of sensors

The experiments were conducted for the grid network “gridnet100”. The number of sensors

was increasing from k = 0 to k = 10.

The diagram Figure 3.5 (a) demonstrates the average volume of uncontrolled traffic
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Figure 3.2: The algorithm PCIterativeBestSensor gives a result 2 · OPT (solution (b)(c)),

where M is a value of uncontrolled flow, S = {1, 2}, T = {7, 8}, k = 1, and D is defined

by gray striped circles.
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(y axis) depending on the number of sensors. As the number of sensors increases, the

average volume of uncontrolled traffic decreases to zero (for k = |T |), for both PC model

and PCIterativeBestSensor heuristic. The observed average objective values of PCItera-

tiveBestSensor are higher than those of PC by up to 8%.

The diagram Figure 3.5 (b) demonstrates the average time of execution (y axis). The

observed average values of execution time of PC are up to 10 times higher than those of

PCIterativeBestSensor.
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Figure 3.3: The algorithm PCIterativeBestSensor gives a result 3
2 · OPT (solution (b)(c)),

where M is a value of uncontrolled flow, S = {1, 2, 3}, T = {9, 10}, k = 1, and D is

defined by gray striped circles.
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3.5.3 Scenario2 PC problem, increasing size of the grid “grid-

net64”, “gridnet81”, ... , “gridnet169”

The experiments were conducted for the grid networks: “gridnet64”, “gridnet81”, “grid-

net100”, “gridnet121”, “gridnet144”, “gridnet169”. The number of sensors was fixed

k = 5.

The diagram Figure 3.5 (c) demonstrates the average time of execution (y axis) as the

size of the network increases (|V |). As |V | grows, the gap between PCIterativeBestSensor

and PC increases significantly in favor of the heuristic.

3.5.4 Scenario3 PQ problem, “gridnet196” network, increasing

value of quality factor

The experiments were conducted for the grid network “gridnet196”. The value of quality

factor was increasing q ∈ {0.1, 0.2, ..., 1.0}.

The diagram Figure 3.5 (d) demonstrates the average number of sensors (y axis) re-

quired to control the q-factor of the network traffic (x axis). As the value of q-factor

increases, the number of required sensors increases on average, for both PQ model and

PQIterativeBestSensor heuristic. However, at a certain point sensor usage becomes sat-

urated. In the worst observed cases PQIterativeBestSensor required approximately one

sensor more than PQ to achieve the same quality.

The diagram Figure 3.5 (e) demonstrates the average time of execution (y axis). The

observed average values of execution time of PQ are up to 5 times higher than those of

PQIterativeBestSensor.
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Figure 3.4: An example of a small grid network |V | = 9
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3.5.5 Scenario4 PQ problem, increasing size of the grid “grid-

net121”, “gridnet144”, ... , “gridnet256”

The experiments were conducted for the grid networks: “gridnet121”, “gridnet144”, “grid-

net169”, “gridnet196”, “gridnet225”, “gridnet256”. The quality factor was fixed q = 0.5.

The diagram Figure 3.5 (f) demonstrates the average time of execution (y axis) as the

size of the network increases (|V |). As |V | grows, the gap between PQIterativeBestSensor

and PQ increases significantly in favor of the heuristic.

3.5.6 Scenario1b-4b super source formulation

In general, we would like to assume, that network flooding targeted at protected nodes

t ∈ T can start from any network node (source) s ∈ V \ T . In practical scenarios

however, we may want to limit attention to a set of sources S ⊆ V \ T . For example,

after conducting a network risk analysis, we may know that some sources (autonomous

systems, sub-networks) are more hostile than others. For experiment purpose, we applied

two methods of source selection.

First, explicit selection, as used in the experiments 1 − 4 (Section 3.5.2, 3.5.3, 3.5.4

and 3.5.5). We selected subsets of vertices as sources |S| = 40. The sources were selected

randomly with uniform distribution from set V \ T .

Second, instead of selecting a set of sources S explicitly, we can limit the portion of

traffic we want to monitor from each source s ∈ V \T based on risk analysis R : V → [0, 1]

(see below single super source formulation for details). This method was applied within

scenarios 1b−4b. The experiments 1b−4b were conducted with the following assumptions:

Scenario1b: “gridnet100”, the number of sensors from k = 0 to k = 10; Scenario2b: k = 5,

size of the grid “gridnet64”, “gridnet81”, ... , “gridnet169”; Scenario3b: “gridnet289”,

the value of quality factor q ∈ {0.1, 0.2, ..., 1.0}; Scenario4b: q = 0.5, size of the grid

“gridnet144”, “gridnet169”, ... , “gridnet256”.

Algorithms efficiency demonstrated in experiments scenario1b − 4b (Figure 3.6) is

similar to that demonstrated in experiments scenario1 − 4 (Figure 3.5).

Single super source formulation: With a standard trick the problem can be re-

duced to an equivalent one, with a single source. Having a graph G = (V, E) and a

risk analysis as a function R : V → [0, 1], we create a new graph G′ = (V ∪ {ss}, E ∪
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{(ss, v)}v∈V \T ), where ss is an artificial super vertex, and capacities of edges in {(ss, v)}v∈V \T )

are given by:

∀v∈V \T c(ss, v) = R(v) ·
∑

u:(v,u)∈E

c(v, u). (3.12)

For the graph G′ we assume a single attack source S = {ss}. Within G′ we simply limit

vertex production (possible outgoing flow value) according to its risk value.

In case this formulation is used to characterize the attack sources we need to add

additional restriction (Equation 3.13) to both PQ and PC models (models described in

Section 3.3). This is required since the super source vertex ss in graph G′ is an artificial

vertex and in fact a sensor can not be placed in it. The same restriction (3.13) applies to

both algorithms PQIterativeBestSensor and PCIterativeBestSensor (Section 3.4).

d[ss] = 0 (3.13)

3.5.7 Summary of simulation results

The PC algorithm simulations led to a number of observations. Firstly, for all test

networks, as the number of sensors increases, the volume of uncontrolled traffic decreases

to zero, for both PC model and PCIterativeBestSensor heuristic. Secondly, the observed

average objective values of PCIterativeBestSensor are higher than those of PC by up to

8% for tested networks. Finally, as the size of the grid network increases, for fixed k,

the execution time gap between PCIterativeBestSensor and PC increases significantly in

favor of the heuristic.

The PQ algorithm simulations led to the following observations. Firstly, as the quality

factor increases, the number of sensors increases on average, however, at a certain point

sensor usage becomes saturated, for both PQ model and PQIterativeBestSensor heuristic.

Secondly, in the worst observed cases the PQIterativeBestSensor required approximately

one sensor more than PQ to achieve the same quality. Finally, as the size of the grid

network increases, for fixed q, the execution time gap between PQIterativeBestSensor

and PQ increases significantly in favor of the heuristic.
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3.6 Conclusions

We give a proof that the sensor placement problem is NP-complete. Additionally, we prove

that the optimization problem admits no polynomial-time 2-approximation algorithm,

unless P ̸= NP . So, few natural questions arise: is there a better exact algorithm than

brute-force? Can the number of sensors be approximated with any constant?

Although the problem is computationally hard it can be efficiently solved with the use

of a mixed integer programming solver for medium-sized networks. As demonstrated for

the tested grid networks, computation time is not high and qualifies both PC and PQ

models for practical applications. The models respond to the challenges of the real DDoS

problem. One challenge is that an attack can be conducted from any network node. The

other is that sensors are expensive and placing them in all network nodes is not possible

in many cases. Sensors can be placed dynamically, based on perceived network indicators

(e.g., risk factor). The models expose a highly desirable feature, such that dislocation

of relatively small number of sensors (proportional to the number of protected nodes)

can obtain a significant quality. Both models lead to a trade-off between the number of

deployed sensors and the volume of uncontrolled flow.

Additionally to two models, we designed two efficient solver-based heuristics (one for

each problem). For large networks, the execution time gap between the two models and

their corresponding heuristics increases significantly in favor of the heuristics.
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alg t s k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd

PC 10 t=10 40 s=40 0 k=0 640 671,7377 735 23,89863 0,040938 0,051522 0,062909 0,00428

PC 10 t=10 40 s=40 1 k=1 600 647,0161 678 18,75263 0,216198 0,37145 0,548142 0,067701

PC 10 t=10 40 s=40 2 k=2 568 615,0328 660 30,74537 0,335542 0,562061 0,814843 0,120857

PC 10 t=10 40 s=40 3 k=3 512 579,129 649 41,64577 0,634886 1,847614 3,653952 0,773431

PC 10 t=10 40 s=40 4 k=4 481 536,7692 626 47,03216 1,026308 3,143075 7,693645 1,478326

PC 10 t=10 40 s=40 5 k=5 459 515,8889 588 41,87287 1,03167 10,75509 35,56166 8,430281

PC 10 t=10 40 s=40 6 k=6 409 471,619 548 32,77263 1,325134 8,461179 24,35669 6,185159

PC 10 t=10 40 s=40 7 k=7 399 443,8571 506 25,02561 2,202504 11,68416 29,35888 7,25738

PC 10 t=10 40 s=40 8 k=8 321 396,1017 462 32,64898 2,172333 11,7433 22,29811 4,760916

PC 10 t=10 40 s=40 9 k=9 216 325,7097 425 69,64273 0,90292 12,67767 44,02617 10,66118

PC 10 t=10 40 s=40 10 k=10 0 0 0 0 0,118481 0,169304 0,223633 0,024614

PCIterativeBestSensor10 t=10 40 s=40 0 k=0 640 671,7937 735 23,54675 0,139995 0,190217 0,233148 0,020525

PCIterativeBestSensor10 t=10 40 s=40 1 k=1 600 647,6984 678 18,86513 0,270011 0,371074 0,466135 0,04531

PCIterativeBestSensor10 t=10 40 s=40 2 k=2 569 618,7377 678 32,35708 0,416871 0,567225 0,725994 0,062236

PCIterativeBestSensor10 t=10 40 s=40 3 k=3 526 595,5161 649 35,48455 0,593892 0,764184 0,952154 0,087588

PCIterativeBestSensor10 t=10 40 s=40 4 k=4 505 572,6094 626 39,26497 0,723976 0,985832 1,320769 0,150012

PCIterativeBestSensor10 t=10 40 s=40 5 k=5 473 541,6563 617 38,27908 0,801833 1,233932 1,751698 0,228323

PCIterativeBestSensor10 t=10 40 s=40 6 k=6 446 502,254 593 36,18294 0,921353 1,406839 2,026978 0,255786

PCIterativeBestSensor10 t=10 40 s=40 7 k=7 412 466,7419 593 39,05453 1,014061 1,523765 2,292089 0,302237

PCIterativeBestSensor10 t=10 40 s=40 8 k=8 386 429,1129 462 22,87491 1,07507 1,590038 2,484877 0,390812

PCIterativeBestSensor10 t=10 40 s=40 9 k=9 216 351,7719 425 76,9445 1,18328 1,579652 2,56183 0,351185

PCIterativeBestSensor10 t=10 40 s=40 10 k=10 0 0 0 0 0,353415 0,416389 0,474146 0,026661
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(a) Scenario1: Average volume of un-

controlled traffic

alg t s k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd

PC 10 t=10 40 s=40 0 k=0 640 671,7377 735 23,89863 0,040938 0,051522 0,062909 0,00428

