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Abstract

Autonomous robot navigation is a key capability supporting various mobility-dependent

tasks in robotics. As robots of diverse types increasingly operate in public spaces, de-

veloping a comprehensive social robot navigation system is one of the essential research

tasks. However, this requires a prior understanding of the principles of social acceptance,

encompassing factors that may cause human discomfort and rules for robot navigation

in populated areas. Approaches existing in the literature often overlook many aspects of

social navigation, which presents a multifaceted challenge. Furthermore, systems bench-

marking navigation techniques lack essential mathematical indicators for assessing human

discomfort levels, highlighting the need for further research in this field.

This thesis aims to develop a trajectory planning algorithm that enhances the navig-

ation quality of robots operating in environments shared with people by reducing human

discomfort resulting from robot movement while maintaining the navigation performance

of traditional methods.

The dissertation contributes to several key aspects of social robot navigation. Firstly,

the work defines the requirements for social robot navigation. A literature review was

conducted to gather insights for grounding social robot navigation requirements, which

should be implemented in comprehensive navigation systems. The requirements taxonomy

distinguishes the following groups of necessities: requirements regarding humans’ physical

and perceived safety, requirements for assessing robot motion naturalness, and compliance

with social conventions.

Secondly, the thesis addresses the challenge of quantitatively assessing social robot nav-

igation. While various metrics for evaluating traditional robot navigation concepts have

been implemented in different benchmark systems, indicators that assess human-aware

robot navigation are lacking. Therefore, additional metrics were developed to evaluate

the compliance of navigation algorithms with the grounded requirements. The substan-

tially original aspect is that the social awareness indicators account for human tracking

uncertainty, facilitating the evaluation using robot onboard perception. The novel metrics

were introduced and integrated into the new benchmarking system, which can be used to

test robots operating in simulated and real-world environments.

Thirdly, the dissertation presents a novel human-aware local trajectory planner that

employs the hybrid trajectory candidates generation method and spatiotemporal cost

functions. The algorithm developed to enhance social robot navigation is a geometric

planner that addresses the issue of receding horizon trajectory planning for dynamic

systems operating in unstructured environments. The proposed method is suitable for

differential drive and holonomic mobile robots. The hybrid approach for producing vari-

ous trajectory candidates employs two generation methods for online planning. The first
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strategy is based on a pedestrian motion model, whereas the second employs a technique

of sampling feasible velocity control commands. The novel aspect of the first method

lies in extending a pedestrian motion model to obtain emphasised collision avoidance

behaviours and improved motion legibility compared to the baseline social force model-

based formulation. Numerous admissible trajectory candidates are produced by exploiting

the parameterisation of the deterministic motion model. The objective function used for

assessing the quality of aggregated trajectories considers collision avoidance and soft con-

straints related to social acceptance encompassing robot motion naturalness, and human

physical and perceived safety measures implemented as spatiotemporal cost functions.

The planner operates based on several behaviours that implement various strategies, en-

abling compliance with social norms and enhancing reliability using environmental context

information.

A multitude of experiments has been conducted to assess the performance and social

appropriateness of the proposed trajectory planning method against various traditional

and specialised methods for social robot navigation, including learning-based approaches.

The evaluation criteria included a range of metrics verifying the compatibility of the al-

gorithms with the requirements for social robot navigation. A controlled study-based,

multi-scenario comparison implemented standardised protocols for evaluating robot nav-

igation in human-populated environments. Analogous scenarios have been performed in

both the real-world laboratory environment and its virtual equivalent to compare the

outcomes obtained from simulations with those observed in the real world.

The experiments demonstrated improved navigation quality of the proposed local tra-

jectory planner. According to standardised metrics derived from social robot navigation

requirements, the developed algorithm outperforms state-of-the-art methods in reducing

human discomfort but also ensures reliable and efficient navigation task execution across

various dynamic scenarios.

Keywords: social robotics, social robot navigation, trajectory planning, quantitative

evaluation
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Streszczenie

Autonomiczna nawigacja robotów stanowi ich podstawową umiejętność, która jest wy-

magana do realizacji złożonych zadań wymagających mobilności. Roboty różnych typów

coraz częściej pojawiają się w przestrzeni publicznej, zatem opracowanie kompleksowego

systemu nawigacji robotów społecznych jest jednym z istotnych zadań badawczych. Wy-

maga to jednak wcześniejszego sformułowania kryteriów społecznej akceptacji, obejmu-

jących zasady nawigacji robotów w otoczeniu ludzi oraz czynniki mogące powodować

ich dyskomfort. Proponowane w literaturze algorytmy często pomijają wiele zagadnień

nawigacji społecznej stanowiącej wieloaspektowy problem. Co więcej, narzędzia wykorzy-

stywane do porównywania technik nawigacji nie zawierają ugruntowanych i powszechnie

akceptowanych wskaźników, co podkreśla potrzebę dalszych badań w tej dziedzinie.

Podstawowym celem postawionym w niniejszej rozprawie było opracowanie algorytmu

planowania trajektorii, który poprawi jakość nawigacji robotów działających w środowi-

skach współdzielonych z ludźmi poprzez zmniejszenie u nich dyskomfortu wywołanego

przez ruch robota przy jednoczesnym zachowaniu wydajności nawigacji tradycyjnych me-

tod planowania trajektorii.

Rozprawa wnosi autorski wkład w kilka kluczowych aspektów nawigacji robotów spo-

łecznych. Po pierwsze, definiuje wymagania wobec nawigacji robotów społecznych. Prze-

prowadzono przegląd literatury w celu zebrania informacji o wymaganiach dotyczących

nawigacji robotów społecznych, które powinny zostać uwzględnione w kompleksowych

systemach sterowania robotów społecznych. Opracowana taksonomia wymagań wyróżnia

następujące grupy: wymagania dotyczące zapewnienia fizycznego oraz postrzeganego bez-

pieczeństwa ludzi, wymagania dotyczące oceny naturalności ruchu robota oraz zgodność

z normami społecznymi.

Po drugie, praca koncentruje się na kryteriach ilościowej oceny nawigacji robotów

społecznych. Różne wskaźniki do ewaluacji zagadnień związanych z tradycyjną nawiga-

cją robotów zostały wdrożone w systemach wzorcowych (ang. benchmark), natomiast

wskaźniki jakości do oceny społecznej nawigacji robotów są rzadkością. W związku z tym

opracowano dodatkowe wskaźniki w celu oceny zgodności algorytmów nawigacji z wy-

maganiami. Oryginalnym aspektem proponowanych wskaźników do oceny dyskomfortu

ludzi jest uwzględnienie niepewności śledzenia człowieka, co umożliwia efektywną jego

ocenę przy wykorzystaniu modułów percepcji robota. Nowe wskaźniki zostały zintegro-

wane z opracowanym systemem wzorcowej oceny, przeznaczonym do ewaluacji jakości

nawigacji robotów działających w rzeczywistych i symulowanych środowiskach.

Po trzecie, rozprawa przedstawia nowe podejście do lokalnego planowania trajekto-

rii uwzględniające obecność człowieka, które wykorzystuje hybrydową metodę genero-

wania kandydatów trajektorii i przestrzenno-czasowe funkcje kosztu. Algorytm opraco-
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wany w celu zwiększenia społecznej akceptacji poruszających się robotów jest planistą

geometrycznym, który rozwiązuje problem planowania trajektorii z przesuwanym hory-

zontem dla systemów dynamicznych działających w nieustrukturyzowanym środowisku.

Proponowana metoda jest odpowiednia dla robotów mobilnych o napędach różnicowych

i holonomicznych. Hybrydowe podejście do generowania różnych kandydatów trajektorii

wykorzystuje dwie strategie. Pierwsza opiera się na modelu ruchu pieszych, podczas gdy

druga wykorzystuje technikę próbkowania dopuszczalnych składowych wektora prędkości

stanowiącego typowe polecenie sterujące baz jezdnych. Oryginalnym aspektem pierwszej

strategii jest rozszerzenie modelu ruchu pieszych w celu uzyskania realistycznych zachowań

unikania kolizji oraz zwiększonej czytelności ruchu w porównaniu z podstawową posta-

cią opartą na modelu siły społecznej. Wykorzystując parametryzację deterministycznego

modelu ruchu, tworzone są liczne dopuszczalne trajektorie.

Funkcja celu wykorzystywana do oceny jakości wygenerowanych trajektorii uwzględ-

nia unikanie kolizji i miękkie ograniczenia związane z akceptacją społeczną obejmującą

naturalność ruchu robota oraz fizyczne i postrzegane bezpieczeństwo ludzi wyrażone jako

przestrzenno-czasowe funkcje kosztu. Schemat działania planisty oparty jest na kilku za-

chowaniach realizujących zróżnicowane strategie umożliwiające przestrzeganie norm spo-

łecznych oraz zwiększenie niezawodności poprzez wykorzystanie informacji o kontekście

środowiskowym.

Przeprowadzono wiele eksperymentów w celu oceny wydajności i społecznej akcepto-

walności proponowanej metody planowania trajektorii w porównaniu z tradycyjnymi me-

todami nawigacji robotów i dedykowanymi do działania wśród ludzi, w tym podejściami

opartymi na uczeniu ze wzmocnieniem. Kryteria ewaluacji obejmowały szereg wskaźni-

ków weryfikujących zgodność algorytmów z wymaganiami nawigacji robotów społecznych.

W kontrolowanym badaniu zweryfikowano działanie różnych algorytmów w wielu scenariu-

szach zaprojektowanych na podstawie standardowych wytycznych wobec oceny społecznej

nawigacji robotów. Analogiczne scenariusze zostały przeprowadzone zarówno w rzeczywi-

stym środowisku laboratoryjnym, jak i jego wirtualnym odpowiedniku, aby porównać

wyniki uzyskane w symulacji i w świecie rzeczywistym.

Badania wykazały, że proponowane rozwiązanie problemu lokalnego planowania tra-

jektorii poprawia jakość nawigacji robotów pracujących w środowiskach współdzielonych

z ludźmi. Zgodnie ze wskaźnikami wynikającymi z wymagań społecznej nawigacji ro-

botów, opracowany algorytm przewyższa dotychczasowe metody w zmniejszeniu dyskom-

fortu u ludzi pod wpływem ruchu robota, jednocześnie zapewniając niezawodne i wydajne

wykonywanie zadań nawigacyjnych w różnych dynamicznych scenariuszach.

Słowa kluczowe: robotyka społeczna, społeczna nawigacja robotów, planowanie tra-

jektorii, ewaluacja ilościowa
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Chapter 1

Introduction

Social robot navigation is a substantial branch of the mobile robotics field, as it funda-

mentally alters the dynamics of human-robot interactions. With the growing popularity

and application areas of service and assistive robots, the interaction between humans and

robots has become a vast field of study. People performing tasks in populated environ-

ments typically behave in a manner that avoids disrupting other humans’ motions while

trying to accomplish their tasks as effectively as possible [1]. The same guidelines apply to

robots that assist workers in, e.g., restaurants and hospitals. Such activities are referred

to as unfocused interactions [2], tackled by social robotics at the motion planning level

with human-aware constraints.

1.1 Motivation

Autonomous robot navigation is a fundamental capability, upon which other complex

tasks requiring robot mobility depend. Classical robot navigation entails environment

sensing, map building, localisation, planning, and motion execution, focusing on objectives

such as avoiding collisions with obstacles and reaching destinations quickly [3].

However, the social robot navigation concept introduces additional considerations to

the classical formulation, regarding humans as special types of objects in the environment,

with which interactions must be handled appropriately. As an interdisciplinary field, social

robotics adapts expertise from different disciplines such as artificial intelligence, psycho-

logy, and natural language processing. This collaboration produces a wide range of results

and corresponds to the complexity of human-robot interaction.

Over the years, the range of robots interacting with humans has been employed in

diverse ways. In the late 2000s, Satake et al. [4] established a field study in a shopping

mall where a robot recommended shops to people. A long-term validation of a robot

operating in a crowded cafeteria was conducted by Trautman et al. [5]. Another extended
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(a) Pudu Bellabot (b) Pudu Puductor (c) Pudu Swiftbot

deployment was accomplished by Biswas and Veloso [6], whose CoBots reached 1000 km

of autonomous navigation. In contrast, Shiomi et al. [7] performed a short-term validation

study of a robot operation in a shopping mall. Moreover, multiple challenges for academic

robotic teams are organised, e.g., “Take The Elevator“ [8] or “Socially Acceptable Item

Delivery”.1 Recently, the popularity of robots for restaurant services (Fig. 1.1a)2, hotel and

hospital disinfection (Fig. 1.1b)3, or transportation tasks (Fig. 1.1c)4 is rapidly growing,

as they have become commercially accessible. Other applications involve robots for home

assistance and healthcare [9] or various delivery tasks, e.g., mail or packages [10].

Given the emergence of various types of robots performing diverse tasks in public

spaces, it is justified to develop a comprehensive social robot navigation system. However,

it is first necessary to identify the principles of social acceptance. These encompass factors

that may cause discomfort to humans and rules of how robots should navigate in pop-

ulated areas. User studies that precisely indicate how socially navigating robots should

move, based on impressions of human participants, are substantial but often conducted

in a fragmented manner. Therefore, one of the topics of this dissertation was to identify

the requirements and classify them into a standard taxonomy.

Generally, the guidelines to be followed by socially navigating robots include ensuring

the physical and psychological safety of humans, mimicking natural human movement,

and adhering to social norms. Importantly, human-aware robot navigation also inherits

the requirements of classical robot navigation, making socially navigating robots execute

a task with (locally) conflicting goals. Designing and implementing a system that adheres

to all these principles simultaneously enables seamless navigation and social acceptance of

robots operating in populated environments. However, it poses significant challenges and

existing social robot navigation approaches presented in the literature do not investigate

1https://eu-robotics.net/2023-09-erl-mk-smart-city-challenge/ (accessed 23/04/2024)
2Figure source: https://www.youtube.com/watch?v=DGajUN1icAs (accessed 23/04/2024)
3Figure source: https://www.youtube.com/watch?v=sQHeF4pP8yk (accessed 23/04/2024)
4Figure source: https://www.youtube.com/watch?v=gtUKUOzpZFc (accessed 23/04/2024)
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even half of the identified requirements in their objectives, overlooking many aspects of the

multi-faceted problem of social navigation. Taking this into consideration, an attempt has

been made to develop a new social robot motion planning framework with a priority

on the mitigation of human discomfort by incorporating numerous requirements in its

objective. Another focus lies in providing the high robustness of the approach for its

suitability for real-world applications.

Furthermore, navigation methods are typically compared with each other either qualit-

atively or quantitatively. Qualitative assessment often involves visually comparing traject-

ories executed by a robot operating with different motion planning algorithms. Instead,

quantitative evaluation of navigation methods is essential for objectively assessing their

performance with invariant evaluation formulas. However, benchmarking systems for so-

cial robot navigation lack various mathematical indicators that allow for assessing the level

of human discomfort, i.e., the degree of requirements fulfilment. Consequently, another

issue addressed in this thesis is the quantitative evaluation of social robot navigation.

The system developed for this purpose proved to be useful in the analysis of experiments’

results.

1.2 Research problem and objectives

The breadth of research on the problem of social robot navigation is significant, as evid-

enced by the numerous literature reviews in the field, each discussing different aspects of

the topic. For example, Gao and Huang [10] examined the evaluation techniques employed

in prior studies, Francis et al. [11] proposed various guidelines for conducting social navig-

ation studies, while Kruse et al. [12] attempted to identify the key features of human-aware

navigation enhancing human comfort. Moreover, Charalampous et al. [13] and Möller

et al. [9] reviewed the state-of-the-art focusing on perception aspects, whereas Chik et

al. [14] highlighted different motion planning system structures. Rios-Martinez et al. [2]

delved into sociological concepts regarding the challenges of human-aware navigation.

Furthermore, Medina Sánchez et al. [15] verified modern algorithms for environment fea-

ture extraction, human trajectory prediction, and planning, while Guillén-Ruiz et al. [16]

classified socially-aware navigation methods according to the techniques implemented in

robots to handle interaction or cooperation with humans.

Topic relevance The recent survey [17] discusses relevant research directions in human-

aware robot navigation. Referring to their paper, this thesis raises and contributes to two

out of three core challenges constraining the seamless deployment of socially navigating

autonomous robots in crowded environments, specifically planning and evaluation.
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Planning is a broad topic, involving, i.a., strategic decision-making and symbolic plan-

ning for robot tasks. This thesis focuses on the geometric planning of robot trajectories.

The second fundamental challenge in the field is the evaluation of social robot navigation

systems. Various metrics for assessing human awareness and robot navigation perform-

ance are proposed to address this issue. The metrics calculation has been implemented in

the benchmarking system developed as a part of this thesis.

Social robot navigation definition In our work, a socially navigating robot (or

“robot navigating in a human-aware manner”) is an autonomous machine designed to act

and interact with humans in shared environments, mitigating potential human discomfort

by mimicking social behaviours and adhering to norms. Robot navigation requirements

are derived from user studies illustrating human preferences during an interaction, while

robot decision-making autonomy relies on perception and planning capabilities.

In this work, the “social robot navigation” phrase is used interchangeably with “human-

aware navigation”; however, an attempt to distinguish the meaning between those has

been recently proposed in [18].

Objectives The aim of this thesis is the development of an algorithm that increases

the efficacy of robots navigating in environments shared with humans. This is achieved

by the mitigation of human discomfort induced by robot movement while preserving the

navigation performance of traditional methods.

An extensive literature review has been performed to extract requirements for so-

cially navigating robots reflecting the factors that cause human discomfort. Then, the

quantitative criteria for assessing social navigation algorithms were designed and imple-

mented in the benchmarking system that is suitable for evaluating aspects of both robot

navigation performance and social awareness. Subsequently, a new local trajectory plan-

ning method has been developed, which considers the efficiency of navigation tasks, the

physical and perceived safety of surrounding humans, and implements the adherence to

social norms. Finally, a social robot control system has been integrated with the proposed

planning algorithm and the benchmark to conduct comparative experiments against the

state-of-the-art motion planning methods. The system has been extensively tested both

in simulation and in real-world experiments.

1.3 Thesis statement

In this dissertation, theses are formulated as follows:

Thesis 1 State-of-the-art human-aware local trajectory planners for mobile robots do not
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perform superior to traditional algorithms regarding the navigation task efficacy and mit-

igating discomfort among humans in the robot’s environment.

Thesis 1 suggests that quantitative evaluation of human discomfort and the robot’s

navigation task efficacy is feasible with metrics relevant for assessing social robot navig-

ation. A thorough comparison of local trajectory planners relies on conducting the con-

trolled study, in which each validated algorithm operates under the same environmental

conditions and factors influencing the results of experiments are isolated.

The evaluation criteria are multifaceted and originate from the grounded requirements

for social robot navigation. They include the robot’s task performance, measured as the

time required to reach the goal pose, as well as human discomfort ratings, assessed sep-

arately regarding the robot’s motion naturalness, and the perceived safety of humans.

Thesis 1 could be proven if traditional algorithms achieve better or comparable quant-

itative indicators of robot performance and human comfort ratings.

Thesis 2 A local trajectory planning method can be developed to enable robots to oper-

ate effectively in environments shared with humans, with the effectiveness quantified by

surpassing performance compared to existing traditional and human-aware local trajectory

planning algorithms regarding robustness, navigation task efficacy, and mitigating discom-

fort among humans in the robot’s environment.

Thesis 2 suggests that developing a method for adapting robots to operate in populated

environments is feasible, and the degree of adaptation is measurable. To substantiate

this thesis, performance verification of a new local trajectory planner against existing

traditional and human-aware approaches must be conducted. A thorough comparison of

algorithms requires the implementation of a controlled study, such as for proving thesis 1.

Thesis 2 states that an alternative planner could perform comparably to traditional

trajectory planners regarding navigation task performance and could surpass state-of-

the-art human-aware trajectory planners in terms of social indicators, assessed separately

for the naturalness of robot movements and human perceived safety. Compared to the

verification of thesis 1, the evaluation criteria also consider the robustness of examined

algorithms, which should be advantageous in a novel method.

Thesis 2 could be proven if a method is established that achieves comparable or better

results regarding quantitative metrics of robot navigation performance and better scores

concerning human comfort indicators than existing approaches.
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1. Examining
social robot navigation

literature

2. Extracting
social robot navigation
requirements from the

literature

3. Developing study-
based metrics

implementing the
requirements indicators

4. Assessing the
performance of traditional
and human-aware robot

navigation methods

5. Development of the
new local trajectory

planner and integration
with the motion planning

system

6. Comparing the
performance of state-of-

the-art navigation
methods against the
proposed approach

Figure 1.2: Basic workflow of the tasks performed as part of preparing the thesis.

1.4 Thesis contribution

This thesis investigates human-aware robot navigation from different perspectives and

contributes to the advancements in the field. The significant additions to the state-of-

the-art are outlined below, while the general workflow of tasks conducted to prepare this

dissertation is outlined in Fig. 1.2. Parts of the thesis have already been published as

journal articles and conference papers, which are identified in relevant contributions.

Contribution 1 Review of the state-of-the-art literature to obtain study-based require-

ments for social robot navigation.

The extensive literature review is a substantial contribution to the research topic

discussed in this work. In contrast to previous review works, our survey aimed to explicitly

demonstrate how the key concepts explored by robotics and social sciences researchers can

be transferred into requirements for robot control systems implementing robot navigation

tasks.

Contribution 1.1 Grounding of social robot navigation requirements to form a taxonomy

of elementary necessities.

Our review reaches user studies to gather insights and perform the grounding of social

robot navigation requirements (Chapter 2), which should be implemented in compre-

hensive navigation systems. Specifically, the taxonomy of requirements distinguishes the

following groups of necessities: requirements regarding the physical and perceived safety

of humans, requirements for assessing robot motion naturalness, and compliance with

social conventions. After identifying those core principles, perception, motion planning

and evaluation methods are reviewed in Chapter 3. A proper grounding of fundamental
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features helps to address the problem of researchers, who often try to implement different

robot control strategies in an ad-hoc manner to mimic human behaviours.

Contribution 1.2 Classification of existing social robot navigation approaches and state-

of-the-art evaluation benchmarks according to the proposed requirements’ taxonomy.

As a part of the literature survey, the classification of state-of-the-art methods for

adapting robots for operation among humans has been established based on the proposed

requirements taxonomy. Specifically, the recent socially-aware robot navigation algorithms

(Tab. 3.1 and 3.2), as well as benchmarks for the quantitative evaluation (Tab. 3.5) have

been organised.

The classification of the social robot navigation requirements established in this study

enables the identification of the gaps in motion planning algorithms, the drawbacks of

state-of-the-art evaluation methods, and the proposal of relevant future work perspectives

for researchers in the field.

The literature review is presented in Chapter 2 and 3, and those chapters constitute

the extended version of our survey that has been published in [19].

Contribution 2 Design and implementation of quantitative metrics for evaluating social

robot navigation.

The problem of the quantitative assessment of social robot navigation is one of the

core challenges identified in [17]. Various metrics for the evaluation of traditional ro-

bot navigation concepts have already been implemented in different benchmark systems,

but the indicators for assessing human-aware robot navigation are lacking. Therefore,

we designed additional metrics to evaluate algorithms’ compliance with the requirements

regarding the physical and perceived safety of humans, as well as requirements for assess-

ing robot motion naturalness. The metrics proposed for evaluating human-aware robot

navigation are defined directly based on the findings from various user studies and the

grounded requirements.

The novel metrics were embedded in our Social Robot Planner Benchmark (SRPB)

system, which regards the assessment from the traditional and human-aware navigation

perspectives. Compared to the state-of-the-art benchmark systems, our approach expands

the diversity of metrics for evaluating navigation performance and introduces novel met-

rics focused on human awareness concepts. Another substantially original aspect is that

the social-awareness indicators account for people tracking uncertainty, facilitating the

evaluation using robot onboard perception. Our benchmark can be used to test robots

operating in simulated and real-world environments. Moreover, metrics were formulated
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to allow the benchmark’s usage with different robot types (either with nonholonomic or

holonomic drives).

This contribution is thoroughly presented in Chapter 4, the majority of which has

been published in the conference paper [20] and journal article [21].

Contribution 3 Design and implementation of a human-aware local trajectory planner

using the hybrid trajectory candidates generation method and spatiotemporal cost func-

tions.

This work aims to develop an algorithm that enhances the navigation quality of ro-

bots operating in environments shared with people. A key step in achieving that is to

propose a new human-aware trajectory planning method that regards constraints arising

from the presence of humans in the robot’s environment while providing navigation task

performance comparable to state-of-the-art traditional approaches.

The algorithm developed according to the thesis’ objectives, named HUman-Aware

Trajectory Planner MApping the Pedestrians Motion Pattern (HUMAP), is a geomet-

ric planner that solves the problem of receding horizon trajectory planning for dynamic

systems operating in unstructured environments. The proposed approach is suitable for

differential drive and holonomic5 robots. Distinctive characteristics of the planner are

the hybrid approach to trajectory candidates generation and the multifaceted objective

function for scoring trajectory candidates.

The hybrid approach for producing various trajectory candidates employs two genera-

tion methods. The first relies on a pedestrian motion model, whereas the second samples

the feasible velocity control commands [22]. The novelty of the approach lies in: extending

the Social Force Model -based [1] pedestrian motion model to obtain emphasised collision

avoidance behaviours and improved motion legibility, exploiting the parameterisation of

the deterministic motion model to produce various trajectory candidates, and combining

two trajectory candidate generation methods for online planning.

In contrast, the objective function regards both navigation performance as well as the

physical and perceived safety of humans. As these objectives are contradictory, the planner

searches for a Pareto-optimal solution in each planning step, successfully achieving real-

time operation. Obedience to social norms is provided using a behaviour-based approach,

as the planner operates in various modes, allowing for capturing customary spatiotemporal

protocols of pedestrian motion.

5The support for holonomic robots is not yet implemented, but it is straightforward to integrate such

robots with the proposed planning framework.
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Contribution 3.1 Extension of a Social Force Model-based pedestrian motion model with

a Fuzzy Inference System to increase motion legibility and emphasise realistic collision

avoidance.

The baseline Social Force Model -based pedestrian motion model has been extended

with a novel term emphasising proactivity in collision avoidance movements to enhance

motion legibility [23], understood as intent expressiveness. The new component included

in the model is based on a Fuzzy Inference System and affects the generated robot tra-

jectories only in proximity to humans or other robots. The formulated model is called the

Fuzzy-Extended Social Force Model (FESFM ) and is used in the model-based trajectory

candidates generator.

This contribution has only been mentioned in the conference paper [24] and is described

in detail in Sec. 5.5.5.

Contribution 3.2 Diversifying trajectory candidates of a deterministic pedestrian mo-

tion model.

Numerous extensions of the original Social Force Model approach were proposed to

develop models specialised for unfocused interactions or specific navigation tasks, e.g.,

accompanying (Sec. 3.2.2). Each formulation establishes a distinctive set of parameters to

be adjusted to obtain a desired robot behaviour. Therefore, a significant part of the SFM

research is related to the calibration of those models, i.e., the search for parameter values

that provide the best approximation of the intended behaviour (Sec. 5.5.3).

The parameters of the baseline pedestrian motion model [25] employed by the model-

based trajectory generator of the HUMAP , were calculated based on human movement

trajectories from real-world pedestrian traffic video sequences. However, the model para-

meters exhibited significant standard deviations from the mean values. Therefore, the

proposed approach evaluates model parameters across the range of meaningful values, so

numerous trajectory candidates are obtained from the FESFM deterministic pedestrian

motion model.

This contribution has been described in [24]. The thesis discusses that topic in Sec. 5.5.7.

Contribution 3.3 Design of cost functions for assessing the social awareness of robot

trajectories.

Implementing social acceptance in robot navigation can be performed in different

ways (Sec. 3.2.2). In the HUMAP , the objective function for scoring trajectory candid-

ates captures constraints related to the physical and perceived safety of humans and the

naturalness of robot motion. The social cost functions included in the objective are based
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on the quantitative metrics implemented in the SRPB , which are directly derived from

the study-based social navigation requirements. Therefore, the transition of findings re-

lated to the offline assessment of robot trajectories has been performed to obtain the cost

functions suitable for online trajectory candidate evaluation.

This contribution has only been briefly described in [24]. It is thoroughly discussed in

Sec. 5.7.

Contribution 3.4 Implementing the contextual awareness for efficient orchestration of

the planner operation using the behaviour-based approach.

A robot’s intelligence is often regarded as utilising contextual information in its im-

perative [13, 26]. Including contextual data is often required for the robots’ obedience to

social conventions (Sec. 2.5).

The HUMAP planner considers environmental information to switch between different

operational behaviours. Specifically, one of the behaviours implements a norm of yielding

a way to a person crossing the robot’s planned path, but additional norms can also be

realised using the behaviour-based framework. Simultaneously, the potential occlusions

of the planned global path are investigated, and, if necessary, the robot’s behaviour is

switched to perform an observatory action. These real-time adjustments enhance the

robot’s robustness in challenging practical scenarios.

This contribution was not previously discussed. The explanation is in Sec. 5.2.

Contribution 4 Comparative experiments of various local trajectory planning algorithms

in simulation and real-world environments.

Experiments conducted for this thesis can be divided into two phases (Fig. 1.2). The

first phase assessed how state-of-the-art methods for classical robot navigation perform

against the recent human-aware algorithms. This part of the study also constitutes the

validation of our SRPB benchmarking system. During the first part, 6 local trajectory

planners have been evaluated in a controlled study, 2 of which are socially-aware meth-

ods. With the quantitative assessment, the proficiency of various planning algorithms has

been compared in terms of navigation performance as well as human awareness in sim-

ulation and real-world environments using a TIAGo robot. The study aimed to identify

whether socially-aware local trajectory planning is still an open problem, and the results

are discussed in Sec. 7.3. The majority of findings in this scope have been published in

the conference paper [20] and journal article [21].

The second phase of the experiments intended to validate the performance of the

HUMAP planner against the state-of-the-art algorithms; hence, various tests were per-

formed. Similarly, the controlled study was employed, and the SRPB benchmarking sys-

tem was used to evaluate the robot’s behaviour when operating with different planners.
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Compared to the first phase of the experiments, different scenarios were designed, but still

conforming to standardised guidelines [10, 11]. During the second part of the experiments,

HUMAP was compared against 12 different state-of-the-art local trajectory planners (5 of

which are learning-based methods) in 3 scenarios, each repeated 100 times, which, to the

best of our knowledge, is the most extensive study in the field. The large-scale simulation

study allowed for data collection for statistical analysis of the operation. The proposed

planner was also validated in real-world tests in analogous 3 scenarios but only with

planning methods ensuring the safe operation of the physical robot. Supplementing those

experiments, the HUMAP ’s performance across its various configurations and scenarios

was examined. Parts of the results in that matter are included in [24], whereas a thorough

description is provided in Sec. 7.4.

Notably, most of the implemented methods and metrics are available as open-source

software to ease the further development of the field.

1.5 Problem scoping

The scope of the social robot navigation field is vast; hence, the range of topics included

in the examination has to be limited due to practical and feasibility reasons. Defining

the social robot navigation requirements from literature studies is among the main con-

centrations of this thesis. Based on the requirements, requirements-driven metrics related

to the social acceptance of robots are developed, and the human-aware robot trajectory

planning algorithm is proposed. Requirements, metrics, and the planning algorithm do

not investigate the domains of, i.a., explicit communication or negotiation. Also, the range

of interactions examined was limited to align with the scope of primary topics.

Communication Effective decision-making in socially-aware navigation requires com-

munication between robots and humans, particularly when the robot’s knowledge about

the environment is limited. Specifically, explicit communication involves the auditory do-

main and written instructions, which robots should interpret and respond to. Robots

also need to convey their intentions and decisions to humans, utilising verbal and visual

techniques such as speech and gestures performed with onboard actuators. The topic of

explicit communication is rather related to higher-level decision-making and has been ex-

plored to varying degrees in review works from the field [27, 28, 18]. In contrast, implicit

communication is commonplace in human-robot interaction studies and is relevant to the

topics investigated in this thesis.
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Negotiation Negotiation in social robot navigation acts as a form of dynamic informa-

tion exchange. This may involve collaborative decision-making processes, e.g., requesting

permission to pass. While the scope of the negotiations field extends way beyond human-

robot interaction, this concept has been briefly discussed in social robotics surveys [2, 18];

however, none of the primary concepts of this dissertation is examined with the focus on

this matter.

Robot types What substantially affects the requirements and objectives of perception

and human-aware robot motion planning is the type of robot. Variations in ground, aerial,

or aquatic robots [14, 18] significantly impact possible scenarios; hence, also the range of

human-robot interactions. Nevertheless, this thesis focuses on ground-wheeled robots.

Additionally, although multi-robot systems are not investigated in this dissertation, the

presence of other robots in the environment of the controlled robot is taken into account.

Specifically, other robots are distinguishable from humans and treated as typical dynamic

objects.

Interaction types The physical (contact-rich) interaction between robots and humans

is a crucial topic in collaborative robotics and safety management. However, this study

examines other types of interactions, namely, unfocused and focused [2], neither of which

involve physical contact.

Cultural scope The requirements for social robot navigation were defined based on

the findings resulting from user studies, which involved participants mainly from the

Transatlantic cultural sphere, and less frequently from the Pan-Asian. On the other hand,

the participants engaged in the experimental studies conducted as part of this thesis were

only from the Central European cultural sphere.

1.6 Thesis outline

This thesis is organised as follows: firstly, an extensive literature review is allocated in

Chapter 2 and Chapter 3, as the presented state-of-the-art analysis is segmented into

two perspectives: requirements and algorithmic. Namely, Chapter 2 presents the defini-

tion of the study-based social robot navigation requirements and its content is organised

according to the introduced taxonomy of the necessities. Then, Chapter 3 investigates the

algorithmic solutions for adapting robots to operate in human environments. Notably, the

majority of Chapter 2 and Chapter 3 have been published in our survey article [19].

Next, in Chapter 4, our method for quantitative evaluation of socially-aware robot

navigation algorithms is proposed. Specifically, this chapter presents the mathematical
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formulation of metrics implemented in our benchmark. It contains an extended explan-

ation of the proposed approach published in the conference paper [20] and the journal

article [21].

In the following part of the thesis, Chapter 5, the problem of human-aware robot

trajectory planning is formulated, and the contribution to the topic is described. The

chapter describes our hybrid method of trajectory candidates generation and specifies the

components of the objective function used for scoring candidates and selecting an optimal

trajectory. Parts of this chapter have been included in [24], but a detailed description of

the approach is provided.

Next, Chapter 6 discusses the implementation and integration aspects of the robot

control system. The allocation of developed algorithms is also explained in the context

of the entire system, which has been used during the experiments described in Chap-

ter 7, where the tests validating the proposed methods are discussed. Namely, that part

of the thesis presents the two phases of the experiments that have been conducted. In

the first, the state-of-the-art traditional and human-aware methods for robot navigation

were compared using the quantitative benchmarking method (Chapter 4). In the second

phase, the proposed trajectory planning method was assessed against numerous planners

using the same evaluation methodology. The design of the experiments and selection

of algorithms for the comparative controlled studies of each section of this chapter are

explained in detail. Most results from the first phase of the experiments (Sec. 7.3) have

been encompassed in our previous works [20, 21], while elements of the second phase of

the experiments (Sec. 7.4) have been included in [24].

Finally, the Chapter 8 constitutes conclusions drawn from the literature review and

experimental studies to prove the theses stated in the introduction. The summary is

complemented with future work perspectives regarding proposed approaches for social

robot navigation.

The thesis is enhanced with two appendices, in which the commonly referred al-

gorithms are presented.
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Chapter 2

Requirements for socially-aware

navigation

Social robots were introduced to make human-robot interaction more natural and intu-

itive [29]. Generic characteristics of social navigation are commonly recalled in review

works. For example, Kruse et al. [12] classify the main features as safety, comfort, nat-

uralness, and sociability. On the other hand, in [2], the authors indicate key factors as

distinguishing obstacles from persons, considering the comfort of humans – their prefer-

ences and their needs, not being afraid of people and the legibility of motion intentions.

More recently, Mavrogiannis et al. [17] proposed a classification that relies on proxemics,

intentions, formations and social spaces, ordered according to the social signal richness.

Furthermore, Francis et al. [11] stated that principles of social robot navigation include

safety, comfort, legibility, politeness, social competency, agent understanding, proactivity,

and contextual appropriateness.

While the aspects above schematically display the goals of social navigation, the au-

thors of the surveys do not attempt to extract the straightforward requirements to follow

in social robot navigation. Instead, these terms are loosely defined; hence, might refer

to different means in different contexts or applications. As a consequence, it is tough

to determine how to effectively gauge whether the robot behaves in a socially-compliant

manner. Our survey aims to reduce those abstract terms describing social norms. This is

contrary to other review works, where, although taxonomies are presented and articles

are classified into those groups, the fundamental concepts persist as vague definitions.

Thus, we perform the grounding of social robot navigation requirements. The require-

ments must be known to properly design a socially-aware robot navigation system. Various

techniques have been experimented with an assertive robot, revealing that using know-

ledge from psychology leads to increased user trust [30]. Incorporating a study-driven

approach, we reached the human-robot interaction user studies to determine how humans
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perceive the robot navigating around them and how robots should behave around humans

under certain controlled conditions. Such an approach aims to explicitly demonstrate how

the key concepts explored by researchers in robotics and social sciences can be transferred

into requirements for robot control systems [31] implementing robot navigation tasks.

Notably, we separated the study-based grounding of social robot navigation require-

ments (Chapter 2) from algorithmic approaches to resolving them (Chapter 3). Require-

ments are obtained from the results of user studies, whereas an algorithmic perspective

is presented based on technical papers from the robotics field. Precise requirements grant

implementation guidelines and straightforward evaluation of whether the robot behaves

as expected.

2.1 Taxonomy of requirements for social robot nav-

igation

Social robot navigation extends the requirements of classical navigation with capabilities

to accommodate social interaction between robots and humans. Traditional robot navig-

ation emphasises generating collision-free motions for a robot to move to the goal pose as

fast as possible. This requires environment sensing for obstacle detection, efficient global

pose estimation, and usually map building.

Traditional robot navigation requirements As the classical robot navigation re-

quirements are not the main focus of the considerations, they will only be briefly ex-

plained with relevant resources from the literature. Specifically, the robot task perform-

ance maximisation aspects (Req. 1) are divided into five groups. The first requirement is

avoiding collisions with the environment (Req. 1.1), which is straightforward, as it can

cause damage to the environment or a mobile base. The second one is planning traject-

ories that are feasible for the mobile base (Req. 1.2), which is crucial since the planned

trajectories might not be executable due to kinodynamic constraints of a robot [32]. An-

other requirement is reaching the goal as fast as possible (Req. 1.3), which decreases

the time of a navigation task [33, 10]. The last two necessities are: reaching the goal by

taking the shortest possible path (Req. 1.4) [33, 34, 35] and minimising path irregularity

(Req. 1.5) [36, 37, 10], both helping to reduce the energy expenditure [38] of mobile

robots. Graphical abstract of this taxonomy is presented in Fig. 2.1.

Social robot navigation requirements On the other hand, the main objective of

social navigation is to mitigate human discomfort caused by robot movements (Req. 2).

Our taxonomy of social robot navigation requirements (Fig. 2.2) involves the physical
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Req. 1: Robot  task performance
maximisat ion

Req. 1 .1: Avoiding collisions with the environment

Req. 1 .2: Planning t rajectories that  are feasible for the mobile base

Req. 1 .3: Reaching the goal as fast  as possible

Req. 1 .4 : Reaching the goal by taking the shortest  possible path

Req. 1 .5: Minimising path irregularity

Figure 2.1: General taxonomy of traditional robot navigation requirements.

safety of humans (Req. 2.1), perceived safety of humans (Req. 2.2), the naturalness

of robot motion (Req. 2.3) and the robot’s compliance to social norms (Req. 2.4).

Specifically, the perceived safety of humans mostly relies on proxemics theory and the

prevention of scaring a human. In turn, robot motion naturalness does not affect the safety

aspects of humans but regards the trustworthiness of the robot. Lastly, abiding by social

conventions focuses on actions and sequences that require rich contextual information to

mitigate human discomfort.

Our general taxonomy is designed to classify the essential concepts of social robot nav-

igation clearly and unambiguously into one of the investigated groups to create a generic

framework. We expect that the main characteristics selected for the taxonomy will stay

pertinent in the future, with the possibility of incorporating additional attributes.

In the remaining part of this section, the social robot navigation requirements are

discussed, while the algorithmic concepts describing how those socially-aware navigation

responsibilities can be embedded into robot control systems are discussed in Sec. 3.1 and

Sec. 3.2.

Req.  2: Human discomfort
minimisat ion

Req. 2 .1: Physical safety of humans

Req. 2 .2: Perceived safety of humans

Req. 2 .3: Naturalness of the robot 's mot ion

Req. 2 .4 : Compliance with social norms

Figure 2.2: General taxonomy of social robot navigation requirements.
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2.2 Physical safety of humans (Req. 2.1)

The physical safety of humans is closely related to the collision avoidance capabilities

of robots (Req. 1.1). Social robot navigation inherits this skill from the classical robot

navigation requirements.

Francis et al. [11] denote physical safety as the first principle of social navigation

that intends to protect humans, other robots and their environments. Physical safety of

humans during navigation is discussed in the newer literature [27, 39] but has already

been addressed as a fundamental robotics challenge several decades ago [40]. Nonetheless,

the physical safety of other robots or machines is also of great significance [41, 42, 43, 17].

For example, Guzzi et al. [36] conducted a study with multiple small-scale robots

relying only on local sensing and employing proactive planning integrated with heuristic

pedestrian motion model [44]. In real-world experiments, in a crossing scenario, they

observed different frequencies of collisions depending on the sensors’ field of view and

safety margin; hence, the collision count was used as one of the metrics for assessing the

safety margin parameter. Evaluating time-to-collision (TTC ) is a proactive method to

anticipate incoming collisions [45, 46] that was also embedded in some benchmarks [35].

2.3 Perceived safety of humans (Req. 2.2)

The comfort of humans around robots is crucial; however, the robot’s behaviour can

influence that, potentially causing annoyance or stress [12, 11]. Human discomfort during

robot navigation often corresponds to a diminished perceived (or psychological) safety

of humans. Perceived safety is the factor that might lead to physical safety violations

(Sec. 2.2) if not addressed adequately beforehand. Stress-free and comfortable human-

robot interaction is a broad topic [27] influenced by numerous features (Fig. 2.3), including

adherence to spatial distancing [47, 2], performing natural movements [10], preventing of

scaring or surprising a human [12]. The remaining part of this section discusses them in

detail.

2.3.1 Regarding personal spaces of individuals (Req. 2.2.1)

Proxemics is the most prominent concept regarding social distancing rules [47, 48, 49].

Some fundamental studies connected to proxemics theory confirm that the psychological

comfort of humans is affected by interpersonal distancing [48, 50, 51]. Butler and Agah [52]

explored the influential factors of how humans perceive a service robot during unfocused

interactions. One of them was the distance factor, which induced feelings of discomfort or

stress in some configurations. A similar study was conducted by Althaus et al. [53], who
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Req. 2 .2: Perceived safety
of humans

Req. 2 .2 .1: Regarding the personal zones of individuals

Req. 2 .2 .2: Avoiding crossing through human groups

Req. 2 .2 .3: Passing speed during unfocused interact ion

Req. 2 .2 .4 : Mot ion legibility during unfocused interact ion

Req. 2 .2 .5: Approach direct ion for a focused interact ion
Req. 2 .2 .5 .1: Individuals
Req. 2 .2 .5 .2: Groups

Req. 2 .2 .6 : Approach speed for a focused interact ion

Req. 2 .2 .7: Occlusion zones avoidance

Figure 2.3: Taxonomy of social robot navigation requirements related to the perceived

safety of humans.

validated a navigation system that respects the personal spaces of humans in a real-world

study.

Shapes of a personal zone impact the comfortable passing distances. Hall originally

specified four circular spaces [47], while the personal zone, reserved for friends, is usually

regarded as a no-go zone during unfocused human-robot interaction. Entering the personal

zone is counted as a violation of comfort and safety [54, 2, 7]. The classification of all

proxemic zones was described in detail in prior surveys, e.g., [2].

The initially suggested circular shape of the personal space [47] might not appropri-

ately capture the features of human perception and motion. Further empirical studies

suggested extending that to an egg shape [55], ellipses [1, 56], asymmetrical shapes [57]

(prolonged on the non-dominant side), or changing dynamically [58]. In [57], it is also

reported that the size of personal space does not change while circumventing a static

obstacle regardless of walking speed and that the personal space is asymmetrical. The

natural asymmetry of personal spaces is also reported in [59], where authors found out

that if the robot has to approach a human closely, it is preferred to not move behind

a human, so they can see the robot.

Numerous works conducted human-involving experiments to gather empirical data and

to model complex and realistic uses of space [60, 61, 62, 63, 64]. Participants of the study

in [60] rated distances between 1.2–2.4 m as most comfortable for interaction situations.

Experiments by Huettenrauch et al. [65] confirmed that in different spatial configurations,

73–85% of participants found Hall’s personal distance range (0.46–1.22 m) as comfortable.

Torta et al. [66], in their study involving human-robot interaction, examined the length

of comfort zones as specific values of 1.82 m for a sitting person and 1.73 m for a standing
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person.

Pacchierotti et al. [61, 62] examined discomfort as a function of, e.g., lateral distance

gap in a hallway scenario. The lateral gap was also examined by Yoda and Shiota [67] in

terms of the safety of passing a human by a robot in a hallway scenario. Three types of

encounters were anticipated as test cases for their control algorithm, including a standing,

a walking, and a running person. They approximated human passing characteristics from

real experiments, defining clear formulas to follow in a robot control system. The authors

found that the average distance between the passing humans depends on their relative

speed and varies from 0.57 to 0.76 m.

The authors of [63] found that the discomfort rates differ between intrusions and

extrusions from personal spaces, and the distances of approximately 0.85–1.0 m are the

most comfortable for a focused interaction with a stranger. On the other hand, Neggers

et al. [64] conducted a study similar to [62] and compared their results. They obtained

similar outcome and reported that the same function, inverted Gaussian linking distance

and comfort, can be used to fit the results’ data with only a small comfort amplitude

shift between [62] and [64]. The authors of [64] also attempted to model an intrusion into

personal space as a distance-dependent surface function.

However, there are also diverse exceptions to the mean shape of personal space. For

example, Takayama et al. [68] indicated that during the study, participants with prior

experience with pets or robots required less personal space near robots compared to people

who do not possess such experience. Furthermore, a study presented in [69] endorses the

concept that personal space is dynamic and depends on the situation. Velocity-dependent

personal space shapes were also considered appropriate in [70, 71, 72].

Since various studies, even though conducted differently, yield similar results, they

seem to approximate human impressions while interacting with robots and, as a con-

sequence, allow modelling of the real-world phenomena of social distancing. The con-

clusions from the mentioned user studies give insights regarding the implementation of

personal space phenomena in robot control systems.

2.3.2 Avoiding crossing through human groups (Req. 2.2.2)

Recent research revealed that pedestrians tend to travel in groups [73, 74]. Human groups

create focused formations (F-formations) [75] – spatial arrangements that are intended

to regulate social participation and the protection of the interaction against external

circumstances [2]. F-formations might be static – consisting of people standing together

engaged in a shared activity, or dynamic – consisting of people walking together, and

might have different shapes [75, 2].

The necessity of avoiding crossing F-formations arises from the fact that they always
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contain an O-space which is the innermost space shared by group members and reserved

for in-group interactions. The discomfort caused by a robot to a group might be assessed

as the robot’s intrusion into the O-space of the F-formation [76, 77]. Results of numerous

studies confirm that humans involved in an F-formation keep more space around a group

than the mere addition of single personal spaces [78, 79, 80]; thus, individuals stay away

from social groups. Furthermore, the research by Rehm et al. [81] found that participants

from high-contact cultures stand closer to a group of people compared to people from

low-contact cultures.

A general guideline for robots navigating through populated environments is to avoid

cutting through social groups [82], but if it is not possible, e.g., in a narrow corridor, to

politely pass through the O-space [83, 11].

2.3.3 Passing speed during unfocused interaction (Req. 2.2.3)

Rios-Martinez et al. [2] define unfocused interactions as “interpersonal communications

resulting solely by virtue of an individual being in another’s presence”. As already high-

lighted in Sec. 2.3.1, excessive or insufficient passing speed proved significant in terms of

discomfort among humans involved in an unfocused interaction with a robot in numerous

experimental studies [52, 61, 62, 72].

The most comprehensive study in that matter was recently proposed by Neggers et

al. [72], who assessed human discomfort with a robot passing or overtaking them at

different speeds at different distances. They have found that higher speeds are generally

less comfortable for humans when a robot moves at smaller distances. The authors claimed

the inverted Gaussians with variable parameters accurately approximate the experimental

results for all combinations of scenarios and speeds. The approximation of their findings

with a continuous multivariable function has already been implemented1 and can be used

for evaluating robot passing speed.

2.3.4 Motion legibility during unfocused interaction (Req. 2.2.4)

Studies conducted by Pacchierotti et al. [62] examined a mutually dynamic situation of

passing each other. They assessed human discomfort as a function of the lateral distance

gap in a hallway scenario. What they have found is that there was no significant impact

of lateral gap size when a robot signalled its passing intentions early. This notion is

often referred to as motion legibility, which is an intent-expressive way of performing

actions [23]. It can be increased by explicit signalling and also enriching behaviour, so it

can be used as a cue to the robot intention [84, 85].

1https://github.com/rayvburn/social_nav_utils
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Lichtenthäler et al. [86] found a significant correlation between the perceived safety

and legibility in their study. Gao and Huang [10] considered a flagship example of motion

legibility as a scenario where a robot quickly moves towards a person, adjusting its tra-

jectory just before an imminent collision. Despite avoiding direct physical contact, such

behaviour is likely to produce notable discomfort by the robot heading direction [21] due

to lack of early signalling.

2.3.5 Approach direction for a focused interaction (Req. 2.2.5)

Approaching direction to initiate a focused interaction is a broad field of social robot nav-

igation studies. Rios-Martinez et al. [2] describe focused interaction as “occurring when

individuals agree to sustain a single focus of cognitive and visual attention”. In most

experimental cases, focused interaction involves approaching to start a verbal commu-

nication or to hand over the transported goods. The taxonomy in this matter separates

approaching guidelines between individuals and F-formations.

Individual humans (Req. 2.2.5.1) In studies conducted by Dautenhahn et al. [87]

and Koay et al. [88], participants were seated and asked to gauge their discomfort levels

during the handover of objects by a robot that approached from various directions. The

subjects of the study preferred frontal approaches over diagonal approaches from the left

or right. The contradictory results were found in a study by Butler and Agah [52], where

standing participants preferred an indirect approach direction.

Multiple studies depict that human preference is to be approached from the front and

within the human field of view. [89, 90, 91, 86, 92, 93, 94, 95]. Walters et al. [89] examined

the robot’s behaviour of approaching a human for a fetch-and-carry task. The authors

reported that seating participants found the direct frontal approach uncomfortable. The

general preference was to be approached from either side, with a preference biased slightly

to a rightward approach by the robot. However, the study depicted that a frontal approach

is considered acceptable for standing humans in an open area. Another conclusion derived

from this study is that humans prefer to be approached from within their field of view;

hence approaching from behind should be avoided.

Torta et al. [91] conducted a user study considering different robot approach directions

with the final pose at the boundary of a personal space. Similarly, they found that exper-

iment subjects (seated) assessed frontal approach directions (up to ±35◦) as comfortable

while perceived farthermost (±70◦) as uncomfortable. Comparable outcomes ensued from

the study in [90]. Unlike the results of the user study performed by Dautenhahn et al. [87],

in [91], no significant difference was found when the robot approached from the right side

or the left side.
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Furthermore, Koay et al. [92] researched robot approach distances and directions to

a seated user for a handover task. The results show that the preferred approach direction

is from either side at a distance of about 0.5 m from the subjects. An interesting fact is

that this distance lies within an intimate space [47], but was preferred because prevented

humans from reaching out longer with their arms or standing up to pick up the goods

from the robot’s tray.

Human groups (Req. 2.2.5.2) Approaching groups of humans requires slightly dif-

ferent strategies. Ball et al. [94] investigated the comfort levels of seated pairs of people

engaged in a shared task when approached by a robot from eight directions. Participants

rated robot approach behaviour for three spatial configurations of seats. Approaches from

common (to all subjects involved) “front” directions were found to be more comfortable

(group’s average) than from a shared rear direction. When seated pairs were in a spatial

configuration that did not exhibit the common “front” or “rear” direction, no significant

statistical differences were found. However, another finding of this study is that the pres-

ence and location of another person influence the comfort levels of individuals within the

group.

Joosse et al. [95] explored the optimal approach of an engagement-seeking robot to-

wards groups from three distinct countries, employing Hall’s proxemics model [47]. Their

findings indicate that the most suitable approach distance seems to be approximately

0.8–1.0 m from the centre of the group.

Karreman et al. [93] investigated techniques for a robot to approach pairs of individu-

als. Their findings revealed a preference among people for frontal approaches (regardless

of side), with a dislike for being approached from behind. They also noted that environ-

mental factors appeared to influence the robot’s approach behaviour.

2.3.6 Approach speed for a focused interaction (Req. 2.2.6)

Robot speeds are one of the factors impacting discomfort when approaching a human.

Since the literature regarding approaching behaviour is rich, there are also guidelines to

follow in social robot navigation.

Butler and Agah [52] assessed the navigation of a mobile base around a stationary

human using various trajectories and equipment resembling the human body. They dis-

covered that speeds ranging from approximately 0.25 to 0.4 m/s were most comfortable,

while speeds exceeding 1 m/s were uncomfortable. They also claimed that there might be

a speed between 0.4 and 1.0 m/s that produces the least discomfort.

Sardar et al. [96] conducted a user study in which a robot approached a standing

individual engaged in another activity. Experiments revealed notable distinctions in ac-
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ceptance of invading the participant’s personal space by a robot and a human. In their

study, only two speeds were evaluated, namely 0.4 and 1.0 m/s, while the robot’s faster

speeds were more trustworthy (opposite to human confederates).

In a more recent study, Rossi et al. [97] evaluated speeds of 0.2, 0.6 and 1.0 m/s

that affected the robot’s stopping distance while approaching. They have found different

human preferences for stopping distance depending on the activity currently executed by

humans. Sitting participants favoured shorter distances while walking subjects longer.

2.3.7 Occlusion zones avoidance (Req. 2.2.7)

Occlusion zones are related to areas not reached by the robot’s sensory equipment. Despite

the robot’s most recent assumptions suggesting that these areas were previously unoccu-

pied, such estimates may be inaccurate. Consequently, robots should avoid traversing near

blind corners, as they may fail to detect individuals behind them, and vice versa. By going

around the corner with a wider turn, the robot can explore the occluded space earlier,

making it possible to react to humans sooner [12]. Proactivity in that matter prevents

surprise or panic and generally positively impacts comfort and physical safety.

User studies generally confirm this issue, showing that humans tend to shorten their

paths [98, 99] to minimise energy expenditure. Taking shortcuts in public spaces increases

the risk of encounters around blind corners.

