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Abstract

Autonomous robot navigation is a key capability supporting various mobility-dependent
tasks in robotics. As robots of diverse types increasingly operate in public spaces, de-
veloping a comprehensive social robot navigation system is one of the essential research
tasks. However, this requires a prior understanding of the principles of social acceptance,
encompassing factors that may cause human discomfort and rules for robot navigation
in populated areas. Approaches existing in the literature often overlook many aspects of
social navigation, which presents a multifaceted challenge. Furthermore, systems bench-
marking navigation techniques lack essential mathematical indicators for assessing human
discomfort levels, highlighting the need for further research in this field.

This thesis aims to develop a trajectory planning algorithm that enhances the navig-
ation quality of robots operating in environments shared with people by reducing human
discomfort resulting from robot movement while maintaining the navigation performance
of traditional methods.

The dissertation contributes to several key aspects of social robot navigation. Firstly,
the work defines the requirements for social robot navigation. A literature review was
conducted to gather insights for grounding social robot navigation requirements, which
should be implemented in comprehensive navigation systems. The requirements taxonomy
distinguishes the following groups of necessities: requirements regarding humans’ physical
and perceived safety, requirements for assessing robot motion naturalness, and compliance
with social conventions.

Secondly, the thesis addresses the challenge of quantitatively assessing social robot nav-
igation. While various metrics for evaluating traditional robot navigation concepts have
been implemented in different benchmark systems, indicators that assess human-aware
robot navigation are lacking. Therefore, additional metrics were developed to evaluate
the compliance of navigation algorithms with the grounded requirements. The substan-
tially original aspect is that the social awareness indicators account for human tracking
uncertainty, facilitating the evaluation using robot onboard perception. The novel metrics
were introduced and integrated into the new benchmarking system, which can be used to
test robots operating in simulated and real-world environments.

Thirdly, the dissertation presents a novel human-aware local trajectory planner that
employs the hybrid trajectory candidates generation method and spatiotemporal cost
functions. The algorithm developed to enhance social robot navigation is a geometric
planner that addresses the issue of receding horizon trajectory planning for dynamic
systems operating in unstructured environments. The proposed method is suitable for
differential drive and holonomic mobile robots. The hybrid approach for producing vari-

ous trajectory candidates employs two generation methods for online planning. The first

>



strategy is based on a pedestrian motion model, whereas the second employs a technique
of sampling feasible velocity control commands. The novel aspect of the first method
lies in extending a pedestrian motion model to obtain emphasised collision avoidance
behaviours and improved motion legibility compared to the baseline social force model-
based formulation. Numerous admissible trajectory candidates are produced by exploiting
the parameterisation of the deterministic motion model. The objective function used for
assessing the quality of aggregated trajectories considers collision avoidance and soft con-
straints related to social acceptance encompassing robot motion naturalness, and human
physical and perceived safety measures implemented as spatiotemporal cost functions.
The planner operates based on several behaviours that implement various strategies, en-
abling compliance with social norms and enhancing reliability using environmental context
information.

A multitude of experiments has been conducted to assess the performance and social
appropriateness of the proposed trajectory planning method against various traditional
and specialised methods for social robot navigation, including learning-based approaches.
The evaluation criteria included a range of metrics verifying the compatibility of the al-
gorithms with the requirements for social robot navigation. A controlled study-based,
multi-scenario comparison implemented standardised protocols for evaluating robot nav-
igation in human-populated environments. Analogous scenarios have been performed in
both the real-world laboratory environment and its virtual equivalent to compare the
outcomes obtained from simulations with those observed in the real world.

The experiments demonstrated improved navigation quality of the proposed local tra-
jectory planner. According to standardised metrics derived from social robot navigation
requirements, the developed algorithm outperforms state-of-the-art methods in reducing
human discomfort but also ensures reliable and efficient navigation task execution across
various dynamic scenarios.

Keywords: social robotics, social robot navigation, trajectory planning, quantitative

evaluation



Streszczenie

Autonomiczna nawigacja robotéw stanowi ich podstawowg umiejetnosé, ktora jest wy-
magana do realizacji ztozonych zadan wymagajacych mobilnosci. Roboty réznych typow
coraz czesciej pojawiaja sie w przestrzeni publicznej, zatem opracowanie kompleksowego
systemu nawigacji robotéw spotecznych jest jednym z istotnych zadan badawczych. Wy-
maga to jednak wcze$niejszego sformutowania kryteriéw spotecznej akceptacji, obejmu-
jacych zasady nawigacji robotow w otoczeniu ludzi oraz czynniki mogace powodowaé
ich dyskomfort. Proponowane w literaturze algorytmy czesto pomijaja wiele zagadnien
nawigacji spolecznej stanowiacej wieloaspektowy problem. Co wiecej, narzedzia wykorzy-
stywane do poréwnywania technik nawigacji nie zawieraja ugruntowanych i powszechnie
akceptowanych wskaznikow, co podkresla potrzebe dalszych badan w tej dziedzinie.

Podstawowym celem postawionym w niniejszej rozprawie byto opracowanie algorytmu
planowania trajektorii, ktory poprawi jako$¢ nawigacji robotow dziatajacych w $rodowi-
skach wspoétdzielonych z ludZzmi poprzez zmniejszenie u nich dyskomfortu wywotanego
przez ruch robota przy jednoczesnym zachowaniu wydajnosci nawigacji tradycyjnych me-
tod planowania trajektorii.

Rozprawa wnosi autorski wktad w kilka kluczowych aspektow nawigacji robotéw spo-
tecznych. Po pierwsze, definiuje wymagania wobec nawigacji robotow spotecznych. Prze-
prowadzono przeglad literatury w celu zebrania informacji o wymaganiach dotyczacych
nawigacji robotow spotecznych, ktore powinny zosta¢ uwzglednione w kompleksowych
systemach sterowania robotéw spotecznych. Opracowana taksonomia wymagan wyroznia
nastepujace grupy: wymagania dotyczace zapewnienia fizycznego oraz postrzeganego bez-
pieczenstwa ludzi, wymagania dotyczace oceny naturalnosci ruchu robota oraz zgodnosé
z normami spotecznymi.

Po drugie, praca koncentruje si¢ na kryteriach iloSciowej oceny nawigacji robotow
spotecznych. Rozne wskazniki do ewaluacji zagadnien zwiazanych z tradycyjna nawiga-
cja robotéw zostaly wdrozone w systemach wzorcowych (ang. benchmark), natomiast
wskazniki jakosci do oceny spotecznej nawigacji robotow sa rzadkoscia. W zwiazku z tym
opracowano dodatkowe wskazniki w celu oceny zgodnosci algorytméw nawigacji z wy-
maganiami. Oryginalnym aspektem proponowanych wskaznikow do oceny dyskomfortu
ludzi jest uwzglednienie niepewnosci $ledzenia cztowieka, co umozliwia efektywna jego
ocene przy wykorzystaniu modutéw percepcji robota. Nowe wskazniki zostaty zintegro-
wane z opracowanym systemem wzorcowej oceny, przeznaczonym do ewaluacji jakosci
nawigacji robotoéw dziatajacych w rzeczywistych i symulowanych $rodowiskach.

Po trzecie, rozprawa przedstawia nowe podejscie do lokalnego planowania trajekto-
rii uwzgledniajace obecnos¢ cztowieka, ktéore wykorzystuje hybrydows metode genero-

wania kandydatow trajektorii i przestrzenno-czasowe funkcje kosztu. Algorytm opraco-
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wany w celu zwiekszenia spotecznej akceptacji poruszajacych sie robotow jest planista
geometrycznym, ktéry rozwiazuje problem planowania trajektorii z przesuwanym hory-
zontem dla systeméw dynamicznych dziatajacych w nieustrukturyzowanym srodowisku.
Proponowana metoda jest odpowiednia dla robotéw mobilnych o napedach réznicowych
i holonomicznych. Hybrydowe podejscie do generowania réznych kandydatow trajektorii
wykorzystuje dwie strategie. Pierwsza opiera si¢ na modelu ruchu pieszych, podczas gdy
druga wykorzystuje technike probkowania dopuszczalnych sktadowych wektora predkosci
stanowiacego typowe polecenie sterujace baz jezdnych. Oryginalnym aspektem pierwszej
strategii jest rozszerzenie modelu ruchu pieszych w celu uzyskania realistycznych zachowan
unikania kolizji oraz zwigkszonej czytelnosci ruchu w poréwnaniu z podstawowa posta-
cia oparta na modelu sity spotecznej. Wykorzystujac parametryzacje deterministycznego
modelu ruchu, tworzone sg liczne dopuszczalne trajektorie.

Funkcja celu wykorzystywana do oceny jakosci wygenerowanych trajektorii uwzgled-
nia unikanie kolizji i migkkie ograniczenia zwiazane z akceptacja spoteczng obejmujaca
naturalnosé¢ ruchu robota oraz fizyczne i postrzegane bezpieczenstwo ludzi wyrazone jako
przestrzenno-czasowe funkcje kosztu. Schemat dziatania planisty oparty jest na kilku za-
chowaniach realizujacych zréznicowane strategie umozliwiajace przestrzeganie norm spo-
tecznych oraz zwiekszenie niezawodnosci poprzez wykorzystanie informacji o kontekscie
srodowiskowym.

Przeprowadzono wiele eksperymentéw w celu oceny wydajnosci i spotecznej akcepto-
walnosci proponowanej metody planowania trajektorii w poréwnaniu z tradycyjnymi me-
todami nawigacji robotéw i dedykowanymi do dziatania wsréd ludzi, w tym podejsciami
opartymi na uczeniu ze wzmocnieniem. Kryteria ewaluacji obejmowalty szereg wskazni-
kow weryfikujacych zgodno$é algorytméw z wymaganiami nawigacji robotéw spotecznych.
W kontrolowanym badaniu zweryfikowano dziatanie réznych algorytmoéw w wielu scenariu-
szach zaprojektowanych na podstawie standardowych wytycznych wobec oceny spoteczne;j
nawigacji robotéw. Analogiczne scenariusze zostalty przeprowadzone zaréwno w rzeczywi-
stym srodowisku laboratoryjnym, jak i jego wirtualnym odpowiedniku, aby poréwnaé
wyniki uzyskane w symulacji i w $wiecie rzeczywistym.

Badania wykazaty, ze proponowane rozwigzanie problemu lokalnego planowania tra-
jektorii poprawia jako$¢ nawigacji robotow pracujacych w srodowiskach wspotdzielonych
z ludZzmi. Zgodnie ze wskaznikami wynikajacymi z wymagan spotecznej nawigacji ro-
botow, opracowany algorytm przewyzsza dotychczasowe metody w zmniejszeniu dyskom-
fortu u ludzi pod wptywem ruchu robota, jednoczesnie zapewniajgc niezawodne i wydajne
wykonywanie zadan nawigacyjnych w réznych dynamicznych scenariuszach.

Stowa kluczowe: robotyka spoteczna, spoteczna nawigacja robotéw, planowanie tra-

jektorii, ewaluacja iloSciowa
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Chapter 1
Introduction

Social robot navigation is a substantial branch of the mobile robotics field, as it funda-
mentally alters the dynamics of human-robot interactions. With the growing popularity
and application areas of service and assistive robots, the interaction between humans and
robots has become a vast field of study. People performing tasks in populated environ-
ments typically behave in a manner that avoids disrupting other humans’ motions while
trying to accomplish their tasks as effectively as possible [1]. The same guidelines apply to
robots that assist workers in, e.g., restaurants and hospitals. Such activities are referred
to as unfocused interactions [2], tackled by social robotics at the motion planning level

with human-aware constraints.

1.1 Motivation

Autonomous robot navigation is a fundamental capability, upon which other complex
tasks requiring robot mobility depend. Classical robot navigation entails environment
sensing, map building, localisation, planning, and motion execution, focusing on objectives
such as avoiding collisions with obstacles and reaching destinations quickly [3].

However, the social robot navigation concept introduces additional considerations to
the classical formulation, regarding humans as special types of objects in the environment,
with which interactions must be handled appropriately. As an interdisciplinary field, social
robotics adapts expertise from different disciplines such as artificial intelligence, psycho-
logy, and natural language processing. This collaboration produces a wide range of results
and corresponds to the complexity of human-robot interaction.

Over the years, the range of robots interacting with humans has been employed in
diverse ways. In the late 2000s, Satake et al. [4] established a field study in a shopping
mall where a robot recommended shops to people. A long-term validation of a robot

operating in a crowded cafeteria was conducted by Trautman et al. [5]. Another extended
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(a) Pudu Bellabot (b) Pudu Puductor (¢) Pudu Swiftbot

deployment was accomplished by Biswas and Veloso [6], whose CoBots reached 1000 km
of autonomous navigation. In contrast, Shiomi et al. [7] performed a short-term validation
study of a robot operation in a shopping mall. Moreover, multiple challenges for academic
robotic teams are organised, e.g., “Take The Elevator® [8] or “Socially Acceptable Item

7.1 Recently, the popularity of robots for restaurant services (Fig. 1.1a)?, hotel and

Delivery
hospital disinfection (Fig. 1.1b)3, or transportation tasks (Fig. 1.1c)* is rapidly growing,
as they have become commercially accessible. Other applications involve robots for home
assistance and healthcare [9] or various delivery tasks, e.g., mail or packages [10].

Given the emergence of various types of robots performing diverse tasks in public
spaces, it is justified to develop a comprehensive social robot navigation system. However,
it is first necessary to identify the principles of social acceptance. These encompass factors
that may cause discomfort to humans and rules of how robots should navigate in pop-
ulated areas. User studies that precisely indicate how socially navigating robots should
move, based on impressions of human participants, are substantial but often conducted
in a fragmented manner. Therefore, one of the topics of this dissertation was to identify
the requirements and classify them into a standard taxonomy.

Generally, the guidelines to be followed by socially navigating robots include ensuring
the physical and psychological safety of humans, mimicking natural human movement,
and adhering to social norms. Importantly, human-aware robot navigation also inherits
the requirements of classical robot navigation, making socially navigating robots execute
a task with (locally) conflicting goals. Designing and implementing a system that adheres
to all these principles simultaneously enables seamless navigation and social acceptance of
robots operating in populated environments. However, it poses significant challenges and

existing social robot navigation approaches presented in the literature do not investigate

'https://eu-robotics.net/2023-09-erl-mk-smart-city-challenge/ (accessed 23/04,/2024)
2Figure source: https://www.youtube.com/watch?v=DGajUN1icAs (accessed 23/04/2024)
3Figure source: https://www.youtube.com/watch?v=sQHeF4pP8yk (accessed 23/04/2024)
4Figure source: https://www.youtube . com/watch?v=gtUKUOzpZFc (accessed 23/04,/2024)
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even half of the identified requirements in their objectives, overlooking many aspects of the
multi-faceted problem of social navigation. Taking this into consideration, an attempt has
been made to develop a new social robot motion planning framework with a priority
on the mitigation of human discomfort by incorporating numerous requirements in its
objective. Another focus lies in providing the high robustness of the approach for its
suitability for real-world applications.

Furthermore, navigation methods are typically compared with each other either qualit-
atively or quantitatively. Qualitative assessment often involves visually comparing traject-
ories executed by a robot operating with different motion planning algorithms. Instead,
quantitative evaluation of navigation methods is essential for objectively assessing their
performance with invariant evaluation formulas. However, benchmarking systems for so-
cial robot navigation lack various mathematical indicators that allow for assessing the level
of human discomfort, i.e., the degree of requirements fulfilment. Consequently, another
issue addressed in this thesis is the quantitative evaluation of social robot navigation.
The system developed for this purpose proved to be useful in the analysis of experiments’

results.

1.2 Research problem and objectives

The breadth of research on the problem of social robot navigation is significant, as evid-
enced by the numerous literature reviews in the field, each discussing different aspects of
the topic. For example, Gao and Huang [10] examined the evaluation techniques employed
in prior studies, Francis et al. [11] proposed various guidelines for conducting social navig-
ation studies, while Kruse et al. [12] attempted to identify the key features of human-aware
navigation enhancing human comfort. Moreover, Charalampous et al. [13] and Maoller
et al. [9] reviewed the state-of-the-art focusing on perception aspects, whereas Chik et
al. [14] highlighted different motion planning system structures. Rios-Martinez et al. [2]
delved into sociological concepts regarding the challenges of human-aware navigation.
Furthermore, Medina Sanchez et al. [15] verified modern algorithms for environment fea-
ture extraction, human trajectory prediction, and planning, while Guillén-Ruiz et al. [16]
classified socially-aware navigation methods according to the techniques implemented in

robots to handle interaction or cooperation with humans.

Topic relevance The recent survey [17] discusses relevant research directions in human-
aware robot navigation. Referring to their paper, this thesis raises and contributes to two
out of three core challenges constraining the seamless deployment of socially navigating

autonomous robots in crowded environments, specifically planning and evaluation.
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Planning is a broad topic, involving, i.a., strategic decision-making and symbolic plan-
ning for robot tasks. This thesis focuses on the geometric planning of robot trajectories.
The second fundamental challenge in the field is the evaluation of social robot navigation
systems. Various metrics for assessing human awareness and robot navigation perform-
ance are proposed to address this issue. The metrics calculation has been implemented in

the benchmarking system developed as a part of this thesis.

Social robot navigation definition In our work, a socially navigating robot (or
“robot navigating in a human-aware manner”) is an autonomous machine designed to act
and interact with humans in shared environments, mitigating potential human discomfort
by mimicking social behaviours and adhering to norms. Robot navigation requirements
are derived from user studies illustrating human preferences during an interaction, while
robot decision-making autonomy relies on perception and planning capabilities.

In this work, the “social robot navigation” phrase is used interchangeably with “human-
aware navigation”; however, an attempt to distinguish the meaning between those has

been recently proposed in [18].

Objectives The aim of this thesis is the development of an algorithm that increases
the efficacy of robots navigating in environments shared with humans. This is achieved
by the mitigation of human discomfort induced by robot movement while preserving the
navigation performance of traditional methods.

An extensive literature review has been performed to extract requirements for so-
cially navigating robots reflecting the factors that cause human discomfort. Then, the
quantitative criteria for assessing social navigation algorithms were designed and imple-
mented in the benchmarking system that is suitable for evaluating aspects of both robot
navigation performance and social awareness. Subsequently, a new local trajectory plan-
ning method has been developed, which considers the efficiency of navigation tasks, the
physical and perceived safety of surrounding humans, and implements the adherence to
social norms. Finally, a social robot control system has been integrated with the proposed
planning algorithm and the benchmark to conduct comparative experiments against the
state-of-the-art motion planning methods. The system has been extensively tested both

in simulation and in real-world experiments.

1.3 Thesis statement
In this dissertation, theses are formulated as follows:

Thesis 1 State-of-the-art human-aware local trajectory planners for mobile robots do not
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perform superior to traditional algorithms regarding the navigation task efficacy and mit-

1gating discomfort among humans in the robot’s environment.

Thesis 1 suggests that quantitative evaluation of human discomfort and the robot’s
navigation task efficacy is feasible with metrics relevant for assessing social robot navig-
ation. A thorough comparison of local trajectory planners relies on conducting the con-
trolled study, in which each validated algorithm operates under the same environmental
conditions and factors influencing the results of experiments are isolated.

The evaluation criteria are multifaceted and originate from the grounded requirements
for social robot navigation. They include the robot’s task performance, measured as the
time required to reach the goal pose, as well as human discomfort ratings, assessed sep-
arately regarding the robot’s motion naturalness, and the perceived safety of humans.

Thesis 1 could be proven if traditional algorithms achieve better or comparable quant-

itative indicators of robot performance and human comfort ratings.

Thesis 2 A local trajectory planning method can be developed to enable robots to oper-
ate effectively in environments shared with humans, with the effectiveness quantified by
surpassing performance compared to existing traditional and human-aware local trajectory
planning algorithms regarding robustness, navigation task efficacy, and mitigating discom-

fort among humans in the robot’s environment.

Thesis 2 suggests that developing a method for adapting robots to operate in populated
environments is feasible, and the degree of adaptation is measurable. To substantiate
this thesis, performance verification of a new local trajectory planner against existing
traditional and human-aware approaches must be conducted. A thorough comparison of
algorithms requires the implementation of a controlled study, such as for proving thesis 1.

Thesis 2 states that an alternative planner could perform comparably to traditional
trajectory planners regarding navigation task performance and could surpass state-of-
the-art human-aware trajectory planners in terms of social indicators, assessed separately
for the naturalness of robot movements and human perceived safety. Compared to the
verification of thesis 1, the evaluation criteria also consider the robustness of examined
algorithms, which should be advantageous in a novel method.

Thesis 2 could be proven if a method is established that achieves comparable or better
results regarding quantitative metrics of robot navigation performance and better scores

concerning human comfort indicators than existing approaches.
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navigation methods with the motion planning methods against the
system proposed approach

Figure 1.2: Basic workflow of the tasks performed as part of preparing the thesis.

1.4 Thesis contribution

This thesis investigates human-aware robot navigation from different perspectives and
contributes to the advancements in the field. The significant additions to the state-of-
the-art are outlined below, while the general workflow of tasks conducted to prepare this
dissertation is outlined in Fig. 1.2. Parts of the thesis have already been published as

journal articles and conference papers, which are identified in relevant contributions.

Contribution 1 Review of the state-of-the-art literature to obtain study-based require-

ments for social robot navigation.

The extensive literature review is a substantial contribution to the research topic
discussed in this work. In contrast to previous review works, our survey aimed to explicitly
demonstrate how the key concepts explored by robotics and social sciences researchers can
be transferred into requirements for robot control systems implementing robot navigation
tasks.

Contribution 1.1 Grounding of social robot navigation requirements to form a taxonomy

of elementary necessities.

Our review reaches user studies to gather insights and perform the grounding of social
robot navigation requirements (Chapter 2), which should be implemented in compre-
hensive navigation systems. Specifically, the taxonomy of requirements distinguishes the
following groups of necessities: requirements regarding the physical and perceived safety
of humans, requirements for assessing robot motion naturalness, and compliance with
social conventions. After identifying those core principles, perception, motion planning

and evaluation methods are reviewed in Chapter 3. A proper grounding of fundamental
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features helps to address the problem of researchers, who often try to implement different

robot control strategies in an ad-hoc manner to mimic human behaviours.

Contribution 1.2 Classification of existing social robot navigation approaches and state-

of-the-art evaluation benchmarks according to the proposed requirements’ taxonomy.

As a part of the literature survey, the classification of state-of-the-art methods for
adapting robots for operation among humans has been established based on the proposed
requirements taxonomy. Specifically, the recent socially-aware robot navigation algorithms
(Tab. 3.1 and 3.2), as well as benchmarks for the quantitative evaluation (Tab. 3.5) have
been organised.

The classification of the social robot navigation requirements established in this study
enables the identification of the gaps in motion planning algorithms, the drawbacks of
state-of-the-art evaluation methods, and the proposal of relevant future work perspectives
for researchers in the field.

The literature review is presented in Chapter 2 and 3, and those chapters constitute

the extended version of our survey that has been published in [19].

Contribution 2 Design and implementation of quantitative metrics for evaluating social

robot navigation.

The problem of the quantitative assessment of social robot navigation is one of the
core challenges identified in [17]. Various metrics for the evaluation of traditional ro-
bot navigation concepts have already been implemented in different benchmark systems,
but the indicators for assessing human-aware robot navigation are lacking. Therefore,
we designed additional metrics to evaluate algorithms’ compliance with the requirements
regarding the physical and perceived safety of humans, as well as requirements for assess-
ing robot motion naturalness. The metrics proposed for evaluating human-aware robot
navigation are defined directly based on the findings from various user studies and the
grounded requirements.

The novel metrics were embedded in our Social Robot Planner Benchmark (SRPB)
system, which regards the assessment from the traditional and human-aware navigation
perspectives. Compared to the state-of-the-art benchmark systems, our approach expands
the diversity of metrics for evaluating navigation performance and introduces novel met-
rics focused on human awareness concepts. Another substantially original aspect is that
the social-awareness indicators account for people tracking uncertainty, facilitating the
evaluation using robot onboard perception. Our benchmark can be used to test robots

operating in simulated and real-world environments. Moreover, metrics were formulated

19



to allow the benchmark’s usage with different robot types (either with nonholonomic or
holonomic drives).
This contribution is thoroughly presented in Chapter 4, the majority of which has

been published in the conference paper [20] and journal article [21].

Contribution 3 Design and implementation of a human-aware local trajectory planner
using the hybrid trajectory candidates generation method and spatiotemporal cost func-

tions.

This work aims to develop an algorithm that enhances the navigation quality of ro-
bots operating in environments shared with people. A key step in achieving that is to
propose a new human-aware trajectory planning method that regards constraints arising
from the presence of humans in the robot’s environment while providing navigation task
performance comparable to state-of-the-art traditional approaches.

The algorithm developed according to the thesis’ objectives, named HUman-Aware
Trajectory Planner MApping the Pedestrians Motion Pattern (HUMAP), is a geomet-
ric planner that solves the problem of receding horizon trajectory planning for dynamic
systems operating in unstructured environments. The proposed approach is suitable for
differential drive and holonomic® robots. Distinctive characteristics of the planner are
the hybrid approach to trajectory candidates generation and the multifaceted objective
function for scoring trajectory candidates.

The hybrid approach for producing various trajectory candidates employs two genera-
tion methods. The first relies on a pedestrian motion model, whereas the second samples
the feasible velocity control commands [22]. The novelty of the approach lies in: extending
the Social Force Model-based [1] pedestrian motion model to obtain emphasised collision
avoidance behaviours and improved motion legibility, exploiting the parameterisation of
the deterministic motion model to produce various trajectory candidates, and combining
two trajectory candidate generation methods for online planning.

In contrast, the objective function regards both navigation performance as well as the
physical and perceived safety of humans. As these objectives are contradictory, the planner
searches for a Pareto-optimal solution in each planning step, successfully achieving real-
time operation. Obedience to social norms is provided using a behaviour-based approach,
as the planner operates in various modes, allowing for capturing customary spatiotemporal

protocols of pedestrian motion.

5The support for holonomic robots is not yet implemented, but it is straightforward to integrate such

robots with the proposed planning framework.
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Contribution 3.1 FExtension of a Social Force Model-based pedestrian motion model with
a Fuzzy Inference System to increase motion legibility and emphasise realistic collision

avoidance.

The baseline Social Force Model-based pedestrian motion model has been extended
with a novel term emphasising proactivity in collision avoidance movements to enhance
motion legibility [23], understood as intent expressiveness. The new component included
in the model is based on a Fuzzy Inference System and affects the generated robot tra-
jectories only in proximity to humans or other robots. The formulated model is called the
Fuzzy-Extended Social Force Model (FESFM) and is used in the model-based trajectory
candidates generator.

This contribution has only been mentioned in the conference paper [24] and is described
in detail in Sec. 5.5.5.

Contribution 3.2 Diversifying trajectory candidates of a deterministic pedestrian mo-

tion model.

Numerous extensions of the original Social Force Model approach were proposed to
develop models specialised for unfocused interactions or specific navigation tasks, e.g.,
accompanying (Sec. 3.2.2). Each formulation establishes a distinctive set of parameters to
be adjusted to obtain a desired robot behaviour. Therefore, a significant part of the SFM
research is related to the calibration of those models, i.e., the search for parameter values
that provide the best approximation of the intended behaviour (Sec. 5.5.3).

The parameters of the baseline pedestrian motion model [25] employed by the model-
based trajectory generator of the HUMAP, were calculated based on human movement
trajectories from real-world pedestrian traffic video sequences. However, the model para-
meters exhibited significant standard deviations from the mean values. Therefore, the
proposed approach evaluates model parameters across the range of meaningful values, so
numerous trajectory candidates are obtained from the FESFM deterministic pedestrian
motion model.

This contribution has been described in [24]. The thesis discusses that topic in Sec. 5.5.7.

Contribution 3.3 Design of cost functions for assessing the social awareness of robot

trajectories.

Implementing social acceptance in robot navigation can be performed in different
ways (Sec. 3.2.2). In the HUMAP, the objective function for scoring trajectory candid-
ates captures constraints related to the physical and perceived safety of humans and the

naturalness of robot motion. The social cost functions included in the objective are based
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on the quantitative metrics implemented in the SRPB, which are directly derived from
the study-based social navigation requirements. Therefore, the transition of findings re-
lated to the offline assessment of robot trajectories has been performed to obtain the cost
functions suitable for online trajectory candidate evaluation.

This contribution has only been briefly described in [24]. It is thoroughly discussed in
Sec. 5.7.

Contribution 3.4 Implementing the contextual awareness for efficient orchestration of

the planner operation using the behaviour-based approach.

A robot’s intelligence is often regarded as utilising contextual information in its im-
perative [13, 26]. Including contextual data is often required for the robots’ obedience to
social conventions (Sec. 2.5).

The HUMAP planner considers environmental information to switch between different
operational behaviours. Specifically, one of the behaviours implements a norm of yielding
a way to a person crossing the robot’s planned path, but additional norms can also be
realised using the behaviour-based framework. Simultaneously, the potential occlusions
of the planned global path are investigated, and, if necessary, the robot’s behaviour is
switched to perform an observatory action. These real-time adjustments enhance the
robot’s robustness in challenging practical scenarios.

This contribution was not previously discussed. The explanation is in Sec. 5.2.

Contribution 4 Comparative experiments of various local trajectory planning algorithms

m simulation and real-world environments.

Experiments conducted for this thesis can be divided into two phases (Fig. 1.2). The
first phase assessed how state-of-the-art methods for classical robot navigation perform
against the recent human-aware algorithms. This part of the study also constitutes the
validation of our SRPB benchmarking system. During the first part, 6 local trajectory
planners have been evaluated in a controlled study, 2 of which are socially-aware meth-
ods. With the quantitative assessment, the proficiency of various planning algorithms has
been compared in terms of navigation performance as well as human awareness in sim-
ulation and real-world environments using a TTAGo robot. The study aimed to identify
whether socially-aware local trajectory planning is still an open problem, and the results
are discussed in Sec. 7.3. The majority of findings in this scope have been published in
the conference paper [20] and journal article [21].

The second phase of the experiments intended to validate the performance of the
HUMAP planner against the state-of-the-art algorithms; hence, various tests were per-
formed. Similarly, the controlled study was employed, and the SRPB benchmarking sys-

tem was used to evaluate the robot’s behaviour when operating with different planners.
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Compared to the first phase of the experiments, different scenarios were designed, but still
conforming to standardised guidelines [10, 11]. During the second part of the experiments,
HUMAP was compared against 12 different state-of-the-art local trajectory planners (5 of
which are learning-based methods) in 3 scenarios, each repeated 100 times, which, to the
best of our knowledge, is the most extensive study in the field. The large-scale simulation
study allowed for data collection for statistical analysis of the operation. The proposed
planner was also validated in real-world tests in analogous 3 scenarios but only with
planning methods ensuring the safe operation of the physical robot. Supplementing those
experiments, the HUMAP’s performance across its various configurations and scenarios
was examined. Parts of the results in that matter are included in [24], whereas a thorough
description is provided in Sec. 7.4.

Notably, most of the implemented methods and metrics are available as open-source

software to ease the further development of the field.

1.5 Problem scoping

The scope of the social robot navigation field is vast; hence, the range of topics included
in the examination has to be limited due to practical and feasibility reasons. Defining
the social robot navigation requirements from literature studies is among the main con-
centrations of this thesis. Based on the requirements, requirements-driven metrics related
to the social acceptance of robots are developed, and the human-aware robot trajectory
planning algorithm is proposed. Requirements, metrics, and the planning algorithm do
not investigate the domains of, i.a., explicit communication or negotiation. Also, the range

of interactions examined was limited to align with the scope of primary topics.

Communication Effective decision-making in socially-aware navigation requires com-
munication between robots and humans, particularly when the robot’s knowledge about
the environment is limited. Specifically, explicit communication involves the auditory do-
main and written instructions, which robots should interpret and respond to. Robots
also need to convey their intentions and decisions to humans, utilising verbal and visual
techniques such as speech and gestures performed with onboard actuators. The topic of
explicit communication is rather related to higher-level decision-making and has been ex-
plored to varying degrees in review works from the field [27, 28, 18]. In contrast, implicit
communication is commonplace in human-robot interaction studies and is relevant to the

topics investigated in this thesis.
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Negotiation Negotiation in social robot navigation acts as a form of dynamic informa-
tion exchange. This may involve collaborative decision-making processes, e.g., requesting
permission to pass. While the scope of the negotiations field extends way beyond human-
robot interaction, this concept has been briefly discussed in social robotics surveys [2, 18];
however, none of the primary concepts of this dissertation is examined with the focus on

this matter.

Robot types What substantially affects the requirements and objectives of perception
and human-aware robot motion planning is the type of robot. Variations in ground, aerial,
or aquatic robots [14, 18] significantly impact possible scenarios; hence, also the range of
human-robot interactions. Nevertheless, this thesis focuses on ground-wheeled robots.
Additionally, although multi-robot systems are not investigated in this dissertation, the
presence of other robots in the environment of the controlled robot is taken into account.
Specifically, other robots are distinguishable from humans and treated as typical dynamic

objects.

Interaction types The physical (contact-rich) interaction between robots and humans
is a crucial topic in collaborative robotics and safety management. However, this study
examines other types of interactions, namely, unfocused and focused [2], neither of which

involve physical contact.

Cultural scope The requirements for social robot navigation were defined based on
the findings resulting from user studies, which involved participants mainly from the
Transatlantic cultural sphere, and less frequently from the Pan-Asian. On the other hand,
the participants engaged in the experimental studies conducted as part of this thesis were

only from the Central European cultural sphere.

1.6 Thesis outline

This thesis is organised as follows: firstly, an extensive literature review is allocated in
Chapter 2 and Chapter 3, as the presented state-of-the-art analysis is segmented into
two perspectives: requirements and algorithmic. Namely, Chapter 2 presents the defini-
tion of the study-based social robot navigation requirements and its content is organised
according to the introduced taxonomy of the necessities. Then, Chapter 3 investigates the
algorithmic solutions for adapting robots to operate in human environments. Notably, the
majority of Chapter 2 and Chapter 3 have been published in our survey article [19].
Next, in Chapter 4, our method for quantitative evaluation of socially-aware robot

navigation algorithms is proposed. Specifically, this chapter presents the mathematical
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formulation of metrics implemented in our benchmark. It contains an extended explan-
ation of the proposed approach published in the conference paper [20] and the journal
article [21].

In the following part of the thesis, Chapter 5, the problem of human-aware robot
trajectory planning is formulated, and the contribution to the topic is described. The
chapter describes our hybrid method of trajectory candidates generation and specifies the
components of the objective function used for scoring candidates and selecting an optimal
trajectory. Parts of this chapter have been included in [24], but a detailed description of
the approach is provided.