PC 10 t=10 40 s=40 1 k=1 600 647,0161 678 18,75263 0,216198 0,37145 0,548142 0,067701

PC 10 t=10 40 s=40 2 k=2 568 615,0328 660 30,74537 0,335542 0,562061 0,814843 0,120857

PC 10 t=10 40 s=40 3 k=3 512 579,129 649 41,64577 0,634886 1,847614 3,653952 0,773431

PC 10 t=10 40 s=40 4 k=4 481 536,7692 626 47,03216 1,026308 3,143075 7,693645 1,478326

PC 10 t=10 40 s=40 5 k=5 459 515,8889 588 41,87287 1,03167 10,75509 35,56166 8,430281

PC 10 t=10 40 s=40 6 k=6 409 471,619 548 32,77263 1,325134 8,461179 24,35669 6,185159

PC 10 t=10 40 s=40 7 k=7 399 443,8571 506 25,02561 2,202504 11,68416 29,35888 7,25738

PC 10 t=10 40 s=40 8 k=8 321 396,1017 462 32,64898 2,172333 11,7433 22,29811 4,760916

PC 10 t=10 40 s=40 9 k=9 216 325,7097 425 69,64273 0,90292 12,67767 44,02617 10,66118

PC 10 t=10 40 s=40 10 k=10 0 0 0 0 0,118481 0,169304 0,223633 0,024614

PCIterativeBestSensor10 t=10 40 s=40 0 k=0 640 671,7937 735 23,54675 0,139995 0,190217 0,233148 0,020525

PCIterativeBestSensor10 t=10 40 s=40 1 k=1 600 647,6984 678 18,86513 0,270011 0,371074 0,466135 0,04531

PCIterativeBestSensor10 t=10 40 s=40 2 k=2 569 618,7377 678 32,35708 0,416871 0,567225 0,725994 0,062236

PCIterativeBestSensor10 t=10 40 s=40 3 k=3 526 595,5161 649 35,48455 0,593892 0,764184 0,952154 0,087588

PCIterativeBestSensor10 t=10 40 s=40 4 k=4 505 572,6094 626 39,26497 0,723976 0,985832 1,320769 0,150012

PCIterativeBestSensor10 t=10 40 s=40 5 k=5 473 541,6563 617 38,27908 0,801833 1,233932 1,751698 0,228323

PCIterativeBestSensor10 t=10 40 s=40 6 k=6 446 502,254 593 36,18294 0,921353 1,406839 2,026978 0,255786

PCIterativeBestSensor10 t=10 40 s=40 7 k=7 412 466,7419 593 39,05453 1,014061 1,523765 2,292089 0,302237

PCIterativeBestSensor10 t=10 40 s=40 8 k=8 386 429,1129 462 22,87491 1,07507 1,590038 2,484877 0,390812

PCIterativeBestSensor10 t=10 40 s=40 9 k=9 216 351,7719 425 76,9445 1,18328 1,579652 2,56183 0,351185

PCIterativeBestSensor10 t=10 40 s=40 10 k=10 0 0 0 0 0,353415 0,416389 0,474146 0,026661

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

V
o

lu
m

e 
o

f 
u

n
co

n
tr

o
lle

d
 t

ra
ff

ic
 (

av
g)

Number of sensors (k)

PC
PCIterativeBestSensor

0

2

4

6

8

10

12

14

0 2 4 6 8 10

Ti
m

e
 o

f 
e

xe
cu

ti
o

n
 (

av
g)

Number of sensors (k)

PC
PCIterativeBestSensor

(b) Scenario1: Average time of execu-

tion (sec.)

alg |V| |T| |S| k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd

PC 64 10 t=10 40 s=40 5 k=5 432 475 526 36,83942 0,270575 0,323545 0,376954 0,035966

PC 81 10 t=10 40 s=40 5 k=5 395 443,75 477 28,62145 0,591759 1,727268 2,813005 0,716404

PC 100 10 t=10 40 s=40 5 k=5 420 454,4286 514 30,44835 1,581017 1,964816 2,426225 0,286453

PC 121 10 t=10 40 s=40 5 k=5 398 470,125 564 55,77956 2,945404 9,20475 30,82964 9,344071

PC 144 10 t=10 40 s=40 5 k=5 496 533,4286 561 19,24917 18,82451 40,29836 57,47773 11,41628

PC 169 10 t=10 40 s=40 5 k=5 451 521,6667 607 53,31666 5,935394 59,09314 122,7196 41,19789

PCIterativeBestSensor 64 10 t=10 40 s=40 5 k=5 432 507,7778 559 38,08113 0,199081 0,285184 0,354109 0,044706

PCIterativeBestSensor 81 10 t=10 40 s=40 5 k=5 395 488,8889 562 56,11188 0,529391 0,708297 0,964314 0,145158

PCIterativeBestSensor 100 10 t=10 40 s=40 5 k=5 420 522,5556 611 64,68919 1,144738 1,442732 1,798195 0,229038

PCIterativeBestSensor 121 10 t=10 40 s=40 5 k=5 398 491,5 564 45,83394 1,840032 1,924578 2,040349 0,07168

PCIterativeBestSensor 144 10 t=10 40 s=40 5 k=5 531 566 598 23,3714 2,388879 2,592026 2,889037 0,152138

PCIterativeBestSensor 169 10 t=10 40 s=40 5 k=5 489 550,8889 614 41,2915 2,46124 3,385517 4,784737 0,849151
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(c) Scenario2: Average time of exe-

cution (sec.)

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd

PQ 196 10 t=10 40 s=40 0,1 k=0,1 1 2,610169 5 1,008724 1,309279 1,980139 3,162804 0,413379

PQ 196 10 t=10 40 s=40 0,2 k=0,2 4 5,096774 7 0,755831 1,602885 4,404981 11,49647 2,541355

PQ 196 10 t=10 40 s=40 0,3 k=0,3 5 6,716981 9 0,710497 1,824643 7,382746 23,67093 5,190379

PQ 196 10 t=10 40 s=40 0,4 k=0,4 8 9,220339 10 0,665565 2,342814 22,29137 71,20042 15,76657

PQ 196 10 t=10 40 s=40 0,5 k=0,5 9 9,6 10 0,489898 2,99772 11,40243 27,7747 5,44052

PQ 196 10 t=10 40 s=40 0,6 k=0,6 9 9,932203 10 0,251397 1,866019 4,481812 10,04663 2,142711

PQ 196 10 t=10 40 s=40 0,7 k=0,7 10 10 10 0 1,478319 1,799815 2,37617 0,195232

PQ 196 10 t=10 40 s=40 0,8 k=0,8 10 10 10 0 1,575969 1,848477 2,23488 0,152418

PQ 196 10 t=10 40 s=40 0,9 k=0,9 10 10 10 0 1,254147 1,397103 1,554938 0,074247

PQ 196 10 t=10 40 s=40 1 k=1,0 10 10 10 0 1,306734 1,462132 1,61721 0,068753

PQIterativeBestSensor196 10 t=10 40 s=40 0,1 k=0,1 1 3,125 6 1,494783 1,228962 2,030872 3,171937 0,598493

PQIterativeBestSensor196 10 t=10 40 s=40 0,2 k=0,2 5 5,875 8 0,927025 2,401335 3,27424 4,969369 0,634146

PQIterativeBestSensor196 10 t=10 40 s=40 0,3 k=0,3 5 7,90625 10 1,071196 2,672405 4,327165 6,411401 0,82778

PQIterativeBestSensor196 10 t=10 40 s=40 0,4 k=0,4 9 9,444444 10 0,496904 4,152024 5,029054 6,265141 0,526659

PQIterativeBestSensor196 10 t=10 40 s=40 0,5 k=0,5 9 9,836066 10 0,370216 4,275438 5,077152 6,649833 0,498048

PQIterativeBestSensor196 10 t=10 40 s=40 0,6 k=0,6 9 9,936508 10 0,243846 4,013635 5,145463 6,525567 0,643603

PQIterativeBestSensor196 10 t=10 40 s=40 0,7 k=0,7 10 10 10 0 3,97554 4,925484 6,979958 0,843412

PQIterativeBestSensor196 10 t=10 40 s=40 0,8 k=0,8 10 10 10 0 3,713998 4,466891 5,797805 0,476199

PQIterativeBestSensor196 10 t=10 40 s=40 0,9 k=0,9 10 10 10 0 3,673703 4,202019 5,086525 0,346301

PQIterativeBestSensor196 10 t=10 40 s=40 1 k=1,0 10 10 10 0 0,894047 1,027982 1,158879 0,055125
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(d) Scenario3: Average number of sensors

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd

PQ 196 10 t=10 40 s=40 0,1 k=0,1 1 2,610169 5 1,008724 1,309279 1,980139 3,162804 0,413379

PQ 196 10 t=10 40 s=40 0,2 k=0,2 4 5,096774 7 0,755831 1,602885 4,404981 11,49647 2,541355

PQ 196 10 t=10 40 s=40 0,3 k=0,3 5 6,716981 9 0,710497 1,824643 7,382746 23,67093 5,190379

PQ 196 10 t=10 40 s=40 0,4 k=0,4 8 9,220339 10 0,665565 2,342814 22,29137 71,20042 15,76657

PQ 196 10 t=10 40 s=40 0,5 k=0,5 9 9,6 10 0,489898 2,99772 11,40243 27,7747 5,44052

PQ 196 10 t=10 40 s=40 0,6 k=0,6 9 9,932203 10 0,251397 1,866019 4,481812 10,04663 2,142711

PQ 196 10 t=10 40 s=40 0,7 k=0,7 10 10 10 0 1,478319 1,799815 2,37617 0,195232

PQ 196 10 t=10 40 s=40 0,8 k=0,8 10 10 10 0 1,575969 1,848477 2,23488 0,152418

PQ 196 10 t=10 40 s=40 0,9 k=0,9 10 10 10 0 1,254147 1,397103 1,554938 0,074247

PQ 196 10 t=10 40 s=40 1 k=1,0 10 10 10 0 1,306734 1,462132 1,61721 0,068753

PQIterativeBestSensor196 10 t=10 40 s=40 0,1 k=0,1 1 3,125 6 1,494783 1,228962 2,030872 3,171937 0,598493

PQIterativeBestSensor196 10 t=10 40 s=40 0,2 k=0,2 5 5,875 8 0,927025 2,401335 3,27424 4,969369 0,634146

PQIterativeBestSensor196 10 t=10 40 s=40 0,3 k=0,3 5 7,90625 10 1,071196 2,672405 4,327165 6,411401 0,82778

PQIterativeBestSensor196 10 t=10 40 s=40 0,4 k=0,4 9 9,444444 10 0,496904 4,152024 5,029054 6,265141 0,526659

PQIterativeBestSensor196 10 t=10 40 s=40 0,5 k=0,5 9 9,836066 10 0,370216 4,275438 5,077152 6,649833 0,498048

PQIterativeBestSensor196 10 t=10 40 s=40 0,6 k=0,6 9 9,936508 10 0,243846 4,013635 5,145463 6,525567 0,643603

PQIterativeBestSensor196 10 t=10 40 s=40 0,7 k=0,7 10 10 10 0 3,97554 4,925484 6,979958 0,843412

PQIterativeBestSensor196 10 t=10 40 s=40 0,8 k=0,8 10 10 10 0 3,713998 4,466891 5,797805 0,476199

PQIterativeBestSensor196 10 t=10 40 s=40 0,9 k=0,9 10 10 10 0 3,673703 4,202019 5,086525 0,346301

PQIterativeBestSensor196 10 t=10 40 s=40 1 k=1,0 10 10 10 0 0,894047 1,027982 1,158879 0,055125
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(e) Scenario3: Average time of execution

(sec.)