Francis et al. [11] suggested that a robot entering a blind corner should communicate

intentions explicitly with voice or flashing lights. However, this seems slightly unnatural,

as even humans avoid shouting in corridors. Enabling audio or flashing lights might also

be annoying for surrounding workers in shopping aisles.

2.4 Naturalness of the robot’s motion (Req. 2.3)

The naturalness of the robot’s motion can be referred to as emerging robot behaviours

that are not perceived as odd. This is often related to the avoidance of erratic movements

and oscillations (Fig. 2.4). Keeping a smooth velocity profile also produces an impression

of trust and legibility among observing humans [86].

2.4.1 Avoiding erratic motions (Req. 2.3.1)

Erratic motions involve sudden changes in velocity, making it difficult to anticipate the

next actions. This term is often used to describe the behaviour of objects exhibiting

chaotic movement patterns that make the robot look confused.
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Req. 2 .3: Naturalness
of the robot 's mot ion

Req. 2 .3 .1: Avoiding errat ic mot ions

Req. 2 .3 .1 .1: Velocity smoothness
Req. 2 .3 .1 .2: Oscillat ions
Req. 2 .3 .1 .3: In-place rotat ions
Req. 2 .3 .1 .4 : Backward mot ions

Req. 2 .3 .2: Modulat ing gaze direct ion

Figure 2.4: Taxonomy of social robot navigation requirements related to the naturalness

of the robot’s motion.

Erratic motions are often related to the lack of smoothness of the robot’s velocity

profile (Req. 2.3.1.1). Natural motions favour movements with a minimum jerk [100] with

mostly stable linear velocity and the angular velocity of zero, i.e., adjusting orientation

only when necessary [12, 10].

In contrast to the smooth velocities, oscillating motions (Req. 2.3.1.2) involve al-

ternating forward and backward motions, where the robot effectively does not make any

progress. They may be present in some navigation approaches that rely solely on Artificial

Potential Field [101] or Social Force Model [1].

Additionally, in-place rotations (Req. 2.3.1.3) of a robot appear unnatural for human

viewers; hence, it is preferred to avoid trajectories where a turning on spot [100, 102]. Also,

significant backward movements (Req. 2.3.1.4) should also be avoided as individuals

rarely move in reverse in public areas. Such actions can pose collision risks, particularly

for mobile bases lacking range sensors at the back.

2.4.2 Modulating gaze direction (Req. 2.3.2)

A broad area of research regarding motion naturalness corresponds to modulating the

robot gaze direction. Humanoid robots are typically equipped with a “head”, inside which

a camera is located (RGB or RGB-D), e.g., Nao, TIAGo, Pepper, Care-O-bot. Pan and

tilt motions of the head joints can be used to modulate gaze direction.

Gaze direction is considered one of the social signals (cues) and a specific type of

nonverbal communication between a robot and surrounding humans [28]. Among humans,

it is closely related to their perception captured by the notion of Information Process

Space [2]. Gaze is a general concept in which measurable aspects can be evaluated, such

as fixation count and length [103], as well as gaze-movement angle [104]. Both provide

valuable insights into human trajectory or behaviour prediction [28].

Unfocused interaction In a study by Kitazawa and Fujiyama [105], the authors invest-

igated gaze patterns in a collision avoidance scenario with multiple pedestrians moving

along a corridor. Results of the experiment show that humans pay significantly more
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attention to the ground surface, which they explain as a focus on detecting potential

dynamic hazards than fixating on surrounding obstacles. In an experiment conducted by

Hayashi et al. [106], they noticed that participants were more willing to speak to the robot

when it modulated its gaze direction. Kuno et al. [107] also concluded that robot head

movement encourages interaction with museum visitors.

Fiore et al. [108] analysed human interpretation of social cues in hallway navigation.

They designed a study to examine different proxemics and gaze cues implemented by ro-

tating the robot sensors. The results depict that the robot’s gaze behaviour was not found

to be significant, contrary to the robot’s proxemics behaviour that affected participant

impressions about the robot (Sec. 2.3.1). Similarly, a study by May et al. [109] showed an

understanding of robot intentions while conveyed using different cues. It turned out that

the robot was understood better when a mechanical signal was used compared to using

the gaze direction cue. Also, Lynch et al. [110] conducted a study employing a virtual

environment where virtual agents established a mutual gaze with real participants during

path-crossing encounters in a virtual hallway. Subjects of a study found the gaze factor

as not important to inferring about paths of the virtual agents.

Different strategies of gaze modulation were studied by Khambhaita et al. [111]. Their

research indicates that the robot’s head behaviour of looking at the planned path resulted

in more accurate anticipation of the robot’s motion by humans compared to when the

head was fixed. The authors also found that the robot operating with the head behaviour

of alternately looking at the path and glancing at surrounding humans gave the highest

social presence measures among the subjects. Similarly, Lu et al. [112] discussed a strategy

of a robot looking at the detected human followed by looking ahead in 5-second cycles.

Focused interaction Research has shown that gaze modulation of the robot’s focused

interactions should be treated differently than unfocused ones. Breazeal et al. [113] ex-

plored the impressions of humans participating in an experiment with a Kismet robot

capable of conveying intentionality through facial expressions and behaviour. They iden-

tified the necessity of gaze direction control for regulating conversation rate, as the robot

directs its gaze to a locus of attention.

In another study, Mutlu et al. [114] implemented a robot gaze behaviour based on

previous studies [115, 116] and their observations that people use gaze cues to establish

and maintain their conversational partner’s roles as well as their own. The gaze behaviour

strategy produced turn-yielding signals only for conversation addressees. In their experi-

ment, they found that using only the gaze cues, the robot manipulated who participated

in and attended to a conversation.
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2.5 Compliance with social norms (Req. 2.4)

Navigating humans adhere to diverse social norms influenced by cultural, interactional,

environmental, and individual factors such as gender and age. Therefore, the robot’s

compliance with social conventions is also a multifaceted concept (Fig. 2.5), in contrast

to low-level motion conventions, such as approach velocity. The aforementioned factors

shape high-level social conventions involving navigation-based interactions like queueing,

elevator decorum, yielding way to others, and adhering to right-of-way protocols. Ro-

bots considered sociable abide by social conventions. Despite the existence of customary

routines, they are often challenging to model precisely due to their abstract nature, as

seen in the discussion by Barchard et al. [117].

Req. 2 .4 : Compliance
with social norms

Req. 2 .4 .1: Following the accompanying strategy
Req. 2 .4 .1 .1: Guiding
Req. 2 .4 .1 .2: Following
Req. 2 .4 .1 .3: Side-by-side

Req. 2 .4 .2: Avoiding blocking the affordance spaces

Req. 2 .4 .3: Avoiding crossing the act ivity spaces

Req. 2 .4 .4 : Passing on the dom inant  side

Req. 2 .4 .5: Yielding a way to a human at  a crossing

Req. 2 .4 .6 : Standing in line

Req. 2 .4 .7: Obeying elevator et iquet te

Figure 2.5: Taxonomy of social robot navigation requirements related to the robot’s com-

pliance with social norms.

The authors of surveys [12, 10] exemplify that even if the robot’s movements may

appear natural and unobtrusive (Req. 2.3), it can violate typical social conventions. For

instance, entering a crowded elevator without allowing occupants to exit first breaches

common expectations, thereby potentially causing discomfort. Also, in different user stud-

ies, it is reported that human discomfort can be caused due to violations of social norms

even if the rules of perceived safety of humans are properly adhered to in the robot

navigation [118, 119].

There are no predetermined sets of high-level social conventions, making compliance

a dynamic and context-dependent aspect of robotic behaviour [10], that requires a diverse

level of contextual awareness. The most common and meaningful social conventions that

have been examined in the literature are illustrated below. The complementary discussion

attempts to clarify how they should be addressed in robot control systems.
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2.5.1 Following the accompanying strategy (Req. 2.4.1)

Strategies of executing the task of accompanying humans by the robot are dictated by

the social conventions of how humans navigate in relation to other pedestrians. Custom-

ary human behaviours entail how robots should adjust their movements based on the

relative position of the accompanying human (or humans), ensuring smooth and natural

interactions.

Tracking humans from the front (Req. 2.4.1.1) Numerous studies reviewed the

relative pose that the robot should maintain while tracking a human from the front. For

example, Jung et al. [120] performed a study to evaluate how often humans look back at

the robot that tracks the subject from behind. They found that participants often looked

back as they were curious about the robot, whether it bumped into them or tracked them

well. The authors concluded that tracking from the front might be more comfortable and

designed a robot control strategy that involves moving 1 m ahead of the tracked human,

whose local movement goal is inferred by the robot online.

On the other hand, Young et al. [121] compared various relative poses for a robot led

on a leash by a participant. The results revealed that having the robot move in front of

the person was the most comfortable approach for joint motion. In another study, Carton

et al. [122] proposed a framework for analysing human trajectories. Their studies led to

the conclusion that humans plan their navigation trajectories similarly whether they are

walking past a robot or another human.

Person following (Req. 2.4.1.2) Gockley et al. [123] evaluated methods of avoiding

rear-end collisions of a robot following a person. The first approach focuses on direction-

following, where the robot follows the heading of a person, whereas the second method,

path-following, relies on imitating the exact path that a person takes. The participants of

the real-world experiments rated the direction-following robot’s behaviour as substantially

more human-like. However, the participants rated that the robot stayed too far away

(1.2 ± 0.1 m) from them while moving.

Following an individual in populated environments is challenging as crowd behaviour

often manifests as flows of social groups, with individuals typically following the flow [73].

Studies show that joining a flow with a similar heading direction is more socially accept-

able, resulting in fewer disturbances to surrounding pedestrians [124]. Collision avoid-

ance techniques for following one person through a populated environment are discussed

in [125, 126].
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Side by side (Req. 2.4.1.3) The tendency for people to walk side-by-side when walk-

ing together was discussed by Kahn et al. [127]. In situations with only two individuals

walking, they typically adopt a side-by-side formation, while in crowded conditions or

with three or more individuals, more complex formations such as “V” shapes are ob-

served [128]. Spatial preferences of humans when being followed by a robot were reviewed

in [129]. In the majority of studies, the robot’s relative position to the person typically re-

mains constant, with any adjustments being made primarily in response to environmental

factors.

Saiki et al. [130] discussed how robots can serve walking people. In their experiments,

people trajectories were recorded to develop a histogram of relative distances. The con-

clusion is that people’s average distance while walking alongside was 0.75 m.

Karunarathne et al. [131] designed a spatial model for side-by-side accompanying

without explicit communication about the goal of a human. During their study, they

found that, e.g., a distance maintained in a robot-human pair (1.25 m) was larger than

that from the human pair average (0.815 m).

2.5.2 Avoiding blocking the affordance spaces (Req. 2.4.2)

The concept of affordance space relates to the potential activities that the environment

offers to agents [132]. Affordance spaces could be mapped as free regions or banned regions

in a function of time [133]. They have no specific shape [2] as they depend on specific

actions.

Affordance spaces are specific to the robot environment and can be exemplified by the

area near a painting in a gallery or menu stands in restaurants. In general, an affordance

space can be crossed without causing disturbance to a human (unlike activity spaces in

Sec. 2.5.3), but blocking an affordance space could be socially not accepted [2]. Also, for

the robot with a limited field of view (FOV ), it is essential to utilise a predefined map of

affordance spaces.

Raubal and Moratz [134] discussed a robot architecture incorporating a functional

model for affordance-based agents. The crucial concept is to consider the information

about locations of affordance spaces when selecting a coarsely defined (region-based) nav-

igation goal or a goal on a topological map. The notion of affordance spaces was also

discussed in the context of learning them online [135], as well as in gaining knowledge

from the analysis of human trajectories [136].
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2.5.3 Avoiding crossing the activity spaces (Req. 2.4.3)

The activity space is an affordance space linked to an ongoing action performed by an

agent – human or another robot [2]. An activity space can be exemplified by the area

between an observer and a painting in a gallery. Once the visitor initiates this space,

the robot is obliged not to cross it [132]. Additionally, the robot’s perception has to

dynamically infer whether a certain agent has initiated an activity space, e.g., by observing

an object [135]. Furthermore, the activity space should be conditionally constrained; for

instance, it should be less restrictive for a shorter robot compared to a taller one that

might fully occlude the painting when crossing through an activity space.

2.5.4 Passing on the dominant side (Req. 2.4.4)

Bitgood and Dukes [99] discussed that people tend to proactively move to the right half

portion of a hallway or a narrow passage, which is tied to cultural traffic rules. Multiple

existing social robot navigation approaches already implemented strategies to follow the

right side of the corridor or to favour passing humans on the right [137, 71, 126, 84].

However, as Bitgood and Dukes suggest, this might not be a strict rule to follow in

crowded spaces, as some people follow the other side as they have an incoming left-turn

destination [99]. This is supported by the study conducted by Neggers et al. [72], who also

examined the effect of the passing side and found that participants reported equal comfort

levels for both sides. Nevertheless, Moussäıd et al. [138] conducted a set of controlled

experiments and observed pedestrians’ preference to perform evasive manoeuvres to the

right, while passing each other.

2.5.5 Yielding a way to a human at crossing (Req. 2.4.5)

Moller et al. [9] posed the problem of who goes first at an impasse as one of the social

conventions that are “less well-defined”. As stated in a survey by Mirsky et al. [28], the

term “social navigation” usually refers to a human-centric perspective; therefore, the robot

is often obliged to yield a way to a human at the crossing.

The user study performed by Lichtenthäler et al. [86] showed that at the crossing

scenario, the participants favoured the navigation method in which the robot stopped to

let a person pass. Yielding a way to a human based on the predicted motion was also

investigated in [77].
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2.5.6 Standing in line (Req. 2.4.6)

Standing in line while forming a queue is one of the most common collective behaviours of

humans. Nakauchi and Simmons [139] modelled how people stand in line by first collecting

empirical data on that matter. Further, they utilised these data to model a range of

behaviours for a robot tasked to get into a queue, wait and advance in the queue alongside

other individuals awaiting service.

2.5.7 Obeying elevator etiquette (Req. 2.4.7)

“Elevator etiquette” refers to the customary rules of humans entering and exiting a boun-

ded space through a doorway, specifically, letting people leave an elevator before at-

tempting to enter. These rules are generalisable to numerous closed areas like rooms and

corridors.

Gallo et al. [140] proposed the machine-like approach for the design of robot behaviour

policies that effectively accomplish tasks in an indoor elevator-sharing scenario without be-

ing disruptive. Alternatively, Lin et al. [119] discussed the social appropriateness of lining

up for an elevator in the context of deploying a mobile remote presence. Elevator-related

conventions were tackled in a robotic competition – “take the elevator challenge” [8].

2.6 Summary

In this chapter, social robot navigation requirements were grounded based on the re-

viewed user studies regarding unfocused and focused human-robot interactions. This, in

turn, highlighted objectives on how robots should behave in populated environments. The

human-aware robot navigation requirements are organised into our taxonomy consisting

of requirements for ensuring the physical and perceived safety of humans, as well as the

requirements assuring the robot’s motion naturalness and the robot’s compliance with

the social norms. This classification is the basis for the analysis of algorithmic topics

(Chapter 3).

We acknowledge that the proposed set of primitive requirements is subject to extension

as the social navigation studies advance and new issues or additional cases are found [11].

Not only some requirements mentioned above have not been sufficiently studied, but many

other human conventions have not been considered at all in user studies with robots;

hence, there are no clear guidelines on how they can be tackled properly in social robot

navigation. As a consequence, the comprehensive method for assessing compliance with

social norms remains unresolved, in contrast to the agreement on criteria for evaluating

the physical and perceived safety, as well as most cases covered by naturalness aspects.
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An example phenomenon that was not targeted by user studies to the extent that

allows establishing specific principles is facial expressions. Petrak et al. [83] discussed

a side note of their study that enhanced robot facial expressions and gestures could make

the behaviour easier to anticipate for the experiment participants. Kruse et al. [12] poin-

ted out additional navigation conventions such as: giving priority to elderly people at

doorways, asking for permission to pass, and excusing oneself when one has to traverse

a personal zone to reach a goal. Furthermore, Gao and Huang [10] indicated observing

right-of-way at four-way intersections as another navigation-based interaction. On the

other hand, despite overtaking on the non-dominant side has been implemented in some

navigation methods [71, 141], there are no clear guidelines that such behaviour is common

in environments other than narrow passages.

Nevertheless, implementing all requirements in a single robot control system is an

enormous challenge, while integrating all constraints and norms requires rich contextual

awareness of the robot.
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Chapter 3

Related work

Our literature review can be segmented into two perspectives: requirements and al-

gorithmic. The requirements perspective, explained in Chapter 2, involves exploring vari-

ous user studies to identify the rules for social robots to adhere to. The primary focus

of that part lies in examining factors that cause human discomfort, as confirmed in real-

world experiments involving human participants. In addition to identifying these factors,

we aim to extract methods for mitigating discomfort to obtain implementable guidelines

for robot control systems.

Subsequently, the algorithmic perspective, discussed in this chapter, categorises ex-

isting research regarding the perception, motion planning, and evaluation approaches

(Fig. 3.1) and maps state-of-the-art navigation methods onto the specified requirements

taxonomy (Fig. 2.2).

Social robot
navigat ion

Requirem ents

Percept ion

Mot ion planning

Evaluat ion

Figure 3.1: A taxonomy of main concepts in social robot navigation.

The following sections give an algorithmic overview of fundamental aspects of social

robot navigation. The Sec. 3.1 discusses the key methods for addressing the main chal-

lenges of social robot perception, namely the detection and tracking of humans in the

robot’s environment. These considerations are complemented by the analysis of diverse

environment representations and contextual awareness of robots. Then, in Sec. 3.2, which

is the major part of this chapter, various methods employed for robot motion planning
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are discussed. The review involves both traditional methods and dedicated socially-aware

approaches that take into account constraints arising from the presence of surrounding

humans. Sec. 3.2 is summarised by tables mapping the state-of-the-art navigation al-

gorithms onto the requirements taxonomy, based on the objectives addressed in each

approach. Moreover, Sec. 3.3 explores the methods for evaluating social robot navigation

as well as study types and tools relevant to the development of navigation techniques.

The summary of the analyses from this chapter is provided in Sec. 3.4.

3.1 Perception

Robot perception plays a substantial role in safe navigation and expands the intelligence of

a robot. Social robots must differentiate obstacles from humans to interact in a discomfort-

mitigating manner.

In robotics, various types of exteroreceptors [31] are utilised to perceive the envir-

onment. Tactile sensors provide feedback about physical contact, enabling robots to

detect and respond to touch [53, 61, 62, 142, 143]. They are crucial for tasks requir-

ing object recognition that other sensor types can’t capture. Sonar sensors utilise sound

waves to detect the presence, distance, and velocity of objects, allowing robots to nav-

igate and avoid obstacles in dynamic environments [144, 52, 53, 145, 146]. Laser range

finders use laser beams to measure distances accurately, aiding in mapping and local-

isation tasks [61, 147, 148, 149, 150, 151, 152]. RGB cameras capture images in vis-

ible light, enabling robots to recognise objects, navigate environments, and interpret

visual cues [53, 42, 153]. Finally, RGB-D cameras, equipped with depth sensors, provide

both colour and depth information, enhancing object detection and enabling 3D map-

ping [154, 149, 155, 156]. These sensor types play essential roles in robotics research and

development, enabling robots to perceive and interact with their surroundings effectively.

The remainder of this section follows the taxonomy illustrated in Fig. 3.2.

3.1.1 Environment representation

Besides detecting obstacles and tracking humans, robot perception is usually employed

to collect subsequent observations of the surroundings to create an environment model,

among which the most popular are dense, sparse, and dual representations.

A dense representation constitutes a discretised map of the robot environment. Clas-

sical maps contain all types of obstacles embedded into the environment model without

a semantic distinction. The most common planar map types are occupancy grids [157] and

costmaps [22]. In contrast, octomaps [158], representing occupancies in 3D space, and el-

evation grid maps [159] are less frequently integrated with social robot navigation systems.
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Figure 3.2: A taxonomy of perception for social robot navigation.

The pioneering dense model is an occupancy grid [157] that represents the environment

as a binary grid (graph) where each cell is either occupied or free, and all occupied cells

are treated as equal obstacles. Therefore, costmaps were proposed to extend the classical

occupancy grids. Costmaps introduce intermediate states (between free and occupied) of

a cell [22] and constitute a 2D traversability grid in which cells are given a cost of tra-

versal reflecting the difficulty of navigating the respective area of the environment [160].

This allows robots to plan paths that optimise not just for avoiding collisions but also for

factors like proxemics. The dense representation of an environment is often solely used in

classical robot navigation approaches [161, 147, 158].

Sparse environment representations typically refer to representations where only cer-

tain key features or landmarks are represented explicitly, with the rest of the space left

unstructured or minimally represented. Sparse representation usually provides a concise

description of the objects detected in the environment, constituting their semantic inform-

ation with geometric attributes [162, 163, 164, 43]. This method of storing environment

objects also allows, e.g., applying linear algebra formulas to easily predict objects’ motion.

Dual environment representations, combining dense and sparse ones, are commonly

used in social robot navigation [165, 166, 167, 168]. While obstacle-filled costmaps are

calculated, robot perception modules simultaneously detect and track humans in the

environment. They provide sparse data about each human, e.g., a pose and velocity,

or even spatial relationships [149, 169]. Such information allows for dynamic modelling of

personal spaces of individuals (Req. 2.2.1) and O-spaces of F-formations (Req. 2.2.2),

which can later be embedded onto layered costmaps [170]. Layered costmaps extend the
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notion of traditional costmaps to facilitate separate representations of different contextual

cues as spatial constraints in the robot environment. The resultant costmap with enriched

information is flattened for motion planning; therefore, classical algorithms can still be

used.

3.1.2 Human detection and tracking

Social robot navigation encompasses the awareness of humans surrounding the robot,

as they must be treated differently from typical obstacles. The awareness arises from

detecting and tracking people by the robot perception system [125] as well as exhibiting

behaviour that mitigates the discomfort of nearby humans (Req. 2). Various methods for

human detection and tracking have been proposed in the literature [171, 172, 149, 173,

174, 175, 176].

Arras et al. [171] proposed a method utilising a supervised learning technique for cre-

ating a classifier for people detection. Specifically, AdaBoost was applied to train a clas-

sifier from simple features of groups of neighbouring beams corresponding to legs in the

LiDAR’s range data. Similarly, Bozorgi et al. [176] focused on LiDAR data filtering to

obtain robust human tracking in cluttered and populated environments. They integrated

Hall’s proxemics model [47] with the global nearest neighbour to improve the accuracy

of scan-to-track data association of leg detection. Results of their experiments show that

their method outperformed the state-of-the-art detector from [172].

In contrast, Linder et al. [149] proposed a multi-modal (LiDAR and RGB-D) people-

tracking framework for mobile platforms in crowded environments. Their pipeline com-

prises different detection methods, multi-sensor fusion, tracking and filtering. Triebel et

al. [169] extended multi-hypothesis tracker from [177] for detecting F-formation arrange-

ments. Both works were integrated and implemented in the SPENCER robot [149, 169].

Redmon et al. [173] framed the object detection problem as a regression problem

to spatially separated bounding boxes and associated class probabilities. They proposed

a generic framework for detecting objects of various classes on 2D images. Alternatively,

Cao et al. [175] proposed an Open-Pose system for human skeleton pose estimation from

RGB images. In another work, Juel et al. [178] presented a multi-object tracking system

that can be adapted to work with any detector and utilise streams from multiple cameras.

They implemented a procedure of projecting RGB-D-based detections to the robot’s base

frame that are later transformed to the global frame using a localisation algorithm.

Theodoridou et al. [153] used TinySSD [174] for human detection in their robot with

limited computational resources. TinySSD is a lightweight single-shot detection deep con-

volutional neural network for real-time object detection, which only finds people in the

images; hence, the authors of [153] had to perform image and range-based data matching
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in their system.

In real-world studies, robot sensors are used to detect and track humans. The survey

by Möller et al. [9] discusses, i.a., the active perception idea. The authors denoted that

active vision systems can influence the input by controlling the camera. As an extension of

active perception, they depict active learning [179], which also influences the input data,

but during the training process. This enables the agent to intelligently choose what data

points to exploit next.

To the best of our knowledge, currently, the most comprehensive human perception

stack is SPENCER [149, 169], which is available as the open-source software1 compatible

with the Robot Operating System (ROS ) [180, 181].

3.1.3 Human trajectory prediction

In social navigation, classical planning methods, e.g., Artificial Potential Field (APF )

[101] or DWA [144] often exhibit limited efficacy as pedestrians are treated merely as un-

cooperative obstacles. This limitation is exemplified by the freezing robot problem [182],

where a mobile robot may become immobilised in a narrow corridor when confronted with

a crowd of people unless it can anticipate the collective collision avoidance actions [183].

Therefore, predicting human trajectories is one of the fundamental concepts in social robot

navigation, in particular in unfocused human-robot interactions, where explicit commu-

nication between agents is not present. Understanding how agents move can reduce the

potential for conflicts, i.e., sudden encounters in which humans and robots might collide

(Req. 2.1) [28, 184]. Another particularly important aspect is that humans frequently

undergo lengthy occlusion events; hence, their motion prediction prevents possible unex-

pected encounters.

In the social robot navigation literature, the prevailing method is the Inverse Rein-

forcement Learning (IRL) [185], which is based on the Markov Decision Process (MDP)

[186]. The IRL identifies reward functions based on the observed behaviour, enabling ro-

bots to learn from human demonstrations. It can be classified as an offline inference and

learning method [28]. Henry et al. [187] used IRL to learn human motion patterns in

simulation to use them later for socially-aware motion planning. Rhinehart et al. [188]

extended IRL for the task of continuously learning human behaviour models with first-

person-view camera images. Their Darko algorithm jointly discovers states, transitions,

goals, and the reward function of the underlying MDP model. In another work, Vasquez et

al. [189] conducted experiments to compare the performance of different IRL approaches,

namely, Max-margin IRL [190] and Maximum Entropy IRL [191], which were later applied

1https://github.com/spencer-project/spencer_people_tracking
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for robot navigation in a densely populated environment. Also, Kretzschmar et al. [192]

used Maximum Entropy IRL to deduce the parameters of the human motion model that

imitates the learned behaviours. IRL seeks to extract the latent reward or cost function

from expert demonstrations by considering the underlying MDP . It learns from entire

trajectories, and its computational expense arises from running RL in an inner loop [193].

Another approach was proposed by Goldhammer et al. [194], who used an Artificial Neural

Network (ANN ) with the multilayer perceptron architecture to learn usual human motion

patterns. A different method was presented by Gao et al. [195], who trained a Reinforced

Encoder-Decoder network to predict possible activities.

Alternatively, Long Short-Term Memory (LSTM ) networks are one of the sequential

methods that learn conditional models over time and recursively apply learned transition

functions for inference [196]. Unlike standard feed-forward neural networks, also known

as recurrent neural networks, these networks include feedback connections. Following the

work by Alahi et al. [197], who presented a human trajectory forecasting model based

on LSTM networks, they have become widely popular for this purpose. For example,

Furnari and Farinella [198] utilised LSTM to predict future human actions in a domestic

setting. Chen et al. [199] also created an LSTM -based model predicting socially-aware

trajectories learned from a dataset to later integrate this into a robot motion planning

scheme. Recurrent Neural Networks (RNN ) were also applied for sequence learning, e.g.,

by Vemula et al. [200] who proposed the Social Attention trajectory prediction model that

captures the relative importance of each person when navigating in the crowd, irrespective

of their proximity. Another work by Farha et al. [201] relies on training a Convolutional

Neural Network (CNN ) and a RNN to learn future sequences. They proved their method

to be suited for long-term predictions of video sequences.

Another effective data-based method for learning from demonstrations is Generative

Adversarial Imitation Learning (GAIL), applied by, e.g., Tai et al. [193] to learn continuous

actions and desired force toward the target. Huang et al. [202] proposed a model-based

interactive imitation framework combining the advantages of GAIL, interactive RL and

model-based RL.

On the other hand, Kanda et al. [203] used the Support Vector Machine (SVM ) to

classify 2-second recordings of human trajectories in a shopping mall into four behaviour

classes: fast-walking, idle-walking, wandering, and stopping. The classification relies on

features of trajectory shapes and velocity. Coarse classification enables forecasting human

trajectories [4]. Similarly, Xiao et al. [204] first pretrained the SVM to group activity

classes, then predicted the trajectories based on those classes, and finally evaluated the

system in a lab environment.

Alternatively, the Social Force Model (SFM ) [1] with its numerous modifications [205,
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165, 167] is also a popular method for human trajectory prediction; however, requires

knowledge about environmental cues to infer the possible goals of humans. Luber et

al. [206] combined SFM with a tracker based on the Kalman filter to produce a more

realistic prediction model of human motion under the constant velocity assumption. Re-

cently, multiple approaches integrating SFM into neural network schemes were proposed.

For example, Yue et al. [207] integrated SFM and a deep neural network in their Neural

Social Physics model with learnable parameters. Gil and Sanfeliu [208] presented Social

Force Generative Adversarial Network (SoFGAN ) that uses a GAN and SFM to generate

different plausible people trajectories reducing collisions in a scene.

Numerous works across various application domains depend on kinematic models for

their simplicity and satisfactory performance, particularly in scenarios with minimal mo-

tion uncertainty and short prediction horizons. Among others, Elnagar [209] proposed

a method predicting future poses of dynamic obstacles using a Kalman filter under the

assumption of using a constant acceleration model. Similarly, Lin et al. [210] proposed

a forecasting strategy that employs a bimodal extended Kalman filter to capture the

dual nature of pedestrian behaviour – either moving or remaining stationary. Also, Kim

et al. [211] used a combination of ensemble Kalman filters and a maximum-likelihood

estimation algorithm for human trajectory prediction.

In applications where performance is crucial, the constant velocity model, assuming

piecewise constant velocity with white noise acceleration, can be applied. Despite its

simplicity, it is commonly chosen as an ad-hoc method for motion prediction in numerous

approaches [212, 213, 214, 215, 148, 216, 217] having lightweight and straightforward

implementation and yielding satisfactory results with high-frequency updates. Recently,

Schöller et al. [218] discussed that the constant velocity model might outperform state-

of-the-art neural methods in some scenarios.

Diverse methods were also evaluated for usage in human trajectory prediction; for

example, belief distribution maps [219] that consider the obstacle situation in the robot’s

environment, multi-goal Interacting Gaussian Processes (mgIGP) [220] that can reason

multiple goals of a human for cooperative navigation in dense crowds, or Human Motion

Behaviour Model (HMBM ) [221] allowing the robot to perform human-like decisions in

various scenarios. Another method was proposed by Ferrer and Sanfeliu [222], who presen-

ted a geometric-based long-term Bayesian Human Motion Intentionality Predictor using

a naive Bayes classifier that only requires training to obtain the set of salient destinations

that configure a scene.

Our survey discusses the most common methods used in robotic applications, but vari-

ous other methods for human trajectory prediction have evolved over the years. Rudenko

et al. [196] presented a thorough review of the state-of-the-art human motion prediction
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methods, where they also discussed approaches that account for map information or en-

vironmental cues for predictions. An appropriate forecasting method has to be selected for

a specific application based on multiple criteria, e.g., computational resources, prediction

horizon, and detection uncertainty.

3.1.4 Contextual awareness

A robot is perceived as intelligent if it utilises the contextual information in its imperat-

ive [13, 26]. The proper socially-aware activity of a robot performing a single task might

differ depending on the situation defined by a contextual arrangement. It is connected to

adjusting the robot’s behaviour, knowing what environment it is in (gallery or shopping

mall), what task it performs (transporting a glass full of hot tea or packed goods), whom

it interacts with (young person or elderly), and what social norms are expected in the

environment (may differ between cultures).

Francis et al. [11] in their survey identified the following forms of context: cultural

context [47, 95, 223, 41, 224, 225], environmental context, individuals diversity, task con-

text, and interpersonal context, but their literature review in this area is narrow. The

notion of context is usually regarded in the deliberative layer of the robot’s planning and

embedded as spatial or spatiotemporal constraints in the motion planning [226, 227, 17].

Environmental context The environmental context is constituted by various charac-

teristics of the robot’s surroundings. This information is particularly important for robots

that act in different types of rooms, e.g., corridors and libraries of the university. While

the robot might be sociable and lively in corridors, it is not necessarily appropriate to

distract students in the library, where the robot should move slowly and be quiet. There-

fore, researchers investigate different environmental concepts to embed them into robot

navigation schemes.

Banisetty et al. [228] proposed a model-based context classifier integrated with a high-

level decision-making system for socially-aware navigation. Their CNN model distin-

guishes between different environmental contexts such as an art gallery, hallway, vend-

ing machine, and others. Additionally, based on the LiDAR observations and using the

SVM , they classified social contexts, namely people forming a queue and F-formations.

In continuation of this article, Salek Shahrezaie et al. [229] introduced classification and

detection information into a knowledge base they queried to extract applicable social rules

associated with the context at hand. This approach has been further extended in [151] for

using environmental context, object information, and more realistic interaction rules for

complex social spaces. On the other hand, Jia et al. [230] proposed a deep-learning-based

method for detecting hazardous objects in the environment of an autonomous cleaning
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robot to maintain safe distances from them on the motion planning level. Recognising

human activity spaces is a part of environmental context awareness, as presented in the

work by Vega et al. [231], who exploited the detection of specific objects for this purpose.

A leading approach to enable the robot’s contextual awareness is semantic map-

ping [232, 233, 234]. For example, Zhang et al. [235] used an object semantic grid map

along with a topological map for the automatic selection of roughly defined navigation

goals in a multiroom scenario. Alternatively, Núñez et al. [236] proposed a navigation

paradigm where the semantic knowledge of the robot’s surroundings and different social

rules are used in conjunction with the geometric representation of the environment’s se-

mantic solutions. Their approach aims to integrate semantic knowledge and geometrical

information. A promising method for the interactive building of semantic maps for robot

navigation has been illustrated in [237].

Interpersonal context Interpersonal cues are mainly related to social relationships

between tracked humans in the robot environment. This knowledge can be embedded

in control systems to enhance robot navigation skills. For example, Li et al. [238] pro-

posed a dual-glance CNN -based model for visual recognition of social relationships. The

first glance fixates on the person of interest, and the second glance deploys an attention

mechanism to exploit contextual cues. Lu et al. [170] proposed an approach for context-

sensitive navigation, mainly focusing on human-aware robot navigation and embedded

spatial constraints into environment models in the form of costmaps.

The algorithm by Luber and Arras [177] was extended in [169] for detecting and learn-

ing socio-spatial relations, which are used for creating a social network graph to track

groups of humans. Patompak et al. [239] developed a Reinforcement Learning method

of estimating a social interaction model for assisting the navigation algorithm regard-

ing social relations between humans in the robot’s environment model. Similarly, Okal

and Arras [240] employed Bayesian Inverse Reinforcement Learning for learning the cost

function of traversing in the area with a group of humans.

Haarslev et al. [241] introduced contextual information into robot motion planning,

namely, F-formation spatial constraints in the costmaps used for planning. The F-formation

arrangement is inferred from participants’ speed, line of sight and potential focus points.

Similarly, Schwörer et al. [242] detected people and their interactions to create spatial

constraints in the environment model used for motion planning.

Diversity context Diversity-related contexts facilitate leveraging human diversity in

social robot navigation. Researchers presented multiple studies regarding gender [243,

244, 245], age [243, 246, 244] personality [145, 247], and diverse human groups repres-
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entations [248]. All these traits affect how people interact with and perceive robots.

Furthermore, Bera et al. [41] attempted to classify the personality of each pedestrian

in the crowd to differentiate the sizes of personal spaces of individuals. Subsequently,

the emotional state of the pedestrians was also inferred and embedded for socially-aware

navigation [249, 250, 42].

Task context The robot’s behaviour differs based on the task to perform. If the robot

is delegated to execute a task of a high priority, e.g., urgent transportation in a hospital, it

will interact with humans only in an unfocused manner committing to collision avoidance

and respecting personal spaces. However, if the robot’s task is to start sociably interacting

with customers in a shopping mall to present products to them, it has to mildly start

focused interactions with pedestrians. Therefore, the objectives of robot navigation differ

between tasks, affecting the socially correct behaviour scheme that should be followed.

Popular tasks delegated to social and assistive robots are transportation [89], guid-

ing [169, 251], or accompanying [252, 166]. For example, accompanying objectives differ

even between the tasks of attending individuals [253, 252] and groups [254, 166] or even

between different strategies for accompanying individuals (Sec. 2.5.1). Similarly, a guiding

robot, e.g., proposed in [251], mainly focuses on leader-follower tasks, but once it finishes

the guided tour, it may drop the constraints specific to the guiding behaviour (speed etc.)

and switch to socially-aware collision avoidance and back to the reception area.

A significant challenge lies in integrating the contradictory objectives of treating hu-

mans as social obstacles during tasks requiring only unfocused interactions and regard-

ing them as interaction partners when needed. As a result, methods introducing human

awareness and social acceptance must be carefully selected to avoid interfering with con-

tradictory modes of operation, as some constraints may need to be disabled in focused

interaction mode while enabled in unfocused interaction mode [30].

3.2 Motion planning

This section discusses various motion planning approaches and methods of incorporat-

ing social awareness into robot control systems. The motion planning module is crucial

for safely guiding the robot through dynamic environments. Motion planning for mobile

robots is understood as a pose control scheme aimed at moving the robot from its ini-

tial pose to the target pose while considering the kinematic and dynamic (kinodynamic)

constraints of the mobile base.

From the perspective of motion planning, requirements for social awareness presen-

ted in Chapter 2 might entail the necessity of specific enhancements compared to clas-
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sical robot navigation. Namely, those can be classified into three specific groups. Firstly,

modifications of the intermediate trajectory to the fixed goal. This might involve adjust-

ments originating from respecting personal spaces (Req. 2.2.1), O-spaces of F-formations

(Req. 2.2.2), and modulating speed (Req. 2.2.3) to mitigate the discomfort of surround-

ing humans. Secondly, the extended selection of the final poses for navigation tasks with

coarsely defined goals. In particular, selecting such a pose that, e.g., does not block any

affordance space (Req. 2.4.2), minimises the discomfort of the approach to a human

(Req. 2.2.5.1), or provides joining a queue in a socially compliant manner (Req. 2.4.6).

Thirdly, dynamically inferring and following virtual goals in real time depending on the

poses of cooperating humans, which enables efficient execution of accompanying tasks

(Req. 2.4.1).

The predominant motion planning architecture for mobile robots relies on hierarchical

planning with two asynchronously running modules, specifically, a global path planner

and a local trajectory planner [255, 147]. Global path planning involves finding a feas-

ible path from a start configuration to a goal configuration while avoiding environmental

obstacles. Algorithms generating global paths typically operate in a configuration space

and consider the entire environment [256]. In contrast, local trajectory planning aims

to generate trajectories for the robot to follow within a short time horizon that navig-

ate the robot safely and efficiently through the environment while reacting to dynamic

obstacles and perturbations. Algorithms producing local trajectories typically operate in

the robot’s control space or velocity space and consider immediate sensor feedback and en-

vironmental information [161, 147]. Usually, local trajectory planners operate at a higher

frequency than global path planners to adjust the robot’s motion in real-time, accounting

for dynamic changes in the environment and ensuring safe and efficient navigation.

Our taxonomy of the algorithmic perspective of social robot navigation follows the

hierarchical motion planning scheme, differentiating approaches for global path planning

and local trajectory planning (Fig. 3.3).

Numerous surveys regarding social robot navigation thoroughly discussed motion plan-

ning [12, 2, 14]. However, our review aims not only to investigate the variety of methods

of implementing human awareness in robot control systems but also to classify those

approaches according to the requirements they fulfil. The classification of requirements

regarded in objectives of different navigation algorithms is presented in Sec. 3.2.3.

3.2.1 Global path planning

In the context of global path planning for social navigation for surface robots, various

methodologies are employed for the research. Recently, multiple surveys regarding path

planning for mobile robots have been proposed [257, 258, 259, 260, 261]. State-of-the-
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Figure 3.3: A taxonomy of motion planning for social robot navigation.

art techniques can be classified into distinct groups. These include graph-based methods,

potential field methods, roadmap methods, and sampling-based methods. Each class of

approaches offers unique advantages and challenges, contributing to the broader landscape

of mobile robot path planning [262].

Although in classical path planning metaheuristic methods like genetic algorithms or

particle swarm optimisation are commonly discussed [263], to the best of our knowledge,

they were not applied for human-aware navigation.

Graph-based methods Graph-based methods for path finding fall into the category

of approximate cell decomposition approach in which cells of predefined shape (usually

rectangles) do not exactly cover the free space (in contrast to exact cell decomposition)

but the cell connectivity in a graph is encoded [264].

Algorithms The earliest graph (or grid) search methods in the context of computer

science and algorithmic development can be traced back to the 1950s. One significant de-

velopment was Dijkstra’s algorithm [265], which laid the foundation for many subsequent

graph search and pathfinding algorithms. This algorithm was primarily focused on find-

ing the shortest path in a graph. Later, Hart et al. [266] presented the A∗ algorithm,

which builds upon Dijkstra’s algorithm by incorporating heuristic information to guide

the search more efficiently, making it particularly useful for pathfinding in large graphs.

The heuristic utilises the distance between the current processing node and the goal node

on the solution space. Globally shortest paths are obtained using both heuristic estim-

ates and actual costs in a weighted graph. Other variants of the A∗ planning algorithm
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include D∗ [267], Focused D∗ [268], LPA∗ [269], D∗ Lite [270], E∗ [271], Field D∗ [160], and

Theta∗ [272]. A brief description of each variant is depicted below.

Graph-based planners usually require replanning if the underlying environment model

changes. This drawback is addressed by the D∗ [267], which is an incremental search

algorithm for finding the shortest paths designated particularly for graphs that may dy-

namically change once the search begins as it possesses the procedure for updating paths

if changes occur. Focused D∗ [268] adapts the D∗ to prioritise the exploration of areas

closer to the goal. Lifelong Planning A∗ (LPA∗) [269] is an incremental heuristic search

algorithm that continuously improves its estimates of the shortest path while adapting

to changes in the environment, providing efficient planning in dynamic environments.

D∗ Lite [270] is a simplified version of the D∗ algorithm, focusing on efficient replanning

for real-time performance in static or partially unknown environments. The wavefront

expansion procedure (known as NF1 in [264]) is a simple global planner that expands

the search to all adjacent nodes until the start node and goal node are covered. It was

employed in [221] for path planning in human-populated environments. Another method

is E∗ [271] algorithm capable of dynamic replanning and user-configurable path cost in-

terpolation. It calculates a navigation function as a sampling of an underlying smooth

goal distance that takes into account a continuous notion of risk that can be controlled

in a fine-grained manner.

The authors of Field D∗ [160] addressed the problem of using discrete state transitions

that constrain an agent’s motion to a narrow set of possible headings, which often oc-

curs in classical grid-based path planners. Instead, they proposed the linear interpolation

approach during planning to produce paths with a continuous range of headings. Alternat-

ively, the Theta∗ [272] method propagates information along grid edges (to achieve a short

runtime) but without constraining the paths to the grid edges. Instead, any-angle paths

are found by performing line-of-sight checks between nodes. When a direct line of sight is

feasible between two adjacent nodes without intersecting obstacles, Theta∗ considers the

straight-line path, reducing the number of nodes expanded, compared to A∗. Also, Theta∗

retains the optimality guarantees of A∗ while producing smoother, more natural paths,

especially in environments with narrow passages or obstacles.

Notably, Dijkstra’s algorithm does not account for the robot’s kinodynamic con-

straints, which may generate paths not admissible to robots with, e.g., Ackermann kin-

ematics. However, Dolgov et al. [273] addressed this issue in their Hybrid A∗ algorithm

that extends the traditional A∗ to handle continuous state spaces by discretising them

into a grid. It incorporates vehicle kinematic constraints, such as maximum velocity and

steering angle, to generate feasible paths for vehicles navigating through complex envir-

onments. Recently, Macenski et al. [256] presented a search-based planning framework
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with multiple algorithm implementations, including Cost-Aware Hybrid-A* planner that

provides feasible paths using a Dubins or Reeds-Shepp motion model constrained by

a minimum turning radius for Ackermann vehicles.

Human-aware constraints The classical path-finding algorithms focus on calcu-

lating the shortest, collision-free path and do not explicitly regard humans in the environ-

ment; hence, they also do not consider social constraints. However, in graph-based meth-

ods, the planning procedure is separated from the definition of planning constraints incor-

porated into the environment representation [215]. Hence, researchers started to modify

the environment models, e.g., costmaps, to embed human-aware constraints into the mo-

tion planning scheme while employing classical path-finding algorithms. Most approaches

that extend environment representations focus on introducing spatial or spatiotemporal

soft constraints representing proxemics [274] or social conventions [71, 170].

For example, Sisbot et al. [274] presented a Human Aware Motion Planner (HAMP)

that exploits algorithms for reasoning on humans’ positions, fields of view, and postures.

They integrated different social constraints into their highly configurable planning scheme,

including Gaussian-modelled personal spaces or hidden zones behind obstacles (visibility

constraints).

Kirby et al. [71] proposed a Constraint-Optimising Method for Person-Acceptable Nav-

igatION (COMPANION ) framework in which multiple human social conventions, such

as personal spaces and tending to one side of hallways, are represented as spatial cost

functions. The authors emphasised the importance of accounting for social aspects at

the global path-planning level. Their extended environment representation, including hu-

man awareness constraints, is utilised by the customised A∗ algorithm to produce socially

acceptable global paths for robots.

Lu et al. [84] presented a costmap-based system capable of creating more efficient

corridor navigation behaviours by manipulating existing navigation algorithms and intro-

ducing social cues. They extended robot environment models with socially-aware spatial

constraints to navigate in a more human-friendly manner. Similarly, the authors of [85] at-

tempted to provide socially legible robot motions using proxemics-based spatial compatib-

ility model and directional compatibility preventing frontal collisions of human and robot.

Their concepts have been integrated with HANP global path planning method [274].

Kollmitz et al. [215] presented a planning-based approach that uses predicted human

trajectories and a social cost function to plan collision-free paths taking human comfort

into account. They employed search-based, time-dependent path planning to reason about

human motion over time, while simultaneously accounting for the kinematic and dynamic

constraints of a robot. The authors extended the layered costmap architecture [170] pro-
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posing multiple layers, each related to the state of the robot environment in subsequent

prediction step. Their framework aimed to include the spatial nature of human proxemics

(Gaussian social cost model used) and temporal aspects of human motion. However, the

authors noted that addressing spatiotemporal intricacies of human-aware navigation in

a global path planning scheme (instead of local trajectory planning) is computationally

expensive [215].

Okal et al. [240] proposed a method that uses IRL to learn features of a populated

environment to model socially normative behaviours [189]. Once the reward function for

a navigation task is obtained, it is used to define spatial costs of social normativeness that

can be injected into a costmap used by a motion planner (either global or local).

Extending classical obstacle-filled costmaps with social constraints is a common and

straightforward practice to include basic human awareness in robot motion behaviour.

Ginés et al. [8], for example, attempted to adjust spatial cost functions representing prox-

emics zones by resizing the personal spaces according to the mood of a human. Some other

works also embedded dynamically recalculated personal zones into costmaps to account

for dynamics of individual humans [71, 275, 276, 252] or groups [277].

Potential field methods Purely graph-based planners have limitations originating

from their discontinuous representation of configuration space. On the other hand, poten-

tial field methods offer smoother path generation and can be directly related to sensor

data, yet they suffer from the presence of local minima [271]. Path planning utilising

a potential field creates a gradient across the robot’s map that directs the robot to the

goal position from multiple prior positions [264].

One of the pioneering works that introduced the concept of Artificial Potential Field

(APF ) for obstacle avoidance and navigation in robotics is [101]. The potential field

methods treat the robot as a point in the configuration space under the influence of an

APF . The goal, acting as a minimum in this space, exerts an attractive force on the

robot, while obstacles act as repulsive forces. The superposition of all forces is applied to

the robot. Such an APF smoothly guides the robot toward the goal while simultaneously

avoiding known obstacles, just as a ball would roll downhill [3].

Later, Borenstein and Koren [278] developed a Virtual Force Field method that relies

on two basic concepts: certainty grids for obstacle representation and potential fields for

navigation. Their method enables continuous motion of the robot without stopping in

front of obstacles with a speed of 0.78 m/s. However, the approach was abandoned due to

the method’s instability and inability to pass through narrow passages [3]. The extended

potential field method has been proposed by Khatib and Chatila [279] with two additions

to the basic potential field, in particular, the rotation potential field and the task potential
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field.

More recently, Iizuka et al. [280] proposed a modified APF approach resistant to the

local minimum issue in multi-obstacle environments, while Weerakoon et al. [281] presen-

ted a deadlock-free APF -based path planning algorithm. Similarly, Azzabi and Nouri [282]

developed an approach that addresses the common issues of the original APF , namely

local minima and the goal being non-reachable with obstacles nearby. Szczepanski [283]

also proposed a path planning method for mobile robots that uses the attractive potential

for goal reaching as the original APF , but the repulsive potential is replaced by a general

obstacle potential, equal to repulsive potential, vortex potential, or their superposition.

Roadmap methods Roadmap strategies capture the connectivity of the robot’s un-

obstructed space through a network of 1D curves or lines, denoted as roadmaps. Sub-

sequently, the roadmap serves as a network of path segments for planning robot move-

ment. Consequently, path planning is reduced to connecting the robot’s initial and goal

positions to the road network, followed by identifying a sequence of routes from the ini-

tial robot position to its destination [3]. The most common approaches falling into the

roadmap-based category are visibility graphs and Voronoi diagrams.

The visibility graph method is one of the earliest path planning methods [264]. For

a polygonal configuration space, the graph consists of edges joining all pairs of vertices

that can see each other (including both the initial and goal positions as vertices as well).

The unobstructed straight lines (roads) joining those vertices are the shortest distances

between them, guaranteeing optimality in terms of the length of the solution path. The

main caveat of the visibility graph is that the solution paths tend to move the robot as

close as possible to obstacles on the way to the goal [3]. In contrast, the Voronoi diagram is

an approach that maximises the distance between the robot and obstacles in the map [3].

Our research regarding the applications of classical roadmap methods shows that they

are rarely used in social robot navigation as they only consider binary environment models

(obstacle or free space); hence, human awareness cannot be properly tackled. However,

Voronoi diagrams might be used as reference path planning approaches [284, 285, 213, 286]

for capturing the skeleton of the environment along with human-aware trajectory planners

as in [141].

Sampling-based methods The main idea of sampling-based motion planning is to

avoid the explicit construction of obstacle regions but instead conduct a search that

probes the configuration space with a sampling scheme [287]. The most prevalent methods

falling into the category of sampling-based path planners are the Probabilistic Roadmap

(PRM ) [288] and the Rapidly-exploring Random Trees (RRT ) [289], both being probab-
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ilistically complete [287].

Algorithms PRM [288] constructs a roadmap, a graph representation of the config-

uration space, by sampling random points and connecting them with collision-free paths.

It focuses on building a network of feasible paths between different regions of the con-

figuration space and is effective for multi-query scenarios or environments with complex

obstacles.

RRT [289] builds a tree structure by iteratively selecting random points in the config-

uration space and extending the tree towards those points. It explores the configuration

space rapidly and is particularly effective for high-dimensional spaces. Different variants

of RRT has been developed including RRT-Connect [290], RRT∗ [291] or dual tree version

– DT-RRT [292].

Both PRM and RRT have different characteristics. PRM requires a two-phase process:

first, constructing the roadmap offline and then querying the roadmap online to find a path

between a start and goal configuration. In contrast, RRT performs exploration and path

planning simultaneously, gradually growing towards the goal configuration during the

search process. PRM is a well-suited method for scenarios where the environment is

relatively static, and the planner has sufficient computational resources to construct the

roadmap offline, while RRT is often favoured for real-time or dynamic environments, as it

can adaptively explore the space and find feasible paths in a run-time. A notable feature

of sampling-based methods is that these planners can regard the kinodynamic limits of

the robot to generate feasible and safe motion plans in continuous state and action spaces.

Human-aware constraints Some works focus on including constraints related to

social conventions in sampling-based path-planning schemes. For example, Svenstrup et

al. [293] modified the original RRT for navigation in human environments assuming access

to full state information. Their modifications include adding the potential model designed

for moving humans, so the customised RRT planner plans with a potential field repres-

entation of the world. Similarly, Rios-Martinez et al. [294] proposed Risk-RRT for global

path planning. Their algorithm includes the knowledge of the personal spaces of ped-

estrians and the possible interactions between the F-formation’s participants. Risk-RRT

penalises the robot’s crossing through personal spaces and O-spaces of F-formations by

assigning additional costs to those areas. Furthermore, Shrestha et al. [295] used RRT for

global path planning in the environment with a stationary human. Vega et al. [231] at-

tempted to integrate proxemics theory with their path planner incorporating PRM [296]

and RRT [289] methods by defining personal spaces and activity spaces as forbidden areas

for robot navigation. Alternatively, Pérez-Higueras et al. [297] developed a cost function
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for the RRT -based path planner employing Inverse Reinforcement Learning from demon-

strations.

3.2.2 Local trajectory planning

The most common architecture for robot motion planning separates global path planning

and local trajectory planning [255, 147]. This separation of concerns allows for modular

and flexible robotic systems, where different strategies can be applied at each level of

abstraction to address specific requirements.

Local trajectory planners generate trajectories for the robot to follow within a short

time horizon. Short time horizons allow operating with a higher frequency to instantly

react to environmental changes and possible encounters. Trajectory planners operate in

the robot’s control space or velocity space and regard not only spatial aspects of motion

planning but also temporal ones. In the following part of this survey, various trajectory

planning methods and approaches to incorporating human awareness into robot behaviour

are reviewed.

Sampling-based methods Besides global path planning (Sec. 3.2.1), sampling-based

methods can also be applied to local trajectory planning. An extended RRT with a notion

of time included – spatiotemporal RRT , was proposed by Sakahara et al. [213]. Their

method integrates ideas of the RRT and the Voronoi diagram. Although motion prediction

of dynamic objects is regarded, they do not explicitly capture social conventions. Nishitani

et al. [214] extended this approach presenting a human-centered X–Y–T space motion

planning method. The authors included human personal space and directional area as

well as the robot’s dynamic constraints in the planning scheme.

Pérez-Higueras et al. pointed out in [298] the future work perspective of using RRT

as a local trajectory planner due to real-time capability, but their further work leaned

towards learning-based approaches.

Fuzzy inference methods Fuzzy inference systems (FIS ) form another well-established

paradigm for control systems, specifically useful to model imprecise or non-numerical in-

formation and decisions. FIS are applied for traditional robot navigation [299, 300, 301,

302, 303] and social robot navigation tasks [304, 305, 306, 307]. They can also be integrated

with other approaches, e.g., Q-learning [308] or Reinforcement Learning [309].

An example of FIS method adapted for human-aware robot navigation is the work by

Palm et al. [304], who derived fuzzy control rules for the robot’s actions based on expected

human movements relative to the robot. They investigated the movement of humans in

a shared space with a robot to determine lane preference and agent classification for colli-
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sion avoidance. Another method was proposed by Obo and Yasuda [305], who developed

a framework for robot navigation in crowds employing multi-objective behaviour coordin-

ation for collision avoidance. Rifqi et al. [306] used FIS to dynamically change parameters

of the SFM , which has been applied for controlling the movement of a healthcare robot.