Next, Chapter 6 discusses the implementation and integration aspects of the robot
control system. The allocation of developed algorithms is also explained in the context
of the entire system, which has been used during the experiments described in Chap-
ter 7, where the tests validating the proposed methods are discussed. Namely, that part
of the thesis presents the two phases of the experiments that have been conducted. In
the first, the state-of-the-art traditional and human-aware methods for robot navigation
were compared using the quantitative benchmarking method (Chapter 4). In the second
phase, the proposed trajectory planning method was assessed against numerous planners
using the same evaluation methodology. The design of the experiments and selection
of algorithms for the comparative controlled studies of each section of this chapter are
explained in detail. Most results from the first phase of the experiments (Sec. 7.3) have
been encompassed in our previous works [20, 21], while elements of the second phase of
the experiments (Sec. 7.4) have been included in [24].

Finally, the Chapter 8 constitutes conclusions drawn from the literature review and
experimental studies to prove the theses stated in the introduction. The summary is
complemented with future work perspectives regarding proposed approaches for social
robot navigation.

The thesis is enhanced with two appendices, in which the commonly referred al-

gorithms are presented.
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Chapter 2

Requirements for socially-aware

navigation

Social robots were introduced to make human-robot interaction more natural and intu-
itive [29]. Generic characteristics of social navigation are commonly recalled in review
works. For example, Kruse et al. [12] classify the main features as safety, comfort, nat-
uralness, and sociability. On the other hand, in [2], the authors indicate key factors as
distinguishing obstacles from persons, considering the comfort of humans — their prefer-
ences and their needs, not being afraid of people and the legibility of motion intentions.
More recently, Mavrogiannis et al. [17] proposed a classification that relies on proxemics,
intentions, formations and social spaces, ordered according to the social signal richness.
Furthermore, Francis et al. [11] stated that principles of social robot navigation include
safety, comfort, legibility, politeness, social competency, agent understanding, proactivity,
and contextual appropriateness.

While the aspects above schematically display the goals of social navigation, the au-
thors of the surveys do not attempt to extract the straightforward requirements to follow
in social robot navigation. Instead, these terms are loosely defined; hence, might refer
to different means in different contexts or applications. As a consequence, it is tough
to determine how to effectively gauge whether the robot behaves in a socially-compliant
manner. Our survey aims to reduce those abstract terms describing social norms. This is
contrary to other review works, where, although taxonomies are presented and articles
are classified into those groups, the fundamental concepts persist as vague definitions.

Thus, we perform the grounding of social robot navigation requirements. The require-
ments must be known to properly design a socially-aware robot navigation system. Various
techniques have been experimented with an assertive robot, revealing that using know-
ledge from psychology leads to increased user trust [30]. Incorporating a study-driven

approach, we reached the human-robot interaction user studies to determine how humans
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perceive the robot navigating around them and how robots should behave around humans
under certain controlled conditions. Such an approach aims to explicitly demonstrate how
the key concepts explored by researchers in robotics and social sciences can be transferred
into requirements for robot control systems [31] implementing robot navigation tasks.
Notably, we separated the study-based grounding of social robot navigation require-
ments (Chapter 2) from algorithmic approaches to resolving them (Chapter 3). Require-
ments are obtained from the results of user studies, whereas an algorithmic perspective
is presented based on technical papers from the robotics field. Precise requirements grant
implementation guidelines and straightforward evaluation of whether the robot behaves

as expected.

2.1 Taxonomy of requirements for social robot nav-
igation

Social robot navigation extends the requirements of classical navigation with capabilities
to accommodate social interaction between robots and humans. Traditional robot navig-
ation emphasises generating collision-free motions for a robot to move to the goal pose as
fast as possible. This requires environment sensing for obstacle detection, efficient global

pose estimation, and usually map building.

Traditional robot navigation requirements As the classical robot navigation re-
quirements are not the main focus of the considerations, they will only be briefly ex-
plained with relevant resources from the literature. Specifically, the robot task perform-
ance maximisation aspects (Req. 1) are divided into five groups. The first requirement is
avoiding collisions with the environment (Req. 1.1), which is straightforward, as it can
cause damage to the environment or a mobile base. The second one is planning traject-
ories that are feasible for the mobile base (Req. 1.2), which is crucial since the planned
trajectories might not be executable due to kinodynamic constraints of a robot [32]. An-
other requirement is reaching the goal as fast as possible (Req. 1.3), which decreases
the time of a navigation task [33, 10]. The last two necessities are: reaching the goal by
taking the shortest possible path (Req. 1.4) [33, 34, 35] and minimising path irregularity
(Req. 1.5) [36, 37, 10|, both helping to reduce the energy expenditure [38] of mobile

robots. Graphical abstract of this taxonomy is presented in Fig. 2.1.

Social robot navigation requirements On the other hand, the main objective of
social navigation is to mitigate human discomfort caused by robot movements (Req. 2).

Our taxonomy of social robot navigation requirements (Fig. 2.2) involves the physical
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Req. 1.1: Avoiding collisions with the environment]

Req. 1.2: Planning trajectories that are feasible for the mobile base)

Req. 1: Robot task performance

maximisation Req. 1.3: Reaching the goal as fast as possmle)

Req. 1.4: Reaching the goal by taking the shortest possible path]

Req. 1.5: Minimising path irregularity)

Figure 2.1: General taxonomy of traditional robot navigation requirements.

safety of humans (Req. 2.1), perceived safety of humans (Req. 2.2), the naturalness
of robot motion (Req. 2.3) and the robot’s compliance to social norms (Req. 2.4).
Specifically, the perceived safety of humans mostly relies on proxemics theory and the
prevention of scaring a human. In turn, robot motion naturalness does not affect the safety
aspects of humans but regards the trustworthiness of the robot. Lastly, abiding by social
conventions focuses on actions and sequences that require rich contextual information to
mitigate human discomfort.

Our general taxonomy is designed to classify the essential concepts of social robot nav-
igation clearly and unambiguously into one of the investigated groups to create a generic
framework. We expect that the main characteristics selected for the taxonomy will stay
pertinent in the future, with the possibility of incorporating additional attributes.

In the remaining part of this section, the social robot navigation requirements are
discussed, while the algorithmic concepts describing how those socially-aware navigation
responsibilities can be embedded into robot control systems are discussed in Sec. 3.1 and
Sec. 3.2.

Req. 2.1: Physical safety of humansj

Req. 2.2: Perceived safety of humansj

Req. 2: Human discomfort
minimisation

Req. 2.3: Naturalness of the robot's motionj

Req. 2.4: Compliance with social norms)

Figure 2.2: General taxonomy of social robot navigation requirements.
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2.2 Physical safety of humans (Req. 2.1)

The physical safety of humans is closely related to the collision avoidance capabilities
of robots (Req. 1.1). Social robot navigation inherits this skill from the classical robot
navigation requirements.

Francis et al. [11] denote physical safety as the first principle of social navigation
that intends to protect humans, other robots and their environments. Physical safety of
humans during navigation is discussed in the newer literature [27, 39] but has already
been addressed as a fundamental robotics challenge several decades ago [40]. Nonetheless,
the physical safety of other robots or machines is also of great significance [41, 42, 43, 17].

For example, Guzzi et al. [36] conducted a study with multiple small-scale robots
relying only on local sensing and employing proactive planning integrated with heuristic
pedestrian motion model [44]. In real-world experiments, in a crossing scenario, they
observed different frequencies of collisions depending on the sensors’ field of view and
safety margin; hence, the collision count was used as one of the metrics for assessing the
safety margin parameter. Evaluating time-to-collision (TTC') is a proactive method to

anticipate incoming collisions [45, 46] that was also embedded in some benchmarks [35].

2.3 Perceived safety of humans (Req. 2.2)

The comfort of humans around robots is crucial; however, the robot’s behaviour can
influence that, potentially causing annoyance or stress [12, 11]. Human discomfort during
robot navigation often corresponds to a diminished perceived (or psychological) safety
of humans. Perceived safety is the factor that might lead to physical safety violations
(Sec. 2.2) if not addressed adequately beforehand. Stress-free and comfortable human-
robot interaction is a broad topic [27] influenced by numerous features (Fig. 2.3), including
adherence to spatial distancing [47, 2], performing natural movements [10], preventing of
scaring or surprising a human [12]. The remaining part of this section discusses them in
detail.

2.3.1 Regarding personal spaces of individuals (Req. 2.2.1)

Proxemics is the most prominent concept regarding social distancing rules [47, 48, 49].
Some fundamental studies connected to proxemics theory confirm that the psychological
comfort of humans is affected by interpersonal distancing [48, 50, 51]. Butler and Agah [52]
explored the influential factors of how humans perceive a service robot during unfocused
interactions. One of them was the distance factor, which induced feelings of discomfort or

stress in some configurations. A similar study was conducted by Althaus et al. [53], who
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Req. 2.2.1: Regarding the personal zones of individuals)

Req. 2.2.2: Avoiding crossing through human groups)

Req. 2.2.3: Passing speed during unfocused interaction

[Req. 2.5 [FREEIEG Sy Req. 2.2.4: Motion legibility during unfocused interaction

of humans

. . . . ) Req. 2.2.5.1: Individuals
Req. 2.2.5: Approach direction for a focused mteractlon)—CReq_ 2.2.5.2: Groups

Req. 2.2.6: Approach speed for a focused interaction)

Req. 2.2.7: Occlusion zones avoidance)

Figure 2.3: Taxonomy of social robot navigation requirements related to the perceived

safety of humans.

validated a navigation system that respects the personal spaces of humans in a real-world
study.

Shapes of a personal zone impact the comfortable passing distances. Hall originally
specified four circular spaces [47], while the personal zone, reserved for friends, is usually
regarded as a no-go zone during unfocused human-robot interaction. Entering the personal
zone is counted as a violation of comfort and safety [54, 2, 7]. The classification of all
proxemic zones was described in detail in prior surveys, e.g., [2].

The initially suggested circular shape of the personal space [47] might not appropri-
ately capture the features of human perception and motion. Further empirical studies
suggested extending that to an egg shape [55], ellipses [1, 56], asymmetrical shapes [57]
(prolonged on the non-dominant side), or changing dynamically [58]. In [57], it is also
reported that the size of personal space does not change while circumventing a static
obstacle regardless of walking speed and that the personal space is asymmetrical. The
natural asymmetry of personal spaces is also reported in [59], where authors found out
that if the robot has to approach a human closely, it is preferred to not move behind
a human, so they can see the robot.

Numerous works conducted human-involving experiments to gather empirical data and
to model complex and realistic uses of space [60, 61, 62, 63, 64]. Participants of the study
in [60] rated distances between 1.2-2.4 m as most comfortable for interaction situations.
Experiments by Huettenrauch et al. [65] confirmed that in different spatial configurations,
73-85% of participants found Hall’s personal distance range (0.46-1.22 m) as comfortable.
Torta et al. [66], in their study involving human-robot interaction, examined the length

of comfort zones as specific values of 1.82 m for a sitting person and 1.73 m for a standing
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person.

Pacchierotti et al. [61, 62] examined discomfort as a function of, e.g., lateral distance
gap in a hallway scenario. The lateral gap was also examined by Yoda and Shiota [67] in
terms of the safety of passing a human by a robot in a hallway scenario. Three types of
encounters were anticipated as test cases for their control algorithm, including a standing,
a walking, and a running person. They approximated human passing characteristics from
real experiments, defining clear formulas to follow in a robot control system. The authors
found that the average distance between the passing humans depends on their relative
speed and varies from 0.57 to 0.76 m.

The authors of [63] found that the discomfort rates differ between intrusions and
extrusions from personal spaces, and the distances of approximately 0.85—-1.0 m are the
most comfortable for a focused interaction with a stranger. On the other hand, Neggers
et al. [64] conducted a study similar to [62] and compared their results. They obtained
similar outcome and reported that the same function, inverted Gaussian linking distance
and comfort, can be used to fit the results’ data with only a small comfort amplitude
shift between [62] and [64]. The authors of [64] also attempted to model an intrusion into
personal space as a distance-dependent surface function.

However, there are also diverse exceptions to the mean shape of personal space. For
example, Takayama et al. [68] indicated that during the study, participants with prior
experience with pets or robots required less personal space near robots compared to people
who do not possess such experience. Furthermore, a study presented in [69] endorses the
concept that personal space is dynamic and depends on the situation. Velocity-dependent
personal space shapes were also considered appropriate in [70, 71, 72].

Since various studies, even though conducted differently, yield similar results, they
seem to approximate human impressions while interacting with robots and, as a con-
sequence, allow modelling of the real-world phenomena of social distancing. The con-
clusions from the mentioned user studies give insights regarding the implementation of

personal space phenomena in robot control systems.

2.3.2 Avoiding crossing through human groups (Req. 2.2.2)

Recent research revealed that pedestrians tend to travel in groups [73, 74]. Human groups
create focused formations (F-formations) [75] — spatial arrangements that are intended
to regulate social participation and the protection of the interaction against external
circumstances [2]. F-formations might be static — consisting of people standing together
engaged in a shared activity, or dynamic — consisting of people walking together, and
might have different shapes [75, 2].

The necessity of avoiding crossing F-formations arises from the fact that they always
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contain an O-space which is the innermost space shared by group members and reserved
for in-group interactions. The discomfort caused by a robot to a group might be assessed
as the robot’s intrusion into the O-space of the F-formation [76, 77]. Results of numerous
studies confirm that humans involved in an F-formation keep more space around a group
than the mere addition of single personal spaces [78, 79, 80]; thus, individuals stay away
from social groups. Furthermore, the research by Rehm et al. [81] found that participants
from high-contact cultures stand closer to a group of people compared to people from
low-contact cultures.

A general guideline for robots navigating through populated environments is to avoid
cutting through social groups [82], but if it is not possible, e.g., in a narrow corridor, to

politely pass through the O-space [83, 11].

2.3.3 Passing speed during unfocused interaction (Req. 2.2.3)

Rios-Martinez et al. [2] define unfocused interactions as “interpersonal communications
resulting solely by virtue of an individual being in another’s presence”. As already high-
lighted in Sec. 2.3.1, excessive or insufficient passing speed proved significant in terms of
discomfort among humans involved in an unfocused interaction with a robot in numerous
experimental studies [52, 61, 62, 72].

The most comprehensive study in that matter was recently proposed by Neggers et
al. [72], who assessed human discomfort with a robot passing or overtaking them at
different speeds at different distances. They have found that higher speeds are generally
less comfortable for humans when a robot moves at smaller distances. The authors claimed
the inverted Gaussians with variable parameters accurately approximate the experimental
results for all combinations of scenarios and speeds. The approximation of their findings
with a continuous multivariable function has already been implemented! and can be used

for evaluating robot passing speed.

2.3.4 Motion legibility during unfocused interaction (Req. 2.2.4)

Studies conducted by Pacchierotti et al. [62] examined a mutually dynamic situation of
passing each other. They assessed human discomfort as a function of the lateral distance
gap in a hallway scenario. What they have found is that there was no significant impact
of lateral gap size when a robot signalled its passing intentions early. This notion is
often referred to as motion legibility, which is an intent-expressive way of performing
actions [23]. It can be increased by explicit signalling and also enriching behaviour, so it

can be used as a cue to the robot intention [84, 85].

"https://github.com/rayvburn/social_nav_utils
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Lichtenthéler et al. [86] found a significant correlation between the perceived safety
and legibility in their study. Gao and Huang [10] considered a flagship example of motion
legibility as a scenario where a robot quickly moves towards a person, adjusting its tra-
jectory just before an imminent collision. Despite avoiding direct physical contact, such
behaviour is likely to produce notable discomfort by the robot heading direction [21] due

to lack of early signalling.

2.3.5 Approach direction for a focused interaction (Req. 2.2.5)

Approaching direction to initiate a focused interaction is a broad field of social robot nav-
igation studies. Rios-Martinez et al. [2] describe focused interaction as “occurring when
individuals agree to sustain a single focus of cognitive and visual attention”. In most
experimental cases, focused interaction involves approaching to start a verbal commu-
nication or to hand over the transported goods. The taxonomy in this matter separates

approaching guidelines between individuals and F-formations.

Individual humans (Req. 2.2.5.1) In studies conducted by Dautenhahn et al. [87]
and Koay et al. [88], participants were seated and asked to gauge their discomfort levels
during the handover of objects by a robot that approached from various directions. The
subjects of the study preferred frontal approaches over diagonal approaches from the left
or right. The contradictory results were found in a study by Butler and Agah [52], where
standing participants preferred an indirect approach direction.

Multiple studies depict that human preference is to be approached from the front and
within the human field of view. [89, 90, 91, 86, 92, 93, 94, 95]. Walters et al. [89] examined
the robot’s behaviour of approaching a human for a fetch-and-carry task. The authors
reported that seating participants found the direct frontal approach uncomfortable. The
general preference was to be approached from either side, with a preference biased slightly
to a rightward approach by the robot. However, the study depicted that a frontal approach
is considered acceptable for standing humans in an open area. Another conclusion derived
from this study is that humans prefer to be approached from within their field of view;
hence approaching from behind should be avoided.

Torta et al. [91] conducted a user study considering different robot approach directions
with the final pose at the boundary of a personal space. Similarly, they found that exper-
iment subjects (seated) assessed frontal approach directions (up to £35°) as comfortable
while perceived farthermost (£70°) as uncomfortable. Comparable outcomes ensued from
the study in [90]. Unlike the results of the user study performed by Dautenhahn et al. [87],
in [91], no significant difference was found when the robot approached from the right side
or the left side.
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Furthermore, Koay et al. [92] researched robot approach distances and directions to
a seated user for a handover task. The results show that the preferred approach direction
is from either side at a distance of about 0.5 m from the subjects. An interesting fact is
that this distance lies within an intimate space [47], but was preferred because prevented
humans from reaching out longer with their arms or standing up to pick up the goods

from the robot’s tray.

Human groups (Req. 2.2.5.2) Approaching groups of humans requires slightly dif-
ferent strategies. Ball et al. [94] investigated the comfort levels of seated pairs of people
engaged in a shared task when approached by a robot from eight directions. Participants
rated robot approach behaviour for three spatial configurations of seats. Approaches from
common (to all subjects involved) “front” directions were found to be more comfortable
(group’s average) than from a shared rear direction. When seated pairs were in a spatial
configuration that did not exhibit the common “front” or “rear” direction, no significant
statistical differences were found. However, another finding of this study is that the pres-
ence and location of another person influence the comfort levels of individuals within the
group.

Joosse et al. [95] explored the optimal approach of an engagement-seeking robot to-
wards groups from three distinct countries, employing Hall’s proxemics model [47]. Their
findings indicate that the most suitable approach distance seems to be approximately
0.8-1.0 m from the centre of the group.

Karreman et al. [93] investigated techniques for a robot to approach pairs of individu-
als. Their findings revealed a preference among people for frontal approaches (regardless
of side), with a dislike for being approached from behind. They also noted that environ-

mental factors appeared to influence the robot’s approach behaviour.

2.3.6 Approach speed for a focused interaction (Req. 2.2.6)

Robot speeds are one of the factors impacting discomfort when approaching a human.
Since the literature regarding approaching behaviour is rich, there are also guidelines to
follow in social robot navigation.

Butler and Agah [52] assessed the navigation of a mobile base around a stationary
human using various trajectories and equipment resembling the human body. They dis-
covered that speeds ranging from approximately 0.25 to 0.4 m/s were most comfortable,
while speeds exceeding 1 m/s were uncomfortable. They also claimed that there might be
a speed between 0.4 and 1.0 m/s that produces the least discomfort.

Sardar et al. [96] conducted a user study in which a robot approached a standing

individual engaged in another activity. Experiments revealed notable distinctions in ac-
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ceptance of invading the participant’s personal space by a robot and a human. In their
study, only two speeds were evaluated, namely 0.4 and 1.0 m/s, while the robot’s faster
speeds were more trustworthy (opposite to human confederates).

In a more recent study, Rossi et al. [97] evaluated speeds of 0.2, 0.6 and 1.0 m/s
that affected the robot’s stopping distance while approaching. They have found different
human preferences for stopping distance depending on the activity currently executed by

humans. Sitting participants favoured shorter distances while walking subjects longer.

2.3.7 Occlusion zones avoidance (Req. 2.2.7)

Occlusion zones are related to areas not reached by the robot’s sensory equipment. Despite
the robot’s most recent assumptions suggesting that these areas were previously unoccu-
pied, such estimates may be inaccurate. Consequently, robots should avoid traversing near
blind corners, as they may fail to detect individuals behind them, and vice versa. By going
around the corner with a wider turn, the robot can explore the occluded space earlier,
making it possible to react to humans sooner [12]. Proactivity in that matter prevents
surprise or panic and generally positively impacts comfort and physical safety.

User studies generally confirm this issue, showing that humans tend to shorten their
paths [98, 99] to minimise energy expenditure. Taking shortcuts in public spaces increases
the risk of encounters around blind corners.

Francis et al. [11] suggested that a robot entering a blind corner should communicate
intentions explicitly with voice or flashing lights. However, this seems slightly unnatural,
as even humans avoid shouting in corridors. Enabling audio or flashing lights might also

be annoying for surrounding workers in shopping aisles.

2.4 Naturalness of the robot’s motion (Req. 2.3)

The naturalness of the robot’s motion can be referred to as emerging robot behaviours
that are not perceived as odd. This is often related to the avoidance of erratic movements
and oscillations (Fig. 2.4). Keeping a smooth velocity profile also produces an impression

of trust and legibility among observing humans [86].

2.4.1 Avoiding erratic motions (Req. 2.3.1)

Erratic motions involve sudden changes in velocity, making it difficult to anticipate the
next actions. This term is often used to describe the behaviour of objects exhibiting

chaotic movement patterns that make the robot look confused.
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Figure 2.4: Taxonomy of social robot navigation requirements related to the naturalness

of the robot’s motion.

Erratic motions are often related to the lack of smoothness of the robot’s velocity
profile (Req. 2.3.1.1). Natural motions favour movements with a minimum jerk [100] with
mostly stable linear velocity and the angular velocity of zero, i.e., adjusting orientation
only when necessary [12, 10].

In contrast to the smooth velocities, oscillating motions (Req. 2.3.1.2) involve al-
ternating forward and backward motions, where the robot effectively does not make any
progress. They may be present in some navigation approaches that rely solely on Artificial
Potential Field [101] or Social Force Model [1].

Additionally, in-place rotations (Req. 2.3.1.3) of a robot appear unnatural for human
viewers; hence, it is preferred to avoid trajectories where a turning on spot [100, 102]. Also,
significant backward movements (Req. 2.3.1.4) should also be avoided as individuals
rarely move in reverse in public areas. Such actions can pose collision risks, particularly

for mobile bases lacking range sensors at the back.

2.4.2 Modulating gaze direction (Req. 2.3.2)

A broad area of research regarding motion naturalness corresponds to modulating the
robot gaze direction. Humanoid robots are typically equipped with a “head”, inside which
a camera is located (RGB or RGB-D), e.g., Nao, TIAGo, Pepper, Care-O-bot. Pan and
tilt motions of the head joints can be used to modulate gaze direction.

Gaze direction is considered one of the social signals (cues) and a specific type of
nonverbal communication between a robot and surrounding humans [28]. Among humans,
it is closely related to their perception captured by the notion of Information Process
Space [2]. Gaze is a general concept in which measurable aspects can be evaluated, such
as fixation count and length [103], as well as gaze-movement angle [104]. Both provide

valuable insights into human trajectory or behaviour prediction [28].

Unfocused interaction In a study by Kitazawa and Fujiyama [105], the authors invest-
igated gaze patterns in a collision avoidance scenario with multiple pedestrians moving

along a corridor. Results of the experiment show that humans pay significantly more

36



attention to the ground surface, which they explain as a focus on detecting potential
dynamic hazards than fixating on surrounding obstacles. In an experiment conducted by
Hayashi et al. [106], they noticed that participants were more willing to speak to the robot
when it modulated its gaze direction. Kuno et al. [107] also concluded that robot head
movement encourages interaction with museum visitors.

Fiore et al. [108] analysed human interpretation of social cues in hallway navigation.
They designed a study to examine different proxemics and gaze cues implemented by ro-
tating the robot sensors. The results depict that the robot’s gaze behaviour was not found
to be significant, contrary to the robot’s proxemics behaviour that affected participant
impressions about the robot (Sec. 2.3.1). Similarly, a study by May et al. [109] showed an
understanding of robot intentions while conveyed using different cues. It turned out that
the robot was understood better when a mechanical signal was used compared to using
the gaze direction cue. Also, Lynch et al. [110] conducted a study employing a virtual
environment where virtual agents established a mutual gaze with real participants during
path-crossing encounters in a virtual hallway. Subjects of a study found the gaze factor
as not important to inferring about paths of the virtual agents.

Different strategies of gaze modulation were studied by Khambhaita et al. [111]. Their
research indicates that the robot’s head behaviour of looking at the planned path resulted
in more accurate anticipation of the robot’s motion by humans compared to when the
head was fixed. The authors also found that the robot operating with the head behaviour
of alternately looking at the path and glancing at surrounding humans gave the highest
social presence measures among the subjects. Similarly, Lu et al. [112] discussed a strategy

of a robot looking at the detected human followed by looking ahead in 5-second cycles.

Focused interaction Research has shown that gaze modulation of the robot’s focused
interactions should be treated differently than unfocused ones. Breazeal et al. [113] ex-
plored the impressions of humans participating in an experiment with a Kismet robot
capable of conveying intentionality through facial expressions and behaviour. They iden-
tified the necessity of gaze direction control for regulating conversation rate, as the robot
directs its gaze to a locus of attention.

In another study, Mutlu et al. [114] implemented a robot gaze behaviour based on
previous studies [115, 116] and their observations that people use gaze cues to establish
and maintain their conversational partner’s roles as well as their own. The gaze behaviour
strategy produced turn-yielding signals only for conversation addressees. In their experi-
ment, they found that using only the gaze cues, the robot manipulated who participated

in and attended to a conversation.
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2.5 Compliance with social norms (Req. 2.4)

Navigating humans adhere to diverse social norms influenced by cultural, interactional,
environmental, and individual factors such as gender and age. Therefore, the robot’s
compliance with social conventions is also a multifaceted concept (Fig. 2.5), in contrast
to low-level motion conventions, such as approach velocity. The aforementioned factors
shape high-level social conventions involving navigation-based interactions like queueing,
elevator decorum, yielding way to others, and adhering to right-of-way protocols. Ro-
bots considered sociable abide by social conventions. Despite the existence of customary
routines, they are often challenging to model precisely due to their abstract nature, as

seen in the discussion by Barchard et al. [117].

Req. 2.4.1.1: Guiding
Req. 2.4.1: Following the accompanying strategy)—{Req. 2.4.1.2: Following

Req. 2.4.1.3: Side-by-side

Req. 2.4.2: Avoiding blocking the affordance spaces)

Req. 2.4.3: Avoiding crossing the activity spacesj

Req. 2.4: Compliance
with social norms

Req. 2.4.4: Passing on the dominant side)

Req. 2.4.5: Yielding a way to a human at a crossing)

Req. 2.4.6: Standing in Iine)

Req. 2.4.7: Obeying elevator etiquette)

Figure 2.5: Taxonomy of social robot navigation requirements related to the robot’s com-

pliance with social norms.

The authors of surveys [12, 10] exemplify that even if the robot’s movements may
appear natural and unobtrusive (Req. 2.3), it can violate typical social conventions. For
instance, entering a crowded elevator without allowing occupants to exit first breaches
common expectations, thereby potentially causing discomfort. Also, in different user stud-
ies, it is reported that human discomfort can be caused due to violations of social norms
even if the rules of perceived safety of humans are properly adhered to in the robot
navigation [118, 119].

There are no predetermined sets of high-level social conventions, making compliance
a dynamic and context-dependent aspect of robotic behaviour [10], that requires a diverse
level of contextual awareness. The most common and meaningful social conventions that
have been examined in the literature are illustrated below. The complementary discussion

attempts to clarify how they should be addressed in robot control systems.
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2.5.1 Following the accompanying strategy (Req. 2.4.1)

Strategies of executing the task of accompanying humans by the robot are dictated by
the social conventions of how humans navigate in relation to other pedestrians. Custom-
ary human behaviours entail how robots should adjust their movements based on the
relative position of the accompanying human (or humans), ensuring smooth and natural

interactions.

Tracking humans from the front (Req. 2.4.1.1) Numerous studies reviewed the
relative pose that the robot should maintain while tracking a human from the front. For
example, Jung et al. [120] performed a study to evaluate how often humans look back at
the robot that tracks the subject from behind. They found that participants often looked
back as they were curious about the robot, whether it bumped into them or tracked them
well. The authors concluded that tracking from the front might be more comfortable and
designed a robot control strategy that involves moving 1 m ahead of the tracked human,
whose local movement goal is inferred by the robot online.

On the other hand, Young et al. [121] compared various relative poses for a robot led
on a leash by a participant. The results revealed that having the robot move in front of
the person was the most comfortable approach for joint motion. In another study, Carton
et al. [122] proposed a framework for analysing human trajectories. Their studies led to
the conclusion that humans plan their navigation trajectories similarly whether they are

walking past a robot or another human.

Person following (Req. 2.4.1.2) Gockley et al. [123] evaluated methods of avoiding
rear-end collisions of a robot following a person. The first approach focuses on direction-
following, where the robot follows the heading of a person, whereas the second method,
path-following, relies on imitating the exact path that a person takes. The participants of
the real-world experiments rated the direction-following robot’s behaviour as substantially
more human-like. However, the participants rated that the robot stayed too far away
(1.2 £ 0.1 m) from them while moving.

Following an individual in populated environments is challenging as crowd behaviour
often manifests as flows of social groups, with individuals typically following the flow [73].
Studies show that joining a flow with a similar heading direction is more socially accept-
able, resulting in fewer disturbances to surrounding pedestrians [124]. Collision avoid-
ance techniques for following one person through a populated environment are discussed
in [125, 126].
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Side by side (Req. 2.4.1.3) The tendency for people to walk side-by-side when walk-
ing together was discussed by Kahn et al. [127]. In situations with only two individuals
walking, they typically adopt a side-by-side formation, while in crowded conditions or
with three or more individuals, more complex formations such as “V” shapes are ob-
served [128]. Spatial preferences of humans when being followed by a robot were reviewed
in [129]. In the majority of studies, the robot’s relative position to the person typically re-
mains constant, with any adjustments being made primarily in response to environmental
factors.

Saiki et al. [130] discussed how robots can serve walking people. In their experiments,
people trajectories were recorded to develop a histogram of relative distances. The con-
clusion is that people’s average distance while walking alongside was 0.75 m.

Karunarathne et al. [131] designed a spatial model for side-by-side accompanying
without explicit communication about the goal of a human. During their study, they
found that, e.g., a distance maintained in a robot-human pair (1.25 m) was larger than

that from the human pair average (0.815 m).

2.5.2 Avoiding blocking the affordance spaces (Req. 2.4.2)

The concept of affordance space relates to the potential activities that the environment
offers to agents [132]. Affordance spaces could be mapped as free regions or banned regions
in a function of time [133]. They have no specific shape [2] as they depend on specific
actions.

Affordance spaces are specific to the robot environment and can be exemplified by the
area near a painting in a gallery or menu stands in restaurants. In general, an affordance
space can be crossed without causing disturbance to a human (unlike activity spaces in
Sec. 2.5.3), but blocking an affordance space could be socially not accepted [2]. Also, for
the robot with a limited field of view (FOV), it is essential to utilise a predefined map of
affordance spaces.

Raubal and Moratz [134] discussed a robot architecture incorporating a functional
model for affordance-based agents. The crucial concept is to consider the information
about locations of affordance spaces when selecting a coarsely defined (region-based) nav-
igation goal or a goal on a topological map. The notion of affordance spaces was also
discussed in the context of learning them online [135], as well as in gaining knowledge

from the analysis of human trajectories [136].
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2.5.3 Avoiding crossing the activity spaces (Req. 2.4.3)

The activity space is an affordance space linked to an ongoing action performed by an
agent — human or another robot [2]. An activity space can be exemplified by the area
between an observer and a painting in a gallery. Once the visitor initiates this space,
the robot is obliged not to cross it [132]. Additionally, the robot’s perception has to
dynamically infer whether a certain agent has initiated an activity space, e.g., by observing
an object [135]. Furthermore, the activity space should be conditionally constrained; for
instance, it should be less restrictive for a shorter robot compared to a taller one that

might fully occlude the painting when crossing through an activity space.

2.5.4 Passing on the dominant side (Req. 2.4.4)

Bitgood and Dukes [99] discussed that people tend to proactively move to the right half
portion of a hallway or a narrow passage, which is tied to cultural traffic rules. Multiple
existing social robot navigation approaches already implemented strategies to follow the
right side of the corridor or to favour passing humans on the right [137, 71, 126, 84].
However, as Bitgood and Dukes suggest, this might not be a strict rule to follow in
crowded spaces, as some people follow the other side as they have an incoming left-turn
destination [99]. This is supported by the study conducted by Neggers et al. [72], who also
examined the effect of the passing side and found that participants reported equal comfort
levels for both sides. Nevertheless, Moussaid et al. [138] conducted a set of controlled
experiments and observed pedestrians’ preference to perform evasive manoeuvres to the

right, while passing each other.

2.5.5 Yielding a way to a human at crossing (Req. 2.4.5)

Moller et al. [9] posed the problem of who goes first at an impasse as one of the social
conventions that are “less well-defined”. As stated in a survey by Mirsky et al. [28], the
term “social navigation” usually refers to a human-centric perspective; therefore, the robot
is often obliged to yield a way to a human at the crossing.

The user study performed by Lichtenthéler et al. [86] showed that at the crossing
scenario, the participants favoured the navigation method in which the robot stopped to
let a person pass. Yielding a way to a human based on the predicted motion was also

investigated in [77].
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2.5.6 Standing in line (Req. 2.4.6)

Standing in line while forming a queue is one of the most common collective behaviours of
humans. Nakauchi and Simmons [139] modelled how people stand in line by first collecting
empirical data on that matter. Further, they utilised these data to model a range of
behaviours for a robot tasked to get into a queue, wait and advance in the queue alongside

other individuals awaiting service.

2.5.7 Obeying elevator etiquette (Req. 2.4.7)

“Elevator etiquette” refers to the customary rules of humans entering and exiting a boun-
ded space through a doorway, specifically, letting people leave an elevator before at-
tempting to enter. These rules are generalisable to numerous closed areas like rooms and
corridors.

Gallo et al. [140] proposed the machine-like approach for the design of robot behaviour
policies that effectively accomplish tasks in an indoor elevator-sharing scenario without be-
ing disruptive. Alternatively, Lin et al. [119] discussed the social appropriateness of lining
up for an elevator in the context of deploying a mobile remote presence. Elevator-related

conventions were tackled in a robotic competition — “take the elevator challenge” [8].