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd

PQ 121 10 t=10 40 s=40 0.5 k=0.5 7 8,923077 10 0,916644 2,276387 3,732775 4,80401 0,639468

PQ 144 10 t=10 40 s=40 0.5 k=0.5 8 9,533333 10 0,805536 2,234825 7,736045 18,88939 4,913351

PQ 169 10 t=10 40 s=40 0.5 k=0.5 8 9,2 10 0,541603 3,494185 7,042571 8,892393 1,768667

PQ 196 10 t=10 40 s=40 0.5 k=0.5 8 9,466667 10 0,618241 6,456567 14,10075 22,71123 5,219085

PQ 225 10 t=10 40 s=40 0.5 k=0.5 8 9,5 10 0,612372 5,949625 14,15769 24,31213 6,132864

PQ 256 10 t=10 40 s=40 0.5 k=0.5 9 9,875 10 0,330719 7,394076 26,17211 54,44383 14,78263

PQIterativeBestSensor 121 10 t=10 40 s=40 0.5 k=0.5 9 9,384615 10 0,486504 2,166125 2,39477 2,643249 0,123755

PQIterativeBestSensor 144 10 t=10 40 s=40 0.5 k=0.5 9 9,8125 10 0,390312 2,761043 3,222539 3,629148 0,27796

PQIterativeBestSensor 169 10 t=10 40 s=40 0.5 k=0.5 9 9,461538 10 0,498519 3,814646 3,973196 4,251565 0,134189

PQIterativeBestSensor 196 10 t=10 40 s=40 0.5 k=0.5 8 9,6875 10 0,582961 4,508362 5,102606 6,013812 0,396393

PQIterativeBestSensor 225 10 t=10 40 s=40 0.5 k=0.5 8 9,533333 10 0,618241 5,335126 6,28535 7,118636 0,443724

PQIterativeBestSensor 256 10 t=10 40 s=40 0.5 k=0.5 9 9,875 10 0,330719 5,872161 6,982453 8,376411 0,653785
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(f) Scenario4: Average time of exe-

cution (sec.)

Figure 3.5: Scenario1-4
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alg t s k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd Mheur/Mmdl Tmdl/Theur

PC 10 t=10 1 s=1 0 k=0 607 673,4 717 37,66838 0,147726 0,18953 0,254686 0,023 0,467311754

PC 10 t=10 1 s=1 1 k=1 559 625,2459 690 31,54266 0,554607 0,794481 1,16706 0,150033 0,937371067

PC 10 t=10 1 s=1 2 k=2 549 598,5345 655 31,88244 0,794806 1,721315 2,678549 0,407273 1,164241066

PC 10 t=10 1 s=1 3 k=3 507 563,3681 621 38,49539 1,886511 6,163583 11,33763 2,217748 3,006827113

PC 10 t=10 1 s=1 4 k=4 434 521,5645 605 49,36586 2,785972 11,61076 27,28495 5,509719 4,26584655

PC 10 t=10 1 s=1 5 k=5 430 477,926 570 33,03137 5,583117 21,4915 54,89747 12,64365 6,404385936

PC 10 t=10 1 s=1 6 k=6 385 444,4063 506 29,74512 4,933955 26,94606 56,64628 13,20229 7,111623456

PC 10 t=10 1 s=1 7 k=7 360 409,6133 501 35,72289 9,24731 25,86858 51,4877 9,921832 6,284363804

PC 10 t=10 1 s=1 8 k=8 282 358,5405 457 47,59784 3,950472 21,5188 45,15935 10,14346 4,887529831

PC 10 t=10 1 s=1 9 k=9 112,24 266,9852 343 48,68985 0,526043 9,97979 20,82561 4,862533 2,239644408

PC 10 t=10 1 s=1 10 k=10 0 0 0 0 0,229164 0,352456 0,525653 0,073459 0,480351785

PCIterativeBestSensor 10 t=10 1 s=1 0 k=0 607 673,9649 717 37,86401 0,333975 0,405575 0,479762 0,025858 1,000838896

PCIterativeBestSensor 10 t=10 1 s=1 1 k=1 559 631,9048 714 36,67953 0,680951 0,847563 1,077291 0,098551 1,010649986

PCIterativeBestSensor 10 t=10 1 s=1 2 k=2 559 614,4375 674 31,68392 1,062165 1,478487 1,984536 0,200667 1,026569927

PCIterativeBestSensor 10 t=10 1 s=1 3 k=3 507 577,0244 624 34,32616 1,517611 2,049863 2,665474 0,265033 1,024240367

PCIterativeBestSensor 10 t=10 1 s=1 4 k=4 434 544,2813 615 46,47024 1,648072 2,721795 3,689373 0,459008 1,043554983

PCIterativeBestSensor 10 t=10 1 s=1 5 k=5 430 523,5669 605 43,89174 2,104719 3,355747 5,404858 0,777307 1,095497786

PCIterativeBestSensor 10 t=10 1 s=1 6 k=6 415,68 483,7043 590 46,94952 2,61184 3,789017 6,210447 0,914619 1,088428127

PCIterativeBestSensor 10 t=10 1 s=1 7 k=7 373 453,7031 549 38,09003 3,109396 4,11634 7,139666 0,888839 1,107637408

PCIterativeBestSensor 10 t=10 1 s=1 8 k=8 313,2 418,41 501 55,06285 3,353346 4,402796 7,35669 1,036088 1,16698105

PCIterativeBestSensor 10 t=10 1 s=1 9 k=9 112,24 311,837 477 87,89641 3,611191 4,455971 7,202672 0,810569 1,167993751

PCIterativeBestSensor 10 t=10 1 s=1 10 k=10 0 0 0 0 0,663689 0,733746 0,791977 0,027308
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(a) Scenario1b: Average volume of

uncontrolled flow

alg t s k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd Mheur/Mmdl Tmdl/Theur

PC 10 t=10 1 s=1 0 k=0 607 673,4 717 37,66838 0,147726 0,18953 0,254686 0,023 0,467311754

PC 10 t=10 1 s=1 1 k=1 559 625,2459 690 31,54266 0,554607 0,794481 1,16706 0,150033 0,937371067

PC 10 t=10 1 s=1 2 k=2 549 598,5345 655 31,88244 0,794806 1,721315 2,678549 0,407273 1,164241066

PC 10 t=10 1 s=1 3 k=3 507 563,3681 621 38,49539 1,886511 6,163583 11,33763 2,217748 3,006827113

PC 10 t=10 1 s=1 4 k=4 434 521,5645 605 49,36586 2,785972 11,61076 27,28495 5,509719 4,26584655

PC 10 t=10 1 s=1 5 k=5 430 477,926 570 33,03137 5,583117 21,4915 54,89747 12,64365 6,404385936

PC 10 t=10 1 s=1 6 k=6 385 444,4063 506 29,74512 4,933955 26,94606 56,64628 13,20229 7,111623456

PC 10 t=10 1 s=1 7 k=7 360 409,6133 501 35,72289 9,24731 25,86858 51,4877 9,921832 6,284363804

PC 10 t=10 1 s=1 8 k=8 282 358,5405 457 47,59784 3,950472 21,5188 45,15935 10,14346 4,887529831

PC 10 t=10 1 s=1 9 k=9 112,24 266,9852 343 48,68985 0,526043 9,97979 20,82561 4,862533 2,239644408

PC 10 t=10 1 s=1 10 k=10 0 0 0 0 0,229164 0,352456 0,525653 0,073459 0,480351785

PCIterativeBestSensor 10 t=10 1 s=1 0 k=0 607 673,9649 717 37,86401 0,333975 0,405575 0,479762 0,025858 1,000838896

PCIterativeBestSensor 10 t=10 1 s=1 1 k=1 559 631,9048 714 36,67953 0,680951 0,847563 1,077291 0,098551 1,010649986

PCIterativeBestSensor 10 t=10 1 s=1 2 k=2 559 614,4375 674 31,68392 1,062165 1,478487 1,984536 0,200667 1,026569927

PCIterativeBestSensor 10 t=10 1 s=1 3 k=3 507 577,0244 624 34,32616 1,517611 2,049863 2,665474 0,265033 1,024240367

PCIterativeBestSensor 10 t=10 1 s=1 4 k=4 434 544,2813 615 46,47024 1,648072 2,721795 3,689373 0,459008 1,043554983

PCIterativeBestSensor 10 t=10 1 s=1 5 k=5 430 523,5669 605 43,89174 2,104719 3,355747 5,404858 0,777307 1,095497786

PCIterativeBestSensor 10 t=10 1 s=1 6 k=6 415,68 483,7043 590 46,94952 2,61184 3,789017 6,210447 0,914619 1,088428127

PCIterativeBestSensor 10 t=10 1 s=1 7 k=7 373 453,7031 549 38,09003 3,109396 4,11634 7,139666 0,888839 1,107637408

PCIterativeBestSensor 10 t=10 1 s=1 8 k=8 313,2 418,41 501 55,06285 3,353346 4,402796 7,35669 1,036088 1,16698105

PCIterativeBestSensor 10 t=10 1 s=1 9 k=9 112,24 311,837 477 87,89641 3,611191 4,455971 7,202672 0,810569 1,167993751

PCIterativeBestSensor 10 t=10 1 s=1 10 k=10 0 0 0 0 0,663689 0,733746 0,791977 0,027308

net10x10

t=10

s=1

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10

V
o

lu
m

e 
o

f 
u

n
co

n
tr

o
lle

d
 t

ra
ff

ic
 (

av
g)

Number of sensors (k)

PC
PCIterativeBestSensor

0

5

10

15

20

25

30

0 2 4 6 8 10

Ti
m

e 
o

f 
ex

ec
u

ti
o

n
 (

av
g)

Number of sensors (k)

PC
PCIterativeBestSensor

(b) Scenario1b: Average time of ex-

ecution (sec.)

alg |V| |T| |S| k Mmin Mavg Mmax Mstd Tmin Tavg Tmax Tstd

PC 65 10 t=10 1 s=1 5 k=5 398 450,9626 488 30,56375 5,491862 10,82145 17,81133 3,366704

PC 82 10 t=10 1 s=1 5 k=5 406 457,4074 492 24,88531 4,130569 9,751785 21,66358 5,091708

PC 101 10 t=10 1 s=1 5 k=5 427 478,375 521 20,7722 5,687477 21,69888 40,38356 9,120967

PC 122 10 t=10 1 s=1 5 k=5 444 525,2222 613 56,97715 2,578783 37,9649 78,62709 23,35571

PC 145 10 t=10 1 s=1 5 k=5 464 511,6923 550 27,13183 12,00909 32,23491 52,88704 13,64916

PC 170 10 t=10 1 s=1 5 k=5 486 535,1923 567 29,81355 26,03771 59,08831 99,34826 17,89669

PCIterativeBestSensor 65 10 t=10 1 s=1 5 k=5 398 477,0417 523 41,24771 2,071081 2,651601 4,088826 0,530331

PCIterativeBestSensor 82 10 t=10 1 s=1 5 k=5 441 527,3333 625 62,09849 1,779566 2,480369 3,281485 0,473885

PCIterativeBestSensor 101 10 t=10 1 s=1 5 k=5 476 510,875 564 34,48709 2,218881 2,692586 3,293218 0,293672

PCIterativeBestSensor 122 10 t=10 1 s=1 5 k=5 508 574,3333 631 43,03745 2,177868 3,049424 3,966591 0,473315

PCIterativeBestSensor 145 10 t=10 1 s=1 5 k=5 495 545,3333 568 22,30097 2,788028 3,631356 4,896934 0,521592

PCIterativeBestSensor 170 10 t=10 1 s=1 5 k=5 486 541,7778 593 32,55688 3,487982 4,3648 5,325202 0,455991
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(c) Scenario2b: Average time of exe-

cution (sec.)