Rules that they designed switch the robot’s motion behaviour based on its distance to

human proxemics zones. Recently, Sampathkumar et al. [307] proposed a framework in-

tegrating an Artificial Potential Field and FIS for navigation that prioritises safety and

human comfort.

Force-based methods Force-based approaches model the motion of individuals (hu-

mans or robots) in the environment considering the forces acting on them. These include

a force attracting the agent to the goal and forces arising from interactions with other

agents and environment objects such as obstacles. Typically, they are purely reactive

methods that decide the next movement based on the environment arrangement at hand,

i.e., obstacles and human locations. The resultant force can be directly transformed into

a velocity command for a robot. The predominant methodologies within this category are

Elastic Bands [310] and Social Force Model [1].

Elastic Bands [310] is a method that aims to close the gap between global path plan-

ning and reactive control, as it performs local path deformation based on internal and

external forces. Internal forces contract the path, favouring the shortest path to the goal,

while external forces repel the path from obstacles. The authors of the algorithm proposed

a reference implementation based on bubbles that represent discrete path points and free

space. Later, this method was extended by Brock et al. [311] mainly for motion generation

in manipulation tasks performed in human environments. More recently, a socially-aware

specialisation focusing on improving motion legibility of the Elastic Bands local traject-

ory planner has been developed for the SPENCER project [169]. The notion of human

awareness has also been implemented into the Elastic Bands approach by Vega et al. [231].

On the other hand, Social Force Model (SFM ) [1] has been one of the prevalent meth-

ods for crowd behaviour simulation [312, 313], human trajectory prediction (Sec. 3.1.3),

and human-like motion generation in robotics. It constitutes a model inspired by fluid

dynamics that illustrates an agent’s motion using a set of attractive and repulsive forces.

Its flexible formulation allows for capturing additional models of social phenomena to

obtain more realistic motion behaviours. Therefore, the original approach has undergone

multiple extensions and over the years numerous successful real-world robotic applications

have emerged [7, 314, 315, 165, 253, 166, 167].

Researchers expanded the basic SFM with explicit collision prediction [316, 205], mak-

ing the behaviour more proactive and anticipatory. Kivrak et al. [167] also introduced
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collision prediction into SFM -based model which they integrated with a robot operating

in an unknown environment with no a priori map. Similarly, Shiomi et al. [7] evalu-

ated SFM with collision prediction [205] in a real-world shopping mall. Collective motion

conventions were also integrated into the model formulation [317] as well as group form-

ations [73, 318, 319]. Some works also focused on improving the realism of generated

trajectories [320].

Truong and Ngo [314] proposed a proactive social motion model for safe and socially-

aware navigation in crowded environments. Their formulation takes into account the socio-

spatiotemporal characteristics of humans, including human body pose, field of view, hand

poses, and social interactions, which consist of human-object interaction and human group

interaction.

Ferrer et al. [315] presented another model extending the original formulation to effect-

ively accompany a person. They implemented human behaviour prediction to estimate the

destination of the person the robot is walking with. Additionally, the authors exploited

the parameterisation of the SFM and applied a method of interactively learning the para-

meters of their Extended Social Force Model (ESFM ) using multimodal human feedback.

Moreover, Repiso et al. presented studies regarding the robot accompanying single

humans [253] and human groups [166]. In [253], they implemented three stages of focused

interaction between the robot and a human: accompanying, approaching, and position-

ing. They inferred the human’s final destination (among all destinations marked in the

environment beforehand) and predicted the human motion with the SFM . The SFM was

also employed for the robot’s local trajectory planning, and spatial cost functions were

used for trajectory scoring. In the following work, Repiso et al. [166] proposed an ex-

tended method that allows the robot to break the ideal side-by-side formation to avoid

other people and obstacles, implementing the human-aware robot navigation strategy for

accompanying groups of multiple humans.

Alternatively, Ferrer and Sanfeliu [165] developed a SFM -based Anticipative Kinody-

namic Planning method for unfocused interactions between a robot and humans. They im-

plemented a scalarised multi-objective cost function to choose the best trajectory amid the

generated ones. On the other hand, We et al. [321] proposed a pedestrian’s heterogeneity-

based social force model that captures the physiology and psychology attributes of pedes-

trians introducing physique and mentality coefficients into the SFM . Recently, SFM has

also been involved in approaches integrating machine learning techniques with motion

models [322, 208].

Velocity obstacles methods The Velocity Obstacle (VO) [323] concept is a founda-

tion for a broad class of proactive methods for a robot’s local navigation. VO methods are
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based on a persistent effort to keep a robot collision-free, requiring only: a radius, a pos-

ition, and a speed of each robot [324]. They generate avoidance manoeuvres by selecting

the robot velocities outside the collision cone, which consists of velocities that in the future

would result in close encounters with obstacles moving at known velocities. A practical

application of VO was introduced by Lin et al. [325]. They adapted the concept by as-

suming that each agent is a decision-making entity capable of selecting the appropriate

velocity that responds to the other agents’ movements and replanning its path. Moreover,

an extension of VO , called Reciprocal Velocity Obstacle (RVO), was developed by van

den Berg et al. [326]. They exploited the fact that humans in the environment cooper-

ate [327] and the approach guarantees to generate safe and oscillation-free motions under

an assumption that all dynamic agents make a similar collision-avoidance reasoning [14].

Furthermore, a related, reactive and rule-based method called Optimal Reciprocal Colli-

sion Avoidance (ORCA) [328] does not require implicit communication between agents

and optimises global objectives when finding collision-free velocities. However, agents’

observations must be accurate, therefore this approach is predominantly used in the sim-

ulation.

VO-based methods are rarely enhanced with socially-aware concepts. Martinez-Baselga

et al. [152] presented a Strategy-based Dynamic Object Velocity Space trajectory planner

that explicitly regards the presence of dynamic obstacles but does not take any social con-

ventions into account. Similarly, Zhang et al. [148] proposed a local trajectory planning

scheme using ORCA that includes uncertainties of states of surrounding humans when

selecting collision-free velocities.

Optimisation-based methods Another class of approaches for human-aware traject-

ory planning formulates the problem as an optimisation task, which relies on finding

control inputs that optimise (minimise or maximise) an objective function while satisfy-

ing kinodynamic and collision-free motion constraints. Those hard constraints, inherited

from classical robot navigation, restrict control inputs to those feasible for the specific

mobile base at a given time and ensure the absence of collisions within the prediction

horizon. The presence of collisions with the surrounding objects is assessed using the en-

vironment model and forward simulation of applying the computed controls. In contrast,

soft constraints are embedded in the optimised objective function that takes into account,

e.g., intrusions into the personal spaces of humans.

Most state-of-the-art methods planning optimal socially-aware local trajectories ex-

tend the classical robot navigation algorithms – the Dynamic Window Approach [144]

and the Timed Elastic Bands [162], referred to as DWA and TEB , respectively.
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DWA-based methods The DWA is one of the most common algorithms for col-

lision avoidance. The main characteristic of the approach is that commands, controlling

the translational and rotational velocities of the robot, are searched directly in the space

of velocities. The search space is reduced to velocity pairs fulfilling kinodynamic con-

straints. Typically, for each velocity pair, the effect of applying those controls to the

robot is simulated over a short time horizon, e.g., 1.5–3.0 s, which produces multiple cir-

cular trajectories. The optimal trajectory is the one maximising the objective function

consisting of three weighted components. In particular, the components evaluate the pro-

gress toward the goal, the distance to the closest obstacle, and the forward velocity of the

robot. Numerous modifications of DWA have been proposed, as the objective function is

expandable [329, 330]. However, the method does not explicitly capture the dynamics of

the obstacles taking into account only their current position.

Another method, Trajectory Rollout [161] is similar to DWA but exhibits one essential

difference – in each forward simulation step, a set of feasible velocity pairs is updated as

the kinematic constraints are recalculated according to the current velocity and dynamic

constraints.

Constraints related to social conventions are usually embedded in the environment

representation used by trajectory planners [219] or by extending the objective func-

tion [331, 221]. For example, Weinrich et al. [219] applied the E∗ algorithm as a global

path planner along with an extended DWA method as a local trajectory planner. They

extended DWA with an additional objective rating that considers spatiotemporal occu-

pation probabilities of the tracked humans. In particular, they assigned personal spaces

to humans using Gaussian Mixtures. The method provided successful collision avoidance

by the robot in a passing scenario of a narrow hallway. A similar extension of DWA was

proposed in [332].

Seder et al. [331] and Oli et al. [221] proposed navigation approaches that employed

a modified DWA for human-aware local trajectory planning. They introduced human

awareness by modifying the objective component related to clearance from obstacles, in

particular, including predicted poses of tracked humans as future obstacle positions. The

difference between those methods is that in [331] the authors assumed human motion

predictions driven by the constant velocity model, while in [221] the SFM has been im-

plemented. Also, the method from [331] used Focused D∗ as a global path planner, whereas

in [221] – the NF1 [264] was integrated.

TEB-based methods The TEB is a traditional local trajectory planner that laid

a foundation for multiple methods that enhanced this approach to capture human-aware-

ness constraints [216, 168, 333]. The basic TEB deforms local trajectories according to the
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locations of obstacles in the environment, but, in contrast to Elastic Bands , with temporal

information. Instead of forces from Elastic Bands , TEB uses an optimisation objective

to follow the global path regarding kinodynamic constraints, forming the optimisation

problem of non-linear least-squares.

Human-aware specialisation of TEB , named HaTEB , was proposed by Khambhaita

and Alami [216]. They extended the original optimisation constraints with safety (min-

imum safety distance), time to collision, and directional constraints, including the pre-

dicted human trajectories in the problem formulation. Singamaneni et al. [217, 168] de-

veloped the CoHAN planner – the HaTEB extension that handles large numbers of people

and focuses on motion legibility improvements. The CoHAN has different tunable plan-

ning modes that can handle various indoor and crowded scenarios. Recently, Hoang et

al. [333] studied the topic of the robot approaching people in dynamic social environ-

ments and presented GTEB model – a goal-oriented specialisation of TEB planner. Their

approach takes into account the robot’s current state, robot dynamics, dynamic social

zones [275], regular obstacles, and potential approaching poses to generate the socially

optimal robot trajectory.

Other methods Alternatively to DWA- and TEB -based methods, Forer et al. [334]

proposed the Pareto Concavity Elimination Transformation (PaCcET ) local trajectory

planner. It aims to capture the non-linear human navigation behaviour, scoring traject-

ories with multiple objectives. The first relies on path distance, goal distance, heading

difference and distance to obstacles, while the second is based on the interpersonal dis-

tance between the robot and humans. Later, Banisetty et al. [228] extended PaCcET with

social awareness objectives, specifically, maintaining appropriate distances to F-formations

(groups) and distance to a scenario-dependent social goal. In contrast, the authors of [335]

proposed a planner that aims to exaggerate motions to increase intent expressiveness

over passing sides for legible robot navigation [23]. They implemented a decision-making

strategy, constructing the Social Momentum objective that takes pairwise momentum

between robot and human into consideration. Another method was presented by Mehta

et al. [336] who applied Multi-Policy Decision Making to navigate in dynamic environ-

ments with different policies, namely, Go-Solo, Follow-other, and Stop. The values of

utility functions, which compromise between the distance travelled to the goal and the

disturbance to surrounding agents caused by the robot, are predicted through forward

simulation.

Optimal control techniques have also been employed to maintain the formation integ-

rity [337, 338]. For instance, in [337], formation control in a leader-follower arrangement

was discussed. The authors developed a method that, under mild assumptions, guarantees
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the stabilisation of the formation to the desired shape and scale. Similarly, an optimal con-

trol algorithm, but for sustaining formations of various structures, was proposed in [338].

On the other hand, Truc et al. [339] developed a 3D reactive planner for human-aware

drone navigation in populated environments that is based on a stochastic optimisation of

discomfort caused by the drone’s proximity to pedestrians and the visibility of the drone.

Learning-based methods In recent years rapid growth in the machine learning field

has been observed, and numerous planning approaches have evolved to capture the intric-

acies of human behaviours and transfer them into robot control strategies. The broadest

attention in robot control applications gained Reinforcement Learning (RL) and Deep

Reinforcement Learning (DRL). Specialised surveys on the applications of RL methods

for robot navigation [340] and particularly on social robot navigation were already pub-

lished [341].

Inverse Reinforcement Learning A distinctively useful method for learning

from demonstration is Inverse Reinforcement Learning (IRL) [190], as it allows to model

the factors that motivate people’s actions instead of the actions themselves [189]. Ex-

ample applications of IRL methods for human motion prediction were already presented

in Sec. 3.1.3, but they might also be used for control purposes. For example, Kim and

Pineau [342] learned a cost function involving social cues from features extracted from

RGB-D camera. Their IRL module uses a set of demonstration trajectories to learn the

reference behaviour when faced with different state features. Their approach is implemen-

ted as a trajectory planner with IRL-based cost function operating along with a global

path planner. Similarly, Kuderer et al. [343] also use IRL with human demonstrations,

but they extract features from the human trajectories and then use entropy maximisa-

tion to determine the robot’s behaviour during navigation in human environments. Pérez-

Higueras et al. [298] also used IRL to transfer human motion behaviour to a mobile robot.

They evaluated different Markov Decision Process models and compared them with the

baseline implementation of a global path planner and local trajectory planner without

social costs. More recently, Karnan et al. [344] collected a large-scale dataset of socially

compliant navigation demonstrations. They used it to perform behaviour cloning [345]

for a global path planner and local trajectory planner agents that aimed to mimic human

navigation behaviours. The authors also performed an evaluation study for the learned

approach, comparing it with a baseline ROS implementation.

Reinforcement Learning In contrast to IRL, the RL is used when the reward

function is known or can be easily defined, and the goal is to find the best policy for
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achieving cumulative rewards. Recent works present the DRL as a framework to model

complex interactions and cooperation, e.g., in social robot navigation.

In a study by Olivier et al. [327], the authors found that walking people mutually

adjust their trajectories to avoid collision. This concept was exploited by Silva and

Fraichard [346], whose approach relies on sharing motion effort between a robot and

a human to avoid collisions. They learned a robot behaviour using the RL to solve the

reciprocal collision avoidance problem during simulated trials.

Li et al. [183] presented a Role Playing Learning formulated under a RL framework

for purely local navigation of a robot accompanying a pedestrian. In their approach, the

robot takes into account the motion of its companion to maintain a sense of affinity when

they are travelling together towards a certain goal. A navigation policy is trained by Trust

Region Policy Optimisation with the use of features extracted from a LiDAR along with

the goal as an input to output continuous velocity commands for navigation.

A series of works by Chen et al. [347, 348] developed Collision Avoidance with Deep

Reinforcement Learning (CADRL) approaches. Specifically, in a Socially-Aware CADRL

(SA-CADRL) [348], they designed a hand-crafted reward function that incorporates the

social convention of passing side and enables a robot to move at human walking speed

in a real-world populated environment. Everett et al. [163] proposed a GPU/CPU Asyn-

chronous Advantage Actor-Critic CADRL (GA3C-CADRL) strategy that employs LSTM

to use observations of arbitrary number or surrounding agents, while previous methods

had this size fixed. A distinctive characteristic is that their algorithm learns collision avoid-

ance among various types of dynamic agents without assuming they follow any particular

behaviour rules.

Jin et al. [349] presented another DRL method but for mapless collision avoidance

navigation where humans are detected using LiDAR scans. The reward function regards

ego-safety, assessed from the robot’s perspective, and social-safety, evaluating the impact

of the robot’s actions on nearby humans. The ego-safety zone maintains 0.4 m of separation

between the robot and other objects, while social safety aims to prevent intrusions into

approximated human personal space. Liang et al. [155] developed a RL-based collision-

avoidance algorithm, named CrowdSteer, for navigation in crowded environments. The

authors trained the algorithm using Proximal Policy Optimization (PPO) in high-fidelity

simulation and deployed the approach on two differential drive robots.

Chen et al. [350] discussed extending pairwise interactions between the robot and in-

dividual humans to a robot interacting with a crowd. The authors developed Socially

Attentive Reinforcement Learning (SARL) that jointly models human-robot as well as

human-human interactions in an attention-based DRL framework by learning the collect-

ive importance of neighbouring humans with respect to their future states. Their work
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was further enhanced by Li et al. [351] who addressed the problems of learned policies be-

ing limited to certain distances associated with the training procedure and the simplified

environment representation that neglects obstacles different from humans. In their SARL∗

method, they introduced a dynamic local goal-setting mechanism and a map-based safe

action space, addressing the problem of multiple detours of SARL. Nevertheless, social

constraints, other than keeping at least some separation distance between the robot and

humans, were not included.

Guldenring et al. [352] proposed another DRL-based system to train neural-network

policies for local trajectory planning explicitly taking nearby humans into consideration.

The approach uses Proximal Policy Optimization (PPO) as the main learning method

while DRL agents are trained in randomised virtual 2D environments interacting with

humans in an unfocused manner for plain collision avoidance. In addition, the method

relies on raw data readings, in contrast to, e.g., [163].

Recently, Xie and Dames [156] proposed DRL policy for robot navigation through

obstacle-filled and populated areas that intend to be generalisable to new environments.

In particular, the DRL-VO reward function contains a novel term based on VO (Sec. 3.2.2)

to guide the robot to actively avoid pedestrians and move toward the goal. In turn, Qin

et al. [353] introduced a socially-aware robot mapless navigation algorithm employing RL

to learn strategies that conform to social customs and obey specific traffic rules.

Miscellaneous approaches Besides the aforementioned methods, learning-based

applications include employing Hidden Markov Model (HMM ) in a higher hierarchy

system to learn the choice between the RL-based collision avoidance and target pur-

suing [354].

On the other hand, Tai et al. [193] attempted to apply Generative Adversarial Imita-

tion Learning (GAIL) strategy to navigate in populated dynamic environments in a so-

cially compliant manner via only raw depth inputs from RGB-D camera. Their approach

learns continuous actions and desired force toward the target and outperformed pure

behaviour cloning policy regarding safety and efficiency.

In the approach by Lu et al. [355], the crowd’s density is dynamically quantified

and incorporated into a reward function deciding the robot’s distance from pedestrians.

The authors extended the DRL-based work from [350], so the best action is inferred

from a reward function that regards the uncomfortable distance between the robot and

a human. Alternatively, a system proposed by Yao et al. [124] incorporates a Generative

Adversarial Network to track and follow social groups.
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Physical safety (Req. 2.1)

[53, 356, 228, 133, 102, 348, 350, 135, 237, 324, 163, 315, 165, 334, 144, 322, 8, 252, 352,

36, 241, 106, 143, 333, 349, 120, 131, 111, 216, 211, 71, 167, 330, 215, 85, 343, 183, 351,

155, 84, 355, 147, 152, 357, 335, 336, 277, 292, 255, 126, 139, 251, 338, 214, 305, 240,

221, 61, 146, 141, 164, 358, 297, 353, 253, 254, 166, 306, 294, 77, 162, 130, 213, 307, 4,

242, 331, 7, 346, 217, 168, 150, 274, 90, 293, 283, 337, 153, 125, 91, 66, 220, 169, 339,

359, 275, 314, 328, 154, 189, 231, 276, 281, 219, 156, 124, 67, 121, 136, 148, 235]

Perceived safety (Req. 2.2)

Personal spaces [356, 228, 133, 350, 135, 324, 165, 334, 322, 8, 252, 352, 36, 241,

143, 333, 349, 111, 216, 71, 167, 215, 85, 183, 351, 155, 84, 355,

152, 336, 277, 139, 214, 240, 221, 61, 146, 141, 297, 353, 253, 254,

166, 306, 294, 77, 130, 307, 242, 7, 168, 150, 274, 360, 90, 293, 153,

91, 66, 169, 359, 275, 314, 154, 231, 276, 219, 156]

O-spaces

of F-formations

[53, 228, 324, 241, 277, 240, 254, 166, 294, 77, 242, 360, 169, 359,

275, 314, 154, 231, 276, 124]

Passing speed [106, 61, 146, 217, 168, 150, 339, 154, 189, 67]

Motion legibility [324, 111, 216, 211, 215, 85, 343, 357, 335, 353, 217, 168, 150, 169,

328, 189, 156, 67, 148]

Approach direc-

tion

[53, 102, 237, 252, 333, 277, 253, 254, 166, 4, 90, 293, 91, 66, 339,

359, 275, 314]

Approach speed [53, 102, 253, 254, 166, 91, 66]

Occlusion zones [141, 150, 274]

Table 3.1: Classification of robot navigation methods implementing human safety require-

ments from the presented taxonomy.

3.2.3 Discussion

A summary of discussed navigation methods according to the requirements they imple-

ment is presented in Tab. 3.1 and 3.2. The approaches listed in most cases employ the

hierarchical structure in the motion planning system composed of a global path plan-

ner and a local trajectory planner. However, not all works explicitly reveal the planning

algorithms used; thus, we do not show the details in that matter.

Each reviewed navigation method is classified based on the objectives addressed in the

approach. However, the consequence of this methodology is that behaviour cloning or im-

itation learning (Sec. 3.2.2) are excluded from this classification, as without investigating
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Motion naturalness (Req. 2.3)

Velocity

smoothness

[135, 165, 144, 36, 71, 156]

Oscillations [155, 152]

In-place rotations —

Backward

movements

—

Gaze modulation [106, 111, 84]

Social conventions (Req. 2.4)

Accompanying [53, 237, 315, 252, 120, 131, 183, 336, 126, 251, 338, 141, 253, 254,

166, 130, 337, 125, 124, 121, 136]

Affordance spaces [133, 135, 359, 275, 314, 231, 276, 235]

Activity spaces [133, 135, 359, 275, 314, 231, 276]

Passing side [348, 71, 343, 84, 61, 146, 141, 229]

Yielding way —

Standing in line [228, 135, 139]

Elevator etiquette —

Table 3.2: Classification of robot navigation methods implementing the requirements of

robot’s motion naturalness and obedience to social conventions from the presented tax-

onomy.

the dataset, it is not clear which features were captured; hence, which requirements were

targeted. On the other hand, VO-based methods (Sec. 3.2.2), which proactively adjust

motion direction to avoid collisions, are always denoted as respecting motion legibility

(Req. 2.2.4) (Sec. 2.3.4).

The requirements group most covered is by far the physical safety (Req. 2.1) inher-

ited by social robot navigation from traditional navigation. It regards collision avoidance;

hence, even approaches that do not explicitly regard humans in the environment (but

rather moving obstacles) fall into this category. The most popular objective among so-

cial robot navigation algorithms is respecting personal spaces. However, in most meth-

ods, they are modelled as a circular shape, while many studies revealed their asymmetry

(Sec. 2.3.1). In contrast, motion naturalness and, importantly, social conventions aspects

are less frequently discussed. The latter is rarely considered, as in research, robots are
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usually designated for specific tasks, which influences a fragmentary approach to design

and implementation.

3.3 Evaluation

Evaluating social robot navigation systems is essential for gathering insights on comfort

among users and optimising their performance in real-world environments. This section

discusses different evaluation methods, classifies types of studies conducted to explore or

verify designed navigation algorithms, and identifies tools facilitating efficient assessment,

namely, datasets, simulators, and benchmarks (Fig. 3.4).

Met hods

Qualitat ive

Quant itat ive

St ud ies

Cont rolled

Exploratory

Tools

Dat aset s

Sim ulators

Benchm arks

Evaluat ion

Figure 3.4: A taxonomy of evaluation for social robot navigation.

3.3.1 Methods

In general, evaluation methods encompass qualitative and quantitative approaches. Qual-

itative methods often involve subjective assessments, such as questionnaires conducted

during user studies, which gauge users’ preferences and comfort levels while interacting

with the robot (e.g. [53, 7, 97]). These subjective evaluations provide valuable insights

into the social acceptability of robot navigation.

On the other hand, quantitative methods utilise objective metrics formulated math-

ematically to assess various aspects of robot performance and social awareness (e.g. [342,

336, 357, 8, 330]). These metrics enable precise assessment and, thus, evidence-based

comparison of different navigation algorithms. Researchers employing a combination of

qualitative and quantitative evaluation methods [95, 8, 335] can comprehensively gauge

both the performance and suitability of human-aware navigation systems in meeting the

expectations of users.
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In recent work, Biswas et al. [35] stated that an ideal method of evaluating social

robot navigation is a large-scale, costly, and time-consuming qualitative user study. How-

ever, due to the indicated drawbacks, automated methods that provide a quantitative

approximation of facts are required. Quantitative assessment methods are particularly

useful for learning-based approaches, where the reward of action must be numeric. Simil-

arly, the authors of planners that employ heuristics or optimise a single criterion benefit

from benchmarking their methods against various strategies. Since automated quant-

itative methods produce invariable indicators of the algorithm’s performance, they are

particularly relevant for usage, e.g., during the new algorithm development stage. Never-

theless, grounding the social robot navigation requirements and approximating the social

phenomena as quantitative metrics would be impossible without user studies yielding

qualitative results.

3.3.2 Studies

Social robotics experiments often involve user studies to gather subjective human impres-

sions about the robot’s behaviour, which is crucial for social robot navigation as they

provide valuable insights that can be directly transferred onto navigation system require-

ments (Chapter 2). Experiments conducted for collecting such data can be differentiated

between controlled and exploratory.

Controlled studies provide the possibility to conduct tests under configurable condi-

tions. Hence, researchers can control variables and conditions to isolate specific factors,

e.g., robot speed [72], passing distances [61], and observe their effects. This, in turn,

allows for gathering more precise measures of robot behaviour when operating with dif-

ferent navigation algorithms. This type of study might include both questionnaires and

laboratory studies. In contrast, exploratory studies are conducted in natural conditions

with minimum or no preparation. They might take the form of, e.g., a case study [361]

to gain insights or field studies [362, 363] connected with observing and gathering data

(qualitative and/or quantitative) regarding a robot deployed in the target environment.

The principles of human-robot interaction studies design were identified by Bartneck et

al. in [364].

Controlled studies facilitate the systematic evaluation of the robot’s human awareness

across different motion planning algorithms. However, direct comparison necessitates ad-

herence to two crucial rules. Firstly, environmental conditions must be reproducible in

subsequent trials. Secondly, a specific baseline motion planning setup (e.g., relying on

classical navigation objectives), against which the examined navigation system will be

compared, must remain unchanged in the following trials. In the literature, customised

navigation approaches are contrasted against other algorithms [217] or a teleoperated
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agent [166], depending on the study design and goals.

Controlled laboratory studies intend to simplify complex interactions into prescribed

scenarios of agents’ movements under constant environmental conditions, so the number

of varying factors in subsequent trials is limited. Gao and Huang [10] identified standard

scenarios investigated in social robot navigation works that include passing [327, 72, 365],

crossing [215, 83], overtaking [319, 348, 72], approaching [359, 275, 333], accompany-

ing [129, 253, 166], or combined.

3.3.3 Tools

Multiple tools facilitate the evaluation of social robot navigation approaches. They are

particularly useful for performing preliminary tests before arranging real-world experi-

ments, which may pose a significant organisational effort [99, 87, 4, 7].

Datasets The datasets can be employed to train models for human trajectory prediction

and learning robot movements in populated environments. They are irreplaceable for

neural approaches that optimise policy learning from data [329, 355, 277].

The pioneering datasets in the field are ETH [366] and UCY [367], suitable for track-

ing and prediction. They provide pedestrian trajectories from a top-view, fixed, outdoor-

located camera. Later, Rudenko et al. [368] developed THÖR indoor dataset with human

trajectory and eye gaze data with accurate ground truth information. The data was col-

lected using motion capture hardware with 3D LiDAR recordings and a mobile robot in

the scene. Another dataset, named SCAND, was proposed by Karnan et al. [344] and

contains indoor and outdoor data from multiple sensors of a mobile robot teleoperated in

a socially compliant manner.

Alternatively, SocNav1 [369] and SocNav2 [356] datasets were designed to learn and

benchmark functions estimating social conventions in robot navigation by using human

feedback in simulated environments. Wang et al. [370] developed TBD dataset containing

human-verified labels, a combination of top-down and egocentric views, and naturalistic

human behaviour in the presence of a mobile capturing system moving in a socially

acceptable way. Another dataset was used as a part of the CrowdBot project and is

applicable for crowd detection and tracking, as well as learning navigation in populated,

dynamic environments [371].

Recently, new datasets have emerged, for example, SiT [372], which contains indoor

and outdoor recordings collected while the robot navigated in a crowded environment,

capturing dense human-robot interactive dynamic scenarios with annotated pedestrian

information. Nguyen et al. [373] developed MuSoHu dataset gathering recordings of

sensors placed on human participants walking in human-occupied spaces; thus, inter-
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actions between robots and humans have not been captured. Hirose et al. [143] presented

HuRoN dataset collected with multi-modal sensory data from a robot operating with an

autonomous policy interacting with humans in real-world scenes.

The publications relying on some of these datasets were identified in [10] and partially

in [17], while in [9] the authors separated datasets for activity recognition, human pose

estimation, and trajectory prediction.

Simulators In recent years, simulation experiments have been more often chosen due

to the growth of the field of RL [348, 183, 163, 352, 156] and other data-driven ap-

proaches [193]. Simulators are particularly useful tools for the systematic evaluation of

social robot navigation algorithms as they can provide identical initial conditions of ex-

periments in the following trials, which is not always possible in user studies. Simulators

also facilitate the agile development of algorithms and provide flexibility, which datasets

often lack. Furthermore, as opposed to real-world tests, in terms of time and resources,

they are easily reconfigurable and cost-effective in repeating trials.

Numerous simulation ecosystems have been developed for robotics [374]. The majority

is directly applicable to social robotics as they provide movable human-like postures,

and several are suitable for rich human-robot interaction. The main characteristics of

state-of-the-art approaches for conducting virtual social robot navigation experiments are

presented in Tab. 3.3, whereas Tab. 3.4 illustrates their methods for simulating human

motion behaviours.

The comparison in Tab. 3.3 includes 2D and 3D simulators, as well as frameworks that

have ROS integration (the most popular robotic framework), are actively maintained, and

are open-source. Architectures of software for human simulation can be distinguished on

standalone simulators and frameworks. The latter are usually designed for controlling

simulated humans and they abstract from a specific simulator; therefore, interfacing com-

ponents are necessary for integration. The proposed classification regards the fidelity of the

replication of virtual robots, i.e., whether dynamic intricacies (friction, etc.) are included

or only the ideal kinematic model is considered. Additionally, the comparison identifies

the variety of tasks that can be performed by simulated humans and the methods for

controlling humans. The capability of setting dynamic goals for virtual humans is crucial

for rich human-robot interactions, which usually require an orchestrator. For example,

handover tasks can be simulated only with the synchronisation of human and robot activ-

ities. Specifically, the human receives an object after the robot approaches them (which

in high-fidelity simulation always takes varying amounts of time); hence, the reception

must be triggered at different timestamps.

On the other hand, Tab. 3.4 presents the characteristics of the virtual humans’ nav-
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igation in each simulation ecosystem. The comparison points out the algorithms used for

motion planning and whether the motion of each agent can be configured differently. The

classification also includes information on whether the simulation ecosystem allows the

formation-like motion of virtual humans, which is restricted by the capabilities of motion

planning algorithms available.

Notably, more advanced simulators facilitate transferring the algorithms from virtual

to real-world hardware. All listed simulators except flatland2 [352] provide the kinody-

namic fidelity of robots, whereas the exactness of frameworks depends on the simulators

they are integrated with. Simplified, lightweight simulators with the possibility to simulate

dynamic agents, such as SocialGym 2.0, are well-suited for learning applications requiring

multiple repetitions, whereas high-fidelity simulators, like Gazebo (Ignition) or iGibson,

target the rich interaction scenarios. Nevertheless, transferring navigation methods from

the simulation into real-world experiments is essential to demonstrate that developed

algorithmic approaches work not only in simulated setups but are also reliable and pro-

spective for wider applications.

Benchmarks Due to a growing set of navigation algorithms available, the importance of

quantitative evaluation has increased. Lately, various automated quantitative assessment

systems, called benchmarks, have been developed to ease the evaluation of traditional and

social robot navigation. The appropriate benchmark design requires the knowledge of the

requirements for robot navigation system (Chapter 2), concurrently from the classical and

human-aware points of view [21].

Several works have recently proposed benchmarking frameworks for evaluating robot

motion planning algorithms from the classical navigation perspective [34, 385, 386, 387,

388, 389, 33, 390, 391, 392], i.e., without considering human awareness constraints. Those

works mainly focus on performance metrics like navigation success rate, path length, or

time required to reach the goal.

Heiden et al. [34], for example, have introduced Bench-MR – a benchmark concerning

sampling-based motion planners for nonholonomic, wheeled mobile robots. Bench-MR

consists of two main components: motion planning algorithms and evaluation components.

These latter indicate diverse navigation scenarios in static environments along with basic

performance metrics assessing planning efficiency and path quality.

Another framework for comparing path planning algorithms is PathBench proposed

by Toma et al. [385]. It provides implementations of classical and learned-based techniques

allowing evaluation using typical metrics, e.g., path length, path deviation, success rate,

and computational time. PathBench is relevant for simulated and real-world applications.

2https://github.com/avidbots/flatland
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Approach
Software

architecture

Robot

fidelity

Human

task

variety

Human control

scripted

scenarios

dynamic

goals
teleop

Webots [375] standalone kinodynamic MG X — —

Gazebo [376]

(Ignition)
standalone kinodynamic MG , PG X — —

PedsimROS [149]

framework

(Gazebo

interface)

— MG X — —

flatland standalone kinematic MG — X —

HuBeRo [377]

framework

(Gazebo

interface)

—
MG , PG , FO ,

ST , CO , MO
X X X

SEAN 2.0 [378] Unity kinodynamic MG , JG X X X

Crowdbot [379] Unity kinodynamic MG X — —

iGibson 2.0 [380] standalone kinodynamic MG X — —

InHUS [381]

framework

(Stage/Morse

interfaces)

— MG X X X

IMHuS [382]

framework

(Gazebo

interface)

— MG X X —

SocialGym 2.0 [383]
framework

(UTMRS interface)
kinodynamic MG X X —

HuNavSim [384]

framework

(Gazebo

interface)

— MG X X —

Table 3.3: Classification of robotic simulation systems with capabilities for replicating hu-

man motion behaviour. Abbreviations used in the table: MG stands for moving to a goal,

PG – performing gestures, FO – following an object, ST – sitting, CO – conversating,

JG – joining groups, and MO – moving to an object.

Similarly, Rocha and Vivaldini [386] have proposed Plannie framework for developing,

testing, and benchmarking various motion planning techniques in real-world 2D and 3D

environments. The authors reimplemented classical, meta-heuristics, and machine learning

planning algorithms that can be scored with common metrics such as a success rate, path

length, time to produce a trajectory, and time to complete the mission.

Tani et al. [387] have introduced a robotics research platform focused on providing

reproducibility of experiments. Their framework integrates development and benchmark-
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Approach

Human

motion

planning

Human

motion

diversity

Human

groups

Webots [375] naive trajectory following
configurable speed

in a scripted trajectory
—

Gazebo [376]

(Ignition)
APF -like configurable weights of potentials —

PedsimROS [149] SFM
configurable motion model’s

properties and group assignment
X

flatland
any ROS plugin

for motion planning

possible individual parameters

for each planning agent
—

HuBeRo [377]
any ROS plugin

for motion planning

possible individual parameters

for each planning agent
—

SEAN 2.0 [378]
Unity ’s built-in path planner

with SFM

configurable behaviours (randomised,

handcrafted or graph-based control

of pedestrians), variable posture

X

Crowdbot [379] DWA, RVO, SFM
configurable speed

in a scripted trajectory
—

iGibson 2.0 [380] A∗ with ORCA
configurable object radius

of ORCA
—

InHUS [381]
any ROS plugin

for motion planning

possible individual parameters

for each planning agent
—

IMHuS [382]
any ROS plugin

for motion planning

possible individual parameters

for each planning agent
—

SocialGym 2.0 [383] SFM
configurable motion model’s

properties and group assignment
—

HuNavSim [384] APF -like/SFM

configurable behaviours (regular,

impassive, surprised, curious,

scared, threatening)

X

Table 3.4: Classification of robotic simulation systems from the perspective of methods to

replicate human motion behaviour.

ing, enabling users to create, test, and evaluate various motion planning algorithms in

simulation and real robots. They mainly concentrated on autonomous vehicles operating

in exemplary urban environments, validating the reproducibility of experiments across

different robots using basic spatial metrics.

Mishkin et al. [388] proposed a method of evaluating classical and learning-based ap-

proaches to navigation. They tested different navigation algorithms only in simulation en-
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vironments using basic metrics regarding the success rate, path length, and time required

to reach the goal. Perille et al. [389] proposed BARN method to examine mobile ro-

bot navigation systems in standardised test environments. To evaluate the environment’s

difficulty, they used Dynamic Window Approach (DWA) [144] and Elastic Bands [310]

algorithms scored with simple metrics – traversal time and navigation failures.

Wen et al. [33] proposed MRPB framework for evaluating the general performance

of mobile robot navigation. Although their approach is suitable for simulated and real-

world tests, they did not incorporate any social metrics. Similar features characterise

Arena-Bench [390], whose authors proposed a complete suite for benchmarking different

navigation algorithms but without any human awareness metrics.

MotionBenchMaker [391] is one more open-source tool for benchmarking motion plan-

ning datasets. Their approach is intended to ease the evaluation of motion planning

algorithms in typical manipulation tasks performed in a simulation. The authors com-

pared different planners using only the average planning time metric. Another mainly

performance-focused benchmark was proposed by Tafnakaji et al. [392], who assessed the

navigation of mobile manipulators. They evaluated, e.g., the robot’s accuracy of following

the global path or final pose accuracy.

On the other hand, benchmarks for socially-aware robot navigation are the minority,

but there are several works in that matter [35, 378], as well as ours [21, 20], extensively

discussed in Chapter 4.

One of the examples, SocNavBench [35], is intended to regard social aspects in robot

navigation, but implements only two basic indicators – distance to the closest pedes-

trian and time to collision. Moreover, integrating navigation algorithms other than those

provided by the authors is considered tricky; therefore, the approach is not yet for practical

use.

Another approach, proposed by Tsoi et al. [378], is SEAN 2.0 – a framework for

evaluating robot navigation using different metrics concerning motion efficiency and hu-

man awareness. However, despite the variety of tools provided and integration with the

most popular robotic framework, ROS, their approach is not applicable for evaluating

real-world experiments, as the metrics calculation is integrated into the simulator.

Mavrogiannis et al. [335] have also quantified human awareness of robot navigation

in the work presenting their Social Momentum planning framework. The authors used

known metrics – the topological complexity [393] and the path irregularity index [36], to

compare their Social Momentum with other methods.

The primary features of state-of-the-art approaches for benchmarking robot navigation

are presented in Tab. 3.5. The comparison includes only actively maintained and open-

source benchmarks. Our Social Robot Planner Benchmark (SRPB) system, described in
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Name Metrics Suitable

env.

Analysis

toolsClassical

navigation

performance

Physical

safety

Perceived

safety

Motion

naturalness

Social

norms

iGibson

Benchmark [394]
X — X — — S –

MRPB [33] XXXX X — X — S/R –

BenchMR [34]
XXXXX

X
X — X — S

scenario rendering,

metrics plots

CrowdBot

Benchmark [379]
XX XX — XXXX — S

scenario rendering,

metrics plots

SocNavBench [35]
XXXXX

XXXXX
XX XX XX — S

scenario rendering,

metrics plots

Arena-Bench [390]
XXXXX

XXX
X — XXX — S

scenario rendering,

metrics plots

SEAN 2.0 [378]
XXXXX

XXX
X XX X — S –

InHuS [381] X XX X — — S/R
scenario and metrics

rendering

Tafnakaji

et al. [392]
XXXXX — — X — S/R scenario rendering

SRPB [21]
XXXXX

X
XXXX

XXXXX

XXXXX

XXXXX

X

XXXXX — S/R

scenario rendering,

metrics plots,

exporting results

to a LATEX table

or a spreadsheet

HuNavSim [384]
XXXXX

XXX
XXXX XXXX XX — S —

Table 3.5: A classification of state-of-the-art methods for quantitative evaluation of robot

navigation requirements. The number of ticks (X) reflects the number of metrics imple-

mented in each benchmark. Abbreviations used: S stands for simulation environments,

R – real-world environments, and S/R reflects simulation and real-world environments.

detail in Chapter 4, is also included in the listing. The classification of methods focuses

on the variety of metrics implemented (according to the taxonomy identified in Chap-

ter 2), as well as determining suitable test environments (simulation/real world) and

a set of analysis tools provided, e.g., for results presentation. In some cases, simulators

linked with social robotics are coupled with internally calculated metrics for assessing

navigation [378, 383].

Quantitative metrics are the inherent parts of benchmark systems as they aim to imple-

ment objective criteria approximating subjective assessments. Therefore, the quantitative

metrics should reflect mathematical formulas of requirements discussed in Chapter 2. Met-
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rics covering most of the perceived safety principles for social robot navigation (Tab. 3.5)

are developed in our SRPB benchmark, where human-awareness indicators also account

for people tracking uncertainty, facilitating the evaluation with the robot’s onboard per-

ception [21]. Besides the listed benchmark systems, several complementary indicators for

assessing the perceived safety of humans in the context of social robot navigation also

appear in [395]. The survey by Gao and Hoang [10] discusses in detail metrics presented

in the literature.

3.4 Summary

The study presented in Chapter 3 examines the key methods for addressing the perception,

motion planning, and evaluation problems in the context of social robot navigation.

The fundamental challenges of social robot perception, identified as the detection

and tracking of humans in the robot’s environment, were analysed, and state-of-the-art

algorithms implementing such were highlighted. Diverse environment representations util-

ised in different motion planning approaches were also discussed, as well as various meth-

ods for human trajectory prediction which is crucial in real robots equipped with sensors

with a limited field of view . The survey also highlights the topic of contextual awareness

and how it was tackled in state-of-the-art navigation approaches.

The major part of our review encompasses various methods employed for robot motion

planning that take into account constraints arising from the presence of surrounding

humans. Approaches present in the literature were classified into global path planning

and local trajectory planning algorithms according to the common hierarchical structure

of motion planning systems. Both global path planners and local trajectory planners were

organised into groups sharing common algorithmic characteristics. Besides a thorough

description of various navigation methods, those approaches are classified according to

the established requirements taxonomy, based on the objectives addressed.

Our literature review also explores the methods for evaluating social robot navigation

as well as study types and tools relevant to the agile development of navigation tech-

niques. The tools for the assessment were discussed distinguishing datasets, simulators,

and benchmarks. An extensive comparison of actively maintained simulators for social ro-

botics was proposed. Moreover, benchmarks suitable for quantitative evaluation of social

robot navigation were classified utilising the proposed requirements taxonomy, according

to the implemented metrics.
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Chapter 4

Quantitative evaluation of

human-aware motion planning

algorithms

Navigation is the fundamental skill of mobile robots that is widely integrated into most

complex tasks. Since the 1960s, many approaches to robot navigation have been pro-

posed [396]. The main objective of classical navigation algorithms is collision avoidance,

considering all objects as generic obstacles. Social robot navigation, instead, relies on

principles from social sciences. Based on research from that domain, robot systems de-

signers try to deal with the presence of humans in the environment considering multiple

objectives to react in a socially acceptable manner. Recently, due to the growing pop-

ularity of social robots, many researchers focused on creating human-aware navigation

approaches [12, 10].

Since various navigation approaches are available, system designers must choose the

best algorithm for a specific robotic application. Selecting the optimal method requires

conducting comparative experiments that allow confronting investigated methods. Such

experiments also benefit developers of new human-aware navigation algorithms, as they

can reveal areas for potential improvement.

Robot navigation evaluation is difficult as demonstrating the overall advantage of

one method over another is challenging. However, different algorithms can be compared

regarding a single aspect, e.g., the undertaken path length or the time required to reach

a goal. The evaluation complexity grows with the number of navigation objectives, as in

human-aware navigation.

Biswas et al. [35] discussed an ideal method of evaluating social navigation. They state

that qualitative methods providing a good approximation of facts are large-scale, costly,

and time-consuming. We agree that automated quantitative methods are more appropriate
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(a) Online stage (b) Offline stage

Figure 4.1: The two-stage procedure of SRPB benchmark for assessing the quality of the

robot navigation. (a) Online stage: a navigating robot tracks obstacle locations, humans

(marked as bounding boxes in the figure), F-formations and its own state, e.g., a pose

and velocity. All the data is recorded and saved to a file. (b) Offline stage: after a finished

experiment recordings are used to evaluate the quantitative results of the navigation using

multiple metrics. In (b), personal spaces are schematically depicted with red ellipses,

whereas F-formations’ O-spaces with orange ones.

for the iterative evaluation, e.g., during the new algorithm development stage, since they

produce invariable indicators of the algorithm’s performance.

Quantitative assessment methods are useful for learning-based approaches, where the

reward of action must be numeric. Similarly, benchmarking against other methods may

benefit planners that employ heuristics or optimise a single criterion.

Designing the appropriate benchmark requires knowledge of the requirements for nav-

igation systems from both classical and human-aware perspectives. Navigation systems

exhibiting socially acceptable robot behaviours cannot remarkably sacrifice the general

effectiveness of robot motions in favour of social metrics maximisation.

To address the problem of the quantitative assessment of social robot navigation,

we developed SRPB – the benchmark that evaluates both social and task performance

aspects of robot navigation (Fig. 4.1). Novel metrics proposed in SRPB evaluate robot

compliance with proxemics rules regarding single humans [47] and F-formations [75], as

well as other social norms, e.g., avoidance of heading in the direction of a human [12].

Another original aspect is that our metrics are designed to account for the reduced tracking

quality of humans since robot perception systems are imperfect. Our benchmark can be
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used to test robots operating in simulated and real-world environments. Moreover, metrics

were formulated so as to allow benchmark usage with different robot types (either with

nonholonomic or holonomic drives). We provide an open-source implementation of our

benchmark system1 that is compatible with the Robot Operating System (ROS) [180].

The metrics proposed for evaluating human-aware robot navigation are defined on the

basis of the findings from various user studies. We reached the results from the literature to

perform the grounding of social robot navigation requirements (Chapter 2) and extracted

the guidelines to formulate relevant metrics. Notably, some proposed SRPB indicators

directly model the discrete findings of the user studies, e.g., [72, 64]. On the other hand,

the metrics for the assessment of general robot navigation performance are mostly derived

from state-of-the-art benchmarks, but the extension of several metrics was also proposed.

The new indicators are mainly dictated with practical reasons, as explained in the further

part of the chapter.

We state that the closest to our work is MRPB [33]; however, we extended that

method concerning metrics diversity, focusing on human awareness indices. Furthermore,

our benchmark allows evaluating different methods during on-site tests (simulated or real-

world); robot operation in a preprepared environment is not required as in [389, 387]. Since

robot navigation behaviours can be evaluated in target environments, our benchmark

allows a more accurate algorithm selection for a specific application. Also, SRPB aims

not to reimplement state-of-the-art navigation methods (as in [34, 386]) but relies on ROS-

integrated, easily swappable planning algorithms that are under constant development.

Furthermore, such an approach does not restrict the usage of the SRPB with any specific

class of planners. Our benchmark allows comparing path planners [34, 385] and trajectory

planners in separation or as combined motion planning methods [386].

The remainder of this chapter consists of the definition of the notation (Sec. 4.1),

which is then used to present mathematical formulations of metrics implemented in the

SRPB benchmark. The metrics are organised according to the requirements taxonomy

defined in Chapter 2. Specifically, the following groups of indicators were distinguished:

metrics for evaluation of robot navigation performance Sec. 4.2, metrics for evaluation of

robot motion naturalness Sec. 4.3, and metrics for evaluation of perceived safety among

humans Sec. 4.4. In the last section of the chapter, Sec. 4.5, the presented benchmark

system is critically analysed.

This chapter constitutes an extended description of the proposed benchmarking me-

thod based on our conference paper [20] and the journal article [21].

1https://github.com/rayvburn/srpb
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4.1 Mathematical notation

To describe the metrics for the robot navigation evaluation, we developed a mathematical

notation used in equations (Fig. 4.2). The top-left index (b) of the symbol corresponds

to a specific entity (from those listed in the ontology), whose state influences the value

of the entire symbol. Some symbols may depend on states of multiple entities, in which

case the b is represented by a set of entities’ identifiers. A value of any entity at time tn

is referred to as (·)n. Common symbols are presented in Tab. 4.1.

component of an attribute
entity type
attribute of an entity

time step
entity owner’s identifier

X
c

a

d

b

Figure 4.2: A general description of symbol composition method used in the notation.

The ontology that we propose for social robot navigation is organised as follows: the

world configuration at each time tn consists of the state of a single robot, rn, and the

state of its environment. The latter, recalculated at each time step, aggregates: a set

of obstacles, On, and a set of humans, Hn, that may be arranged into F-formations,

Gn. Therefore, at time tn, the association of h-th human into g-th F-formation can be

expressed as hHn ∈ gGn, whereas gGn ∈ Gn. The hHn, being prone to collisions with the

robot, can also be involved in calculations related to generic obstacles, On.

Experiment time stamps, tn, where n = {1, . . . , N}, are shared among the robot,

humans and human groups. We commonly refer to the summation of time differences

between subsequent time steps to consider that they may not be equal-sampled in non-

real-time systems, affecting average values. Conditional summation is represented with

the Iverson bracket operator [397].

The following sections present metrics calculation methods focusing on social naviga-

tion metrics derived from the requirements (Chapter 2). Nevertheless, general navigation

performance aspects are also briefly discussed.

4.2 Metrics for evaluation of robot navigation per-

formance

Socially acceptable robot behaviours should not significantly degrade the general per-

formance of the navigation task (Req. 1). The problem of robot performance during
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Symbol Description

r identifier of a robot

tn n-th time stamp

iH human identified as i

H set of humans

iG humans F-formation, i.e., a group, identified as i

G set of humans F-formations

i,jd Euclidean distance between i and j

p pose vector in a form [x, y, θ]T

v velocity vector in a form
[
vx, vy, ω

]T
a acceleration vector in a form

[
ax, ay, α

]T
i,jφ direction of a vector connecting centres of i and j

i,jδ relative location of i regarding the heading of j

R (Z, θ) rotation matrix around Z axis by the θ angle

var variance

Σ covariance matrix

N normal distribution

f function

m metric

Table 4.1: A dictionary of common symbols used for formulating quantitative metrics.

navigation was already discussed in multiple works, as shown in Sec. 3.3.3. However, we

propose several metrics that, we argue, are also crucial for a robot behaviour assessment.

4.2.1 Obstacle safety

Robot navigation benchmarks usually report the number of collisions along the path to

the goal [378, 390] but this type of assessment is not anticipatory. Hence, we argue that

for robust navigation approaches, assessing the percentage of time the robot has spent in

the dangerous area around obstacles (nearer than the configurable distance of r,Odmin) is

more appropriate. The relevant metric was presented in [33, 390], which we refer to as

mobs (4.3) (further explained by (4.1) and (4.2)).

r,odn = min
oOn∈On

√ ∑
j∈{x,y}

(rjn − ojn)2 (4.1)
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The distance r,odn is calculated from the centre of the robot to a border point of the

o-th obstacle. Therefore, the Euclidean distance representing the actual gap between the

objects is less by the robot’s circumradius, dcr.

to =
N−1∑
n=1

(
tn+1 − tn

) [
r,odn < r,Odmin

]
(4.2)

mobs =
to

tN − t1
· 100% (4.3)

We argue that mobs metric is sufficient to assess the compliance with Req. 1.1; however,

a complementary metric, minmobs, representing the minimum distance between the robot’s

centre and the closest obstacle point throughout the experiment (4.4), is also proposed.

minmobs = min
n∈{1,...,N}

r,odn (4.4)

4.2.2 Motion efficiency

A metric expressing the time required to reach the goal pose (ours mmef (4.5)) was pro-

posed in [388, 33, 35, 390, 378, 392] and is appropriate for verification of the goal-reaching

requirement (Req. 1.3).

mmef = tN − t1 (4.5)

4.2.3 Path length

Classical navigation is often focused on minimising of robot’s path length while traversing

to the goal (Req. 1.4). The path is determined by a sequence of poses. To evaluate the

path length, mplin (4.6), the sum of Euclidean displacements of the mobile base during

the scenario is computed [390, 35, 378, 392].

mplin =
N−1∑
n=1

√ ∑
j∈{x,y}

(rjn+1 − rjn)2 (4.6)

4.2.4 Cumulative heading change

A metric complementary to the mplin represents robot orientation change along the

path (Req. 1.5). For example, the path irregularity metric was discussed in [36], provid-

ing a normalised score of unnecessary turning per unit path length. However, since it
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requires knowing the perfect path to the goal, we argue that it applies only to very small

or perfectly known environments. Therefore, in our benchmark, we use the cumulative

heading change metric, mchc (4.7), as in [240, 398, 37].

mchc =
N−1∑
n=1

|rθn+1 − rθn| (4.7)

4.2.5 Computational efficiency

Trajectory planners for mobile base navigation have different degrees of complexity. There-

fore, it is adequate to verify the average computation time the planner takes to accomplish

a new velocity command (Req. 1.2). Such a metric was proposed in [33], which we refer

to as mcef (4.8).

mcef =
1
N

N∑
n=1

cn (4.8)

4.2.6 Computational time repeatability

Evaluating how much computation times differ from the mean value, c̄, is also import-

ant. It shows how likely the planner will violate requested computation times and, thus,

whether it can be safely applied in robots operating in highly dynamic environments.

Therefore, we proposed the mcre metric, constituting a standard deviation of all compu-

tational times (n-th denoted as cn) during the scenario (4.9).

mcre =

√√√√ 1
N

N∑
n=1

(cn − c̄)2 (4.9)

4.3 Metrics for evaluation of robot motion natural-

ness

Social metrics are essential for robots operating in dynamic and populated environments.

This section discusses metrics related to robot motion naturalness (Req. 2.3).

4.3.1 Velocity smoothness

The velocity smoothness metric, mvsm, defines how much robot’s linear velocities, rvnx

and rvny , differed in subsequent time steps, which indicates a presence of erratic mo-

tions (Req. 2.3.1.1). A similar metric was proposed in [33]; however, their formulation
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lacks the holonomic drive support. Instead, in our approach, both linear velocity com-

ponents (along the x and y axes) are taken into consideration (4.10). Investigated robot

velocities are expressed in the mobile base’s coordinate system.

mvsm =
1

N − 1

N−1∑
n=1

√ ∑
j∈{x,y}

(
rvn+1
j − rvnj

)2

tn+1 − tn
(4.10)

4.3.2 Heading change smoothness

Another indicator of erratic motions (Req. 2.3.1.1), defines an average rate of robot

heading changes [240] during the scenario. The mhsm metric is computed by comparing

differences of robot angular velocity, rω, in subsequent steps, as in (4.11).

mhsm =
1

N − 1

N−1∑
n=1

|rωn+1 − rωn|
tn+1 − tn

(4.11)

Similar metrics regarding robot motion naturalness (mvsm and mhsm) were also discussed

in [390, 378, 35], yet the authors did not show their calculation methods.

4.3.3 Oscillations

The oscillations metric2, mosc, defines the percentage of the total time that the ro-

bot has spent oscillating, i.e., has not developed significant linear and angular velocit-

ies (Req. 2.3.1.2). The oscillating behaviour in a given time step occurs when robot

velocities, rvn, and oscillation threshold velocities, rvosc, fulfil conditions shown in (4.12).