2.6 Summary

In this chapter, social robot navigation requirements were grounded based on the re-
viewed user studies regarding unfocused and focused human-robot interactions. This, in
turn, highlighted objectives on how robots should behave in populated environments. The
human-aware robot navigation requirements are organised into our taxonomy consisting
of requirements for ensuring the physical and perceived safety of humans, as well as the
requirements assuring the robot’s motion naturalness and the robot’s compliance with
the social norms. This classification is the basis for the analysis of algorithmic topics
(Chapter 3).

We acknowledge that the proposed set of primitive requirements is subject to extension
as the social navigation studies advance and new issues or additional cases are found [11].
Not only some requirements mentioned above have not been sufficiently studied, but many
other human conventions have not been considered at all in user studies with robots;
hence, there are no clear guidelines on how they can be tackled properly in social robot
navigation. As a consequence, the comprehensive method for assessing compliance with
social norms remains unresolved, in contrast to the agreement on criteria for evaluating

the physical and perceived safety, as well as most cases covered by naturalness aspects.
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An example phenomenon that was not targeted by user studies to the extent that
allows establishing specific principles is facial expressions. Petrak et al. [83] discussed
a side note of their study that enhanced robot facial expressions and gestures could make
the behaviour easier to anticipate for the experiment participants. Kruse et al. [12] poin-
ted out additional navigation conventions such as: giving priority to elderly people at
doorways, asking for permission to pass, and excusing oneself when one has to traverse
a personal zone to reach a goal. Furthermore, Gao and Huang [10] indicated observing
right-of-way at four-way intersections as another navigation-based interaction. On the
other hand, despite overtaking on the non-dominant side has been implemented in some
navigation methods [71, 141], there are no clear guidelines that such behaviour is common
in environments other than narrow passages.

Nevertheless, implementing all requirements in a single robot control system is an
enormous challenge, while integrating all constraints and norms requires rich contextual

awareness of the robot.
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Chapter 3

Related work

Our literature review can be segmented into two perspectives: requirements and al-
gorithmic. The requirements perspective, explained in Chapter 2, involves exploring vari-
ous user studies to identify the rules for social robots to adhere to. The primary focus
of that part lies in examining factors that cause human discomfort, as confirmed in real-
world experiments involving human participants. In addition to identifying these factors,
we aim to extract methods for mitigating discomfort to obtain implementable guidelines
for robot control systems.

Subsequently, the algorithmic perspective, discussed in this chapter, categorises ex-
isting research regarding the perception, motion planning, and evaluation approaches
(Fig. 3.1) and maps state-of-the-art navigation methods onto the specified requirements

taxonomy (Fig. 2.2).

Perception

Social robot
navigation

Motion planning)

Evaluation

Figure 3.1: A taxonomy of main concepts in social robot navigation.

The following sections give an algorithmic overview of fundamental aspects of social
robot navigation. The Sec. 3.1 discusses the key methods for addressing the main chal-
lenges of social robot perception, namely the detection and tracking of humans in the
robot’s environment. These considerations are complemented by the analysis of diverse
environment representations and contextual awareness of robots. Then, in Sec. 3.2, which

is the major part of this chapter, various methods employed for robot motion planning
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are discussed. The review involves both traditional methods and dedicated socially-aware
approaches that take into account constraints arising from the presence of surrounding
humans. Sec. 3.2 is summarised by tables mapping the state-of-the-art navigation al-
gorithms onto the requirements taxonomy, based on the objectives addressed in each
approach. Moreover, Sec. 3.3 explores the methods for evaluating social robot navigation
as well as study types and tools relevant to the development of navigation techniques.

The summary of the analyses from this chapter is provided in Sec. 3.4.

3.1 Perception

Robot perception plays a substantial role in safe navigation and expands the intelligence of
arobot. Social robots must differentiate obstacles from humans to interact in a discomfort-
mitigating manner.

In robotics, various types of exteroreceptors [31] are utilised to perceive the envir-
onment. Tactile sensors provide feedback about physical contact, enabling robots to
detect and respond to touch [53, 61, 62, 142, 143]. They are crucial for tasks requir-
ing object recognition that other sensor types can’t capture. Sonar sensors utilise sound
waves to detect the presence, distance, and velocity of objects, allowing robots to nav-
igate and avoid obstacles in dynamic environments [144, 52, 53, 145, 146]. Laser range
finders use laser beams to measure distances accurately, aiding in mapping and local-
isation tasks [61, 147, 148, 149, 150, 151, 152]. RGB cameras capture images in vis-
ible light, enabling robots to recognise objects, navigate environments, and interpret
visual cues [53, 42, 153]. Finally, RGB-D cameras, equipped with depth sensors, provide
both colour and depth information, enhancing object detection and enabling 3D map-
ping [154, 149, 155, 156]. These sensor types play essential roles in robotics research and
development, enabling robots to perceive and interact with their surroundings effectively.

The remainder of this section follows the taxonomy illustrated in Fig. 3.2.

3.1.1 Environment representation

Besides detecting obstacles and tracking humans, robot perception is usually employed
to collect subsequent observations of the surroundings to create an environment model,
among which the most popular are dense, sparse, and dual representations.

A dense representation constitutes a discretised map of the robot environment. Clas-
sical maps contain all types of obstacles embedded into the environment model without
a semantic distinction. The most common planar map types are occupancy grids [157] and
costmaps [22]. In contrast, octomaps [158], representing occupancies in 3D space, and el-

evation grid maps [159] are less frequently integrated with social robot navigation systems.
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Figure 3.2: A taxonomy of perception for social robot navigation.

The pioneering dense model is an occupancy grid [157] that represents the environment
as a binary grid (graph) where each cell is either occupied or free, and all occupied cells
are treated as equal obstacles. Therefore, costmaps were proposed to extend the classical
occupancy grids. Costmaps introduce intermediate states (between free and occupied) of
a cell [22] and constitute a 2D traversability grid in which cells are given a cost of tra-
versal reflecting the difficulty of navigating the respective area of the environment [160].
This allows robots to plan paths that optimise not just for avoiding collisions but also for
factors like proxemics. The dense representation of an environment is often solely used in
classical robot navigation approaches [161, 147, 158].

Sparse environment representations typically refer to representations where only cer-
tain key features or landmarks are represented explicitly, with the rest of the space left
unstructured or minimally represented. Sparse representation usually provides a concise
description of the objects detected in the environment, constituting their semantic inform-
ation with geometric attributes [162, 163, 164, 43]. This method of storing environment
objects also allows, e.g., applying linear algebra formulas to easily predict objects’ motion.

Dual environment representations, combining dense and sparse ones, are commonly
used in social robot navigation [165, 166, 167, 168]. While obstacle-filled costmaps are
calculated, robot perception modules simultaneously detect and track humans in the
environment. They provide sparse data about each human, e.g., a pose and velocity,
or even spatial relationships [149, 169]. Such information allows for dynamic modelling of
personal spaces of individuals (Req. 2.2.1) and O-spaces of F-formations (Req. 2.2.2),

which can later be embedded onto layered costmaps [170]. Layered costmaps extend the
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notion of traditional costmaps to facilitate separate representations of different contextual
cues as spatial constraints in the robot environment. The resultant costmap with enriched
information is flattened for motion planning; therefore, classical algorithms can still be

used.

3.1.2 Human detection and tracking

Social robot navigation encompasses the awareness of humans surrounding the robot,
as they must be treated differently from typical obstacles. The awareness arises from
detecting and tracking people by the robot perception system [125] as well as exhibiting
behaviour that mitigates the discomfort of nearby humans (Req. 2). Various methods for
human detection and tracking have been proposed in the literature [171, 172, 149, 173,
174, 175, 176].

Arras et al. [171] proposed a method utilising a supervised learning technique for cre-
ating a classifier for people detection. Specifically, AdaBoost was applied to train a clas-
sifier from simple features of groups of neighbouring beams corresponding to legs in the
LiDAR’s range data. Similarly, Bozorgi et al. [176] focused on LiDAR data filtering to
obtain robust human tracking in cluttered and populated environments. They integrated
Hall’s proxemics model [47] with the global nearest neighbour to improve the accuracy
of scan-to-track data association of leg detection. Results of their experiments show that
their method outperformed the state-of-the-art detector from [172].

In contrast, Linder et al. [149] proposed a multi-modal (LiDAR and RGB-D) people-
tracking framework for mobile platforms in crowded environments. Their pipeline com-
prises different detection methods, multi-sensor fusion, tracking and filtering. Triebel et
al. [169] extended multi-hypothesis tracker from [177] for detecting F-formation arrange-
ments. Both works were integrated and implemented in the SPENCER robot [149, 169].

Redmon et al. [173] framed the object detection problem as a regression problem
to spatially separated bounding boxes and associated class probabilities. They proposed
a generic framework for detecting objects of various classes on 2D images. Alternatively,
Cao et al. [175] proposed an Open-Pose system for human skeleton pose estimation from
RGB images. In another work, Juel et al. [178] presented a multi-object tracking system
that can be adapted to work with any detector and utilise streams from multiple cameras.
They implemented a procedure of projecting RG'B-D-based detections to the robot’s base
frame that are later transformed to the global frame using a localisation algorithm.

Theodoridou et al. [153] used TinySSD [174] for human detection in their robot with
limited computational resources. TinySSD is a lightweight single-shot detection deep con-
volutional neural network for real-time object detection, which only finds people in the

images; hence, the authors of [153] had to perform image and range-based data matching
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in their system.

In real-world studies, robot sensors are used to detect and track humans. The survey
by Moller et al. [9] discusses, i.a., the active perception idea. The authors denoted that
active vision systems can influence the input by controlling the camera. As an extension of
active perception, they depict active learning [179], which also influences the input data,
but during the training process. This enables the agent to intelligently choose what data
points to exploit next.

To the best of our knowledge, currently, the most comprehensive human perception
stack is SPENCER [149, 169], which is available as the open-source software! compatible
with the Robot Operating System (ROS) [180, 181].

3.1.3 Human trajectory prediction

In social navigation, classical planning methods, e.g., Artificial Potential Field (APF)
[101] or DWA [144] often exhibit limited efficacy as pedestrians are treated merely as un-
cooperative obstacles. This limitation is exemplified by the freezing robot problem [182],
where a mobile robot may become immobilised in a narrow corridor when confronted with
a crowd of people unless it can anticipate the collective collision avoidance actions [183].
Therefore, predicting human trajectories is one of the fundamental concepts in social robot
navigation, in particular in unfocused human-robot interactions, where explicit commu-
nication between agents is not present. Understanding how agents move can reduce the
potential for conflicts, i.e., sudden encounters in which humans and robots might collide
(Req. 2.1) [28, 184]. Another particularly important aspect is that humans frequently
undergo lengthy occlusion events; hence, their motion prediction prevents possible unex-
pected encounters.

In the social robot navigation literature, the prevailing method is the Inverse Rein-
forcement Learning (IRL) [185], which is based on the Markov Decision Process (MDP)
[186]. The IRL identifies reward functions based on the observed behaviour, enabling ro-
bots to learn from human demonstrations. It can be classified as an offline inference and
learning method [28]. Henry et al. [187] used /RL to learn human motion patterns in
simulation to use them later for socially-aware motion planning. Rhinehart et al. [188]
extended IRL for the task of continuously learning human behaviour models with first-
person-view camera images. Their Darko algorithm jointly discovers states, transitions,
goals, and the reward function of the underlying MDP model. In another work, Vasquez et
al. [189] conducted experiments to compare the performance of different IRL approaches,

namely, Maz-margin IRL [190] and Mazimum Entropy IRL [191], which were later applied

https://github.com/spencer-project/spencer_people_tracking
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for robot navigation in a densely populated environment. Also, Kretzschmar et al. [192]
used Maximum Entropy IRL to deduce the parameters of the human motion model that
imitates the learned behaviours. IRL seeks to extract the latent reward or cost function
from expert demonstrations by considering the underlying MDP. It learns from entire
trajectories, and its computational expense arises from running RL in an inner loop [193].
Another approach was proposed by Goldhammer et al. [194], who used an Artificial Neural
Network (ANN) with the multilayer perceptron architecture to learn usual human motion
patterns. A different method was presented by Gao et al. [195], who trained a Reinforced
Encoder-Decoder network to predict possible activities.

Alternatively, Long Short-Term Memory (LSTM) networks are one of the sequential
methods that learn conditional models over time and recursively apply learned transition
functions for inference [196]. Unlike standard feed-forward neural networks, also known
as recurrent neural networks, these networks include feedback connections. Following the
work by Alahi et al. [197], who presented a human trajectory forecasting model based
on LSTM networks, they have become widely popular for this purpose. For example,
Furnari and Farinella [198] utilised LSTM to predict future human actions in a domestic
setting. Chen et al. [199] also created an LSTM-based model predicting socially-aware
trajectories learned from a dataset to later integrate this into a robot motion planning
scheme. Recurrent Neural Networks (RNN') were also applied for sequence learning, e.g.,
by Vemula et al. [200] who proposed the Social Attention trajectory prediction model that
captures the relative importance of each person when navigating in the crowd, irrespective
of their proximity. Another work by Farha et al. [201] relies on training a Convolutional
Neural Network (CNN) and a RNN to learn future sequences. They proved their method
to be suited for long-term predictions of video sequences.

Another effective data-based method for learning from demonstrations is Generative
Adversarial Imitation Learning (GAIL), applied by, e.g., Tai et al. [193] to learn continuous
actions and desired force toward the target. Huang et al. [202] proposed a model-based
interactive imitation framework combining the advantages of GAIL, interactive RL and
model-based RL.

On the other hand, Kanda et al. [203] used the Support Vector Machine (SVM) to
classify 2-second recordings of human trajectories in a shopping mall into four behaviour
classes: fast-walking, idle-walking, wandering, and stopping. The classification relies on
features of trajectory shapes and velocity. Coarse classification enables forecasting human
trajectories [4]. Similarly, Xiao et al. [204] first pretrained the SVM to group activity
classes, then predicted the trajectories based on those classes, and finally evaluated the
system in a lab environment.

Alternatively, the Social Force Model (SFM) [1] with its numerous modifications [205,
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165, 167] is also a popular method for human trajectory prediction; however, requires
knowledge about environmental cues to infer the possible goals of humans. Luber et
al. [206] combined SFM with a tracker based on the Kalman filter to produce a more
realistic prediction model of human motion under the constant velocity assumption. Re-
cently, multiple approaches integrating SF'M into neural network schemes were proposed.
For example, Yue et al. [207] integrated SFM and a deep neural network in their Neural
Social Physics model with learnable parameters. Gil and Sanfeliu [208] presented Social
Force Generative Adversarial Network (SoFGAN ) that uses a GAN and SFM to generate
different plausible people trajectories reducing collisions in a scene.

Numerous works across various application domains depend on kinematic models for
their simplicity and satisfactory performance, particularly in scenarios with minimal mo-
tion uncertainty and short prediction horizons. Among others, Elnagar [209] proposed
a method predicting future poses of dynamic obstacles using a Kalman filter under the
assumption of using a constant acceleration model. Similarly, Lin et al. [210] proposed
a forecasting strategy that employs a bimodal extended Kalman filter to capture the
dual nature of pedestrian behaviour — either moving or remaining stationary. Also, Kim
et al. [211] used a combination of ensemble Kalman filters and a maximum-likelihood
estimation algorithm for human trajectory prediction.

In applications where performance is crucial, the constant velocity model, assuming
piecewise constant velocity with white noise acceleration, can be applied. Despite its
simplicity, it is commonly chosen as an ad-hoc method for motion prediction in numerous
approaches [212; 213, 214, 215, 148, 216, 217] having lightweight and straightforward
implementation and yielding satisfactory results with high-frequency updates. Recently,
Scholler et al. [218] discussed that the constant velocity model might outperform state-
of-the-art neural methods in some scenarios.

Diverse methods were also evaluated for usage in human trajectory prediction; for
example, belief distribution maps [219] that consider the obstacle situation in the robot’s
environment, multi-goal Interacting Gaussian Processes (mgIGP) [220] that can reason
multiple goals of a human for cooperative navigation in dense crowds, or Human Motion
Behaviour Model (HMBM ) [221] allowing the robot to perform human-like decisions in
various scenarios. Another method was proposed by Ferrer and Sanfeliu [222], who presen-
ted a geometric-based long-term Bayesian Human Motion Intentionality Predictor using
a naive Bayes classifier that only requires training to obtain the set of salient destinations
that configure a scene.

Our survey discusses the most common methods used in robotic applications, but vari-
ous other methods for human trajectory prediction have evolved over the years. Rudenko

et al. [196] presented a thorough review of the state-of-the-art human motion prediction
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methods, where they also discussed approaches that account for map information or en-
vironmental cues for predictions. An appropriate forecasting method has to be selected for
a specific application based on multiple criteria, e.g., computational resources, prediction

horizon, and detection uncertainty.

3.1.4 Contextual awareness

A robot is perceived as intelligent if it utilises the contextual information in its imperat-
ive [13, 26]. The proper socially-aware activity of a robot performing a single task might
differ depending on the situation defined by a contextual arrangement. It is connected to
adjusting the robot’s behaviour, knowing what environment it is in (gallery or shopping
mall), what task it performs (transporting a glass full of hot tea or packed goods), whom
it interacts with (young person or elderly), and what social norms are expected in the
environment (may differ between cultures).

Francis et al. [11] in their survey identified the following forms of context: cultural
context [47, 95, 223, 41, 224, 225], environmental context, individuals diversity, task con-
text, and interpersonal context, but their literature review in this area is narrow. The
notion of context is usually regarded in the deliberative layer of the robot’s planning and

embedded as spatial or spatiotemporal constraints in the motion planning [226, 227, 17].

Environmental context The environmental context is constituted by various charac-
teristics of the robot’s surroundings. This information is particularly important for robots
that act in different types of rooms, e.g., corridors and libraries of the university. While
the robot might be sociable and lively in corridors, it is not necessarily appropriate to
distract students in the library, where the robot should move slowly and be quiet. There-
fore, researchers investigate different environmental concepts to embed them into robot
navigation schemes.

Banisetty et al. [228] proposed a model-based context classifier integrated with a high-
level decision-making system for socially-aware navigation. Their C'NN model distin-
guishes between different environmental contexts such as an art gallery, hallway, vend-
ing machine, and others. Additionally, based on the LiDAR observations and using the
SVM, they classified social contexts, namely people forming a queue and F-formations.
In continuation of this article, Salek Shahrezaie et al. [229] introduced classification and
detection information into a knowledge base they queried to extract applicable social rules
associated with the context at hand. This approach has been further extended in [151] for
using environmental context, object information, and more realistic interaction rules for
complex social spaces. On the other hand, Jia et al. [230] proposed a deep-learning-based

method for detecting hazardous objects in the environment of an autonomous cleaning
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robot to maintain safe distances from them on the motion planning level. Recognising
human activity spaces is a part of environmental context awareness, as presented in the
work by Vega et al. [231], who exploited the detection of specific objects for this purpose.

A leading approach to enable the robot’s contextual awareness is semantic map-
ping [232, 233, 234]. For example, Zhang et al. [235] used an object semantic grid map
along with a topological map for the automatic selection of roughly defined navigation
goals in a multiroom scenario. Alternatively, Ninez et al. [236] proposed a navigation
paradigm where the semantic knowledge of the robot’s surroundings and different social
rules are used in conjunction with the geometric representation of the environment’s se-
mantic solutions. Their approach aims to integrate semantic knowledge and geometrical
information. A promising method for the interactive building of semantic maps for robot

navigation has been illustrated in [237].

Interpersonal context Interpersonal cues are mainly related to social relationships
between tracked humans in the robot environment. This knowledge can be embedded
in control systems to enhance robot navigation skills. For example, Li et al. [238] pro-
posed a dual-glance CNN-based model for visual recognition of social relationships. The
first glance fixates on the person of interest, and the second glance deploys an attention
mechanism to exploit contextual cues. Lu et al. [170] proposed an approach for context-
sensitive navigation, mainly focusing on human-aware robot navigation and embedded
spatial constraints into environment models in the form of costmaps.

The algorithm by Luber and Arras [177] was extended in [169] for detecting and learn-
ing socio-spatial relations, which are used for creating a social network graph to track
groups of humans. Patompak et al. [239] developed a Reinforcement Learning method
of estimating a social interaction model for assisting the navigation algorithm regard-
ing social relations between humans in the robot’s environment model. Similarly, Okal
and Arras [240] employed Bayesian Inverse Reinforcement Learning for learning the cost
function of traversing in the area with a group of humans.

Haarslev et al. [241] introduced contextual information into robot motion planning,
namely, F-formation spatial constraints in the costmaps used for planning. The F-formation
arrangement is inferred from participants’ speed, line of sight and potential focus points.
Similarly, Schworer et al. [242] detected people and their interactions to create spatial

constraints in the environment model used for motion planning.

Diversity context Diversity-related contexts facilitate leveraging human diversity in
social robot navigation. Researchers presented multiple studies regarding gender [243,
244, 245], age [243, 246, 244] personality [145, 247|, and diverse human groups repres-
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entations [248]. All these traits affect how people interact with and perceive robots.
Furthermore, Bera et al. [41] attempted to classify the personality of each pedestrian
in the crowd to differentiate the sizes of personal spaces of individuals. Subsequently,
the emotional state of the pedestrians was also inferred and embedded for socially-aware

navigation [249, 250, 42].

Task context The robot’s behaviour differs based on the task to perform. If the robot
is delegated to execute a task of a high priority, e.g., urgent transportation in a hospital, it
will interact with humans only in an unfocused manner committing to collision avoidance
and respecting personal spaces. However, if the robot’s task is to start sociably interacting
with customers in a shopping mall to present products to them, it has to mildly start
focused interactions with pedestrians. Therefore, the objectives of robot navigation differ
between tasks, affecting the socially correct behaviour scheme that should be followed.

Popular tasks delegated to social and assistive robots are transportation [89], guid-
ing [169, 251], or accompanying [252, 166]. For example, accompanying objectives differ
even between the tasks of attending individuals [253, 252] and groups [254, 166] or even
between different strategies for accompanying individuals (Sec. 2.5.1). Similarly, a guiding
robot, e.g., proposed in [251], mainly focuses on leader-follower tasks, but once it finishes
the guided tour, it may drop the constraints specific to the guiding behaviour (speed etc.)
and switch to socially-aware collision avoidance and back to the reception area.

A significant challenge lies in integrating the contradictory objectives of treating hu-
mans as social obstacles during tasks requiring only unfocused interactions and regard-
ing them as interaction partners when needed. As a result, methods introducing human
awareness and social acceptance must be carefully selected to avoid interfering with con-
tradictory modes of operation, as some constraints may need to be disabled in focused

interaction mode while enabled in unfocused interaction mode [30].

3.2 Motion planning

This section discusses various motion planning approaches and methods of incorporat-
ing social awareness into robot control systems. The motion planning module is crucial
for safely guiding the robot through dynamic environments. Motion planning for mobile
robots is understood as a pose control scheme aimed at moving the robot from its ini-
tial pose to the target pose while considering the kinematic and dynamic (kinodynamic)
constraints of the mobile base.

From the perspective of motion planning, requirements for social awareness presen-

ted in Chapter 2 might entail the necessity of specific enhancements compared to clas-
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sical robot navigation. Namely, those can be classified into three specific groups. Firstly,
modifications of the intermediate trajectory to the fixed goal. This might involve adjust-
ments originating from respecting personal spaces (Req. 2.2.1), O-spaces of F-formations
(Req. 2.2.2), and modulating speed (Req. 2.2.3) to mitigate the discomfort of surround-
ing humans. Secondly, the extended selection of the final poses for navigation tasks with
coarsely defined goals. In particular, selecting such a pose that, e.g., does not block any
affordance space (Req. 2.4.2), minimises the discomfort of the approach to a human
(Req. 2.2.5.1), or provides joining a queue in a socially compliant manner (Req. 2.4.6).
Thirdly, dynamically inferring and following virtual goals in real time depending on the
poses of cooperating humans, which enables efficient execution of accompanying tasks
(Req. 2.4.1).

The predominant motion planning architecture for mobile robots relies on hierarchical
planning with two asynchronously running modules, specifically, a global path planner
and a local trajectory planner [255, 147]|. Global path planning involves finding a feas-
ible path from a start configuration to a goal configuration while avoiding environmental
obstacles. Algorithms generating global paths typically operate in a configuration space
and consider the entire environment [256]. In contrast, local trajectory planning aims
to generate trajectories for the robot to follow within a short time horizon that navig-
ate the robot safely and efficiently through the environment while reacting to dynamic
obstacles and perturbations. Algorithms producing local trajectories typically operate in
the robot’s control space or velocity space and consider immediate sensor feedback and en-
vironmental information [161, 147]. Usually, local trajectory planners operate at a higher
frequency than global path planners to adjust the robot’s motion in real-time, accounting
for dynamic changes in the environment and ensuring safe and efficient navigation.

Our taxonomy of the algorithmic perspective of social robot navigation follows the
hierarchical motion planning scheme, differentiating approaches for global path planning
and local trajectory planning (Fig. 3.3).

Numerous surveys regarding social robot navigation thoroughly discussed motion plan-
ning [12, 2, 14]. However, our review aims not only to investigate the variety of methods
of implementing human awareness in robot control systems but also to classify those
approaches according to the requirements they fulfil. The classification of requirements

regarded in objectives of different navigation algorithms is presented in Sec. 3.2.3.

3.2.1 Global path planning

In the context of global path planning for social navigation for surface robots, various
methodologies are employed for the research. Recently, multiple surveys regarding path
planning for mobile robots have been proposed [257, 258, 259, 260, 261]. State-of-the-
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Figure 3.3: A taxonomy of motion planning for social robot navigation.

art techniques can be classified into distinct groups. These include graph-based methods,
potential field methods, roadmap methods, and sampling-based methods. Each class of
approaches offers unique advantages and challenges, contributing to the broader landscape
of mobile robot path planning [262].

Although in classical path planning metaheuristic methods like genetic algorithms or
particle swarm optimisation are commonly discussed [263], to the best of our knowledge,

they were not applied for human-aware navigation.

Graph-based methods Graph-based methods for path finding fall into the category
of approximate cell decomposition approach in which cells of predefined shape (usually
rectangles) do not exactly cover the free space (in contrast to exact cell decomposition)

but the cell connectivity in a graph is encoded [264].

Algorithms The earliest graph (or grid) search methods in the context of computer
science and algorithmic development can be traced back to the 1950s. One significant de-
velopment was Dijkstra’s algorithm [265], which laid the foundation for many subsequent
graph search and pathfinding algorithms. This algorithm was primarily focused on find-
ing the shortest path in a graph. Later, Hart et al. [266] presented the A* algorithm,
which builds upon Dijkstra’s algorithm by incorporating heuristic information to guide
the search more efficiently, making it particularly useful for pathfinding in large graphs.
The heuristic utilises the distance between the current processing node and the goal node
on the solution space. Globally shortest paths are obtained using both heuristic estim-

ates and actual costs in a weighted graph. Other variants of the A* planning algorithm
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include D* [267], Focused D* [268], LPA* [269], D* Lite [270], E* [271], Field D* [160], and
Theta* [272]. A brief description of each variant is depicted below.

Graph-based planners usually require replanning if the underlying environment model
changes. This drawback is addressed by the D* [267], which is an incremental search
algorithm for finding the shortest paths designated particularly for graphs that may dy-
namically change once the search begins as it possesses the procedure for updating paths
if changes occur. Focused D* [268] adapts the D* to prioritise the exploration of areas
closer to the goal. Lifelong Planning A* (LPA*) [269] is an incremental heuristic search
algorithm that continuously improves its estimates of the shortest path while adapting
to changes in the environment, providing efficient planning in dynamic environments.
D* Lite [270] is a simplified version of the D* algorithm, focusing on efficient replanning
for real-time performance in static or partially unknown environments. The wavefront
expansion procedure (known as NF1 in [264]) is a simple global planner that expands
the search to all adjacent nodes until the start node and goal node are covered. It was
employed in [221] for path planning in human-populated environments. Another method
is E* [271] algorithm capable of dynamic replanning and user-configurable path cost in-
terpolation. It calculates a navigation function as a sampling of an underlying smooth
goal distance that takes into account a continuous notion of risk that can be controlled
in a fine-grained manner.

The authors of Field D* [160] addressed the problem of using discrete state transitions
that constrain an agent’s motion to a narrow set of possible headings, which often oc-
curs in classical grid-based path planners. Instead, they proposed the linear interpolation
approach during planning to produce paths with a continuous range of headings. Alternat-
ively, the Theta* [272] method propagates information along grid edges (to achieve a short
runtime) but without constraining the paths to the grid edges. Instead, any-angle paths
are found by performing line-of-sight checks between nodes. When a direct line of sight is
feasible between two adjacent nodes without intersecting obstacles, Theta* considers the
straight-line path, reducing the number of nodes expanded, compared to A*. Also, Theta*
retains the optimality guarantees of A* while producing smoother, more natural paths,
especially in environments with narrow passages or obstacles.

Notably, Dijkstra’s algorithm does not account for the robot’s kinodynamic con-
straints, which may generate paths not admissible to robots with, e.g., Ackermann kin-
ematics. However, Dolgov et al. [273] addressed this issue in their Hybrid A* algorithm
that extends the traditional A* to handle continuous state spaces by discretising them
into a grid. It incorporates vehicle kinematic constraints, such as maximum velocity and
steering angle, to generate feasible paths for vehicles navigating through complex envir-

onments. Recently, Macenski et al. [256] presented a search-based planning framework
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with multiple algorithm implementations, including Cost-Aware Hybrid-A* planner that
provides feasible paths using a Dubins or Reeds-Shepp motion model constrained by

a minimum turning radius for Ackermann vehicles.

Human-aware constraints The classical path-finding algorithms focus on calcu-
lating the shortest, collision-free path and do not explicitly regard humans in the environ-
ment; hence, they also do not consider social constraints. However, in graph-based meth-
ods, the planning procedure is separated from the definition of planning constraints incor-
porated into the environment representation [215]. Hence, researchers started to modify
the environment models, e.g., costmaps, to embed human-aware constraints into the mo-
tion planning scheme while employing classical path-finding algorithms. Most approaches
that extend environment representations focus on introducing spatial or spatiotemporal
soft constraints representing proxemics [274] or social conventions [71, 170].

For example, Sisbot et al. [274] presented a Human Aware Motion Planner (HAMP)
that exploits algorithms for reasoning on humans’ positions, fields of view, and postures.
They integrated different social constraints into their highly configurable planning scheme,
including Gaussian-modelled personal spaces or hidden zones behind obstacles (visibility
constraints).

Kirby et al. [71] proposed a Constraint-Optimising Method for Person-Acceptable Nav-
igatION (COMPANION) framework in which multiple human social conventions, such
as personal spaces and tending to one side of hallways, are represented as spatial cost
functions. The authors emphasised the importance of accounting for social aspects at
the global path-planning level. Their extended environment representation, including hu-
man awareness constraints, is utilised by the customised A* algorithm to produce socially
acceptable global paths for robots.

Lu et al. [84] presented a costmap-based system capable of creating more efficient
corridor navigation behaviours by manipulating existing navigation algorithms and intro-
ducing social cues. They extended robot environment models with socially-aware spatial
constraints to navigate in a more human-friendly manner. Similarly, the authors of [85] at-
tempted to provide socially legible robot motions using proxemics-based spatial compatib-
ility model and directional compatibility preventing frontal collisions of human and robot.
Their concepts have been integrated with HANP global path planning method [274].

Kollmitz et al. [215] presented a planning-based approach that uses predicted human
trajectories and a social cost function to plan collision-free paths taking human comfort
into account. They employed search-based, time-dependent path planning to reason about
human motion over time, while simultaneously accounting for the kinematic and dynamic

constraints of a robot. The authors extended the layered costmap architecture [170] pro-
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posing multiple layers, each related to the state of the robot environment in subsequent
prediction step. Their framework aimed to include the spatial nature of human proxemics
(Gaussian social cost model used) and temporal aspects of human motion. However, the
authors noted that addressing spatiotemporal intricacies of human-aware navigation in
a global path planning scheme (instead of local trajectory planning) is computationally
expensive [215].

Okal et al. [240] proposed a method that uses IRL to learn features of a populated
environment to model socially normative behaviours [189]. Once the reward function for
a navigation task is obtained, it is used to define spatial costs of social normativeness that
can be injected into a costmap used by a motion planner (either global or local).

Extending classical obstacle-filled costmaps with social constraints is a common and
straightforward practice to include basic human awareness in robot motion behaviour.
Ginés et al. [8], for example, attempted to adjust spatial cost functions representing prox-
emics zones by resizing the personal spaces according to the mood of a human. Some other
works also embedded dynamically recalculated personal zones into costmaps to account
for dynamics of individual humans [71, 275, 276, 252] or groups [277].

Potential field methods Purely graph-based planners have limitations originating
from their discontinuous representation of configuration space. On the other hand, poten-
tial field methods offer smoother path generation and can be directly related to sensor
data, yet they suffer from the presence of local minima [271]. Path planning utilising
a potential field creates a gradient across the robot’s map that directs the robot to the
goal position from multiple prior positions [264].

One of the pioneering works that introduced the concept of Artificial Potential Field
(APF) for obstacle avoidance and navigation in robotics is [101]. The potential field
methods treat the robot as a point in the configuration space under the influence of an
APF. The goal, acting as a minimum in this space, exerts an attractive force on the
robot, while obstacles act as repulsive forces. The superposition of all forces is applied to
the robot. Such an APF smoothly guides the robot toward the goal while simultaneously
avoiding known obstacles, just as a ball would roll downhill [3].

Later, Borenstein and Koren [278] developed a Virtual Force Field method that relies
on two basic concepts: certainty grids for obstacle representation and potential fields for
navigation. Their method enables continuous motion of the robot without stopping in
front of obstacles with a speed of 0.78 m/s. However, the approach was abandoned due to
the method’s instability and inability to pass through narrow passages [3]. The extended
potential field method has been proposed by Khatib and Chatila [279] with two additions
to the basic potential field, in particular, the rotation potential field and the task potential

28



field.

More recently, lizuka et al. [280] proposed a modified APF approach resistant to the
local minimum issue in multi-obstacle environments, while Weerakoon et al. [281] presen-
ted a deadlock-free A PF-based path planning algorithm. Similarly, Azzabi and Nouri [282]
developed an approach that addresses the common issues of the original APF, namely
local minima and the goal being non-reachable with obstacles nearby. Szczepanski [283]
also proposed a path planning method for mobile robots that uses the attractive potential
for goal reaching as the original APF, but the repulsive potential is replaced by a general

obstacle potential, equal to repulsive potential, vortex potential, or their superposition.

Roadmap methods Roadmap strategies capture the connectivity of the robot’s un-
obstructed space through a network of 1D curves or lines, denoted as roadmaps. Sub-
sequently, the roadmap serves as a network of path segments for planning robot move-
ment. Consequently, path planning is reduced to connecting the robot’s initial and goal
positions to the road network, followed by identifying a sequence of routes from the ini-
tial robot position to its destination [3]. The most common approaches falling into the
roadmap-based category are visibility graphs and Voronoi diagrams.