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd Kheur/Kmdl

PQ 290 20 t=20 1 s=1 0,1 k=0,1 1 5,288136 9 2,131689 7,088214 11,39881 22,65023 3,883253

PQ 290 20 t=20 1 s=1 0,2 k=0,2 5 9,285714 13 2,320055 7,893378 22,50428 79,5252 17,81675

PQ 290 20 t=20 1 s=1 0,3 k=0,3 8 12,93103 16 2,148472 9,688847 60,57347 239,0693 61,22107

PQ 290 20 t=20 1 s=1 0,4 k=0,4 11 16,59649 19 1,814751 9,778715 43,88753 141,8176 34,40962

PQ 290 20 t=20 1 s=1 0,5 k=0,5 16 18,63934 20 0,941446 8,531133 20,01187 36,62148 7,646399

PQ 290 20 t=20 1 s=1 0,6 k=0,6 18 19,4375 20 0,704339 6,89656 11,22111 20,13029 3,026392

PQ 290 20 t=20 1 s=1 0,7 k=0,7 19 19,75 20 0,433013 6,384966 8,226203 11,19161 1,194091

PQ 290 20 t=20 1 s=1 0,8 k=0,8 19 19,85965 20 0,347351 5,413093 5,800097 6,114506 0,181673

PQ 290 20 t=20 1 s=1 0,9 k=0,9 20 20 20 0 5,203323 5,696368 6,446874 0,260836

PQ 290 20 t=20 1 s=1 1 k=1,0 20 20 20 0 5,21293 5,573075 5,987914 0,159227

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,1 k=0,1 1 6 10 2,44949 6,141822 9,80408 15,08432 2,169726 1,134615

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,2 k=0,2 5 11,62295 16 2,782639 9,193105 14,45169 19,47181 2,50717 1,251702

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,3 k=0,3 10 15,12903 18 1,9301 11,8475 17,41172 20,80697 2,174654 1,169978

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,4 k=0,4 15 17,78689 20 1,344262 16,16919 19,59599 23,04688 1,691464 1,071726

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,5 k=0,5 19 19,47458 20 0,499353 17,689 20,72784 24,11545 1,361424 1,04481

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,6 k=0,6 19 19,7069 20 0,455185 18,77447 20,61466 22,32014 0,757704 1,01386

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,7 k=0,7 19 19,85965 20 0,347351 18,04132 19,52601 21,3423 0,70599 1,005552

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,8 k=0,8 19 19,93443 20 0,247536 17,18789 18,89743 21,13711 0,839763 1,003765

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,9 k=0,9 20 20 20 0 16,23577 18,22214 19,91073 0,761808 1

PQIterativeLPBestSensor 290 20 t=20 1 s=1 1 k=1,0 20 20 20 0 3,705055 4,023818 4,329027 0,140352 1
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(d) Scenario3b: Average number

of sensors

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd Kheur/Kmdl

PQ 290 20 t=20 1 s=1 0,1 k=0,1 1 5,288136 9 2,131689 7,088214 11,39881 22,65023 3,883253

PQ 290 20 t=20 1 s=1 0,2 k=0,2 5 9,285714 13 2,320055 7,893378 22,50428 79,5252 17,81675

PQ 290 20 t=20 1 s=1 0,3 k=0,3 8 12,93103 16 2,148472 9,688847 60,57347 239,0693 61,22107

PQ 290 20 t=20 1 s=1 0,4 k=0,4 11 16,59649 19 1,814751 9,778715 43,88753 141,8176 34,40962

PQ 290 20 t=20 1 s=1 0,5 k=0,5 16 18,63934 20 0,941446 8,531133 20,01187 36,62148 7,646399

PQ 290 20 t=20 1 s=1 0,6 k=0,6 18 19,4375 20 0,704339 6,89656 11,22111 20,13029 3,026392

PQ 290 20 t=20 1 s=1 0,7 k=0,7 19 19,75 20 0,433013 6,384966 8,226203 11,19161 1,194091

PQ 290 20 t=20 1 s=1 0,8 k=0,8 19 19,85965 20 0,347351 5,413093 5,800097 6,114506 0,181673

PQ 290 20 t=20 1 s=1 0,9 k=0,9 20 20 20 0 5,203323 5,696368 6,446874 0,260836

PQ 290 20 t=20 1 s=1 1 k=1,0 20 20 20 0 5,21293 5,573075 5,987914 0,159227

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,1 k=0,1 1 6 10 2,44949 6,141822 9,80408 15,08432 2,169726 1,134615

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,2 k=0,2 5 11,62295 16 2,782639 9,193105 14,45169 19,47181 2,50717 1,251702

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,3 k=0,3 10 15,12903 18 1,9301 11,8475 17,41172 20,80697 2,174654 1,169978

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,4 k=0,4 15 17,78689 20 1,344262 16,16919 19,59599 23,04688 1,691464 1,071726

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,5 k=0,5 19 19,47458 20 0,499353 17,689 20,72784 24,11545 1,361424 1,04481

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,6 k=0,6 19 19,7069 20 0,455185 18,77447 20,61466 22,32014 0,757704 1,01386

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,7 k=0,7 19 19,85965 20 0,347351 18,04132 19,52601 21,3423 0,70599 1,005552

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,8 k=0,8 19 19,93443 20 0,247536 17,18789 18,89743 21,13711 0,839763 1,003765

PQIterativeLPBestSensor 290 20 t=20 1 s=1 0,9 k=0,9 20 20 20 0 16,23577 18,22214 19,91073 0,761808 1

PQIterativeLPBestSensor 290 20 t=20 1 s=1 1 k=1,0 20 20 20 0 3,705055 4,023818 4,329027 0,140352 1
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(e) Scenario3b: Average time of

execution (sec.)

alg net t s q Kmin Kavg Kmax Kstd Tmin Tavg Tmax Tstd

PQ 145 20 t=20 1 s=1 0,3 k=0,3 8 10,77778 13 1,422916 4,696 16,73902 42,637 7,983834

PQ 170 20 t=20 1 s=1 0,3 k=0,3 9 11,78182 15 1,497767 5,292 16,85065 36,774 6,627098

PQ 197 20 t=20 1 s=1 0,3 k=0,3 9 11,81356 15 1,836306 7,214 26,49702 74,219 16,98452

PQ 226 20 t=20 1 s=1 0,3 k=0,3 10 12,54237 15 1,356991 5,896 28,09566 93,625 22,78248

PQ 257 20 t=20 1 s=1 0,3 k=0,3 10 12,44643 16 1,450611 7,885 37,23536 149,982 38,33038

PQIterativeBestSensor 145 20 t=20 1 s=1 0,3 k=0,3 9 13,01639 15 1,299329 4,953 6,710328 8,529 0,747588

PQIterativeBestSensor 170 20 t=20 1 s=1 0,3 k=0,3 10 13,3125 18 1,886424 6,018 8,147359 10,425 0,958072

PQIterativeBestSensor 197 20 t=20 1 s=1 0,3 k=0,3 11 14,39683 19 2,313107 7,899 9,970825 13,155 1,259055

PQIterativeBestSensor 226 20 t=20 1 s=1 0,3 k=0,3 10 13,63934 18 1,967213 8,831 11,03089 13,907 1,133022

PQIterativeBestSensor 257 20 t=20 1 s=1 0,3 k=0,3 10 14,4127 18 1,705592 9,531 13,64629 17,462 1,662039
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(f) Scenario4b: Average time of exe-

cution (sec.)

Figure 3.6: Scenario1b-4b



Chapter 4

Multi-Domain Service Function

Chain Placement

4.1 Introduction

4.1.1 SFC placement in multi-domain

In recent years, due to the development of network systems based on Software Defined

Networking (SDN) and Network Function Virtualization (NFV), computer networks do

not rely only on transmission resources, but also on computational resources. In a multi-

domain network, NFV may be deployed and hosted by different domains, and may belong

to the same (or other) authority.

In this work, we deal with SFC embedding in a multi-domain (multi-administrative)

environment and compose E2E multi-domain SFC services based on available national

network and compute resources (slices, VNFs). In particular, we consider the case of

federated military coalition networks.

In multi-domain context, the literature presents various studies to address slice em-

bedding, particularly within the 5G/6G (Addad et al. [1]). The centralized orchestration

requires a global view of the infrastructure, which raises scalability concerns. The desire to

reduce communication costs has led to developing distributed slice embedding solutions.

Other related works on multi-domain SFC address, e.g., reduction of deployment time (El

Amine et al. [36]), dynamic orchestration (Wu and Zhou [129]), and SFC placement with

limited visibility (Toumi et al. [119]).

72
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In coalition networks, by taking advantage of new technologies SDN/NFV, various

network operators (nations, in the context of military networks) can provide efficient

and attack-resistant network services by sharing and complementing each other’s network

cyber-defense capabilities (Li and Wang [75]) provided in the form of network functions.

Our idea goes in the direction of building cooperative defenses for network protection.

4.1.2 Our proposal

Our goal is to assure attack-resistant end-to-end (E2E) services. To achieve this, in ad-

dition to network resources, we require additional security functions (also referred to as

critical functions in this work) that carry out threat detection and mitigation to pre-

pare the network against cyber-attacks. Such critical protection and mitigation security

functions could be, e.g., Firewall (FW), Intrusion Detection System (IDS), Distributed

Denial of Service (DDoS) attack sensor (Junosza-Szaniawski, Nogalski and Rzazewski

[63], Blazek et al. [16]), traffic scrubber (Fayaz et al. [39]), DDoS mitigation (Belabed et

al. [13]), encryption/decryption, traffic filtering, etc. In addition, there are other crucial

functions of network protection (of Quality of Service (QoS) nature), e.g., compression,

decompression, traffic shaping, traffic optimizer, and load balancer (Beck and Botero [12]).