The linear speed of the robot at time tn is represented as rvnlin =
√

(rvnx)2 +
(
rvny

)2
.

mosc =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

)  rvnlin<
r
linvosc

∧|rvnx |<rxvosc
∧|rvny |<ryvosc
∧|rωn|<rωosc

 (4.12)

4.3.4 Backward movements

The backward movements metric, mbwd, defines the percentage of the total execution time

that the robot has been advancing in the backward direction (Req. 2.3.1.4) with a speed

of at least r
xvosc (4.13).

mbwd =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

)
[rvnx ¬ − r

xvosc] (4.13)

2A similar metric in [11], which has been published later than our [21], is named “stalled time”.
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4.3.5 In-place rotations

The in-place rotations metric, miprot, defines the percentage of the total time that the

robot has spent rotating in place (Req. 2.3.1.3). In-place rotation is an action of the

robot when its linear velocities are kept at 0, but the angular velocity is maintained above

the threshold value of rωosc (4.14).

miprot =
100%
tN − t1

N−1∑
n=1

(
tn+1 − tn

) [ rvnx=0
∧ rvny=0

∧|rωn|rωosc

]
(4.14)

It is crucial that mosc, mbwd and miprot metrics are orthogonal to each other, i.e., in

each time step robot’s action can be qualified as fulfilling conditions of only one of these

metrics.

4.4 Metrics for evaluation of perceived safety among

humans

In this section, our metrics for the evaluation of the robot’s intrusiveness and disturbance

to adjacent people are discussed.

4.4.1 Personal spaces intrusion

The personal space concept was adopted in social robotics from the proxemics theory [47].

Our personal space intrusion metric, mpsi, defines the scale of robot intrusions into any

human’s personal space [12] throughout the scenario execution (Req. 2.2.1).

Recent studies show that Gaussian functions are legitimate for modelling personal

spaces [399, 64]. Therefore, we represent the human’s personal space as a multivariate

asymmetric Gaussian function, fmag (explained in A), centred at the h-th human’s pos-

ition, hxn and hyn, oriented according to the human’s heading hθn. Variances along the

front (hvarnfr), side (hvarnsd), and rear (hvarnrr) directions of the human pose were estimated

in [399].

The variance along the heading axis, r,hvarnhd, is selected (hvarnfr or hvarnrr) in a three-

step procedure, so the symmetrical variant of the multivariate Gaussian, fmg, can be used

in calculations. Firstly, to evolve, where the robot is located compared to the human’s

heading direction, the angle of the vector connecting the centres of the human and the

robot, r,hφn, is computed (4.15). Then, the relative location r,hδn of the robot r, compared

to the human’s h heading direction, is calculated as in (4.16) and presented in Fig. 4.3a.

Finally, using the r,hδn indicator, the variance is selected as in (4.17).

r,hφn = arctan 2
(
ryn − hyn, rxn − hxn

)
(4.15)
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(a) Arrangement angles (b) Human position uncertainty

(c) Personal space (d) Personal space with position uncer-

tainty

Figure 4.3: Processing of the h-th human data. Angles of an example arrangement along

with lines reflecting the orientation of the global coordinate system (the x-axis pointing

upwards) are presented in (a). Gaussians of: position uncertainty (b), personal space (c),

and resultant distribution (d) are shown with the mean of the estimated h-th human pose.

The personal space model was created using hvarnfr = 3.0, hvarnrr = 0.75, hvarnsd = 1.33.

r,hδn = r,hφn − hθn (4.16)

r,hvarnhd =


hvarnfr, if

∣∣∣r,hδn∣∣∣ ¬ π
2

hvarnrr, otherwise
(4.17)

To compute a value of fmg, the h-th human’s personal space covariance matrix needs to

be created. Variances defining the personal space are expressed in the human’s coordinate

system; therefore, the personal space covariance matrix, r,hΣn
psi, must be rotated according

to the h-th human’s orientation, hθn, as in (4.18).

r,hΣn
psi = R

(
Z, hθn

) r,hvarnhd 0

0 hvarnsd

RT
(
Z, hθn

)
(4.18)
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In the evaluation process, we also account for human tracking reliability. It aims to pre-

vent excessive penalisation of robot states when, e.g., a tracked human becomes occluded.

The covariance matrix of the estimated human position, hΣn
p , is obtained from the robot

perception system. The sum of independent normal random variables is applied to com-

pute the resultant covariance matrix, r,h
∆Σn

psi (4.19). It accounts for position estimation

uncertainty and the personal space model (Fig. 4.3).

r,h
∆Σn

psi = hΣn
p + r,hΣn

psi (4.19)

The scale of r robot intrusion into the personal space of h-th human in time tn is referred

to as r,hpsin (4.20). It represents a value of the fmg function (modelling the h-th human’s

personal space) at the robot’s pose at that time, rpn. Equation (4.20) presents arguments

that the fmg function takes – a pose and a multivariate normal distribution, the value of

which will be computed at the given pose. The multivariate normal distribution, described

by a mean of, e.g., p, and covariance matrix of Σ, is denoted as N (p,Σ).

The final formulation of the personal space intrusions metric, mpsi, is shown in (4.21).

Our method investigates the maximum intrusion in a given time step tn, provided that

some human was detected. The scale of the robot intrusion is normalised to the Gaussian

value at the h-th human’s centre, hpsin, so the metric value in each time step corresponds

to a percentage of the maximum intrusion. If no human was observed during the scenario,

mpsi = 0.
r,hpsin = fmg

(
rpn,N

(
hpn, r,h∆Σn

psi

))
(4.20)

mpsi =

N−1∑
n=1

(
(tn+1 − tn) max

hHn∈Hn

r,hpsin
hpsin

)
N−1∑
n=1

(tn+1 − tn) [Hn = ∅]
(4.21)

While the mpsi reflects the mean normalised value of the metric throughout the scenario

execution, the benchmark implementation also provides the minimum and maximum of

all normalised values collected in a single trial, i.e., minmpsi and maxmpsi, accordingly.

4.4.2 F-formations’ O-spaces intrusion

The O-spaces of F-formations were proposed in [75] to reflect the elliptical spaces created

by a group of humans involved in a focused interaction [2]. Our mfsi metric aims to penalise

a robot for traversing through O-spaces (Req. 2.2.2).

Firstly, to find the pose of the g-th O-space’s ellipse, gpn, we employ Taubin’s al-

gebraic method of ellipse fitting [400], supplied with mean positions of g-th F-formation

members. Then, to assess the cost of robot movement in terms of human groups’ pres-

ence, we model O-spaces as bivariate Gaussians (Fig. 4.4). The span of the 2-dimensional
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(a) F-formation arrangement (b) F-formation position uncertainty

(c) O-space of the F-formation (d) O-space with position uncertainty

Figure 4.4: Processing of an exemplary F-formation consisting of 4 members. The mean

of an estimated pose obtained from ellipse fitting is shown in (a). The remaining figures

present corresponding Gaussians of position uncertainty (b), O-space (c), and resultant

distribution (d).

O-space’s Gaussian model is derived from the lengths of semi-axes (gdnx and gdny ) of the

F-formation’s ellipse (Fig. 4.4a). Using the 2σ rule, the variances along the direction of

the semi-major and semi-minor axes are derived, gxvarnd and g
yvarnd , accordingly (4.22). The

O-space model’s covariance matrix, gΣn
fsi, expressed in the global coordinate system, is

computed by applying a rotation (by the angle of the F-formation’s ellipse orientation,
gθn) to a matrix composed of variances as in (4.23).

∀j ∈ {x, y} , gjvarnd =
(gdnj

2

)2

(4.22)

gΣn
fsi = R (Z, gθn)

gxvarnd 0

0 g
yvarnd

RT (Z, gθn) (4.23)

In the spatial model of an F-formation, we also incorporate the uncertainty of the g-

th F-formation’s position estimation (Fig. 4.4b), arising from position uncertainties of

members, gHn. The uncertainty is represented by the variances: gxvarnp , gyvarnp , g
xyvarnp , and
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g
yxvarnp , computed as in (4.24) and (4.25). The composition of the F-formation’s position

covariance matrix, gΣn
p , is shown in (4.26).

∀j ∈ {x, y} , gjvarnp = max
hHn∈gGn

h
jΣ

n
p (4.24)

g
xyvarnp = g

yxvarnp = max
hHn∈gGn

(
max

j∈{xy,yx}
h
jΣ

n
p

)
(4.25)

gΣn
p =

 g
xvarnp

g
xyvarnp

g
yxvarnp

g
yvarnp

 (4.26)

The covariance matrix that accounts for F-formation’s O-space and members’ position

estimation uncertainties, g
∆Σn

fsi, is formulated as a sum of normally distributed random

variables (4.27). The computation method of the intrusion, r,gfsin, of r robot into the

O-space of g-th F-formation in time tn, along with arguments that the Gaussian function

takes, is presented in (4.28). The final formulation of the O-spaces intrusions metric,

mfsi, is shown in (4.29). The scale of the robot intrusion is normalised to the value of

Gaussian at the g-th group’s centre, gfsin, so the metric value in each time step corresponds

to a percentage of the maximum intrusion. If no F-formation was observed during the

scenario, mfsi = 0.
g

∆Σn
fsi = gΣn

p + gΣn
fsi (4.27)

r,gfsin = fmg (rpn,N (gpn, g∆Σn
fsi)) (4.28)

mfsi =

N−1∑
n=1

(
(tn+1 − tn) max

gGn∈Gn
r,gfsin
gfsin

)
N−1∑
n=1

(tn+1 − tn) [Gn = ∅]
(4.29)

The mfsi reflects the mean normalised value of the metric throughout the scenario exe-

cution, but the benchmark implementation also provides the minimum and maximum of

all normalised values collected in a single trial, i.e., minmfsi and maxmfsi, accordingly.

4.4.3 Heading straight into a human

Reactive approaches to robot navigation usually suffer from late trajectory adjustment in

dynamic environments causing the robot to turn just before the imminent collision with,

e.g., a human, diminishing their perceived safety (Req. 2.2.4). The problem was initially

investigated by Truong and Ngo [275], who tried to assess the robot’s approach direction

to the humans. However, their approach does not account for human position estimation

uncertainty and a robot’s dynamics.
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Thus, we propose a new metric, mdir, to evaluate the scale of the problem in differ-

ent algorithms. The metric penalises a robot for undertaking motion directions leading

straight into humans, especially when the robot moves with a decent speed near a human.

It is directly related to the notion of motion legibility [23].

(a) Human occupancy model (b) Human position uncertainty

(c) Resultant distribution

Figure 4.5: An exemplary human-robot arrangement and corresponding: distribution of

the human physical space occupancy model (a), position estimation uncertainty (b), and

resultant distribution (c). The robot’s and human’s heading directions are represented

by arrows – red and blue, accordingly. Green dashed lines, constituting r,hlncc, are defined

to find the intersection point, r,hpnisc, represented by green circles. Magenta dashed lines

indicate the robot’s direction with the maximum likelihood of heading straight into the

human. Blue circles with a radius of docp represent the human occupancy model, whereas

in (b), the grey ellipse represents human position estimation uncertainty (cut-off determ-

ined by the 2σ rule).

To compute the metric, we investigate a geometrical arrangement of the human h and

the robot r. Namely, we compare the robot’s current heading to directions leading into the

centre of the human. The span of cross-human robot heading angles arises from the space

physically occupied by the human (inflated with a circular model3 with a configurable

radius of docp) and the human position estimation uncertainty (represented by a covariance

matrix, hΣn
p ). Both effects are visualised in Fig. 4.5.

The variance of the bivariate Gaussian representing the circular occupancy model,

3This procedure addresses the typical simplification of perception systems representing a human as

a pose in space, without estimating the area it occupies.
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varocp, is computed by applying the 2σ rule to the docp (4.30). The resultant covariance

matrix, h
∆Σn

dir, aggregating the occupancy model and the position uncertainty, is defined

as in (4.31).

varocp =
(
docp

2

)2

(4.30)

h
∆Σn

dir = hΣn
p +

varocp 0

0 varocp

 (4.31)

The value of the Gaussian at the r,hpnisc point, r,hdirncc, represents how much the robot’s

direction leads into the centre of the human (4.33). The r,hpnisc is an intersection point

of the robot’s direction axis (ray),
−→
rpn, and the line, r,hlncc, defined by the crossed point

and the direction angle in (4.32). The geometrical representation of finding the r,hpnisc is

depicted in Fig. 4.5.
r,hlncc =

←−−−−−−−−−−−−→
hpn,]

(
r,hφn +

π

2

)
(4.32)

r,hdirncc = fmg

(
r,hpnisc,N

(
hpn, h∆Σn

dir

))
(4.33)

We also investigate how much the human can notice the robot’s movement (potentially

disturbing), the scale of which is represented by r,hfovn. Applying the 2σ rule to the con-

figurable field of view angle, ϕfov, the variance, varfov, is computed. The relative location

indicator, r,hδn (4.16), determines directly how far the robot is situated from the centre

axis of human’s sight. Then, the value of the Gaussian appointed in the normalised angle

domain, f ang (explained in B), is computed for the current arrangement of the human

and the robot (4.34).
r,hfovn = f ang

(
r,hδn,N (0, varfov)

)
(4.34)

The mdir metric also accounts for the speed of the robot, rvnlin, and the distance between

the human and the robot, r,hdn. The final formulation of the robot heading direction

penalty, r,hdirn, defined for a single human-robot pair, is presented in (4.35).

The normalisation of the metric value relies on comparing the current arrangement to

the worst possible case. To accomplish that, platform-specific features must be determined,

namely the circumradius of the mobile base, dcr, and the maximum linear speed of the

robot, r
maxvlin. Moreover, it is assumed that the robot’s heading points straight into the

human position (r,hpnisc = hpn, computed in r,h
maxdirncc) and the robot is located along the

human’s sight axis (r,hδn = 0, calculated in r,hfovnmax). The formula for the normalisation

factor, r,hdirnnrm, is shown in (4.36). The metric for the whole scenario, mdir, is calculated

as in (4.37) and corresponds to the average percentage of heading disturbance generated
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by the robot. If no human was observed during the scenario, mdir = 0.

r,hdirn =
r,hdirncc · r,hfovn · rvnlin

r,hdn
(4.35)

r,hdirnnrm =
r,h

maxdirncc · r,hfovnmax · r
maxvlin

dcr + docp
(4.36)

mdir =

N−1∑
n=1

(
(tn+1 − tn) max

hHn∈Hn

r,hdirn
r,hdirnnrm

)
N−1∑
n=1

(tn+1 − tn) [Hn = ∅]
(4.37)

The mdir reflects the mean normalised value of the metric throughout the scenario exe-

cution, but the benchmark implementation also provides the minimum and maximum of

all normalised values collected in a single trial, i.e., minmdir and maxmdir, accordingly.

4.5 Summary

In this chapter, SRPB has been presented – the social robot navigation benchmark that

evaluates both the performance and the human-awareness aspects. It was designed to

verify the fulfilment of the robot navigation requirements and assist system designers in

selecting the best method for the application. Our approach allows comparing different

navigation algorithms rapidly in both simulated and real-world environments. It also en-

sures easy integration with popular ROS-driven robots (differential drive and holonomic).

We focused on implementing quantitative metrics to evaluate common robot behaviour

patterns. Most of the metrics in our benchmark allow confronting navigation algorithms,

provided that the initial and final conditions of the evaluated scenario are the same in

each trial. Therefore, path and trajectory similarities must be guaranteed in subsequent

tests for a given scenario.

Our method investigates only unfocused interactions [2], so only the movement beha-

viours of humans and the robot in a shared space are evaluated. Extending our benchmark

for evaluating focused human-robot interactions would be another significant contribution

to social robotics. Initial research on this topic has already started and relates to, e.g.,

the approach pose of a robot that initiates an interaction with a human [275].
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Chapter 5

Human-aware local trajectory

planning for mobile robots using

a hybrid trajectory generation

and spatiotemporal cost functions

Implementing social acceptance in robot navigation can be performed in different ways.

Firstly, adding spatial cost functions to the environment representation used for global

path planning and local trajectory planning allows for the inclusion of, e.g., proxemics

rules [47]. Secondly, adding spatiotemporal cost functions for local trajectory planning can

produce natural robot motions, avoiding erratic movements [10]. Thirdly, the axiomatic

way to create a socially acceptable robot motion is to apply pedestrian motion models.

Generating trajectories using pedestrian motion models provides realistic and effective

robot motions, mainly when using models calibrated with real-world data [25]. Finally,

a combination of these methods can be applied to generate a comprehensive approach

that includes social cues at every level of planning robot motions.

This chapter presents the local trajectory planning framework for mobile robots named

HUMAP – HUman-Aware Trajectory Planner MApping the Pedestrians Motion Pattern.

The planner produces trajectories regarding the human presence in the robot environ-

ment (Fig. 5.1). Our method accounts for spatial constraints arising from the proxemics

theory [47], regards the naturalness of the robot’s motion to reduce erratic movements,

and explicitly incorporates human-like motion behaviours into the robot motion pattern.

Namely, our planner implements yielding a way for a person crossing the robot’s planned

path, slowing down when a collision is predicted, and stopping when a collision is immin-

ent.

Complementary to describing the procedure of generating human-aware trajectories,
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(a) Simulation (b) Environment model

Figure 5.1: An overview of the robot motion planning system; (a) shows the robot oper-

ating in a populated hospital environment, whereas (b) represents the robot’s model of

this environment. In (b), the high-cost areas (ranging from blue to red) around humans

(marked as simplified figures) correspond to proxemics-based spatial constraints, whereas

obstacles are indicated as non-traversable costmap cells (light blue).

we also explain our spatial and spatiotemporal cost functions that allow selecting a robot

trajectory that introduces the least disruption to human comfort [12, 10]. It is assessed

with quantitative metrics that approximate people’s impressions of association with a ro-

bot [64, 21].

The main contributions of our planning approach are:

• the hybrid method of generating local trajectory candidates utilising a pedestrian

motion model and a velocity sampling approach, both regarding the robot’s kino-

dynamic constraints,

• the extension of the pedestrian motion model with a component based on a Fuzzy

Inference System for reasoning about the mutual spatial arrangement of the hu-

man and the robot; the enhancement aims to emphasise proactive movements that

increase intent expressiveness and comply with social cues, e.g., passing on the dom-

inant side,

• multifaceted spatiotemporal cost functions for evaluating trajectory candidates to

mitigate human discomfort during efficient robot navigation,

• contextual awareness for efficient orchestration of the planner operation using the

behaviour-based approach; specialised behaviours were implemented to yield a way

for a human to cross the robot’s path or to recover from a global path occlusion in

dynamic and populated environments.
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We state that the closest to our research topic are [315, 165, 253, 166]; however, our

work stands out from the referenced algorithms. Ferrer et al. [315] modified the SFM -

based approach for a specific navigation task – accompanying. In contrast, we directed

our attention towards unfocused human-robot interactions that are more commonplace for

assistive robots navigating in populated environments. In the following work [165], they

employed the probabilistic RRT method with a SFM -based heuristic for generating feas-

ible trajectory candidates for kinodynamic planning. However, they did not implement any

proxemics-based cost functions to evaluate generated trajectories. Also, to diversify the

obtained trajectories, they introduced randomness into the steering function. This makes

their trajectory generation not systematic, whereas we directly employed a hybrid and

deterministic approach to trajectory generation. Moreover, applying the velocity sampling

trajectory generator in our hybrid approach makes our method immune to local minima

and oscillations of the underlying motion model while still employing its human-like col-

lision avoidance behaviour. On the other hand, we argue that offline pedestrian motion

model parameter tuning, e.g., in [253], is unnecessary for legible robot navigation among

humans. Instead, separating trajectory generation from trajectory evaluation with spati-

otemporal cost functions generalises social navigation to being robust in various scenarios

discussed in Sec. 7.4. In terms of implemented human-aware cost functions, the closest

to our approach is [333], where dynamic social zones and F-formations’ O-spaces were

also investigated. In our approach, as in other model-based trajectory generation meth-

ods, searching for possible velocities in each planning step is not limited to a small set of

motion primitives [144, 215]. Instead, velocities are allowed to vary along the prediction

horizon, provided that they meet the kinodynamic constraints of the robot.

Our HUMAP planning framework copes with most of the limitations of the referred

works, providing a comprehensive solution for social robot navigation in both structured

and populated areas. The remainder of this chapter constitutes a detailed explanation of

the method described in [24].

5.1 Basic concepts

In our previous work [21] (outcomes are also presented in Sec. 7.3), we quantitatively evalu-

ated state-of-the-art traditional and human-aware trajectory planners using Social Robot

Planner Benchmark (SRPB) and the results have shown that state-of-the-art human-

aware trajectory planners do not significantly improve social navigation over classical

approaches; hence, human-aware navigation is still an open problem. Conclusions drawn

from the previous study prompted the investigation of that topic, and an alternative

planner – HUMAP , has been developed.
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The SRPB ’s metrics are the preliminaries for this work, as they stand for quantitat-

ive indicators of human discomfort. Since trajectories regard both spatial and temporal

dimensions, and the SRPB ’s metrics capture spatiotemporal intricacies of human-robot

interaction, those indicators are directly applicable to the trajectory planning’s objective.

Notation The notation to describe the novel local trajectory planning scheme generally

follows the rules explained in Chapter 4, in particular, Fig. 4.2 and Tab. 4.1. However, the

notation in Chapter 4 is human-centric, while the notation in Chapter 5 is robot-centric.

The difference can be exemplified using the relative location symbol, δ, that appears in

both chapters. Namely, if the upper-left symbols of r, h (indicating the entities that the

base symbol is related to) appear in Chapter 4, the r,hδn denotes the relative location of

the robot r, compared to the human’s h heading direction. In contrast, in Chapter 5, the

symbol of r,jδn describes the angle of the j-th object’s location in relation to the robot’s r

heading direction. For clarity in notation, several equations will be re-introduced in Chap-

ter 5, if necessary. Additional symbols, appearing in the following sections, are explained

in relevant tables, i.e., Tab. 5.4 and 5.5.

Trajectory definition In HUMAP , an individual trajectory is considered as a tuple

storing subsequent poses, p = [x, y, θ]T , and velocities, v =
[
vx, vy, ω

]T
, achieved at the

end of subsequent time steps (5.1). The duration of trajectories, thor, is derived from the

plan’s sampling period, t∆, and the number of samples within the planning horizon, qhor,

specifically thor = qhor · t∆. For brevity, we also define the time stamp of the end of the

planning horizon, tpl, starting from the current tn, computed as tpl = tn + qhor · t∆.

rtrajn =
[
(rpn, rvn) , . . . ,

(
rppl, rvpl

)]
(5.1)

Ontology The ontology to formalise our human-aware navigation system is partially

derived from the entities specified in the pedestrian motion model we employ for trajectory

generation. The ontology is organised as follows: the world configuration at each time step

tn consists of the state of a single robot, rn, and the state of its environment, En. The

latter, recalculated at each time step, aggregates: a set of obstacles, On, either static, Kn,

or dynamic, Jn. Dynamic obstacles represent moving humans and robots different from

the ego-robot (the controlled one), as they are prone to collisions with the ego-robot. For

clarity, we specified a set of social agents, Hn, representing static or dynamic humans

that are taken into consideration when, e.g., evaluating the cost functions, as well as F-

formations [75] (social groups), reflected by Gn, in which social agents can be arranged.

At time tn, the association of h-th human into g-th F-formation can be expressed as
hHn ∈ gGn, whereas gGn ∈ Gn and Gn is a set of groups detected at time tn. The final
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Figure 5.2: Internal block diagram of the motion planning system for social mobile robots.

The system aggregates the presented human-aware local trajectory planner.

composition of the environment is expressed as En = {On,Hn,Gn} = {Kn, Jn,Hn,Gn}.
Subsequent time stamps, tn, are shared between all object types, while bold symbols

indicate vectors or matrices.

5.2 Motion planning framework architecture

The overall structure of the presented motion planning framework is presented as the

SysML internal block diagram, shown in Fig. 5.2. The detailed structure of the internal

blocks of the HUMAP local trajectory planner is depicted in Sec. 6.9.

It is expected that the global path planner periodically recomputes the global path

as the robot advances towards the goal [147, 401], which is de facto a standard approach

for designing motion planning systems for mobile robots. A path and a trajectory are

planned in separate coordinate systems [255], but the relation between them is known.

This is further explained among implementation details in Sec. 6.1.
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S-EI

Stopped

EI-M
EI-S

EI-RR

Execution
Initialisation

OA-S

Orientation
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M-OA

M-S

M-RR
M-YWC

M-LA

M-EI
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Yield Way
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RR-M

YWC-M

LA-M

Startup

LA-EI

Looking
Around

RR-S

Rotating and
Receding

S-M

LA-RR

YWC-RR

OA-M

YWC-LA

Figure 5.3: The finite state machine diagram of the HUMAP ’s local trajectory planning

scheme. Nested finite state machines are marked red, whereas the state indicated with

blue implements a social convention. Identifiers of transition conditions are shown on the

edges between states.

5.2.1 Finite State Machine

The fundamental behavioural aspects of the system are illustrated in Fig. 5.3, which shows

the Finite State Machine (FSM ) diagram.1 The following states were distinguished in

the planning scheme: Stopped , Execution Initialisation, Moving , Orientation Adjustment ,

Yield Way Crossing , as well as superstates Look Around and Rotating and Receding .

A brief description of each (super)state is presented in Tab. 5.1, along with typical

situations, when a certain (super)state gets activated. However, the robot’s activity in

the Moving state will be thoroughly discussed. This is because the robot’s behaviour asso-

ciated with that state is the main novelty of the HUMAP , as it implements the extensive

human-robot unfocused interaction strategy using the hybrid method for trajectory gener-

ation and spatiotemporal cost functions. Moreover, another contribution lies in the Yield

1 For a concise description, the presented FSM is slightly simplified compared to the implemented ver-

sion but illustrates most of the operational principles. The planner’s implementation details are described

in Sec. 6.9.
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State Robot behaviour description Typical occurrence

Stopped the algorithm assures that the robot is fully stopped before or after the ro-

bot finishes or aborts

a navigation task

Execution

Initialisa-

tion

the algorithm rotates the robot in place until its orient-

ation aligns with the direction towards the initialisation

goal (simultaneously checking for potential collisions

with basic cost functions)

the robot is oriented

differently compared

to the global path

Moving the algorithm plans the robot’s motion using the hybrid

trajectory generation and trajectory scoring with the

entire set of cost functions

regular operation in

an empty environment

or for unfocused inter-

actions with dynamic

objects (e.g., humans)

Orientation

Adjustment

the algorithm rotates the robot in place until its orient-

ation aligns with the global goal (simultaneously check-

ing for potential collisions with basic cost functions)

the robot achieved the

goal position, but not

the goal orientation

Yield Way

Crossing

based on predicted trajectories of moving objects (ro-

bots or humans), the algorithm finds a safe pose to ap-

proach (to perform yielding way to dynamic objects)

and generates velocity commands to reach that point

(instead of simply stopping)

the robot’s path is ex-

pected to be crossed

by a moving object(s)

Look

Around

the algorithm performs a slow 25 cm backing up action

(if the collision-free pose is found), then slowly rotates

the mobile base: 60◦ to one side, then 120◦ to the other

side, and 120◦ to the first side (all angles are relative

to the reference orientation after the translation stage);

if a valid global path is meanwhile received from the

global planner, the translation or rotation procedure is

terminated

the global path cannot

be calculated, so the

robot performs some

actions to update the

environment model

Rotating

and Reced-

ing

the algorithm tries to find and approach a “recovery”

position. If such a point is found, the strategy creates

slow rotational movement first until the mobile base

faces that position. Then, the algorithm creates com-

mands allowing it to slowly and safely approach the

“recovery” position (constantly checking for collision)

the robot is very close

to an obstacle (e.g.,

a dynamic object that

has approached) but

not in collision

Table 5.1: Description of the HUMAP ’s behaviour in each state and their typical occur-

rences.
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Way Crossing state, whose corresponding behaviour realises a social norm, namely, yield-

ing a way to a human at the crossing (Req. 2.4.5), discussed in Sec. 2.5.5. The robot’s

activity in other states will only be schematically presented.

Basic states as Stopped , Execution Initialisation, Moving , and Orientation Adjustment

are sufficient for robot operation in structured and semi-structured but mainly static

environments; however, additional states were added, such as Rotating and Receding or

Look Around , which help to make navigation in dynamic environments robust against

path occlusions and near-collision configurations.

Fig. 5.3 identifies the states and the state transitions in the system. Insights on the

conditions causing those transitions are found in the predicates table shown in Tab. 5.2,

and complementary transition conditions are illustrated in Tab. 5.3. The FSM ’s update

cycle occurs at each computation cycle of the planner; hence, each transition occurs no

more frequently than the planner’s operational period.

In any state, the HUMAP uses the global path, provided by the global path planner,

to find specific “goal” poses to orchestrate the planner’s operation. In particular, the

initiation goal is placed along the global path approximately 0.2 m from the centre of

the mobile base. It is used for limiting excessive motions at the start of the navigation

execution. Next, the local goal is placed along the global path approximately at 110% of

a distance that the robot can traverse along the whole planning horizon (based on the

current state and kinodynamic limits) and is used as an intermediate goal supplied to the

pedestrian motion model as well as to compute the localGoalBehind predicate. Finally,

the global goal is placed at the end of the global path and reflects the task-level goal pose.

While the global goal is updated externally (Sec. 6.1), the HUMAP ’s planning system

periodically refreshes the initiation goal and the local goal.

5.2.2 Behaviours implemented in the FSM’s states

Each state presented in Fig. 5.3 has a corresponding one behaviour (superstates have

multiple states), whose transition function is cyclically executed during operation in

a state [31]. This section schematically describes most of the behaviours, but the cal-

culations performed in the socially-aware activity associated with the Moving state are

extensively explained in the following parts of this chapter. Internal parts of the super-

states are not discussed for brevity, but some non-obvious transitions of the FSM are cla-

rified. Nonetheless, the algorithmic description of the HUMAP ’s activity shown in Alg. 1

and Alg. 3 applies to all behaviours, while Alg. 2 is specific to the transition function

corresponding to the Moving state’s behaviour.
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Predicate Predicate definition

newGoal a new goal pose has been received, which activates a navigation task

directedToInitGoal determines if the robot is facing towards the initialisation goal (with a 30◦

tolerance)

localGoalBehind specifies whether the local goal is behind the robot (relative to its orientation;

with a 30◦ tolerance)

posReached determines if the goal position has been reached (with a 0.2 m tolerance)

goalReached determines if the goal pose has been reached (with a 0.2 m tolerance on position

and 0.2 rad tolerance on orientation)

oscillating the absolute mean values of velocity components collected for 5 seconds are

less than threshold values (0.02 m/s for linear components, and 0.06 rad/s for

the angular component) and the “zero crossing” of the angular component has

occurred at least once

stuck the absolute mean values of velocity components collected for 5 seconds are

negligible (less than 0.001 m/s for linear components, and 0.001 rad/s for the

angular component), and “zero crossing” of the angular component did not

occur

nearCollision specifies if the inflated robot’s footprint (2.5 cm extension) is in a collision

according to the costmap

canRecover the non-inflated robot’s footprint is not in a collision according to the costmap

(the inflated footprint might overlap with collision cells)

globalPathOccluded a path to the goal expected from the global path planner was not updated for

1.5 s

crossingDetected determines whether any human in proximity to the robot is expected to cross

the robot’s planned path or trajectory within the planning horizon (which

equals to human trajectory prediction horizon)

tempPosReached indicates whether the intermediate position found for a routine has been

reached

tempOrientReached specifies whether the target direction defined for a routine has been reached

travelDistExceeded determines whether the maximum distance (0.75 m) has been travelled since

the start of the “yielding way” routine

closestHumanFarAway indicates that the closest human is further than 0.6 m

ywRoutineEnded the “Yield Way Crossing” ends when: tempPosReached ∨ tempOrientReached
∨ travelDistExceeded ∨ closestHumanFarAway

laRoutineEnded a sequence of “Look Around” rotations has ended

rrRoutineEnded a timeout of 30 seconds has elapsed during “Rotating and Receding” and a

non-collision pose was not reached

Table 5.2: Description of the predicates used for describing the HUMAP ’s Finite State

Machine’s transitions.

Execution Initialisation The transition function associated with the Execution Ini-

tialisation state’s behaviour performs the in-place rotation to align the mobile base with
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Transition Condition

S–EI ¬goalReached ∧ ¬nearCollision ∧ newGoal ∧ ¬directedToInitGoal
S–M ¬goalReached ∧ ¬nearCollision ∧ newGoal ∧ directedToInitGoal
EI –S goalReached ∨ (nearCollision ∧ ¬canRecover)
EI –M ¬goalReached ∧ ¬nearCollision ∧ directedToInitGoal
EI –RR ¬goalReached ∧ nearCollision ∧ canRecover
M –S goalReached ∨ (nearCollision ∧ ¬canRecover)
M –EI ¬posReached ∧ ¬nearCollision ∧ localGoalBehind
M –OA ¬goalReached ∧ posReached ∧ ¬nearCollision
M –YWC ¬posReached ∧ ¬nearCollision ∧ crossingDetected
M –LA ¬posReached ∧ ¬nearCollision ∧ (oscillating ∨ stuck ∨ globalPathOccluded)
M –RR ¬goalReached ∧ nearCollision ∧ canRecover
OA–S goalReached ∨ (nearCollision ∧ ¬canRecover)
OA–M ¬posReached
YWC –M ¬nearCollision ∧ ywRoutineEnded
YWC –LA ¬nearCollision ∧ (oscillating ∨ stuck ∨ ywRoutineEnded ∧ globalPathOccluded)
YWC –RR nearCollision

LA–M ¬nearCollision ∧ ¬oscillating ∧ ¬stuck ∧ ¬globalPathOccluded
LA–RR nearCollision

LA–EI laRoutineEnded

RR–M ¬nearCollision
RR–S nearCollision ∧ rrRoutineEnded

Table 5.3: Description of the state transition conditions. The naming pattern of transition

identifiers reflects the initial letters of the current state and the next state. Names of states

are mapped as follows: S – Stopped , EI – Execution Initialisation, M – Moving , OA –

Orientation Adjustment , YWC – Yield Way Crossing , LA – Look Around , and RR –

Rotating and Receding .

the initial part of the newly computed global path (Fig. 5.4a). Specifically, the vector

connecting the robot’s position with the position of the initiation goal is determined,

and the implemented strategy computes the velocity commands with angular velocities

(regarding kinodynamic limits) to align the robot’s orientation with the direction of the

defined vector (with a tolerance for the target angle identified in Tab. 5.1).

Notably, the FSM diagram (Fig. 5.3) identifies the EI –S transition, which is applicable

when a new goal is at the initial position of the robot, but oriented differently. In such

a situation, switching between Stopped–Execution Initialisation–Stopped is the indented

sequence.

Moving In the behaviour associated with the Moving state, the transition function

computes velocity commands that perform regular robot’s movement toward the global
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(a) Execution Initialisation
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global
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desired
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(b) Orientation Adjustment

Figure 5.4: Typical scenarios when the robot starts operation in the Execution Initialisa-

tion and Orientation Adjustment states.

global path

Figure 5.5: Typical scenario of the robot operating in the Moving state, where the robot

interacts with humans in an unfocused way. Orange ellipses reflect the personal spaces of

humans h1 and h2, whereas the green ellipse indicates the O-space of their F-formation.

goal, while avoiding collisions and interacting with the dynamic objects, e.g., humans,

in an unfocused way. Such an interaction is related to respecting, i.a., personal zones of

individual humans and O-spaces of F-formations while moving through the environment

according to the requested navigation task (Fig. 5.5).

The M –EI transition (Fig. 5.3) is worth noting, as it is applicable when the robot,

during typical task execution receives another request (of a higher priority) with the new

goal behind its current facing direction. In such a situation, the transition from the Moving

to Execution Initialisation can be activated to reduce the excessive translational motions

when turning back.

The robot’s behaviour when operating in the Moving state will be further discussed
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in this chapter.

Orientation Adjustment The Orientation Adjustment is active once the robot achie-

ves the goal position, but not orientation; which requires in-place rotation. Therefore, the

transition function associated with the behaviour of the Orientation Adjustment state

performs a similar activity to the one associated with the Execution Initialisation state.

The only difference is that in the Orientation Adjustment the desired orientation is defined

by the orientation of the goal pose (Fig. 5.4b). The necessity to perform orientation

adjustment before completing the navigation task occurs when the final part of the path

to the global goal ends with poses oriented at a significant angle compared to the goal

pose’s orientation.

Notably, the OA–M transition is relevant in a situation when, during the orientation

adjustment, the localisation module estimates that the global pose has shifted from the

goal position beyond the tolerance distance (the position tolerance is noted in Tab. 5.1),

which requires performing an additional translational movement in the Moving state.

Yield Way Crossing The transition function associated with the behaviour of the

Yield Way Crossing state performs a manoeuvre that effectively makes the robot grant

the right of way to a human (or another dynamic object) at a junction (Req. 2.4.5),

which is identified as one of the social norms (Sec. 2.5.5).

The action of allowing priority at a crossing, instead of stopping the robot, relies on

finding a “safe pose” behind the human (along its movement direction), which serves as an

intermediate goal of the described routine (Fig. 5.6). That intermediate goal is displaced

from the human centre according to the radius of the human circular occupancy model,

docp, multiplied by a parameter (exposed for the user’s adjustment).

The FSM operation in the Yield Way Crossing can start once any human in proximity

to the robot is predicted to cross the robot’s path. The transition from the Moving state

to Yield Way Crossing is mainly dictated by the crossingDetected predicate, whose

calculation method is schematically illustrated in Fig. 5.7.

Both the planned trajectory and the global path plan are utilised to determine the

predicate value. Using a planned trajectory for calculating the predicate is straightfor-

ward, as it constitutes the path the robot will most certainly perform in incoming control

steps. However, the robot’s path is also considered for detecting human crossing since the

entire path to the goal is more suitable for proactively detecting the upcoming situation

than a few-second trajectory. On the other hand, the subsequent poses of the trajectory

might significantly differ from subsequent poses of the global plan; thus, both sources are

evaluated in terms of the human crossing.
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routine
goal

global
path
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Figure 5.6: Typical scenario when the robot starts operation in the Yield Way Crossing

state.

Specifically, since the temporal occurrence of trajectory poses is known, the distances,
r,(··)d(·), between the subsequent poses of the predicted human trajectories and the corres-

ponding poses of the optimal robot trajectory are computed (Fig. 5.7a). In contrast, due

to the lack of temporal knowledge of the robot’s path, the distances between predicted

human poses and path poses must be evaluated with each other (Cartesian product),

as shown in Fig. 5.7b. Then, if the h-th human’s occupancy model (assuming that h-th

human is the closest in the robot’s proximity) overlaps with the robot’s footprint at any

pose of the trajectory or path, the timestamp of the crossing detection is saved as r,htcrs

and further calculations are performed. The space occupied by a human is modelled as

a circle with a radius docp, whereas the circumradius of the robot’s footprint equals dcr.

Therefore, the overlap at time tn occurs when (r,hdn − docp − dcr) < 0. The predicate

computation method includes the timing factor, rcrsnt , to reflect decreasing confidence of

state estimation with successive prediction steps (5.2).2 Furthermore, a directional factor,
r,hcrsnθ , is calculated to react only to close-to-perpendicular crossings (5.3).3 Moreover, the

frontal location factor is calculated, as the importance of crossing events behind the robot

is marginal (5.4).4 Finally, the logical value of the predicate is computed as in (5.5).

2 The rcrsexp parameter has been found experimentally and is set to -0.34, which gives approximately

50% confidence of the crossing expected in 2 s prediction.
3 The r

θvarcrs parameter is determined using the 2-sigma rule applied to the standard deviation of

π/4 rad.
4 The r

frvarcrs parameter is determined using the 2-sigma rule applied to the standard deviation of

π/4 rad.
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optimal
trajectory

...
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(a) Trajectory crossing

global
path

...

...

...

(b) Path crossing

Figure 5.7: The principle of determining distances between a human and the robot for

the crossingDetected predicate calculation. The world state is presented at tn with the

robot’s planned optimal trajectory, the global path, and predicted human trajectories.

The subsequent predicted states are less certain; hence, the transparency of all poses and

the circles representing humans is gradually reduced.

r,hcrsnt = exp
(
rcrsexp ·

(
r,htcrs − tn

))
(5.2)

r,hcrsnθ = funang

rθcrs − hθcrs, N



π
2 if r,hδcrs  0

−π
2 otherwise

, rθvarcrs


 (5.3)

r,hcrsnfr = funang

(
r,hδcrs, N (0, rfrvarcrs)

)
(5.4)

crossingDetected =


1 if r,hcrsnt · r,hcrsnθ · r,hcrsnfr  0.55

0 otherwise
(5.5)

Look Around The Look Around is activated once the global path has not been received

for a few planning cycles (duration parameterised by the user) or the mobile base has not
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the most recent
global path

desired
displacements

Figure 5.8: Typical scenario when the robot starts operation in the Look Around super-

state. The cone in front of the robot reflects the field of view of its sensor, whereas the

“desired displacements” reflect the sequence of rotations to be executed.

developed significant velocities (either linear or angular) for a considerable time (which

usually indicates the inability to move towards the global goal). Hence, the transition

functions associated with the behaviours of the Look Around superstate perform a se-

quence of actions to update the environment model, which aims to facilitate finding the

global path. A typical scenario, when the global path cannot be found is when the robot

operates among dynamic objects and its sensors have a limited field of view ; hence, the

environment representation is not fully known and might be partially outdated, which is

common in practice.

An example situation when the Look Around superstate is active is presented in

Fig. 5.8. The scenario shows that the area near the corner in a corridor was not oc-

cupied during the last global path planning, but due to the detection of a dynamic object

h3, the most recent global path of the robot is no longer traversable. Additionally, a valid

alternative cannot be found, due to the persisting observation of a dynamic object h4,

which occupied the space on the robot’s left once it approached the corner. Without

additional verification, it cannot be determined, whether previously occluded space is

still occupied. Therefore, the routine implemented in the Look Around performs a short

backward movement and a sequence of rotations (Tab. 5.1), while checking for potential

collisions. Once the conditions of transition to another state are met (i.e., the global path

has been successfully planned), the routine might end earlier.

Rotating and Receding The behaviours implemented in the Rotating and Receding

state intend to safely escape space configurations, where the robot’s inflated footprint (the

112



global
path

candidate
waypoints

inlated
footprint
overlaps
with an

obstacle

desired
displacement

Figure 5.9: Typical scenario when the robot starts operation in the Rotating and Reced-

ing superstate. The colours of local path candidates correspond to their preference from

selecting (green) to rejecting (red).

footprint’s inflation emphasises maintaining additional gap from environment objects)

is in a collision, but the non-inflated footprint is non-collision. Such a situation might

happen when a dynamic object approaches the robot in close proximity or if the robot

traverses a narrowing passage. Therefore, the behaviours implemented in the Rotating

and Receding superstate generate velocity commands that slowly rotate and approach the

safe configurations until the inflated footprint is not in collision.

An example of the robot’s arrangement in the environment applicable for the Rotating

and Receding operation is shown in Fig. 5.9, where the robot needs to escape a narrow

passage. To accomplish that, a transition function creates local path candidates (0.3 m

long) around the robot, which are assessed as entire lines (waypoints separated by dis-

tances of the footprint’s inflation) regarding free space and lack of collisions along that

way. The Fig. 5.9 shows 8 candidate waypoints, whereas during the scenarios performed in

the experiments (Chapter 7) 16 potential direction lines were evaluated. Starting from the

current direction of the robot’s motion, the frontal local paths are the most favourable,

the side ones being less, and the rear directions being the least preferable.

Both Rotating and Receding and Look Around superstates have heuristics implemented

to provide more robust operation of the robot operating in dynamic environments. In the
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remaining part of this chapter, the transition function executed in the behaviour of the

Moving state is extensively explained.

5.3 Outline of the trajectory planning approach

The HUMAP is a geometric planner that solves the problem of receding horizon traject-

ory planning for dynamical systems operating in unstructured environments. Our planner

formulates the objective function regarding navigation requirements from classical and

human-aware perspectives. The traditional navigation requirements are implemented as

hard constraints, e.g., collision avoidance and the adherence to kinematic and dynamic

constraints of a mobile base. In contrast, socially-aware navigation requirements are im-

plemented as soft constraints, e.g., the avoidance of intrusions into personal spaces of

surrounding humans [47, 2] or the avoidance of crossing the F-formations’ O-spaces [75, 2].

The general idea behind the HUMAP ’s planning procedure is to develop various feas-

ible (regarding kinodynamic constraints) robot trajectories using the hybrid approach to

trajectory generation (Sec. 5.5 and 5.6), then score trajectories based on cost functions

assuring collision-free motions, while also considering the robot’s performance, motion

naturalness, and human discomfort (Sec. 5.7), to finally select a trajectory with the low-

est cost, as formalised in (5.6). The symbols commonly used for describing our method

are presented in Tab. 5.4.

min
i

{
r,E
icostnall, . . . ,

r,E
χ+ζcostnall

}
subject to r,E

icostnall = scoreTraj
(
rtrajni ,

r,Ecfunnall

)
∀i ∈ {1, . . . , χ+ ζ}

rtrajnj = generateTrajectory
(
r,Ogennsoc, j

)
∀j ∈ {1, . . . , χ}

rtrajnk = generateTrajectory
(
rgennsmp, k

)
∀k ∈ {1, . . . , ζ}

(5.6)

The problem definition in (5.6) explains that for a robot r at a given time step tn, the

generateTrajectory function takes an individual (·)-th trajectory generator r,(··)genn(·)
as an argument and produces a single trajectory, e.g., i-th is denoted by rtrajni , from a set

of trajectories to create, rtrajn(·). Furthermore, the scoreTraj function quantitatively

evaluates a given trajectory rtrajn(··) with a set of all implemented cost functions given by
r,Ecfunnall, that results in a scalarised cost of that trajectory, denoted by r,E

(··)costnall.

Our novel hybrid method of creating trajectory candidates relies on two independent

trajectory generators. The first uses an extended pedestrian motion model that provides

prospects with human-like collision avoidance, Ogennsoc (Sec. 5.5), whereas the second one

samples the space of feasible robot velocities5, gennsmp (Sec. 5.6). Two trajectory generators

5The sampling is performed directly in the space of admissible controls (feasible velocities), instead of
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Symbol Description

rtraj(·) (·)-th trajectory candidate generated for the r agent

r,(··)gen(·) individual trajectory generator identified as (·) that creates trajectories based

on the states of the r agent and entities included in the (··) set

r,Ogenall list of all trajectory generators of the r agent, consisting of
[
r,Ogensoc,

rgensmp

]
r,(··)cfun(·) individual cost function identified as (·) which evaluates the r agent’s interac-

tion with the (··) agents along a trajectory that is provided as an argument to

the cost function

r,Ecfunall list of all cost functions regarded during the trajectory planning for the r agent;

cost functions evaluate the state and actions of the r agent, taking into account

its interaction with the environment E

rρ(·) weight of a cost function identified as (·), related to the r agent

r,(··)
(···)cost(·) value of a cost function(s) identified as (·), assessing the r agent’s interaction

with the (··) agents along the (· · ·)-th trajectory

COSTinfeas cost value assigned to a trajectory that was considered as leading to a collision

or infeasible in terms of kinodynamic constraints of the robot

Table 5.4: Description of symbols used to present the activity of our local trajectory

planner.

are used, as the sole pedestrian motion model, based on the force fields with similar

features as potential fields, is susceptible to local minima and oscillations, whereas the

velocity sampling-based method produces curved trajectory candidates from a discretised

control space.

The cardinality of a trajectory set produced by the model-based trajectory generator,
Ogennsoc, is χ, while the velocity sampling generator, gennsmp, develops ζ trajectories. The

substantial difference between the employed trajectory generators is that the model-based

trajectory generator considers a sparse environment model (the O symbol indicates that

the obstacle set valid at time tn is considered) to produce trajectories. In contrast, the

velocity sampling trajectory generator provides curved trajectories by sampling directly

in the space of admissible velocities without regarding environmental constraints.

The activity of our local trajectory planning approach is described in detail with

pseudocodes Alg. 1, 2, and 3 using symbols from Tab. 5.4. Specifically, Alg. 1 depicts

the sampling in the configuration space as discussed in (Sec. 3.2.2).
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the general receding horizon control scheme. On the other hand, Alg. 2 presents the

planning procedure with the search for a trajectory candidate with the lowest cost. The

generateTrajectories functions used therein produce sets of trajectories to consider

at the given time step. They are defined per each individual trajectory generator, i.e.,
Ogennsoc and gennsmp, as described in Sec. 5.5 and 5.6, accordingly. Furthermore, the scoring

procedure implemented in the scoreTraj function is thoroughly described in Alg. 3. The

criteria for selecting the lowest cost trajectory among the candidates are discussed in detail

in Sec. 5.7.

In our approach, trajectory generation and relevant environment state predictions

are computed deterministically. Similarly, trajectory scoring uses deterministic cost func-

tions, but human-related ones incorporate Gaussian covariances as perception uncertain-

ties (Sec. 4.4).

Algorithm 1 General robot motion control scheme of the robot r at time tn

1: function computeControlCommand( )

2: . Generate traj. candidates, score them and select

3: . a trajectory with the lowest cost

4: trajnbest ← planTrajectory
(
Ogennall,

Ecfunnall

)
5: . Robotic mobile platforms are velocity-controlled

6: . Get the vel. that initialises driving the robot along the traj.

7: vn+1 ← getTrajVelocity(trajnbest)

8: return vn+1

9: end function

5.4 Environment representation

A robot operating in populated environments must be equipped with onboard distance

and vision sensors to obtain accurate information about surrounding obstacles and hu-

mans [402, 149]. An alternative solution might integrate the robot with an external per-

ception system, which, however, requires a reliable communication channel. The social

robot’s perception modules must provide human pose, velocity, and their covariances, so

the reliability of the human track can be estimated.

The HUMAP ’s planning approach uses a dual environment representation – dense and

sparse, each applied for different purposes. The dense representation constitutes a discret-

ised costmap [22, 170] of the robot’s environment, which is an extension of the traditional

occupancy grid [157] (Sec. 3.1.1). In contrast, the sparse representation provides a concise

description of the objects detected in the environment, containing their semantic inform-
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Algorithm 2 Finding the lowest cost trajectory among the candidates acquired from

generators r,Ogennall, scored with cost functions r,Ecfunnall of the robot r at time tn

1: function planTrajectory(Ogenall,
Ecfunall)

2: costbest ←∞ . Expecting costs lower than ∞

3: trajbest ← ∅ . Storage for the lowest cost traj.

4: for each (·)geni ∈ Ogenall do . Investig. all tr. gen.

5: traji ← generateTrajectories
(

(·)geni
)

6: for each trajj ∈ traji do . Investigate each traj.

7: E
jcostall ← scoreTraj

(
trajj,

Ecfunall

)
8: if E

jcostall == COSTinfeas then

9: continue . Skip invalid trajectory

10: end if

11: if costbest ¬ E
jcostall then

12: . Better or equal trajectory already found

13: continue

14: end if

15: costbest ← E
jcostall . Update the lowest cost

16: trajbest ← trajj . Update the best traj.

17: end for

18: end for

19: return trajbest . Return the lowest cost trajectory

20: end function
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Algorithm 3 Scoring a trajectory candidate rtrajn using cost functions r,Ecfunnall of the

robot r at time tn

1: function scoreTraj(traji,
Ecfunall)

2: E
icostall ← 0 . Initialise value of traj. cost

3: for each (·)cfunj ∈ Ecfunall do . Iter. over cost funs.

4: if ρj ¬ 0 then . Ensure positive cost fun. weight

5: continue

6: end if

7:
(·)
icostj ← (·)cfunj (traji) . Eval. the cost fun.

8: if (·)
icostj == COSTinfeas then

9: return COSTinfeas . Skip invalid trajectory

10: end if

11:
(·)
icostj ← ρj ·

(·)
icostj . Factor in the weight

12: E
icostall ← E

icostall + (·)
icostj . Sum up

13: end for

14: return E
icostall . Return the total cost of the trajectory arising from individual cost

functions

15: end function

ation with geometric attributes. Types of objects extracted from the robot’s environment

are listed in the ontology in Sec. 5.1.

There are direct reasons why a dual environment representation is implemented.

Firstly, the dense representation, inherited from the classical robot navigation, aggreg-

ates information about the obstacles in the robot’s environment over time and provides

such data even if the current field of view of onboard sensors does not allow observing

those obstacles. Costmaps typically embody the environment in a 2D plane; however, pro-

jecting sensor readings, mainly from RGB-D cameras, onto the robot’s base plane allows

for the representation of the environment in so-called 2.5D [403]. Additionally, the layered

architecture of the costmap [170] allows embedding contextual information, e.g., proxem-

ics [47], into the environment model used for navigation. The resultant costmap with

enriched information is flattened for motion planning, so it can be used for calculating

the cost of the robot’s traversal through the costmap cells. On the other hand, the sparse

representation is required to compute the controls according to the pedestrian motion

model governing the trajectories produced by the Ogennsoc generator. The model computes

pairwise interactions between the robot and other objects; hence, all environment objects

must be segmented and their spatial attributes estimated.

While the human data are obtained directly from the perception modules [149], the
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segmented obstacle data are extracted from the flattened costmap6 (as in [162]), which

contains all types of obstacles in the environment without semantic distinction. There-

fore, a procedure of excluding social agents, Hn, from all other obstacle types, On, was

developed.

Unlike other applications of the pedestrian motion model [404], the implementation of

HUMAP does not assume that there are multiple point obstacles in the environment, but

the real forms of objects are estimated by processing obstacles marked in the costmap.

Overall, environment objects in the sparse representation are modelled with: circles, lines,

and polygons, ensuring that the algorithm applies to a real-world operation. Also, most

approaches integrating the pedestrian motion model treat humans as points representing

the centre of a body [138, 193], but our sparse representation treats humans as objects that

physically occupy some space. Hence, for obstacle avoidance in the model-based trajectory

generator, Ogennsoc, humans, represented by static or dynamic objects, are modelled as

circles with a radius of docp, and the closest points between each human and the robot

are determined in each time step.

Social robots operate in highly dynamic environments; therefore, motion anticipation

of surrounding objects is crucial for efficient navigation. In the recent work, Schöller et

al. [218] compared sophisticated state-of-the-art human trajectory prediction methods

against the constant velocity model, and they found that this simple approach can yield

similar results. As a consequence of their inspiring outcomes, the HUMAP has the constant

velocity assumption implemented to forecast trajectories of all entities distinguished in

the ontology. Finally, a joint state space of the robot and all objects is developed, as the

object’s trajectory prediction step is equal to the robot’s trajectory planning step, t∆, and

the object’s motion prediction horizon is equal to the robot’s trajectory planning horizon,

thor.

5.5 Trajectory generation using the pedestrian mo-

tion model

The recent successful real-world applications of the Social Force Model (SFM ) [275, 314,

315, 165, 253, 166], which is the prevalent pedestrian motion model, have inspired us to

incorporate this method for robot trajectory generation. The baseline SFM model was

extended with an additional component based on Fuzzy Inference System (FIS ) to engage

social rules of pedestrian motions and to enhance realistic collision avoidance behaviours.