The visibility graph method is one of the earliest path planning methods [264]. For
a polygonal configuration space, the graph consists of edges joining all pairs of vertices
that can see each other (including both the initial and goal positions as vertices as well).
The unobstructed straight lines (roads) joining those vertices are the shortest distances
between them, guaranteeing optimality in terms of the length of the solution path. The
main caveat of the visibility graph is that the solution paths tend to move the robot as
close as possible to obstacles on the way to the goal [3]. In contrast, the Voronoi diagram is
an approach that maximises the distance between the robot and obstacles in the map [3].

Our research regarding the applications of classical roadmap methods shows that they
are rarely used in social robot navigation as they only consider binary environment models
(obstacle or free space); hence, human awareness cannot be properly tackled. However,
Voronoi diagrams might be used as reference path planning approaches [284, 285, 213, 286]
for capturing the skeleton of the environment along with human-aware trajectory planners
as in [141].

Sampling-based methods The main idea of sampling-based motion planning is to
avoid the explicit construction of obstacle regions but instead conduct a search that
probes the configuration space with a sampling scheme [287]. The most prevalent methods
falling into the category of sampling-based path planners are the Probabilistic Roadmap
(PRM) [288] and the Rapidly-exploring Random Trees (RRT') [289], both being probab-
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ilistically complete [287].

Algorithms PRM [288] constructs a roadmap, a graph representation of the config-
uration space, by sampling random points and connecting them with collision-free paths.
It focuses on building a network of feasible paths between different regions of the con-
figuration space and is effective for multi-query scenarios or environments with complex
obstacles.

RRT [289] builds a tree structure by iteratively selecting random points in the config-
uration space and extending the tree towards those points. It explores the configuration
space rapidly and is particularly effective for high-dimensional spaces. Different variants
of RRT has been developed including RRT-Connect [290], RRT* [291] or dual tree version
— DT-RRT [292].

Both PRM and RRT have different characteristics. PRM requires a two-phase process:
first, constructing the roadmap offline and then querying the roadmap online to find a path
between a start and goal configuration. In contrast, RRT performs exploration and path
planning simultaneously, gradually growing towards the goal configuration during the
search process. PRM is a well-suited method for scenarios where the environment is
relatively static, and the planner has sufficient computational resources to construct the
roadmap offline, while RRT is often favoured for real-time or dynamic environments, as it
can adaptively explore the space and find feasible paths in a run-time. A notable feature
of sampling-based methods is that these planners can regard the kinodynamic limits of

the robot to generate feasible and safe motion plans in continuous state and action spaces.

Human-aware constraints Some works focus on including constraints related to
social conventions in sampling-based path-planning schemes. For example, Svenstrup et
al. [293] modified the original RRT for navigation in human environments assuming access
to full state information. Their modifications include adding the potential model designed
for moving humans, so the customised RRT planner plans with a potential field repres-
entation of the world. Similarly, Rios-Martinez et al. [294] proposed Risk-RRT for global
path planning. Their algorithm includes the knowledge of the personal spaces of ped-
estrians and the possible interactions between the F-formation’s participants. Risk-RRT
penalises the robot’s crossing through personal spaces and O-spaces of F-formations by
assigning additional costs to those areas. Furthermore, Shrestha et al. [295] used RRT for
global path planning in the environment with a stationary human. Vega et al. [231] at-
tempted to integrate proxemics theory with their path planner incorporating PRM [296]
and RRT [289] methods by defining personal spaces and activity spaces as forbidden areas

for robot navigation. Alternatively, Pérez-Higueras et al. [297] developed a cost function
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for the RRT-based path planner employing Inverse Reinforcement Learning from demon-

strations.

3.2.2 Local trajectory planning

The most common architecture for robot motion planning separates global path planning
and local trajectory planning [255, 147]. This separation of concerns allows for modular
and flexible robotic systems, where different strategies can be applied at each level of
abstraction to address specific requirements.

Local trajectory planners generate trajectories for the robot to follow within a short
time horizon. Short time horizons allow operating with a higher frequency to instantly
react to environmental changes and possible encounters. Trajectory planners operate in
the robot’s control space or velocity space and regard not only spatial aspects of motion
planning but also temporal ones. In the following part of this survey, various trajectory
planning methods and approaches to incorporating human awareness into robot behaviour

are reviewed.

Sampling-based methods Besides global path planning (Sec. 3.2.1), sampling-based
methods can also be applied to local trajectory planning. An extended RRT with a notion
of time included — spatiotemporal RRT, was proposed by Sakahara et al. [213]. Their
method integrates ideas of the RRT and the Voronoi diagram. Although motion prediction
of dynamic objects is regarded, they do not explicitly capture social conventions. Nishitani
et al. [214] extended this approach presenting a human-centered X-Y-T space motion
planning method. The authors included human personal space and directional area as
well as the robot’s dynamic constraints in the planning scheme.

Pérez-Higueras et al. pointed out in [298] the future work perspective of using RRT
as a local trajectory planner due to real-time capability, but their further work leaned

towards learning-based approaches.

Fuzzy inference methods Fuzzy inference systems (F1S) form another well-established
paradigm for control systems, specifically useful to model imprecise or non-numerical in-
formation and decisions. FIS are applied for traditional robot navigation [299, 300, 301,
302, 303] and social robot navigation tasks [304, 305, 306, 307]. They can also be integrated
with other approaches, e.g., Q-learning [308] or Reinforcement Learning [309].

An example of FIS method adapted for human-aware robot navigation is the work by
Palm et al. [304], who derived fuzzy control rules for the robot’s actions based on expected
human movements relative to the robot. They investigated the movement of humans in

a shared space with a robot to determine lane preference and agent classification for colli-
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sion avoidance. Another method was proposed by Obo and Yasuda [305], who developed
a framework for robot navigation in crowds employing multi-objective behaviour coordin-
ation for collision avoidance. Rifqi et al. [306] used FIS to dynamically change parameters
of the SFM, which has been applied for controlling the movement of a healthcare robot.
Rules that they designed switch the robot’s motion behaviour based on its distance to
human proxemics zones. Recently, Sampathkumar et al. [307] proposed a framework in-
tegrating an Artificial Potential Field and FIS for navigation that prioritises safety and

human comfort.

Force-based methods Force-based approaches model the motion of individuals (hu-
mans or robots) in the environment considering the forces acting on them. These include
a force attracting the agent to the goal and forces arising from interactions with other
agents and environment objects such as obstacles. Typically, they are purely reactive
methods that decide the next movement based on the environment arrangement at hand,
i.e., obstacles and human locations. The resultant force can be directly transformed into
a velocity command for a robot. The predominant methodologies within this category are
FElastic Bands [310] and Social Force Model [1].

Flastic Bands [310] is a method that aims to close the gap between global path plan-
ning and reactive control, as it performs local path deformation based on internal and
external forces. Internal forces contract the path, favouring the shortest path to the goal,
while external forces repel the path from obstacles. The authors of the algorithm proposed
a reference implementation based on bubbles that represent discrete path points and free
space. Later, this method was extended by Brock et al. [311] mainly for motion generation
in manipulation tasks performed in human environments. More recently, a socially-aware
specialisation focusing on improving motion legibility of the Elastic Bands local traject-
ory planner has been developed for the SPENCER project [169]. The notion of human
awareness has also been implemented into the Elastic Bands approach by Vega et al. [231].

On the other hand, Social Force Model (SFM) [1] has been one of the prevalent meth-
ods for crowd behaviour simulation [312, 313], human trajectory prediction (Sec. 3.1.3),
and human-like motion generation in robotics. It constitutes a model inspired by fluid
dynamics that illustrates an agent’s motion using a set of attractive and repulsive forces.
Its flexible formulation allows for capturing additional models of social phenomena to
obtain more realistic motion behaviours. Therefore, the original approach has undergone
multiple extensions and over the years numerous successful real-world robotic applications
have emerged [7, 314, 315, 165, 253, 166, 167].

Researchers expanded the basic SFM with explicit collision prediction [316, 205], mak-

ing the behaviour more proactive and anticipatory. Kivrak et al. [167] also introduced
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collision prediction into SF'M-based model which they integrated with a robot operating
in an unknown environment with no a priori map. Similarly, Shiomi et al. [7] evalu-
ated SFM with collision prediction [205] in a real-world shopping mall. Collective motion
conventions were also integrated into the model formulation [317] as well as group form-
ations [73, 318, 319]. Some works also focused on improving the realism of generated
trajectories [320].

Truong and Ngo [314] proposed a proactive social motion model for safe and socially-
aware navigation in crowded environments. Their formulation takes into account the socio-
spatiotemporal characteristics of humans, including human body pose, field of view, hand
poses, and social interactions, which consist of human-object interaction and human group
interaction.

Ferrer et al. [315] presented another model extending the original formulation to effect-
ively accompany a person. They implemented human behaviour prediction to estimate the
destination of the person the robot is walking with. Additionally, the authors exploited
the parameterisation of the SFM and applied a method of interactively learning the para-
meters of their Extended Social Force Model (ESFM) using multimodal human feedback.

Moreover, Repiso et al. presented studies regarding the robot accompanying single
humans [253] and human groups [166]. In [253], they implemented three stages of focused
interaction between the robot and a human: accompanying, approaching, and position-
ing. They inferred the human’s final destination (among all destinations marked in the
environment beforehand) and predicted the human motion with the SFM. The SFM was
also employed for the robot’s local trajectory planning, and spatial cost functions were
used for trajectory scoring. In the following work, Repiso et al. [166] proposed an ex-
tended method that allows the robot to break the ideal side-by-side formation to avoid
other people and obstacles, implementing the human-aware robot navigation strategy for
accompanying groups of multiple humans.

Alternatively, Ferrer and Sanfeliu [165] developed a SFM-based Anticipative Kinody-
namic Planning method for unfocused interactions between a robot and humans. They im-
plemented a scalarised multi-objective cost function to choose the best trajectory amid the
generated ones. On the other hand, We et al. [321] proposed a pedestrian’s heterogeneity-
based social force model that captures the physiology and psychology attributes of pedes-
trians introducing physique and mentality coefficients into the SFM. Recently, SFM has
also been involved in approaches integrating machine learning techniques with motion
models [322; 208|.

Velocity obstacles methods The Velocity Obstacle (VO) [323] concept is a founda-

tion for a broad class of proactive methods for a robot’s local navigation. VO methods are
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based on a persistent effort to keep a robot collision-free, requiring only: a radius, a pos-
ition, and a speed of each robot [324]. They generate avoidance manoeuvres by selecting
the robot velocities outside the collision cone, which consists of velocities that in the future
would result in close encounters with obstacles moving at known velocities. A practical
application of VO was introduced by Lin et al. [325]. They adapted the concept by as-
suming that each agent is a decision-making entity capable of selecting the appropriate
velocity that responds to the other agents’ movements and replanning its path. Moreover,
an extension of VO, called Reciprocal Velocity Obstacle (RVO), was developed by van
den Berg et al. [326]. They exploited the fact that humans in the environment cooper-
ate [327] and the approach guarantees to generate safe and oscillation-free motions under
an assumption that all dynamic agents make a similar collision-avoidance reasoning [14].
Furthermore, a related, reactive and rule-based method called Optimal Reciprocal Colli-
sion Avoidance (ORCA) [328] does not require implicit communication between agents
and optimises global objectives when finding collision-free velocities. However, agents’
observations must be accurate, therefore this approach is predominantly used in the sim-
ulation.

VO-based methods are rarely enhanced with socially-aware concepts. Martinez-Baselga
et al. [152] presented a Strategy-based Dynamic Object Velocity Space trajectory planner
that explicitly regards the presence of dynamic obstacles but does not take any social con-
ventions into account. Similarly, Zhang et al. [148] proposed a local trajectory planning
scheme using ORCA that includes uncertainties of states of surrounding humans when

selecting collision-free velocities.

Optimisation-based methods Another class of approaches for human-aware traject-
ory planning formulates the problem as an optimisation task, which relies on finding
control inputs that optimise (minimise or maximise) an objective function while satisfy-
ing kinodynamic and collision-free motion constraints. Those hard constraints, inherited
from classical robot navigation, restrict control inputs to those feasible for the specific
mobile base at a given time and ensure the absence of collisions within the prediction
horizon. The presence of collisions with the surrounding objects is assessed using the en-
vironment model and forward simulation of applying the computed controls. In contrast,
soft constraints are embedded in the optimised objective function that takes into account,
e.g., intrusions into the personal spaces of humans.

Most state-of-the-art methods planning optimal socially-aware local trajectories ex-
tend the classical robot navigation algorithms — the Dynamic Window Approach [144]
and the Timed Elastic Bands [162], referred to as DWA and TEB, respectively.

64



DWA-based methods The DWA is one of the most common algorithms for col-
lision avoidance. The main characteristic of the approach is that commands, controlling
the translational and rotational velocities of the robot, are searched directly in the space
of velocities. The search space is reduced to velocity pairs fulfilling kinodynamic con-
straints. Typically, for each velocity pair, the effect of applying those controls to the
robot is simulated over a short time horizon, e.g., 1.5-3.0 s, which produces multiple cir-
cular trajectories. The optimal trajectory is the one maximising the objective function
consisting of three weighted components. In particular, the components evaluate the pro-
gress toward the goal, the distance to the closest obstacle, and the forward velocity of the
robot. Numerous modifications of DWA have been proposed, as the objective function is
expandable [329, 330]. However, the method does not explicitly capture the dynamics of
the obstacles taking into account only their current position.

Another method, Trajectory Rollout [161] is similar to DWA but exhibits one essential
difference — in each forward simulation step, a set of feasible velocity pairs is updated as
the kinematic constraints are recalculated according to the current velocity and dynamic
constraints.

Constraints related to social conventions are usually embedded in the environment
representation used by trajectory planners [219] or by extending the objective func-
tion [331, 221]. For example, Weinrich et al. [219] applied the E* algorithm as a global
path planner along with an extended DWA method as a local trajectory planner. They
extended DWA with an additional objective rating that considers spatiotemporal occu-
pation probabilities of the tracked humans. In particular, they assigned personal spaces
to humans using Gaussian Mixtures. The method provided successful collision avoidance
by the robot in a passing scenario of a narrow hallway. A similar extension of DWA was
proposed in [332].

Seder et al. [331] and Oli et al. [221] proposed navigation approaches that employed
a modified DWA for human-aware local trajectory planning. They introduced human
awareness by modifying the objective component related to clearance from obstacles, in
particular, including predicted poses of tracked humans as future obstacle positions. The
difference between those methods is that in [331] the authors assumed human motion
predictions driven by the constant velocity model, while in [221] the SFM has been im-
plemented. Also, the method from [331] used Focused D* as a global path planner, whereas
in [221] — the NF1 [264] was integrated.

TEB-based methods The TEB is a traditional local trajectory planner that laid
a foundation for multiple methods that enhanced this approach to capture human-aware-

ness constraints [216, 168, 333]. The basic TEB deforms local trajectories according to the
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locations of obstacles in the environment, but, in contrast to Elastic Bands, with temporal
information. Instead of forces from FElastic Bands, TEB uses an optimisation objective
to follow the global path regarding kinodynamic constraints, forming the optimisation
problem of non-linear least-squares.

Human-aware specialisation of TEB, named HaTEB, was proposed by Khambhaita
and Alami [216]. They extended the original optimisation constraints with safety (min-
imum safety distance), time to collision, and directional constraints, including the pre-
dicted human trajectories in the problem formulation. Singamaneni et al. [217, 168] de-
veloped the CoHAN planner — the HaTFEB extension that handles large numbers of people
and focuses on motion legibility improvements. The CoHAN has different tunable plan-
ning modes that can handle various indoor and crowded scenarios. Recently, Hoang et
al. [333] studied the topic of the robot approaching people in dynamic social environ-
ments and presented GTEB model — a goal-oriented specialisation of TEB planner. Their
approach takes into account the robot’s current state, robot dynamics, dynamic social
zones [275], regular obstacles, and potential approaching poses to generate the socially

optimal robot trajectory.

Other methods Alternatively to DWA- and TEB-based methods, Forer et al. [334]
proposed the Pareto Concavity Elimination Transformation (PaCcET) local trajectory
planner. It aims to capture the non-linear human navigation behaviour, scoring traject-
ories with multiple objectives. The first relies on path distance, goal distance, heading
difference and distance to obstacles, while the second is based on the interpersonal dis-
tance between the robot and humans. Later, Banisetty et al. [228] extended PaCcET with
social awareness objectives, specifically, maintaining appropriate distances to F-formations
(groups) and distance to a scenario-dependent social goal. In contrast, the authors of [335]
proposed a planner that aims to exaggerate motions to increase intent expressiveness
over passing sides for legible robot navigation [23|. They implemented a decision-making
strategy, constructing the Social Momentum objective that takes pairwise momentum
between robot and human into consideration. Another method was presented by Mehta
et al. [336] who applied Multi-Policy Decision Making to navigate in dynamic environ-
ments with different policies, namely, Go-Solo, Follow-other, and Stop. The values of
utility functions, which compromise between the distance travelled to the goal and the
disturbance to surrounding agents caused by the robot, are predicted through forward
simulation.

Optimal control techniques have also been employed to maintain the formation integ-
rity [337, 338]. For instance, in [337], formation control in a leader-follower arrangement

was discussed. The authors developed a method that, under mild assumptions, guarantees
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the stabilisation of the formation to the desired shape and scale. Similarly, an optimal con-
trol algorithm, but for sustaining formations of various structures, was proposed in [338].
On the other hand, Truc et al. [339] developed a 3D reactive planner for human-aware
drone navigation in populated environments that is based on a stochastic optimisation of

discomfort caused by the drone’s proximity to pedestrians and the visibility of the drone.

Learning-based methods In recent years rapid growth in the machine learning field
has been observed, and numerous planning approaches have evolved to capture the intric-
acies of human behaviours and transfer them into robot control strategies. The broadest
attention in robot control applications gained Reinforcement Learning (RL) and Deep
Reinforcement Learning (DRL). Specialised surveys on the applications of RL methods
for robot navigation [340] and particularly on social robot navigation were already pub-
lished [341].

Inverse Reinforcement Learning A distinctively useful method for learning
from demonstration is Inverse Reinforcement Learning (IRL) [190], as it allows to model
the factors that motivate people’s actions instead of the actions themselves [189]. Ex-
ample applications of IRL methods for human motion prediction were already presented
in Sec. 3.1.3, but they might also be used for control purposes. For example, Kim and
Pineau [342] learned a cost function involving social cues from features extracted from
RGB-D camera. Their IRL module uses a set of demonstration trajectories to learn the
reference behaviour when faced with different state features. Their approach is implemen-
ted as a trajectory planner with [RIL-based cost function operating along with a global
path planner. Similarly, Kuderer et al. [343] also use IRL with human demonstrations,
but they extract features from the human trajectories and then use entropy maximisa-
tion to determine the robot’s behaviour during navigation in human environments. Pérez-
Higueras et al. [298] also used IRL to transfer human motion behaviour to a mobile robot.
They evaluated different Markov Decision Process models and compared them with the
baseline implementation of a global path planner and local trajectory planner without
social costs. More recently, Karnan et al. [344] collected a large-scale dataset of socially
compliant navigation demonstrations. They used it to perform behaviour cloning [345]
for a global path planner and local trajectory planner agents that aimed to mimic human
navigation behaviours. The authors also performed an evaluation study for the learned

approach, comparing it with a baseline ROS implementation.

Reinforcement Learning In contrast to IRL, the RL is used when the reward

function is known or can be easily defined, and the goal is to find the best policy for
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achieving cumulative rewards. Recent works present the DRL as a framework to model
complex interactions and cooperation, e.g., in social robot navigation.

In a study by Olivier et al. [327], the authors found that walking people mutually
adjust their trajectories to avoid collision. This concept was exploited by Silva and
Fraichard [346], whose approach relies on sharing motion effort between a robot and
a human to avoid collisions. They learned a robot behaviour using the RL to solve the
reciprocal collision avoidance problem during simulated trials.

Li et al. [183] presented a Role Playing Learning formulated under a RL framework
for purely local navigation of a robot accompanying a pedestrian. In their approach, the
robot takes into account the motion of its companion to maintain a sense of affinity when
they are travelling together towards a certain goal. A navigation policy is trained by Trust
Region Policy Optimisation with the use of features extracted from a LiDAR along with
the goal as an input to output continuous velocity commands for navigation.

A series of works by Chen et al. [347, 348] developed Collision Avoidance with Deep
Reinforcement Learning (CADRL) approaches. Specifically, in a Socially-Aware CADRL
(SA-CADRL) [348], they designed a hand-crafted reward function that incorporates the
social convention of passing side and enables a robot to move at human walking speed
in a real-world populated environment. Everett et al. [163] proposed a GPU/CPU Asyn-
chronous Advantage Actor-Critic CADRL (GA3C-CADRL) strategy that employs LSTM
to use observations of arbitrary number or surrounding agents, while previous methods
had this size fixed. A distinctive characteristic is that their algorithm learns collision avoid-
ance among various types of dynamic agents without assuming they follow any particular
behaviour rules.

Jin et al. [349] presented another DRL method but for mapless collision avoidance
navigation where humans are detected using LiDAR scans. The reward function regards
ego-safety, assessed from the robot’s perspective, and social-safety, evaluating the impact
of the robot’s actions on nearby humans. The ego-safety zone maintains 0.4 m of separation
between the robot and other objects, while social safety aims to prevent intrusions into
approximated human personal space. Liang et al. [155] developed a RL-based collision-
avoidance algorithm, named CrowdSteer, for navigation in crowded environments. The
authors trained the algorithm using Proximal Policy Optimization (PPQO) in high-fidelity
simulation and deployed the approach on two differential drive robots.

Chen et al. [350] discussed extending pairwise interactions between the robot and in-
dividual humans to a robot interacting with a crowd. The authors developed Socially
Attentive Reinforcement Learning (SARL) that jointly models human-robot as well as
human-human interactions in an attention-based DRL framework by learning the collect-

ive importance of neighbouring humans with respect to their future states. Their work
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was further enhanced by Li et al. [351] who addressed the problems of learned policies be-
ing limited to certain distances associated with the training procedure and the simplified
environment representation that neglects obstacles different from humans. In their SARL*
method, they introduced a dynamic local goal-setting mechanism and a map-based safe
action space, addressing the problem of multiple detours of SARL. Nevertheless, social
constraints, other than keeping at least some separation distance between the robot and
humans, were not included.

Guldenring et al. [352] proposed another DRL-based system to train neural-network
policies for local trajectory planning explicitly taking nearby humans into consideration.
The approach uses Prozimal Policy Optimization (PPO) as the main learning method
while DRL agents are trained in randomised virtual 2D environments interacting with
humans in an unfocused manner for plain collision avoidance. In addition, the method
relies on raw data readings, in contrast to, e.g., [163].

Recently, Xie and Dames [156] proposed DRL policy for robot navigation through
obstacle-filled and populated areas that intend to be generalisable to new environments.
In particular, the DRL-VO reward function contains a novel term based on VO (Sec. 3.2.2)
to guide the robot to actively avoid pedestrians and move toward the goal. In turn, Qin
et al. [353] introduced a socially-aware robot mapless navigation algorithm employing RL

to learn strategies that conform to social customs and obey specific traffic rules.

Miscellaneous approaches Besides the aforementioned methods, learning-based
applications include employing Hidden Markov Model (HMM) in a higher hierarchy
system to learn the choice between the RL-based collision avoidance and target pur-
suing [354].

On the other hand, Tai et al. [193] attempted to apply Generative Adversarial Imita-
tion Learning (GAIL) strategy to navigate in populated dynamic environments in a so-
cially compliant manner via only raw depth inputs from RGB-D camera. Their approach
learns continuous actions and desired force toward the target and outperformed pure
behaviour cloning policy regarding safety and efficiency.

In the approach by Lu et al. [355], the crowd’s density is dynamically quantified
and incorporated into a reward function deciding the robot’s distance from pedestrians.
The authors extended the DRIL-based work from [350], so the best action is inferred
from a reward function that regards the uncomfortable distance between the robot and
a human. Alternatively, a system proposed by Yao et al. [124] incorporates a Generative

Adversarial Network to track and follow social groups.
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Physical safety (Req. 2.1)
[53, 356, 228, 133, 102, 348, 350, 135, 237, 324, 163, 315, 165, 334, 144, 322, 8, 252, 352,
36, 241, 106, 143, 333, 349, 120, 131, 111, 216, 211, 71, 167, 330, 215, 85, 343, 183, 351,
155, 84, 355, 147, 152, 357, 335, 336, 277, 292, 255, 126, 139, 251, 338, 214, 305, 240,
221, 61, 146, 141, 164, 358, 297, 353, 253, 254, 166, 306, 294, 77, 162, 130, 213, 307, 4,
242, 331, 7, 346, 217, 168, 150, 274, 90, 293, 283, 337, 153, 125, 91, 66, 220, 169, 339,
359, 275, 314, 328, 154, 189, 231, 276, 281, 219, 156, 124, 67, 121, 136, 148, 235]
Perceived safety (Req. 2.2)
Personal spaces (356, 228, 133, 350, 135, 324, 165, 334, 322, 8, 252, 352, 36, 241,
143, 333, 349, 111, 216, 71, 167, 215, 85, 183, 351, 155, 84, 355,
152, 336, 277, 139, 214, 240, 221, 61, 146, 141, 297, 353, 253, 254,
166, 306, 294, 77, 130, 307, 242, 7, 168, 150, 274, 360, 90, 293, 153,
91, 66, 169, 359, 275, 314, 154, 231, 276, 219, 156]

O-spaces [53, 228, 324, 241, 277, 240, 254, 166, 294, 77, 242, 360, 169, 359,
of F-formations 275 314, 154, 231, 276, 124]

Passing speed [106, 61, 146, 217, 168, 150, 339, 154, 189, 67]

Motion legibility — [324, 111, 216, 211, 215, 85, 343, 357, 335, 353, 217, 168, 150, 169,
328, 189, 156, 67, 148]

Approach direc-  [53, 102, 237, 252, 333, 277, 253, 254, 166, 4, 90, 293, 91, 66, 339,
tion 359, 275, 314]

Approach speed [53, 102, 253, 254, 166, 91, 66]

Occlusion zones (141, 150, 274]

Table 3.1: Classification of robot navigation methods implementing human safety require-

ments from the presented taxonomy.

3.2.3 Discussion

A summary of discussed navigation methods according to the requirements they imple-
ment is presented in Tab. 3.1 and 3.2. The approaches listed in most cases employ the
hierarchical structure in the motion planning system composed of a global path plan-
ner and a local trajectory planner. However, not all works explicitly reveal the planning
algorithms used; thus, we do not show the details in that matter.

Each reviewed navigation method is classified based on the objectives addressed in the
approach. However, the consequence of this methodology is that behaviour cloning or im-

itation learning (Sec. 3.2.2) are excluded from this classification, as without investigating
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Motion naturalness (Req. 2.3)

Velocity [135, 165, 144, 36, 71, 156]
smoothness
Oscillations [155, 152]

In-place rotations —

Backward —

movements

Gaze modulation  [106, 111, 84]

Social conventions (Req. 2.4)
Accompanying [53, 237, 315, 252, 120, 131, 183, 336, 126, 251, 338, 141, 253, 254,
166, 130, 337, 125, 124, 121, 136]

Affordance spaces  [133, 135, 359, 275, 314, 231, 276, 235]

Activity spaces [133, 135, 359, 275, 314, 231, 276]

Passing side (348, 71, 343, 84, 61, 146, 141, 229]

Yielding way —

Standing in line [228, 135, 139

Elevator etiquette —

Table 3.2: Classification of robot navigation methods implementing the requirements of
robot’s motion naturalness and obedience to social conventions from the presented tax-

onomy.

the dataset, it is not clear which features were captured; hence, which requirements were
targeted. On the other hand, VO-based methods (Sec. 3.2.2), which proactively adjust
motion direction to avoid collisions, are always denoted as respecting motion legibility
(Req. 2.2.4) (Sec. 2.3.4).

The requirements group most covered is by far the physical safety (Req. 2.1) inher-
ited by social robot navigation from traditional navigation. It regards collision avoidance;
hence, even approaches that do not explicitly regard humans in the environment (but
rather moving obstacles) fall into this category. The most popular objective among so-
cial robot navigation algorithms is respecting personal spaces. However, in most meth-
ods, they are modelled as a circular shape, while many studies revealed their asymmetry
(Sec. 2.3.1). In contrast, motion naturalness and, importantly, social conventions aspects

are less frequently discussed. The latter is rarely considered, as in research, robots are
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usually designated for specific tasks, which influences a fragmentary approach to design

and implementation.

3.3 Evaluation

Evaluating social robot navigation systems is essential for gathering insights on comfort
among users and optimising their performance in real-world environments. This section
discusses different evaluation methods, classifies types of studies conducted to explore or
verify designed navigation algorithms, and identifies tools facilitating efficient assessment,

namely, datasets, simulators, and benchmarks (Fig. 3.4).

Evaluation
Methods Studies Tools
Qualitative Controlled Datasets
Quantitative Exploratory Simulators

Benchmarks

Figure 3.4: A taxonomy of evaluation for social robot navigation.

3.3.1 Methods

In general, evaluation methods encompass qualitative and quantitative approaches. Qual-
itative methods often involve subjective assessments, such as questionnaires conducted
during user studies, which gauge users’ preferences and comfort levels while interacting
with the robot (e.g. [53, 7, 97]). These subjective evaluations provide valuable insights
into the social acceptability of robot navigation.

On the other hand, quantitative methods utilise objective metrics formulated math-
ematically to assess various aspects of robot performance and social awareness (e.g. [342,
336, 357, 8, 330]). These metrics enable precise assessment and, thus, evidence-based
comparison of different navigation algorithms. Researchers employing a combination of
qualitative and quantitative evaluation methods [95, 8, 335] can comprehensively gauge
both the performance and suitability of human-aware navigation systems in meeting the

expectations of users.
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In recent work, Biswas et al. [35] stated that an ideal method of evaluating social
robot navigation is a large-scale, costly, and time-consuming qualitative user study. How-
ever, due to the indicated drawbacks, automated methods that provide a quantitative
approximation of facts are required. Quantitative assessment methods are particularly
useful for learning-based approaches, where the reward of action must be numeric. Simil-
arly, the authors of planners that employ heuristics or optimise a single criterion benefit
from benchmarking their methods against various strategies. Since automated quant-
itative methods produce invariable indicators of the algorithm’s performance, they are
particularly relevant for usage, e.g., during the new algorithm development stage. Never-
theless, grounding the social robot navigation requirements and approximating the social
phenomena as quantitative metrics would be impossible without user studies yielding

qualitative results.

3.3.2 Studies

Social robotics experiments often involve user studies to gather subjective human impres-
sions about the robot’s behaviour, which is crucial for social robot navigation as they
provide valuable insights that can be directly transferred onto navigation system require-
ments (Chapter 2). Experiments conducted for collecting such data can be differentiated
between controlled and exploratory.

Controlled studies provide the possibility to conduct tests under configurable condi-
tions. Hence, researchers can control variables and conditions to isolate specific factors,
e.g., robot speed [72], passing distances [61], and observe their effects. This, in turn,
allows for gathering more precise measures of robot behaviour when operating with dif-
ferent navigation algorithms. This type of study might include both questionnaires and
laboratory studies. In contrast, exploratory studies are conducted in natural conditions
with minimum or no preparation. They might take the form of, e.g., a case study [361]
to gain insights or field studies [362, 363 connected with observing and gathering data
(qualitative and/or quantitative) regarding a robot deployed in the target environment.
The principles of human-robot interaction studies design were identified by Bartneck et
al. in [364].

Controlled studies facilitate the systematic evaluation of the robot’s human awareness
across different motion planning algorithms. However, direct comparison necessitates ad-
herence to two crucial rules. Firstly, environmental conditions must be reproducible in
subsequent trials. Secondly, a specific baseline motion planning setup (e.g., relying on
classical navigation objectives), against which the examined navigation system will be
compared, must remain unchanged in the following trials. In the literature, customised

navigation approaches are contrasted against other algorithms [217] or a teleoperated
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agent [166], depending on the study design and goals.

Controlled laboratory studies intend to simplify complex interactions into prescribed
scenarios of agents’ movements under constant environmental conditions, so the number
of varying factors in subsequent trials is limited. Gao and Huang [10] identified standard
scenarios investigated in social robot navigation works that include passing [327, 72, 365],
crossing [215, 83], overtaking [319, 348, 72|, approaching [359, 275, 333|, accompany-
ing [129, 253, 166], or combined.

3.3.3 Tools

Multiple tools facilitate the evaluation of social robot navigation approaches. They are
particularly useful for performing preliminary tests before arranging real-world experi-

ments, which may pose a significant organisational effort [99, 87, 4, 7].

Datasets The datasets can be employed to train models for human trajectory prediction
and learning robot movements in populated environments. They are irreplaceable for
neural approaches that optimise policy learning from data [329, 355, 277].

The pioneering datasets in the field are ETH [366] and UCY [367], suitable for track-
ing and prediction. They provide pedestrian trajectories from a top-view, fixed, outdoor-
located camera. Later, Rudenko et al. [368] developed THOR indoor dataset with human
trajectory and eye gaze data with accurate ground truth information. The data was col-
lected using motion capture hardware with 3D LiDAR recordings and a mobile robot in
the scene. Another dataset, named SCAND, was proposed by Karnan et al. [344] and
contains indoor and outdoor data from multiple sensors of a mobile robot teleoperated in
a socially compliant manner.

Alternatively, SocNav1 [369] and SocNav2 [356] datasets were designed to learn and
benchmark functions estimating social conventions in robot navigation by using human
feedback in simulated environments. Wang et al. [370] developed TBD dataset containing
human-verified labels, a combination of top-down and egocentric views, and naturalistic
human behaviour in the presence of a mobile capturing system moving in a socially
acceptable way. Another dataset was used as a part of the CrowdBot project and is
applicable for crowd detection and tracking, as well as learning navigation in populated,
dynamic environments [371].

Recently, new datasets have emerged, for example, SiT [372], which contains indoor
and outdoor recordings collected while the robot navigated in a crowded environment,
capturing dense human-robot interactive dynamic scenarios with annotated pedestrian
information. Nguyen et al. [373] developed MuSoHu dataset gathering recordings of

sensors placed on human participants walking in human-occupied spaces; thus, inter-
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actions between robots and humans have not been captured. Hirose et al. [143] presented
HuRoN dataset collected with multi-modal sensory data from a robot operating with an
autonomous policy interacting with humans in real-world scenes.

The publications relying on some of these datasets were identified in [10] and partially
in [17], while in [9] the authors separated datasets for activity recognition, human pose

estimation, and trajectory prediction.