We define resilient-to-attack network service as a Service Function Chain (SFC) com-

posed of a set of Virtual Network Functions (VNFs) and the directional virtual links that

connect them (the flow of packets passes through the chain of VNFs that constitute the

SFC). In a multi-domain network, NFV can be deployed and hosted by different domains.

We address the embedding of service chains (SFC embedding in short) in a multi-

domain context. When embedding a multi-domain SFC in a multi-administrative domain

federation, the initiating domain relies on the compact views of each domain’s network

topology (the abstract topologies) to form an E2E SFC. Typically, domains limit the

disclosure of topology information (Toumi et al. [119]). Classically, the abstract topology

shared with other domains consists of border nodes and abstract links connecting them.

Some domains may also share compute nodes with a set of VNFs they can host. Our work

also proposes sharing other elements, e.g., domain-level slices and non-border transit nodes

(Figure 4.1).

The SFC embedding algorithm executed on these abstracted topologies is referred to

as federated-level SFC embedding. It assigns network and computing resources exposed
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by domains to the requested multi-domain SFC. All of these resources should be checked

and confirmed, as some aspects of the abstractions may be out of date, even though they

were valid at the time of announcement. Domain-level sub-SFC embeddings are then

triggered on the selected domains. Without loss of generality, in this work we focus on

federated-level embedding and implicitly assume that all advertised abstractions remain

valid at the time of provisioning of the requested multi-domain SFC.

Although the SFC embedding problem is largely investigated in the literature, only

few works address it in a sliced collaborative multi-administrative network federation.

An example of SFC embedding at the federated level within a two-domain network is

presented in the Figure 4.1. Domain 1 exposes two data centers (each exposes two VNFs:

FW, IDS). Domain 2 exposes one data center (VNFs: FW, IDS). Both domains expose

edge nodes (green) and non-edge transit nodes (black). Some links represent domain-level

slices (dotted). We consider the embedding of a single user demand in the form of E2E

SFC. The user demand (blue) requires a chain of two VNFs (FW, IDS). For simplicity,

bandwidth and latency characteristics are omitted here.

Our work provides important insights for adopting slicing in a federated network for

the following reasons. First, a single nation may not have all the necessary network

capabilities to define an E2E SFC (e.g., degradation due to a DDoS attack (Chapter 3)

or a control plane attack (Chapter 2). Second, it may support several interesting security

scenarios e.g.: (1) Following Fayaz et al. [39], traffic scrubbing by remote VNFs. As soon

as we open military networks toward the Internet of Things the risk of volumetric attacks

will increase (Chapter 3). (2) Following Li and Wang [75], MEC (Multi-Access Edge

Computing) (5G) resilience to attacks from end-user networks can be increased by using

shared IDS (Intrusion Detection System) resources.

To sum up, our contribution consists of the following key elements:

• First, we deal with SFC embedding in a multi-domain context. The structure of

a federated topology is described in more detail in our previous work (Pedebearn

et al. [93]). Users are allowed to compose E2E SFC services spanning different

domains.

• Second, we address the multi-domain SFC embedding by proposing an Integer Lin-

ear Programming (ILP) model that solves VNF and link embedding simultaneously

(in existing works, they are usually solved separately). Our ILP model differs from



CHAPTER 4. MULTI-DOMAIN SERVICE FUNCTION CHAIN PLACEMENT 75

E E
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VNFs: {FW, IDS}

Domain 1 Domain 2

VNFs: {FW, IDS}

\ref{fig:SFCproblemoutline} presents a federated-level abstract view of the two-
domain network. Domain 1 exposes two logical data centers (each exposes two 
VNFs: FW, IDS). Domain 2 exposes one logical data center (VNFs: FW, IDS). Both 
domains expose edge nodes (yellow) and non-edge transit nodes (black). Some 
links represent domain-level slices (dotted). This example presents the embedding 
of the two user demands in the form of E2E SFCs. The first demand (blue) requires 
a single VNF (IDS), and the second requires a chain of two VNFs (FW, IDS). For 
simplicity, bandwidth and latency characteristics are omitted here. More details on 
the federated view of the network graph are depicted in 
\lblsection\enspace\ref{sec:proposedabstraction}.

Figure X. SFC embedding in sliced multi-administrative multi-domain network 
(federated-level view)
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Figure 4.1: SFC embedding in sliced multi-administrative multi-domain network

(federated-level view)

the models present in the literature (Addis et al. [2], Wion et al. [127]). We use

a different goal function (a combination of slice deployment cost and link utility

minimization). We use a (de)compression VNF and SFC ordering. Each topology

link can represent domain-level slice. In addition, since the problem is NP-hard

(Addad et al. [1]), we provide an efficient heuristic.

• Third, we performed extensive experiments on known topologies. We demonstrate

that the ILP model efficiently solves SFC problems of a practical size, while the

heuristic can solve large-scale problems very fast with decent efficiency. This leads

to a trade-off between the two.
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4.2 Problem description

4.2.1 Notation

The notation describes parameters (Table 4.1) and variables (Table 4.2) that define the

network and demand model. This is a general notation, common for both the ILP model

(Section 4.3.1) and greedy heuristic (Section 4.4.1).

We model the federated-level abstract network (abstracted view) for the purpose of

federated-level SFC embedding as a directed graph G = (N, A), where N is a set of nodes,

and A is a set of directed links. A node can be: an edge node or a non-edge transit node.

A data center (hosting VNFs) can be co-located with either of them. A link a ∈ A can

be a slice link a ∈ As (it represents a domain-level slice) or a classical transit link. An

example federated level network graph is shown in the middle part of Figure 4.1.

The central part of the demand model is the definition of the service chains. The tuple

(fk,1, .., fk,Tk) (list of ordered services) is defined for each k-th demand k ∈ D. Each E2E

demand is represented by a single SFC. The user may define more than one demand, e.g.,

a separate one for data and control plane purposes.

Additionally to Table 4.1, since for each f ∈ F we might have an individual compres-

sion factor µf , we define bp
k as follows:

bp
k =


bk, p = 0

bk · ∏p
q=1 µfk,q , p ∈ {1, . . . , Tk}

(4.1)

The bp
k denotes bandwidth used by demand k ∈ D after the first p services fk,1, .., fk,p

are performed.

4.3 Model description

4.3.1 The ILP Model

The model takes two types of federated-level parameters as input. First, the network

model: topology, bandwidth, latency, VNF types, and locations (node). Second, the de-

mand model: bitrate, delay, and SFC requirement (Table 4.1-4.2). A detailed description
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Table 4.1: Notation I
Parameters

N Set of nodes

A Set of links (arcs)

As ⊆ A Subset of links (arcs) which are slice-able

γmax
i,j Maximum capacity of the arc (i, j)

γi,j Available capacity of the arc (i, j) ∈ A. ‘Available’ since we consider iterative

allocations (for heuristic purpose)

li,j Latency of the link (i, j) ∈ A, which is an upper bound that includes the

transmission delay and the propagation delay

F Set of service types (VNF types)

D Set of demands

ok, tk ok, tk ∈ N origin and target of k-th demand k ∈ D

bk, Lk Bandwidth and max latency of k-th demand k ∈ D

fk,p fk,p ∈ F is p-th service step of k-th demand k ∈ D

Tk For k-th demand it is the length of its service chain (fk,1, .., fk,Tk)

µf Compression/decompression factor for service f ∈ F , where µf = 1 no com-

pression/decompression; µf ≤ 1 compression VNF; µf ≥ 1 decompression

VNF

Nf Nf ⊂ N set of nodes which provide a service (VNF) of type f ∈ F

NF NF = ⋃
f∈F

Nf set of nodes which provide a service (VNF) of any type

bp
k Bandwidth used by demand k ∈ D after the first p services fk,1, .., fk,p are

performed

of federated-level abstraction can be found in our previous work Pedebearn et al. [93].

The optimization problem is to find:

• the optimal domain cost of the slice deployment (by minimizing the number of

deployed national slices)

• the optimal link utilization (by minimizing maximum link utilization - to increase

future demand admissibility)

subject to the following constraints:
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Table 4.2: Notation II
Decision Variables

ϕk,p
i,j Continuous variable, represents the flow on the arc (i, j) ∈ A of demand k ∈ D for

the p-th service step. The p-th service step is the state of demand processing after

p-th service (fk,p) is performed and before p + 1-th service (fk,p+1) is performed.

For the initial service step p = 0, the flow ϕk,0
i,j denotes state before the first

service (fk,1) is performed

xk,p
i,j Binary (xk,p

i,j ∈ {0, 1}), xk,p
i,j = 1 iff ϕk,p

i,j > 0 (the arc (i, j) ∈ A is used by the flow

ϕk,p
i,j )

ei,j Binary (ei,j ∈ {0, 1}), ei,j = 1 iff the arc (i, j) ∈ A is used by at least one flow

ϕk,p
i,j for k ∈ D, p ∈ {0, . . . , Tk} (ei,j = max{xk,p

i,j : k ∈ D, p ∈ {0, . . . , Tk}})

zk,p
i Binary (zk,p

i ∈ {0, 1}), zk,p
i = 1 iff for demand k ∈ D the p-th service (fk,p ∈ F )

is executed at node i ∈ Nfk,p

U Continuous variable, represents maximum link utilization rate

• Flow conservation laws are defined via the relationship between ϕ and z variables.

We distinguish the following main cases: p = 0, p = Tk, and otherwise.

For p = 0 (unprocessed flow of demand k ∈ D), we have two sub-cases. First, if

i = ok (4.2a), then the flow balance (outgoing flow value - incoming flow value)

equals b0
k, which is bk. Second, if i = N − {ok} (4.2b), we have two states: either

zk,1
i = 0 (fk,1 service is not placed at i) then the flow balance is 0 or zk,1

i = 1 then

flow ϕk,0 terminates in the node i and thus the flow balance is −b0
k.

For p = Tk (flow of demand k ∈ D processed by service fk,Tk) we have two sub-cases.

First, if i = tk (4.2e), then the flow balance equals −bTk
k . Second, if i = N − {tk}

(4.2d), we have two states: either zk,Tk
i = 0 (fk,Tk service is not placed at i) then

the flow balance is 0 or zk,Tk
i = 1 then the flow ϕk,Tk starts at the node i and thus

the flow balance is bTk
k .