The reactive baseline SFM approach, integrated with the proactive FIS -based compon-

6https://wiki.ros.org/costmap_converter
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ent, creates the Fuzzy-Extended Social Force Model (FESFM ) proposed in this work.

The FESFM has been employed in the pedestrian-motion-model-based social trajectory

generator, denoted as Ogennsoc, providing valid trajectory candidates for the HUMAP ’s

trajectory planning scheme. The trajectory candidates produced by the Ogennsoc are later

scored (along with the candidates from the second generator explained in Sec. 5.6) by cost

functions to obtain the optimal solution according to the objective function described in

Sec. 5.7.

The remaining part of this section discusses the most common pedestrian motion

models and the calibration of the SFM parameters. Furthermore, the formulation of the

baseline model is disclosed in Sec. 5.5.4, and the proposed SFM extension, introduced in

the FESFM , is described in Sec. 5.5.5.

5.5.1 Pedestrian motion models

The modelling of pedestrian dynamics has been an active field since the 1970s. Studies

focus either on a macroscopic approach that investigates the movement pattern of a whole

collective (a crowd) or on a microscopic approach, which examines the behaviour of indi-

viduals [1]. Employing pedestrian dynamics models to reproduce typical human movement

behaviours in robot navigation systems primarily focuses on microscopic methods.

Schadschneider et al. [405] reviewed classical models describing pedestrian motion.

Multiple algorithms employed stimulus-based approaches to model human dynamics, e.g.,

Cellular Automata (CA) [406, 407] or Social Force Model (SFM ) [1]. Both CA and SFM

are microscopic approaches, but the substantial difference between these two methods

lies in the background of interactions. Interactions in CA are implemented as rules –

often motivated by arguments from psychology [405], whereas SFM -based models define

interactions directly on a level of motion equations, similarly to the classical mechanics.

Another difference is related to the continuity – CA is a discrete method, while SFM -based

approaches expose a continuous formulation.

The SFM is one of the most prominent models describing pedestrians’ motion due to

its easily extendable, parameterised method of capturing a mutual influence of individual

pedestrians. The SFM ’s flexible formulation allows the development of specialised meth-

ods that include additional factors into the model, as discussed in (Sec. 3.2.2). The general

idea behind the SFM is to define social analogues of physical forces, e.g., attractive or re-

pulsive interactions, frictional forces, dissipation, and fluctuations [317], and embed them

into motion equations. For many years the SFM has been commonly used for simulating

the evacuation in mass events [313] or pedestrian crossing analyses [408].

The SFM ’s concept is similar to the Artificial Potential Field approach [101] repres-

enting the environment as a potential field with attractive and repulsive potentials that
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guide the agent’s movement, albeit without focusing on social interactions.

5.5.2 Social Force Model formulation

This work synthesises the research on the topic of SFM , which exhibits a broad naming

and symbol diversity among numerous works [1, 56, 138, 408, 25]. Therefore, the uni-

fication of symbols used in mathematical formulations has been developed. Tab. 5.5,7

complementary to the Tab. 4.1, contains common symbols, while others are explained at

their respective occurrences.

Symbol Description

r ego-agent for which the force is calculated; here, ego-agent is the con-

trolled robot

O set of generic obstacles, with o-th obstacle identified as oO

K set of static obstacles, with k-th static obstacle identified as kK

J set of dynamic obstacles, with j-th dynamic obstacle identified as jJ
r,(·)f resultant force calculated for the robot r; obtained from the model that

takes into account entities given by the list (·), e.g., “O,L”
rfdes acceleration force that attracts the robot r straight towards its goal po-

sition
r,of rep repulsive force exerted by the o-th obstacle on the robot r
r,jfdyn repulsive force exerted by the j-th dynamic obstacle on the robot r
r,kf stat repulsive force exerted by the k-th static obstacle on the robot r
r,jfbeh social behaviour force exerted by the j-th social agent on the agent r
r,(·)
f̆ (··) (··)-type force exerted by the (·)-th object on the robot r, corrected with

the field of view factor, indicated by r,(·)fov
rm mass of the object r
r,(·)d vector connecting the closest points of r and (·) objects, directed towards

the position of (·)
r,(·)φ direction of the r,(·)d vector (defined for the description’s conciseness)
r,(·)δ relative location of (·) compared to the heading of r
re unit vector directed from the current position of the robot r towards its

goal position

vdes baseline model’s parameter reflecting the desired speed of the ego-agent

7As stated in Sec. 5.1, the robot-centric notation is used in the Chapter 5, while the notation in

the Chapter 4 investigates the human-centric perspective. Therefore, for clarity and conciseness, some

symbols influenced by the state of multiple entities have been reintroduced in the table describing symbols

appearing in Chapter 5.
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Symbol Description

An baseline model’s parameter affecting the strength of ego-agent’s deceler-

ation caused by the repulsive forces exerted by dynamic obstacles

Bn , Cn baseline model’s parameters affecting the range of deceleration compon-

ents of the force exerted by dynamic obstacles on the ego-agent

Ap baseline model’s parameter affecting the strength of ego-agent’s evasive

movement caused by the repulsive forces exerted by dynamic obstacles

Bp , Cp baseline model’s parameters affecting the range of evasive components of

the force exerted by dynamic obstacles on the ego-agent

Aw baseline model’s parameter affecting the strength of repulsive forces ex-

erted by static obstacles affecting the ego-agent’s movement

Bw baseline model’s parameter affecting the range of repulsive forces exerted

by static obstacles affecting the ego-agent’s movement

As extended model’s parameter affecting the strength of social behaviour

forces caused by social agents’

Table 5.5: Common symbols used for describing the pedestrian motion model.

The original SFM has its distinctive ontology consisting of the agent of interest, i.e.,

ego-agent denoted by r, obstacles O (static, K, and dynamic J can be distinguished),

and attractive objects, L, not being a movement goal for the ego-agent. When the SFM

is applied for robot navigation (as in the HUMAP ’s case), the ego-agent is represented

by the robot for which the social force is calculated. All SFM formulas indicated in this

work regard a 2D problem without taking the orientation of objects into account, and all

data are expressed in the global frame.

The social force originates from Newton’s second law (5.7). The method exploits a vec-

tor field idea assigning a force vector, rfn, to an investigated object r that affects its

acceleration, ran [1].
rfn = rm · ran (5.7)

Moreover, the original SFM formulation also includes a nondeterministic component,
noisefn, that can be associated with a process noise, which also influences the velocity of

the robot r at time tn (5.8).

d rvn

d t
rm = rfn + noisefn (5.8)

The mass of the ego-agent, rm, is known, but the masses and encountered obstacles O are

usually elided, i.e., a unit value is presupposed, om = 1 kg, e.g., in [1, 408, 25]. In most

SFM approaches, all objects are modelled as single points in a two-dimensional space.
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The general formulation of the social force vector is defined in (5.9). The resultant

force vector, r,O,Lfn, is a sum of the acceleration term and interaction components –

repulsive and attractive. The resultant interaction component for the r robot at time tn

is a sum of interaction forces generated by all obstacles, On, and attractive objects, Ln,

located within the space of interest.

r,O,Lfn = rfndes︸ ︷︷ ︸
acceleration term

+
∑
o∈ On

r,ofnrep︸ ︷︷ ︸
repulsive term

+
∑
l∈ Ln

r,lfnattr︸ ︷︷ ︸
attractive term

(5.9)

The acceleration term (5.10) describes the ideal force driving the ego-agent r towards its

target point [1, 56, 25]. The goal position determines the magnitude and the direction of

the ideal velocity vector, ren. Besides that, the acceleration force is also affected by the

current velocity of the ego-agent, rvn, and the relaxation time, τ , indicating the duration

required for the ego-agent to adjust its velocity to match the desired velocity or to react to

changes in the environment. Since the SFM is designed for pedestrian motion simulation,

the formulation parameters assigned to the robot agent, e.g., relaxation time or desired

speed, correspond to pedestrian attributes to mimic their motion [138, 408].

rfndes =
1
τ

(rvndes · ren − rvn) rm (5.10)

People generally treat static objects differently, compared to dynamic ones, e.g., other

humans [12]; hence, the agent’s interaction with the static and dynamic objects should

differ. Therefore, researchers divide the repulsive component into two separate parts [56,

25]. The mathematical formulation of the resultant SFM structure is presented in (5.11).

r,O,Lfn = rfndes +
∑
j ∈ Jn

r,jfndyn +
∑
k∈ Kn

r,kfnstat +
∑
l∈ Ln

r,lfnattr (5.11)

Due to the diversity of interaction force formulations [1, 56, 409, 138, 408], in this work,

only the equations of the baseline model employed in the HUMAP will be further discussed

in Sec. 5.5.4.

5.5.3 Social Force Model parameter calibration

The SFM method stands for a parameterised mathematical formulation of processes ob-

served in the real world. Numerous representations have been proposed to differentiate

the original model [1], which used an elliptical formulation for repulsive forces produced

by dynamic obstacles and a circular one for the forces exerted by static obstacles. Since

multiple specialised models have been proposed, a significant part of the SFM research

is related to the calibration of those models, i.e., the search for parameter values that
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provide the best approximation of pedestrian motion captured during real-world experi-

ments, usually in video tracking footages [56, 25] or robot sensor data recordings [253].

For example, Johansson et al. [56] verified the circular and different elliptical for-

mulations for repulsive forces. Their calibration was performed based on video tracking

data and then experimentally validated in simulation scenarios. In contrast, Moussäıd et

al. [138] conducted a set of controlled experiments with pedestrians performing simple

avoidance tasks. They calibrated a static obstacle collision avoidance and interaction be-

haviours modelled by the SFM formulation.

Seer et al. [25] obtained human movement trajectories based on real-world pedestrian

traffic data. They used the video sequences to calibrate parameters of 3 different SFM

formulations and determined the accuracy of each model. In another work, Taherifar et

al. [410] proposed a macroscopic framework for calibration and validation of the SFM

for bidirectional pedestrian streams. They managed to reproduce desired macroscopic

features while still generating microscopic emergent self-organisation and lane formation

phenomena. Their framework was benchmarked with the use of the pedestrian macroscopic

fundamental diagram [411] that aims to define an ideal relation between pedestrian density

and their spatial flow [405]. Nevertheless, the authors of [25] stated that treating the

fundamental diagram as a reference to find microscopic model parameters can lead to

unexpected results.

Repiso et al. [253] attempted to tune the SFM offline based on the recordings of

people walking in a side-by-side formation. However, the results of their optimisation

scheme, minimising squared distances between the subsequent real-world human poses

and poses obtained from the model, still required some manual fine-tuning. In contrast,

Ferrer et al. [315] exploited online feedback from experiment participants to dynamically

tune the SFM parameters for a specific scenario.

The HUMAP ’s approach to deal with the parameter estimation uncertainties and

exploiting that fact to produce multiple trajectory candidates is detailed in Sec. 5.5.7.

5.5.4 Pedestrian motion baseline model

Our approach focuses on implementing SFM for generating feasible trajectories for a ro-

bot. The SFM is a deterministic method providing collision avoidance and emerging the

agent’s behaviour to realistic motions. Multiple extensions of the original SFM have been

proposed focusing on the microscopic perspective [205, 412, 44, 413, 167].

As the baseline pedestrian motion model, we use the formulation proposed in Seer et

al. [25], who obtained human movement trajectories from video sequences of real-world

pedestrian traffic and used these data to calibrate parameters of different SFM formula-

tions. Specifically, we rely on their Model C, as it discriminates the influence of interaction
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with static and dynamic objects, in contrast to the original formulation [1]. However, the

substantial advantage of the pedestrian motion model selected as the baseline (5.12) is

that its parameter values were estimated to exhibit the best fit to the real-world calibra-

tion data.
r,O
f̆nbsl = rfndes +

∑
j ∈ Jn

r,j
f̆ndyn +

∑
k∈ Kn

r,k
f̆nstat (5.12)

The model designated as the baseline (5.12) neglects the impact of attractive objects

in the environment, as only task-focused robot operation (without distractors) is invest-

igated. Also, the noise component appearing in the original formulation (5.8) [1] is not

included, since the non-determinism is regarded by differentiating model parameters, as

explained in Sec. 5.5.7.

Breves above symbols in (5.12) indicate that the field of view (FOV ) factor, computed

for each object that the robot interacts with, is already included. Different FOV factor

forms were proposed in the literature [56, 205], but HUMAP implements a customised

one presented in Sec. 5.5.5.

The formulation denoted by Model C in [25] used the standardised acceleration term,
rfdes, pointed out in (5.10), but takes into account different methods for generating re-

pulsive forces depending on the type of obstacle. Namely, an interaction force exerted by

a static obstacle k onto the robot r, indicated by r,kfnstat, is developed according to the

elliptical specification from [409], presented in (5.13).

r,kfnstat = Aw · e
−
r,kwn

Bw ·

∥∥∥r,kdn∥∥∥+
∥∥∥r,kdn − r,kdsn

∥∥∥
2 r,kwn

· 1
2

 r,kdn∥∥∥r,kdn∥∥∥ +
r,kdn − r,kdsn∥∥∥r,kdn − r,kdsn

∥∥∥
 km

(5.13)

The semi-minor axis r,kwn of the elliptical formulation is given by (5.14), whereas the

dynamics of objects (originally, the step size of pedestrians [409]) is taken into account

by the r,kdsn, computed as in (5.15).

r,kwn =
1
2

√(∥∥∥r,kdn∥∥∥+
∥∥∥r,kdn − r,kdsn

∥∥∥)2
−
∥∥∥r,kdsn

∥∥∥2
(5.14)

r,kdsn =
(
kvn − rvn

)
·
(
tn − tn−1

)
(5.15)

In contrast, a force generated by a dynamic obstacle j, represented by r,jfndyn, is

calculated based on the findings from [408], where a variant combining two separate,
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distinctively scaled forces was proposed, as described in (5.16).

r,jfndyn =

−
rx̂n An exp

 −Bn

(
r,jδn

)2

r,jvn − Cn
∥∥∥r,jdn∥∥∥


︸ ︷︷ ︸

deceleration scale

+ r,jŷn Ap exp

 −Bp

∣∣∣r,jδn∣∣∣
r,jvn − Cp

∥∥∥r,jdn∥∥∥


︸ ︷︷ ︸
evasion scale

 ·
jm

(5.16)

The r,jfndyn depends, i.a., on the relative location, r,(·)δ, of the j-th dynamic obstacle,

compared to the heading of r. In turn, the relative location depends on the r,jφ, i.e.,

the direction of the vector connecting the positions of the robot r and the investigated

object j (5.17).8 The spatial attributes, namely r,jδ and r,jφ, are exemplified and visualised

in Sec. 5.5.5. Overall, the relative location is the angular difference between the r,jφ, and

the robot orientation angle, rθ, calculated as in (5.18).9

r,jφ = arctan 2
(
r,jdy,

r,jdx
)

(5.17)

r,jδ = r,jφ − rθ (5.18)

The first force in (5.16) points in the direction opposite to the unit vector aligned with

the motion direction of r, i.e., rx̂ (5.19). On the other hand, the second force, r,jŷ, is

perpendicular to the first one and points away from the dynamic obstacle j, as revealed

in (5.20). The resultant repulsive force r,jfdyn exerted by the dynamic obstacle j on the

robot r is the superposition of the two described forces.

rx̂n = [cos (rθn) , sin (rθn)]T (5.19)

r,jŷn =


[
cos

(
rθn + π

2

)
, sin

(
rθn + π

2

)]T
, if r,jδn < 0[

cos
(
rθn − π

2

)
, sin

(
rθn − π

2

)]T
, otherwise

(5.20)

Notably, the SFM scheme involves the computation of the distance vector between

objects, e.g., the robot r and a static obstacle k, denoted by r,kdn. In the HUMAP im-

plementation, the spatial attributes (shapes) of objects are estimated; thus, the closest

points between the robot and each environment object (static or dynamic obstacles, e.g.,

humans) are determined in each time step, in contrast to [404], where only body centres

are considered.
8The robot-centric notation is used in (5.17), while the analogous equation appears in the Sec. 4.4.1,

specifically, (4.15), investigating the human-centric perspective.
9The robot-centric notation is used in (5.18), while the analogous equation appears in the Sec. 4.4.1,

specifically, (4.16), investigating the human-centric perspective.
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The equations describing the baseline pedestrian model, i.e., (5.10) and (5.13)–(5.16),

contain the calibrated parameter set, ρbsl, pointed out in (5.21). In this work, the symbols

of individual parameters are in coherence with the original notation from [25]. Symbols

commonly used in the considerations are identified in Tab. 5.5.

ρbsl ∈
{
vdes , An , Bn , Cn , Ap , Bp , Cp , Aw , Bw

}
(5.21)

5.5.5 Customisation of the baseline pedestrian motion model

The HUMAP aims to introduce customary conflict avoidance behaviours among hu-

mans [28] into a robot navigation scheme. For this purpose, the baseline SFM -based

pedestrian motion model (5.12) was extended with the new component. The novel term

emphasises motions that increase intent expressiveness inspired by pedestrian cues and

enhances the motion legibility [23]. Another contribution to the baseline model is propos-

ing a customised FOV factor, which is simpler and more realistic than the forms proposed

in the literature [56, 205], allowing us to consider the actual FOV present in humans [414].

The new component of the extended pedestrian motion model, FESFM , implements

a decision-making strategy for the robot interacting with dynamic entities J, e.g., humans

and other robots. The scheme integrates motion behaviours, such as passing on the right

into the robot’s movement pattern. A crucial feature of reproducing human-like conflict

avoidance behaviours relies on taking customary rules of pedestrian motion into account

to develop a heuristic that mimics customary behaviours. A common approach to solving

rule-based problems is the use of FIS , which has already been successfully implemented

in complex robot navigation strategies [305, 306, 307].

The Mamdani model [415] has been employed in the novel term of the FESFM to in-

corporate the decision-making strategy in the robot motion pattern explicitly. The main

goal is to detect specific situations that involve human-robot unfocused interaction and

proactively react in a socially compatible manner to prevent conflicts. The FIS mod-

ule takes two inputs to produce the output used to compute an additional term of the

pedestrian motion model.

The formulation of the new FESFM motion model, extending the baseline pedestrian

motion model (5.12) with the new fuzzy-inference-based social behaviour term, r,jfbeh, is

presented in (5.22) (the FOV factor included).

r,O
f̆nFESFM =

r,O
f̆nbsl +

∑
j ∈ Jn

r,j
f̆nbeh (5.22)
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Customised FOV factor The field of view (FOV ) factor in the original formulation

represents a limited range of human perception that causes objects behind a human agent

to have less impact on his movement than objects in front. In HUMAP , this feature is

transferred to a robot’s behaviour.

The FOV factor, r,(·)fovn, by which the model components are multiplied, is computed

as in (5.23)10 and indicates the scale of (·)-th object’s influence on r robot’s motion. The
rfunang function (explained in B) computes the value of the univariate Gaussian distribu-

tion at the of point of the relative location r,jδ (5.18), where the Gaussian distribution is

defined as N (0, rvarfov) and is appointed in the angle domain. Specifically, the mean of

the Gaussian is the angle of the robot’s view axis (in the local coordinate system), which

equals 0, while the shape of the distribution is defined by the robot’s FOV variance, com-

puted based on the rfov parameter with, e.g., the 2-sigma rule applied, that replicates the

limited FOV of humans.

r,(·)fovn = funnang

(
r,(·)δn, N (0, rvarfov)

)
(5.23)

FIS input variables Defining a proper set of variables for a FIS is crucial to differen-

tiate environment states to detect specific situations involving an interaction. Although

social rules of pedestrian motion are driven by many causes, we state that two envir-

onmental factors are crucial for a moving human in their decision process of selecting

the movement actions. Both developed input variables are expressed in the angle do-

main, which is illustrated by corresponding membership functions shown in Fig. 5.11 and

Fig. 5.12. In the following considerations, all symbols are expressed for time tn, and the

j-th dynamic object can be identified as a moving human or a moving robot (different

from the controlled one r).

The first FIS factor, indicated by r,jδ (5.18), is a location of the j-th dynamic object

in relation to the heading direction of the robot r, which is denoted as rθ (Fig. 5.10a).

The following regions for the relative location input variable were distinguished: front (F),

front-left (FL), back-left (BL), back (B), back-right (BR), front-right (FR). The member-

ship function with each region is presented in Fig. 5.11.

The second FIS factor, r,jγ , determines the location of the intersection point of r’s

and j’s direction rays relative to the r’s centre, as illustrated in Fig. 5.10b. The in-

tersection point is determined assuming that the robot r is stationary, and the dynamic

object j moves with a constant velocity. Therefore, the fuzzification regions describing the

possible r,jγ values are distinguished as: cross-centre (CC), cross-behind (CB), opposite

(OPP), outwards (OUT), equal (EQ), cross-in-front-of (CF), as depicted in Fig. 5.10b.

10The robot-centric notation is used in (5.23), while the analogous equation appears in the Sec. 4.4.3,

specifically, (4.34), investigating the human-centric perspective.
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(a) Spatial arrangement (b) Regions and border angles of r,jγ

Figure 5.10: (a) Geometric attributes of an example spatial arrangement of r and j agents

along with lines reflecting the orientation of the global coordinate system. (b) Fuzzification

regions and the angles associated with region borders defined for the second input variable

of the FIS . Note that (a) and (b) illustrate the same spatial arrangement of r and j.

Figure 5.11: A membership function of the first FIS input variable r,jδn

Regions of the second input variable, in contrast to the first one, are dynamically

arranged (5.25); hence, must be computed in the context of the observed spatial arrange-

ment of r and j. For a straightforward geometrical interpretation, the value of r,jγ is

referenced to the orientation of a dynamic agent j, i.e., r,jγ = jθ (see the clarification

in 11). Three specific values of r,jγ , standing for division points for the second input’s

regions (Fig. 5.10b), were distinguished, as shown in the set of equations (5.24). The

following cases of the r,jγ value were specified to develop the boundaries of FIS regions:

• rγeq indicates that j moves in the same direction as r,

• rγopp indicates that j moves in a direction opposite to r,

• r,jγcc indicates that a ray created from a centre point and a heading of j crosses the

centre point of r.

11. Although the r,jγ is calculated as r,jγ = jθ, i.e., it only depends on the state of the object j, the

symbol of r,jγ is indicated as describing a value connected to the entities of r and j. This mathematical

procedure was performed to reflect the fact that a pose of a dynamic object j directly influences the value

of r,jγ , which is calculated for the robot r.

129



Figure 5.12: A membership function of the second FIS input variable with the r,jγ angle

value marked with the vertical bar. The function is presented for the specific spatial

arrangement of r and j shown in Fig. 5.10, where j’s direction ray crosses r’s direction

ray in front of r (“CF” case).

rγeq = rθ

rγopp = rγeq + 180◦

r,jγcc = r,jφ + 180◦

(5.24)

Regions of the second input evolve between the values defined in (5.24). The arrangement

of regions, r,jΓ, can be formulated in the normalised angle domain regarding the relative

location (indicating the right or left side), as in (5.25). The fuzzification regions are

generated with a 10◦ extension (experimentally determined) beyond the region boundary

values (Fig. 5.12). All configurations of input variables considered in the rule bases are

presented in Fig. 5.13.

r,jΓ =




rγopp <

r,jγout <
rγeq

r,jγcc <
r,jγcb <

rγopp if r,jδ < 0

rγeq < r,jγcf <
r,jγcc

rγopp >
r,jγout >

rγeq

r,jγcc >
r,jγcb > rγopp if r,jδ  0

rγeq > r,jγcf >
r,jγcc

(5.25)

FIS rules The rationales for the rule design in the proposed FIS are social conflict

avoidance behaviours [28] and customary rules of pedestrian motion. For instance, in most

countries, pedestrians try to pass others on the right [137, 71, 126, 84, 348, 72], overtake on

the left [71, 141], and give way to a human on the right when directions of both pedestrians

nearly cross [86, 77, 416]. Additionally, enhancing robot motions that increase intent

expressiveness improves its motion legibility perceived by humans [23]. Furthermore, the

FIS rules emerge to recreate the two-lane formation social phenomena [138, 44] and enable

the robot to slow down when a collision is predicted and stop when a collision is imminent.
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Figure 5.13: Visualisation of the reciprocal r and j pose configurations. The specified

cases are accommodated in the fuzzy inference system to implement social behaviours in

a robot navigation system.

In FESFM , reproducing social behaviours is accomplished with short-term actions,

namely: accelerate (ACC ), turn right accelerating (TRA), turn right (TR), turn right

decelerating (TRD), decelerate (DEC ), stop (S ), turn left decelerating (TLD), turn left

(TL), turn left accelerating (TLA). The actions are induced from the robot’s r and dy-

namic object’s j reciprocal location (reflected by r,jδ) as well as their motion directions

(reflected by r,jγ). Based on these features, the spatiotemporal arrangement of the robot

and the dynamic object is classified into one of the specific cases described in the reasoning

block in Tab. 5.6, which contains the set of fuzzy rules of the presented FIS .

FIS output variable The defuzzified output variable, r,jνn, represents the membership

function’s argument (Fig. 5.14) identified as the angle defining the direction of the action

that implements the human-like decision-making strategy. However, movement actions in

the SFM -based pedestrian motion model must be represented by the force; therefore, the

magnitude of the new force component, r,jfbeh, must be separately calculated.

To find the magnitude of the force implementing social behaviour for the situation

at hand, a novel heuristic has been developed based on the findings from the literature.
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r,jδ

r,jγ
CC CB OPP OUT EQ CF

F − − TR DEC DEC TR

FR − TL TL TL TLA TR

BR − TLA TR − TRA ACC

B − − − − − −
BL − ACC − − − −
FL − TR − − − TRA

Table 5.6: Fuzzy rule bases. Values of the first input are denoted under r,jδ, whereas the

values of the second input correspond to r,jγ .

Figure 5.14: A membership function for the FIS output variable.

Specifically, the scale of the force depends exponentially on the distance r,jd between

the robot r and the object j [1, 314, 275], but is also affected by their relative speed,
r,jv [408, 25]. Additionally, the force strength is influenced by the value of the output’s

membership to the best matching FIS case, r,jµν , which directly assesses the certainty

of classification of the inferred situation (arrangement). Notably, the action angle, r,jν ,

is defined in the robot’s r local coordinate system; thus, the direction of the force needs

to be transformed from the robot’s r local coordinate system to the global one. Finally,

the configurable amplitude factor, As , is introduced for, e.g., levelling the scale with

other components. The overall formulation of the FIS -based component of the FESFM

pedestrian motion model is shown in (5.26).

r,jfbeh = As · e−
r,jd ·

(
e
r,jv − 1

)
· r,jµν ·

cos (rθ + r,jν)

sin (rθ + r,jν)

 (5.26)

The FIS must handle the presence of multiple dynamic objects, identified as Jn, around

a robot. The vector addition principle has been used as an aggregation method when the

cardinality of the set of dynamic objects at time tn conforms to |Jn| > 1.

Nevertheless, when none of the implemented actions is activated, the robot’s candidate

trajectories produced by the Ogensoc generator are not influenced by the r,jfbeh component.
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5.5.6 Conforming pedestrian motion model to velocity control

of mobile bases

Mobile robots are commonly velocity-controlled. Since the SFM -based motion model that

was employed in the social trajectory generator, gensoc, provides control commands ex-

pressed in the force domain, they need to be transformed to the velocity domain. Further-

more, the virtual forces in the SFM are generated without taking the mobility constraints

of agents into account.

Holonomic robot platforms characterise performing lateral motions contrary to the

heading direction, which is considered unnatural and not goal-directed for people [215].

Consequently, most social robot mobile bases are equipped with simple differential drives.

Nonholonomic constraints of the platform selected for tests (Sec. 7.1) make the robot

not compatible with the raw SFM driving vector. This problem was already addressed

in [165], where the authors proposed a function transforming a force, rf , to a velocity

vector rv for a nonholonomic robot r. The method is referred to as forceToVelocity

in Alg. 4.

5.5.7 Generating numerous pedestrian model-based trajectory

candidates

The HUMAP local trajectory planning algorithm employs the FESFM pedestrian motion

model (Sec. 5.5.5), based on the SFM (Sec. 5.5.4), for producing trajectory candidates.

The planning approach implemented in the HUMAP relies on searching for the lowest cost

trajectory amid the candidate trajectories. Increasing the number of candidates produced

enhances the likelihood of finding a solution closer to the optimal. In this section, the

approach of generating multiple trajectory candidates from a deterministic pedestrian

motion model is demonstrated.

Limitations of static parameter values in SFM-based models As stated in

Sec. 5.5.3, the authors of multiple works have already attempted to assess the parameter

values of pedestrian motion models applied for social robot navigation. The parameters of

the baseline SFM formulation were estimated in [25], where the authors found that after

the calibration driven by the real-world data, each parameter still displays a significant

standard deviation from the mean value. This can be explained by the non-deterministic

nature of real-world processes that involve humans. However, researchers acknowledge

that a static set of SFM parameters might produce satisfactory navigation results for

a specific scenario, as in [314, 321], and still be valid in scenarios meeting similar condi-

tions [165], but lacks generalisation to different environments. Even parameter calibration
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via online learning is the same in that matter [165]. On the other hand, dynamically

changing parameters may produce valid trajectories for different scenarios [315], but de-

fining a versatile relationship between SFM parameter values and the environment state

is challenging. Taking into account the aspects of the deviation of calibrated parameter

values and the necessity to dynamically select them across various scenarios, the method

of generating multiple trajectory candidates has been developed in the HUMAP .

Diversifying trajectory candidates The HUMAP ’s model-based generator of so-

cially acceptable trajectory candidates, gensoc, exploits that each parameter of the baseline

pedestrian motion model should undergo validation with values spanning throughout the

range defined by their standard deviations. Hence, our method introduced the multipliers

of pedestrian motion model parameters. Manipulating the value of each parameter has

a direct impact on robot dynamics and emphasises distinctive behaviours in the robot’s

motion, e.g., a bigger keepout distance from static obstacles or earlier evasive manoeuvres

in front of a dynamic obstacle. Furthermore, applying numerous coefficients to each para-

meter ensures that the deterministic FESFM model can generate diverse pedestrian-like

trajectory candidates. Those candidates are later scored with socially-aware cost functions

to select the most relevant trajectory for a human-aware robot at the current state, as

detailed in Sec. 5.7.

The span of values of model parameters’ multipliers is bounded by the minimum,
r

minκ(·), and the maximum, r
maxκ(·), values, which can either be derived from the standard

deviation of the baseline model parameters (e.g., [25]) or determined experimentally, by

evaluating the range that significantly impacts the search space. Then, the multiplier’s

discretisation step (granularity), r
stpκ(·), must be established by striking a balance between

computational complexity and search resolution.12 The composition of multipliers for

a given parameter i, denoted by rκi, is described in (5.27).

rκi =
{
r
jκi | j ∈ N0, 0 ¬ j ¬

⌈
r

maxκi − r
minκi

r
stpκi

⌉}

r
jκi =


κ = r

minκi + j · r
stpκi if κ ¬ r

maxκi

r
maxκi otherwise

(5.27)

Then, the multipliers are applied to each baseline parameter from the ρbsl set, augmented

by the FIS -related As parameter of the
r,j
f̆nbeh, to obtain the set of resultant parameter

values, rρi (for a specific parameter i), that are used for generating diversified trajector-

12 The smaller the discretisation step is, the closer the solution will be to a model-constrained-optimal

one; however, for real-world, time-constrained systems, it is desirable to keep computation times reason-

able and to recalculate with a higher frequency at the cost of acquiring a suboptimal solution.
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ies (5.28).

rρi = rκi · i, where i ∈ ρbsl ∪ As (5.28)

Our trajectory generation involves searching for all possible parameter combinations, rρall;

hence, the parameter tuples are the results of the Cartesian product of uniformly spaced

parameters (5.29).13 The i-th tuple with parameters, riρall, is shown in (5.30).14

rρall = rρvdes ×
rρAn ×

rρBn ×
rρCn ×

rρAp×

× rρBp ×
rρCp ×

rρAw ×
rρBw ×

rρAs

(5.29)

r
iρall =

(
r

(·)ρvdes ,
r

(·)ρAn ,
r

(·)ρBn ,
r

(·)ρCn ,
r

(·)ρAp ,

r
(·)ρBp ,

r
(·)ρCp ,

r
(·)ρAw ,

r
(·)ρBw ,

r
(·)ρAs

) (5.30)

Since we applied multipliers to 10 parameters of our FESFM pedestrian motion model,

and each combination of multiplier values is assessed, the search space of a model-

constrained-optimal trajectory15 is at most 10-dimensional. However, dimensionality re-

duces by 1 with each multiplier set’s cardinality conforming
∣∣∣rκ(·)

∣∣∣ = 1.

Trajectory generation Using the deterministic pedestrian motion model to generate

numerous trajectory candidates exploits the model’s parameterisation. The candidates are

produced by replacing the baseline parameters, ρbsl, with the subsequent parameter tuples

from rρall, i.e., r1ρall,
r
2ρall, ..., r

χρall. Specifically, with the (·)-th tuple, the An parameter

appearing in the FESFM formulation is swapped with the r
(·)ρAn , then Bn with r

(·)ρBn ,

and so forth.

A valid trajectory generation in time tn reveals a tuple of parameters, denoted as
r

(·)ρall, which produces a trajectory with the lowest cost among the set of model-based

trajectories generated by applying various parameter tuples to our pedestrian motion

13 An exception to the “uniform spacing” may hold for at most 1 (the biggest) value of each parameter.

It might occur if the second case of the second part of the (5.27) equation applies for a given parameter,

i.e., there does not exist an integer number, that multiplied by the discretisation step r
stpκ(·), equals the

range given by r
maxκ(·) −

r
minκ(·).

14 Generally, with the variable number of multipliers for each parameter, it is not viable to identify the

index of each parameter in the i-th tuple, riρall, therefore, a generic placeholder, (·), has been used. Each

(·) may indicate a different index in (5.30).
15 The phrase “model-constrained-optimal trajectory” means that: 1) there is a parameterised “model”

from which trajectories are generated, and 2) numerous trajectories can be generated, but none of them

might be globally optimal due to a discretised search space. However, amid the trajectories produced by

the model (thus “model-constrained”), there is 1 trajectory with the lowest cost (thus “optimal” in terms

of the solutions generated by the model).
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(a) Model-based generator (b) Sampling-based generator

Figure 5.15: Candidate trajectories created using the pedestrian motion model gensoc (a)

and the sampling-based generator gensmp (b). The global path is indicated by the black

line. The robot’s footprint is marked with a grey circle and its orientation is depicted with

a coordinate system marker. Path points resulting from an individual trajectory are of

the same colour.

model. Moreover, a trajectory is considered a valid candidate only when it conforms to

the kinodynamic constraints of the mobile base throughout the planning horizon, i.e., the

entire trajectory must constitute only feasible velocities (hence isFeasible expression in

Alg. 4). Trajectories failing to meet this requirement are rejected from further investiga-

tion. The complete procedure for human-aware trajectories generation using the FESFM

pedestrian motion model is shown in Alg. 4. The implementation used during experi-

mental studies produces χ = 72 trajectories using the model-based trajectory generator,

gensoc. Nevertheless, investigating more trajectories is justified, if the real-time perform-

ance of the trajectory planning is not an issue. The visual representation of the produced

trajectories is illustrated in Fig. 5.15a.

5.6 Velocity sampling-based trajectory generation

We argue that a sole social trajectory generator utilising the SFM -based motion model

is not sufficient for robust robot navigation in dynamic, populated or cluttered environ-

ments due to being vulnerable to the local minima or oscillations [1, 165]. Therefore, we

also employed a velocity sampling trajectory generator, gensmp, that creates trajector-

ies from feasible motion primitives, i.e., velocity tuples ([vx, ω] pairs for nonholonomic

or
[
vx, vy, ω

]
triplets for holonomic drives) regarding kinodynamic constraints [161], but

without taking environment model into account (collision checking is performed by scor-
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Algorithm 4 Creating trajectory candidates, rtrajnsoc, for the robot r at time tn using

the generator based on the pedestrian motion model, r,Ogennsoc

1: function generateTrajectories(Ogensoc)

2: trajsoc ← ∅ . List containing generated trajectories

3: for each iρall ∈ ρall do . Iterate over param. tuples

4: tsim ← tn . Save the initial time stamp

5: Osim ← On . Save the initial environment state

6: traj ← ∅ . Uninitialised trajectory candidate

7: invalid← False . For detecting traj. gen. failure

8: . Iterate over time stamps along the plan. horizon

9: while tsim ¬ (tn + thor) do

10: . Compute force according to the motion model

11:
O
f̆ sim
FESFM ← FESFM

(
iρall,Osim

)
12: vsim ← forceToVelocity

(
O
f̆ sim
FESFM

)
13: . Evaluate the feasibility of the velocity

14: if not isFeasible
(
vsim

)
then

15: invalid← True

16: break . Traj. violates kinodyn. constraints

17: end if

18: . Initialise traj. with the first planned velocity

19: if traj == ∅ then

20: traj ← initTraj(pn, vn)

21: end if

22: . Extend the robot trajectory applying vsim

23: traj ← predict
(
traj, vsim

)
24: . Predict the state of the environment

25: Osim+1 ← predict
(
Osim

)
26: tsim ← tsim + t∆ . For the next traj.

27: end while

28: if invalid == True then

29: continue . Curr. par. tuple produces infeas. traj.

30: end if

31: append(trajsoc, traj) . Extend the traj. list

32: end for

33: return trajsoc . Return the list of generated traj.

34: end function
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ing functions). We finally selected rsmpx = 3 linear (rsmpy = 1, equal to 0, as our test

platform is nonholonomic) and rsmpω = 11 angular velocities that produce additional

ζ = 33 trajectories to be scored in each time step. The algorithm for producing candidate

trajectories by the velocity sampling generator is illustrated in Alg. 5.

Algorithm 5 Creating trajectory candidates, rtrajnsmp, for the robot r at time tn using

the trajectory generator based on velocity sampling rgennsmp

1: function generateTrajectories(gensmp)

2: . Compute boundaries of feasible vel. at the end of

3: . the plan. horizon, e.g., for the lower boundary:

4: . minv̄ =
[
minv̄x,minv̄y,minω̄

]
5: minv̄ ← v − a · thor . a robot’s accel. limits

6: maxv̄ ← v + a · thor

7: . Create lists of feasible velocities, taking the cardinality

8: . of each velocity component into account;

9: . linspace returns evenly spaced num. over an interval;

10: . if minv̄(·) < 0 and maxv̄(·) > 0, then “0” sample is incl.

11: ṽx ← linspace(minv̄x,maxv̄x, smpx)

12: ṽy ← linspace
(

minv̄y,maxv̄y, smpy
)

13: ω̃ ← linspace(minω̄,maxω̄, smpω)

14: ṽsmp ← ṽx × ṽy × ω̃ . List of feas. vel. triplets

15: trajsmp ← ∅ . List containing generated trajectories

16: for each ṽ ∈ ṽsmp do . Iter. over feas. vel. triplets

17: tsim ← tn . Save the initial time stamp

18: traj ← initTraj(pn, vn) . Initialise traj.

19: . Iterate over time stamps along the plan. horizon

20: while tsim ¬ (tn + thor) do

21: traj ← predict(traj, ṽ) . Const. vel.

22: tsim ← tsim + t∆ . For the next traj.

23: end while

24: append
(
trajsmp, traj

)
. Extend the list

25: end for

26: return trajsmp . Return the list of generated traj.

27: end function

Examples of trajectory candidates obtained for the same environment state with the

model-based social trajectory generator, gensoc, and the velocity sampling-based gen-

erator, gensmp, are shown in Fig. 5.15a and Fig. 5.15b, accordingly. The latter produces
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curved trajectories that cover a discretised space of feasible velocities (nonholonomic robot

example). On the other hand, the model-based generator creates concentrated trajectories

(95 candidates in Fig. 5.15a) that avoid collisions and follow the local goal located along

the global path. Using both generators enables covering most of the viable configuration

space with diverse candidates.

5.7 Trajectory scoring

Creating multiple trajectories requires scoring the candidates produced by each generator,

gensoc and gensmp, to select the one with the lowest cost (5.6). Trajectory evaluation has an

essential impact on which candidate will be selected; therefore, cost functions for human-

aware navigation should map the social robot navigation requirements (Chapter 2).

A distinctive characteristic of the HUMAP planner is that the cost functions for on-

line trajectory scoring are adapted from our metrics that were originally proposed for the

offline benchmarking (regarding the whole experiment) of social robot navigation [21],

described in (Chapter 4). The metrics quantitatively evaluate both robot navigation per-

formance and its social acceptance during navigation, taking into account the uncertainty

of robot perception in terms of human tracking.

In HUMAP , cost functions for scoring candidate trajectories can be classified into two

main groups: evaluating robot navigation performance and assessing human discomfort.

Furthermore, human discomfort cost functions can be further divided into those quanti-

fying robot motion naturalness, and those evaluating the physical and perceived safety

among humans (following the taxonomy identified in Sec. 2.1). Since the objective function

for candidate scoring implements opposite criteria, i.e., includes both performance-focused

cost functions as well as cost functions mitigating human discomfort, a Pareto-optimal

solution is being searched for.

Our approach to local trajectory planning uses spatial, spatiotemporal and temporal

cost functions, all stored in the r,Ecfunall vector, to evaluate candidate trajectories. Spatial

cost functions are commonly embedded into a discretised costmap representation of the

robot environment [170] to penalise the robot for traversing through certain positions. Spa-

tiotemporal cost functions, on the other hand, also penalise the robot for moving through

certain areas but evaluate the actions that happen in time and affect the pose of the

robot, usually in a significant horizon. They might require environment state predictions

as well, e.g., forecasting human trajectories. In contrast, temporal cost functions penalise

the robot’s dynamics within a given trajectory, without considering spatial aspects.

In our method, only trajectories conforming to the kinodynamic constraints are treated

as valid and those are evaluated by cost functions. Assessing the i-th trajectory is equi-
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valent to calculating its total cost, r,Eicostnall. The cost of a trajectory is computed using

the scalarised multi-objective cost function, presented in (5.31), with the weighted sum

method, as illustrated in Alg. 3. The (·)-th cost function, which only relies on the state

of the robot r and does not take any environment objects into account, is denoted by
rcfunn(·), whereas its weight as rρ(·). Individual cost functions are described later in this

section.

r,E
icostnall=

rρtrav · r,Ecfunntrav (rtrajni )+ rρpth · r,Ecfunnpth (rtrajni )+

+ rρgoal · r,Ecfunngoal (rtrajni )+ rρglfr · r,Ecfunnglfr (rtrajni )+

+ rρbwd · rcfunnbwd (rtrajni ) + rρosc · rcfunnosc (rtrajni ) +

+ rρttc · r,Ecfunnttc (rtrajni ) + rρhsm · rcfunnhsm (rtrajni ) +

+ rρvsm · rcfunnvsm (rtrajni ) + rρdir · r,Hcfunndir (rtrajni ) +

+ rρpsi · r,Hcfunnpsi (rtrajni ) + rρfsi · r,Gcfunnfsi (rtrajni ) +

+ rρpsd · r,Hcfunnpsd (rtrajni )

(5.31)

Changing the weights of cost functions influences, which trajectory candidate will be

selected as the best in a given time step, for a given planning horizon. Manipulating

the weights enables the system designer to select, e.g., whether the robot is intended to

sacrifice time performance in favour of social compliance in a populated environment. The

trajectory selection procedure treats socially acceptable robot motions as soft constraints,

meaning they are permissible unless they result in a collision, which is interpreted as

a hard constraint. Therefore, the robot could still apply a trajectory that deviates from

the globally planned and shortest path, when the cost functions assess the trajectory’s

cost as the lowest (minimising the objective amid the candidates).

As the HUMAP is mainly developed for robots performing unfocused interactions

with humans, in our test setup, the weights were tuned towards the human-aware motion

behaviour. This means that the weights of cost functions penalising human discomfort

and unnatural robot motions were increased, but only at a minimal degradation in overall

robot navigation performance (Pareto optimality).

The remaining part of this section describes all cost functions that are regarded in the

objective function, i.e., they are also embedded into the r,Ecfunnall vector.

5.7.1 Assessing robot navigation performance

The aspects of robot navigation performance in local trajectory planning mainly regard

the global path following, while avoiding collisions. The operational scheme of cost func-

tions described in this section is illustrated in Alg. 3: the investigated trajectory is passed
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as an argument to each cost function, resulting in the cost of that trajectory being returned

from the function. All cost functions discussed below are aggregated in the objective in-

troduced in (5.31).

Traversal costs A fundamental cost function, r,Ecfuntrav, discards trajectories mov-

ing the robot into obstacles and penalises traversing through areas in obstacles’ proxim-

ity [147]. This spatial cost function uses a dense representation of the environment to

quantitatively evaluate the robot’s footprint traversal through the predicted trajectory

poses (associated with the local costmap’s cells), providing the investigated trajectory

was applied (Alg. 6).

The local costmap, representing the robot’s surroundings, is created in real-time based

on the recent perception data and determines the cost of traversal through certain environ-

ment positions, e.g., through locations occupied by obstacles (Fig. 5.16a). Additionally, the

areas close to obstacles have exponentially increased costs assigned (in a procedure usually

called “obstacle inflation”) [147]. However, with the layered costmap architecture [170],

various high-cost areas can also be embedded. The contextualised local environment rep-

resentation might contain different special areas that are not treated as empty spaces but

also not as impassable locations. The authors of existing approaches prepare costmaps

to capture the information specific to social navigation, e.g., left sides of corridors [170]

(for right-sided motion pattern) or human activity spaces [2] to discourage planners to

traverse such areas. The resultant costmap used for trajectory scoring is flattened, so the

number of layers considered only affects the system performance and does not influence

the planning procedure.

Other performance-focused costs Our approach also adapts other commonly integ-

rated spatial cost functions for evaluating robot navigation performance. For example, the
r,Ecfunpth cost function favours trajectories that overlap with the global path (Fig. 5.16b),

which is received by the local trajectory planner from the global path planner. Addition-

ally, the r,Ecfungoal cost function prioritises trajectories that drive the robot towards the

local goal (Fig. 5.16c), as proposed in [144, 147]. Furthermore, the r,Ecfunglfr cost function

attracts the robot towards a virtual goal placed in front of the robot to prevent deadlocks,

i.e., being stuck at local minima (Fig. 5.16d).

The implementation of all these cost functions is inherited from the original ROS

navigation system.16 Compared to the original work [147], weights of the cost functions

were decoupled to provide a more versatile platform for configuration.

16https://github.com/ros-planning/navigation
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Algorithm 6 Computing the value of the r,Ecfunntrav cost function for a trajectory rtrajn

generated for the robot r at time tn

1: function Ecfuntrav(traj)

2: Ecosttrav ← −∞ . Stores the highest cost along the traj.

3: . Env. dense representation containing obstacles O

4: cm ← getCostmap()
5: for each psim ∈ traj do . Rewind predicted states

6: . Costmap from time t is used in each step

7: cost ← getCost
(
cm, psim, ftprint

)
8: . Highest cost of the pred. pose of the r’s footprint

9: Ecosttrav ← max
(
Ecosttrav, cost

)
10: end for

11: return Ecosttrav

12: end function

5.7.2 Assessing robot motion naturalness

The robot’s motion can be described as natural when it exhibits behaviours that are not

perceived as unusual, which typically involves avoiding erratic movements and oscillations.

Cost functions evaluating robot motion naturalness in the presence of humans are in

most cases temporal and regard robot dynamics or particular movement types. Here,

robot velocities are expressed in the mobile base’s coordinate system. All cost functions

that assess the robot’s motion naturalness in the HUMAP local trajectory planner were

adapted from SRPB (Sec. 4.3).

Oscillating motions The rcfunnosc cost function discards robot trajectories exhibiting

oscillating motions, i.e., not developing significant linear and angular velocities. The cor-

responding cost value, rcostnosc, is computed as in (5.32), where r
(·)vosc represent configurable

threshold values for relevant robot velocity components.

rcostnosc =


COSTinfeas, if

rvnlin<
r
linvosc

∧|rvnx |<rxvosc
∧|rvny |<ryvosc
∧|rωn|<rθvosc

0, otherwise

(5.32)

Backward movements The rcfunnbwd cost function penalises trajectories constituting

backward motions. The respective cost value, rcostnbwd, is calculated as in (5.33). The

configurable velocity threshold value, r
xvosc, is shared with the analogous parameter used

in rcfunnosc cost function, so a trajectory is not classified as having oscillating and backward
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(a) Traversal in obstacles’ proximity (b) Exact path following

(c) Attraction towards the global goal (d) Attraction towards a local goal

Figure 5.16: A visualisation of cost functions aggregated by the objective function for

evaluating the robot navigation performance: (a) obstacle avoidance, (b) global path fol-

lowing, (c) goal-reaching capabilities, and (d) deadlock prevention. In all figures, the cost

of traversal through costmap cells is mapped onto the colour scale. Red-coloured areas

represent a minimal cost, whereas black colour spaces indicate lethal obstacles. Local

costmap bounds are also presented in each figure. The global path is indicated by the

thick black line, while a thin black circle represents the robot’s footprint.

movements simultaneously.

rcostnbwd =


1, if rvnx¬− r

xvosc

0, otherwise
(5.33)

Velocity smoothness Another cost function, rcfunnvsm, is used for avoiding erratic mo-

tions, i.e., trajectories that exhibit a significant change in subsequent linear velocities [12].

The linked cost value, rcostnvsm, is computed as in (5.34), where ň is the index of the time

stamp indicating the initiation of the latest planning procedure.

rcostnvsm =
1

qhor − 1

ň+qhor−1∑
n=ň

√ ∑
i∈{x,y}

(
rvn+1
i − rvni

)2

tn+1 − tn
(5.34)
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Heading change smoothness The rcfunnhsm cost function penalises robot angular ve-

locity changes [10]. The associated cost value, rcostnhsm, is calculated as in (5.35).

rcostnhsm =
1

qhor − 1

ň+qhor−1∑
n=ň

|rωn+1 − rωn|
tn+1 − tn

(5.35)

5.7.3 Assessing humans’ physical and perceived safety

The discomfort experienced by humans during robot navigation is often linked with a de-

creased perceived safety among humans [10]. Neglecting the perceived safety may result in

breaches of physical safety protocols. Achieving stress-free and comfortable human-robot

interaction is a multifaceted issue, influenced by factors such as adherence to spatial

distancing [47, 2], execution of natural movements [10], and avoidance of frightening hu-

mans [12]. In the HUMAP , several cost functions assessing the perceived safety among

humans were adapted from SRPB (Sec. 4.4).

Time To Collision costs The r,Ecfunnttc spatiotemporal cost function penalises tra-

jectories that lead to a collision with dynamic agents within the planning horizon, thor.

It is typically associated with the group of physical safety requirements of social robot

navigation (Sec. 2.2). The cost function relies on the TTC concept [45, 46, 35], and its cal-

culation method is illustrated in Alg. 7. It exploits the motion prediction of environment

objects against the subsequent entries in the investigated trajectory.

Heading straight into a human The concept of motion legibility [23] explores the

movement patterns that aim to increase the intent expressiveness. Unfocused human-

robot interactions often require passing each other, e.g., in narrow passages. Therefore,

the robot should signal its intention early to avoid a collision. In SRPB , the mdir metric

allows assessing whether the robot moves straight into a human, including the uncertainty

of the human pose estimation (Sec. 4.4.3); therefore, implements a practical motion legib-

ility measure. A cost function that utilises the analogous scheme, r,Hcfunndir, is developed

in the HUMAP . It employs the normalised value of the mdir metric to evaluate a traject-

ory (Alg. 8).

Personal spaces intrusion The personal space concept originates from the proxemics

theory [47] and stands for a fundamental idea in social robotics. The personal space

intrusion metric, mpsi, assessing the scale of robot intrusions into any human’s personal

space [12], was proposed in SRPB . The variances modelling a personal space along front,

side, and rear directions are calculated based on a human velocity, according to the rules
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Algorithm 7 Computing the value of the Time-To-Collision cost function, r,Ecfunnttc, for

a trajectory rtrajn generated for the robot r at time tn

1: function Ecfunttc(traj)

2: Esim ← E . Save initial env. sparse representation

3: for each psim ∈ traj do . Rewind predicted states

4: . Compute the shortest dist. vector between the r

5: . and any object from the environment at time tsim

6: Edsim ← closestDistance
(
psim, Esim

)
7: if

∥∥∥Edsim
∥∥∥ ¬ dttc then . Dist. below threshold

8: tttc ← tsim − tn . Time proceeded forward

9: . The rational function represents an increasing

10: . pred. uncertainty for the longer pred. horizon

11: return (thor/ tttc)

12: end if

13: . Prepare prediction of the env. sparse representation

14: Esim+1 ← predict
(
Esim

)
15: end for

16: return 0

17: end function
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Algorithm 8 Computing the value of the r,Hcfunndir cost function for a trajectory rtrajn

generated for the robot r at time tn

1: function r,Hcfundir(
rtraj)

2: . Container with discomfort values of each human throughout the planning horizon

3: Hdir ← ∅
4: . Retrieve predicted human trajectories with pose covariances (thus˜accent)

5:
H
t̃raj ← getPredTrajs(H)

6: for each
h
t̃raj ∈

H
t̃raj do . Iterate over predicted human trajectories

7: for sim← n to n+ qhor do . Iterate over IDs of planning horizon timestamps

8: . Retrieve poses (with a covariance) and a velocity at a given step

9: hpsim, hΣsim
p ← unpack(

h
t̃raj, sim)

10: rpsim, rvsim ← unpack(rtraj, sim)

11: . Calculate the value of the indicator

12: h,rdirsim ← discomfortDir(hpsim, hΣsim
p , hdocp,

hϕfov,
rpsim, rvsim)

13: . Calculate the value of the normalisation factor

14: h,rdirsim
nrm ← normalisationDir(hpsim, hdocp,

rpsim, rdcr,
r

maxvlin)

15: append
(
Hdir,

h,rdirsim
h,rdirsimnrm

)
. Extend the list with normalised discomfort values

16: end for

17: end for

18: return max(Hdir) . Return the maximum discomfort value

19: end function
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proposed in [399]. The corresponding cost function, r,Hcfunnpsi, exploits the normalised

value of the metric and calculates the rating of a trajectory as in Alg. 9.

Algorithm 9 Computing the value of the r,Hcfunnpsi cost function for a trajectory rtrajn

generated for the robot r at time tn

1: function r,Hcfunpsi(
rtraj)

2: . Container with discomfort values of each human throughout the planning horizon

3: Hpsi ← ∅
4: . Retrieve predicted human trajectories with pose covariances (thus˜accent)

5:
H
t̃raj ← getPredTrajs(H)

6: for each
h
t̃raj ∈

H
t̃raj do . Iterate over predicted human trajectories

7: for sim← n to n+ qhor do . Iterate over IDs of planning horizon timestamps

8: . Retrieve poses (with a covariance) and a velocity at a given step

9: hpsim, hΣsim
p , hvsim ← unpack(

h
t̃raj, sim)

10: rpsim ← unpack(rtraj, sim)

11: . Calculate the value of the indicator

12: h,rpsisim ← discomfortPsi(hpsim, hΣsim
p , hvsim, rpsim)

13: . Calculate the value of the normalisation factor

14: h,rpsisimnrm ← normalisationPsi(hpsim, rpsim)

15: append
(
Hpsi,

h,rpsisim
h,rpsisimnrm

)
. Extend the list with normalised discomfort values

16: end for

17: end for

18: return max(Hpsi) . Return the maximum discomfort value

19: end function

F-formations’ O-spaces intrusion The spatial patterns of human F-formations were

examined in [75], where certain areas of human group arrangements were specified, with

O-spaces being one of them. The O-spaces are areas reserved for the participants of

a focused interaction, so a robot interacting in an unfocused way ought not to cross the

O-spaces. In the SRPB , we proposed the mfsi metric that intends to penalise a robot for

traversing through O-spaces. The HUMAP implements the r,Gcfunnfsi cost function that

aims to replicate the behaviour of mfsi metric but for the online trajectory planning. The

employed approach is described in Alg. 10. Notably, the weight of the cost function might

be zeroed out, once the global goal is detected to be located within an O-space.