Simulators In recent years, simulation experiments have been more often chosen due
to the growth of the field of RL [348, 183, 163, 352, 156] and other data-driven ap-
proaches [193]. Simulators are particularly useful tools for the systematic evaluation of
social robot navigation algorithms as they can provide identical initial conditions of ex-
periments in the following trials, which is not always possible in user studies. Simulators
also facilitate the agile development of algorithms and provide flexibility, which datasets
often lack. Furthermore, as opposed to real-world tests, in terms of time and resources,
they are easily reconfigurable and cost-effective in repeating trials.

Numerous simulation ecosystems have been developed for robotics [374]. The majority
is directly applicable to social robotics as they provide movable human-like postures,
and several are suitable for rich human-robot interaction. The main characteristics of
state-of-the-art approaches for conducting virtual social robot navigation experiments are
presented in Tab. 3.3, whereas Tab. 3.4 illustrates their methods for simulating human
motion behaviours.

The comparison in Tab. 3.3 includes 2D and 3D simulators, as well as frameworks that
have ROS integration (the most popular robotic framework), are actively maintained, and
are open-source. Architectures of software for human simulation can be distinguished on
standalone simulators and frameworks. The latter are usually designed for controlling
simulated humans and they abstract from a specific simulator; therefore, interfacing com-
ponents are necessary for integration. The proposed classification regards the fidelity of the
replication of virtual robots, i.e., whether dynamic intricacies (friction, etc.) are included
or only the ideal kinematic model is considered. Additionally, the comparison identifies
the variety of tasks that can be performed by simulated humans and the methods for
controlling humans. The capability of setting dynamic goals for virtual humans is crucial
for rich human-robot interactions, which usually require an orchestrator. For example,
handover tasks can be simulated only with the synchronisation of human and robot activ-
ities. Specifically, the human receives an object after the robot approaches them (which
in high-fidelity simulation always takes varying amounts of time); hence, the reception
must be triggered at different timestamps.

On the other hand, Tab. 3.4 presents the characteristics of the virtual humans’ nav-
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igation in each simulation ecosystem. The comparison points out the algorithms used for
motion planning and whether the motion of each agent can be configured differently. The
classification also includes information on whether the simulation ecosystem allows the
formation-like motion of virtual humans, which is restricted by the capabilities of motion
planning algorithms available.

Notably, more advanced simulators facilitate transferring the algorithms from virtual
to real-world hardware. All listed simulators except flatland® [352] provide the kinody-
namic fidelity of robots, whereas the exactness of frameworks depends on the simulators
they are integrated with. Simplified, lightweight simulators with the possibility to simulate
dynamic agents, such as SocialGym 2.0, are well-suited for learning applications requiring
multiple repetitions, whereas high-fidelity simulators, like Gazebo (Ignition) or iGibson,
target the rich interaction scenarios. Nevertheless, transferring navigation methods from
the simulation into real-world experiments is essential to demonstrate that developed
algorithmic approaches work not only in simulated setups but are also reliable and pro-

spective for wider applications.

Benchmarks Due to a growing set of navigation algorithms available, the importance of
quantitative evaluation has increased. Lately, various automated quantitative assessment
systems, called benchmarks, have been developed to ease the evaluation of traditional and
social robot navigation. The appropriate benchmark design requires the knowledge of the
requirements for robot navigation system (Chapter 2), concurrently from the classical and
human-aware points of view [21].

Several works have recently proposed benchmarking frameworks for evaluating robot
motion planning algorithms from the classical navigation perspective [34, 385, 386, 387,
388, 389, 33, 390, 391, 392], i.e., without considering human awareness constraints. Those
works mainly focus on performance metrics like navigation success rate, path length, or
time required to reach the goal.

Heiden et al. [34], for example, have introduced Bench-MR — a benchmark concerning
sampling-based motion planners for nonholonomic, wheeled mobile robots. Bench-MR
consists of two main components: motion planning algorithms and evaluation components.
These latter indicate diverse navigation scenarios in static environments along with basic
performance metrics assessing planning efficiency and path quality.

Another framework for comparing path planning algorithms is PathBench proposed
by Toma et al. [385]. It provides implementations of classical and learned-based techniques
allowing evaluation using typical metrics, e.g., path length, path deviation, success rate,

and computational time. PathBench is relevant for simulated and real-world applications.

’https://github.com/avidbots/flatland
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Software Robot Human Human control

Approach . . , .
architecture fidelity task scripted dynamic tel
eleo
variety scenarios goals P
Webots [375] standalone kinodynamic MG v — —
Gazebo [376
azebo [376] standalone kinodynamic MG, PG v — —
(Ignition)
framework
PedsimROS [149] (Gazebo — MG v — —
interface)
flatland standalone kinematic MG — v —
framework MG. PG. FO
HuBeRo [377] (Gazebo — oo v v v
ST, CO, MO
interface)
SEAN 2.0 [378] Unity kinodynamic MG, JG v v v
Crowdbot [379) Unity kinodynamic MG v — —
iGibson 2.0 [380] standalone kinodynamic MG v — —
framework
InHUS [381] (Stage/Morse — MG v v v
interfaces)
framework
IMHuS [382] (Gazebo — MG v v —
interface)
. framework ) )
SocialGym 2.0 [383] kinodynamic MG v v —
(UTMRS interface)
framework
HuNavSim [384] (Gazebo — MG v v —
interface)

Table 3.3: Classification of robotic simulation systems with capabilities for replicating hu-
man motion behaviour. Abbreviations used in the table: MG stands for moving to a goal,
PG — performing gestures, FO — following an object, ST — sitting, CO — conversating,
JG — joining groups, and MO — moving to an object.

Similarly, Rocha and Vivaldini [386] have proposed Plannie framework for developing,
testing, and benchmarking various motion planning techniques in real-world 2D and 3D
environments. The authors reimplemented classical, meta-heuristics, and machine learning
planning algorithms that can be scored with common metrics such as a success rate, path
length, time to produce a trajectory, and time to complete the mission.

Tani et al. [387] have introduced a robotics research platform focused on providing

reproducibility of experiments. Their framework integrates development and benchmark-
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Human Human
) . Human
motion motion
Approach . . . groups
planning diversity
configurable speed
Webots [375] naive trajectory following . i . —
in a scripted trajectory
Gazebo [376] . . .
APF-like configurable weights of potentials —
(Ignition)
fi bl ti del’
PedsimROS [149] SFM contsrable hotion modets v
properties and group assignment
any ROS plugin possible individual parameters
flatland —
for motion planning for each planning agent
HuBeRo [377) any ROS plugin possible individual parameters o
for motion planning for each planning agent
) o configurable behaviours (randomised,
Unity’s built-in path planner
SEAN 2.0 [378] ] handcrafted or graph-based control v
with SFM ) )
of pedestrians), variable posture
fi bl d
Crowdbot [379] DWA, RVO, SFM contigtitable sbee -
in a scripted trajectory
- . configurable object radius
iGibson 2.0 [380] A* with ORCA —
of ORCA
InHUS [381] any ROS plugin possible individual parameters -
for motion planning for each planning agent
IMHuS [352] any ROS plugin possible individual parameters
for motion planning for each planning agent
) configurable motion model’s
SocialGym 2.0 [383] SFM —
properties and group assignment
configurable behaviours (regular,
HuNavSim [384] APF-like/ SFM impassive, surprised, curious, v

scared, threatening)

Table 3.4: Classification of robotic simulation systems from the perspective of methods to

replicate human motion behaviour.

ing, enabling users to create, test, and evaluate various motion planning algorithms in
simulation and real robots. They mainly concentrated on autonomous vehicles operating
in exemplary urban environments, validating the reproducibility of experiments across
different robots using basic spatial metrics.

Mishkin et al. [388] proposed a method of evaluating classical and learning-based ap-

proaches to navigation. They tested different navigation algorithms only in simulation en-
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vironments using basic metrics regarding the success rate, path length, and time required
to reach the goal. Perille et al. [389] proposed BARN method to examine mobile ro-
bot navigation systems in standardised test environments. To evaluate the environment’s
difficulty, they used Dynamic Window Approach (DWA) [144] and Elastic Bands [310]
algorithms scored with simple metrics — traversal time and navigation failures.

Wen et al. [33] proposed MRPB framework for evaluating the general performance
of mobile robot navigation. Although their approach is suitable for simulated and real-
world tests, they did not incorporate any social metrics. Similar features characterise
Arena-Bench [390], whose authors proposed a complete suite for benchmarking different
navigation algorithms but without any human awareness metrics.

MotionBenchMaker [391] is one more open-source tool for benchmarking motion plan-
ning datasets. Their approach is intended to ease the evaluation of motion planning
algorithms in typical manipulation tasks performed in a simulation. The authors com-
pared different planners using only the average planning time metric. Another mainly
performance-focused benchmark was proposed by Tafnakaji et al. [392], who assessed the
navigation of mobile manipulators. They evaluated, e.g., the robot’s accuracy of following
the global path or final pose accuracy.

On the other hand, benchmarks for socially-aware robot navigation are the minority,
but there are several works in that matter [35, 378], as well as ours [21, 20], extensively
discussed in Chapter 4.

One of the examples, SocNavBench [35], is intended to regard social aspects in robot
navigation, but implements only two basic indicators — distance to the closest pedes-
trian and time to collision. Moreover, integrating navigation algorithms other than those
provided by the authors is considered tricky; therefore, the approach is not yet for practical
use.

Another approach, proposed by Tsoi et al. [378], is SEAN 2.0 — a framework for
evaluating robot navigation using different metrics concerning motion efficiency and hu-
man awareness. However, despite the variety of tools provided and integration with the
most popular robotic framework, ROS, their approach is not applicable for evaluating
real-world experiments, as the metrics calculation is integrated into the simulator.

Mavrogiannis et al. [335] have also quantified human awareness of robot navigation
in the work presenting their Social Momentum planning framework. The authors used
known metrics — the topological complexity [393] and the path irregularity index [36], to
compare their Social Momentum with other methods.

The primary features of state-of-the-art approaches for benchmarking robot navigation
are presented in Tab. 3.5. The comparison includes only actively maintained and open-

source benchmarks. Our Social Robot Planner Benchmark (SRPB) system, described in
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Name Metrics Suitable Analysis

Classical env. tools
L. Physical Perceived Motion Social
navigation
safety safety naturalness norms
performance
iG'ib
iGibson v - v o - s -
Benchmark [394]
MRPB [33] VY v — v — S/R -
BenchMR [34] VY v o v o s scenario rendering,
v metrics plots
CrowdBot scenario rendering,
v vV — VY — S
Benchmark [379] metrics plots
VY scenario renderi
SocNavBench [35] vV vV 24 — S SCCHATIO TERCCTIng,
VY metrics plots
VI scenario renderi
Arena-Bench [390] v — 24 — S SCCNATIO TERCCTIng,
VY metrics plots
VI
SEAN 2.0 [378] v vV v — S -
VY
InHuS [381] v v v - - /R scenario and metrics
rendering
Tafnakagi
afnakaji VY — — v — S/R scenario rendering
et al. [392]
scenario rendering,
VY .
SIILL SITLT metrics plots,
SRPB [21] VY VY S/R exporting results
v VY
Y to a INTEX table
or a spreadsheet
VY
HuNavSim [384] vy VY VY vV — S —

Table 3.5: A classification of state-of-the-art methods for quantitative evaluation of robot
navigation requirements. The number of ticks (v') reflects the number of metrics imple-
mented in each benchmark. Abbreviations used: S stands for simulation environments,

R — real-world environments, and S/R reflects simulation and real-world environments.

detail in Chapter 4, is also included in the listing. The classification of methods focuses
on the variety of metrics implemented (according to the taxonomy identified in Chap-
ter 2), as well as determining suitable test environments (simulation/real world) and
a set of analysis tools provided, e.g., for results presentation. In some cases, simulators
linked with social robotics are coupled with internally calculated metrics for assessing
navigation [378, 383].

Quantitative metrics are the inherent parts of benchmark systems as they aim to imple-
ment objective criteria approximating subjective assessments. Therefore, the quantitative

metrics should reflect mathematical formulas of requirements discussed in Chapter 2. Met-
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rics covering most of the perceived safety principles for social robot navigation (Tab. 3.5)
are developed in our SRPB benchmark, where human-awareness indicators also account
for people tracking uncertainty, facilitating the evaluation with the robot’s onboard per-
ception [21]. Besides the listed benchmark systems, several complementary indicators for
assessing the perceived safety of humans in the context of social robot navigation also
appear in [395]. The survey by Gao and Hoang [10] discusses in detail metrics presented

in the literature.

3.4 Summary

The study presented in Chapter 3 examines the key methods for addressing the perception,
motion planning, and evaluation problems in the context of social robot navigation.

The fundamental challenges of social robot perception, identified as the detection
and tracking of humans in the robot’s environment, were analysed, and state-of-the-art
algorithms implementing such were highlighted. Diverse environment representations util-
ised in different motion planning approaches were also discussed, as well as various meth-
ods for human trajectory prediction which is crucial in real robots equipped with sensors
with a limited field of view. The survey also highlights the topic of contextual awareness
and how it was tackled in state-of-the-art navigation approaches.

The major part of our review encompasses various methods employed for robot motion
planning that take into account constraints arising from the presence of surrounding
humans. Approaches present in the literature were classified into global path planning
and local trajectory planning algorithms according to the common hierarchical structure
of motion planning systems. Both global path planners and local trajectory planners were
organised into groups sharing common algorithmic characteristics. Besides a thorough
description of various navigation methods, those approaches are classified according to
the established requirements taxonomy, based on the objectives addressed.

Our literature review also explores the methods for evaluating social robot navigation
as well as study types and tools relevant to the agile development of navigation tech-
niques. The tools for the assessment were discussed distinguishing datasets, simulators,
and benchmarks. An extensive comparison of actively maintained simulators for social ro-
botics was proposed. Moreover, benchmarks suitable for quantitative evaluation of social
robot navigation were classified utilising the proposed requirements taxonomy, according

to the implemented metrics.
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Chapter 4

Quantitative evaluation of
human-aware motion planning

algorithms

Navigation is the fundamental skill of mobile robots that is widely integrated into most
complex tasks. Since the 1960s, many approaches to robot navigation have been pro-
posed [396]. The main objective of classical navigation algorithms is collision avoidance,
considering all objects as generic obstacles. Social robot navigation, instead, relies on
principles from social sciences. Based on research from that domain, robot systems de-
signers try to deal with the presence of humans in the environment considering multiple
objectives to react in a socially acceptable manner. Recently, due to the growing pop-
ularity of social robots, many researchers focused on creating human-aware navigation
approaches [12, 10].

Since various navigation approaches are available, system designers must choose the
best algorithm for a specific robotic application. Selecting the optimal method requires
conducting comparative experiments that allow confronting investigated methods. Such
experiments also benefit developers of new human-aware navigation algorithms, as they
can reveal areas for potential improvement.

Robot navigation evaluation is difficult as demonstrating the overall advantage of
one method over another is challenging. However, different algorithms can be compared
regarding a single aspect, e.g., the undertaken path length or the time required to reach
a goal. The evaluation complexity grows with the number of navigation objectives, as in
human-aware navigation.

Biswas et al. [35] discussed an ideal method of evaluating social navigation. They state
that qualitative methods providing a good approximation of facts are large-scale, costly,

and time-consuming. We agree that automated quantitative methods are more appropriate
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(a) Online stage (b) Offline stage

Figure 4.1: The two-stage procedure of SRPB benchmark for assessing the quality of the
robot navigation. (a) Online stage: a navigating robot tracks obstacle locations, humans
(marked as bounding boxes in the figure), F-formations and its own state, e.g., a pose
and velocity. All the data is recorded and saved to a file. (b) Offline stage: after a finished
experiment recordings are used to evaluate the quantitative results of the navigation using
multiple metrics. In (b), personal spaces are schematically depicted with red ellipses,

whereas F-formations’ O-spaces with orange ones.

for the iterative evaluation, e.g., during the new algorithm development stage, since they
produce invariable indicators of the algorithm’s performance.

Quantitative assessment methods are useful for learning-based approaches, where the
reward of action must be numeric. Similarly, benchmarking against other methods may
benefit planners that employ heuristics or optimise a single criterion.

Designing the appropriate benchmark requires knowledge of the requirements for nav-
igation systems from both classical and human-aware perspectives. Navigation systems
exhibiting socially acceptable robot behaviours cannot remarkably sacrifice the general
effectiveness of robot motions in favour of social metrics maximisation.

To address the problem of the quantitative assessment of social robot navigation,
we developed SRPB — the benchmark that evaluates both social and task performance
aspects of robot navigation (Fig. 4.1). Novel metrics proposed in SRPB evaluate robot
compliance with proxemics rules regarding single humans [47] and F-formations [75], as
well as other social norms, e.g., avoidance of heading in the direction of a human [12].
Another original aspect is that our metrics are designed to account for the reduced tracking

quality of humans since robot perception systems are imperfect. Our benchmark can be
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used to test robots operating in simulated and real-world environments. Moreover, metrics
were formulated so as to allow benchmark usage with different robot types (either with
nonholonomic or holonomic drives). We provide an open-source implementation of our
benchmark system® that is compatible with the Robot Operating System (ROS) [180].

The metrics proposed for evaluating human-aware robot navigation are defined on the
basis of the findings from various user studies. We reached the results from the literature to
perform the grounding of social robot navigation requirements (Chapter 2) and extracted
the guidelines to formulate relevant metrics. Notably, some proposed SRPB indicators
directly model the discrete findings of the user studies, e.g., [72, 64]. On the other hand,
the metrics for the assessment of general robot navigation performance are mostly derived
from state-of-the-art benchmarks, but the extension of several metrics was also proposed.
The new indicators are mainly dictated with practical reasons, as explained in the further
part of the chapter.

We state that the closest to our work is MRPB [33]; however, we extended that
method concerning metrics diversity, focusing on human awareness indices. Furthermore,
our benchmark allows evaluating different methods during on-site tests (simulated or real-
world); robot operation in a preprepared environment is not required as in [389, 387]. Since
robot navigation behaviours can be evaluated in target environments, our benchmark
allows a more accurate algorithm selection for a specific application. Also, SRPB aims
not to reimplement state-of-the-art navigation methods (as in [34, 386]) but relies on ROS-
integrated, easily swappable planning algorithms that are under constant development.
Furthermore, such an approach does not restrict the usage of the SRPB with any specific
class of planners. Our benchmark allows comparing path planners [34, 385] and trajectory
planners in separation or as combined motion planning methods [386].

The remainder of this chapter consists of the definition of the notation (Sec. 4.1),
which is then used to present mathematical formulations of metrics implemented in the
SRPB benchmark. The metrics are organised according to the requirements taxonomy
defined in Chapter 2. Specifically, the following groups of indicators were distinguished:
metrics for evaluation of robot navigation performance Sec. 4.2, metrics for evaluation of
robot motion naturalness Sec. 4.3, and metrics for evaluation of perceived safety among
humans Sec. 4.4. In the last section of the chapter, Sec. 4.5, the presented benchmark
system is critically analysed.

This chapter constitutes an extended description of the proposed benchmarking me-

thod based on our conference paper [20] and the journal article [21].

'https://github.com/rayvburn/srpb
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4.1 Mathematical notation

To describe the metrics for the robot navigation evaluation, we developed a mathematical
notation used in equations (Fig. 4.2). The top-left index (b) of the symbol corresponds
to a specific entity (from those listed in the ontology), whose state influences the value
of the entire symbol. Some symbols may depend on states of multiple entities, in which
case the b is represented by a set of entities’ identifiers. A value of any entity at time ¢"

is referred to as (-)". Common symbols are presented in Tab. 4.1.

entity owner’s identifier
time step

attribute of an entity
entity type
component of an attribute

Figure 4.2: A general description of symbol composition method used in the notation.

The ontology that we propose for social robot navigation is organised as follows: the
world configuration at each time t" consists of the state of a single robot, r", and the
state of its environment. The latter, recalculated at each time step, aggregates: a set
of obstacles, O", and a set of humans, H", that may be arranged into F-formations,
G". Therefore, at time t", the association of h-th human into g-th F-formation can be
expressed as "H™ € 9G™, whereas /G™ € G™. The "H", being prone to collisions with the
robot, can also be involved in calculations related to generic obstacles, Q.

Experiment time stamps, t", where n = {1,..., N}, are shared among the robot,
humans and human groups. We commonly refer to the summation of time differences
between subsequent time steps to consider that they may not be equal-sampled in non-
real-time systems, affecting average values. Conditional summation is represented with
the Iverson bracket operator [397].

The following sections present metrics calculation methods focusing on social naviga-
tion metrics derived from the requirements (Chapter 2). Nevertheless, general navigation

performance aspects are also briefly discussed.

4.2 Metrics for evaluation of robot navigation per-

formance

Socially acceptable robot behaviours should not significantly degrade the general per-

formance of the navigation task (Req. 1). The problem of robot performance during
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H Symbol Description H
r identifier of a robot
t" n-th time stamp
‘H human identified as i
H set of humans
ge humans F-formation, i.e., a group, identified as i
G set of humans F-formations
b Euclidean distance between ¢ and j
P pose vector in a form [z, y, 0]"
. . T
A% velocity vector in a form [vx, Vys w}
. . T
a acceleration vector in a form [ax, a,, a}
1 ¢ direction of a vector connecting centres of ¢ and j
v relative location of 7 regarding the heading of j
R(Z,0) rotation matrix around Z axis by the # angle
var variance
3 covariance matrix
N normal distribution
f function
m metric

Table 4.1: A dictionary of common symbols used for formulating quantitative metrics.

navigation was already discussed in multiple works, as shown in Sec. 3.3.3. However, we

propose several metrics that, we argue, are also crucial for a robot behaviour assessment.

4.2.1 Obstacle safety

Robot navigation benchmarks usually report the number of collisions along the path to
the goal [378, 390] but this type of assessment is not anticipatory. Hence, we argue that
for robust navigation approaches, assessing the percentage of time the robot has spent in
the dangerous area around obstacles (nearer than the configurable distance of "%d

more appropriate. The relevant metric was presented in [33, 390], which we refer to as

Mgps (4.3) (further explained by (4.1) and (4.2)).

r,odn — min Z (r]n o Ojn)2

°One0n |/ .
Jje{z,y}
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The distance "°d" is calculated from the centre of the robot to a border point of the
o-th obstacle. Therefore, the Euclidean distance representing the actual gap between the

objects is less by the robot’s circumradius, d.,.

N-1
(et — ) [0 < "0d,, ] (4.2)

n=1
m, = tNt_tl - 100% (4.3)

We argue that m,, metric is sufficient to assess the compliance with Req. 1.1; however,

a complementary metric, . m,_, ., representing the minimum distance between the robot’s

» min'’ “obs»

centre and the closest obstacle point throughout the experiment (4.4), is also proposed.

= min_"°d" (4.4)
ne{l,...,N}

4.2.2 Motion efficiency

A metric expressing the time required to reach the goal pose (ours m, ¢ (4.5)) was pro-
posed in [388, 33, 35, 390, 378, 392] and is appropriate for verification of the goal-reaching
requirement (Req. 1.3).

my =t — t! (4.5)

4.2.3 Path length

Classical navigation is often focused on minimising of robot’s path length while traversing
to the goal (Req. 1.4). The path is determined by a sequence of poses. To evaluate the

path length, m 4.6), the sum of Euclidean displacements of the mobile base during

plin (
the scenario is computed [390, 35, 378, 392].

mplin - Z Z n+1 " 'n)2 (46)

Jj€{z,y}

4.2.4 Cumulative heading change

A metric complementary to the m represents robot orientation change along the

plin

path (Req. 1.5). For example, the path irregularity metric was discussed in [36], provid-

ing a normalised score of unnecessary turning per unit path length. However, since it
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requires knowing the perfect path to the goal, we argue that it applies only to very small
or perfectly known environments. Therefore, in our benchmark, we use the cumulative
(4.7), as in [240, 398, 37].

heading change metric, mg,.

N-1
Mae = Y [0 =707 (4.7)
n=1

4.2.5 Computational efficiency

Trajectory planners for mobile base navigation have different degrees of complexity. There-
fore, it is adequate to verify the average computation time the planner takes to accomplish
a new velocity command (Req. 1.2). Such a metric was proposed in [33], which we refer
(4.8).

to as m

1 N
Myees = N Z " (4.8)
n=1

4.2.6 Computational time repeatability

Evaluating how much computation times differ from the mean value, ¢, is also import-
ant. It shows how likely the planner will violate requested computation times and, thus,
whether it can be safely applied in robots operating in highly dynamic environments.
Therefore, we proposed the m_,, metric, constituting a standard deviation of all compu-

tational times (n-th denoted as ¢") during the scenario (4.9).

1 .2
Mepe = \J N Z (Cn - C) (49)

4.3 Metrics for evaluation of robot motion natural-

ness

Social metrics are essential for robots operating in dynamic and populated environments.

This section discusses metrics related to robot motion naturalness (Req. 2.3).

4.3.1 Velocity smoothness

Ty

defines how much robot’s linear velocities, "v7

The velocity smoothness metric, m v

vsm?

and "vy, differed in subsequent time steps, which indicates a presence of erratic mo-

tions (Req. 2.3.1.1). A similar metric was proposed in [33]; however, their formulation
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lacks the holonomic drive support. Instead, in our approach, both linear velocity com-
ponents (along the x and y axes) are taken into consideration (4.10). Investigated robot
velocities are expressed in the mobile base’s coordinate system.

LB, )

e{z,y}
m - 4.10
vsme o N — 1 = g+l — ¢n ( )

4.3.2 Heading change smoothness

Another indicator of erratic motions (Req. 2.3.1.1), defines an average rate of robot
heading changes [240] during the scenario. The m,, metric is computed by comparing

differences of robot angular velocity, "w, in subsequent steps, as in (4.11).

1 N-1 |rwn+1 _ rwn|
= — —_— 4.11
Mhgm N —1 fn+1 _ qn ( )

n=1
Similar metrics regarding robot motion naturalness (m.,, and m,,) were also discussed

in [390, 378, 35|, yet the authors did not show their calculation methods.

4.3.3 Oscillations

The oscillations metric?, defines the percentage of the total time that the ro-

OSC ?

bot has spent oscillating, i.e., has not developed significant linear and angular velocit-
ies (Req. 2.3.1.2). The oscillating behaviour in a given time step occurs when robot

velocities, "v", and oscillation threshold velocities, "v., fulfil conditions shown in (4.12).

osc)

2
The linear speed of the robot at time ¢" is represented as "v}}, = \/ (Tvg)2 + (TUZ) .

vy <
100 N= PO [
Moo = Z (tn+1 n) [/\|TUZL|<ZUZ(; (4.12)

/\|rwn ‘ <rw0$C

4.3.4 Backward movements

The backward movements metric, m,4, defines the percentage of the total execution time
that the robot has been advancing in the backward direction (Req. 2.3.1.4) with a speed
of at least Jv .. (4.13).

T ~0sC

100? =
Mywd = 21 Z (tn+1 TL) [Tv;l < _;vosc] (413)

2A similar metric in [11], which has been published later than our [21], is named “stalled time”.
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4.3.5 In-place rotations

The in-place rotations metric, m defines the percentage of the total time that the

iprot»
robot has spent rotating in place (Req. 2.3.1.3). In-place rotation is an action of the

robot when its linear velocities are kept at 0, but the angular velocity is maintained above
the threshold value of "w, . (4.14).

0osc

100% = o
o T { e ] 4.14
mlprot tN — tl ngl ( ) /\‘Twn|y>Twosc ( )

It is crucial that mg., my,q and my, . metrics are orthogonal to each other, i.e., in

osc)

each time step robot’s action can be qualified as fulfilling conditions of only one of these

metrics.

4.4 Metrics for evaluation of perceived safety among

humans

In this section, our metrics for the evaluation of the robot’s intrusiveness and disturbance

to adjacent people are discussed.

4.4.1 Personal spaces intrusion

The personal space concept was adopted in social robotics from the proxemics theory [47].

Our personal space intrusion metric, m__., defines the scale of robot intrusions into any

psi?
human’s personal space [12] throughout the scenario execution (Req. 2.2.1).

Recent studies show that Gaussian functions are legitimate for modelling personal
spaces [399, 64]. Therefore, we represent the human’s personal space as a multivariate

asymmetric Gaussian function, f (explained in A), centred at the h-th human’s pos-

h

mag
2" and "y", oriented according to the human’s heading "6™. Variances along the
h

ition,
front ("var?), side ("var®,), and rear (
in [399].

The variance along the heading axis,

var’) directions of the human pose were estimated

r.h h

vary, is selected ("varf or "var) in a three-

step procedure, so the symmetrical variant of the multivariate Gaussian, f,,, can be used
in calculations. Firstly, to evolve, where the robot is located compared to the human’s
heading direction, the angle of the vector connecting the centres of the human and the
robot, ""¢", is computed (4.15). Then, the relative location mh§m of the robot 7, compared
to the human’s h heading direction, is calculated as in (4.16) and presented in Fig. 4.3a.

r,h(sn

Finally, using the indicator, the variance is selected as in (4.17).

mhyt = arctan 2 (Ty” — Py ren — hx") (4.15)
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7 0.18
7.5 o 'p" 0.16
N 0.14
| rhy s g ° 0.12
6.5} 0.1
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(a) Arrangement angles ) Human position uncertainty
7 - 0.08
0.07
6 6 0.06
0.05
5 5 0.04
0.03
4 4 0.02
0.01
3 3
2 3 4
(c) Personal space (d) Personal space with position uncer-

tainty

Figure 4.3: Processing of the h-th human data. Angles of an example arrangement along
with lines reflecting the orientation of the global coordinate system (the x-axis pointing
upwards) are presented in (a). Gaussians of: position uncertainty (b), personal space (c),
and resultant distribution (d) are shown with the mean of the estimated h-th human pose.

The personal space model was created using "varfl = 3.0, "var™ = 0.75, "var?, = 1.33.

r,h(;n — r,hgbn - hen (4 16)
. hyvart, r’hdn‘ <35
"varpy = (4.17)
hyar™. otherwise

)

To compute a value of f ., the h-th human’s personal space covariance matrix needs to

mg’
be created. Variances defining the personal space are expressed in the human’s coordinate
system; therefore, the personal space covariance matrix, """ . must be rotated according

psi?
to the h-th human’s orientation, "6, as in (4.18).

rhzn - N (Z, h0n> [r’hva’rﬁd 0 ] ZRT (Z, hen) (418)

pSl h n
vary
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In the evaluation process, we also account for human tracking reliability. It aims to pre-
vent excessive penalisation of robot states when, e.g., a tracked human becomes occluded.
The covariance matrix of the estimated human position, hEg, is obtained from the robot

perception system. The sum of independent normal random variables is applied to com-

n

bt (4.19). It accounts for position estimation

. . h
pute the resultant covariance matrix, "\ 3

uncertainty and the personal space model (Fig. 4.3).

rhswn  _ hywn rhgn
O IUMESED S 5

psi psi

(4.19)

The scale of r robot intrusion into the personal space of h-th human in time ¢" is referred
to as ""psi” (4.20). It represents a value of the f, . function (modelling the h-th human’s
personal space) at the robot’s pose at that time, "p”. Equation (4.20) presents arguments
that the f ., function takes — a pose and a multivariate normal distribution, the value of
which will be computed at the given pose. The multivariate normal distribution, described
by a mean of, e.g., p, and covariance matrix of X, is denoted as N (p, ).

bsis 18 shown in (4.21).

Our method investigates the maximum intrusion in a given time step t", provided that

The final formulation of the personal space intrusions metric, m

some human was detected. The scale of the robot intrusion is normalised to the Gaussian
value at the h-th human’s centre, "psi”, so the metric value in each time step corresponds
to a percentage of the maximum intrusion. If no human was observed during the scenario,
Myg = 0.

"hpsi® = £, ("N ("R TASE)) (4.20)

N-1 T hyain
S =) max 2
n=1

hain
theHn ps1
Mg = T (4.21)
n=1

While the my; reflects the mean normalised value of the metric throughout the scenario
execution, the benchmark implementation also provides the minimum and maximum of
all normalised values collected in a single trial, i.e.

m_ . and . m.__.. accordingly.

» min'’ “psi max '’ “psi’

4.4.2 F-formations’ O-spaces intrusion

The O-spaces of F-formations were proposed in [75] to reflect the elliptical spaces created
by a group of humans involved in a focused interaction [2]. Our mg; metric aims to penalise
a robot for traversing through O-spaces (Req. 2.2.2).

Firstly, to find the pose of the g-th O-space’s ellipse, 9p", we employ Taubin’s al-
gebraic method of ellipse fitting [400], supplied with mean positions of g-th F-formation
members. Then, to assess the cost of robot movement in terms of human groups’ pres-

ence, we model O-spaces as bivariate Gaussians (Fig. 4.4). The span of the 2-dimensional
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Figure 4.4: Processing of an exemplary F-formation consisting of 4 members. The mean
of an estimated pose obtained from ellipse fitting is shown in (a). The remaining figures
present corresponding Gaussians of position uncertainty (b), O-space (¢), and resultant
distribution (d).

O-space’s Gaussian model is derived from the lengths of semi-axes (d; and 9d}) of the
F-formation’s ellipse (Fig. 4.4a). Using the 20 rule, the variances along the direction of
the semi-major and semi-minor axes are derived, ¢vary and Jvary, accordingly (4.22). The
O-space model’s covariance matrix, 3¢, expressed in the global coordinate system, is
computed by applying a rotation (by the angle of the F-formation’s ellipse orientation,

99™) to a matrix composed of variances as in (4.23).

gqn\ 2
Vj e {z,y},jvarg = (#) (4.22)
gvar® 0
oy — 9 (7,99 [ R (7,907 (4.23)
0 gvarg

In the spatial model of an F-formation, we also incorporate the uncertainty of the g-
th F-formation’s position estimation (Fig. 4.4b), arising from position uncertainties of

members, YH". The uncertainty is represented by the variances: Jvary, 9vary, Jvary, and
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JIvary, computed as in (4.24) and (4.25). The composition of the F-formation’s position

covariance matrix, 37 is shown in (4.26).

; g n __ hyn
Vj € {x,y},jvary = max 37 (4.24)
HnedGn
g n __ g n o__ hxn

var® = Idvar’ = max max X 4.25
WP YR hgneagn <J’E{Xy7yx} ! p) ( )

yar?  Gyuarl
oy _ Jvary  Jvary (4.26)

P Ivar™ Ivar” '
yx p ) p

The covariance matrix that accounts for F-formation’s O-space and members’ position

n
fsi»

estimation uncertainties, [ is formulated as a sum of normally distributed random
variables (4.27). The computation method of the intrusion, "?fsi”, of r robot into the
O-space of g-th F-formation in time ", along with arguments that the Gaussian function
takes, is presented in (4.28). The final formulation of the O-spaces intrusions metric,
My, is shown in (4.29). The scale of the robot intrusion is normalised to the value of
Gaussian at the g-th group’s centre, ?fsi”, so the metric value in each time step corresponds
to a percentage of the maximum intrusion. If no F-formation was observed during the
scenario, myy = 0.