Otherwise, for p > 0 and p < Tk (4.2c) we have three states. If zk,p
i = 0 and

zk,p+1
i = 0, then the flow balance is 0. If zk,p

i = 1 and zk,p+1
i = 0, then the flow ϕk,p

starts at the node i and thus the flow balance is bp
k. If zk,p

i = 0 and zk,p+1
i = 1, then

the flow ϕk,p terminates at the node i and thus the flow balance is −bp
k.
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∀k ∈ D ∀i ∈ N ∀p ∈ {0, .., Tk}∑
(i,j)∈A

ϕk,p
i,j −

∑
(j,i)∈A

ϕk,p
j,i

=



b0
k p = 0, i = ok (4.2a)

−b0
k · zk,1

i p = 0, i ∈ N − {ok} (4.2b)

bp
k · zk,p

i − bp
k · zk,p+1

i p ∈ {1, .., Tk − 1}, i ∈ N (4.2c)

bTk
k · zk,Tk

i p = Tk, i ∈ N − {tk} (4.2d)

−bTk
k p = Tk, i = tk (4.2e)

• For non-VNF nodes i ∈ N \ NF variable z equals zero

∀k ∈ D ∀p ∈ {1, .., Tk} zk,p
i = 0 (4.3)

• For demand k ∈ D, the p-th service (fk,p) is performed by at most one service

available at some node i ∈ Nfk,p

∀k ∈ D ∀p ∈ {1, .., Tk}
∑

i∈N
fk,p

zk,p
i = 1 (4.4)

• There is flow only on used edges - the connection between ϕ and x

∀k ∈ D ∀(i, j) ∈ A ∀p ∈ {0, .., Tk} ϕk,p
i,j = bp

k · xk,p
i,j (4.5)

• Maximum latency has two components: delay on transport link A, and delay caused

by VNF processing (the latter can be easily included)

∀k ∈ D
∑

(i,j)∈A

∑
p∈{0,..,Tk}

li,j · xk,p
i,j ≤ Lk (4.6)

• If the slice arc (i, j) ∈ As is used by at least one demand k ∈ D, then the slice is

enabled

∀k ∈ D ∀p ∈ {0, .., Tk} ∀(i, j) ∈ As xk,p
i,j ≤ ei,j (4.7)
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• If the slice arc (i, j) ∈ As is not used by any demand k ∈ D, then the slice is disabled

∀(i, j) ∈ As

∑
k∈D

∑
p∈{0,..,Tk}

xk,p
i,j ≥ ei,j (4.8)

• The sum of flows does not exceed the edge capacity. For online version of the

algorithm (also for Section 4.4.1)

∀(i, j) ∈ A,

1 − 1
γmax

i,j

·

γi,j −
∑

k∈D

∑
p∈{0,..,Tk}

ϕk,p
i,j

 ≤ U

We consider two objective functions:

• Traffic Engineering (TE) goal: minimize the maximum network link utilization (e.g.,

to increase future demand admissibility):

min U (4.9)

• Slice Deployment (SD) goal: minimize the number of used slices (e.g., to reduce

slice setup time):

min
∑

(i,j)∈As

ei,j · 1
|AS|

(4.10)

We define S as equal to ∑
(i,j)∈As

ei,j · 1
|AS | .

Thus, depending on the federated operator need, the objective is to balance between

TE and SD goals by adjusting α, where α ∈ [0, 1] is a parameter describing the

importance of TE goal over SD goal

min α U + (1 − α) S (4.11)

We define G as equal to α U + (1 − α) S.

4.4 Algorithm description

4.4.1 The Greedy Heuristic

The heuristic is given as Algorithm 4. Firstly, the demand set is sorted by latency (could

also be sorted by bandwidth if needed) (line 3). Secondly, in each iteration (line 5-10) the
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subset of d demands Dd ∈ D is selected (line 5), processed by model (line 6), embedded

(line 7-8), and demands marked as processed (line 9).

Algorithm 4 SFC Greedy Heuristic
1: INPUT: G(N, A); As; for each link (i, j) ∈ A capacity γmax

i,j , γi,j, latency li,j; VNF

advertisements F , Nf ; demands k ∈ D; d - number of demands processed in a single

algo iteration

2: OUTPUT: result ϕ (list of embedded slices (path definitions)), in other words |D|

E2E slices (paths) one for each requested demand k ∈ D, defined via ϕk,p
i,j for each

k ∈ D, (i, j) ∈ A and p ∈ {0, .., Tk}

3: Sort demands D by latency (from low latency to high latency (latency insensitive))

4: while D ̸= ∅ do

5: Select d demands Dd ⊆ D (if d > |D|, select remaining)

6: Run SFC ILP Model (Section 4.3.1) with the input

(N, A, As, γmax
i,j , γi,j, li,j, F, Nf , Dd) to get ϕk,p

i,j for each k ∈ Dd, (i, j) ∈ A

and p ∈ {0, .., Tk}

7: Add ϕk,p
i,j assignments to the result ϕ (list of embedded paths)

8: Update available capacity ∀(i, j) ∈ A, γi,j = γi,j − ∑
k∈Dd

∑
p∈{0,..,Tk} ϕk,p

i,j

9: D = D \ Dd

10: return ϕ

11: end while

4.5 Computational results

The model (Section 4.3.1) was implemented in Optimization Programming Language

(IBM CPLEX v22.1), and the heuristic (Section 4.4.1) was implemented in Python v3.10.

4.5.1 Evaluation1 simulation on “cost266” network

For this experiment, we defined a multi-domain topology based on the “cost266” topology

(Orlowski et al. [90]), by assigning nodes (cities) to domains (countries) (Figure 4.2).

Results of ILP model

We conducted the tests of the model with the following configurations (4x2):
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Figure 4.2: Evaluation1 Multi-domain topology based on “cost266”

• 4 topology configurations. Each topology configuration was generated with a ran-

domly assigned maximum link capacity and latency. Links in the red dotted area

(Figure 4.2) received a capacity in the range of 5-10 Gbit/s. Links in the orange

dotted area 2-5 Gbit/s, and peripheral links 1-2 Gbit/s. All links received latency

in the range of 3-10 ms.

• 2 data center (DC) configurations. Each DC configuration contained seven randomly

selected DCs - two located in France, three in Germany, one in Poland, and one in

the Netherlands. For each DC, we randomly assigned two VNFs out of four from

the VNF catalog = {FW, IDS, Deep Packet Inspection (DPI), Traffic Storage}).

We conducted three series of measurements, each corresponding to a fixed number of

user demands {4, 6, 8}. Demand sets were generated incrementally. To the demand set

of four demands (4), we added two demands (6) and again two demands (8). A single

user demand was defined in the following way:

• a random start and end (in a different domain)
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• a random bitrate in the range of 100-400 Mbit/s

• a random SFC (two ordered VNFs selected from the VNF catalog)

• a random maximum latency. In total, 25% of all demands in a demand set (D) were

low latency (100 ms), and others latency insensitive.

For each series, we assumed the following values α = {0, 0.2, 0.4, 0.6, 0.8, 1.0} (Equa-

tion 4.11). For fixed α, we conducted eight measurements (4x2) by changing topology

and DC configuration and computed the average value of the goal (G), link utilization

(U), slice deployment (S), and execution time (T). These average values were taken to

analyze the experiment results (Figure 4.3).

As one can observe, when the number of demands goes up, the combined goal value

(G) (Equation 4.11) goes up (or stays at the same level) for any value of α (Figure 4.3a).

This shows the expected behavior of the model since, as we embed more demands, either

more links are used (e.g. α = {0, .., 0.8} (Figure 4.3c)), or the maximum link utility might

be increased (but will never decrease) (e.g. α = {0.2} (Figure 4.3b)).

Additionally, the average U and S (Equation 4.9 and 4.10) values behave as expected

for any demand series (Table 4.3, Figure 4.3b-c). For any number of demands: first,

when α increases, the U decreases (as we increase the importance of the link utility

minimization factor) (Figure 4.3b); second, when α decreases, the S decreases (as we

increase the importance of the slice deployment cost minimization factor) (Figure 4.3c).

Since the problem is NP-Hard, we show the model significant computation times

(Figure 4.3d, up to 1730 s for only 8 demands). This is the reason why we designed

the heuristic.

Table 4.3: Evaluation1 “cost266”: The results of the model for demand set {4, 6, 8} - U

and S

|D| \ α 0 0,2 0,4 0,6 0,8 1 U or S

4 - 0,303 0,293 0,282 0,282 0,282 U

6 - 0,389 0,309 0,294 0,290 0,290 U

8 - 0,406 0,310 0,297 0,290 0,290 U

4 0,132 0,154 0,157 0,166 0,166 - S

6 0,167 0,178 0,202 0,216 0,225 - S

8 0,208 0,219 0,250 0,262 0,274 - S
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Figure 4.3: Evaluation1 “cost266”: The results of the model for demand set {4, 6, 8} - G,

U , S and T
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Results of heuristic

We conducted tests of the heuristic with the same 4 topology configurations and 2 DC

configurations as in the previous subsection (same 4x2 configurations as for the testing of

the ILP model). This time we conducted four series of measurements, each correspond-

ing to a fixed number of user demands {10, 25, 45, 60}. Demand sets were generated

incrementally. The heuristic was run with step d = 3.

As one can observe (Figure 4.4a), the average G values behave as expected; for any

α, they increase as we increase the number of demands. The execution time is much

lower compared to the one measured for the ILP model. A single observed average max

computation time is up to 35 s (for 60 demands, Figure 4.4d).

4.5.2 Evaluation2 simulation on “nsfnet”network

We proved experimentally that the ILP model (Section 4.3.1) is more efficient than the

heuristic (Section 4.4.1). First, we transformed the “nsfnet” topology (Zhu et al. [136])

to multi-domain by assigning nodes to domains (Figure 4.5). Both the ILP model and

the heuristic were run with the following configurations (5x2):

• 5 topology configurations. Each topology configuration was generated with a ran-

domly assigned maximum link capacity and latency. Each link (Figure 4.5) received

a capacity from the range of 5-10 Gbit/s. All links received latency in the range of

3-10 ms.

• 2 data center (DC) configurations. Each DC configuration contained seven randomly

selected DCs - two located in the East, one in the Center, one in the South, and

three in the West. For each DC, we randomly assigned two VNFs out of four from

the VNF catalog.

We generated eight random demands. A single user demand was defined in the following

way:

• a random start and end (in a different domain)

• a random bitrate in the range of 100-400 Mbit/s

• a random SFC (two ordered VNFs selected from the VNF catalog)
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Figure 4.4: Evaluation1 “cost266”: The results of the heuristic for demand set

{10, 25, 45, 60} - G, U , S and T
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• a random maximum latency. In total, 25% of all demands in a demand set (D) were

low latency (100 ms), and others were latency insensitive.

The heuristic was run with step d = 2. As observed in this scenario, the ILP model (M)

is more efficient (for any α, it uses less network resources to embed the demand set) than

the heuristic (H) by up to 27% (Figure 4.6a). On the other hand, the heuristic is much

faster (Figure 4.6d). A single average max computation is approximately 1 s. The model

works fast for α=0 and 1. For these cases, the model only minimizes S or U . In such

cases, it is easier to find an optimal solution. When α ∗ U and (1 − α) ∗ S have similar

values, there are more feasible solutions with similar values to be analyzed by the model.

Additionally, we note that the G function is decreasing (Figure 4.6a), which is different

compared to Figure 4.3a and Figure 4.4a, which are both increasing. The behavior of G

depends on: the proportion of the sum of all demanded bitrates per average link capacity;

the proportion of the number of demands per cardinality of the set As; and the structure

of the network. The average link capacities in the two experiments were different. The

networks also have different size and structure. Furthermore, the monotonicity of the goal

function G, in general, is not guaranteed.