Passing speed Maintaining appropriate robot speeds when passing humans is also

of substantial importance in unfocused interactions (Sec. 2.3.3). The recent user study
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Algorithm 10 Computing the value of the r,Gcfunnfsi cost function for a trajectory rtrajn

generated for the robot r at time tn

1: function r,Gcfunfsi(
rtraj)

2: . Container with discomfort values of each F-formation throughout the planning horizon

3: Gfsi ← ∅
4: . Retrieve predicted F-formation trajectories with supplementary data (thus˜accent)

5:
G
t̃raj ← getPredTrajs(G)

6: for each
g
t̃raj ∈

G
t̃raj do . Iterate over predicted F-formation trajectories

7: for sim← n to n+ qhor do . Iterate over IDs of planning horizon timestamps

8: . Retrieve poses (with a covariance) and F-formation data at a given step

9: gpsim, gΣsim
p , gdsim

x , gdsim
y ← unpack(

g
t̃raj, sim)

10: rpsim ← unpack(rtraj, sim)

11: . Calculate the value of the indicator

12: g,rfsisim ← discomfortFsi(gpsim, gΣsim
p , gdsim

x , gdsim
y , rpsim)

13: . Calculate the value of the normalisation factor

14: g,rfsisimnrm ← normalisationFsi(gpsim, rpsim)

15: append
(
Gfsi,

g,rfsisim
g,rfsisimnrm

)
. Extend the list with normalised discomfort values

16: end for

17: end for

18: return max(Gfsi) . Return the maximum discomfort value

19: end function
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presented in [72] examines the effect of robot speed on comfortable human passing dis-

tances. Their discrete findings were approximated17 with a bicubic spline with fourth-order

continuity along both the speed and distance dimensions (Fig. 5.17)18 and added (as mpsd)

to the set of metrics19 evaluated by SRPB .

The normalised value of the metric evaluating human discomfort induced by the ro-

bot’s passing speed and distance is used in the r,Hcfunnpsd spatiotemporal cost function to

penalise the robot for not adhering to the least obtrusive passing speeds. The employed

approach is described in Alg. 11.

Algorithm 11 Computing the value of the r,Hcfunnpsd cost function for a trajectory rtrajn

generated for the robot r at time tn

1: function r,Hcfunpsd(rtraj)

2: . Container with discomfort values of each human throughout the planning horizon

3: Hpsd ← ∅
4: . Retrieve predicted human trajectories

5: Htraj ← getPredTrajs(H)

6: for each htraj ∈ Htraj do . Iterate over predicted human trajectories

7: for sim← n to n+ qhor do . Iterate over IDs of planning horizon timestamps

8: . Retrieve poses and a velocity at a given step

9: hpsim ← unpack(htraj, sim)

10: rpsim, rvsim ← unpack(rtraj, sim)

11: . Calculate the value of the indicator

12: h,rpsisim ← discomfortPsd(hpsim, rpsim, rvsim)

13: . Calculate the value of the normalisation factor

14: h,rpsisimnrm ← normalisationPsd(hpsim, rpsim, rdcr,
r

maxvlin)

15: append
(
Hpsd,

h,rpsisim
h,rpsisimnrm

)
. Extend the list with normalised discomfort values

16: end for

17: end for

18: return max(Hpsd) . Return the maximum discomfort value

19: end function

17https://github.com/rayvburn/social_nav_utils
18The Matlab’s cubic spline interpolation method was used: https://www.mathworks.com/help/

curvefit/csapi.html
19Since the initial release, the software package with SRPB has been developed in terms of metrics

supported and user tools.
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Figure 5.17: A visualisation of the function approximating human discomfort based on

the robot’s speed and the distance between the robot and a human.

5.8 Summary

In this chapter, HUMAP – the system that solves the problem of receding horizon tra-

jectory planning for holonomic and differential drive robots operating in unstructured

environments has been presented. The HUMAP is a geometric planner, whose objective

function regards navigation requirements from both classical and human-aware perspect-

ives.

Although the functioning of the HUMAP ’s trajectory planning scheme involves mul-

tiple behaviours orchestrated with the FSM , the typical operational behaviour, designated

for unfocused human-robot interactions, employs a hybrid approach of generating kino-

dynamically feasible trajectory candidates and scoring them with spatiotemporal cost

functions evaluating the robot performance, robot motion naturalness and human dis-

comfort.

The first trajectory generation method relies on the SFM -based pedestrian motion

model [1], which allows for incorporating realistic collision avoidance, as its parameter

values were calibrated on the basis of real-world data. The employed baseline model’s

formulation was extended with the Fuzzy Inference System (FIS ) component that em-

phasises anticipative collision-avoidance actions while reproducing customary pedestrian

motion rule of passing on the right (Req. 2.4.4). Since the employed pedestrian motion

model is formulated deterministically, multiple trajectory candidates are produced from

the model by supplying it with various parameter sets. The spread of each parameter
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value is determined based on their uncertainties assessed during the calibration process

[25].

The second trajectory generation approach is well-established and samples the set

of feasible velocities to produce uniformly curved trajectories [22]. While the velocity

sampling generator covers a discretised space of admissible controls, the model-based

generator creates concentrated trajectories that avoid collisions and follow the local goal

located along the global path. The procedure of producing model-based trajectories as well

as candidates generated with the velocity sampling method is explained using pseudocodes

(Alg. 4 and 5).

In the HUMAP ’s planning scheme, all trajectory candidates obtained from two gen-

erators are quantitatively assessed. The cost functions employed for the evaluation of

trajectories regard various aspects of robot navigation – from task execution perform-

ance, through the robot’s motion naturalness, to the humans’ physical and perceived

safety. Scoring of the human awareness of the robot trajectories is performed using study-

based indicators of human discomfort relevant for social robot navigation discussed in

Chapter 4.

The planner is context-aware and numerous predicates are used to orchestrate the

multi-behaviour operation of its Finite State Machine. In each calculation step, the ana-

lysis of the environment state is performed to compute the predicate values, that directly

influence the state in which the planner operates. An example of environmental context

awareness is adjusting the robot’s behaviour once a human is expected to cross the ro-

bot’s planned path. Another case is detecting the inability to plan the global path, which

might be caused by the sudden free space occlusion as well as an outdated environment

model. In such a situation, the HUMAP undertakes special actions to obtain updated

observations of the robot’s surroundings. Additionally, due to the planner’s awareness

of interpersonal contexts, the weight of the cost function penalising the intrusions into

O-spaces of F-formations is dynamically changed once the global goal is detected to be

placed within the bounds of an O-space.

The proposed planner fulfils numerous requirements from the taxonomy discussed in

Sec. 2.1. The navigation performance necessities are explicitly included in the problem

formulation (5.6), including collision avoidance (Req. 1.1), generating feasible trajector-

ies (considering kinodynamic constraints, Req. 1.2), and capability to reach goal poses

(Req. 1.3). Additionally, the objective function takes into account requirements related

to the social perspective of navigation, e.g., the physical safety of humans (Req. 2.1 real-

ised by the TTC cost function), and perceived safety of humans, which include: avoid-

ing personal space intrusions (Req. 2.2.1), avoiding crossing O-spaces of F-formations

(Req. 2.2.2), modulating speed when passing humans (Req. 2.2.3), and the avoidance
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of heading straight into humans (Req. 2.2.4, motion legibility). Moreover, the robot’s

motion naturalness concepts included in the objective function are the smoothness of the

robot’s velocity profile (Req. 2.3.1.1) and the avoidance of oscillating (Req. 2.3.1.2)

and backward (Req. 2.3.1.4) motions. Notably, a social convention is also implemented

on the behavioural level of the planner (orchestrated by the FSM ), namely, yielding a way

to a human is performed once an individual crosses the robot’s path (Req. 2.4.5). To the

best of our knowledge, the HUMAP planner covers social robot navigation requirements

the most extensively amid the state-of-the-art frameworks.

The collision-free motions of the HUMAP are guaranteed by the r,Ecfuntrav cost func-

tion, as it rejects candidate trajectories leading to the collisions according to the dense

environment model. This property applies to the operation in static environments even if

only partial observability of an environment is provided, but requires the full observability

of the environment in the local context. The algorithm can generate collision-free motions

as long as it is aware of all obstacles in its proximity; therefore, possessing an accurate en-

vironment model is crucial. Although there are no guarantees regarding the completeness

of the algorithm, as it uses gradient-based cost functions for scoring movements towards

the global goal (Sec. 5.7.1 and Fig. 5.16), the planner obtained the highest robustness

rates in diverse test scenarios described in Sec. 7.4.
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Chapter 6

Implementation

The implementation of a robot control system is crucial for the preparation of this thesis,

as it enables the execution of experiments and the evaluation of the effectiveness of various

motion planning algorithms. The goal was to create a flexible and modular system to eas-

ily exchange system components for testing different methods and effectively comparing

their results. Since the comparison of various strategies was meant to be conducted in both

simulated and real-world environments, additional constraints were taken into considera-

tion when designing the system. This chapter focuses on describing the implementation

of the robot control system, which served as the platform for experiments.

6.1 System structure

The implementation concepts primarily regard the structure of the system, as the beha-

vioural aspects are related to a specific planner configuration selected for the operation,

which is instantiated during the system startup. The only task that the described system

must be capable of is navigation, but it can be extended to accomplish complex tasks

relying on navigation.

The basic organisation of the system structure is presented in Fig. 6.1, which illustrates

components arranged into three main groups: Robot Hardware Platform, Perception, and

Motion Planning .

Robot Hardware Platform The Robot Hardware Platform group is related to the

direct management of robot onboard resources that observe the robot’s state and the

environment, and act on it. Namely, the Mobile Base Controller concerns the low-level

motion control that is executed by the robot hardware controllers (usually PID). In con-

trast, Sensor Drivers perform communication with the robot sensors to obtain the most

recent readings, convert them into a unified format for a certain sensor type, and send the
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Figure 6.1: General block diagram of the robot control system. Inputs to the system

are marked with colour, whereas communication channels between functional blocks are

indicated with dashed lines.

prepared messages to the rest of the system. The produced exteroreceptors data (readings

from sensors observing the environment [31]) is specific to a robot and in the implemen-

ted system consists of the LiDAR and RGB-D camera data. In contrast, the odometry

data constitutes the result of a dead reckoning procedure according to the proprioceptors

(sensors assessing the robot’s state without observing the environment).

Perception Another organisational group of the system is Perception, which aggreg-

ates Robot State Estimator , Sparse Environment Model Creator , and Dense Environment

Model Creator . Specifically, the Robot State Estimator is related to the global and local

pose estimation – performs data fusion for obtaining accurate localisation estimates fre-

quently. Separate coordinate systems (local and global) were distinguished for localisation

(and also motion planning) according to [255]. Typically, the origin of the global coordin-

ate system is set to the centre of the static map of the environment, whereas the origin

of the local coordinate system is located at the pose of the robot at the control system’s

startup. Therefore, the system input, Initial Pose Estimate, defines the accurate homo-

genous transformation between the origins of the local and global coordinate systems,
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which facilitates reliable operation from the beginning of the scenario execution.

Another functional block within the Perception group is the Sparse Environment Model

Creator , which uses exteroreceptors data to extract features from the robot environment

in order to prepare a sparse environment representation. In the described system, the

sparse environment model contains, e.g., human and F-formation data; hence, this block

involves human detection and tracking modules (Sec. 6.7). The internal block diagram

that is applicable for operation with most investigated trajectory planners (Sec. 6.4) is

schematically presented in Fig. 6.2, while its modified representation, shown in Fig. 6.3,

is used by TEB -based trajectory planners and HUMAP . Namely, the extended version

contains the Costmap Converter , which processes a local costmap1 to obtain environment

obstacles in a segmented form, i.e., sparse representation of robot obstacles identified as

geometric primitives. The data aggregated by the sparse environment model is shown in

the output ports in Fig. 6.2 and 6.3. Moreover, the robot state is used by the Human

Detection and Tracking as a reference (e.g., pose) when calculating the humans and F-

formations information.

humans data

F-formations data

Human detection
and tracking

exteroreceptors
data

robot state

sparse
environment

model

Figure 6.2: Schematic representation of the internal block diagram of the Sparse Envir-

onment Model Creator applicable for most trajectory planners.

The last functional block from the Perception group is Dense Environment Model

Creator , which aims to create metric maps of the environment. Firstly, the Static Map of

the environment, which serves as a system input, is used to create a global environment

representation (in the form of an occupancy grid), and real-time exteroreceptors data are

used to mark obstacles in a resultant occupancy grid (new obstacles might be added,

but obstacles from the Static Map cannot be cleared). Similarly, the exteroreceptors data

is also used to update a local occupancy grid, which is developed only from the sensor

observations (without the Static Map). The occupancy grids are then transformed into

costmaps, which might also include information encoded in the sparse environment model

1 The general block diagram (Fig. 6.1) does not contain a communication channel between the Dense

Environment Model Creator and Sparse Environment Model Creator , while in the Fig. 6.3 a port expecting

a local costmap (generated by the Dense Environment Model Creator) appears. This is intentionally

presented in this manner to enhance the clarity of the main diagram.
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Figure 6.3: Schematic representation of the internal block diagram of the Sparse Envir-

onment Model Creator applicable for TEB -based and HUMAP trajectory planners.

(explained in detail in Sec. 6.3). For brevity, it is assumed that both the global costmap

and local costmap contain the robot’s state in the form of a current pose (expressed in

the coordinate system relevant to the planner) and the velocity expressed in the mobile

base frame.

Motion Planning The third group included in the system structure is Motion Plan-

ning , which utilises environment models developed by the Perception modules to plan

a robot action in the form of a velocity command . The group consists of the Global Path

Planner and Local Trajectory Planner . The Global Path Planner computes a global path

according to the current robot state and the Navigation Goal , which is the system input

represented by a pose. The calculated global path is passed to the Local Trajectory Plan-

ner , which solves the problem of receding horizon trajectory planning – computes the

entire trajectory for a given horizon, but only the first velocity command is applied.

For brevity, it is assumed that traditional local trajectory planners do not make use of

the communication channel providing sparse environment model , which contains humans

data and F-formations data.

Adapter components The system was designed with a focus on compatibility with

various motion planning algorithms, leading to a structure that includes additional ele-

ments utilised only in specific launch configurations (with certain trajectory planners).

These variations in the system’s structure are primarily driven by the utilisation of

learning-based algorithms, which are usually implemented using dedicated libraries and

frameworks; hence, their usage with typical robotic frameworks requires the development

of additional interfaces.

Notably, some planners that have been integrated with the system (Sec. 6.4) require

specialised representation of data; hence, adapter components need to be implemented.
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However, those were not shown in the schematic block diagram (Fig. 6.1), as they often

rely on converting, e.g., a LiDAR scan to the form that has smaller resolution compared to

the robot’s sensor (employed with the RG’s DRL trajectory planner), or merging Point

Clouds representing obstacles detected by LiDAR and RGB-D camera. All additional

system components developed according to the adapter design pattern are published as

open-source software.

6.2 System implementation tools

The implementation of the proposed system exploits the Robot Operating System (ROS )

– version 1 [180]2, which is the most popular robotic framework nowadays. ROS , being

a framework, provides a collection of libraries and development tools for building robotic

systems, as well as ready-to-use algorithms in a modular form. ROS facilitates integrating

robotic systems, as it offers a distributed computing environment, allowing nodes (basic

organisational entities of ROS systems) to communicate with each other over a network.

Furthermore, the integrated visualisation tool, Rviz aids in testing and debugging complex

systems by providing an interactive 3D environment representing the robot’s perception.

ROS contributed to the extensive usage of component-based systems in robotics, since

its modular architecture enables the seamless integration of sensors or algorithms and

using different implementations interchangeably. Additionally, ROS advocates community

collaboration due to its open-source nature.

In the implemented system, each functional block presented (Fig. 6.1) is realised by

one or multiple ROS nodes. Moreover, the development of the navigation system for the

experiments described in Chapter 7 led to the implementation of numerous open-source

packages for ROS that are utilised by the robot launch system.

The ROS is closely integrated with numerous high-fidelity simulators (Sec. 3.3.3), but

the Gazebo (Classic version) was selected as the main simulation platform for testing

and experiments. The main reason is that the manufacturer of the robot, which has been

extensively used during experiments, integrated a well-developed simulation model with

Gazebo. The flexible architecture of the selected simulator also allowed for integrating

the human behaviour control framework (discussed in Sec. 6.8), which facilitated the

conducting of simulation experiments.

The paramount feature of ROS is the launch tool that allows automating the system

instantiation (“bringup”) with different configurations of parameters or algorithms used.

2ROS1 was selected instead of ROS2 since the target robot for experiments has factory-installed

ROS1 Melodic. Hence, the usage of ROS2 would require a significant amount of additional integration

work when porting the system from simulation to real hardware.
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Its nesting characteristic (ability to include other launch files in the main launch file)

has been widely used for developing our system, which is intended to be started in various

configurations.

6.3 Navigation ecosystem

The control system developed for the studies integrates the ROS1 navigation system,

whose structure consists of a global and a local [147, 12, 170] planners. In ROS , the nav-

igation system is implemented as a monolithic structure with the orchestrating move base

node that aggregates configurable planners. The reference system was designed with the

idea of modularity; hence, allows developing customised planning components and load-

ing them as plugins in the system runtime. The usage of ROS navigation facilitated the

implementation of our system, whose primary goal is the ability to be launched in vari-

ous configurations, i.e., with different global path planners, local trajectory planners, or

costmap layers.

Namely, the navigation system integrates path and trajectory planners with multilayer

global and local costmaps [170] that take into account real-time obstacle detection, and ro-

bot size (gradient cost around obstacles). Human proxemics, modelled as spatial costs [47],

can also be embedded in costmaps. Additionally, the global costmap includes a prepre-

pared static map of the environment [147].

In all experiments with the explained setup (Sec. 7), the wavefront Dijkstra’s al-

gorithm3 has been used as the robot’s global path planner (operating at 2 Hz). Only

trajectory planners were swapped, utilising public ROS -interfaced implementations of

the examined algorithms. Moreover, in all experimental scenarios, the robot operated

with the same preprepared map.4 Nevertheless, environment obstacles were detected in

real-time by the robot sensors and added to the costmaps (of global and local planners),

making the robot resistant to the changes not captured in the map. For the global pose

estimation, the AMCL5 [417] algorithm was used.

The move base node detects in real-time whether the global path planner and local

trajectory planner find solutions to the problem at the current state of the robot in the

environment. To increase the robustness of the navigation ecosystem, the orchestrator

investigates whether the timeouts for finding the solutions have been exceeded. Namely,

once the timeout expires, the space-clearing operations on costmaps are performed, so

3https://wiki.ros.org/navfn
4 The layout of the laboratory equipment had changed between the first (Sec. 7.3) and the second

phase of the experiments (Sec. 7.4); therefore, the static map had to be adjusted. The same map was

used in the corresponding real-world and simulation scenarios.
5https://wiki.ros.org/amcl
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any persisting outdated environment observations do not influence the planning process.

If a valid solution is not found during the next planning iteration, the navigation task

is aborted. The same scheme applies to both global path planner and local trajectory

planner, but their timeouts are different, namely – 0.5 s and 3.0 s, respectively. Addi-

tionally, an oscillation timeout is defined as 10 s; hence, if the robot does not perform

any significant progressive or rotational movements, the navigation task might also be

aborted.

6.4 Planners integration

The comprehensive conduction of comparative experiments of the proposed HUMAP

with the state-of-the-art trajectory planners requires integrating numerous approaches

with the robot control system. While the structure of the proposed system is planner-

dependent (Sec. 6.1), most ROS -based planners, acting as direct plugins for the ROS

navigation system, can operate without additional components such as adapters or con-

verters. However, learning-based planners usually need to be tailored for a specific robot,

e.g., when transferring the policy learned with a different one. Therefore, the system in-

stantiation procedure accounts for certain planner-specific adjustments that have to be

performed with some planner implementations to prepare them for integration with the

rest of the system.

Research algorithms are often adapted for a specific mobile base; therefore, their para-

meterisation is often required at the first stage to ensure valid operation with other ro-

bots. Those parameters are related to the kinematic or kinodynamic constraints of the

mobile base, but also to the interfaces with the remaining part of the system. Most of

the implementations of examined algorithms underwent minor changes regarding build

or execution issues, as some packages (or their dependencies) were incompatible with

the desired operating system or ROS distribution (ROS Melodic used). Nevertheless, no

functional changes were applied to the algorithms to degrade or enhance their navigation

performance.

The testbed system was integrated with several learning-based approaches. Such plan-

ners nominally operate outside of ROS , using popular frameworks such as Stable Baselines

(RG’s DRL and DRL-VO), TensorFlow (GA3C-CADRL), and specialised simulation en-

vironments like CrowdNav (SARL and SARL∗). Nevertheless, all planners selected for

integration with our system had ROS interfaces implemented.

The RL-based methods are claimed to be prone to the lack of generalisation to dif-

ferent environments [418]. Not all implementations of the RL planners were prepared by

the authors to be fine-tuned for adapting the algorithm to new environments. On the
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other hand, training algorithms from scratch is impractical and easily undermined by

factors such as insufficient training duration or training on inadequately fast hardware, as

the authors do not always explicitly declare the training time and setup. Therefore, the

overarching goal was to use policies provided by the algorithms’ designers to prevent the

influence of underfitting or overfitting of the algorithms. Due to the specificities of the

mobile bases on which the methods were trained, to use the original policies with another

robot, it was necessary, for example, to adjust sensor characteristics (e.g., resolution of the

LiDAR data), correct robot dimensions, or adapt kinematic constraints (all algorithms).

Additionally, for the planners using LiDAR data to describe the environment, the 2.5D

representation of the world was prepared, i.e., the scans from the robot’s LiDAR and

RGB-D camera were projected onto the base plane to provide a comprehensive under-

standing of nearby obstacles. However, the conducted experiments are easily reproducible

as the modified implementations are publicly available.6

The learning-based navigation approaches are usually developed using different librar-

ies and interfaced with ROS in isolation from the standard, plugin-based navigation frame-

work. Therefore, the external local planner7 trajectory planning plugin was developed

for easier interfacing with externally-operating approaches. The plugin is configurable in

terms of providing a local goal (located along the globally planned path) or enabling

the “in-place rotation” behaviour once the robot reaches the goal position. Delivering

local goals facilitates the navigation with planners, like SARL∗, that expect a periodic-

ally provided local goal, as they do not rely on the global path explicitly. Moreover, the

“in-place rotation” behaviour (preceded by the nominal behaviour of moving towards the

target) allows the robot to reach the goal pose operating with algorithms that only invest-

igate the goal position, disregarding the orientation, which applies to most learning-based

approaches. Therefore, this extension enables objectively comparing the overall navigation

performance of all algorithms integrated with the target robot.

6.5 Environment models used by trajectory planners

As human proxemics [47] can be modelled as soft, spatial constraints around detected in-

dividuals in costmaps, the specialised environment models have been prepared to be used

by all planners. Specifically, layered costmap architecture enables tracked humans to be

embedded as bivariate Gaussians into the costmaps representing the robot’s human-aware

6 The source code for the GA3C-CADRL planner is available at https://github.com/rayvburn/

cadrl_ros, for SARL and SARL∗ at https://github.com/rayvburn/sarl_star, for RG’s DRL

at https://github.com/rayvburn/drl_local_planner_ros_stable_baselines, and for DRL-VO at

https://github.com/rayvburn/drl_vo_nav.
7https://github.com/rayvburn/external_local_planner
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environment model used for planning [84].8 Additionally, the reference ROS implement-

ation package has been modified and extended.9 The substantial contribution is that the

expanded package accounts for the human tracking uncertainty and introduces a new

F-formation layer.

The consequence of utilising extended environment representation (with, e.g., spatial

costs reflecting proxemics) is that the global path planner and both classical and human-

aware local trajectory planners use the environment model that captures personal spaces

and O-spaces of F-formations embedded as spatial costs in the costmaps [71]. Such system

configuration enables effective evaluation of the trajectory planners’ isolating the actual

planning scheme from the underlying environment model.

However, among the evaluated navigation approaches, there are RL-based trajectory

planners that do not make a (full) use of costmap extensions. For example, RG’s DRL

does not employ either a map or global path planning, similar to GA3C-CADRL, which

uses a fully sparse environment model. In contrast, SARL and SARL∗ make use of the

global costmap extensions, but only SARL∗ relies on a globally planned path (implicitly,

as it expects poses of subsequent local goals). On the other hand, DRL-VO navigates

using a context-aware global path plan, but the policy calculation is supported by a mere

occupancy grid.

Notably, we aimed to use the same SRL-EBand planner configuration as originally

evaluated in [240]. Therefore, to avoid interfering with the integration of the global path

planner and SRL-EBand planner, this method operated with the different global costmap

configuration (proposed in the referenced work) compared to other trajectory planners.

6.6 Managing different system configurations

The proposed robot control system is prepared for being instantiated in different con-

figurations, which is achieved by the usage of the ROS launch tool and a proper file

organisation.

Simulation and real-world setup The robot control system has been prepared to

switch from the simulation environment to the real-world environment without any source

code modifications. The reason behind this decision is that the analogous scenarios for

experiments conducted for this thesis aimed to be performed in simulation and real-world

environments,

Therefore, the component-based system has been “virtually” divided into parts that

8https://wiki.ros.org/social_navigation_layers
9https://github.com/rayvburn/navigation_layers
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operate in unchanged form both in the simulation and in the real world, as well as into

simulation-specific and real-world-specific components. Naturally, the source code for the

ROS -based navigation launch system (tailored for the TIAGo robot but easily general-

isable to other platforms) has also been divided into parts. Namely, the common part

constituting the configuration and interfaces for motion planning and perception,10 and

domain-specific extensions: sim for starting the simulated environments with a virtual

robot11 and real for preparing and launching components on the real hardware12. Once

the sim and real parts of the control systems are properly integrated with the rest of the

system instantiated on the basis of the common part, the system does not require any

source code changes when launched in sim or real configuration.

Parameterisation of launched components The configuration of the system that

needs to be instantiated is dictated by the various arguments selected by the user (or

a script). Namely, the highest level arguments, e.g., which local planner (local planner)

and global planner (global planner) to use, or which costmap configuration should be

applied (costmap contexts), are specific to the evaluated case; hence, must be externally

provided to the main launch file. Those crucial arguments are further injected into the

nested parts of the main launch file, so the final structure of the instantiated system is

resolved in runtime (Fig. 6.4).

local_planner:=humap

<arg_name>:=<value>

...

Main
navigation system

launch file

Planning components
launch file

local_planner

<arg_name>

...

local_planner

File system

Planner-specific configuration parameter file

Planner-specific components "launch" file
User or script <arg_name>

algorithms/local_planner_humap.launch

config/humap/local_planner.yaml

load

load

Figure 6.4: Procedure of external argument injection into the hierarchical launch setup

using the HUMAP trajectory planner as example. Note that <arg name> represents any

argument and Navigation components launch file provides that all ROS nodes required

for a given navigation system setup are started.

The main launch file of the navigation system launches the perception and motion

planning components. As some software components might require special interfaces (ad-

10https://github.com/rayvburn/tiago_social_robot
11https://github.com/rayvburn/tiago_social_robot_sim
12https://github.com/rayvburn/tiago_social_robot_real
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ditional adapting components) and different parameters, performing some adjustments,

or even optional activities during the system instantiation must be available. Therefore,

the mechanism allowing such behaviour is that the planning-related launch file includes

another abstract launch file, with the name conforming to the local planner argument

value. Similarly, the planning components’ launch prepares the path to the trajectory

planner parameters file, filling up the predefined naming pattern with the local planner

argument value. For example: launching the system with local planner:=humap addi-

tionally runs a nested algorithms/local planner humap.launch, in which some activ-

ities of system components can be started on demand, and loads the trajectory planner

parameters that are located at config/humap/local planner.yaml. Provided the relev-

ant package files are systematically organised, the instantiation procedure will select the

required files and launch the system in the desired form.

The simple rule to adhere to is to structure the source code of the system, so both

the launch and trajectory planning parameter files are separated between individual al-

gorithms. Nonetheless, parameterisation of the local trajectory planner that is intended

to be started within the system is only an example, as similarly, costmap configurations

(enabled layers [170]), initial pose estimates in different scenarios, and other parameters

are organised in the source code according to a specific naming pattern. The appropriate

file selection is resolved at runtime, ensuring adaptability to the requirements of differ-

ent planners. The feature of launching additional interfacing components is also widely

used in learning-based planning approaches that require, e.g., sensor data conversion or

transforming human information to a different format. Default values of arguments are

provided to disallow starting a malfunctioning system.

Overall, the fundamental aspect of the system usage (and extension) is the adherence

to the file naming convention according to the expected argument names. The system

prepared according to these rules is easily extendable and can be integrated with more

algorithms for trajectory planning, global path planning, or human tracking.

6.7 Human detection and tracking

Detecting and tracking humans in the robot environment is one of the fundamental re-

quirements of a socially navigating robot. Namely, the SPENCER human perception

stack13 was employed in the proposed system as the Human Detection and Tracking func-

tional block. It provides information about human poses along with estimation uncer-

tainties represented by covariances of Gaussian distributions, as well as human velocities.

Moreover, human relations are also estimated, and on this basis, F-formation membership

13https://github.com/spencer-project/spencer_people_tracking
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data are assigned to each human.

The SPENCER human perception stack is capable of utilising multimodal sensor

data [149]. The usage of only LiDAR-based human detections was tested and the results

were often false positives. Therefore, detection modules were configured to primarily use

RGB-D vision data supported by LiDAR-based detections once the tracked human is

no longer visible to the camera. In all experiments, human tracking was performed by

the robot’s onboard sensors. Employing ground truth human poses in simulation was not

an option, since the results from simulation experiments were intended to be directly

compared with those from real-world tests (Sec. 7.2).

To facilitate the usage of the SPENCER detections with software packages relying on

ROS ’ standardised people msgs14 (applies to several integrated trajectory planning meth-

ods), the component aggregating current detections into the SPENCER-specific format

has been extended.15 Namely, for broader compatibility, the original messages are conver-

ted to the standardised ROS people msgs. Then, messages in such a form are processed

with the usage of libraries from the people msgs utils,16 package, as at the stage of

developing people msgs messages some additional information is encoded in a serialised

form.

6.8 Simulating human behaviour

Conducting social robotics experiments in simulation assists the development of robot

control systems considerably. For this purpose, the Gazebo simulation platform, which

is closely integrated with ROS , has been used throughout the development stage but

has also been employed for conducting experiments in virtual scenarios. Moreover, for

controlling humans in virtual scenarios the HuBeRo framework17 [377] has been used.

HuBeRo is a framework that simulates human behaviours typical for social robotics

research tasks by providing navigation skills and realistic animation management for simu-

lated human characters (actors). Additionally, given that the simulator provides a realistic

3D model of a person, the framework allows a more detailed examination of robot per-

ception in the simulation. HuBeRo proved to be helpful in conducting various virtual

tests.

The framework is simulator-agnostic, but the Gazebo interface has been developed.

Namely, the Gazebo’s Actor plugin18 is used as the provider of movable human postures.

14http://wiki.ros.org/people_msgs
15https://github.com/rayvburn/spencer_people_tracking
16https://github.com/rayvburn/people_msgs_utils
17https://github.com/rayvburn/hubero
18http://classic.gazebosim.org/tutorials?tut=actor
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However, due to the plugin’s implementation intricacies, the simulated actors are non-

collision but detectable by robot sensors.

In all virtual experiments, HuBeRo-controlled dynamic human agents used online mo-

tion planning modules employing the same path planner as the robot and the TEB tra-

jectory planner (due to the limited computational burden). The actors operated according

to the scenario-specific initial and goal poses via defined waypoints. Their activities are

explained in detail in Chapter 7.

6.9 HUMAP implementation

The proposed planning approach – HUMAP , is implemented in C++ programming lan-

guage as a direct plugin to the ROS1 navigation ecosystem. It is organised in the open-

source software package named humap local planner.19

Planner’s structure Internal structure of the HUMAP is shown in Fig. 6.5 that illus-

trates which parts of the HUMAP ’s planner implementation were developed from scratch,

which were modified, and which are directly inherited from the base local planner

package – an element of the ROS1 navigation ecosystem (Sec. 6.3). The activity of the

base local planner:: SimpleScoredSamplingPlanner class, which aggregates traject-

ory generators and cost functions, is described in Alg. 2.

In the HUMAP , the hybrid method for producing trajectory candidates is used. The

velocity sampling trajectory generator is used in an unchanged form implemented as the

base local planner::SimpleTrajectoryGenerator, whereas the model-based candid-

ates’ generator is dedicated to the HUMAP . Notably, the original trajectory selection

strategy implemented in the base local planner::SimpleScoredSamplingPlanner al-

lows the use of multiple trajectory generation methods, but once the primary generator

finds a valid trajectory, candidates from other generators are not considered. Therefore,

the customisation20 had to be implemented and relies on enabling the usage of multiple

generators in an unconditional sequence.

Furthermore, the set of cost functions regarded during the trajectory scoring scheme

has also undergone a substantial extension. Novel cost functions related mainly to the ro-

bot’s human awareness (Sec. 5.7) are applied for scoring trajectory candidates. Moreover,

several cost functions, mainly performance-related (Fig. 5.16), are directly inherited from

the original ROS resources also implemented in the base local planner package.

The enhancements of the ROS navigation ecosystem involve all cost functions assessing

19https://github.com/rayvburn/humap_local_planner
20https://github.com/ros-planning/navigation/pull/1201
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TrajectoryCostFunction

base_local_planner::
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Figure 6.5: A schematic structural representation of the implemented planning framework.

The elements added in the HUMAP are marked green, whereas white blocks indicate

parts inherited from the ROS1 navigation ecosystem. Customised modules are highlighted

yellow, and grey blocks identify type interfaces (ecosystem’s base classes).

the trajectory concerning the humans’ perceived safety, i.e., evaluating the robot’s head-

ing direction, Hcfundir, personal zones and F-formation’s O-spaces intrusions – Hcfunpsi

and Gcfunfsi, accordingly, and the discomfort induced to humans by the robot’s passing

speed – Hcfunpsd. Furthermore, dedicated cost functions evaluating the robot’s motion

naturalness are also implemented, particularly, cfunosc – penalising oscillating motions, as

well as cfunvsm and cfunhsm – penalising velocity changes, linear and angular, accordingly.

Complementary ROS cost function penalises backward motions of the robot, cfunbwd.

Additionally, the cost function assessing the physical safety of humans constitutes a novel

implementation of the Ecfunttc.

The dedicated trajectory generator along with cost functions are implemented using

the base class interfaces, which is crucial to utilise new modules with the original planning

scheme (implemented in the base local planner::SimpleScoredSamplingPlanner) em-

ploying the polymorphism principle of Object-Oriented Programming.

Planner’s behaviours While Fig. 6.5 shows the structural elements of the planning

framework, the high-level behavioural aspects of the trajectory planner are described in

Sec. 5.2.2 and constitute a dedicated implementation utilising finite state machines. The
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orchestration of the HUMAP ’s states is implemented in the PlannerState class.

Notably, the robot’s behaviour in the Execution Initialisation and Orientation Ad-

justment states relies on the slightly modified version of the base local planner::

LatchedStopRotateController – modified class has been directly incorporated into the

HUMAP planner’s package.

Parameters Various parameters regarding planning scheme and system configuration

were introduced in the HUMAP . However, embedding all those parameters in this thesis

is impractical;21 therefore, a snapshot of the public repository has been created22 to easily

reproduce the results of the experiments (Chapter 7).

Nonetheless, the crucial parameters influencing the HUMAP ’s operation are (in the

order of importance): the cost function weights (Sec. 5.7), number and values of pedes-

trian motion model’s multipliers (Sec. 5.5.7), and number of trajectories generated with

the method of sampling feasible robot velocities (Sec. 5.6). Identified parameters affect

the form of the scoring function and the solution space, whose influence is examined in

Sec. 7.5.1.

Furthermore, the fundamental parameters influencing the computational complexity

of the planner are the number of generated trajectories (all trajectories are scored in each

step; hence, the duration of the scoring stage is affected) and the planning/prediction

horizon (in the experiments, thor = 2 s). The reference parameters of the HUMAP have

been selected by experimentally achieving a compromise between the emphasised respect

to social aspects of robot navigation and the task performance, as well as computational

complexity.

Numerous parameters, that are less important or rarely changed, serve to enable or

disable the system modules (useful in the development stage) or are related to the configur-

ation of the planner’s visualisation (for debugging purposes). Additionally, most paramet-

ers are integrated with the ROS dynamic reconfigure tool that enables the capability

to change the parameters in a runtime.

SFM and FIS The trajectory generator that employs the pedestrian motion model

formulated as Fuzzy-Extended Social Force Model utilises implementations of the Social

21The HUMAP exposes approximately a total of 130 parameters to the user (as a comparison – TEB

approximately 160).
22 In the source code (the URL is placed in footmark 19), the dynamically adjustable para-

meters are available in the cfg/HumapPlanner.cfg file, whereas complementary parameters (mainly

a robot’s kinodynamic specification) loaded statically at the system startup, are placed in the

src/humap config ros.cpp. Relevant documentation regarding planner parameters is prepared in the

repository’s information file.
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Force Model and Fuzzy Inference System. The underlying SFM is implemented as a dedic-

ated C++ library, whereas the FIS part is designed using the fuzzylite C++ library [419]

(version 6.0). Both SFM and FIS are aggregated in the same software package along with

the rest of the source code.

6.10 SRPB implementation

The proposed Social Robot Planner Benchmark (Chapter 4) has been widely used for

conducting the quantitative evaluation of robot performance while executing navigation

tasks for the experiments discussed in this thesis (Chapter 7). The benchmark has been

published as open-source software.

The SRPB ’s operational procedure consists of two main stages – online and offline.

During the online stage (Fig. 6.6), the logging modules are instantiated and periodic-

ally update the text files stored in the filesystem. Specifically, in the ROS1 implement-

ation, the logging components are aggregated into the modified move base node, i.e.,

srpb move base,23 which acts as the original navigation orchestrator but also collects

data for further evaluation. The data sampling is performed at the frequency of the local

planning scheme to avoid (possibly) inaccurate interpolation of data (if the logging would

be performed at the rate of the system’s module operating with the highest frequency).

robot data
file

humans
data file

F-formations
data file

velocity command

pose with covariance

velocity with covariance

goal pose

trajectory
planning

frequency

trajectory computation time

human
and F-formations

data

costmap

dist. to the closest obstacle

Figure 6.6: Schematic presentation of the SRPB ’s logging scheme.

In Fig. 6.6, the Obstacle Distance Calculator uses bicubic interpolation to calculate the

closest distance between the robot and any obstacle. The calculations are performed using

23https://github.com/rayvburn/srpb_move_base
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costmap, which aggregates sensor observations gathered throughout the scenario progres-

sion. The implementation of this module is inherited from the MRPB benchmark [33].

In contrast, during the offline stage, the standalone programs process the content of

the files updated during the previous stage and compute the metrics. A typical workflow

for obtaining data with the SRPB benchmark from large-scale experiments conducted for

this thesis is presented in Fig. 6.7. The figure shows that 100 trials need to be repeated

in 3 scenarios with a certain system configuration, i.e., with a specific local trajectory

planning method. As stated, data logging is performed during the online stage of the

SRPB ’s operation. Then, metric results are computed based on each collected set of

logging artefacts (output files in Fig. 6.6). After that, using the provided SRPB tooling,

the metric results are loaded in a batch and inserted into a new spreadsheet file that

contains both raw metric values as well as filtered ones (medians). The spreadsheet files

are generated to facilitate the diagnostics of the results, as the collected dataset might be

significant. Usually, the metric batch loading is performed on results related to numerous

trajectory planning algorithms.

log robot
and human data

for scenario N, trial 1

log robot
and human data

for scenario N, trial 100
...

log robot
and human data

for scenario M, trial 1
...

log robot
and human data

for scenario P, trial 1
...

Launch experiment trial

SRPB
online
stage

SRPB
offline
stage

SRPB
tooling

calculate metric
values

calculate metric
values

calculate metric
values

calculate metric
values

collect raw and calculate filtered metric values
and insert them into a spreadsheet

collect raw and
calculate filtered metric
values and insert them

into a spreadsheet

visualise robot,
human and F-

formation
trajectories (T)

create violin
plots from raw

values (V)

create bar
plots from

filtered values
(B)

(T)(V) (B) (T)(V) (B)

collect raw and
calculate filtered metric
values and insert them

into a spreadsheet

Figure 6.7: A typical workflow of the SRPB benchmark usage.

After collecting data in the spreadsheets, results can be used for visualisation pur-

poses. Specifically, the tooling of the srpb evaluation software package supplies the user

with scripts for creating violin plots, bar plots, or visualising trajectories executed by

a robot, humans or F-formations during experiments. Additionally, LATEX tables can also

be generated using the provided script. All those data representations except trajectory
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visualisation are created on the basis of the spreadsheets’ contents. Typically, separate

spreadsheets are created with data related to different scenarios.
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Chapter 7

Experiments

This thesis proposes study-based metrics for the quantitative evaluation of human-aware

motion planning algorithms, as well as the novel approach for the socially-aware trajectory

planning method. Therefore, numerous experiments have been conducted to assess the

performance of the state-of-the-art approaches focused on traditional navigation against

the methods that are focused on human awareness concepts.

This chapter is divided into two major parts. The first part of the experiments aimed to

determine, whether motion planning for human-aware navigation is still an open problem.

It can be assessed by exploring if state-of-the-art human-aware local trajectory planners

significantly outperform classical algorithms in terms of social metrics (Sec. 7.3). On the

other hand, the second phase of the experiments relies on the multi-scenario comparison of

the performance and social appropriateness of the proposed trajectory planning method –

HUMAP , against various methods – classical and specialised for social robot navigation,

including learning-based approaches (Sec. 7.4).

In both parts of the experiments, the same assessment methodology was implemented

– the controlled studies were designed and conducted to isolate the factors that might

influence the results. The second common aspect of both parts of the conducted experi-

ments is the quantitative evaluation approach, relying on the metrics implemented in the

SRPB . The application of the same method ensures a systematic and independent com-

parison, which is paramount when inspecting state-of-the-art methods against the novel

algorithm. Nevertheless, each phase of the experiments differs in terms of the scenarios

selected for the study.

The metrics embedded into the proposed SRPB benchmark approximate the human

impressions directly on the basis of the examinations published in the literature. Namely,

the proposed metrics implement continuous models that serve as indicators of human

discomfort, conforming to the multiple social robot navigation requirements developed

based on the extensive literature review (Chapter 2). In particular, the metrics assessing
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Parameter r
minvlin

r
maxvlin

r
minω

r
maxω

Value -0.1 m
s 0.5 m

s -1.05 rad
s 1.05 rad

s

Parameter r
minalin

r
maxalin

r
minα

r
maxα

Value -1.0 m
s2 1.0 m

s2 -1.05 rad
s2 1.05 rad

s2

Table 7.1: Trajectory planners’ parameters that were constant throughout the experi-

ments.

the robot’s motion naturalness (Sec. 2.4) and the impact of the robot’s trajectory on

the perceived safety of humans (Sec. 2.3) are the main indicators in the evaluation of

the social acceptance of a certain algorithm. Taking into account the above premises,

primarily that the SRPB metrics were designed based on results from different studies,

we did not attempt to revalidate the human impressions of interacting with the robot, as

it has already been a broad topic of numerous user studies and surveys, which we take

advantage of.

The majority of results from the first phase of the experiments (Sec. 7.3) have been

included in our previous works [20, 21], while elements of the second phase of the experi-

ments (Sec. 7.4) have been encompassed in the conference paper [24].

7.1 Hardware setup

Real-world experiments were conducted with PAL’s TIAGo Iron robot, and simulation

results were obtained with the robot’s digital twin provided by PAL. Although the robotic

platform is under constant development by the laboratory team,1 during the experiments

only its factory equipment has been used. The main sensors of the robot are: a Sick TIM571

LiDAR (0.05 – 25 m scan range, 180◦ field of view, 0.33◦ step angle) and an Orbbec Astra

RGB-D camera (depth stream with a resolution of 640 x 480 pixels and a 0.6 – 8 m depth

sensor range). Parameters related to kinematic and dynamic constraints of the mobile

base, shown in Tab. 7.1, were common for all examined trajectory planners.

The factory control interface of the mobile base is implemented with ROS and follows

the standards, expecting velocity commands to be sent at least each 500 ms. Once the

new command is not obtained in time, the safety layer of the robot control system stops

the mobile base until the new velocity command is received. Therefore, only trajectory

planners capable of real-time operation were suitable for real-world tests.

Since the target robot has factory-installed ROS Melodic, we performed simulated

trials with the same framework version. We have chosen Gazebo (version 9) as the simu-

1https://www.robotyka.ia.pw.edu.pl/

172

https://www.robotyka.ia.pw.edu.pl/


lation platform due to its integration with ROS . Simulation experiments were performed

on a laptop with an Intel Core i7-4720HQ CPU and 16 GB RAM.

In our experiments, social metrics were computed based on data gathered by the

robot’s onboard sensors during the run to a goal pose. That approach is appropriate

for rapid prototyping and often sufficient to obtain representative results; however, still

prone to poor performance of the limited-range robot sensors, e.g., RGB-D cameras.

Thus, integrating a robot with an external, e.g., vision-based system, can increase the

evaluation robustness, decreasing metric deviations between subsequent trials. We argue

that external systems for human tracking can be used for benchmarking once the robot

control system is integrated with them. Otherwise, planners may be penalised for actions

disregarding surrounding humans that the planners are unaware of. Nevertheless, both

the SRPB benchmark, as well as HUMAP trajectory planner, can be interfaced with any

source of aggregated information about humans surrounding the robot.

7.2 Experiments design methodology

The experiments described in this thesis aim to inspect the state-of-the-art social robot

navigation methods and compare them in different scenarios. The previous approaches

are evaluated against the novel HUMAP planner; hence, selecting a proper experiment

design methodology and applying it systematically ensures that results are accurate and

unbiased, and allows viable comparisons of outcomes obtained in different scenarios.

The experiments described in this chapter were conducted as controlled studies. This

type of assessment has been selected to isolate the factors that might appear during the

experiments and might influence the results. Specifically, in human-aware robot navigation

experiments, the crucial factor is the unintended presence of humans (or other dynamic

agents) who were not supposed to participate in scenarios. Detecting them by the robot

causes unintentional modification of its environment model. While it is straightforward

and easy to achieve in the simulation experiments, it might not always be feasible in

real-world trials. Therefore, the experiments were conducted during off-peak hours and

on weekends.

This chapter discusses the experiments performed in two phases, each differs in terms

of the scenarios selected for the study. In contrast, a common aspect of both parts of

the conducted experiments (after the applied methodology) is the quantitative evaluation

approach, relying on the metrics implemented in the SRPB which were computed based

on data gathered during the real-world and simulation trials. The SRPB ’s parameters

used for the evaluation were static and are shown in Tab. 7.2.

Although several tests were conducted to verify the HUMAP ’s performance across
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Parameter r,Odmin
r
xvosc

r
yvosc

r
linvosc

Value 0.55 m 0.025 m
s 0.025 m

s 0.025 m
s

Parameter rωosc ϕfov docp dcr

Value 0.05 rad
s 3.3 rad 0.28 m 0.275 m

Table 7.2: Configurable parameters of metrics that were used in the experiments.

its various configurations and scenarios (Sec. 7.5), the majority of results were obtained

from extensive comparisons of different local trajectory planners operating under the same

environmental conditions but in various scenarios. The goal was to design scenarios that

enabled the robot to reach a goal pose operating with each examined trajectory planner,

navigating collision-free from the shared start pose. Thus, we started with evaluating

the capabilities of various planners integrated into the robot’s control strategy while the

robot operated in partially unknown,2 static or dynamic environments. While selecting

the scenario configuration admissible for all trajectory planners was possible during the

first phase of the experiments (Sec. 7.3), it was not viable in the second phase (Sec. 7.4), in

which more planners were tested. This topic is detailed in relevant sections of the chapter.

The test environment for the real-world experiments was a robotics laboratory at

Warsaw University of Technology (Fig. 7.3b, 7.4b, 7.7b, 7.8b, and 7.9b) and it was only

minimally prepared for the study, remaining cluttered, which poses an additional chal-

lenge for the navigating robot. One of the main goals was to compare real results with

outcomes obtained from the simulation; therefore, analogous scenarios have been per-

formed in a virtual equivalent of the environment.3

During the comparative experiments, the environment configuration in the following

trials had to be replicated to evaluate different trajectory planners under the same con-

ditions (fundamental principle of a controlled study). In real-world tests, ensuring that

human participants move similarly in each trial is a challenging task, particularly in dy-

namic scenarios. Hence, to maximise the path similarity, the entire paths (not only the

starting and ending points) of dynamic actors were indicated with a tape glued to the

floor. Additionally, for trajectory similarity, paths were equipped with subsequent pose

markers (Fig. 7.4b, 7.7b, 7.8b, 7.9b) and the participants were asked to finish each step

with a tick of a metronome that was programmed to 60 beats per minute.

Conducting experiments with simulated humans poses another substantial challenge.

The behaviour of virtual dynamic agents, namely their movements, can be scripted or

2“Partially unknown” in this context means that despite the provided map of the environment, some

differences in the operating area might be present, but those were common to all investigated planners.
3https://github.com/rayvburn/tiago_sim_integration
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based on planning. Scripting human trajectories provides that they will behave exactly

the same in each simulation trial. However, experiments rely on testing different trajectory

planning methods, that directly affect where the robot is located in subsequent time

steps. Therefore, when the scripted movements method is applied, virtual humans will

not interact in the same way with a planner that needs 30 seconds to reach the goal, as

the planner that requires 60 seconds. Hence, as stated in Sec. 6.8, virtual dynamic agents

utilise motion planning modules for online replanning, As a consequence, the simulated

humans might not necessarily exactly reproduce their trajectories in subsequent trials, but

rather naturally interact with the environment in an unfocused manner. Human operation

in all scenarios is defined by fixed waypoints in key places (near corners or walls) and such

an approach is still suitable for the controlled studies.

A fundamental necessity of conducting social robot navigation experiments is providing

the robot’s capability to detect humans. As denoted in Sec. 6.7, the robot’s raw sensor

data are used to detect and track people in the environment. This is contrary to a more

common approach of using the perfect data about humans, e.g., [168, 156], that is provided

by a simulator; however, using the same perception methods in the simulation and in the

real-world experiments (where ground truth data are not available) is crucial to allow

direct comparisons of the results obtained in different domains (simulation and real world).

While for real-world experiments only the most reliable planners were designated, the

simulation tests were conducted using various trajectory planning methods that performed

differently in the designed scenarios. A practical assumption of the experiments’ conduc-

tion is that a timeout value of 120 s has been set for the execution of each simulated trial.

Nonetheless, most of the planners that consequently completed the navigation task were

able to finish designed runs within 60 s.

7.3 Evaluation of the state-of-the-art trajectory plan-

ners

The experiments described in this section intend to determine whether state-of-the-art

human-aware trajectory planners perform superior to traditional ones regarding the mit-

igation of discomfort among humans in the robot’s environment. To gather insights on

this topic, different robot navigation methods were validated utilising the proposed SRPB

benchmark (Sec. 4.1) for the quantitative evaluation. The assessment criteria of robot op-

eration involve the metrics regarding the robot’s motion naturalness and the perceived

safety of humans that are influenced by the movements of the robot. Additionally, the

overall robot navigation performance was examined and the qualitative assessment of each

planner’s characteristics has been outlined.
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7.3.1 Scenarios description

We conducted experiments in which humans participate as static or dynamic elements of

the robot environment; therefore, tests are identified as static in a simulation (Fig. 7.3a),

static in the real world (Fig. 7.3b), dynamic in a simulation (Fig. 7.4a), and dynamic in

the real world (Fig. 7.4b). These scenarios are later referred to as 1-S , 1-R, 2-S , and 2-R,

accordingly.

In the static scenario (Fig. 7.3), an F-formation of two humans stays near the robot’s

goal. Reaching the goal by the robot requires passing the humans, so when approaching the

final pose, the robot is foreseen not to distract the humans involved in a focused interaction

and take an outside path. Instead, in the dynamic scenario (Fig. 7.4), the robot moving

to the goal pose along a narrow corridor encounters a moving human followed by another

moving human, both going opposite to the robot.

The sequence diagrams illustrating the scenario progression are shown in Fig. 7.1

and 7.2 for static and dynamic scenarios, accordingly. The diagrams describe the task

interaction between the robot and humans, which applies to both simulation and real-

world experiments.

User/Script Robot Actor1 Actor2

User/Script Robot Actor1 Actor2

Navigat ion
Goal

Proceed
Navigat ion
Task

loop [ unt il t he  sce na r io
e xe cut ion  f in ishe s]

Localisat ion
Data
Localisat ion
Data

Figure 7.1: The sequence diagram of the robot and humans’ activity during the static

scenario. Humans are stationary in this scenario.

In both scenarios, the robot interacts with humans in an unfocused way; therefore, the

robot is expected to avoid collisions and maximise the perceived safety of humans.4 Each

evaluated trial involved one-shot navigation (“PoseGoal” in the nomenclature from [420])

from a start pose to a goal pose – both fixed but scenario-specific.

4A video presenting test scenarios is available at https://vimeo.com/805337193.
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Actor1 Actor2 User/Script Robot

Actor1 Actor2 User/Script Robot

Proceed
Waypoints
Navigat ion Task

Follow Actor1 Task

25 seconds later

Navigat ion
Goal

Proceed
Navigat ion
Task

unt il t he scenario
execut ion f in ishes

Figure 7.2: The sequence diagram of the robot and humans’ activity during the dynamic

scenario. In this scenario, one actor explicitly executes the following task, trying to main-

tain 1.5 m distance from the other.

7.3.2 Evaluation principles

Multiple planning approaches were integrated with the TIAGo robot and their operation

under the same environmental conditions have been evaluated. In each scenario, tradi-

tional trajectory planners for mobile robots were tested, namely: Elastic Bands [310],

DWA [144], Trajectory Rollout [161, 147], TEB [162], as well as human-aware trajectory

planners: Human-aware TEB (HaTEB) [216] and Co-operative Human-Aware Naviga-

tion (CoHAN ) [168]. The public ROS implementations of the evaluated algorithms were

utilised. The remainder of the navigation ecosystem’s configuration (global path plan-

ner, localisation algorithm) is described in Sec. 6.3, whereas the framework for simulating

humans in virtual trials is explained in Sec. 6.8. The distinctive feature of this study

is that all trajectory planners (also the traditional ones) utilised costmap environment

representations with human proxemics modelled as spatial costs around detected indi-

viduals [47, 84], without regarding F-formations.5

During the study, each trajectory planner operated with the maximum possible fre-

quency which ensured that the designated trajectory planning period was not surpassed,

5The F-formation costmap layer was not developed at the time of the first phase of the experiments.