A =950 + 955 (4.27)

fsi

MST = frg (PN (PP, A3R)) (4.28)

41 rafsin
> ((tn — tn) ma%n gfsin)

n=1 IGne
N-1
5 (1 — ) [G = 2]

n=1

My = (4.29)

The my; reflects the mean normalised value of the metric throughout the scenario exe-
cution, but the benchmark implementation also provides the minimum and maximum of
all normalised values collected in a single trial, i.e. Mg and . Mg, accordingly.

) min

4.4.3 Heading straight into a human

Reactive approaches to robot navigation usually suffer from late trajectory adjustment in
dynamic environments causing the robot to turn just before the imminent collision with,
e.g., a human, diminishing their perceived safety (Req. 2.2.4). The problem was initially
investigated by Truong and Ngo [275], who tried to assess the robot’s approach direction
to the humans. However, their approach does not account for human position estimation

uncertainty and a robot’s dynamics.
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Thus, we propose a new metric, mg;,, to evaluate the scale of the problem in differ-
ent algorithms. The metric penalises a robot for undertaking motion directions leading

straight into humans, especially when the robot moves with a decent speed near a human.

It is directly related to the notion of motion legibility [23].

8
6
4
2
0
(a) Human occupancy model (b) Human position uncertainty

3

2

1

0

(¢) Resultant distribution

Figure 4.5: An exemplary human-robot arrangement and corresponding: distribution of
the human physical space occupancy model (a), position estimation uncertainty (b), and
resultant distribution (c¢). The robot’s and human’s heading directions are represented

r,hln

. are defined

by arrows — red and blue, accordingly. Green dashed lines, constituting
to find the intersection point, "“"p?_, represented by green circles. Magenta dashed lines
indicate the robot’s direction with the maximum likelihood of heading straight into the
human. Blue circles with a radius of d,,, represent the human occupancy model, whereas
in (b), the grey ellipse represents human position estimation uncertainty (cut-off determ-

ined by the 20 rule).

To compute the metric, we investigate a geometrical arrangement of the human h and
the robot r. Namely, we compare the robot’s current heading to directions leading into the
centre of the human. The span of cross-human robot heading angles arises from the space
physically occupied by the human (inflated with a circular model® with a configurable

radius of d_. ) and the human position estimation uncertainty (represented by a covariance

)
ocp
matrix, " 3.7). Both effects are visualised in Fig. 4.5.

The variance of the bivariate Gaussian representing the circular occupancy model,

3This procedure addresses the typical simplification of perception systems representing a human as

a pose in space, without estimating the area it occupies.
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var is computed by applying the 20 rule to the d,., (4.30). The resultant covariance

ocp? ocp

matrix, 237 aggregating the occupancy model and the position uncertainty, is defined
as in (4.31).

d 2
Var,., = ( ;Cp> (4.30)
hean han Var,., 0
Azdir = Ep + (431)
0 Var,e.,

The value of the Gaussian at the ""p?_ point, "hdir® | represents how much the robot’s

cc?

direction leads into the centre of the human (4.33). The ""pf. is an intersection point
—

of the robot’s direction axis (ray), "p”, and the line, "7,

defined by the crossed point
and the direction angle in (4.32). The geometrical representation of finding the ""p’_ is
depicted in Fig. 4.5.

rhin = hpr £ (“hd)" + g) (4.32)
rinl, = frog (PPl N ("R AZE)) (4.33)

We also investigate how much the human can notice the robot’s movement (potentially
disturbing), the scale of which is represented by ""fov™. Applying the 2¢ rule to the con-
figurable field of view angle, ¢y, the variance, var;,, is computed. The relative location
indicator, """ (4.16), determines directly how far the robot is situated from the centre
axis of human’s sight. Then, the value of the Gaussian appointed in the normalised angle

domain, f, . (explained in B), is computed for the current arrangement of the human

ang

and the robot (4.34).
oy = fang (T’h5",./\/'(0, varfov)> (4.34)

The myg;,, metric also accounts for the speed of the robot, "v},, and the distance between
the human and the robot, ""d". The final formulation of the robot heading direction
penalty, ""dir”, defined for a single human-robot pair, is presented in (4.35).

The normalisation of the metric value relies on comparing the current arrangement to
the worst possible case. To accomplish that, platform-specific features must be determined,

namely the circumradius of the mobile base, d

robot

and the maximum linear speed of the

Ccr?

Moreover, it is assumed that the robot’s heading points straight into the
rh

max

T
7 max Ulin"

n

human position (""pZ, = "p", computed in 2"dir™) and the robot is located along the

r,h(sn n

= 0, calculated in ""fov™_

human’s sight axis ( ). The formula for the normalisation

factor, ""dir” ., is shown in (4.36). The metric for the whole scenario, my;,, is calculated

nrm?

as in (4.37) and corresponds to the average percentage of heading disturbance generated
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by the robot. If no human was observed during the scenario, mg,, = 0.

rh 3:on  Th n . r,n
dir?, - ""fov™ - Top,

rh 1:.n
“dir” = 4.35
thdn ( )
r.h q: r.h
odir? - Pov? - T
rh 1:.mn max cc max max - lin
d = 4.36
Whrm dcr + docp ( )
N-1 T, PN
> ((tﬂﬂ-tﬂ) max oot )
n=1 theHn T'hrm
My = —~ (4.37)
> (et —tr) [H* = o]
n=1

The my;, reflects the mean normalised value of the metric throughout the scenario exe-
cution, but the benchmark implementation also provides the minimum and maximum of
all normalised values collected in a single trial, i.e. Mg, and .. My;,, accordingly.

’ min

4.5 Summary

In this chapter, SRPB has been presented — the social robot navigation benchmark that
evaluates both the performance and the human-awareness aspects. It was designed to
verify the fulfilment of the robot navigation requirements and assist system designers in
selecting the best method for the application. Our approach allows comparing different
navigation algorithms rapidly in both simulated and real-world environments. It also en-
sures easy integration with popular ROS-driven robots (differential drive and holonomic).

We focused on implementing quantitative metrics to evaluate common robot behaviour
patterns. Most of the metrics in our benchmark allow confronting navigation algorithms,
provided that the initial and final conditions of the evaluated scenario are the same in
each trial. Therefore, path and trajectory similarities must be guaranteed in subsequent
tests for a given scenario.

Our method investigates only unfocused interactions [2], so only the movement beha-
viours of humans and the robot in a shared space are evaluated. Extending our benchmark
for evaluating focused human-robot interactions would be another significant contribution
to social robotics. Initial research on this topic has already started and relates to, e.g.,

the approach pose of a robot that initiates an interaction with a human [275].
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Chapter 5

Human-aware local trajectory
planning for mobile robots using
a hybrid trajectory generation

and spatiotemporal cost functions

Implementing social acceptance in robot navigation can be performed in different ways.
Firstly, adding spatial cost functions to the environment representation used for global
path planning and local trajectory planning allows for the inclusion of, e.g., proxemics
rules [47]. Secondly, adding spatiotemporal cost functions for local trajectory planning can
produce natural robot motions, avoiding erratic movements [10]. Thirdly, the axiomatic
way to create a socially acceptable robot motion is to apply pedestrian motion models.
Generating trajectories using pedestrian motion models provides realistic and effective
robot motions, mainly when using models calibrated with real-world data [25]. Finally,
a combination of these methods can be applied to generate a comprehensive approach
that includes social cues at every level of planning robot motions.

This chapter presents the local trajectory planning framework for mobile robots named
HUMAP — HUman-Aware Trajectory Planner MApping the Pedestrians Motion Pattern.
The planner produces trajectories regarding the human presence in the robot environ-
ment (Fig. 5.1). Our method accounts for spatial constraints arising from the proxemics
theory [47], regards the naturalness of the robot’s motion to reduce erratic movements,
and explicitly incorporates human-like motion behaviours into the robot motion pattern.
Namely, our planner implements yielding a way for a person crossing the robot’s planned
path, slowing down when a collision is predicted, and stopping when a collision is immin-
ent.

Complementary to describing the procedure of generating human-aware trajectories,
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(a) Simulation (b) Environment model

Figure 5.1: An overview of the robot motion planning system; (a) shows the robot oper-
ating in a populated hospital environment, whereas (b) represents the robot’s model of
this environment. In (b), the high-cost areas (ranging from blue to red) around humans
(marked as simplified figures) correspond to proxemics-based spatial constraints, whereas

obstacles are indicated as non-traversable costmap cells (light blue).

we also explain our spatial and spatiotemporal cost functions that allow selecting a robot
trajectory that introduces the least disruption to human comfort [12, 10]. It is assessed
with quantitative metrics that approximate people’s impressions of association with a ro-
bot [64, 21].

The main contributions of our planning approach are:

e the hybrid method of generating local trajectory candidates utilising a pedestrian
motion model and a velocity sampling approach, both regarding the robot’s kino-

dynamic constraints,

e the extension of the pedestrian motion model with a component based on a Fuzzy
Inference System for reasoning about the mutual spatial arrangement of the hu-
man and the robot; the enhancement aims to emphasise proactive movements that
increase intent expressiveness and comply with social cues, e.g., passing on the dom-

inant side,

e multifaceted spatiotemporal cost functions for evaluating trajectory candidates to

mitigate human discomfort during efficient robot navigation,

e contextual awareness for efficient orchestration of the planner operation using the
behaviour-based approach; specialised behaviours were implemented to yield a way
for a human to cross the robot’s path or to recover from a global path occlusion in

dynamic and populated environments.
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We state that the closest to our research topic are [315, 165, 253, 166]; however, our
work stands out from the referenced algorithms. Ferrer et al. [315] modified the SFM-
based approach for a specific navigation task — accompanying. In contrast, we directed
our attention towards unfocused human-robot interactions that are more commonplace for
assistive robots navigating in populated environments. In the following work [165], they
employed the probabilistic RRT method with a SFM-based heuristic for generating feas-
ible trajectory candidates for kinodynamic planning. However, they did not implement any
proxemics-based cost functions to evaluate generated trajectories. Also, to diversify the
obtained trajectories, they introduced randomness into the steering function. This makes
their trajectory generation not systematic, whereas we directly employed a hybrid and
deterministic approach to trajectory generation. Moreover, applying the velocity sampling
trajectory generator in our hybrid approach makes our method immune to local minima
and oscillations of the underlying motion model while still employing its human-like col-
lision avoidance behaviour. On the other hand, we argue that offline pedestrian motion
model parameter tuning, e.g., in [253], is unnecessary for legible robot navigation among
humans. Instead, separating trajectory generation from trajectory evaluation with spati-
otemporal cost functions generalises social navigation to being robust in various scenarios
discussed in Sec. 7.4. In terms of implemented human-aware cost functions, the closest
to our approach is [333], where dynamic social zones and F-formations’ O-spaces were
also investigated. In our approach, as in other model-based trajectory generation meth-
ods, searching for possible velocities in each planning step is not limited to a small set of
motion primitives [144, 215|. Instead, velocities are allowed to vary along the prediction
horizon, provided that they meet the kinodynamic constraints of the robot.

Our HUMAP planning framework copes with most of the limitations of the referred
works, providing a comprehensive solution for social robot navigation in both structured
and populated areas. The remainder of this chapter constitutes a detailed explanation of
the method described in [24].

5.1 Basic concepts

In our previous work [21] (outcomes are also presented in Sec. 7.3), we quantitatively evalu-
ated state-of-the-art traditional and human-aware trajectory planners using Social Robot
Planner Benchmark (SRPB) and the results have shown that state-of-the-art human-
aware trajectory planners do not significantly improve social navigation over classical
approaches; hence, human-aware navigation is still an open problem. Conclusions drawn
from the previous study prompted the investigation of that topic, and an alternative
planner — HUMAP, has been developed.
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The SRPB’s metrics are the preliminaries for this work, as they stand for quantitat-
ive indicators of human discomfort. Since trajectories regard both spatial and temporal
dimensions, and the SRPB’s metrics capture spatiotemporal intricacies of human-robot

interaction, those indicators are directly applicable to the trajectory planning’s objective.

Notation The notation to describe the novel local trajectory planning scheme generally
follows the rules explained in Chapter 4, in particular, Fig. 4.2 and Tab. 4.1. However, the
notation in Chapter 4 is human-centric, while the notation in Chapter 5 is robot-centric.
The difference can be exemplified using the relative location symbol, d, that appears in
both chapters. Namely, if the upper-left symbols of r, h (indicating the entities that the
base symbol is related to) appear in Chapter 4, the ""6" denotes the relative location of
the robot r, compared to the human’s h heading direction. In contrast, in Chapter 5, the
symbol of "/¢™ describes the angle of the j-th object’s location in relation to the robot’s r
heading direction. For clarity in notation, several equations will be re-introduced in Chap-
ter b, if necessary. Additional symbols, appearing in the following sections, are explained

in relevant tables, i.e., Tab. 5.4 and 5.5.

Trajectory definition In HUMAP, an individual trajectory is considered as a tuple
storing subsequent poses, p = [z, vy, G]T, and velocities, v = [vx, Uy, w}T, achieved at the
end of subsequent time steps (5.1). The duration of trajectories, t,,, is derived from the
plan’s sampling period, t,, and the number of samples within the planning horizon, ¢,,,,
specifically t,,, = gy, - to. For brevity, we also define the time stamp of the end of the

planning horizon, "', starting from the current ", computed as tP! = t" + ¢, - tA.
traf? = (5,707, (77, 0P 5.1

Ontology The ontology to formalise our human-aware navigation system is partially
derived from the entities specified in the pedestrian motion model we employ for trajectory
generation. The ontology is organised as follows: the world configuration at each time step
t™ consists of the state of a single robot, ™, and the state of its environment, E™. The
latter, recalculated at each time step, aggregates: a set of obstacles, Q" either static, K,
or dynamic, J”. Dynamic obstacles represent moving humans and robots different from
the ego-robot (the controlled one), as they are prone to collisions with the ego-robot. For
clarity, we specified a set of social agents, H", representing static or dynamic humans
that are taken into consideration when, e.g., evaluating the cost functions, as well as F-
formations [75] (social groups), reflected by G", in which social agents can be arranged.
At time t", the association of h-th human into g-th F-formation can be expressed as
hH™ € 9G™, whereas /G € G™ and G" is a set of groups detected at time ¢*. The final
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Figure 5.2: Internal block diagram of the motion planning system for social mobile robots.

The system aggregates the presented human-aware local trajectory planner.

composition of the environment is expressed as E™ = {OQ", H", G"} = {K", J*, H", G"}.
Subsequent time stamps, t”, are shared between all object types, while bold symbols

indicate vectors or matrices.

5.2 Motion planning framework architecture

The overall structure of the presented motion planning framework is presented as the
SysML internal block diagram, shown in Fig. 5.2. The detailed structure of the internal
blocks of the HUMAP local trajectory planner is depicted in Sec. 6.9.

It is expected that the global path planner periodically recomputes the global path
as the robot advances towards the goal [147, 401], which is de facto a standard approach
for designing motion planning systems for mobile robots. A path and a trajectory are
planned in separate coordinate systems [255], but the relation between them is known.

This is further explained among implementation details in Sec. 6.1.
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Figure 5.3: The finite state machine diagram of the HUMAP’s local trajectory planning
scheme. Nested finite state machines are marked red, whereas the state indicated with
blue implements a social convention. Identifiers of transition conditions are shown on the

edges between states.

5.2.1 Finite State Machine

The fundamental behavioural aspects of the system are illustrated in Fig. 5.3, which shows
the Finite State Machine (FSM) diagram.! The following states were distinguished in
the planning scheme: Stopped, Ezxecution Initialisation, Moving, Orientation Adjustment,
Yield Way Crossing, as well as superstates Look Around and Rotating and Receding.

A brief description of each (super)state is presented in Tab. 5.1, along with typical
situations, when a certain (super)state gets activated. However, the robot’s activity in
the Moving state will be thoroughly discussed. This is because the robot’s behaviour asso-
ciated with that state is the main novelty of the HUMAP, as it implements the extensive
human-robot unfocused interaction strategy using the hybrid method for trajectory gener-

ation and spatiotemporal cost functions. Moreover, another contribution lies in the Yield

I For a concise description, the presented FSM is slightly simplified compared to the implemented ver-
sion but illustrates most of the operational principles. The planner’s implementation details are described
in Sec. 6.9.
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State

Robot behaviour description

Typical occurrence

Stopped the algorithm assures that the robot is fully stopped before or after the ro-
bot finishes or aborts
a navigation task

Ezxecution  the algorithm rotates the robot in place until its orient- the robot is oriented

Initialisa-  ation aligns with the direction towards the initialisation differently compared

tion goal (simultaneously checking for potential collisions to the global path
with basic cost functions)

Mowing the algorithm plans the robot’s motion using the hybrid regular operation in
trajectory generation and trajectory scoring with the an empty environment
entire set of cost functions or for unfocused inter-

actions with dynamic
objects (e.g., humans)

Orientation the algorithm rotates the robot in place until its orient- the robot achieved the

Adjustment ation aligns with the global goal (simultaneously check- goal position, but not

ing for potential collisions with basic cost functions)

the goal orientation

Yield Way based on predicted trajectories of moving objects (ro-

Crossing

bots or humans), the algorithm finds a safe pose to ap-
proach (to perform yielding way to dynamic objects)
and generates velocity commands to reach that point

(instead of simply stopping)

the robot’s path is ex-
pected to be crossed

by a moving object(s)

Look

Around

the algorithm performs a slow 25 cm backing up action
(if the collision-free pose is found), then slowly rotates
the mobile base: 60° to one side, then 120° to the other
side, and 120° to the first side (all angles are relative
to the reference orientation after the translation stage);
if a valid global path is meanwhile received from the
global planner, the translation or rotation procedure is

terminated

the global path cannot
be calculated, so the
robot performs some
actions to update the

environment model

Rotating
and Reced-

mng

the algorithm tries to find and approach a “recovery”
position. If such a point is found, the strategy creates
slow rotational movement first until the mobile base
faces that position. Then, the algorithm creates com-
mands allowing it to slowly and safely approach the

“recovery” position (constantly checking for collision)

the robot is very close
to an obstacle (e.g.,
a dynamic object that
has approached) but

not in collision

Table 5.1: Description of the HUMAP’s behaviour in each state and their typical occur-

rences.
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Way Crossing state, whose corresponding behaviour realises a social norm, namely, yield-
ing a way to a human at the crossing (Req. 2.4.5), discussed in Sec. 2.5.5. The robot’s
activity in other states will only be schematically presented.

Basic states as Stopped, Ezecution Initialisation, Moving, and Orientation Adjustment
are sufficient for robot operation in structured and semi-structured but mainly static
environments; however, additional states were added, such as Rotating and Receding or
Look Around, which help to make navigation in dynamic environments robust against
path occlusions and near-collision configurations.

Fig. 5.3 identifies the states and the state transitions in the system. Insights on the
conditions causing those transitions are found in the predicates table shown in Tab. 5.2,
and complementary transition conditions are illustrated in Tab. 5.3. The FSM’s update
cycle occurs at each computation cycle of the planner; hence, each transition occurs no
more frequently than the planner’s operational period.

In any state, the HUMAP uses the global path, provided by the global path planner,
to find specific “goal” poses to orchestrate the planner’s operation. In particular, the
initiation goal is placed along the global path approximately 0.2 m from the centre of
the mobile base. It is used for limiting excessive motions at the start of the navigation
execution. Next, the local goal is placed along the global path approximately at 110% of
a distance that the robot can traverse along the whole planning horizon (based on the
current state and kinodynamic limits) and is used as an intermediate goal supplied to the
pedestrian motion model as well as to compute the localGoalBehind predicate. Finally,
the global goal is placed at the end of the global path and reflects the task-level goal pose.
While the global goal is updated externally (Sec. 6.1), the HUMAP’s planning system

periodically refreshes the initiation goal and the local goal.

5.2.2 Behaviours implemented in the FSM’s states

Each state presented in Fig. 5.3 has a corresponding one behaviour (superstates have
multiple states), whose transition function is cyclically executed during operation in
a state [31]. This section schematically describes most of the behaviours, but the cal-
culations performed in the socially-aware activity associated with the Moving state are
extensively explained in the following parts of this chapter. Internal parts of the super-
states are not discussed for brevity, but some non-obvious transitions of the FSM are cla-
rified. Nonetheless, the algorithmic description of the HUMAP’s activity shown in Alg. 1
and Alg. 3 applies to all behaviours, while Alg. 2 is specific to the transition function

corresponding to the Moving state’s behaviour.
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Predicate Predicate definition

newGoal a new goal pose has been received, which activates a navigation task

directedToInitGoal determines if the robot is facing towards the initialisation goal (with a 30°

tolerance)

localGoalBehind specifies whether the local goal is behind the robot (relative to its orientation;

with a 30° tolerance)

posReached determines if the goal position has been reached (with a 0.2 m tolerance)

goalReached determines if the goal pose has been reached (with a 0.2 m tolerance on position

and 0.2 rad tolerance on orientation)

oscillating the absolute mean values of velocity components collected for 5 seconds are

less than threshold values (0.02 m/s for linear components, and 0.06 rad/s for
the angular component) and the “zero crossing” of the angular component has

occurred at least once

stuck the absolute mean values of velocity components collected for 5 seconds are
negligible (less than 0.001 m/s for linear components, and 0.001 rad/s for the
angular component), and “zero crossing” of the angular component did not

occur

nearCollision specifies if the inflated robot’s footprint (2.5 cm extension) is in a collision

according to the costmap

canRecover the non-inflated robot’s footprint is not in a collision according to the costmap

(the inflated footprint might overlap with collision cells)

globalPathOccluded a path to the goal expected from the global path planner was not updated for
1.5s

crossingDetected  determines whether any human in proximity to the robot is expected to cross

the robot’s planned path or trajectory within the planning horizon (which

equals to human trajectory prediction horizon)

tempPosReached indicates whether the intermediate position found for a routine has been

reached

tempOrientReached specifies whether the target direction defined for a routine has been reached

travelDistExceeded determines whether the maximum distance (0.75 m) has been travelled since

the start of the “yielding way” routine

closestHumanFarAway indicates that the closest human is further than 0.6 m

ywRoutineEnded the “Yield Way Crossing” ends when: tempPosReached V tempOrientReached
V travelDistExceeded V closestHumanFarAway

laRoutineEnded a sequence of “Look Around” rotations has ended

rrRoutineEnded a timeout of 30 seconds has elapsed during “Rotating and Receding” and a

non-collision pose was not reached

Table 5.2: Description of the predicates used for describing the HUMAP’s Finite State

Machine’s transitions.

FEzxecution Initialisation The transition function associated with the Exzecution Ini-

tialisation state’s behaviour performs the in-place rotation to align the mobile base with
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Transition Condition

S—EI —goalReached A —nearCollision A newGoal A —directedToInitGoal
S-M —goalReached N —nearCollision A newGoal A directedToInitGoal
EI-S goalReached V (nearCollision A —canRecover)

EI-M —goalReached A —mnearCollision A directedToInitGoal

EI-RR —goalReached A nearCollision A canRecover

M-S goalReached V (nearCollision A —canRecover)

M-EI —posReached A —nearCollision A localGoalBehind

M-0A —goalReached A posReached A —nearCollision

M-YWC  —posReached A —nearCollision A crossingDetected

M-LA —posReached A —nearCollision A (oscillating V stuck V globalPathOccluded)
M-RR —goalReached A nearCollision A canRecover

OA-S goalReached V (nearCollision A —canRecover)

OA-M —posReached

YWC-M  —nearCollision A ywRoutineEnded
YWC-LA -mearCollision A (oscillating V stuck V ywRoutineEnded A globalPathOccluded)
YWC-RR nearCollision

LA-M —nearCollision A —oscillating A —stuck A —globalPathOccluded
LA-RR nearCollision

LA-FEI laRoutineEnded

RR-M —nearCollision

RR-S nearCollision A rrRoutineEnded

Table 5.3: Description of the state transition conditions. The naming pattern of transition
identifiers reflects the initial letters of the current state and the next state. Names of states
are mapped as follows: S — Stopped, EI — Execution Initialisation, M — Moving, OA —
Orientation Adjustment, YWC — Yield Way Crossing, LA — Look Around, and RR —
Rotating and Receding.

the initial part of the newly computed global path (Fig. 5.4a). Specifically, the vector
connecting the robot’s position with the position of the initiation goal is determined,
and the implemented strategy computes the velocity commands with angular velocities
(regarding kinodynamic limits) to align the robot’s orientation with the direction of the
defined vector (with a tolerance for the target angle identified in Tab. 5.1).

Notably, the FSM diagram (Fig. 5.3) identifies the EI—S transition, which is applicable
when a new goal is at the initial position of the robot, but oriented differently. In such
a situation, switching between Stopped—Fxecution Initialisation—Stopped is the indented

sequemnce.

Mowving In the behaviour associated with the Mowving state, the transition function

computes velocity commands that perform regular robot’s movement toward the global

107



global

initialisation

goal
global
path
(a) Execution Initialisation (b) Orientation Adjustment

Figure 5.4: Typical scenarios when the robot starts operation in the Ezecution Initialisa-

tion and Orientation Adjustment states.
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Figure 5.5: Typical scenario of the robot operating in the Moving state, where the robot

interacts with humans in an unfocused way. Orange ellipses reflect the personal spaces of

humans A1 and h2, whereas the green ellipse indicates the O-space of their F-formation.

goal, while avoiding collisions and interacting with the dynamic objects, e.g., humans,
in an unfocused way. Such an interaction is related to respecting, i.a., personal zones of
individual humans and O-spaces of F-formations while moving through the environment
according to the requested navigation task (Fig. 5.5).

The M—FEI transition (Fig. 5.3) is worth noting, as it is applicable when the robot,
during typical task execution receives another request (of a higher priority) with the new
goal behind its current facing direction. In such a situation, the transition from the Moving
to FExecution Initialisation can be activated to reduce the excessive translational motions
when turning back.

The robot’s behaviour when operating in the Moving state will be further discussed
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in this chapter.

Orientation Adjustment The Orientation Adjustment is active once the robot achie-
ves the goal position, but not orientation; which requires in-place rotation. Therefore, the
transition function associated with the behaviour of the Orientation Adjustment state
performs a similar activity to the one associated with the Ezxecution Initialisation state.
The only difference is that in the Orientation Adjustment the desired orientation is defined
by the orientation of the goal pose (Fig. 5.4b). The necessity to perform orientation
adjustment before completing the navigation task occurs when the final part of the path
to the global goal ends with poses oriented at a significant angle compared to the goal
pose’s orientation.

Notably, the OA—M transition is relevant in a situation when, during the orientation
adjustment, the localisation module estimates that the global pose has shifted from the
goal position beyond the tolerance distance (the position tolerance is noted in Tab. 5.1),

which requires performing an additional translational movement in the Moving state.

Yield Way Crossing The transition function associated with the behaviour of the
Yield Way Crossing state performs a manoeuvre that effectively makes the robot grant
the right of way to a human (or another dynamic object) at a junction (Req. 2.4.5),
which is identified as one of the social norms (Sec. 2.5.5).

The action of allowing priority at a crossing, instead of stopping the robot, relies on
finding a “safe pose” behind the human (along its movement direction), which serves as an
intermediate goal of the described routine (Fig. 5.6). That intermediate goal is displaced
from the human centre according to the radius of the human circular occupancy model,
dyep, multiplied by a parameter (exposed for the user’s adjustment).

The FSM operation in the Yield Way Crossing can start once any human in proximity
to the robot is predicted to cross the robot’s path. The transition from the Moving state
to Yield Way Crossing is mainly dictated by the crossingDetected predicate, whose
calculation method is schematically illustrated in Fig. 5.7.

Both the planned trajectory and the global path plan are utilised to determine the
predicate value. Using a planned trajectory for calculating the predicate is straightfor-
ward, as it constitutes the path the robot will most certainly perform in incoming control
steps. However, the robot’s path is also considered for detecting human crossing since the
entire path to the goal is more suitable for proactively detecting the upcoming situation
than a few-second trajectory. On the other hand, the subsequent poses of the trajectory
might significantly differ from subsequent poses of the global plan; thus, both sources are

evaluated in terms of the human crossing.
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Figure 5.6: Typical scenario when the robot starts operation in the Yield Way Crossing

state.

Specifically, since the temporal occurrence of trajectory poses is known, the distances,
m()d0) between the subsequent poses of the predicted human trajectories and the corres-
ponding poses of the optimal robot trajectory are computed (Fig. 5.7a). In contrast, due
to the lack of temporal knowledge of the robot’s path, the distances between predicted
human poses and path poses must be evaluated with each other (Cartesian product),
as shown in Fig. 5.7b. Then, if the A-th human’s occupancy model (assuming that h-th
human is the closest in the robot’s proximity) overlaps with the robot’s footprint at any
pose of the trajectory or path, the timestamp of the crossing detection is saved as ™"t
and further calculations are performed. The space occupied by a human is modelled as
a circle with a radius d,,, whereas the circumradius of the robot’s footprint equals d.,.

Therefore, the overlap at time " occurs when (""d* — d_. — d,) < 0. The predicate

ocp
computation method includes the timing factor, "crsy, to reflect decreasing confidence of
state estimation with successive prediction steps (5.2).2 Furthermore, a directional factor,
mhersy is calculated to react only to close-to-perpendicular crossings (5.3).2 Moreover, the
frontal location factor is calculated, as the importance of crossing events behind the robot

is marginal (5.4).* Finally, the logical value of the predicate is computed as in (5.5).

2 The "cr8,y,, parameter has been found experimentally and is set to -0.34, which gives approximately

50% confidence of the crossing expected in 2 s prediction.
3 The jvar,,, parameter is determined using the 2-sigma rule applied to the standard deviation of

/4 rad.
4 The [var,,, parameter is determined using the 2-sigma rule applied to the standard deviation of

/4 rad.
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(b) Path crossing

Figure 5.7: The principle of determining distances between a human and the robot for
the crossingDetected predicate calculation. The world state is presented at ¢" with the
robot’s planned optimal trajectory, the global path, and predicted human trajectories.
The subsequent predicted states are less certain; hence, the transparency of all poses and

the circles representing humans is gradually reduced.

mhers? = exp (Tcrsexp : (”’htcrs — t”)) (5.2)

Tif e >0
2

Phersy = fung,, [ 7609 — "0, N , pVaT (5.3)
—45 otherwise

Phersp = fung,, (”’hécrs, N (0, f’gvarcrs)) (5.4)

1 if "Pers? - Mersy - Mherst > 0.55
crossingDetected = (5.5)
0 otherwise

Look Around The Look Around is activated once the global path has not been received

for a few planning cycles (duration parameterised by the user) or the mobile base has not
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Figure 5.8: Typical scenario when the robot starts operation in the Look Around super-
state. The cone in front of the robot reflects the field of view of its sensor, whereas the

“desired displacements” reflect the sequence of rotations to be executed.

developed significant velocities (either linear or angular) for a considerable time (which
usually indicates the inability to move towards the global goal). Hence, the transition
functions associated with the behaviours of the Look Around superstate perform a se-
quence of actions to update the environment model, which aims to facilitate finding the
global path. A typical scenario, when the global path cannot be found is when the robot
operates among dynamic objects and its sensors have a limited field of view; hence, the
environment representation is not fully known and might be partially outdated, which is
common in practice.

An example situation when the Look Around superstate is active is presented in
Fig. 5.8. The scenario shows that the area near the corner in a corridor was not oc-
cupied during the last global path planning, but due to the detection of a dynamic object
h3, the most recent global path of the robot is no longer traversable. Additionally, a valid
alternative cannot be found, due to the persisting observation of a dynamic object h4,
which occupied the space on the robot’s left once it approached the corner. Without
additional verification, it cannot be determined, whether previously occluded space is
still occupied. Therefore, the routine implemented in the Look Around performs a short
backward movement and a sequence of rotations (Tab. 5.1), while checking for potential
collisions. Once the conditions of transition to another state are met (i.e., the global path

has been successfully planned), the routine might end earlier.

Rotating and Receding The behaviours implemented in the Rotating and Receding

state intend to safely escape space configurations, where the robot’s inflated footprint (the
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Figure 5.9: Typical scenario when the robot starts operation in the Rotating and Reced-
1ng superstate. The colours of local path candidates correspond to their preference from

selecting (green) to rejecting (red).

footprint’s inflation emphasises maintaining additional gap from environment objects)
is in a collision, but the non-inflated footprint is non-collision. Such a situation might
happen when a dynamic object approaches the robot in close proximity or if the robot
traverses a narrowing passage. Therefore, the behaviours implemented in the Rotating
and Receding superstate generate velocity commands that slowly rotate and approach the
safe configurations until the inflated footprint is not in collision.

An example of the robot’s arrangement in the environment applicable for the Rotating
and Receding operation is shown in Fig. 5.9, where the robot needs to escape a narrow
passage. To accomplish that, a transition function creates local path candidates (0.3 m
long) around the robot, which are assessed as entire lines (waypoints separated by dis-
tances of the footprint’s inflation) regarding free space and lack of collisions along that
way. The Fig. 5.9 shows 8 candidate waypoints, whereas during the scenarios performed in
the experiments (Chapter 7) 16 potential direction lines were evaluated. Starting from the
current direction of the robot’s motion, the frontal local paths are the most favourable,
the side ones being less, and the rear directions being the least preferable.

Both Rotating and Receding and Look Around superstates have heuristics implemented

to provide more robust operation of the robot operating in dynamic environments. In the
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remaining part of this chapter, the transition function executed in the behaviour of the

Mowving state is extensively explained.

5.3 Outline of the trajectory planning approach

The HUMAP is a geometric planner that solves the problem of receding horizon traject-
ory planning for dynamical systems operating in unstructured environments. Our planner
formulates the objective function regarding navigation requirements from classical and
human-aware perspectives. The traditional navigation requirements are implemented as
hard constraints, e.g., collision avoidance and the adherence to kinematic and dynamic
constraints of a mobile base. In contrast, socially-aware navigation requirements are im-
plemented as soft constraints, e.g., the avoidance of intrusions into personal spaces of
surrounding humans [47, 2] or the avoidance of crossing the F-formations’ O-spaces [75, 2.