2
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Figure 4.5: Evaluation2 Multi-domain topology based on “nsfnet”

4.5.3 Multi-domain SFC emulation - proof of concept

The SFC proof of concept is based on Containernet, Docker (VNFs), Open vSwitch (OVS),

and Linux Router. We set up a network of three domains (Domain 1-3, Figure 4.7), with

several OpenFlow-enabled OVS switches (performing packet forwarding within a domain)
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Figure 4.6: Evaluation2 “nsfnet”: comparison of the model (M) and heuristic (H) for

demand set {8}
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and Linux IP Routers (that connect different domains). Two user networks (UN) are

connected to each domain. To emulate the security scenario (IDS resource share), we

use Snort IDS (VNF). Snort VNFs are located in Data Centers 1, 2, and 3 (DC for

short). DC4 contains a Storage VNF. For simplicity, each link capacity (inter-domain

and intra-domain) has the same capacity, equal to 2 units.

We assume that slice-able links are switch-to-switch links (si, sj). In our topology,

there are 15 slice-able links (6 in Domain 1, 5 in Domain 2, 1 in Domain 3, and 3 inter-

domain slice links).

If, according to the slice definition, the network traffic is to be handled by a VNF

service (e.g. IDS - Snort), e.g. transfer of packets from switch S6 to the data center DC1

(Figure 4.8a, orange slice), this is done by copying the traffic to the appropriate network

interface of a DC. Additionally, the network interface in the DC (e.g. Snort machine) must

be configured in promiscuous mode to enable the capture and reading of every network

packet that reaches its interface.

For emulation of our two scenarios, we define a set of two E2E demands (E2E slices),

each requires a single VNF in the chain:

• D1 (orange)={origin: UN1, target: UN3, bitrate=1 unit, VNF=(IDS)}

• D2 (green)={origin: UN2, target: UN4, bitrate=1 unit, VNF=(IDS)}

For both scenarios, we compute E2E slices using the ILP model and provision them in

our Containernet environment: first by installing OpenFlow rules on OVS switches (intra-

domain), and then by installing IP routing entries (inter-domain).

Emulation scenario1 - maximum link utility minimized

In this scenario (Figure 4.8a), we minimize maximum link utility. In our goal function

min α U + (1 − α) S, by setting α = 1 we receive min U . The computation resulted in

U = 0.5 (any link is used in a maximum of 50%). As one can observe (Figure 4.8a), slices

tend to be disjoint (spread). As explained above, the computed data paths (slices) are

provisioned by generating and installing the corresponding OpenFlow rules in all traversed

domains.
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Figure 4.7: Containernet emulation - environment

Emulation scenario2 - national slice usage minimized

We minimize the number of used national slices in this scenario (Figure 4.8b). In our

goal function min α U + (1 − α) S, by setting α = 0 we receive min S. The computation

resulted in S = 0.33(3) (used 5 slices out of 15; however, link utility is sacrificed U = 1).

As one can observe (Figure 4.8b), slices tend to overlap (orange, green). As explained

above, the computed data paths (slices) are provisioned by generating and installing the

corresponding OpenFlow rules in all traversed domains.

4.6 Speedup methods

4.6.1 Introduction

Below, we formulate a simplified problem to show the direction of our future works on

SFC embedding. We formulate the Network Utility Maximization problem (NUM) (Kelly

et al. [66].) in a multi-commodity single path setting. The problem is joint optimiza-

tion over rates and paths (single-path). Our NUM problem belongs to a class of more

general flow problems, namely the multicommodity flow problem (MFP) (Leighton et

al. [73]). However, our formulation is single-path, unlike the multi-path formulation in

MFP (Leighton et al. [73]). In the NUM problem, we consider only network resources
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Figure 4.8: Containernet emulation - evaluation scenarios

(link capacity) and do not consider computational resources (at nodes) as in the SFC

embedding problem.

Such a problem is computationally hard. The decision version of the m-commodity

flow problem with fixed rates and the single-path setting is NP-complete (Drwal [34]).

This is proved by the reduction from the decision version of the bin-packing problem.
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Even et al. [37] show that even the decision version of the two-commodity integral flow

problem is NP-complete by reduction from the SAT problem.

Since such a basic problem is computationally hard, we propose relaxation (polynomial-

time solvable) and rounding-based techniques and provide several heuristics (in this work,

we present two of them; more can be found in our previous work by Szaniawski and Nogal-

ski [61]). We designed and implemented several heuristics and compared their performance

with the exact linear programming solver. Because our utility function is nonlinear, we

apply linear approximation within the optimization procedure. The results of the exper-

iments demonstrate a trade-off between resource utilization efficiency and computation

time.

4.6.2 Problem definition

Let’s assume:

• G = (V, E) an undirected graph representing a network, where V is a set of nodes

and E a set of edges (this model could also be defined for a directed graph)

• c : E → [0, ∞) capacity function

• S a set of users

• D = {(sk, tk) ∈ V × V : k ∈ S, and sk, tk ∈ V } a set of (source,target) pairs -

demands for transmission

• u : S × [0, ∞) → [0, ∞) utility function

• u(k, x) = uk(x) utility value of transmission rate x for the user k ∈ S.

The problem is to find a set of pairs {(xk, Pk) : k ∈ S}, where xk is a non-negative

transmission rate assigned to the user (4.13), Pk is a transmission path in the graph G

from sk to tk, assignments do not exceed (altogether) the edge capacity (4.14) and rates

are maximized (4.12). Such an extended NUM problem is a generalization of the basic

NUM formulated by Kelly et al. [66].

max
∑
k∈S

uk(xk) (4.12)

We assume ∀i,j,∈S ui = uj.
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∀k∈S xk ≥ 0 (4.13)

∀{u,v}∈E(G)
∑

k, s.t. {u,v}∈E(Pk)

xk ≤ c(u, v) (4.14)

4.6.3 Model description

MILP NUM

In MilpNum each flow fk takes a single path Pk from the source sk to the target tk.

We introduce a real variable fkuv, which indicates the amount of flow fk passing via edge

(u, v). The fkuv indicates u → v flow direction and fkvu reverse. We rewrite the constraint

(4.14) as (4.15). We set a requirement that the flow is balanced (4.16), except source and

terminal nodes (4.17)(4.18).

∀{u,v}∈E(G)
∑

k, s.t. {u,v}∈E(Pk)

fkuv + fkvu ≤ c({u, v}) (4.15)

∀k∈S ∀u∈V \{sk,tk}
∑

v:{v,u}∈E(G)
fkvu =

∑
w:{u,w}∈E(G)

fkuw (4.16)

∀k∈S

∑
w:{sk,w}∈E(G)

fkskw = xk (4.17)

∀k∈S

∑
v:{v,tk}∈E(G)

fkvtk
= xk (4.18)

We introduce a binary variable ykuv, which indicates whether flow fk is passing via

edge (u, v) (4.19). The variable ykuv indicatesWe have chosen α = 1/2 for the experiment

purpose u → v flow direction and ykvu reverse.

∀k∈S ∀{u,v}∈E(G) ykuv, ykvu ∈ {0, 1} (4.19)

We bind the variable ykuv with the variable fkuv using two additional constraints

(4.20)(4.21).

∀kuv:k∈S,{u,v}∈E(G) fkuv ≤ ykuv · c({u, v}) (4.20)
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∀kuv:k∈S,{u,v}∈E(G) ykuv ≤ fkuv · L (4.21)

where L is a large number.

In practice, fair allocations of capacity are needed. This can be obtained by choosing

the utility function properly. In literature (Chiang et al. [24], Kelly et al. [66], Drwal

[34]) most common is a family of functions:

uk(xk) =


wk

1
1−α

x1−α
k , α > 0, α ̸= 1

wklog(xk), α = 1
(4.22)

For the experiment purpose, we have chosen α = 1/2, which gives the function (4.23).

We assume the flow value to be non-negative (4.13).

∀k ∈ S uk(x) = u(x) = 2
√

x (4.23)

We approximate the function (4.23) with three linear functions over range x ∈ [0, 1]

(see Figure 4.9). Such a choice stems from our assumption ∀{u, v} ∈ E(G) c(u, v) = 1.

If the links differed in capacity, the approximation function could take values from 0 to

the maximum edge capacity. For the approximation purpose, an additional equation is

introduced (4.25). The goal function (4.12) is rewritten as (4.24).

max
∑
k∈S

(a1 · t1,k + a2 · t2,k + a3 · t3,k) (4.24)

where a1 = 12.00, a2 = 3.00, a3 = 1.3(3)

∀k∈S xk = t1,k + t2,k + t3,k (4.25)

where 0 ≤ t1,k ≤ 1/36, 0 ≤ t2,k ≤ 8/36, and 0 ≤ t3,k

MILP NUM Relaxed

In MilpNum Relaxed we relax the ykuv variable to allow the flow to split and flow via

multiple paths (4.26). Such relaxation formulates the problem known in the literature

as Multicommodity Flow Problem (MFP). Since this is a linear program, MFP can be

solved in polynomial time (Pfetsch and Liebchen [97]).
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∀k∈S∀{u,v}∈E(G) ykuv, ykvu ∈ [0, 1] (4.26)

In this NUM formulation the following constraints hold { (4.13), (4.15), (4.16), (4.17),

(4.18), (4.25) }, and constraints {(4.19),(4.20),(4.21)} are replaced with (4.26).

4.6.4 Algorithm description

To solve the NUM problem we have designed and implemented the below algorithms:

• LPBestPathNum(G, c, D) (see Algorithm 5)

• IterativeLPBestPathNum(G, c, D) (see Algorithm 6).

The algorithms assume the following input parameters:

• G graph representing a network

• c capacity function

• D a set of demands for transmission

and output parameters:

• A set of pairs {(xk, Pk) : k ∈ S} for which the constraints (4.13)(4.14) are satisfied

• U = ∑
k∈S u(xk) aggregated utility.

LP Best Path NUM

The algorithm LPBestPathNum (Algorithm 5) begins with solving linear program relax-

ation (line 2). Within the relaxed LP solution, for each k ∈ S the single max path (max
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min ykuv on the path) is identified as Pk (line 5). The procedure is using the BFS (Breadth

First Search) for that purpose. Finally, the LP problem is solved again taking fixed single

paths identified (line 8) as a constraint. The algorithm is similar to the vertex projection

method given in Wang et al. [125].

Algorithm 5 LPBestPathNum(G, c, D)
1: Assume a relaxed problem with goal (4.24) and constraints

{(4.13),(4.15),(4.16),(4.17),(4.18),(4.25),(4.26)}

2: Solve the problem

3: Retrieve {y(k,u,v)∈S×V ×V } and U from the problem solution

4: for k ∈ S do

5: Using the BFS based procedure choose the max path Pk with value yPk
(max min

ykuv on the path)

6: end for

7: Add constraints {Pk : k ∈ S} to the problem

8: Solve the problem

9: return ({(xk, Pk) : k ∈ S}, U)

Iterative LP Best Path NUM

The algorithm IterativeLPBestPathNum (Algorithm 6) constitutes |S| + 1 iterations. In

each {1, .., |S|} iteration, linear program relaxation is solved (line 6). Within the relaxed

LP solution, for each i ∈ S \ S ′ the single max path Pi (max min yiuv on the path) is

selected (line 9). Among the |S \S ′|-paths, the best (max) Pi is selected and added to the

model (line 13) as a constraint (random selection, since there may be more than one best

path (line 12)). The constraint forces i-flow to use only Pi edges in the next iterations.