The discussion on extensions of the navigation ecosystem is in Sec. 6.5.
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(a) Simulation (b) Real world

Figure 7.3: An overview of the static scenario.

(a) Simulation (b) Real world

Figure 7.4: An overview of the dynamic scenario.

but the frequencies did not exceed 10 Hz. Specifically, the Elastic Bands operated at

10 Hz, DWA at 4 Hz, Trajectory Rollout at 8 Hz, and TEB , HaTEB , CoHAN – at 10 Hz.

Each trajectory planner was tested in each scenario’s simulated and real-world vari-

ants. At least five representative trials were benchmarked for each case, and then, the

median of each metric was computed to score a trajectory planner. The results of our

experiments, shown in Tab. 7.3, are discussed in the following sections. Examples of tra-

jectories performed by each planner are shown in Fig. 7.5 (static) and Fig. 7.6 (dynamic

scenario).
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mobs
[%]

1-S 58.51 33.98 39.15 36.10 22.83 44.17

1-R 50.44 42.25 43.39 36.77 21.88 41.53

2-S 24.03 35.44 28.13 28.39 19.16 53.55

2-R 23.46 52.93 71.65 38.67 19.81 46.02

mmef
[s]

1-S 73.30 25.50 26.50 29.75 55.70 27.90

1-R 85.84 28.63 29.00 31.15 38.70 39.70

2-S 52.80 29.50 28.00 32.90 38.80 55.10

2-R 59.19 37.70 47.50 38.70 57.50 40.10

mplin
[m]

1-S 10.27 9.80 9.78 10.18 10.90 10.00

1-R 11.78 10.59 10.65 11.14 12.37 12.30

2-S 12.90 11.98 11.66 12.03 13.10 15.71

2-R 13.96 13.08 11.93 12.78 15.09 12.63

mchc
[rad]

1-S 32.62 10.68 10.72 14.09 28.35 12.09

1-R 50.61 11.55 8.11 12.84 25.10 12.37

2-S 38.11 4.55 3.91 15.14 30.77 13.14

2-R 66.96 7.11 35.48 16.68 55.31 13.54

mcef[
10−3 · s

]
1-S 3.33 66.02 33.45 2.50 4.42 3.80

1-R 5.12 160.15 78.88 4.99 10.30 6.61

2-S 1.92 65.23 36.13 2.20 3.31 2.63

2-R 2.42 123.13 64.31 4.54 8.80 7.88

mcre[
10−3 · s

]
1-S 3.89 34.57 9.99 2.35 3.44 3.27

1-R 3.91 81.93 15.95 2.05 4.42 4.29

2-S 2.47 28.44 11.56 2.21 3.28 3.88

2-R 2.53 75.80 28.46 1.64 3.89 7.15

mvsm[
m
s2
]

1-S 0.07 0.05 0.04 0.11 0.32 0.14

1-R 0.22 0.11 0.12 0.14 0.39 0.22

2-S 0.15 0.09 0.05 0.12 0.34 0.16

2-R 0.28 0.18 0.17 0.19 0.35 0.25

mhsm[
rad
s2
]

1-S 1.44 0.18 0.21 0.93 0.89 0.85

1-R 1.54 0.22 0.37 0.86 1.16 0.78

2-S 1.44 0.18 0.19 1.10 0.92 0.56

2-R 1.68 0.33 0.57 0.96 1.01 0.78

mosc
[%]

1-S 3.79 1.95 0.95 1.18 3.67 1.69

1-R 9.70 3.89 2.62 1.30 3.27 2.12

2-S 0.73 1.78 0.90 0.91 2.11 7.05

2-R 6.01 2.15 2.15 4.57 5.68 2.50

mbwd
[%]

1-S 0.00 0.00 0.00 1.50 3.44 6.04

1-R 0.00 0.00 0.00 1.58 5.35 7.79

2-S 0.00 0.00 0.00 0.00 1.74 0.00

2-R 0.00 10.82 0.26 0.26 2.92 2.50
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miprot
[%]

1-S 5.18 13.72 13.69 0.00 1.63 0.40

1-R 5.74 9.79 10.19 0.94 1.48 0.12

2-S 6.41 3.51 3.63 0.30 0.31 0.00

2-R 4.07 0.40 24.06 0.28 3.24 0.00

mpsi
[%]

1-S 22.35 15.09 16.47 19.32 14.30 19.78

1-R 15.88 20.94 31.37 17.88 24.29 24.88

2-S 20.24 31.53 38.07 40.70 35.35 40.44

2-R 19.88 42.60 30.00 25.40 34.48 39.74

mfsi
[%]

1-S 38.29 42.07 53.25 32.11 36.60 45.32

1-R 3.33 31.85 41.05 13.30 8.25 35.73

2-S 0.00 0.00 0.00 0.00 0.00 0.00

2-R 0.00 0.00 0.00 0.00 0.00 0.00

mdir
[%]

1-S 0.29 0.76 1.04 1.31 0.77 0.87

1-R 0.23 2.38 0.69 0.46 1.09 0.62

2-S 0.22 1.32 0.39 0.56 1.34 0.55

2-R 0.31 2.13 0.74 0.62 0.97 1.46

Table 7.3: Results of simulation and real-world experiments conducted in the WUT labor-

atory environments. Tests are identified as: 1-S – static scenario in a simulation, 1-R –

static scenario in the real-world, 2-S – dynamic scenario in a simulation, and 2-R –

dynamic scenario in the real-world.

7.3.3 Robot navigation task performance

The HaTEB planner was the safest in all scenarios, as it maintained the greatest distances

from obstacles (mobs, Req. 1.1), which is related to its characteristic of taking wide

paths at corners (similar to going along the centre line of the available space). However,

it came at the cost of the time required to reach the goal (mmef). By contrast, the robot

operating with DWA planner traversed closer to obstacles, i.e, the robot has spent a higher

percentage of time within the r,Odmin distance from obstacles along the path – reflected

by the mobs. Still, it reached the goal significantly faster (Req. 1.3). The reason behind

such timing performance is that weights of cost functions in the objectives of DWA and

Trajectory Rollout planners were tuned with a focus on approaching the goal with the

shortest possible path avoiding high-cost areas (obstacles or humans embedded into the

costmaps, detailed in Sec. 6.3) along the way. The best timing results (mmef) are confirmed

by the values of path-related metrics, mplin (Euclidean length of the path) and mchc
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(a) Elastic Bands (b) DWA (c) Trajectory Rollout

(d) TEB (e) HaTEB (f) CoHAN
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Figure 7.5: Robot trajectories generated by different planners in the static scenario. The

colour of a symbol represents its occurrence in time (g). Solid circles with dark edges

represent humans, whereas partially transparent circles indicate F-formations. Due to the

perception inaccuracy, human positions float over time, especially, after robot rotation at

the very end of the scenario.

(cumulative rotations along the path), which DWA and Trajectory Rollout planners have

the lowest.

The results of the computation time metrics, namely, mcef and mcre, must be ana-
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(a) Elastic Bands (b) DWA (c) Trajectory Rollout

(d) TEB (e) HaTEB (f) CoHAN
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Figure 7.6: Robot trajectories generated by different planners in the dynamic scenario.

The colour of a symbol represents its occurrence in time (g). Solid circles with dark

edges represent humans. Due to the robot’s perception inaccuracies, human positions

may fluctuate over time, especially when humans become occluded after being passed by

the robot.

lysed, remembering that the simulated scenarios were performed on a different computer

than real-world experiments. Nevertheless, data show that optimal velocity search meth-

ods (DWA and Trajectory Rollout) exhibit a higher computational burden (mcef) than
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force-based (Elastic Bands) and graph optimisation-based (TEB , HaTEB , CoHAN ) ap-

proaches. These latter, mainly TEB , have much more stable computation times in different

scenarios (mcre).

An interesting observation concerns the values of mcef and mcre metrics between TEB

and its human-aware variants. Namely, HaTEB and CoHAN have longer computation

times due to the increased number of constraints captured by the optimisation objective

regarding humans.

7.3.4 Robot motion naturalness

Optimal velocity searching planners provide smoother trajectories (smallest mvsm and

mhsm), increasing motion naturalness of the robot (Req. 2.3). In terms of oscillations

(mosc) and backward movements (mbwd), the traditional trajectory planners performed the

best in most cases, avoiding unnatural motions. However, in the real-world dynamic scen-

ario (2-R), DWA planner occasionally performed recoveries moving backwards (Fig. 7.6b

presents more representative trial from a simulation). As shown in Tab. 7.1, we allowed

planners to command the mobile base backwards to verify how they will behave against

an unexpected human agent.

As for in-place rotations (miprot metric), TEB and derived planners – HaTEB and

CoHAN , generally outperform others due to the feature of this class of planners that

adjust the final part of the trajectory to reach the goal position and orientation simultan-

eously. Instead, DWA and Trajectory Rollout rotate the mobile base according to the goal

orientation after reaching the goal position. Another situation when the robot executes

in-place rotations is when it encounters a dynamic obstacle along the path. This issue may

be addressed with human trajectory prediction that has been employed in human-aware

planners – HaTEB and CoHAN .

7.3.5 Perceived safety of humans

Our human-perceived safety metrics (Req. 2.2) recreating study-based human prefer-

ences [64] are novelties amid robot planning benchmarks. We evaluated the planners

against personal space intrusion (mpsi), F-formation space intrusion (specifically, O-spaces,

mfsi), and robot heading direction relative to the human’s centre (mdir).

Surprising results are related to mpsi metric, where in half of the test cases the tradi-

tional TEB planner outperformed its human-aware specialisations – HaTEB and CoHAN .

Only in the simulated static scenario (1-S ), HaTEB performed better than the traditional

DWA planner only by 1 p.p. In 3 out of 4 scenarios, the least personal space intrusions

have been noted with the Elastic Bands , but at the cost of overall performance.
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The static scenario was designed to provide insights into whether any trajectory plan-

ner would favour taking a longer path to avoid crossing the F-formation. Although none

of the planners explicitly accommodate human formations, we expected that in the static

scenario (1-S and 1-R), the robot’s behaviour will emerge to F-formation avoidance due

to respecting personal spaces of single humans. It did not happen with any planner, as the

robot has crossed through the O-space of the F-formation in each trial (Fig. 7.3b). The

phenomenon is reflected in mfsi metric, remembering from (4.29) that the robot escap-

ing from the O-space sooner obtains a smaller metric value. In the static scenarios, the

human-aware CoHAN planner stopped and often oscillated when crossing through the

O-space of the F-formation (therefore increased mfsi values). In the dynamic scenarios

(2-S and 2-R), the robot’s perception did not qualify moving humans as an F-formation

(as expected); thus values of mfsi are 0.0.

The metric representing human disturbance induced by a robot heading direction

(mdir) is useful for evaluating whether a planner is capable of adjusting the trajectory

heading towards a human as soon as it detects such an agent. Exhibiting such intent-

expressive behaviour is often identified as motion legibility [23]. Again, human-aware

trajectory planners performed similarly to traditional ones across all scenarios. Here,

Elastic Bands accomplished the best metric scores, which are caused by its frequent

heading changes (mchc).

In our tests, the examined state-of-the-art human-aware trajectory planners do not

significantly improve robot navigation regarding social metrics over the traditional ap-

proaches that treat humans as generic obstacles.

7.3.6 Robustness

The results presented in Tab. 7.3 are based on successful trials of the robot navigating from

the initial pose to the goal pose. However, we performed multiple test runs beyond the

benchmarked trials to find the start and goal poses accessible for all planners (Sec. 7.2).

During these tests, we could observe the robustness of each planner. The TEB planner

outperforms others with 0% of failed runs, whereas HaTEB commonly aborted further

navigation being stuck, e.g., before an F-formation in the static scenario. By contrast,

although the Elastic Bands planner appeared to be as robust as TEB , it generates multiple

erratic motions (reflected by mchc and mhsm metrics), these, in turn, cause much longer

times needed to reach the goal (mmef metric), making Elastic Bands impractical.

The experiments were conducted with a differential drive robot (Sec. 7.1); hence, in-

place rotations, reflected by the miprot metric, were sometimes necessary.
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7.3.7 Characteristics of trajectory planners

The analysis of the combination of quantitative (Tab. 7.3) and qualitative experiment res-

ults (Fig. 7.5 and 7.6) provide insights on the characteristics of each investigated planner.

Elastic Bands While the robustness of this force-based planner is at the level of TEB ,

its practicality is limited due to numerous rotational movements along the path and

slow progressive movements towards the goal, which affects the time required to finish

navigation tasks.

DWA and Trajectory Rollout Both planners explore the space of feasible velocities

from which curved trajectories are created and select the optimal candidate according to

the objective function. The difference is that DWA maintains the admissible velocity selec-

ted at the first planning step throughout the whole planning horizon, whereas Trajectory

Rollout repeats the search considering feasible controls (Req. 1.2) in each subsequent

step.

However, the dynamics of obstacles are not explicitly considered in the robot trajectory

planning, which, in turn, might lead to late trajectory adjustment in dynamic scenarios,

especially when the robot moves at high speeds and when dynamic obstacles are not

captured adequately early in the robot’s environment model.

TEB , CoHAN and HaTEB TEB -derived optimisation-based trajectory planners

consider the goal pose’s orientation information in the planning procedure. Such an ap-

proach provides a simultaneous transition of the robot’s position and orientation when

approaching the goal pose; hence, the robot rarely needs to rotate in place (Req. 2.3.1.3)

once the goal position is reached.

The human-aware specialisations of the traditional TEB planners extend the set of

social constraints regarded during the optimisation. Namely, the HaTEB considers min-

imum safety distance, time to collision, and directional constraints, including the predicted

human trajectories in the problem formulation. Furthermore, CoHAN extends HaTEB

with motion legibility improvements. Although the planners use human motion predic-

tions with a constant velocity model, during the experiments both planners exhibited

decreased velocity smoothness in proximity to humans (both in real-world and in simula-

tion). It indicates that the formulation of human proximity constraints might need to be

reformulated in the optimisation framework. Additionally, the visualisation of trajectories

planned by the HaTEB presents that the planner’s outcome sometimes passes through

untraversable regions.

The robot operating with HaTEB traverses mainly through the centre of available
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space between obstacles, undertaking the safest path available. The feature may be relev-

ant for robots traversing along corridors with blind corners, as it favours the exploration of

the robot’s side spaces. In contrast, the CoHAN has been found sensitive to optimisation

weights but generally generates smoother trajectories near humans compared to HaTEB .

7.3.8 Summary

We have found that comparing different planners in a simulation generally allows finding

the one that will also perform best in a similar real-world scenario regarding a particular

metric. We observed the robot operating with different planners during our simulation and

real-world experiments, and some distinctive behaviours of certain planners are visible in

both cases. These include, e.g., wide turns of HaTEB , mostly straight trajectories of

DWA, and smooth stopping of Trajectory Rollout .

The results of the static scenario indicate that considering the F-formations expli-

citly is necessary. Since the navigation ecosystem configuration, which treated humans

as single entities, did not enable handling social cues properly, before the second phase

of experiments the novel F-formation costmap layer plugin was developed to utilise ex-

tended environment model representation on both path planning and trajectory planning

levels (Sec. 6.5).

The outcomes of the conducted experiments have to be studied holistically, as social

robot navigation is usually posed as a problem of contrary criteria. Namely, socially nav-

igating robots might naturally lose performance in favour of adapting their behaviour for

seamless interaction with surrounding humans. This is particularly visible in the case of

Elastic Bands , which controlled the mobile base so the personal spaces were least intruded;

however, due to the slow progress toward the goal this planner is rather impractical by

today’s standards.

Our quantitative findings indicate that planners treating humans as typical obstacles

obtained comparable or better results in terms of the personal space intrusion metric

(mpsi), which was also observed qualitatively during the study. Overall, the first part of

the study provided the baseline assessment of the current state of the research in the field

and the practical aspects of modern methods.

7.4 Comparative study of the proposed trajectory

planning method

The conclusions drawn from the first phase of the study confirmed the relevance of the

development of a custom algorithm for human-aware robot navigation. Therefore, the
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second stage of the experiments was designed and conducted to validate the performance

of the proposed planner (Chapter 5) in various scenarios within demanding real-world

and simulation environments including the presence of humans.

Numerous tests were carried out with state-of-the-art methods to evaluate the efficacy

of the developed HUMAP algorithm compared to other approaches. Assessment criteria

were divided into the robot navigation performance, robot motion naturalness, and the

perceived safety of humans while the robot is moving. Quantitative evaluation of real-

world and simulation trials was performed using the SRPB benchmark that assesses most

aspects considered in social navigation studies.

7.4.1 Scenarios description

We designed test scenarios to examine the robot’s capabilities of passing the humans that

approach in narrow corridors (Fig. 7.7), overtaking the slowly moving people (Fig. 7.8),

and yielding a way to a human that crosses the robot’s path (Fig. 7.9). These scenarios

are commonly referenced as standards in human-aware navigation evaluation [10, 11],

while reflecting the real-world challenges for assistive robots operating in, e.g., hospitals

or restaurants.

(a) Simulation (b) Real world

Figure 7.7: An overview of the passing scenario used for the local trajectory planners’

comparison.

In all experiments of our controlled study, humans participate as dynamic objects of

the robot environment, but the type of encounters and the domain of the experiment

differ. Therefore, the following tests are identified as passing in a simulation (Fig. 7.7a),

passing in the real world (Fig. 7.7b), overtaking in a simulation (Fig. 7.8a), overtaking in
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(a) Simulation (b) Real world

Figure 7.8: An overview of the overtaking scenario used for the local trajectory planners’

comparison.

(a) Simulation (b) Real world

Figure 7.9: An overview of the crossing scenario used for the local trajectory planners’

comparison.

the real world (Fig. 7.8b), crossing in a simulation (Fig. 7.9a), and crossing in the real

world (Fig. 7.9b).6

In the passing scenario, the robot begins its movement toward the goal in a narrow

aisle, and after a few metres encounters the first human walking in the opposite direc-

tion (Fig. 7.7b). The reference path to the goal contains an S-turn to avoid obstacles. The

6 A video presenting test scenarios with the robot operating under the HUMAP local trajectory

planner is available at https://vimeo.com/934800693.
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second human waits in the S-turn area and when the robot approaches the turn entry,

the human starts moving in the direction opposite to the robot. Therefore, the robot

must effectively perform two safe passes in the passing scenario, where the first human is

observable right from the start, but the second is detected at a closer distance and the

area for passing is straitened. Simultaneously, the robot should mitigate the discomfort

induced in humans.

On the other hand, in the overtaking trials the robot begins the run from the opposite

corner of the laboratory. When the robot approaches the S-turn (from the opposite side

compared to the passing scenario), it is intended to overtake the first human moving

slowly on the left side of the aisle. The speed of a human was fixed at 0.15 m/s, while

the robot’s maximum speed was limited to 0.5 m/s during the experiments. Efficient

overtaking requires motion prediction of a dynamic object and undertaking a longer path

to account for space needed by a human to take further steps. However, once the robot

passes the S-turn and starts moving further along the aisle (straight toward the goal)

another human appears, occupying the right side of the aisle and moving even slower

(0.1 m/s) than the first one. Therefore, the robot finds itself in a situation, where the

overtaken human is slightly behind the robot’s left side and the second human is in front

on the right (Fig. 7.8b). The substantial challenge is that the spatial gap to overtake the

slower human decreases due to the speed difference between both humans. The overtaking

scenario not only validates the motion prediction of the planning approaches but also

evaluates how certain planners weigh social distancing against navigation performance.

The last scenario type, crossing , evaluates the robot’s capabilities to comply with the

social norm of yielding a way to a human that crosses its reference path. Namely, the

robot begins operation in a laboratory corner (different than in passing and overtaking)

and needs to move straight through the main aisle to reach the goal pose. However, two

humans are located at the sides of the aisle, ready to intrude ahead of the robot (Fig. 7.9b).

The first human starts its movement, perpendicular to the robot’s initial heading, when

its distance from the robot’s centre is 2.7 m and moves at the speed of 0.3 m/s. In contrast,

the second human, whose speed is limited to 0.25 m/s, initiates crossing the robot’s path

when the distance between them is 2.3 m. This scenario also verifies the robot’s behaviour

in dynamic environments, where the area, through which the reference path passes, might

become occluded. This, in turn, may require additional movement actions for updating

the environment model to find a new traversable path.

A sequence diagram corresponding to the progression of each scenario is shown in

Fig. 7.10. The diagram describes the task interaction between the robot and humans,

which applies to each scenario for both simulation and real-world experiments.

In all scenarios, the robot interacts with humans in an unfocused way; therefore,

189



User/Script Robot Actor1 Actor2

User/Script Robot Actor1 Actor2

Navigat ion
Goal

Proceed
Navigat ion
Task

loop [ unt il t he  sce na r io
e xe cut ion  f in ishe s]

Localisat ion
Data
Localisat ion
Data

alt [ Robot  close  e nough
t o Act or1
and Act or1  not  busy]

Proceed
Waypoints
Navigat ion Task

alt [ Robot  close  e nough
t o Act or2
and Act or2  not  busy]

Proceed
Waypoints
Navigat ion Task

Figure 7.10: The sequence diagram of the robot and humans’ activity during the designed

scenarios.

the robot is expected to avoid collisions and maximise the perceived safety of humans.

Each trial involved one-shot navigation (“PoseGoal” in the nomenclature from [420]) from

a start pose to a goal pose – both fixed but scenario-specific.

7.4.2 Evaluation principles

The evaluation involved both traditional trajectory planners for mobile robots, namely:

Elastic Bands [310], DWA [144], Trajectory Rollout [161], TEB [162], as well as state-

of-the-art human-aware trajectory planners: SRL-EBand [169], HaTEB [216], GA3C-

CADRL [163], SARL [350], SARL∗ [351], RG’s DRL [352], CoHAN [168], DRL-VO [156],

which were compared with the proposed HUMAP . The public ROS implementations of

the evaluated algorithms were utilised.

Each trajectory planner was aimed to be tested in each scenario’s simulated and real-

world variants. The planners selected for the study were first validated in a simulation

to determine whether they were suitable for safe real-world operation. However, not all
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planners proved to be applicable for real-world trials due to prolonged in-place rotations

or collisions, while others turned out impractical due to excessive rotational accelerations

along the run (causing wheel slipping and localisation errors). Each investigated trajectory

planner was benchmarked with 100 trials in a simulation, whereas at least 5 representative

trials were recorded with prospective methods selected for the real-world experiments.

The principles for choosing the control frequency of each trajectory planner are the

same as in the first phase of the experiments. Namely, trajectory planners operated with

the maximum possible frequency which ensured that the designated trajectory planning

period was not surpassed, but frequencies were limited to 10 Hz. Exceptionally, if the al-

gorithm was designated by the authors for faster replanning, the original frequencies were

maintained, if possible. Some planners were involved in the first phase of the experiments

and have frequencies denoted in Sec. 7.3.2. Other planners operated at: SRL-EBand –

10 Hz, GA3C-CADRL – with a policy action update frequency of 10 Hz and control fre-

quency of 100 Hz. Moreover, SARL and SARL∗ operated at 4 Hz, RG’s DRL – 10 Hz,

DRL-VO – 20 Hz, and HUMAP at 4 Hz.

During this study, all trajectory planners (also the traditional ones) utilised costmap

environment representations with human proxemics modelled as spatial costs around de-

tected individuals [47, 84] – the effects of this approach are discussed in Sec. 6.5.

As the study type and the quantitative evaluation method are the same as in the first

phase of the experiments (Sec. 7.3), some outcomes are similar, as several local trajectory

planning methods appear in both studies. Nonetheless, the evaluation scenarios differ;

hence, more insightful information on reused algorithms can be provided.

7.4.3 Qualitative evaluation

Examples of trajectories performed by each planner are shown in Fig. 7.11 (crossing scen-

ario), Fig. 7.12 (overtaking), and Fig. 7.13 (passing). The colour of a symbol represents

its occurrence in time (Fig. 7.11n, Fig. 7.12n, and Fig. 7.13n). Solid circles represent sub-

sequent positions of the robot, whereas circles with dark edges represent human positions

over time. Where available, successful trials were presented in the timing plots. Notably,

subsequent trials of the same scenario might slightly differ, as indicated by a deviation of

metric values discussed in the further part of the chapter.

As stated in Sec. 7.1, information about humans in the environment is gathered by the

robot’s onboard sensors during the navigation task execution. Due to the limited FOV of

robot sensors and inaccuracies in human tracking (performed on noisy raw sensor data),

the human pose estimation is prone to errors. Therefore, in most identified visualisations

of robot and human trajectories (with respect to the environment), humans’ poses slightly

jitter once the robot stops observing them. If ground truth human data were used, in-
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accuracies visible in the figures would not be present. Additionally, the trajectories of

simulated humans are not scripted but follow waypoints using a planning algorithm, as

the robot does. Therefore, slight differences in human trajectories in subsequent trials

might occur.

Crossing scenario Major differences in the crossing scenario’s execution are related to

the way trajectory planners handled the situations of the robot’s path being crossed by

humans. The proposed HUMAP progresses smoothly while yielding a way to intruding in-

dividuals (due to the dedicated behaviour for handling that social convention, Fig. 7.11h),

whereas other methods often perform full rotations in place to recover from sudden en-

counters. The CoHAN planner fluently passes the first person, but before the second

intrusion, which is more aggressive (occurs at a closer distance between the robot and the

human), performs a backing up movement before progressing further (Fig. 7.11g). A sim-

ilar trajectory has been executed when operating with the DWA (Fig. 7.11b). In contrast,

highly evasive movements are performed by the Elastic Bands (Fig. 7.11a) and TEB

(Fig. 7.11d), but the latter reaches the goal considerably faster. Moreover, the HaTEB

planner performs notable erratic turns along the way to the goal compared to the TEB

(Fig. 7.11f).

The example trajectories show that the SRL-EBand (Fig. 7.11e) and Trajectory Rol-

lout planners (Fig. 7.11c) tend to pass the crossing humans at very close distances. Im-

portantly, most DRL-based planners (GA3C-CADRL, SARL, SARL∗, and RG’s DRL)

did not exhibit any significant progression since the beginning of the scenario, performing

mostly in-place rotations until the oscillation or experiment trial timeout expires. The

observed behaviour might indicate that environments with narrow corridors were not in-

volved in their training process. Nonetheless, among DRL-based planners, only DRL-VO

successfully finished multiple trials.

Overtaking scenario The overtaking scenario aims to implement a standardised pro-

tocol for evaluating the robot’s overtaking capabilities [10]. Depending on the performance

of the planner, overtaking of the first human might occur in slightly different places. The

presented examples of trajectories obtained with different planners (Fig. 7.12) illustrate

typical gaps kept from humans and obstacles by the robot, as well as the smoothness of

trajectories created by various methods.

The most atypical trajectory has been recorded when the robot operated with the

Elastic Bands planner (Fig. 7.12a). Specifically, instead of overtaking, the algorithm pro-

duced commands that provided following the humans throughout the narrow passage and

once a substantial gap was unveiled (the humans’ scenario of operation had ended), the
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(a) Elastic Bands (b) DWA (c) Trajectory Rollout

(d) TEB (e) SRL-EBand (f) HaTEB

(g) CoHAN (h) HUMAP (i) GA3C-CADRL
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(j) SARL (k) SARL∗ (l) RG’s DRL

(m) DRL-VO (n) Time

Figure 7.11: Example robot trajectories generated with various planners along with ob-

served human trajectories in the crossing scenario performed in the simulation environ-

ment.

robot traversed that space. Therefore, numerous human poses are marked in the figure,

as the robot observed them during the trial. While the robot has achieved a navigation

goal in the given test, the time required to reach the target pose was considerably longer

compared to if the robot had overtaken slowly moving humans. A distinctive character-

istic of the HaTEB method, which generates trajectories with numerous heading changes

is also visible in this scenario (Fig. 7.12f).

Remarkably, none of the DRL-based planners progressed substantially from the begin-

ning configurations (Fig. 7.12i, 7.12j, 7.12k, 7.12l, 7.12m). Also, in the trials of SARL and

RG’s DRL planners, the first human to be overtaken is only visible at the beginning of
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(a) Elastic Bands (b) DWA (c) Trajectory Rollout

(d) TEB (e) SRL-EBand (f) HaTEB

(g) CoHAN (h) HUMAP (i) GA3C-CADRL
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(j) SARL (k) SARL∗ (l) RG’s DRL

(m) DRL-VO (n) Time

Figure 7.12: Example robot trajectories generated with various planners along with ob-

served human trajectories in the overtaking scenario performed in the simulation envir-

onment.

the experiment. Humans start their waypoint following tasks once the distance between

them and the robot is smaller than the threshold; therefore, once the robot approaches

them, the humans continue their navigation regardless of prolonged robot oscillations.

Passing scenario The designed passing scenario mainly intends to evaluate the robot’s

motion legibility [23] but also its capability to operate among humans approaching from

the opposite direction in narrow passages. The concept of motion legibility can be as-

sessed in such a scenario by identifying the moment when a trajectory planner generates

commands that tend the robot to the right side for a safe pass and early signalling of
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(a) Elastic Bands (b) DWA (c) Trajectory Rollout

(d) TEB (e) SRL-EBand (f) HaTEB

(g) CoHAN (h) HUMAP (i) GA3C-CADRL
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(j) SARL (k) SARL∗ (l) RG’s DRL

(m) DRL-VO (n) Time

Figure 7.13: Example robot trajectories generated with various planners along with ob-

served human trajectories in the passing scenario performed in the simulation environ-

ment.

intentions.

The example trajectories show that DWA adjusts the robot heading just before the

imminent collision with the first human (Fig. 7.13b). In contrast, Trajectory Rollout sig-

nals the intention of passing on the right early but keeps a minimum distance from the

first human (Fig. 7.13c). Additionally, after the encounter with the second human, the

planner generates in-place rotations until the second human moves away and then moves

on the inside of the S-turn. Alternatively, while the HaTEB maintains a considerable

gap between the robot and a human, the generated commands along the way produce

erratic heading changes (Fig. 7.13f). Surprisingly, the human-aware CoHAN adjusts the
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robot’s heading marginally when passing the first human; hence, the gap kept is minimal

(Fig. 7.13g). In contrast, the proposed HUMAP traverses smoothly passing both humans

at a noticeable distance and avoiding erratic motions (Fig. 7.13h).

Notably, in the reference trial (Fig. 7.13i), the robot operating with the GA3C-CADRL

method successfully passed the first human (with several in-place rotations throughout

the path), but missed the desired S-turn and got stuck at the extension of the narrow

passage. Although the SARL barely moved from the initial pose (Fig. 7.13j), the SARL∗

reached a similar stage of the scenario as the GA3C-CADRL but executed more evasive

motions (Fig. 7.13k). Also, human detections with the SARL planner are first captured

at the beginning of the experiment, and the following human poses are observed once the

first dynamic human is close to the robot. This is caused by numerous in-place rotations

produced by the SARL method that lead to prolonged time without human observation.

Importantly, in the presented trial, the RG’s DRL approach almost reached the goal

pose (performing numerous in-place rotations along the way), but the target pose was not

achieved due to the experiment timeout (the same duration for all planners, Fig. 7.13l).

Moreover, in the presented trial, the RG’s DRL approach omitted to interact with humans,

as they moved along the predefined waypoints, while the robot rotated in place nearby.

The example trajectories show that the DRL-VO considerably outperformed other DRL-

based planners in terms of the progress towards the goal and time required to reach the

target pose (Fig. 7.13m).

7.4.4 Quantitative evaluation

Quantitative metrics of the Social Robot Planner Benchmark, which has been used for

assessing the performance of different trajectory planning algorithms, can be divided into

two categories. The first concerns the robot navigation performance reflected by, e.g.,

the time required to reach the goal or path lengths, whereas the second group regards

the human discomfort measures. The latter can be further divided into subcategories, as

discussed further in this section.

Numerous tests have been performed to obtain accurate quantitative assessment and

statistical measures of the metrics. Extensive simulation experiments have been per-

formed, which involved 100 trials executed with each planner in each scenario. The

large-scale study facilitates showing explicitly the distribution of metric values obtained

throughout the tests. Several metrics are presented in such detail using violin plots, which

are similar to box plots, but can illustrate not only the minimum, maximum, and mean,

but also the aforementioned distribution of a metric (e.g., Fig. 7.16). Generally, for all

SRPB metrics except mgoal, mobs, distmobs, and minmobs, lower values indicate better per-

formance.
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The quantitative results of the experiments, condensed into medians of each metric

assessing individual trajectory planners, are presented in Tab. 7.4 and 7.5. Metric results

of the unfinished attempts (failures caused by, e.g., a collision or exceeding the experiment

timeout due to infinite oscillations) are excluded from all calculations. The results were

divided into two tables, as several local trajectory planners obtained low navigation success

goals (Tab. 7.5); therefore, their other metric values will not be discussed. In Tab. 7.4 and

7.5, simulation trials are marked as S , while real-world ones as R; therefore, passing

scenarios are marked as P -S and P -R, overtaking trials – as O-S and O-R, whereas

crossing tests – as C -S and C -R. The results presented in the tables are discussed below.

Metric
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mgoal
[%]

C-S 99.00 84.00 52.00 96.00 82.00 81.00 91.00 100.00

C-R — 100.00 80.00 100.00 — — 80.00 100.00

O-S 30.00 92.00 95.00 100.00 84.00 50.00 78.00 100.00

O-R — 100.00 100.00 100.00 — — 100.00 100.00

P-S 89.00 98.00 91.00 100.00 95.00 89.00 78.00 100.00

P-R — 100.00 80.00 80.00 — — 80.00 100.00

distmobs
[m]

C-S 0.69 0.54 0.53 0.60 0.59 0.65 0.67 0.63

C-R — 0.54 0.56 0.62 — — 0.67 0.61

O-S 0.64 0.57 0.53 0.58 0.59 0.54 0.63 0.59

O-R — 0.56 0.57 0.56 — — 0.60 0.56

P-S 0.66 0.54 0.50 0.57 0.59 0.62 0.63 0.56

P-R — 0.54 0.52 0.54 — — 0.63 0.54

minmobs
[m]

C-S 0.51 0.29 0.28 0.43 0.29 0.39 0.53 0.34

C-R — 0.28 0.30 0.38 — — 0.38 0.30

O-S 0.30 0.31 0.29 0.34 0.33 0.28 0.36 0.33

O-R — 0.31 0.29 0.34 — — 0.33 0.33

P-S 0.45 0.29 0.29 0.34 0.31 0.30 0.30 0.31

P-R — 0.30 0.30 0.33 — — 0.34 0.29

mmef
[s]

C-S 50.30 34.00 39.25 29.11 38.58 36.05 27.20 31.25

C-R — 33.00 32.13 34.10 — — 36.05 29.75

O-S 107.75 27.50 36.00 34.40 51.58 43.10 52.60 32.50

O-R — 26.50 35.54 33.20 — — 46.60 36.75

P-S 70.55 27.50 36.06 31.30 39.33 43.55 43.80 29.50

P-R — 25.13 35.00 31.50 — — 57.90 30.25
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Metric

Scenario M
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mplin
[m]

C-S 10.43 10.36 10.39 10.09 9.98 10.86 10.44 9.84

C-R — 9.61 9.65 10.23 — — 11.88 9.46

O-S 13.40 11.38 11.70 12.35 12.20 12.62 14.67 12.05

O-R — 10.96 11.72 11.94 — — 13.73 12.10

P-S 11.63 10.89 10.65 11.32 11.26 12.63 12.70 11.10

P-R — 10.63 11.35 11.23 — — 14.13 11.15

mchc
[rad]

C-S 21.03 6.02 17.43 8.41 7.94 15.70 8.60 5.81

C-R — 4.99 10.42 10.12 — — 8.72 5.17

O-S 52.65 5.85 9.79 11.15 17.04 16.86 12.86 7.03

O-R — 4.63 6.57 8.92 — — 10.13 7.20

P-S 71.70 16.90 16.05 20.86 23.81 42.96 21.05 18.53

P-R — 4.19 20.30 21.43 — — 32.71 17.46

mcef[
10−3 · s

]
C-S 4.66 76.14 36.74 3.66 4.52 5.19 5.08 122.46

C-R — 119.63 74.70 6.05 — — 8.98 117.11

O-S 8.14 90.15 37.00 3.82 8.15 6.10 7.00 153.31

O-R — 155.51 82.56 6.19 — — 10.46 121.12

P-S 4.91 85.39 35.11 3.16 4.36 5.31 5.54 130.95

P-R — 158.11 74.61 4.78 — — 8.61 110.66

mcre[
10−3 · s

]
C-S 5.61 36.19 13.54 3.38 15.93 3.49 3.90 67.30

C-R — 67.83 22.63 4.07 — — 5.63 69.98

O-S 8.75 31.81 13.76 3.19 21.21 3.91 4.87 59.70

O-R — 56.35 20.60 4.05 — — 5.60 62.59

P-S 7.13 30.99 15.17 2.53 15.13 3.40 4.24 47.84

P-R — 50.69 27.77 2.18 — — 5.79 53.05

mvsm[
m
s2
]

C-S 0.16 0.14 0.12 0.09 0.24 0.38 0.21 0.14

C-R — 0.22 0.16 0.17 — — 0.28 0.19

O-S 0.19 0.10 0.11 0.15 0.31 0.40 0.35 0.15

O-R — 0.12 0.15 0.20 — — 0.31 0.17

P-S 0.12 0.12 0.09 0.14 0.27 0.37 0.27 0.13

P-R — 0.15 0.16 0.22 — — 0.32 0.17

mhsm[
rad
s2
]

C-S 1.43 0.28 0.37 0.99 0.77 1.00 1.00 0.34

C-R — 0.29 0.38 0.86 — — 0.84 0.39

O-S 1.38 0.24 0.28 1.13 0.96 1.08 0.99 0.31

O-R — 0.25 0.33 0.91 — — 0.78 0.35

P-S 1.46 0.26 0.24 1.08 0.79 0.91 0.84 0.33

P-R — 0.23 0.37 0.88 — — 0.88 0.35
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mosc
[%]

C-S 1.73 2.43 2.04 1.08 1.96 3.97 1.38 3.89

C-R — 10.20 6.76 4.55 — — 7.30 8.77

O-S 7.06 1.85 1.50 0.90 4.78 9.59 5.42 1.68

O-R — 3.92 3.47 2.41 — — 9.57 6.70

P-S 4.67 2.66 1.46 1.26 2.15 5.48 11.13 1.74

P-R — 4.09 3.94 2.64 — — 14.16 5.59

mbwd
[%]

C-S 0.00 9.14 0.94 0.35 0.00 3.32 11.78 3.94

C-R — 4.93 0.00 0.62 — — 20.43 0.00

O-S 0.00 0.00 0.00 0.28 0.00 3.16 19.60 0.00

O-R — 0.00 0.00 0.00 — — 14.53 0.00

P-S 0.00 0.91 0.50 0.96 0.00 3.99 15.39 0.00

P-R — 0.00 0.14 0.00 — — 16.09 0.00

miprot
[%]

C-S 7.28 3.65 15.13 3.18 5.85 1.08 0.00 4.80

C-R — 2.38 7.52 2.25 — — 0.28 2.15

O-S 11.12 3.67 14.27 0.61 17.92 0.64 0.41 3.97

O-R — 1.87 0.91 0.30 — — 0.30 2.33

P-S 5.27 0.93 29.39 0.66 12.23 0.80 0.29 1.55

P-R — 0.00 16.38 0.44 — — 0.84 0.62

maxmpsi
[%]

C-S 66.86 89.17 90.22 76.47 86.12 80.83 69.34 70.93

C-R — 89.71 70.35 76.79 — — 78.01 65.06

O-S 96.86 87.75 87.74 90.34 85.83 93.09 87.59 81.04

O-R — 94.39 83.81 83.61 — — 72.47 72.99

P-S 91.22 95.42 91.61 88.13 95.02 84.69 94.12 86.85

P-R — 82.48 87.95 74.68 — — 74.90 73.32

maxmdir
[%]

C-S 12.88 15.07 12.57 12.67 17.20 24.25 19.41 10.03

C-R — 5.27 3.39 6.55 — — 4.19 2.97

O-S 13.31 32.79 28.48 24.21 28.27 35.54 25.43 22.91

O-R — 23.71 17.43 14.36 — — 12.48 4.77

P-S 14.60 62.85 17.90 26.34 43.81 26.16 29.25 23.24

P-R — 34.77 28.13 23.53 — — 43.62 18.72

maxmpsd
[%]

C-S 11.05 57.11 66.08 25.59 57.33 29.57 22.12 24.67

C-R — 50.96 21.80 17.24 — — 19.74 14.92

O-S 57.08 50.18 57.14 64.55 53.44 88.42 45.62 37.26

O-R — 75.62 60.08 61.40 — — 33.78 20.88

P-S 41.63 86.90 55.59 32.86 76.09 41.29 63.44 34.95

P-R — 39.00 60.45 20.87 — — 25.27 23.36

Table 7.4: Quantitative results of the performance of different local trajectory planners

during the conducted experiments. Real-world trials are marked as R, whereas simulated

as S . The scenario naming convention is prepared according to the following scheme:

C – crossing , O – overtaking , and P – passing .
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mgoal

[%]

C 0.00 0.00 0.00 0.00 38.00

O 0.00 0.00 0.00 0.00 0.00

P 0.00 0.00 0.00 0.00 2.00

distmobs (*)
[m]

C 0.63 0.58 0.58 0.42 0.49

O 0.72 0.60 0.59 0.43 0.34

P 0.75 0.64 0.83 0.52 0.38

minmobs (*)
[m]

C 0.58 0.57 0.57 0.29 0.28

O 0.64 0.39 0.38 0.30 0.28

P 0.43 0.28 0.51 0.29 0.28

Table 7.5: Quantitative results of the performance of DRL-based local trajectory plan-

ners during the simulation experiments. The naming convention of scenarios follows the

scheme: C – crossing , O – overtaking , and P – passing . (*): Exceptionally, values of the

distmobs and minmobs metrics are collected from all trials (instead of only successful ones)

since planners included in this table obtained 0% of navigation success rate (mgoal) in

most cases.

7.4.5 Robustness of the examined local trajectory planners

The robustness of local trajectory planners (Req. 1.3) is associated with the success

rate of designated navigation tasks. The relevant metric, mgoal, indicates the percentage

of successfully completed trials from the total number of started tests. A “successfully

completed trial” represents a test in which the goal has been reached with the desired

tolerance thresholds for target position and orientation. Trials can finish unsuccessfully

due to violating those tolerance thresholds or prolonged oscillations (exceeded timeout, as

explained in Sec. 6.3). The score of the mgoal metric obtained by each examined method

in simulation experiments (Fig. 7.14) was the key factor when selecting the planners for

the real-world trials (Fig. 7.15 and Tab. 7.4).

Analytical local trajectory planners The method with the highest success rate,

mgoal, is the HUMAP , effectively finishing 100% of trials both in a simulation (Fig. 7.14)

and in the real-world experiments (Fig. 7.15). The main factor providing such a robust

operation is its environmental awareness implemented as the FSM ’s predicates that or-

chestrate executed behaviour. Notably, one of the HUMAP ’s behaviours performs addi-

tional actions to gather observations about the robot’s surroundings as a response to the

occlusion of the globally planned path.

The TEB planner was nearly as efficient in task finishing as the HUMAP , obtaining

mgoal =100% in overtaking and passing scenarios, but 96% in the crossing . For example,

203



EBan
d

DWA

Tr
aj.

 R
oll

ou
t

TE
B

SRL-E
Ban

d

HaT
EB

CoH
AN

HUMAP

GA3C
-C

ADRL
SARL

SARL*

RG's 
DRL

DRL-V
O

Planner

0

20

40

60

80

100

M
et

ri
c 

va
lu

e 
[%

]

99.00

84.00

52.00

96.00
82.00 81.00

91.00
100.00

0.00 0.00 0.00 0.00

38.00

Goal-achieving trials percentage

(a) crossing scenario

EBan
d

DWA

Tr
aj.

 R
oll

ou
t

TE
B

SRL-E
Ban

d

HaT
EB

CoH
AN

HUMAP

GA3C
-C

ADRL
SARL

SARL*

RG's 
DRL

DRL-V
O

Planner

0

20

40

60

80

100

M
et

ri
c 

va
lu

e 
[%

]

30.00

92.00 95.00 100.00

84.00

50.00

78.00

100.00

0.00 0.00 0.00 0.00 0.00

Goal-achieving trials percentage

(b) overtaking scenario
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Figure 7.14: Navigation success rates, mgoal, obtained with various trajectory planners in

each scenario of the simulation experiments.

the Trajectory Rollout has a significantly smaller success rate in the crossing scenario;

hence, it might not be suitable for environments when sudden intrusions and encounters

are possible. Alike phenomenon occurs with the DWA planner, which is algorithmically
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similar to Trajectory Rollout , but the degradation is not as remarkable. Alternatively,

Elastic Bands has also a considerably lower score of finished trials in the overtaking

scenario compared to crossing and passing , which might indicate that it is not adequate

for highly dynamic scenarios in challenging environments.

Besides the HUMAP , the most reliable among the human-aware trajectory planners

are the SRL-EBand and CoHAN . The robot operating under HaTEB performed com-

parably, except for the overtaking scenario, where the planner completed only 50% of

trials.

Local trajectory planners based on Deep Reinforcement Learning In simu-

lation experiments, GA3C-CADRL, SARL, SARL∗, and RG’s DRL planners exhibited

0% success rate in simulation trials of all scenarios; therefore, they were disqualified from

real-world tests. Similarly, DRL-VO , with 38% success rate in the simulated crossing scen-

ario, 0% in overtaking , and 2% in passing . In fact, most DRL-based planners frequently

performed multiple in-place rotations but managed to traverse various segments of the

reference paths. Even some DRL-based planners that have 0% navigation success rates

were able to reach up to approximately 80% of the reference path of the passing scenario

in some trials (Fig. 7.13l) but the tasks were aborted due to prolonged oscillations or the

experiment timeout expiration (120 s).

The most problematic circumstances for DRL-based planners were narrow passages

either in static or dynamic situations. The reason behind inadequate outcomes, as stated

in Sec. 6.4, is that environment configurations similar to those encountered during the

presented studies were not included during the DRL algorithm training process. This is

related to the limited generalisability of this class of methods, which is their substantial

drawback. The DRL policies used during the conduction of the experiments were provided

by the authors of the algorithms. Notably, not all algorithm implementations were pre-

pared to be fine-tuned for adapting policies to new environments. Instead of learning from

scratch, the original policies were used to avoid the influence of underfitting or overfitting

the algorithms. The approach for integrating DRL policies relies on adjusting robot sensor

data for compatibility with specific algorithms (e.g., resolution of LiDAR scans, Sec. 6.4).

Another cause of underperformance of DRL-based approaches is that the high-fidelity

Gazebo simulator has been used during simulation experiments. It provides realistic raw

sensor data with a small noise included (which is also present when using the real hard-

ware), while most of the DRL-based planners were trained using simplified simulators

(e.g., flatland (Sec. 3.3.3) has been used for learning the policy of the RG’s DRL).

In recent work, Kästner et al. [418] stated that DRL approaches are not suitable

for long-range navigation due to their proneness to local minima and lack of long-term
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memory. The results presented in Fig. 7.14 and 7.15 confirm their findings, especially

considering that some DRL-based planners operated along with paths obtained from the

global planner (detailed in Sec. 6.5). Although those local planners usually perform well

in the tests conducted by the authors, it seems that the richness of social robot navigation

intricacies makes the generalisation to different environments problematic for DRL-based

planners. It is possible that in simpler environments (wider passages), easier scenarios

(no path crossing or overtaking), or with low-fidelity simulators, the learning-based al-

gorithms might perform more reliably. Another significant factor is that the policies were

not adjusted for the test environment and specific scenarios.

Overall, the HUMAP planner outperforms other methods in terms of robustness reflec-

ted by the mgoal metric. The success rates of other approaches vary across both scenarios

as well as environments, since in the simulation each scenario has been repeated with

every trajectory planner 100 times, whereas in the real world – 5 times.

7.4.6 Robot navigation task performance

The performance results are associated with the verification of traditional robot navig-

ation requirements fulfilment. Specifically, the requirements include: collision avoidance

(Req. 1.1) – reflected by the distmobs and minmobs metrics (mean and minimum distances,

accordingly), goal reaching capabilities (Req. 1.3) – reflected by the mmef metric (com-

plementary to mgoal), taking the shortest possible path (Req. 1.4) – reflected by mplin,

and minimising path irregularity (Req. 1.5) – reflected by mchc. Additionally, assessment

criteria include the evaluation of computation times of a single trajectory planning pro-

cedure, mcef , which is relevant for assessing whether an algorithm is capable of real-time

operation on real hardware, and corresponding computation times repeatability, mcre. The

latter determines how likely the planner will violate requested computation times and,

thus, whether it can be safely applied in robots operating in highly dynamic environments.

Collision avoidance The collision avoidance capabilities are discussed based on the

values of the minmobs metric calculated for each examined trajectory planner (Tab. 7.4

and 7.5). The metric represents the minimum distance between the robot’s centre and

edges of all obstacles (i.e., including the robot’s circumradius) throughout a certain trial.

The footprint of the robot employed for the experiments (both simulated and real-world)

is circular with a (circum)radius of dcr = 0.275 m; therefore, minmobs = 0.28 m (results

are rounded to 2 decimal places) indicates that a collision might have occurred during

a trial. The minmobs is related to the distances from all types of obstacles in the robot’s

environment. A corresponding “collision avoidance” indicator regarding only humans is

the maxmpsi metric that assesses the scale of the robot’s intrusions into the personal spaces
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(c) mgoal in the overtaking scenario
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Figure 7.15: Navigation success rates, mgoal (a, c, e), and motion efficiencies, mmef (b, d, f),

obtained with various trajectory planners in each scenario of the real-world experiments.

of individuals (discussed further in this section).

In terms of maintaining the gap from environment objects (either typical obstacles or

humans) the CoHAN and TEB planners keep the clearance the biggest in most cases.

On the other hand, DWA and Trajectory Rollout , which, due to the similarities, perform

comparably in terms of the minmobs metric and keep the least clearance. In particular,

the mobile base operating under DWA tends to pass obstacles at very close distances

but avoids collisions effectively. However, this is not necessarily the characteristic of the

DWA method itself, but a standard tuning of its scoring function, which is focused on

task performance.
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The differences between other analytical planners are rather subtle, and all keep the

safe margins except the HaTEB in the overtaking scenario, where collisions occurred.

This is also the main reason why HaTEB was disqualified from real-world trials despite

reasonable performance in other scenarios. Since the minmobs metric focuses on distances

from all environment objects, the proposed HUMAP planner, concentrating on social

aspects of navigation, should be mainly assessed from the maxmpsi metric’s perspective.

Nevertheless, the HUMAP ’s fulfilment of the collision avoidance requirement has been

verified both in simulation and real-world studies.

Due to the robustness issues of DRL-based algorithms, they are analysed in separa-

tion from other methods, as the Tab. 7.5 contains metric values calculated on the basis

of all trials (instead of only successful). Notably, the GA3C-CADRL algorithm avoided

collisions achieving minmobs of 0.58 m in crossing , 0.64 m in overtaking , and 0.43 m in the

passing scenario. Another method that kept respectable clearance from obstacles in the

SARL∗ approach. On the contrary, DRL-VO had difficulty maintaining enough clearance

in narrow corridors and sharp corners of all scenarios achieving minmobs of 0.28 m.

Due to multiple navigation failures of DRL-based algorithms in the designed scenarios,

and since they rarely reached the stages where human-robot interaction occurs (Fig. 7.11,

7.12, and 7.13), other metrics of the RL-based planners will not be discussed.

Motion efficiency and path characteristics The motion efficiency metric, mmef ,

depicts how much time the planners need to command the robot until the goal pose is

reached (Fig. 7.15b, 7.15d, and 7.15f). It is correlated with the characteristics of paths

undertaken during the subsequent trials, e.g., path lengths (Euclidean), mplin, and path

irregularities (cumulative heading change), mchc; therefore, those are jointly discussed.

The traditional DWA outperformed other planners in the overtaking and passing scen-

arios (in real world and simulation) in terms of time needed to reach the goal pose –

represented by mmef . Especially in the overtaking scenario, the gap between the fastest

and the second fastest planner (HUMAP in the simulation and TEB in the real world) is

considerable. The highest motion efficiency corresponds with shortest path lengths, mplin,

executed by the DWA (best results in the overtaking and passing scenarios). While the

Trajectory Rollout obtained path lengths comparable to DWA, the times needed to reach

the goal pose in the overtaking and passing scenarios are approximately 30% longer than

DWA’s, which is related to increased path irregularity, mchc, and in-place rotations, miprot.

Moreover, DWA’s scores of mmef and mplin are highly correlated between different scen-

arios, which indicates that the planner performed minimal heading changes throughout

experimental scenarios.

An important aspect is related to the traditional Elastic Bands planner, which in all
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scenarios reached the goals with path lengths (mplin) that were not the longest but required

substantially more time to complete the tasks compared to other planners (its mmef scores

are 28-104% higher across scenarios than any other planner’s). This is mainly related to

the distinctive property of the Elastic Bands planner, which commands the robot with

limited translational actions but numerous erratic heading changes along the way. The

latter is reflected by the path irregularity values, mchc. The issue is particularly visible in

the overtaking scenario, where Elastic Bands ’s mchc score is approximately 200% higher

than the second worst rating (of the SRL-EBand approach). Another algorithm that

commands the mobile base with excessive heading changes is the human-aware HaTEB

planner and this attribute has also been identified in the qualitative analysis (Sec. 7.4.3).

Furthermore, a general feature observed in the planners originating from the Elastic

Bands concept is that they perform more heading changes than the others, i.e., traditional

DWA, Trajectory Rollout , and human-aware HUMAP . Among the Elastic Bands-based

methods, the traditional TEB and human-aware CoHAN obtain the smallest mchc rates.

Despite reasonable scores in that matter, the motion efficiency of the CoHAN planner is

drastically degraded in the overtaking and passing scenarios compared to the TEB .

Specifically, in many trials, the CoHAN ’s generation of the trajectories produced nu-

merous forward-backwards motions (reflected by the mbwd) near the corners or when

trying to reach target poses. It is most likely caused by the CoHAN ’s human-aware op-

timisation constraints that extend the ones implemented in the TEB planner (from which

the CoHAN is derived). The additional parameter tuning has already been performed be-

fore the first phase of the experiments (Sec. 7.3) according to the authors’ guidelines7

but helped to the limited number of scenarios. In some attempts of the passing scenario,

the CoHAN planner produced oscillating motions trying to rotate to the goal orienta-

tion just before approaching the goal pose that was located along the corner; thus, its

prolonged mmef times. Another typical situation when CoHAN did not work as intended

is navigating through narrow passages that are created in the costmap (the environment

model used by the algorithm) during the overtaking scenario. In this case, the robot aims

to overtake slowly moving humans, whose postures limit the space available for passing

through.