The general idea behind the HUMAP’s planning procedure is to develop various feas-
ible (regarding kinodynamic constraints) robot trajectories using the hybrid approach to
trajectory generation (Sec. 5.5 and 5.6), then score trajectories based on cost functions
assuring collision-free motions, while also considering the robot’s performance, motion
naturalness, and human discomfort (Sec. 5.7), to finally select a trajectory with the low-
est cost, as formalised in (5.6). The symbols commonly used for describing our method

are presented in Tab. 5.4.

min {T’b;costgu, ey X’f;costgu}
subject to  "Ecost™; = SCORETRAJ (’"traj?, T’chungu) Vie{l,...,x +(} (5.6)
"traj; = GENERATETRAJECTORY (r’(@gen’;oc, j) Vie{l,...,x} .
"traj; = GENERATETRAJECTORY (Tgengmp, k) VEe{l,...,¢}

The problem definition in (5.6) explains that for a robot r at a given time step t", the

GENERATETRAJECTORY function takes an individual (-)-th trajectory generator ™) gen(')
as an argument and produces a single trajectory, e.g., i-th is denoted by "traj?, from a set
of trajectories to create, Ttraj’(?). Furthermore, the SCORETRAJ function quantitatively

evaluates a given trajectory Ttraj? ) with a set of all implemented cost functions given by

"Fefun?y, that results in a scalarised cost of that trajectory, denoted by T(’_ﬁcostgu.
Our novel hybrid method of creating trajectory candidates relies on two independent

trajectory generators. The first uses an extended pedestrian motion model that provides

n

n . (Sec. 5.5), whereas the second one

prospects with human-like collision avoidance, ®gen

n

fp (Sec. 5.6). Two trajectory generators

samples the space of feasible robot velocities®, gen

®The sampling is performed directly in the space of admissible controls (feasible velocities), instead of
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Symbol Description

"traj,. -)-th trajectory candidate generated for the r agent
J() J y g g

() gen. individual trajectory generator identified as () that creates trajectories based

on the states of the r agent and entities included in the (--) set

"Ogen,, |list of all trajectory generators of the r agent, consisting of [’”@gensoc, rgensmp}

r’(")cfun(,) individual cost function identified as (-) which evaluates the r agent’s interac-
tion with the (--) agents along a trajectory that is provided as an argument to

the cost function

"Eefun,,, |list of all cost functions regarded during the trajectory planning for the r agent;
cost functions evaluate the state and actions of the r agent, taking into account

its interaction with the environment F

28 weight of a cost function identified as (-), related to the r agent

jeost ) | value of a cost function(s) identified as (-), assessing the r agent’s interaction

with the (--) agents along the (- - -)-th trajectory

cost value assigned to a trajectory that was considered as leading to a collision

or infeasible in terms of kinodynamic constraints of the robot

Table 5.4: Description of symbols used to present the activity of our local trajectory

planner.

are used, as the sole pedestrian motion model, based on the force fields with similar
features as potential fields, is susceptible to local minima and oscillations, whereas the
velocity sampling-based method produces curved trajectory candidates from a discretised
control space.

The cardinality of a trajectory set produced by the model-based trajectory generator,
0

n
smp

genl ., is x, while the velocity sampling generator, gen develops ( trajectories. The
substantial difference between the employed trajectory generators is that the model-based
trajectory generator considers a sparse environment model (the @ symbol indicates that
the obstacle set valid at time ¢" is considered) to produce trajectories. In contrast, the
velocity sampling trajectory generator provides curved trajectories by sampling directly
in the space of admissible velocities without regarding environmental constraints.

The activity of our local trajectory planning approach is described in detail with

pseudocodes Alg. 1, 2, and 3 using symbols from Tab. 5.4. Specifically, Alg. 1 depicts

the sampling in the configuration space as discussed in (Sec. 3.2.2).
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the general receding horizon control scheme. On the other hand, Alg. 2 presents the
planning procedure with the search for a trajectory candidate with the lowest cost. The
GENERATETRAJECTORIES functions used therein produce sets of trajectories to consider

at the given time step. They are defined per each individual trajectory generator, i.e.,

0} n

n
genSOC

and geng, . as described in Sec. 5.5 and 5.6, accordingly. Furthermore, the scoring
procedure implemented in the SCORETRAJ function is thoroughly described in Alg. 3. The
criteria for selecting the lowest cost trajectory among the candidates are discussed in detail
in Sec. 5.7.

In our approach, trajectory generation and relevant environment state predictions
are computed deterministically. Similarly, trajectory scoring uses deterministic cost func-
tions, but human-related ones incorporate Gaussian covariances as perception uncertain-

ties (Sec. 4.4).

Algorithm 1 General robot motion control scheme of the robot r at time ¢"

1: function cOMPUTECONTROLCOMMAND( )
> Generate traj. candidates, score them and select
> a trajectory with the lowest cost
trajl.y, « PLANTRAJECTORY (@gengu, chunZH)

> Robotic mobile platforms are velocity-controlled

v"*! — GETTRAJVELOCITY (trajf,,,)

n+1

2

3

4

)

6: > Get the vel. that initialises driving the robot along the traj.
7

8 return v

9:

end function

5.4 Environment representation

A robot operating in populated environments must be equipped with onboard distance
and vision sensors to obtain accurate information about surrounding obstacles and hu-
mans [402, 149]. An alternative solution might integrate the robot with an external per-
ception system, which, however, requires a reliable communication channel. The social
robot’s perception modules must provide human pose, velocity, and their covariances, so
the reliability of the human track can be estimated.

The HUMAP’s planning approach uses a dual environment representation — dense and
sparse, each applied for different purposes. The dense representation constitutes a discret-
ised costmap [22, 170] of the robot’s environment, which is an extension of the traditional
occupancy grid [157] (Sec. 3.1.1). In contrast, the sparse representation provides a concise

description of the objects detected in the environment, containing their semantic inform-
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Algorithm 2 Finding the lowest cost trajectory among the candidates acquired from

generators "®gen’y;, scored with cost functions "cfun’; of the robot r at time "

1: function PLANTRAJECTORY (Ygen,, “cfun,,)

2 COSty g — OO > Expecting costs lower than oo
3 trajpe < 0 > Storage for the lowest cost traj.
4 for each Vgen, € %gen,; do > Investig. all tr. gen.
5 traj;, < GENERATETRAJECTORIES (“geni)

6: for each traj; € traj; do > Investigate each traj.
7 Pcost,y < SCORETRAJ (trajj, chunau>

8 if ?costau == COST, .. then

9 continue > Skip invalid trajectory
10: end if

11: if costy,e < fcost,; then

12: > Better or equal trajectory already found

13: continue

14: end if

15: COSty et JL;ﬁ»costau > Update the lowest cost
16: trajy,eg < traj; > Update the best traj.
17: end for

18: end for

19: return traj, . > Return the lowest cost trajectory

20: end function
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Algorithm 3 Scoring a trajectory candidate "traj” using cost functions “Fcfun?; of the

robot r at time t"

1: function SCORETRAJ(traj,, “cfun,)

2: Ecost,y < 0 > Initialise value of traj. cost
3 for each (')Cfunj € “cfun,; do > Iter. over cost funs.
4 if p; <0 then > Ensure positive cost fun. weight
5 continue

6: end if

7 ('z-costj — (')cfunj (traj;) > Eval. the cost fun.
8 if (gcostj == COST| feas then

9 return COST, .. > Skip invalid trajectory
10: end if

11: ('zcostj —p;- ('zcostj > Factor in the weight
12: Ecost,y, < fcost,y, + (')Z-costj > Sum up
13: end for

14: return Eicostan > Return the total cost of the trajectory arising from individual cost

functions

15: end function

ation with geometric attributes. Types of objects extracted from the robot’s environment
are listed in the ontology in Sec. 5.1.

There are direct reasons why a dual environment representation is implemented.
Firstly, the dense representation, inherited from the classical robot navigation, aggreg-
ates information about the obstacles in the robot’s environment over time and provides
such data even if the current field of view of onboard sensors does not allow observing
those obstacles. Costmaps typically embody the environment in a 2D plane; however, pro-
jecting sensor readings, mainly from RGB-D cameras, onto the robot’s base plane allows
for the representation of the environment in so-called 2.5D [403]. Additionally, the layered
architecture of the costmap [170] allows embedding contextual information, e.g., proxem-
ics [47], into the environment model used for navigation. The resultant costmap with
enriched information is flattened for motion planning, so it can be used for calculating
the cost of the robot’s traversal through the costmap cells. On the other hand, the sparse
representation is required to compute the controls according to the pedestrian motion
model governing the trajectories produced by the gen™ _ generator. The model computes
pairwise interactions between the robot and other objects; hence, all environment objects
must be segmented and their spatial attributes estimated.

While the human data are obtained directly from the perception modules [149], the
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segmented obstacle data are extracted from the flattened costmap® (as in [162]), which
contains all types of obstacles in the environment without semantic distinction. There-
fore, a procedure of excluding social agents, H", from all other obstacle types, O", was
developed.

Unlike other applications of the pedestrian motion model [404], the implementation of
HUMAP does not assume that there are multiple point obstacles in the environment, but
the real forms of objects are estimated by processing obstacles marked in the costmap.
Overall, environment objects in the sparse representation are modelled with: circles, lines,
and polygons, ensuring that the algorithm applies to a real-world operation. Also, most
approaches integrating the pedestrian motion model treat humans as points representing
the centre of a body [138, 193], but our sparse representation treats humans as objects that

physically occupy some space. Hence, for obstacle avoidance in the model-based trajectory

n
soc?

generator, Pgen” . humans, represented by static or dynamic objects, are modelled as

circles with a radius of d,,, and the closest points between each human and the robot
are determined in each time step.

Social robots operate in highly dynamic environments; therefore, motion anticipation
of surrounding objects is crucial for efficient navigation. In the recent work, Scholler et
al. [218] compared sophisticated state-of-the-art human trajectory prediction methods
against the constant velocity model, and they found that this simple approach can yield
similar results. As a consequence of their inspiring outcomes, the HUMA P has the constant
velocity assumption implemented to forecast trajectories of all entities distinguished in
the ontology. Finally, a joint state space of the robot and all objects is developed, as the
object’s trajectory prediction step is equal to the robot’s trajectory planning step, ¢, and

the object’s motion prediction horizon is equal to the robot’s trajectory planning horizon,

thor .

5.5 Trajectory generation using the pedestrian mo-

tion model

The recent successful real-world applications of the Social Force Model (SFM) [275, 314,
315, 165, 253, 166], which is the prevalent pedestrian motion model, have inspired us to
incorporate this method for robot trajectory generation. The baseline SF'M model was
extended with an additional component based on Fuzzy Inference System (FIS) to engage
social rules of pedestrian motions and to enhance realistic collision avoidance behaviours.

The reactive baseline SFM approach, integrated with the proactive FIS-based compon-

Shttps://wiki.ros.org/costmap_converter
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ent, creates the Fuzzy-Extended Social Force Model (FESFM) proposed in this work.
The FESFM has been employed in the pedestrian-motion-model-based social trajectory
generator, denoted as ®gen” ., providing valid trajectory candidates for the HUMAP’s

socC?

n

- . are later

trajectory planning scheme. The trajectory candidates produced by the ®gen
scored (along with the candidates from the second generator explained in Sec. 5.6) by cost
functions to obtain the optimal solution according to the objective function described in
Sec. 5.7.

The remaining part of this section discusses the most common pedestrian motion
models and the calibration of the SFM parameters. Furthermore, the formulation of the
baseline model is disclosed in Sec. 5.5.4, and the proposed SFM extension, introduced in

the FESFM , is described in Sec. 5.5.5.

5.5.1 Pedestrian motion models

The modelling of pedestrian dynamics has been an active field since the 1970s. Studies
focus either on a macroscopic approach that investigates the movement pattern of a whole
collective (a crowd) or on a microscopic approach, which examines the behaviour of indi-
viduals [1]. Employing pedestrian dynamics models to reproduce typical human movement
behaviours in robot navigation systems primarily focuses on microscopic methods.

Schadschneider et al. [405] reviewed classical models describing pedestrian motion.
Multiple algorithms employed stimulus-based approaches to model human dynamics, e.g.,
Cellular Automata (CA) [406, 407] or Social Force Model (SFM) [1]. Both CA and SFM
are microscopic approaches, but the substantial difference between these two methods
lies in the background of interactions. Interactions in CA are implemented as rules —
often motivated by arguments from psychology [405], whereas SFM-based models define
interactions directly on a level of motion equations, similarly to the classical mechanics.
Another difference is related to the continuity — CA is a discrete method, while SFM-based
approaches expose a continuous formulation.

The SFM is one of the most prominent models describing pedestrians’ motion due to
its easily extendable, parameterised method of capturing a mutual influence of individual
pedestrians. The SFM'’s flexible formulation allows the development of specialised meth-
ods that include additional factors into the model, as discussed in (Sec. 3.2.2). The general
idea behind the SFM is to define social analogues of physical forces, e.g., attractive or re-
pulsive interactions, frictional forces, dissipation, and fluctuations [317], and embed them
into motion equations. For many years the SF'M has been commonly used for simulating
the evacuation in mass events [313] or pedestrian crossing analyses [408].

The SFM’s concept is similar to the Artificial Potential Field approach [101] repres-

enting the environment as a potential field with attractive and repulsive potentials that

120



guide the agent’s movement, albeit without focusing on social interactions.

5.5.2 Social Force Model formulation

This work synthesises the research on the topic of SFM, which exhibits a broad naming

and symbol diversity among numerous works [1, 56, 138, 408, 25]. Therefore, the uni-

fication of symbols used in mathematical formulations has been developed. Tab. 5.5,

complementary to the Tab. 4.1, contains common symbols, while others are explained at

their respective occurrences.

Symbol | Description

r ego-agent for which the force is calculated; here, ego-agent is the con-
trolled robot

(@) set of generic obstacles, with o-th obstacle identified as °O

K set of static obstacles, with k-th static obstacle identified as *K

J set of dynamic obstacles, with j-th dynamic obstacle identified as 7.J

n0) £ resultant force calculated for the robot r; obtained from the model that
takes into account entities given by the list (-), e.g., “O,L”

" F des acceleration force that attracts the robot r straight towards its goal po-
sition

R repulsive force exerted by the o-th obstacle on the robot r

nf dyn repulsive force exerted by the j-th dynamic obstacle on the robot r

s repulsive force exerted by the k-th static obstacle on the robot r

" f o social behaviour force exerted by the j-th social agent on the agent r

T’(')f(__) (++)-type force exerted by the (-)-th object on the robot r, corrected with
the field of view factor, indicated by " fov

"m mass of the object r

~0d vector connecting the closest points of r and (-) objects, directed towards
the position of (-)

n()g direction of the "'d vector (defined for the description’s conciseness)

o) relative location of () compared to the heading of r

"e unit vector directed from the current position of the robot r towards its
goal position

Vdes baseline model’s parameter reflecting the desired speed of the ego-agent

"As stated in Sec. 5.1, the robot-centric notation is used in the Chapter 5, while the notation in

the Chapter 4 investigates the human-centric perspective. Therefore, for clarity and conciseness, some

symbols influenced by the state of multiple entities have been reintroduced in the table describing symbols

appearing in Chapter 5.
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Symbol | Description

A, baseline model’s parameter affecting the strength of ego-agent’s deceler-

ation caused by the repulsive forces exerted by dynamic obstacles

B,, C, baseline model’s parameters affecting the range of deceleration compon-

ents of the force exerted by dynamic obstacles on the ego-agent

A, baseline model’s parameter affecting the strength of ego-agent’s evasive

movement caused by the repulsive forces exerted by dynamic obstacles

B,, C, baseline model’s parameters affecting the range of evasive components of

the force exerted by dynamic obstacles on the ego-agent

Ay, baseline model’s parameter affecting the strength of repulsive forces ex-

erted by static obstacles affecting the ego-agent’s movement

By, baseline model’s parameter affecting the range of repulsive forces exerted

by static obstacles affecting the ego-agent’s movement

A, extended model’s parameter affecting the strength of social behaviour

forces caused by social agents’

Table 5.5: Common symbols used for describing the pedestrian motion model.

The original SF'M has its distinctive ontology consisting of the agent of interest, i.e.,
ego-agent denoted by 7, obstacles O (static, K, and dynamic J can be distinguished),
and attractive objects, IL, not being a movement goal for the ego-agent. When the SFM
is applied for robot navigation (as in the HUMAP’s case), the ego-agent is represented
by the robot for which the social force is calculated. All SFM formulas indicated in this
work regard a 2D problem without taking the orientation of objects into account, and all
data are expressed in the global frame.

The social force originates from Newton’s second law (5.7). The method exploits a vec-
tor field idea assigning a force vector, " f", to an investigated object r that affects its
acceleration, "a™ [1].

"ff="m-"a" (5.7)

Moreover, the original SFM formulation also includes a nondeterministic component,

noise fn that can be associated with a process noise, which also influences the velocity of
the robot r at time t" (5.8).

do"

T m= fr+reeef (5.8)

The mass of the ego-agent, "m, is known, but the masses and encountered obstacles O are
usually elided, i.e., a unit value is presupposed, °m = 1 kg, e.g., in [1, 408, 25]. In most

SFM approaches, all objects are modelled as single points in a two-dimensional space.
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The general formulation of the social force vector is defined in (5.9). The resultant

nOL fn 49 g sum of the acceleration term and interaction components —

force vector,
repulsive and attractive. The resultant interaction component for the r robot at time t"
is a sum of interaction forces generated by all obstacles, Q", and attractive objects, L™,

located within the space of interest.

r,O,L pn __ T pen 0 N rl pgn
o f - fdes + § : 7 rep + 2 : 7 attr (59)
v oc O lelLr
acceleration term
repulsive term attractive term

The acceleration term (5.10) describes the ideal force driving the ego-agent r towards its
target point [1, 56, 25]. The goal position determines the magnitude and the direction of

"e". Besides that, the acceleration force is also affected by the

the ideal velocity vector,
current velocity of the ego-agent, "v", and the relaxation time, 7, indicating the duration
required for the ego-agent to adjust its velocity to match the desired velocity or to react to
changes in the environment. Since the SFM is designed for pedestrian motion simulation,
the formulation parameters assigned to the robot agent, e.g., relaxation time or desired

speed, correspond to pedestrian attributes to mimic their motion [138, 408|.

1
nges - — (Tvges et — 7‘,071) "m (510)
T

People generally treat static objects differently, compared to dynamic ones, e.g., other
humans [12]; hence, the agent’s interaction with the static and dynamic objects should
differ. Therefore, researchers divide the repulsive component into two separate parts [56,

25]. The mathematical formulation of the resultant SFM structure is presented in (5.11).

7”’(O)JLfn = T-fges + Z njfgyn + Z r,kfgnat + Z o :ttr (511)

jeIn ke Kn leLn
Due to the diversity of interaction force formulations [1, 56, 409, 138, 408], in this work,
only the equations of the baseline model employed in the HUMA P will be further discussed
in Sec. 5.5.4.

5.5.3 Social Force Model parameter calibration

The SFM method stands for a parameterised mathematical formulation of processes ob-
served in the real world. Numerous representations have been proposed to differentiate
the original model [1], which used an elliptical formulation for repulsive forces produced
by dynamic obstacles and a circular one for the forces exerted by static obstacles. Since
multiple specialised models have been proposed, a significant part of the SFM research

is related to the calibration of those models, i.e., the search for parameter values that
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provide the best approximation of pedestrian motion captured during real-world experi-
ments, usually in video tracking footages [56, 25] or robot sensor data recordings [253].

For example, Johansson et al. [56] verified the circular and different elliptical for-
mulations for repulsive forces. Their calibration was performed based on video tracking
data and then experimentally validated in simulation scenarios. In contrast, Moussaid et
al. [138] conducted a set of controlled experiments with pedestrians performing simple
avoidance tasks. They calibrated a static obstacle collision avoidance and interaction be-
haviours modelled by the SFM formulation.

Seer et al. [25] obtained human movement trajectories based on real-world pedestrian
traffic data. They used the video sequences to calibrate parameters of 3 different SFM
formulations and determined the accuracy of each model. In another work, Taherifar et
al. [410] proposed a macroscopic framework for calibration and validation of the SFM
for bidirectional pedestrian streams. They managed to reproduce desired macroscopic
features while still generating microscopic emergent self-organisation and lane formation
phenomena. Their framework was benchmarked with the use of the pedestrian macroscopic
fundamental diagram [411] that aims to define an ideal relation between pedestrian density
and their spatial flow [405]. Nevertheless, the authors of [25] stated that treating the
fundamental diagram as a reference to find microscopic model parameters can lead to
unexpected results.

Repiso et al. [253] attempted to tune the SFM offline based on the recordings of
people walking in a side-by-side formation. However, the results of their optimisation
scheme, minimising squared distances between the subsequent real-world human poses
and poses obtained from the model, still required some manual fine-tuning. In contrast,
Ferrer et al. [315] exploited online feedback from experiment participants to dynamically
tune the SFM parameters for a specific scenario.

The HUMAP’s approach to deal with the parameter estimation uncertainties and

exploiting that fact to produce multiple trajectory candidates is detailed in Sec. 5.5.7.

5.5.4 Pedestrian motion baseline model

Our approach focuses on implementing SFM for generating feasible trajectories for a ro-
bot. The SFM is a deterministic method providing collision avoidance and emerging the
agent’s behaviour to realistic motions. Multiple extensions of the original SFM have been
proposed focusing on the microscopic perspective [205, 412, 44, 413, 167].

As the baseline pedestrian motion model, we use the formulation proposed in Seer et
al. [25], who obtained human movement trajectories from video sequences of real-world
pedestrian traffic and used these data to calibrate parameters of different SEM formula-

tions. Specifically, we rely on their Model C, as it discriminates the influence of interaction
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with static and dynamic objects, in contrast to the original formulation [1]. However, the
substantial advantage of the pedestrian motion model selected as the baseline (5.12) is
that its parameter values were estimated to exhibit the best fit to the real-world calibra-

tion data.

r0 2, rpen ™I gEn rk g
-fbsl = fdes + Z fdyn + Z fstat (512)

jeIn ke Kn

The model designated as the baseline (5.12) neglects the impact of attractive objects
in the environment, as only task-focused robot operation (without distractors) is invest-
igated. Also, the noise component appearing in the original formulation (5.8) [1] is not
included, since the non-determinism is regarded by differentiating model parameters, as
explained in Sec. 5.5.7.

Breves above symbols in (5.12) indicate that the field of view (FOV') factor, computed
for each object that the robot interacts with, is already included. Different FOV factor
forms were proposed in the literature [56, 205], but HUMAP implements a customised
one presented in Sec. 5.5.5.

The formulation denoted by Model C in [25] used the standardised acceleration term,
" f 4es» Dointed out in (5.10), but takes into account different methods for generating re-
pulsive forces depending on the type of obstacle. Namely, an interaction force exerted by
a static obstacle k onto the robot r, indicated by "* 2 . is developed according to the

elliptical specification from [409], presented in (5.13).

r,kwn

r,kdnH + r,kdn . r,denH 1 T’kdn T’kdn . T’den i
2 kg 2 ( H) "

rk pn A — B
g - e w . P— +
fstat w r,kdnH r,kdn . r,kdsn

(5.13)

The semi-minor axis "*w™ of the elliptical formulation is given by (5.14), whereas the
dynamics of objects (originally, the step size of pedestrians [409]) is taken into account
by the "*ds”, computed as in (5.15).

r,kwn — ;\/(

rk Qe — (kv" _ r,vn> : (tn _ tn—l) (5.15)

rhdn —mhdsn])* — [hdse | (5.14)

]+

In contrast, a force generated by a dynamic obstacle j, represented by " Sy 18

calculated based on the findings from [408], where a variant combining two separate,
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distinctively scaled forces was proposed, as described in (5.16).

. 2 .
r,J T B Bn (rJ(sn) r,J - Bp Tv]én’ .
Jen ~n Jan j
Fagn=|—"2" Apexp | — Y + Mgt Apexp | — .y Im
riypn — Cn ) dnH rIpn — Op ) dnH
deceleration scale evasion scale

(5.16)

The ™ fiyn depends, ia., on the relative location, »0)§, of the j-th dynamic obstacle,
compared to the heading of r. In turn, the relative location depends on the ™¢, i.e.,
the direction of the vector connecting the positions of the robot r and the investigated
object j (5.17).8 The spatial attributes, namely "3 § and ™ ¢, are exemplified and visualised
in Sec. 5.5.5. Overall, the relative location is the angular difference between the ™/¢, and

the robot orientation angle, "6, calculated as in (5.18).

"¢ = arctan?2 ("d,, " d, ) (5.17)

ri§ ="y (5.18)

The first force in (5.16) points in the direction opposite to the unit vector aligned with
the motion direction of r, i.e., " (5.19). On the other hand, the second force, /g, is
perpendicular to the first one and points away from the dynamic obstacle j, as revealed
in (5.20). The resultant repulsive force "/ J ayn exerted by the dynamic obstacle j on the

robot 7 is the superposition of the two described forces.

"#" = [cos ("0") ,sin ("0™)]" (5.19)

— {cos (7"9" + g) , sin (TH” + g)r, if “§m < 0 (5.20)
o {cos (7"(9" — g) , sin (TG” — g)}T, otherwise '

Notably, the SFM scheme involves the computation of the distance vector between
objects, e.g., the robot  and a static obstacle k, denoted by ™*d". In the HUMAP im-
plementation, the spatial attributes (shapes) of objects are estimated; thus, the closest
points between the robot and each environment object (static or dynamic obstacles, e.g.,
humans) are determined in each time step, in contrast to [404], where only body centres

are considered.

8The robot-centric notation is used in (5.17), while the analogous equation appears in the Sec. 4.4.1,

specifically, (4.15), investigating the human-centric perspective.
9The robot-centric notation is used in (5.18), while the analogous equation appears in the Sec. 4.4.1,

specifically, (4.16), investigating the human-centric perspective.
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The equations describing the baseline pedestrian model, i.e., (5.10) and (5.13)—(5.16),
contain the calibrated parameter set, p,, pointed out in (5.21). In this work, the symbols
of individual parameters are in coherence with the original notation from [25]. Symbols

commonly used in the considerations are identified in Tab. 5.5.

Prsi S {UdestnvBnacnaApranaAwan} (5.21)

5.5.5 Customisation of the baseline pedestrian motion model

The HUMAP aims to introduce customary conflict avoidance behaviours among hu-
mans [28] into a robot navigation scheme. For this purpose, the baseline SFM-based
pedestrian motion model (5.12) was extended with the new component. The novel term
emphasises motions that increase intent expressiveness inspired by pedestrian cues and
enhances the motion legibility [23]. Another contribution to the baseline model is propos-
ing a customised FOV factor, which is simpler and more realistic than the forms proposed
in the literature [56, 205], allowing us to consider the actual FOV present in humans [414].

The new component of the extended pedestrian motion model, FESFM , implements
a decision-making strategy for the robot interacting with dynamic entities J, e.g., humans
and other robots. The scheme integrates motion behaviours, such as passing on the right
into the robot’s movement pattern. A crucial feature of reproducing human-like conflict
avoidance behaviours relies on taking customary rules of pedestrian motion into account
to develop a heuristic that mimics customary behaviours. A common approach to solving
rule-based problems is the use of FIS, which has already been successfully implemented
in complex robot navigation strategies [305, 306, 307].

The Mamdani model [415] has been employed in the novel term of the FESFM to in-
corporate the decision-making strategy in the robot motion pattern explicitly. The main
goal is to detect specific situations that involve human-robot unfocused interaction and
proactively react in a socially compatible manner to prevent conflicts. The FIS mod-
ule takes two inputs to produce the output used to compute an additional term of the
pedestrian motion model.

The formulation of the new FESFM motion model, extending the baseline pedestrian
motion model (5.12) with the new fuzzy-inference-based social behaviour term, ™ f, , , is
presented in (5.22) (the FOV factor included).

r0 v 7,0 ¥ ") %
Fresrn="Foa+ D "o (5.22)
jeln
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Customised FOV factor The field of view (FOV') factor in the original formulation
represents a limited range of human perception that causes objects behind a human agent
to have less impact on his movement than objects in front. In HUMAP, this feature is
transferred to a robot’s behaviour.

The FOV factor, "fov™, by which the model components are multiplied, is computed
as in (5.23)° and indicates the scale of (-)-th object’s influence on r robot’s motion. The
"fun,,, function (explained in B) computes the value of the univariate Gaussian distribu-
tion at the of point of the relative location ™/§ (5.18), where the Gaussian distribution is
defined as NV (0,"varg,,) and is appointed in the angle domain. Specifically, the mean of
the Gaussian is the angle of the robot’s view axis (in the local coordinate system), which
equals 0, while the shape of the distribution is defined by the robot’s FOV variance, com-
puted based on the "fov parameter with, e.g., the 2-sigma rule applied, that replicates the
limited FOV of humans.

"Ofov™ = fun?,, (r’(')én, N (O,Tvarfov)) (5.23)
FIS input variables Defining a proper set of variables for a FIS is crucial to differen-
tiate environment states to detect specific situations involving an interaction. Although
social rules of pedestrian motion are driven by many causes, we state that two envir-
onmental factors are crucial for a moving human in their decision process of selecting
the movement actions. Both developed input variables are expressed in the angle do-
main, which is illustrated by corresponding membership functions shown in Fig. 5.11 and
Fig. 5.12. In the following considerations, all symbols are expressed for time t", and the
j-th dynamic object can be identified as a moving human or a moving robot (different
from the controlled one r).

The first FIS factor, indicated by "/§ (5.18), is a location of the j-th dynamic object
in relation to the heading direction of the robot r, which is denoted as "6 (Fig. 5.10a).
The following regions for the relative location input variable were distinguished: front (F),
front-left (FL), back-left (BL), back (B), back-right (BR), front-right (FR). The member-
ship function with each region is presented in Fig. 5.11.

The second FIS factor, ™/, determines the location of the intersection point of 7’s
and j’s direction rays relative to the r’s centre, as illustrated in Fig. 5.10b. The in-
tersection point is determined assuming that the robot r is stationary, and the dynamic
object j moves with a constant velocity. Therefore, the fuzzification regions describing the

possible "+ values are distinguished as: cross-centre (CC), cross-behind (CB), opposite
(OPP), outwards (OUT), equal (EQ), cross-in-front-of (CF), as depicted in Fig. 5.10b.

10The robot-centric notation is used in (5.23), while the analogous equation appears in the Sec. 4.4.3,

specifically, (4.34), investigating the human-centric perspective.
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(a) Spatial arrangement  (b) Regions and border angles of ™/

Figure 5.10: (a) Geometric attributes of an example spatial arrangement of r and j agents
along with lines reflecting the orientation of the global coordinate system. (b) Fuzzification
regions and the angles associated with region borders defined for the second input variable

of the FIS. Note that (a) and (b) illustrate the same spatial arrangement of r and j.
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Figure 5.11: A membership function of the first FIS input variable ™6™

Regions of the second input variable, in contrast to the first one, are dynamically
arranged (5.25); hence, must be computed in the context of the observed spatial arrange-
ment of r and j. For a straightforward geometrical interpretation, the value of ™/~ is
referenced to the orientation of a dynamic agent j, i.e., "y = 6 (see the clarification
in 11). Three specific values of ™/~y, standing for division points for the second input’s
regions (Fig. 5.10b), were distinguished, as shown in the set of equations (5.24). The

following cases of the "7+ value were specified to develop the boundaries of FIS regions:
® "7, indicates that j moves in the same direction as r,
® "7,pp indicates that j moves in a direction opposite to r,

e "I~ . indicates that a ray created from a centre point and a heading of j crosses the

centre point of r.

11 Although the ™~ is calculated as ™7y =70, i.e., it only depends on the state of the object j, the
symbol of ™7~ is indicated as describing a value connected to the entities of 7 and j. This mathematical
procedure was performed to reflect the fact that a pose of a dynamic object j directly influences the value

of ™J~, which is calculated for the robot 7.
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Figure 5.12: A membership function of the second FIS input variable with the "/~ angle
value marked with the vertical bar. The function is presented for the specific spatial
arrangement of r and j shown in Fig. 5.10, where j’s direction ray crosses r’s direction

ray in front of r (“CF” case).

Yeq = 0
Yopp = Veq + 180° (5.24)
e = Mo +180°

Regions of the second input evolve between the values defined in (5.24). The arrangement
of regions, "T", can be formulated in the normalised angle domain regarding the relative
location (indicating the right or left side), as in (5.25). The fuzzification regions are
generated with a 10° extension (experimentally determined) beyond the region boundary
values (Fig. 5.12). All configurations of input variables considered in the rule bases are

presented in Fig. 5.13.

T,yopp < nj’yout < r,yeq
TJ/YCC < TJ/Vcb < T/YOpp if r7j5 <0

Terq < n]’ch < 7”’]’ycc

"D = (5.25)

rrYopp > ry]/}/out > T’qu

r’ijCC > rhjf)/cb > T‘f}/Opp if T’jé > O

r

f)/eq > 7"7]’}/cf > r7]70c

FIS rules The rationales for the rule design in the proposed FIS are social conflict
avoidance behaviours [28] and customary rules of pedestrian motion. For instance, in most
countries, pedestrians try to pass others on the right [137, 71, 126, 84, 348, 72], overtake on
the left [71, 141], and give way to a human on the right when directions of both pedestrians
nearly cross [86, 77, 416]. Additionally, enhancing robot motions that increase intent
expressiveness improves its motion legibility perceived by humans [23]. Furthermore, the
FIS rules emerge to recreate the two-lane formation social phenomena [138, 44] and enable

the robot to slow down when a collision is predicted and stop when a collision is imminent.
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Figure 5.13: Visualisation of the reciprocal r and j pose configurations. The specified
cases are accommodated in the fuzzy inference system to implement social behaviours in

a robot navigation system.

In FESFM, reproducing social behaviours is accomplished with short-term actions,
namely: accelerate (ACC), turn right accelerating (TRA), turn right (7R), turn right
decelerating (TRD), decelerate (DEC), stop (S), turn left decelerating (7LD), turn left
(TL), turn left accelerating (T'LA). The actions are induced from the robot’s r and dy-
namic object’s j reciprocal location (reflected by "/§) as well as their motion directions
(reflected by "v). Based on these features, the spatiotemporal arrangement of the robot
and the dynamic object is classified into one of the specific cases described in the reasoning

block in Tab. 5.6, which contains the set of fuzzy rules of the presented FIS.

FIS output variable The defuzzified output variable, /", represents the membership
function’s argument (Fig. 5.14) identified as the angle defining the direction of the action
that implements the human-like decision-making strategy. However, movement actions in
the SFM-based pedestrian motion model must be represented by the force; therefore, the
magnitude of the new force component, " SFren, must be separately calculated.

To find the magnitude of the force implementing social behaviour for the situation

at hand, a novel heuristic has been developed based on the findings from the literature.
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w.;’w cc |cB |oPP |oUT |EQ |CF
F - - TR |DEC |DEC |TR
FR |- TL |TL |TL |TLA |TR
BR |- TLA |TR |- |TRA |Acc
B — — _ — _ —

BL - ACC |- - - -

FL — TR |- - — |TRA

Table 5.6: Fuzzy rule bases. Values of the first input are denoted under "/§, whereas the

values of the second input correspond to "/+.
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Figure 5.14: A membership function for the FIS output variable.