In the last |S| + 1 iteration the LP relaxation is solved assuming single fixed paths for all

the k ∈ S flows (line 16).

4.6.5 Computational results

Experiment Setup

The algorithms were programmed in Python 2.7 with the use of CPLEX Python library

12.8.0. The algorithm MilpNum uses CPLEX executable. All the simulations were run
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Algorithm 6 IterativeLPBestPathNum(G, c, D)
1: Assume a relaxed problem with goal (4.24) and constraints

{(4.13),(4.15),(4.16),(4.17),(4.18),(4.25),(4.26)}

2: Let’s initiate a set of users with fixed single path S ′ = ∅

3: stop = false

4: while (stop == false) do

5: if (S \ S ′ is not ∅) then

6: Solve the problem

7: Retrieve {y(k,u,v)∈S×V ×V } and U from the problem solution

8: for i ∈ S \ S ′ do

9: Using the BFS based procedure choose the max path Pi with value yPi
(max

min yiuv on the path)

10: end for

11: Let’s define a set M as following M = {i ∈ S \S ′: yPi
·xi == max{yPj

·xj}j∈S\S′}

12: Choose randomly i ∈ M , where probability of selecting an element i equals 1
|M |

13: Add constraint Pi to the problem

14: S ′ = S ′ ∪ {i}

15: else

16: Solve the problem

17: stop = true

18: end if

19: end while

20: return ({(xk, Pk) : k ∈ S}, U)

on a PC with 2-core 2.7GHz and 8GB RAM.

Networks and capacity

The experiments were conducted on five types of networks:

• Net7 with 7 nodes and 10 links (Figure 4.10, Jaskóła et al. [57]).

• Net22 with 22 nodes and 40 links (Figure 4.11, Bianzino et al. [15]). Here, nodes 1-

8 and T (which is a network exit node) were source-destination nodes (for definition

of demands).
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• Net42 with 40 disjoint paths spanned between node 1 and 42 (Figure 4.12).

• Net64 grid with 8x8 nodes (simple 3x3 grid to demonstrate a node numbering

scheme is shown in Figure 4.13).

• Net400 grid with 20x20 nodes.

In all the above networks each link had a capacity equal to one unit (∀{u,v}∈E(G) c({u, v}) =

1). In total 24 experiments were conducted. The experiment parameters (network, de-

mand) are given below.

2 4

3 51 6

7

Figure 4.10: Network Net7

Experiments Exp1-11 - Verification of algorithm performance for different

network structure, size and number of demands

Assumptions

The following 11 experiments were conducted with various settings:

• Exp1 - Net7, 10 demands 1;

• Exp2 - Net22, 10 demands randomly selected 2;

• Exp3/4 - Net22, 20 demands randomly selected 2;
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Figure 4.11: Network Net22

• Exp5 - Net22, 50 demands randomly selected 2;

• Exp6 - Net64, 20 demands 3;

• Exp7/8 - Net64, 20 demands randomly selected;

• Exp9/10 - Net64, 20 demands randomly selected 4;

• Exp11 - Net42, 20 demands each with (sk = 1, tk = 42).

Detailed assumptions:
1 set of (sk, tk) pairs is the following {(2,6), (2,3), (2,6), (2,5), (3,6), (3,6), (3,5), (6,3),

(2,6), (3,4)} (as given in [57])
2 50% of the (sk, tk) pairs constitute internal traffic (between nodes 1-8), and 50% of the

pairs constitute external traffic (between nodes 1-8 and T)
3 10 pairs with (sk = 1, tk = 64) and 10 pairs with (sk = 8, tk = 57)
4 Traffic sources and targets are located on the grid edge, and are randomly selected.
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Figure 4.12: Network Net42
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Figure 4.13: Grid network Net9

Additionally, in each experiment, the algorithms: LPBestPathNum and IterativeLPBest-

PathNum were run 20 times and the average values of objective Uavg and execution time

Tavg are presented on the figures.

Results

• LPBestPathNum vs IterativeLPBestPathNum. In Exp1-11 the average

observed objective values of IterativeLPBestPathNum were higher than values of

LPBestPathNum by up to 14.5%, except for the parallel edge network (Net42 ) by

31% (Figure 4.14, Exp11 ). However, IterativeLPBestPathNum exposed higher exe-

cution time due to additional |S| − 1 iterations (Figure 4.15, Table 4.4).

• IterativeLPBestPathNum vs MilpNum. In Exp1-6,11 the optimal objective

values (MilpNum) were higher than IterativeLPBestPathNum solution by not more

than 1.5%. In Exp7,9-10 - by not more than 4.8%. In Exp8 - by 7.9%. However,
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Figure 4.14: Network aggregated utility U (experiments Exp1-11 )

the observed computation time of MilpNum for Net64 (Exp7-10 ) is very significant

(in hours) (Table 4.4). A possible, way around for MilpNum would be to configure

the automatic termination when reaching a defined solution gap. As an example,

in the experiment Exp9 MilpNum gave the value 26,22 (gap 16,95%) in 12s and 29

(5,75%) in 90s. IterativeLPBestPathNum gave 29,928 in 8,4s. In Exp10 MilpNum

gave 30 (11,11%) in 12s and 31,66 (5%) in 268s. IterativeLPBestPathNum gave

31,962 in 8,2s.

Experiments Exp12-21 - Verification of algorithm performance for different

number of demands

Assumptions

Additional 10 experiments on Net64 were conducted to demonstrate an increase in

utility and time upon an increase in the number of demands:

• Exp12 - Net64, 10 demands 6;
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Figure 4.15: Time of execution T [s] (experiments Exp1-11 )

Table 4.4: Execution time [s] (experiments Exp1-11 )
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It
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iv
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um

M
ilp

N
um

Tavg [s] Tavg [s] T [s]

1 0,067 0,204 0,08

2 0,199 0,558 0,33

3 0,398 1,949 4,09

4 0,397 1,786 1,14

5 1,309 11,517 8,05

6 1,268 4,604 15,3

7 1,435 8,31 1030,62

8 1,337 8,018 68073

9 1,344 8,359 4254,55

10 1,366 8,201 9168,24

11 1,873 10,502 0,25

• Exp13 - Net64, 20 demands 6;

• ...

• Exp21 - Net64, 100 demands 6;

Detailed assumptions:
6 Traffic sources and targets were located on the grid edge, and were randomly selected.
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Figure 4.16: Network aggregated utility (experiments Exp12-21 )

Each smaller demand set is a subset of a larger set.

Results

• IterativeLPBestPathNum vs LPBestPathNum. In Exp12-21 the average

objective values of IterativeLPBestPathNum and LPBestPathNum increased when

the number of demands increased. The utility values of IterativeLPBestPathNum

were higher than those of LPBestPathNum (Figure 4.16). The observed difference

became smaller when the number of demands increased. As observed, from 16% for

10 demands to 2% for 100 demands.

• However, IterativeLPBestPathNum requires much longer computation times than

LPBestPathNum, with an increasing number of demands (Figure 4.17).

Experiments Exp22-24 - Verification of algorithm performance for a very large

grid network

Assumptions
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Figure 4.17: Time of execution [s] (experiments Exp12-21 )

Finally, additional 3 experiments were conducted to capture utility and time for the

network Net400 :

• Exp22 - Net400, 20 demands 7;

• Exp23 - Net400, 50 demands 7;

• Exp24 - Net400, 100 demands 7;

Detailed assumptions:
7 Traffic sources and targets were located on the grid edge, and were randomly selected.

Each smaller demand set is a subset of a larger set.

Results

• IterativeLPBestPathNum vs LPBestPathNum. The utility difference be-

tween IterativeLPBestPathNum and LPBestPathNum was more visible for a very

large grid network (20x20 nodes), as observed 14.7% (20 demands) - 21.8% (50

demands) in favor of the former (Table 4.5).

• However, the computation time of IterativeLPBestPathNum for a very large net-

work as Net400 and large number of demands may not be practically attainable

(Table 4.5).
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Table 4.5: Utility and Time for a very large grid network (experiments Exp22-24 )

E
xp

er
im

en
t

ID

N
um

b
er

of
de

m
an

ds

L
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B
es

tP
at

hN
um

It
er

at
iv

eL
P

B
es

tP
at

hN
um

Uavg Tavg [s] Uavg Tavg [s]

22 20 31,54 27,09 36,18 139,78

23 50 63,59 341,51 77,46 6152,44

24 100 109,40 5129,93 - -

4.6.6 Conclusions on Speedup methods

Since the problem is NP-hard, search for optimum with the ILP model (MilpNum) may

not be practically attainable even for medium-sized grid networks (8x8 nodes) and a small

number of demands (∼ 20).

The experiments show that the algorithm LPBestPathNum demonstrates a reasonably

good trade-off between computing time and precision of the utility value.

As observed, the LP-based heuristic IterativeLPBestPathNum demonstrates up to

∼ 15% higher utility, on networks with up to 64 nodes and 50 demands, but it is slower,

in comparison to LPBestPathNum. The difference in utility may be a few percent bigger

for large grid networks (20x20 nodes) and a high number of demands (∼ 50), and even

more for a special type of network - parallel edges. The bigger difference is caused by

the edge allocation conflict. The IterativeLPBestPathNum reduces the probability of such

conflicts by iterative path fixing (a single path fixed for each iteration).

The utility values of IterativeLPBestPathNum, on network with up to 64 nodes and 50

demands, are lower than MilpNum by only ∼ 2% on average.

The successful IterativeLPBestPathNum computations were conducted for grid networks

with up to 20x20 nodes and 50 demands. For comparison, the successful and not ter-

minated MilpNum computations were conducted for grid networks with up to 8x8 nodes

and 20 demands.

4.7 Conclusions

Since modern coalition networks are expected to simultaneously provide connectivity (i.e.,

QoS-enabled paths) and computational capabilities (i.e., network functions), it is neces-
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sary to use efficient methods for embedding E2E slices. Such efficient methods are crucial

in security scenarios to properly handle network and compute resources and protect the

network against cyber-attacks.

The computational results reveal that:

• Extensive simulations of the ILP model and heuristic, on realistic topologies show

the correct trend of the goal values (TE & SD) as the α parameter (trade-off) and

the number of demands change.

• In terms of goal value, the ILP model is more efficient than the heuristic (it uses

less network resources to embed the demand set). The observed average gap is up

to 27% (8 demands) on a network of practical size (based on “nsfnet”).

• On the other hand, the heuristic is much faster. On a large-scale network (based on

“cost266”) the observed average execution time is below 35 s (60 demands), while

the ILP model’s average run time is up to 1730 s (for only 8 demands).

• While the ILP model efficiently solves SFC problems of a practical size, the heuristic

can solve large-scale problems very fast with decent efficiency, leading to a trade-off

between the two.

As for future work, the following extensions to our methodology are worth considering:

• In the evaluation, we assume the simplification that the intra-domain topology fully

contributes to the federated topology. In future work, we plan to address the intra-

domain SFC mapping problem algorithmically.

• Investigate how different ways of defining a federated topology from a local topology

(taking into account local slices and compute nodes) affect the performance and

efficiency of the entire two-level system in terms of resource utilization and admission

ratios.
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