Overall, it is understandable that human-aware trajectory planners (SRL-EBand ,

HaTEB , CoHAN , and HUMAP) might require longer times to reach goals (mmef) than

traditional methods, as human-aware algorithms need to perform extra manoeuvres to

avoid humans in a socially-acceptable manner. Extended times needed to reach the goal

are the trade-off for introducing human-awareness constraints into trajectory planning

and tuning objective functions to favour less disruption to surrounding humans. However,

7https://github.com/sphanit/CoHAN_Planner/issues/2
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Figure 7.16: Mean computation times, mcef , obtained throughout the simulated crossing

scenario with various trajectory planners.

in the crossing scenario, the HUMAP planner achieved results comparable or better to

other methods in terms of mmef . This arises from the HUMAP ’s environmental aware-

ness and its capability to anticipate and handle “crossing” situations using a dedicated

behaviour of its FSM . Moreover, in the passing scenario, only the DWA outperformed

the HUMAP , whereas, in the overtaking scenario, HUMAP completed navigation tasks

significantly faster compared to other human-aware trajectory planners.

The shortest paths (mplin) of the HUMAP in the crossing scenario correspond to its

motion efficiency scores, mmef , which are comparable to the best-performing planners in

this matter.

Computational complexity The computational complexity of various planning al-

gorithms can be assessed with the SRPB ’s mcef metric, which reflects the average com-

putation time the planner takes to develop a new velocity command. Fig. 7.16 illustrates

the distribution of metric values for extensive simulation experiments (crossing scenario

example). A complementary metric – computational time repeatability, mcre, determines

how much computation times differ from the mean value throughout the experiment.

The latter aims to identify whether certain algorithms exhibit increased computational

complexity, e.g., when humans are present in the environment.

The important aspect of the mcef metric analysis is that the simulation experiments

were conducted on different hardware than the real-world tests, as noted in Sec. 7.1.

Therefore, the values of mcef and mcre metric presented in the Tab. 7.4 cannot be directly

compared between simulated and real-world experiments, exceptionally.

In terms of computational complexity, the examined planners can be classified into
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three groups. The first group constitutes the Elastic Bands-based methods, i.e., Elastic

Bands , TEB , SRL-EBand , HaTEB , and CoHAN . Those approaches exhibit the smallest

computational complexity, needing up to 10 ms to compute a new velocity command.

Notably, in all scenarios, the TEB outperforms other approaches from this category, but

its human-aware specialisations are also computationally efficient. The highest rating

comes from the fact that the optimisation framework implemented in TEB is capable of

parallelising the calculations. Additionally, the SRL-EBand ’s scores are at the level of the

classical Elastic Bands .

The second group of planners includes algorithms constituting considerably higher

computational burden compared to the first group, i.e., DWA and Trajectory Rollout . For

example, DWA requires 76-90 ms with the simulated and 119-158 ms with the real-world

setup to compute a new trajectory. On the other hand, Trajectory Rollout – approximately

37 ms in simulation and 74-82 ms in real-world.

The HUMAP achieved by far the longest computation times among all tested planners;

hence, it can be classified into a separate “computation times group”. Specifically, the

HUMAP ’s single computation cycle in a simulation reaches approximately mcef = 150 ms.

The fundamental parameters influencing the computational complexity of the proposed

planner are the number of produced trajectories (all trajectories are scored in each step;

hence, the duration of the scoring stage is also affected), the planning/prediction horizon

(thor set to 2 s for the experiments), and the number of environment objects considered

in the model-based trajectory generator (pairwise interaction forces between the robot

and environment objects must be computed; limited to five closest obstacles and four

closest humans). However, the mcef metric reflects the mean value of a computation cycle,

while the HUMAP operates according to the multiple behaviours associated with FSM

states, which exhibit various computation burdens. The most extensive calculations, i.e.,

producing trajectory candidates from two generators and scoring all of them with all cost

functions, are performed in the behaviour implemented in the Moving state. In contrast,

the behaviour corresponding to Orientation Adjustment state scores only a single feasible

trajectory that rotates the mobile base. This computation times diversity also influences

the scores of mcre metric.

Notably, the HUMAP operated in real-world experiments (on the robot’s onboard com-

puter) with a reduced number of trajectory candidates; therefore, has smaller mcef values

associated with the real-world experiments compared to the simulated trials. Knowing

that the computation loop takes significantly longer on a real robot (based on the DWA

and Trajectory Rollout scores), the planner might have exceeded the desired calculation

period if the simulation setup was fully reproduced. Nonetheless, the HUMAP is fully

capable of real-time operation at 4 Hz on mid-range computers but the parallelisation of
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Figure 7.17: Velocity smoothness values, mvsm, obtained throughout the simulated over-

taking scenario with various trajectory planners.

calculations poses an interesting future development perspective.

In general, the computation times of each examined planner did not dramatically

differ across scenarios, as well as their computational time repeatability scores, except

for the overtaking tests where increased computational burden is observed in simulation

results amid all tested methods. Data used for assessing the mcef is not affected by the

performance of the simulator (so-called “simulation time” is used in virtual experiments);

therefore, it can be explained by more demanding calculations of other routines function-

ing within the same process of an operating system as a global path planner and a local

trajectory planner (the ecosystem explained in Sec. 6.3).

7.4.7 Robot motion naturalness

The naturalness of the robot’s motion is usually related to maintaining a smooth velocity

profile and avoiding erratic movements and oscillations (Sec. 2.4.1). The concepts of the

robot’s motion naturalness correspond to multiple social robot navigation requirements

that can be verified using the SRPB ’s metrics.

The main indicator of the presence of erratic motions is a lack of smoothness in the

robot’s velocity profile (Req. 2.3.1.1), which can be assessed with metrics expressing the

scale of robot accelerations – translational, mvsm, and rotational, mhsm. A high correlation

between the distributions of the mvsm as well as mhsm values is observed across scenarios;

therefore, metric values for only a single scenario are presented with the violin plots

(Fig. 7.17 and 7.18). Nonetheless, median values of each scenario are identified in Tab. 7.4.
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Figure 7.18: Heading change smoothness values, mhsm, obtained throughout the simulated

overtaking scenario with various trajectory planners.

The DWA, Trajectory Rollout and TEB planners performed the best in terms of the

translational velocities’ smoothness (mvsm), with HUMAP ’s rating being very close to

them, in several cases outperforming TEB and by far outdoing other human-aware al-

gorithms. Nevertheless, TEB -based planners obtained significantly more rough rotational

velocity profiles compared to DWA and HUMAP . The outcomes of the smoothness of

rotational velocity changes (represented by mhsm) are correlated with the results of mchc,

as both metrics regard the change in the robot’s orientation throughout the scenario.

Again, traditional DWA and Trajectory Rollout planners achieved the best mhsm results

in all scenarios; however, the scores of HUMAP are 20-50% higher, while the second best-

performing human-aware trajectory planner (SRL-EBand) has those measures 175-300%

higher. Excessive heading changes of Elastic Bands (discussed earlier) are also visible in

the mhsm metric ratings.

The HUMAP outperforms other human-aware planners in terms of velocity smooth-

ness scores but obtains slightly inferior results compared to the traditional DWA and

Trajectory Rollout . This is a consequence of its passing speed discomfort soft constraint

(Hcfunpsd), which requires the algorithm to adjust the commanded velocities in proxim-

ity to humans to reduce their discomfort that, in turn, causes additional accelerations

captured by the metrics.

Other requirements in the category of the robot’s motion naturalness assess in-place

rotations (Req. 2.3.1.3) (miprot), backward movements (Req. 2.3.1.4) (mbwd), and os-

cillating motions (Req. 2.3.1.2), which manifest as alternating forward and backward

motions (mosc).

The HUMAP has increased miprot metric scores by design, as it relies on in-place ro-
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tation to reach the goal orientation if it does not align with the direction of the final part

of the path. The same applies to the implementations of DWA and Trajectory Rollout

that were used during the experiments. On the other hand, TEB -based planners (tra-

ditional TEB and human-aware HaTEB and CoHAN ) smoothly adjust the trajectories

near the goal pose to reach the goal position and orientation at the same time (if feasible).

Nevertheless, increased miprot scores indicate that certain algorithms could not progress

further throughout the scenario and performed in-place rotations as a recovery action,

which happens in Trajectory Rollout , SRL-EBand , and Elastic Bands .

Other indicators of a lack of progress throughout certain parts of a scenario are the

mosc and mbwd metrics. The highest measure of mbwd has been achieved by the CoHAN

planner, which identifies the cause of its longer times required to reach the goal (mmef).

This is related to the problem of traversing narrow passages and near the corners, as

explained while describing the motion efficiency of various algorithms. In contrast, the

HUMAP obtained a non-zero score regarding backward movements only in the crossing

scenario, which indicates that the planner operated in the Look Around state (slow backing

up motion to update the environment model).

On the other hand, all examined planners (those mentioned in the Tab. 7.4) have non-

zero measures concerning oscillating motions in all scenarios. While the TEB planner has

those scores the lowest, the HUMAP outperforms other human-aware trajectory planners

in that matter.

7.4.8 Perceived safety of humans

Metrics implemented in the SRPB allow assessing human perceived safety (Req. 2.2)

while the robot operates with different planning algorithms. Specifically, indicators relev-

ant to the performed experiments evaluate the scale of the robot’s intrusions into personal

spaces, its motion legibility, and discomfort caused to humans by the robot’s passing speed

during unfocused interaction. Notably, the maximum values of metrics are selected for the

analysis (maxmpsi, maxmdir, and maxmpsd), as they turned out to better replicate the im-

pressions of participants during the real-world experiments compared to the mean values

of metrics computed based on entire trials (mpsi, mdir, and mpsd).

Respecting proxemics zones (Req. 2.2.1) is the fundamental concept regarded in

algorithms designated for social robot navigation. In the simulated crossing scenario of

the conducted experiments, the smallest maximum personal space intrusion score, maxmpsi,

was achieved by the Elastic Bands method. However, the Elastic Bands ’s seemingly good

performance is caused by the inadequate motion efficiency of the planner. In particular,

in the crossing scenario of the presented controlled study, humans aim to move similarly

in all trials with diverse planners. To accomplish that, a threshold distance between the
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robot and a human, at which a human starts the task of waypoints following, has been

fixed. Therefore, slow progressive movements of the Elastic Bands (mmef) enable the

commanded robot to avoid the “crossing interaction”. This phenomenon is visible in

Fig. 7.11a. As a consequence, deceptively promising maxmpsi measure of the Elastic Bands

planner should not be considered. Instead, this method is low-rated in the overtaking and

passing scenarios, where unavoidable frontal encounters occur.

In contrast, the proposed HUMAP planner achieved the best or the second-best results

in all scenarios (concerning maxmpsi), being outperformed only by the CoHAN approach in

the real-world overtaking scenario by 0.52 pp. and by the HaTEB in the simulated passing

scenario by 2.16 pp. The distributions of the maximum personal space intrusions metric

(calculated per entire trial of the extensive virtual study) obtained from 100 tests of each

scenario (all planners) are presented in Fig. 7.19. Importantly, the HUMAP also acquired

the best results of the maxmpsi metric in most scenarios conducted in the real world, as

illustrated in Fig. 7.20a (crossing), Fig. 7.20c (overtaking), and Fig. 7.20e (passing).

Another crucial aspect of the safety perceived by humans interacting with robots is the

motion legibility of autonomous mobile bases. Namely, it can be quantitatively assessed

with the metric that evaluates the certainty of heading straight into a human by a robot,

especially with decent speed (Req. 2.2.4). A relevant metric has been implemented in the

SRPB , identified as maxmdir, which is useful for evaluating whether a planning approach

is capable of adjusting the robot’s heading as soon as it detects such an agent.

In two cases of the simulation study, the Elastic Bands algorithm acquired the finest

metric results regarding maxmdir. However, the indicator captures the FOV of humans

and the planner commanded the robot so it moved mainly behind both humans. Hence,

again, seemingly good results were obtained by that traditional method. Excluding the

outcomes of Elastic Bands from the results, the HUMAP planner performed the best

in terms of maxmdir in all scenarios both in simulated (Fig. 7.21) and in the real-world

trials (Fig. 7.20b – crossing , 7.20d – overtaking , and 7.20f – passing). Among tradi-

tional local trajectory planners, the best results in most cases were obtained by the TEB ,

which outperformed its human-aware specialisations – HaTEB and CoHAN , but mainly

in the virtual experiments. In contrast, the robot operating with the DWA planner had

difficulties adjusting the heading early once a human was detected (maxmdir), which might

have induced considerable fear in surrounding pedestrians.

A different concept considered within the perceived safety of humans relies on adjust-

ing the robot’s speed once passing an individual (Req. 2.2.3). In the crossing scenario

seemingly good maxmpsd rating has been achieved by the Elastic Bands , similarly as with

the previously discussed human awareness metrics. Besides the Elastic Bands , the best

results have been acquired by the HUMAP in the overtaking scenario, and by the HUMAP
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Figure 7.19: Distribution of maximum personal space intrusion (maxmpsi) metric values in

various scenarios in the simulation environment.
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Figure 7.20: Maximum personal space intrusions, maxmpsi (b, d, f), and maximum heading

direction disturbances, maxmdir (a, c, e), obtained with various trajectory planners in each

scenario of the real-world experiments.

and CoHAN in the crossing setup. Interestingly, in the passing scenario, the TEB outper-

formed other planners both in the simulation and the real world, achieving approximately

2-2.5 pp. better scores compared to the HUMAP ’s outcomes. Distribution of the maxmpsd

metric values obtained by various planners is presented in Fig. 7.22.

7.4.9 Summary

The comparative study described in this section aims to evaluate the proposed HUMAP

local trajectory planner with traditional methods as well as state-of-the-art human-aware
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Figure 7.21: Distribution of maximum heading direction disturbance (maxmdir) metric

values in various scenarios in the simulation environment.
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Figure 7.22: Distribution of maximum passing speed discomfort (maxmpsd) metric values

in various scenarios in the simulation environment.
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planners.

To assess the versatility of the examined approaches, various scenarios have been de-

signed based on the standardised protocols [10] for robots operating in populated dynamic

environments and subjected to unfocused interactions with humans. The three developed

scenarios evaluate different types of encounters, i.e., crossing , overtaking , and passing .

Each scenario has been conducted both in the real world and in the virtual equivalent of

the target environment according to the controlled study principles to enable direct com-

parison of results. The trajectory similarity of two human participants has been ensured

in each trial.

The assessment involved both traditional local trajectory planners, i.e., the Elastic

Bands , DWA, Trajectory Rollout , and TEB , as well as human-aware algorithms – SRL-

EBand , HaTEB , GA3C-CADRL, SARL, SARL∗, RG’s DRL, CoHAN , DRL-VO . All

these were compared with the proposed socially-aware HUMAP in the extensive simu-

lation tests (100 trials have been performed in each scenario with every planner) and in

the real-world study involving the most robust methods. Several planners have been also

tested in the first phase of the experiments (described in Sec. 7.3) and, overall, their qual-

itative characteristics and quantitative performance have been confirmed in additional

scenarios.

Both qualitative (Sec. 7.4.3) and quantitative evaluation (Sec. 7.4.4) of the examined

trajectory planning algorithms have been extensively analysed based on the data collec-

ted during both real-world and simulation tests. Qualitative assessment regards mainly

the distinctive characteristics of planning algorithms’ behaviours and their trajectories

obtained in different trials. In contrast, the quantitative analysis has been performed

based on the metrics developed in the Social Robot Planner Benchmark (Chapter 4),

which implements various navigation task performance indicators, but importantly, met-

rics evaluating human discomfort caused by a navigating robot. The usage of SRPB has

been crucial in the comprehensive quantitative evaluation of multifaceted concepts of

social robot navigation.

The analysis of the robustness of the planners revealed that local trajectory plan-

ners formulated analytically substantially outperform state-of-the-art Deep Reinforcement

Learning methods. The most robust among the DRL-based approaches was the DRL-

VO . The robot commanded by this algorithm completed approximately 40% of trials

in the crossing scenario. In contrast, other approaches failed to succeed in any attempt

(Fig. 7.14). Since investigated DRL-based methods have been successfully tested by the

authors, the main reason for the limited robustness is the lack of generalisability to vari-

ous environments. All learning-based algorithms were functioning with the robot using

the original policies provided by the authors of the methods to avoid the influence of
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underfitting or overfitting the algorithms when learning from scratch.

On the other hand, the robustness of the most reliable analytical methods reaches

90-100% across all scenarios (Fig. 7.14). Nonetheless, amid this class of planners, several

approaches are of limited practicality due to the slow progressive movements and erratic

heading changes (Elastic Bands), or excessive angular accelerations (HaTEB). The ex-

tensive analysis of SRPB metrics enabled to comprehensively assess the performance of

examined algorithms in terms of both classical (Req. 1) as well as social robot navigation

requirements (Req. 2).

The results of the comparative study depict that the proposed HUMAP planner

achieved the best robustness scores among all tested approaches, completing 100% of all

trials, both in the simulation as well as in the real world. The robustness of the HUMAP is

provided by the analysis of the current environmental context and supplying this informa-

tion to the internal Finite State Machine that orchestrates the planner’s state transitions.

Multiple behaviours are implemented in the FSM , which adapts the robot for operating

in partially observable (due to the limited FOV and range of robot sensors) dynamic

environments. Particularly, the special HUMAP behaviours perform reactive navigation

(with collision checking) until planning under typical circumstances, e.g., with a valid

global path and the robot’s footprint far from obstacles can be continued.

Furthermore, in most “scenario–environment” (real world or simulated) configurations,

the HUMAP planner performed better than other methods in terms of the study-based

social navigation criteria approximating the human discomfort metrics (implemented in

the SRPB benchmark) without significant degradation in the navigation task-oriented

performance (e.g., motion efficiency, path length, path irregularity).

The HUMAP planner integrates a hybrid trajectory candidates generation method

with various cost functions forming the objective function and exposes numerous para-

meters to the user for system configuration. The HUMAP parameters (Sec. 6.9) have

been selected by experimentally achieving a compromise between task performance, so-

cial aspects of robot navigation, and computational complexity. Specifically, the number

of produced trajectory candidates substantially affects the computational burden of the

method. The computation times of the proposed method have been by far the longest

among all tested algorithms (Fig. 7.16), but still allowed stable operation at the frequency

of 4 Hz.

The extensive analysis of the quantitative results of the SRPB metrics emphasises

the need for analysing different algorithms holistically. This means that any human-aware

trajectory planner should not be examined concerning only the maximum personal space

intrusions metric regardless of, e.g., motion efficiency and heading changes along the

path. For example, the human-robot interactions that occur in trials with planners that
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develop noticeably smaller translational motions than the others, do not exactly reflect the

cases observed with more reliable planners. Particularly, the environmental layout along

with an unintended scenario progression may favour generating slowly-moving velocity

commands. Such a situation occurred, for instance, in the crossing scenario, where humans

begin enacting their experimental scenarios based on the distance between them and

a robot. Therefore, human intrusions have often ended before the robot operating with the

Elastic Bands planner reached the challenging stage (“crossing interaction”) of a scenario

(Fig. 7.11).

Developing human-aware robot navigation algorithms is an enormous challenge. Due

to the contradictory nature of traditional and social robot navigation requirements, adding

human-aware constraints to optimisation-based strategies is not straightforward, as visible

in the varying outcomes related to human awareness (reflected by the SRPB metrics) of,

e.g, HaTEB and CoHAN , which are in several cases substantially outperformed by the

traditional TEB , which they originate from.

Overall, the conducted experiments, designed without unrealistic assumptions, con-

firmed the practical aspects of the proposed HUMAP approach that effectively handles

the partial observability of the environment, as well as human perception uncertainties,

which are accounted for in the trajectory scoring procedure. The results of both stages of

the experiments provided insights that the previous socially-aware algorithms might not

cause substantially less disruption to the surrounding humans compared to the traditional

planners. The presented HUMAP local trajectory planner mitigates human discomfort

during interaction with robots according to the relevant study-based metrics. The out-

comes of the experiments show the surpassing performance of the algorithm in terms of

human awareness aspects which is consistent across scenarios.

7.5 In-depth analysis of the HUMAP system

Sec. 7.4 discusses the HUMAP ’s performance against state-of-the-art traditional and

human-aware trajectory planners; however, the proposed navigation system can oper-

ate in different configurations. Its performance under various parameters is analysed in

this section.

7.5.1 Performance with different scoring functions

A set of simulation tests has been performed to assess the sensitivity of the HUMAP ’s tra-

jectory scoring function (5.31) to the changes of cost functions weights. The “sensitivity”

is understood as the impact of manipulating the values of crucial parameters influencing

the operation of the HUMAP . Therefore, the experiments described in this section aim to
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Weights ρpth ρgoal ρttc ρvsm ρhsm ρpsi ρfsi ρdir ρpsd

baseline 15.0 25.5 3.0 17.0 10.0 30.0 7.5 20.0 10.0

perf. 23.0 33.5 3.0 17.0 10.0 30.0 7.5 20.0 10.0

soc. 15.0 25.5 3.0 20.0 13.0 60.0 7.5 20.0 15.0

no-soc. 15.0 25.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.6: Weights of HUMAP ’s cost functions, ρ(·), applied during the evaluation of

different configurations of the planner. The naming scheme is as follows: “baseline” –

indicates the reference tuning, “perf.” – indicates weights emphasising navigation task

performance, “soc.” – weights emphasising social aspects, and “no-soc.” – weights with

negligible social aspects.

depict whether the planner performs reasonably at a considerable range of the objective

function’s parameters. Those tests have been conducted in the same three scenarios as

examined in Sec. 7.4 (the scenarios are described in Sec. 7.4.1), but additional configura-

tions of the HUMAP have been tested ten times for each “scenario–weights” arrangement

(while the reference HUMAP setting has been evaluated a hundred times).

Specifically, the four setups have been tested: reference (“baseline”) scoring function

tuning (used in the study described in Sec. 7.4), “perf.” – modified “baseline” with a focus

on task performance (e.g., path length, motion efficiency), “soc.” – adjusted “baseline”

to emphasise social aspects, and “no-soc.” – the “baseline” setup but with zeroed-out

weights of cost functions assessing the robot’s human awareness.8 The weights used in

each case are identified in Tab. 7.6.

Results of the study are presented in Tab. 7.7. Metrics indicating the performance

(“perf.”) are the motion efficiency, mmef , or path lengths, mplin, while the social aware-

ness metrics (“soc.”/“no-soc.”) are reflected by the velocity smoothness, mvsm and mhsm,

maximum intrusions into personal spaces, maxmpsi, heading direction discomfort metric

maxmdir, and speeds maintained by the robot while passing humans maxmpsd. Notably,

the HUMAP planner maintained the 100% success rate (mgoal) despite the considerable

changes in weights of cost functions. The biggest average clearance from environment

objects (mobs) is kept in the configuration emphasising the impact of social cost func-

tions, but the collision avoidance capabilities (minmobs) are not affected by the changes

in weights. The highest motion efficiency scores (mmef) were obtained in the configura-

tion with zeroed-out weights of human awareness cost functions. Importantly, the robot’s

8In the implementation of the HUMAP , setting the cost function weight of “0” prevents some calcu-

lations from being performed (as illustrated in Alg. 3), i.e., the computational burden becomes smaller

(improves computational efficiency mcef). However, temporary changes have been applied so all calcula-

tions related to cost functions are performed in all circumstances.
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speed has been upper-bounded throughout the experiments ( r
maxvlin in Tab. 7.1), but if

there were no limits, the mmef could have been enhanced even more in the “no-soc.” con-

figuration. The best scores regarding the social awareness metrics were achieved in the

majority of cases with the “soc.” setup emphasising the social acceptance compared to

the reference tuning; however, at the cost of motion efficiency (mmef) degradation.
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mgoal
[%]

C 100.00 100.00 100.00 100.00

O 100.00 100.00 100.00 100.00

P 100.00 100.00 100.00 100.00

distmobs
[m]

C 0.63 0.61 0.64 0.57

O 0.59 0.59 0.58 0.55

P 0.56 0.56 0.59 0.54

minmobs
[m]

C 0.34 0.34 0.33 0.33

O 0.33 0.34 0.32 0.32

P 0.31 0.30 0.32 0.30

mmef
[s]

C 31.25 36.37 34.25 30.75

O 32.50 29.12 43.25 28.62

P 29.50 27.75 30.87 28.13

mplin
[m]

C 9.84 10.24 9.64 10.29

O 12.05 11.77 12.26 11.96

P 11.10 11.05 11.03 11.28

mcef[
10−3 · s

] C 122.46 99.82 132.98 107.46

O 153.31 146.28 177.30 124.98

P 130.95 127.03 131.07 108.26

mvsm[
m
s2
] C 0.14 0.14 0.14 0.18

O 0.15 0.11 0.18 0.12

P 0.13 0.11 0.13 0.13

mhsm[
rad
s2
] C 0.34 0.34 0.32 0.50

O 0.31 0.32 0.31 0.44

P 0.33 0.31 0.30 0.44

mosc
[%]

C 3.89 4.31 3.40 4.61

O 1.68 2.08 2.08 2.74

P 1.74 3.20 1.26 4.62

maxmpsi
[%]

C 70.93 87.43 62.92 81.86

O 81.04 84.96 87.17 93.42

P 86.85 92.38 84.05 90.54

maxmdir
[%]

C 10.03 10.10 9.41 16.51

O 22.91 25.27 18.00 34.89

P 23.24 26.23 19.92 20.76
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maxmpsd
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C 24.67 38.88 11.45 37.69

O 37.26 52.11 54.83 70.92

P 34.95 55.75 28.35 57.00

Table 7.7: Quantitative results of the performance of the HUMAP local trajectory planner

operating in various scenarios with different weights of cost functions. The naming con-

vention of the scenarios (performed in simulated environments) is prepared according to

the following scheme: C – crossing , O – overtaking , and P – passing . On the other hand,

the HUMAP planner’s configuration naming is as follows: no suffix – indicates standard

tuning, “perf.” – indicates weights emphasising navigation task performance, “soc.” –

weights emphasising social aspects, and “no-soc.” – weights with negligible social aspects.

The results of these experiments only confirm that a Pareto-optimal solution is being

searched for when planning human-aware robot trajectories, as the contradictory ob-

jectives must be leveraged in the scoring function (Sec. 5.7). Specifically, the objective

function for assessing a candidate trajectory implements opposite criteria, i.e., includes

both performance-focused cost functions as well as cost functions mitigating human dis-

comfort. In most cases, using specialised tuning parameters led to obtaining better scores

in particular metrics, compared to the standard “baseline” configuration. However, the

most interesting comparison involves the “baseline” setup and the human-aware but

performance-focused “perf.” tuning. The latter relies on enhancing the importance of

performance-related components of the objective function while maintaining the weights

of social cost functions at the level of the “baseline” setup. Differences in outcomes between

those scoring function configurations illustrate that although overall navigation perform-

ance has been improved, the scores of social aspects (maxmpsi, maxmdir, maxmpsd) have been

degraded. Therefore, the principle of Pareto-optimality is visible, as increasing weight for

a certain cost function will likely cause degradation in another aspect.

7.5.2 Analysis of the optimal trajectory selection

The HUMAP ’s trajectory generation scheme involves producing candidates with two dis-

tinctive strategies. Namely, the velocity sampling trajectory generator, gensmp, is used

with the focus on exploring the space of feasible controls with uniformly curved trajector-

ies, whereas the model-based generator, gensoc, aims to construct human-like trajectories

according to the pedestrian motion model. Based on the previously conducted experi-

ments, the analysis regarding the selection of optimal trajectories can be conducted.
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Figure 7.23: Distribution of percentages of optimal trajectories selected from the model-

based generator when operating with the HUMAP planner. The scenario name mapping

is as follows: C – crossing , O – overtaking , and P – passing . Furthermore, the naming

convention of the scoring function configurations follows the scheme: no suffix represents

the “baseline” tuning, “perf.” indicates weights emphasising navigation task performance,

“soc.” – weights emphasising social aspects, and “no-soc.” – weights with negligible social

aspects.

The results, shown in Fig. 7.23, describe how frequently a model-based trajectory can-

didate has been found optimal throughout the entire trial. It is represented by the rate

of selecting a model-based trajectory in relation to all planning routines within a single

test. Each test of the conducted simulation experiments has been considered to obtain the

distribution of the percentage values (rate values). The experiments involve the HUMAP

planner functioning with the “baseline” scoring function setup as well as with the spe-

cialised cost function weights described in Sec. 7.5.1. Therefore, the selection rates can be

examined depending on the scenario but also the objective function’s weights.

In general, the trajectory selection tendency significantly differs across scenarios in

which the robot operates. Specifically, during the extensive simulation tests with the

“baseline” weights, the model-based trajectories were the most commonly selected in the

passing scenario. This is understandable since the parameters of the baseline pedestrian

motion model (SFM ) were calibrated based on people passing situations [25], as described

in Sec. 5.5.4. In contrast, in the same HUMAP setup, a marginal number of model-

based candidates were selected in the overtaking scenario (up to 8%, but the mean is

approximately 2%).

226



Another factor influencing the percentage of trajectories chosen from the model-based

trajectory generator is the cost functions’ weights configuration. Notably, once the social

cost functions have a negligible impact on trajectory selection (“no-soc.” variant), the

model-based candidates are substantially more often selected as the optimal ones. This

seems to be contradictory to the expected outcomes, as the model-based trajectory gen-

erator relies on the pedestrian motion model has been calibrated to replicate the human

motion in the passing scenario. However, the reason behind the more favourable model-

based trajectories might originate from the density of the crowd in the calibration data

[421], which has been bigger than the density in the examined scenarios, involving two

human participants interacting with the robot.
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Chapter 8

Conclusions

This thesis discusses the multifaceted topic of social robot navigation. The main objective

of this dissertation is to develop an algorithm that enhances the navigation quality of

robots operating in environments shared with people. This is associated with mitigating

human discomfort caused by the motion of a robot that executes designated service tasks,

i.e., interacts with people in an unfocused way.

This dissertation contributes to several key aspects of social robot navigation. Firstly,

it defines the requirements that should be implemented in comprehensive social robot

navigation systems. Secondly, it addresses the challenge of the quantitative assessment

by proposing additional metrics to evaluate the compliance of navigation algorithms with

the grounded requirements. Thirdly, it presents a local trajectory planning approach that

adapts robots to navigate in environments shared with humans.

8.1 Research outcomes

Review of the state-of-the-art literature to obtain study-based requirements

for social robot navigation In Chapter 2, the study-based requirements, relevant to

socially navigating robots, have been identified based on the extensive literature review.

Gathering insights on how participants of user studies perceive robot behaviours enabled

the grounding of social robot navigation necessities that can be further transferred into

requirements for robot control systems implementing socially-aware robot navigation. The

developed taxonomy of necessities classifies them as: requirements regarding the physical

safety of humans, perceived safety of humans, requirements for assessing the naturalness

of robot motion, and compliance with social conventions. The taxonomy of social robot

navigation requirements is complemented by the objectives of traditional robot navigation.

The core principles identified as groups of human-aware robot navigation requirements

are the foundation for reviewing various algorithms that solve perception (Sec. 3.1), mo-
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tion planning (Sec. 3.2), and evaluation (Sec. 3.3) challenges. Then, state-of-the-art motion

planning methods for social robot navigation, as well as evaluation benchmarks have been

classified according to the proposed requirements’ taxonomy. Those summaries guided the

integration of the robotic system used during the experimental studies, which employs the

most comprehensive methods available.

Design and implementation of quantitative metrics for evaluating social robot

navigation The substantial topic of this thesis is the quantitative assessment of human

discomfort, which serves as a measure of robot social appropriateness. The insights from

the reviewed user studies have been used to develop various metrics relevant for evaluating

the fulfilment of the grounded social robot navigation requirements across various motion

planning methods (Chapter 4). The novel indicators regard the perceived safety of humans

and assess robot motion naturalness. Their substantially original aspect is that the human

discomfort metrics account for people tracking uncertainty, facilitating the evaluation

using robot onboard sensors and perception modules.

Human discomfort indicators have been complemented by the metrics for evaluating

algorithms’ adherence to classical robot navigation requirements. The entire set of met-

rics is implemented in the open source benchmark system, named Social Robot Planner

Benchmark (SRPB), applicable for testing robots operating in simulated and real-world

environments. A distinctive characteristic of the proposed benchmark is the diversity of

metrics (Tab. 3.5), which were formulated to allow the system usage with different robot

types (either with nonholonomic or holonomic drives).

Design and implementation of a human-aware local trajectory planner us-

ing the hybrid trajectory candidates generation method and spatiotemporal

cost functions An essential step in attaining the thesis’ objective is the development

of a novel socially-aware trajectory planning method for mobile robots that takes into

account the constraints that mitigate human discomfort while ensuring navigation task

performance comparable to state-of-the-art traditional approaches. These guidelines have

been implemented in the algorithm named Human-Aware Trajectory Planner Mapping the

Pedestrians Motion Pattern (HUMAP), developed for differential drive and holonomic ro-

bots functioning in partially observable unstructured environments.

The planner operates according to the behaviour-based paradigm, implementing vari-

ous behaviours in the internal Finite State Machine (FSM ). The main behaviour of the

planner, which is described in detail in this thesis, focuses on enabling the robot to seam-

lessly interact with humans in an unfocused manner, which is a typical challenge for

service robots intended to operate in populated environments. The behaviour-based ap-
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proach allows for capturing customary spatiotemporal protocols of pedestrian motion, as

well as enables the high robustness of the algorithm in realistic challenging scenarios.

The HUMAP exhibits the contextual awareness at the environmental level (Sec. 3.1.4),

as the predicates that dictate the FSM ’s operation are obtained from, i.a., environment

observations.

The unique attributes of the proposed human-aware trajectory planning method in-

clude the hybrid approach for generating trajectory candidates, as well as the multifaceted

objective function that assesses trajectories from the perspective of navigation task per-

formance and human discomfort. As the proposed HUMAP algorithm solves the problem

of receding horizon trajectory planning for dynamic systems, the trajectory candidate

with the lowest cost is selected as the valid trajectory, whose first velocity command is

applied by the mobile base controller.

The hybrid method for the trajectory candidate generation integrates the pedestrian

motion model with the well-established velocity sampling in the space of admissible con-

trols [144, 161] producing uniformly curved trajectories.

The first trajectory generator employs the Social Force Model -based [1] pedestrian

motion model extended with an additional component based on the Fuzzy Inference Sys-

tem to obtain emphasised collision avoidance behaviours and motion legibility in dynamic

scenarios. The model-based generator produces concentrated trajectories avoiding colli-

sions and following a local goal. The parameters of the baseline pedestrian motion model

have been calibrated in [25] based on video sequences of real-world pedestrians passing

each other. However, the parameters of the model formulation, that best fitted the refer-

ence data, displayed considerable standard deviations from the mean values. Therefore,

the model-based trajectory generator of the HUMAP supplies the model with parameters

across the spectrum of their meaningful values, resulting in the generation of numerous

trajectory candidates using the deterministic pedestrian motion model.

The multifaceted objective function assesses the cost of trajectories from the perspect-

ive of navigation task performance (collision avoidance, motion efficiency, path length),

as well as human discomfort (i.a., executing natural motions, respecting personal spaces,

enhancing motion legibility). The objective function is composed of numerous cost func-

tions, each reflecting an individual aspect involved in the grounded requirements of social

robot navigation (Sec. 5.8). As the objectives of classical and human-aware perspectives

are contradictory, the planner searches for a Pareto-optimal solution in each planning

step, successfully achieving real-time operation.
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8.2 Results discussion

As a part of this thesis, comparative experiments of various local trajectory planning al-

gorithms have been conducted in simulation and real-world environments. The tests aimed

to evaluate the multifaceted performance of the traditional algorithms, that treat humans

as typical obstacles, against the state-of-the-art local trajectory planners specialised for

human-aware robot navigation, including the proposed HUMAP method. In all studies,

the TIAGo robot has been used (Sec. 7.1).

8.2.1 Thesis 1

Thesis 1 suggests that state-of-the-art human-aware trajectory planners do not signific-

antly outperform traditional algorithms in terms of discomfort mitigation among humans

in proximity to the robot.

The validation of the thesis relied on two experimental scenarios – static and dynamic,

both involving a robot and two human participants but interacting in different ways. Tests

were conducted as a controlled study to isolate the factors influential to the experiments’

results (Sec. 7.3). Each tested trajectory planner (four traditional and two socially-aware

algorithms) has been using the same environment model (both the static map, as well as

the equal configuration of costmaps generated in real-time), and the same initial and goal

poses for each trial of a scenario. The evaluation criteria, originating from the grounded

requirements for social robot navigation, include the assessment of the robot’s task per-

formance, motion naturalness, and the perceived safety of humans that is affected by the

unfocused interaction with the robot executing navigation tasks in test scenarios. The de-

gree to which the evaluation criteria have been met can be verified using the quantitative

indicators of the SRPB .

Perceived safety of humans The perceived safety of humans surrounding the nav-

igating robot has been assessed with, i.a., the metric reflecting the scale of intrusions

into humans’ personal spaces. This indicator reflects the fundamental aspect of proxemics

theory [47] and is a well-established objective of human-aware motion planning methods.

The results of the study (Tab. 7.3) show that across all test scenarios, the traditional

TEB algorithm intruded personal zones at a similar or lower scale as its human-aware spe-

cialisations – HaTEB and CoHAN while reaching the goal in substantially shorter time.

In contrast, the HaTEB planner, performed better than the traditional DWA planner

only by 1 p.p. in the static scenario, but at the cost of task execution efficiency, requiring

approximately 115% more time to achieve the target pose. Considerable results in terms

of respecting the personal spaces were achieved by other reliable traditional trajectory
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planners, i.e., DWA and Trajectory Rollout .

Another indicator, against which the examined methods were tested, evaluates the

legibility of the robot’s motion, as reflected by its heading directly into a human. Again,

the traditional TEB outperformed its both socially-aware specialisations in 75% of test

cases, while another classical planner, Trajectory Rollout , performed comparably or better

than HaTEB or CoHAN across scenarios.

Robot motion naturalness The robot’s motion naturalness, selected as the second

criterion for the comparison of algorithms, examines, i.a., the smoothness of the robot’s

velocity profile. In that matter, the traditional velocity sampling planners – DWA and

Trajectory Rollout substantially outperformed other algorithms, providing smoother tra-

jectories in terms of linear and angular velocities.

Navigation task performance The overall performance of the task execution of the

robot is also included in the evaluation criteria. In each scenario, the classical DWA and

Trajectory Rollout approaches required the least time to reach the goal poses, while also

traversing the shortest paths with the least heading changes along the way. Notably, in

most cases, the human-aware trajectory planners maintained bigger gaps from surrounding

obstacles.

Summary Since social robot navigation is posed as a problem of contrary criteria (task

performance against social awareness), the quantitative outcomes of the study have to

be investigated holistically. Three criteria were selected for the comprehensive assessment

of examined methods and validating the thesis 1. In all of them, traditional trajectory

planners selected for the study performed better or similarly to the algorithms specialised

for obtaining social acceptance; therefore, the thesis has been proved.

Overall, the study described in Sec. 7.3 involved several well-established planners and

provided the baseline assessment of the social acceptance (reflected by the SRPB ’s quant-

itative metrics) of the traditional and human-aware robot navigation algorithms. It aimed

to illustrate whether socially-aware local trajectory planning is still an open problem and

whether the development of a novel algorithm is justified.

8.2.2 Thesis 2

Thesis 2 suggests that it is possible to develop an algorithm that demonstrates navigation

performance comparable to traditional trajectory planners and surpasses state-of-the-

art human-aware trajectory planners in alleviating human discomfort. The developed

HUMAP planner is employed to demonstrate the thesis.
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The performance of the proposed approach was compared against other planners in

three challenging scenarios that are typical for robots subjected to unfocused interac-

tions with humans in dynamic environments. Test scenarios constitute various types of

situations, identified as standard evaluation protocols [10], namely – crossing , overtak-

ing , and passing . Each scenario involved two human subjects and a robot. To validate

the thesis 2, large-scale simulation study as well as real-world experiments have been

conducted (Sec. 7.4), providing trajectory similarity of human participants in each trial.

The setup of the navigation ecosystem was common among all (13) tested planners

including 4 traditional approaches, and 8 human-aware planners (5 of which are learning-

based), complemented with the proposed socially-aware HUMAP algorithm.

The evaluation criteria are similar to those for validating thesis 1, encompassing the

robot’s task performance, motion naturalness, and the perceived safety of humans, but

also include robustness of navigation task execution. Demonstrating the extent to which

the evaluation criteria have been met utilises the quantitative indicators implemented in

the SRPB benchmark system.

Robustness The first criterion for the comparison of various algorithms focuses on

their robustness, which is understood as the ability to complete the designated navigation

tasks. The assessment relies on a success rate calculated for different planners based on

their 100 simulated and 5 real-world tests (Tab. 7.4 and 7.5).

The highest robustness was achieved by the HUMAP , which effectively finished 100%

of simulated and real-world experimental trials (Fig. 7.15). The robustness of the planner

is primarily caused by the environmental awareness integrated into the FSM ’s predicates,

which orchestrate the HUMAP ’s behaviours. Particularly, one of them performs additional

actions to, e.g., gather environment observations in case of an occluded global path.

Nonetheless, the TEB planner achieved a success rate of 100% in overtaking and

passing scenarios, but 96% in crossing . The DWA exhibited a lower success rate in crossing

scenario, similarly as the Trajectory Rollout , whose degradation in this setup indicates

potential unsuitability for highly dynamic environments. On the other hand, Elastic Bands

displayed notably lower success rates in overtaking scenarios, which suggests its limited

applicability for environments with narrow passages.

Besides the HUMAP , the SRL-EBand and CoHAN algorithms emerged as the most re-

liable human-aware trajectory planners with 78–95% success rates. Although the HaTEB

completed 80–90% trials in crossing and passing tests, it obtained only 50% success rate

in the overtaking scenario.

While analytical trajectory planners obtained various but relatively high success rates,

the DRL-based planners, adapted for operating in populated environments performed
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substantially less reliably. In the simulation trials, the GA3C-CADRL, SARL, SARL∗,

and RG’s DRL algorithms exhibited a 0% success rate across all scenarios, whereas the

DRL-VO demonstrated 38% success rate in the simulated crossing scenario but 2% in

passing , and 0% in overtaking .

Several DRL-based planners managed to traverse only segments of reference paths.

However, in some trials, approaches with 0% success rates reached up to 80% of the ref-

erence paths before the task terminated due to the prolonged oscillations of the mobile

base or experiment timeouts (Sec. 7.4.3). Inadequate success rates of DRL-based planners

disqualified them from real-world tests. Although algorithms from that category typic-

ally perform well in tests conducted by the authors, limited generalisation to diverse

environments and the complexity of scenarios selected for evaluation led to their poor

performance. Additionally, the policies of DRL-based planners were not tailored for the

target environments, but rather sensor data provided by the robot have been adjusted for

those algorithms.

Navigation task performance The second evaluation criterion takes into account the

performance of navigation task execution with different trajectory planning algorithms.

In real-world and simulated environments, the traditional DWA outperformed other

planners in terms of motion efficiency, i.e., the time required to reach the goal pose. In

contrast, human-aware trajectory planners with considerable robustness (SRL-EBand ,

HaTEB , CoHAN , and HUMAP) required longer times to reach goals due to the need for

additional manoeuvres to navigate around humans. However, this trade-off is justified by

the reduced disruption to surrounding humans.

Notably, in the crossing scenario, the HUMAP achieved comparable or better results

in terms of motion efficiency compared to other planners. This is due to its environmental

awareness and dedicated behaviour for handling “crossing” situations. Furthermore, in

the passing scenario, only the DWA outperformed the HUMAP , while in the overtaking

setup, the HUMAP completed tasks significantly faster than other human-aware traject-

ory planners.

Robot motion naturalness Another aspect of the comparison criteria relates to the

naturalness of the robot’s movements, where the most important factor is the smoothness

of linear and angular velocities.

In that matter, TEB -based planners exhibited notably more rough angular velocity

profiles than the DWA and HUMAP approaches. While the traditional DWA and Tra-

jectory Rollout planners consistently performed best across all scenarios, the HUMAP

achieved scores 20-50% higher, but the second best-performing human-aware planner
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(SRL-EBand) displayed measures 175-300% higher.

Although the HUMAP outperformed other human-aware planners in velocity smooth-

ness scores, its performance was slightly inferior compared to traditional algorithms. How-

ever, it is explainable by the necessity to perform additional manoeuvres to enhance the

perceived safety of humans.

Perceived safety of humans The crucial criterion of the human-aware trajectory

planners’ comparison regards the perceived safety of humans, which might be affected by

the robot’s motions.

One of the relevant aspects concerning humans’ perceived safety relates to the in-

trusions into personal spaces, where the HUMAP consistently achieved the best or the

second-best results in all scenarios, being outperformed only by the CoHAN approach in

the real-world overtaking scenario by 0.52 pp. and by the HaTEB in the simulated passing

scenario by 2.16 pp. Notably, the HUMAP planner demonstrated superior performance

in most real-world scenarios.

Another concept of perceived safety is the motion legibility assessed as human dis-

comfort caused by the robot’s heading direction. The HUMAP achieved the best results

in all scenarios, excluding the apparent outcomes of the Elastic Bands approach (detailed

in Sec. 7.4.8) in the simulated overtaking and passing scenarios.

The assessment of human discomfort caused by the robot’s inappropriate passing speed

[72] is also taken into consideration in the comparison of planners. The HUMAP achieved

the best results in the overtaking scenario and performed better or comparably to the

CoHAN in the crossing interaction. Interestingly, the classical TEB planner displayed

superior performance in the passing scenario, outperforming other planners in both simu-

lation and real-world settings by approximately 2-2.5 pp, while the HUMAP significantly

outperformed other human-aware planners in that case.

Summary The multifaceted assessment criteria have been considered to quantify the

performance of the developed HUMAP method. The proposed algorithm aims to mitigate

human discomfort during unfocused interactions with the robot while providing task per-

formance efficiency comparable to traditional methods and high robustness in challenging

scenarios.

The results of the large-scale simulation experiments as well as real-world tests demon-

strated the surpassing performance of the HUMAP local trajectory planner. According

to the standardised study-based metrics implemented in the SRPB , the planner not only

outperforms state-of-the-art methods in terms of reducing human discomfort but also

ensures reliable and efficient navigation task execution across various dynamic scenarios;
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hence, thesis 2 has been proved.

What is more, the experiments performed to prove the thesis 2 involved several traject-

ory planners examined during the tests in support of thesis 1. The outcomes of the reused

algorithms identify that the differences between investigated traditional and human-aware

methods were consistent across the studies despite the variances in evaluation scenarios.

Therefore, the evidence for thesis 1 has been expanded.

8.3 Future work

This dissertation examines the state-of-the-art in the social robot navigation field, as well

as compares the proposed contributions against various methods frequently applied for

practical uses. The thorough consideration allows for defining future work perspectives

regarding the developed methods.

Validation of the proposed metrics Metrics implemented in the SRPB were used

throughout the experiments for assessing the degree of fulfilment of the grounded require-

ments by different robot navigation algorithms. However, we did not attempt to revalidate

the correlation between metric values and the impressions of humans interacting with the

robot, as the implemented metrics constitute continuous models of findings from prior

user studies or are directly derived from principles discussed in the literature (Sec. 4.1).

The accuracy of the implemented metrics could be validated with a multi-scenario

user study involving human participants interacting with a robot operating with different

motion planning algorithms. Then, the correlation of metric scores, obtained for differ-

ent navigation setups, could be quantified against human ratings. Such a study; however,

poses a significant organisational effort [99, 87, 4, 7], and is close to the “ideal” evaluation

method defined in [35], requiring the involvement of numerous subjects in a large-scale

study, which contradicts the primary idea of developing automatic benchmarks for quantit-

ative evaluation, e.g., SRPB . A more cost-efficient alternative is a video-based evaluation,

employed in numerous works [111, 335, 86], that relies on presenting the videos of a robot

operating with different planning algorithms to subjects. The study participants could

then be asked to score the robot’s behaviour in terms of performance and acceptance of

interaction with humans.

Moreover, conducting a user study that aims to gather first-hand human insights

against the values of metrics implemented in various benchmarks (Sec. 3.3.3) could be

a significant contribution to the social robotics field and a promising future work perspect-

ive. Additionally, the importance of heuristic-based human-perceived safety indicators,

e.g., [395], might also be validated in such an experiment.
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Composite metrics for the SRPB system During the experiments, it has been ob-

served that methods like the Elastic Bands proved to outperform others in terms of

some SRPB metrics, e.g., intrusions into personal spaces, but primarily because the

human-robot interactions intended for a specific scenario, e.g., “crossing” (Sec. 7.4.3),

were hindered due to slow progressive movements that emerged when the robot was com-

manded by an ineffective trajectory planner. Therefore, the analysis of benchmark scores

achieved by planners designated for human-robot interaction should not only consider hu-

man discomfort metrics but also performance indicators related to the robot navigation

task.

Currently, the SRPB benchmark system provides users with a variety of metrics that

must be analysed holistically. Thus, it would be appropriate to develop two unified in-

dicators separately calculated for metrics regarding the classical navigation requirements

and metrics concerning requirements for social robot navigation, as this could significantly

ease the initial overview of results obtained with the benchmark.

Extensive examination of the HUMAP’s performance Most experiments in-

volving HUMAP were performed in a specific laboratory environment in standardised

scenarios posing realistic challenges for service robots operating in human surroundings.

More studies in different environments could provide more insights regarding the perform-

ance of the HUMAP . Although the proposed planner has been evaluated in crowded but

static scenarios in the development stage, an extensive evaluation within dense dynamic

crowds could provide more insights regarding its suitability for populated environments.

Additionally, the heuristic implemented in the behaviour associated with the HUMAP ’s

Yield Way Crossing state, provided reliable solutions for one or two humans nearby, but

was not tested in dense crowds.

Future work perspectives involve comparing other human-aware navigation techniques

with our approach. Particularly interesting would be to evaluate the HUMAP against the

GTEB [333] method, which accounts for spatiotemporal constraints and focused inter-

action aspects. Such a study would be a good benchmark of the proposed algorithm

and might identify practical drawbacks of the HUMAP in focused interaction scenarios.

However, even though implementation of the TEB , which GTEB originates from, is open-

source, its human-aware specialisation is not publicly available. An extensive comparison

of HUMAP with DRL-based planners with policies tailored for specific environments is

also planned.

Enhancements of the HUMAP local trajectory planner The HUMAP exhibited

the highest computational burden among all examined methods while still being capable of
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real-time operation at a frequency of 4 Hz. However, the trajectory generation and scoring

strategies are suitable for parallelising, which could lead to reducing the computational

burden of the algorithm. Alternatively, the user might favour expanding the number

of trajectory candidates investigated in each replanning procedure and maintaining the

reference frequency of operation.

One of the analyses shows that model-based trajectories are the minority among the

candidates selected as optimal in each time step (Sec. 7.5.2). However, a visible correlation

between the scenario type and the percentages is found. Therefore, tests with different

baseline pedestrian motion model parameters might be useful to explain the observed

tendency. Since the employed pedestrian model-based trajectory generator contributed

at a limited scale to the HUMAP ’s outcomes, an interesting future work perspective

would be to compare the results of the presented hybrid trajectory generation scheme in

a setup consisting of the velocity sampling generator and one of the investigated DRL-

based approaches. We argue that such an integration might be an interesting alternative

for end-to-end learning methods.

The implemented human trajectory forecasting scheme assumes the constant velocity

model; however, social actors in the environment may change their behaviour influenced

by the robot’s movement. Thus applying a more sophisticated method for predictions,

e.g., proposed in [197], would be relevant in future studies.

The implemented formulations of human-aware spatial cost functions are designated

for unfocused human-robot interactions, i.e., depend on human velocities [399] regardless

of the robot task context. Instead, introducing dynamically modelled proxemics zones (of

individual humans and F-formations) will provide a comprehensive framework also for

the focused interactions. This problem has already been addressed in [359, 8].

Currently, the operation of the robot relies on in-place adjustment of the final orient-

ation to align with the desired orientation. While the final in-place rotation occurs only

when the goal orientation significantly differs from the final part of the path, to enhance

the robot’s motion naturalness, a smoother transition to the goal orientation would be

desirable. Such a robot behaviour emerges with the TEB -based planners.

Recent trends show that the substantial development perspectives for social robot nav-

igation go well beyond the motion generation scheme with trajectory planners, but rather

focus on the orchestration of navigation tasks to comply with social norms [11]. Therefore,

extending the HUMAP ’s behaviour-based imperative, or integrating with a higher level

orchestrator [19] for enriched contextual awareness, could be the most influential topic for

future works.
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and V. Matellán Olivera, “Defining adaptive proxemic zones for activity-aware nav-

igation,” in Advances in Physical Agents II (L. M. Bergasa, M. Ocaña, R. Barea,

E. López-Guillén, and P. Revenga, eds.), (Cham), pp. 3–17, Springer International

Publishing, 2021.

[253] E. Repiso, A. Garrell, and A. Sanfeliu, “Adaptive side-by-side social robot naviga-

tion to approach and interact with people,” International Journal of Social Robotics,

vol. 12, pp. 909–930, 2020.

[254] E. Repiso, F. Zanlungo, T. Kanda, A. Garrell, and A. Sanfeliu, “People’s v-formation

and side-by-side model adapted to accompany groups of people by social robots,”

in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), pp. 2082–2088, 2019.

[255] D. C. Moore, A. S. Huang, M. Walter, E. Olson, L. Fletcher, J. Leonard, and

S. Teller, “Simultaneous local and global state estimation for robotic navigation,”

in 2009 IEEE International Conference on Robotics and Automation, pp. 3794–3799,

2009.

[256] S. Macenski, M. Booker, and J. Wallace, “Open-source, cost-aware kinematically

feasible planning for mobile and surface robotics,” 2024.
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Appendix A

Asymmetric Gaussian function

The method of calculating the value of the multivariate asymmetric Gaussian func-

tion [399], commonly referred to as fmag in Chapter 4 is presented in Alg. 12.

Algorithm 12 Algorithm to compute the value at (x, y) of a bivariate Asymmetric

Gaussian function with a mean of (xc, yc), an orientation of θ and variances of varh, vars,

and varr
α← arctan 2(y − yc, x− xc)− θ + π

2

Normalize α

if α ¬ 0 then

var← varr
else

var← varh
end if

a← cos2 θ

2 · var2
+

sin2 θ

2 · var2
s

b← sin(2θ)
4 · var2

− sin(2θ)
4 · var2

s

c← sin2 θ

2 · var2
+

cos2 θ

2 · var2
s

return e−(a(x− xc)2 + 2b(x− xc)(y − yc) + c(y − yc)2)
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Appendix B

Gaussian function in the angular

domain

The algorithm of calculating the value of the univariate Gaussian function appointed in

the normalised angle domain, f ang is presented in Alg. 13.

Algorithm 13 Algorithm to compute the value at x of the angle-based univariate Gaus-

sian function with a mean of µ and a standard deviation of σ

g1 ← calculateGaussian(x, µ, σ)

g2 ← calculateGaussian(x, µ− 2π, σ)

g3 ← calculateGaussian(x, µ+ 2π, σ)

return max(g1, g2, g3)

function calculateGaussian(x, µ, σ)

return
1

σ
√

2π
e
−(x− µ)2

2σ2

end function
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