Specifically, the scale of the force depends exponentially on the distance ™/d between
the robot r and the object j [1, 314, 275], but is also affected by their relative speed,
"y [408, 25]. Additionally, the force strength is influenced by the value of the output’s
membership to the best matching FIS case, ™/, which directly assesses the certainty
of classification of the inferred situation (arrangement). Notably, the action angle, ™v,
is defined in the robot’s r local coordinate system; thus, the direction of the force needs
to be transformed from the robot’s r local coordinate system to the global one. Finally,
the configurable amplitude factor, Ay, is introduced for, e.g., levelling the scale with
other components. The overall formulation of the FIS-based component of the FESFM

pedestrian motion model is shown in (5.26).

cos ("0 + ™v)

| (5.26)
sin ("0 +"v)

T, _ —mid ™y rJ
Toen = As - € '(6 —1)' Mu'[

The FIS must handle the presence of multiple dynamic objects, identified as J”, around
a robot. The vector addition principle has been used as an aggregation method when the
cardinality of the set of dynamic objects at time ¢" conforms to |J"| > 1.

Nevertheless, when none of the implemented actions is activated, the robot’s candidate

trajectories produced by the ®gen_ . generator are not influenced by the " f, , component.
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5.5.6 Conforming pedestrian motion model to velocity control

of mobile bases

Mobile robots are commonly velocity-controlled. Since the SE'M-based motion model that
was employed in the social trajectory generator, gen, ., provides control commands ex-
pressed in the force domain, they need to be transformed to the velocity domain. Further-
more, the virtual forces in the SFM are generated without taking the mobility constraints
of agents into account.

Holonomic robot platforms characterise performing lateral motions contrary to the
heading direction, which is considered unnatural and not goal-directed for people [215].
Consequently, most social robot mobile bases are equipped with simple differential drives.
Nonholonomic constraints of the platform selected for tests (Sec. 7.1) make the robot
not compatible with the raw SFM driving vector. This problem was already addressed
in [165], where the authors proposed a function transforming a force, " f, to a velocity
vector "v for a nonholonomic robot r. The method is referred to as FORCETOVELOCITY
in Alg. 4.

5.5.7 Generating numerous pedestrian model-based trajectory

candidates

The HUMAP local trajectory planning algorithm employs the FESFM pedestrian motion
model (Sec. 5.5.5), based on the SFM (Sec. 5.5.4), for producing trajectory candidates.
The planning approach implemented in the HUMA P relies on searching for the lowest cost
trajectory amid the candidate trajectories. Increasing the number of candidates produced
enhances the likelihood of finding a solution closer to the optimal. In this section, the
approach of generating multiple trajectory candidates from a deterministic pedestrian

motion model is demonstrated.

Limitations of static parameter values in SFM-based models As stated in
Sec. 5.5.3, the authors of multiple works have already attempted to assess the parameter
values of pedestrian motion models applied for social robot navigation. The parameters of
the baseline SF'M formulation were estimated in [25], where the authors found that after
the calibration driven by the real-world data, each parameter still displays a significant
standard deviation from the mean value. This can be explained by the non-deterministic
nature of real-world processes that involve humans. However, researchers acknowledge
that a static set of SFM parameters might produce satisfactory navigation results for
a specific scenario, as in [314, 321], and still be valid in scenarios meeting similar condi-

tions [165], but lacks generalisation to different environments. Even parameter calibration
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via online learning is the same in that matter [165]. On the other hand, dynamically
changing parameters may produce valid trajectories for different scenarios [315], but de-
fining a versatile relationship between SF'M parameter values and the environment state
is challenging. Taking into account the aspects of the deviation of calibrated parameter
values and the necessity to dynamically select them across various scenarios, the method

of generating multiple trajectory candidates has been developed in the HUMAP.

Diversifying trajectory candidates The HUMAP’s model-based generator of so-

cially acceptable trajectory candidates, gen_ ., exploits that each parameter of the baseline

soc?
pedestrian motion model should undergo validation with values spanning throughout the
range defined by their standard deviations. Hence, our method introduced the multipliers
of pedestrian motion model parameters. Manipulating the value of each parameter has
a direct impact on robot dynamics and emphasises distinctive behaviours in the robot’s
motion, e.g., a bigger keepout distance from static obstacles or earlier evasive manoeuvres
in front of a dynamic obstacle. Furthermore, applying numerous coefficients to each para-
meter ensures that the deterministic FESFM model can generate diverse pedestrian-like
trajectory candidates. Those candidates are later scored with socially-aware cost functions
to select the most relevant trajectory for a human-aware robot at the current state, as
detailed in Sec. 5.7.

The span of values of model parameters’ multipliers is bounded by the minimum,
minfi(, and the maximum, <, values, which can either be derived from the standard
deviation of the baseline model parameters (e.g., [25]) or determined experimentally, by
evaluating the range that significantly impacts the search space. Then, the multiplier’s
discretisation step (granularity), stpfi(), Must be established by striking a balance between
computational complexity and search resolution.'? The composition of multipliers for

a given parameter i, denoted by "k;, is described in (5.27).

r r
max/Vi ™ min/Y
r
stp/fi

r
max Vi

"K; {;I{i|j€No,0<j<

(5.27)

K= minf; TJ sphi 1 K<

r min Vi

"K otherwise

max'Vi

Then, the multipliers are applied to each baseline parameter from the p, set, augmented
by the FIS-related A, parameter of the " fﬁeh, to obtain the set of resultant parameter

values, "p, (for a specific parameter ), that are used for generating diversified trajector-

12 The smaller the discretisation step is, the closer the solution will be to a model-constrained-optimal
one; however, for real-world, time-constrained systems, it is desirable to keep computation times reason-

able and to recalculate with a higher frequency at the cost of acquiring a suboptimal solution.
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ies (5.28).

"p;, ="K, -1, where i € p,g U A, (5.28)
Our trajectory generation involves searching for all possible parameter combinations, "p,;
hence, the parameter tuples are the results of the Cartesian product of uniformly spaced
parameters (5.29).!3 The i-th tuple with parameters, ";p,,;, is shown in (5.30).'

P =Py, X Pa, X P, X P, X Py, X (5.29)

T T 7 T 7
X Pp, X Pc, X Pa, X PB, X Pa,

iPanl = (("ipvdc; (VP ALs (VP B (AP Cr s (.SpA,,, (5.30)

508y 3Py 5P A 3PB, (PA,)
Since we applied multipliers to 10 parameters of our FESFM pedestrian motion model,
and each combination of multiplier values is assessed, the search space of a model-

constrained-optimal trajectory!® is at most 10-dimensional. However, dimensionality re-

duces by 1 with each multiplier set’s cardinality conforming Tn(.)’ =1
Trajectory generation Using the deterministic pedestrian motion model to generate
numerous trajectory candidates exploits the model’s parameterisation. The candidates are
produced by replacing the baseline parameters, p,, with the subsequent parameter tuples
from "p,y, i.e., [Pans 5Puns -» xPan- Specifically, with the (-)-th tuple, the A, parameter
appearing in the FESFM formulation is swapped with the ()P A, then B, with ()P Bn >
and so forth.

A valid trajectory generation in time t" reveals a tuple of parameters, denoted as
() Pals which produces a trajectory with the lowest cost among the set of model-based

trajectories generated by applying various parameter tuples to our pedestrian motion

13 An exception to the “uniform spacing” may hold for at most 1 (the biggest) value of each parameter.
It might occur if the second case of the second part of the (5.27) equation applies for a given parameter,
i.e., there does not exist an integer number, that multiplied by the discretisation step Stgn(,), equals the
range given by . 1K) — mink()

14 Generally, with the variable number of multipliers for each parameter, it is not viable to identify the
index of each parameter in the i-th tuple, ;p,,, therefore, a generic placeholder, (-), has been used. Each

(-) may indicate a different index in (5.30).
15 The phrase “model-constrained-optimal trajectory” means that: 1) there is a parameterised “model”

from which trajectories are generated, and 2) numerous trajectories can be generated, but none of them
might be globally optimal due to a discretised search space. However, amid the trajectories produced by
the model (thus “model-constrained”), there is 1 trajectory with the lowest cost (thus “optimal” in terms

of the solutions generated by the model).
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(a) Model-based generator (b) Sampling-based generator

Figure 5.15: Candidate trajectories created using the pedestrian motion model gen_ . (a)
and the sampling-based generator gen_,, (b). The global path is indicated by the black
line. The robot’s footprint is marked with a grey circle and its orientation is depicted with
a coordinate system marker. Path points resulting from an individual trajectory are of

the same colour.

model. Moreover, a trajectory is considered a valid candidate only when it conforms to
the kinodynamic constraints of the mobile base throughout the planning horizon, i.e., the
entire trajectory must constitute only feasible velocities (hence ISFEASIBLE expression in
Alg. 4). Trajectories failing to meet this requirement are rejected from further investiga-
tion. The complete procedure for human-aware trajectories generation using the FESFM
pedestrian motion model is shown in Alg. 4. The implementation used during experi-
mental studies produces y = 72 trajectories using the model-based trajectory generator,
gen, .. Nevertheless, investigating more trajectories is justified, if the real-time perform-
ance of the trajectory planning is not an issue. The visual representation of the produced

trajectories is illustrated in Fig. 5.15a.

5.6 Velocity sampling-based trajectory generation

We argue that a sole social trajectory generator utilising the SFM-based motion model
is not sufficient for robust robot navigation in dynamic, populated or cluttered environ-
ments due to being vulnerable to the local minima or oscillations [1, 165]. Therefore, we

also employed a velocity sampling trajectory generator, gen that creates trajector-

smp?
ies from feasible motion primitives, i.e., velocity tuples ([v,,w] pairs for nonholonomic
or {vm, Uy, w} triplets for holonomic drives) regarding kinodynamic constraints [161], but

without taking environment model into account (collision checking is performed by scor-

136



Algorithm 4 Creating trajectory candidates, "traj” ., for the robot r at time ¢" using

n

the generator based on the pedestrian motion model, "“gen” _

1: function GENERATETRAJECTORIES(Pgen,, )
2 traj,,. <« 0 > List containing generated trajectories
3 for each ,p,, € p,; do > Iterate over param. tuples
4 im g > Save the initial time stamp
5 Osm — Q > Save the initial environment state
6: traj < () > Uninitialised trajectory candidate
7 invalid < False > For detecting traj. gen. failure
8 > Iterate over time stamps along the plan. horizon

9 while 5™ < (1" + t,.) do

10: > Compute force according to the motion model

L1 Qf?%lSFM «— FESFM (ipalb @Sim)

12: v*™ — FORCETOVELOCITY (® viig}SFM>

13: > Evaluate the feasibility of the velocity

14: if not ISFEASIBLE(’USim> then

15: invalid « True

16: break > Traj. violates kinodyn. constraints

17: end if

18: > Initialise traj. with the first planned velocity

19: if traj == () then

20: traj < INITTRAJ(p", v™)

21: end if

22: > Extend the robot trajectory applying v*™

23: traj « PREDICT(traj, vSim)

24: > Predict the state of the environment

25: Qsimtl PREDICT(@Sim>

26: e e N > For the next traj.

27: end while

28: if invalid == True then

29: continue > Curr. par. tuple produces infeas. traj.

30: end if

31: APPEND(traj,., traj) > Extend the traj. list

32: end for

33: return traj,,. > Return the list of generated traj.

34: end function
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ing functions). We finally selected "smp, = 3 linear (Tsmpy = 1, equal to 0, as our test
platform is nonholonomic) and "smp, = 11 angular velocities that produce additional
¢ = 33 trajectories to be scored in each time step. The algorithm for producing candidate

trajectories by the velocity sampling generator is illustrated in Alg. 5.

Algorithm 5 Creating trajectory candidates, "trajg,,, for the robot r at time " using

the trajectory generator based on velocity sampling "geng, .

1: function GENERATETRAJECTORIES(gen,,, )

2: > Compute boundaries of feasible vel. at the end of

3 > the plan. horizon, e.g., for the lower boundary:

4 P i = [min@xv minl_)y?min(’_u}

5: minD < UV —a -1y, > a robot’s accel. limits
6: max¥ < U+ a -t

T > Create lists of feasible velocities, taking the cardinality

8: > of each velocity component into account;

9: D> LINSPACE returns evenly spaced num. over an interval;

10: > if in0() < 0 and 0y > 0, then “07 sample is incl.

11: V,, «— LINSPACE( 11Uy s maxUss STD,.)

12: D, LINSPACE(mm Uy max Uy smpy)

13: @ «— LINSPACE( ;&) max®s SMP,,)

14: Vgmp < Uy X U, X W > List of feas. vel. triplets
15: trajsmp —0 > List containing generated trajectories
16: for each v € v, do > Iter. over feas. vel. triplets
17: sim ¢ > Save the initial time stamp
18: traj < INITTRAJ(p", v™) > Initialise traj.
19: > Iterate over time stamps along the plan. horizon
20: while 5™ < (t" + t,,,) do
21: traj «— PREDICT(traj, D) > Const. vel.
22: R > For the next traj.
23: end while
24: APPEND (trajsmp, traj) > Extend the list
25: end for
26: return trajg, . > Return the list of generated traj.

27: end function

Examples of trajectory candidates obtained for the same environment state with the

model-based social trajectory generator, gen and the velocity sampling-based gen-

socC?

erator, gen are shown in Fig. 5.15a and Fig. 5.15b, accordingly. The latter produces

smp’
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curved trajectories that cover a discretised space of feasible velocities (nonholonomic robot
example). On the other hand, the model-based generator creates concentrated trajectories
(95 candidates in Fig. 5.15a) that avoid collisions and follow the local goal located along
the global path. Using both generators enables covering most of the viable configuration

space with diverse candidates.

5.7 Trajectory scoring

Creating multiple trajectories requires scoring the candidates produced by each generator,

gen, . and geng . to select the one with the lowest cost (5.6). Trajectory evaluation has an

smp?
essential impact on which candidate will be selected; therefore, cost functions for human-
aware navigation should map the social robot navigation requirements (Chapter 2).

A distinctive characteristic of the HUMAP planner is that the cost functions for on-
line trajectory scoring are adapted from our metrics that were originally proposed for the
offline benchmarking (regarding the whole experiment) of social robot navigation [21],
described in (Chapter 4). The metrics quantitatively evaluate both robot navigation per-
formance and its social acceptance during navigation, taking into account the uncertainty
of robot perception in terms of human tracking.

In HUMAP, cost functions for scoring candidate trajectories can be classified into two
main groups: evaluating robot navigation performance and assessing human discomfort.
Furthermore, human discomfort cost functions can be further divided into those quanti-
fying robot motion naturalness, and those evaluating the physical and perceived safety
among humans (following the taxonomy identified in Sec. 2.1). Since the objective function
for candidate scoring implements opposite criteria, i.e., includes both performance-focused
cost functions as well as cost functions mitigating human discomfort, a Pareto-optimal
solution is being searched for.

Our approach to local trajectory planning uses spatial, spatiotemporal and temporal
cost functions, all stored in the "*cfun,, vector, to evaluate candidate trajectories. Spatial
cost functions are commonly embedded into a discretised costmap representation of the
robot environment [170] to penalise the robot for traversing through certain positions. Spa-
tiotemporal cost functions, on the other hand, also penalise the robot for moving through
certain areas but evaluate the actions that happen in time and affect the pose of the
robot, usually in a significant horizon. They might require environment state predictions
as well, e.g., forecasting human trajectories. In contrast, temporal cost functions penalise
the robot’s dynamics within a given trajectory, without considering spatial aspects.

In our method, only trajectories conforming to the kinodynamic constraints are treated

as valid and those are evaluated by cost functions. Assessing the i-th trajectory is equi-
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valent to calculating its total cost, costau. The cost of a trajectory is computed using
the scalarised multi-objective cost function, presented in (5.31), with the weighted sum
method, as illustrated in Alg. 3. The (-)-th cost function, which only relies on the state
of the robot r and does not take any environment objects into account, is denoted by
chun?,), whereas its weight as Tp(.). Individual cost functions are described later in this

section.

P ECOStI = " Py - P cfunl, ("trajl )+ " g, - PP ofunly, ("traj?)+
+ T/Ogoal ' Cfungoal ( traj?) + Tpglfr ’ 7q’ECfunglfr (Ttraj?)+
+ prwd ' TCfunTbLWd (rtraj?) + Tposc Cfunosc ( traj?) +

+ Tpttc ) Cfunttc rtra.]z + rphsm ’ rCfunﬁsm (Ttraj?) + (531)

( )
+ Tpvsm Cfunvsm (Ttrajz ) + 7"pdir ' TVHCfungir (rtraj?) +
+ Tppsi ' T’HCfun psi Ttr :L) + Tpfsi : T’GCfun?si (Ttraj?) +
+ Tppsd : Cful’lpsd (Ttraj?)

Changing the weights of cost functions influences, which trajectory candidate will be
selected as the best in a given time step, for a given planning horizon. Manipulating
the weights enables the system designer to select, e.g., whether the robot is intended to
sacrifice time performance in favour of social compliance in a populated environment. The
trajectory selection procedure treats socially acceptable robot motions as soft constraints,
meaning they are permissible unless they result in a collision, which is interpreted as
a hard constraint. Therefore, the robot could still apply a trajectory that deviates from
the globally planned and shortest path, when the cost functions assess the trajectory’s
cost as the lowest (minimising the objective amid the candidates).

As the HUMAP is mainly developed for robots performing unfocused interactions
with humans, in our test setup, the weights were tuned towards the human-aware motion
behaviour. This means that the weights of cost functions penalising human discomfort
and unnatural robot motions were increased, but only at a minimal degradation in overall
robot navigation performance (Pareto optimality).

The remaining part of this section describes all cost functions that are regarded in the

objective function, i.e., they are also embedded into the " cfun vy vector.

5.7.1 Assessing robot navigation performance

The aspects of robot navigation performance in local trajectory planning mainly regard
the global path following, while avoiding collisions. The operational scheme of cost func-

tions described in this section is illustrated in Alg. 3: the investigated trajectory is passed
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as an argument to each cost function, resulting in the cost of that trajectory being returned
from the function. All cost functions discussed below are aggregated in the objective in-
troduced in (5.31).

Traversal costs A fundamental cost function, "¥

cfun,,,,, discards trajectories mov-
ing the robot into obstacles and penalises traversing through areas in obstacles’ proxim-
ity [147]. This spatial cost function uses a dense representation of the environment to
quantitatively evaluate the robot’s footprint traversal through the predicted trajectory
poses (associated with the local costmap’s cells), providing the investigated trajectory
was applied (Alg. 6).

The local costmap, representing the robot’s surroundings, is created in real-time based
on the recent perception data and determines the cost of traversal through certain environ-
ment positions, e.g., through locations occupied by obstacles (Fig. 5.16a). Additionally, the
areas close to obstacles have exponentially increased costs assigned (in a procedure usually
called “obstacle inflation”) [147]. However, with the layered costmap architecture [170],
various high-cost areas can also be embedded. The contextualised local environment rep-
resentation might contain different special areas that are not treated as empty spaces but
also not as impassable locations. The authors of existing approaches prepare costmaps
to capture the information specific to social navigation, e.g., left sides of corridors [170]
(for right-sided motion pattern) or human activity spaces [2] to discourage planners to
traverse such areas. The resultant costmap used for trajectory scoring is flattened, so the
number of layers considered only affects the system performance and does not influence

the planning procedure.

Other performance-focused costs Our approach also adapts other commonly integ-
rated spatial cost functions for evaluating robot navigation performance. For example, the
mE cfun;y, cost function favours trajectories that overlap with the global path (Fig. 5.16b),
which is received by the local trajectory planner from the global path planner. Addition-
ally, the ™F cfun,,, cost function prioritises trajectories that drive the robot towards the

local goal (Fig. 5.16¢), as proposed in [144, 147]. Furthermore, the "Fcfun ;, cost function

glfr
attracts the robot towards a virtual goal placed in front of the robot to prevent deadlocks,
i.e., being stuck at local minima (Fig. 5.16d).

The implementation of all these cost functions is inherited from the original ROS
navigation system.'® Compared to the original work [147], weights of the cost functions

were decoupled to provide a more versatile platform for configuration.

https://github.com/ros-planning/navigation
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Algorithm 6 Computing the value of the "#cfun’., = cost function for a trajectory "traj”

generated for the robot r at time ¢"

1: function “cfun,,, (traj)

2: Ecosty,,, «— —00 > Stores the highest cost along the traj.
3 > Env. dense representation containing obstacles O

4 cm «— GETCOSTMAP()

5 for each p*™ ¢ traj do > Rewind predicted states
6: > Costmap from time ¢ is used in each step

7 cost «— GETCOST(cm, pim, ftprint)

8 > Highest cost of the pred. pose of the r’s footprint

9 Ecost,,,, « MAX (Ecosttrav, cost)

10: end for

11: return Fcost

trav

12: end function

5.7.2 Assessing robot motion naturalness

The robot’s motion can be described as natural when it exhibits behaviours that are not
perceived as unusual, which typically involves avoiding erratic movements and oscillations.
Cost functions evaluating robot motion naturalness in the presence of humans are in
most cases temporal and regard robot dynamics or particular movement types. Here,
robot velocities are expressed in the mobile base’s coordinate system. All cost functions
that assess the robot’s motion naturalness in the HUMAP local trajectory planner were
adapted from SRPB (Sec. 4.3).

Oscillating motions The "cfun’,. cost function discards robot trajectories exhibiting

oscillating motions, i.e., not developing significant linear and angular velocities. The cor-

n

e represent configurable

responding cost value, "cost’.., is computed as in (5.32), where YV

osc

threshold values for relevant robot velocity components.

T,yT T
Vlin <1inVosc

a1 s
/\‘ U(E |<I’UOSC

r n COSTinfeas’ if /\|Tv?7j|<;voSc
costl.. = et (5.32)
osc AW <pvgse
0, otherwise

Backward movements The "cfuny,, cost function penalises trajectories constituting
backward motions. The respective cost value, "costiq, is calculated as in (5.33). The
configurable velocity threshold value, v, ., is shared with the analogous parameter used

? T osc)

in "cfun . cost function, so a trajectory is not classified as having oscillating and backward
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(a) Traversal in obstacles’ proximity (b) Exact path following

(c) Attraction towards the global goal (d) Attraction towards a local goal

Figure 5.16: A visualisation of cost functions aggregated by the objective function for
evaluating the robot navigation performance: (a) obstacle avoidance, (b) global path fol-
lowing, (c¢) goal-reaching capabilities, and (d) deadlock prevention. In all figures, the cost
of traversal through costmap cells is mapped onto the colour scale. Red-coloured areas
represent a minimal cost, whereas black colour spaces indicate lethal obstacles. Local
costmap bounds are also presented in each figure. The global path is indicated by the

thick black line, while a thin black circle represents the robot’s footprint.

movements simultaneously.

1, lf T'U';rclg_ ;vosc
"costpg = (5.33)
0, otherwise

Velocity smoothness Another cost function, "cfun’. , is used for avoiding erratic mo-

vsm?

tions, i.e., trajectories that exhibit a significant change in subsequent linear velocities [12].

The linked cost value, "cost’ , is computed as in (5.34), where 7 is the index of the time

stamp indicating the initiation of the latest planning procedure.

2
1 gy, —1 E{Z ) (7’1)?4—1 . T’U?)
12,y
TCOStn = 534
vsm Gor — 1 7;:71: e+l _ yn ( )
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Heading change smoothness The "cfunj,  cost function penalises robot angular ve-

locity changes [10]. The associated cost value, "costj . is calculated as in (5.35).

1 gy, 1 ‘rwn—s—l _ rwn‘

"costy, = ——— _ 5.35

5.7.3 Assessing humans’ physical and perceived safety

The discomfort experienced by humans during robot navigation is often linked with a de-
creased perceived safety among humans [10]. Neglecting the perceived safety may result in
breaches of physical safety protocols. Achieving stress-free and comfortable human-robot
interaction is a multifaceted issue, influenced by factors such as adherence to spatial
distancing [47, 2], execution of natural movements [10], and avoidance of frightening hu-

mans [12]. In the HUMAP, several cost functions assessing the perceived safety among
humans were adapted from SRPB (Sec. 4.4).

Time To Collision costs The "Fcfun!,. spatiotemporal cost function penalises tra-
jectories that lead to a collision with dynamic agents within the planning horizon, ¢,..
It is typically associated with the group of physical safety requirements of social robot
navigation (Sec. 2.2). The cost function relies on the TTC concept [45, 46, 35], and its cal-
culation method is illustrated in Alg. 7. It exploits the motion prediction of environment

objects against the subsequent entries in the investigated trajectory.

Heading straight into a human The concept of motion legibility [23] explores the
movement patterns that aim to increase the intent expressiveness. Unfocused human-
robot interactions often require passing each other, e.g., in narrow passages. Therefore,
the robot should signal its intention early to avoid a collision. In SRPB, the mg;, metric
allows assessing whether the robot moves straight into a human, including the uncertainty
of the human pose estimation (Sec. 4.4.3); therefore, implements a practical motion legib-
ility measure. A cost function that utilises the analogous scheme, “fcfun? , is developed

in the HUMAP. It employs the normalised value of the my, metric to evaluate a traject-
ory (Alg. 8).

Personal spaces intrusion The personal space concept originates from the proxemics
theory [47] and stands for a fundamental idea in social robotics. The personal space

intrusion metric, m_, assessing the scale of robot intrusions into any human’s personal

psi’
space [12], was proposed in SRPB. The variances modelling a personal space along front,

side, and rear directions are calculated based on a human velocity, according to the rules
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Algorithm 7 Computing the value of the Time-To-Collision cost function, ™% ctuny,,, for

a trajectory "traj™ generated for the robot r at time ¢"

1: function “cfun,, (traj)

2: Esm — F > Save initial env. sparse representation
3: for each p*™ € traj do > Rewind predicted states
4: > Compute the shortest dist. vector between the r

5: > and any object from the environment at time 5™

6: Eqsm  cLOSESTDISTANCE (pSim, ESim)

7 if ||"d|| < dy,, then > Dist. below threshold
8: R > Time proceeded forward
9: > The rational function represents an increasing

10: > pred. uncertainty for the longer pred. horizon

11: return (¢, /t..)

12: end if

13: > Prepare prediction of the env. sparse representation

14: Eeimtl PREDICT(ESim)

15: end for

16: return 0

17: end function
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Algorithm 8 Computing the value of the "fcfun’ cost function for a trajectory "traj”

generated for the robot r at time t"

1: function "Hcfuny, ("traj)

e e e e e T = T

17:
18:

> Container with discomfort values of each human throughout the planning horizon
Hdir — 0

> Retrieve predicted human trajectories with pose covariances (thus™ accent)

Ht?z;j — GETPREDTRAJS(H)

for each ht?a/j € Ht}gj do > Iterate over predicted human trajectories

for sim < n to n + ¢,,, do > Iterate over IDs of planning horizon timestamps

> Retrieve poses (with a covariance) and a velocity at a given step
hpsim Py UNPACK("'traj, sim)

rptm TSim  UNPACK("traj, sim)

> Calculate the value of the indicator

"7 dir"™ — DISCOMFORTDIR("psi™ P3isim P hop,  rpsim mepsim)
> Calculate the value of the normalisation factor

"7 dir$im «— NORMALISATIONDIR("p*™, "d, ., "p*™,"d

T,U )
nrm cry) max "~ lin

APPEND (Hdir, ::311;:;1) > Extend the list with normalised discomfort values
end for o
end for
return Max("dir) > Return the maximum discomfort value

19: end function
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r,H n

cfunpg,

proposed in [399]. The corresponding cost function, exploits the normalised

value of the metric and calculates the rating of a trajectory as in Alg. 9.

Algorithm 9 Computing the value of the "fcfun”,; cost function for a trajectory "traj”

psi
generated for the robot r at time ¢"

1: function T’Hcfunpsi(’"traj)

2: > Container with discomfort values of each human throughout the planning horizon

3: Hpsi — 0

4: > Retrieve predicted human trajectories with pose covariances (thus™ accent)

5: Ht}zj «— GETPREDTRAJS(H)

6: for each ht/rgj € Htgj do > Iterate over predicted human trajectories
T for sim «<— n ton + ¢, do > Iterate over IDs of planning horizon timestamps
8: > Retrieve poses (with a covariance) and a velocity at a given step

9: hpsim Fypsim hsim UNPACK(ht?E;j, sim)
10: "pS™ «— UNPACK("traj, sim)
11: > Calculate the value of the indicator
12: "TpsiFim «— DISCOMFORTPsI("pim, M 3sim hosim 7 psim)

13: > Calculate the value of the normalisation factor
14: rpsiSim < NORMALISATIONPSI("p¥im, "psim)

15: APPEND (Hpsi, ::5:11::: ) > Extend the list with normalised discomfort values
16: end for o

17: end for

18: return MAX (“psi) > Return the maximum discomfort value

19: end function

F-formations’ O-spaces intrusion The spatial patterns of human F-formations were
examined in [75], where certain areas of human group arrangements were specified, with
O-spaces being one of them. The O-spaces are areas reserved for the participants of
a focused interaction, so a robot interacting in an unfocused way ought not to cross the
O-spaces. In the SRPB, we proposed the mg; metric that intends to penalise a robot for
traversing through O-spaces. The HUMAP implements the "®cfunf; cost function that
aims to replicate the behaviour of mg; metric but for the online trajectory planning. The
employed approach is described in Alg. 10. Notably, the weight of the cost function might

be zeroed out, once the global goal is detected to be located within an O-space.

Passing speed Maintaining appropriate robot speeds when passing humans is also

of substantial importance in unfocused interactions (Sec. 2.3.3). The recent user study
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Algorithm 10 Computing the value of the "®cfun; cost function for a trajectory "traj”

generated for the robot r at time t"

1: function "Ccfung("traj)

e e e e e T = T

17:
18:

> Container with discomfort values of each F-formation throughout the planning horizon
Cfsi — ()

> Retrieve predicted F-formation trajectories with supplementary data (thus™ accent)
“traj « GETPREDTRAJIS(G)

for each gt/r\a/j € Gt;'gj do > Iterate over predicted F-formation trajectories

for sim < n to n + ¢,,, do > Iterate over IDs of planning horizon timestamps

> Retrieve poses (with a covariance) and F-formation data at a given step
gpim Ixsim ggsim 9 gsim UNPACK("traj, sim)

"p¥™ « UNPACK("traj, sim)

> Calculate the value of the indicator

ITfsi™ — DISCOMFORTESI(9p™™, 9335 Id5™ Id3m "psim)

> Calculate the value of the normalisation factor

ITfsiSim  NORMALISATIONFSI(Yp™, "psim)

nrm

APPEND (Gfsi, 5:5::;:;}) > Extend the list with normalised discomfort values
end for
end for
return MAX (®fsi) > Return the maximum discomfort value

19: end function
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presented in [72] examines the effect of robot speed on comfortable human passing dis-
tances. Their discrete findings were approximated!” with a bicubic spline with fourth-order
continuity along both the speed and distance dimensions (Fig. 5.17)"® and added (as m,)
to the set of metrics!® evaluated by SRPB.

The normalised value of the metric evaluating human discomfort induced by the ro-
bot’s passing speed and distance is used in the T’Hcfungsd spatiotemporal cost function to
penalise the robot for not adhering to the least obtrusive passing speeds. The employed

approach is described in Alg. 11.

Algorithm 11 Computing the value of the T’Hcfungsd cost function for a trajectory "traj"

generated for the robot r at time ¢"

1: function 7"’IHIcfunpsd(’"traj)

2: > Container with discomfort values of each human throughout the planning horizon
3. Hpsd — 0
4: > Retrieve predicted human trajectories
5. Mtraj « GETPREDTRAJS(H)
6: for each "traj € “traj do > Tterate over predicted human trajectories
7 for sim < n to n + ¢,,, do > Iterate over IDs of planning horizon timestamps
8: > Retrieve poses and a velocity at a given step
9: hp¥m « UNPACK("traj, sim)
10: Tptm TpSim  UNPACK("traj, sim)
11: > Calculate the value of the indicator
12: T psi®i™ «— DISCOMFORTPSD("pim | "psim mysim)
13: > Calculate the value of the normalisation factor
14: Prpsifim « NORMALISATIONPSD(hps™ Tpsim "q | -y )
15: APPEND (Hpsd, %) > Extend the list with normalised discomfort values
16: end for o
17: end for
18: return MAX("psd) > Return the maximum discomfort value

19: end function

"https://github.com/rayvburn/social_nav_utils
18The Matlab’s cubic spline interpolation method was used: https://www.mathworks.com/help/

curvefit/csapi.html
19Gince the initial release, the software package with SRPB has been developed in terms of metrics

supported and user tools.
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Comfort [unit]

0.5 1
Speed [m/s] 0 o Distance [m]

Figure 5.17: A visualisation of the function approximating human discomfort based on

the robot’s speed and the distance between the robot and a human.

5.8 Summary

In this chapter, HUMAP — the system that solves the problem of receding horizon tra-
jectory planning for holonomic and differential drive robots operating in unstructured
environments has been presented. The HUMAP is a geometric planner, whose objective
function regards navigation requirements from both classical and human-aware perspect-
1ves.

Although the functioning of the HUMAP’s trajectory planning scheme involves mul-
tiple behaviours orchestrated with the FSM, the typical operational behaviour, designated
for unfocused human-robot interactions, employs a hybrid approach of generating kino-
dynamically feasible trajectory candidates and scoring them with spatiotemporal cost
functions evaluating the robot performance, robot motion naturalness and human dis-
comfort.

The first trajectory generation method relies on the SFM-based pedestrian motion
model [1], which allows for incorporating realistic collision avoidance, as its parameter
values were calibrated on the basis of real-world data. The employed baseline model’s
formulation was extended with the Fuzzy Inference System (FIS) component that em-
phasises anticipative collision-avoidance actions while reproducing customary pedestrian
motion rule of passing on the right (Req. 2.4.4). Since the employed pedestrian motion
model is formulated deterministically, multiple trajectory candidates are produced from

the model by supplying it with various parameter sets. The spread of each parameter
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value is determined based on their uncertainties assessed during the calibration process
[25].

The second trajectory generation approach is well-established and samples the set
of feasible velocities to produce uniformly curved trajectories [22]. While the velocity
sampling generator covers a discretised space of admissible controls, the model-based
generator creates concentrated trajectories that avoid collisions and follow the local goal
located along the global path. The procedure of producing model-based trajectories as well
as candidates generated with the velocity sampling method is explained using pseudocodes
(Alg. 4 and 5).

In the HUMAP’s planning scheme, all trajectory candidates obtained from two gen-
erators are quantitatively assessed. The cost functions employed for the evaluation of
trajectories regard various aspects of robot navigation — from task execution perform-
ance, through the robot’s motion naturalness, to the humans’ physical and perceived
safety. Scoring of the human awareness of the robot trajectories is performed using study-
based indicators of human discomfort relevant for social robot navigation discussed in
Chapter 4.

The planner is context-aware and numerous predicates are used to orchestrate the
multi-behaviour operation of its Finite State Machine. In each calculation step, the ana-
lysis of the environment state is performed to compute the predicate values, that directly
influence the state in which the planner operates. An example of environmental context
awareness is adjusting the robot’s behaviour once a human is expected to cross the ro-
bot’s planned path. Another case is detecting the inability to plan the global path, which
might be caused by the sudden free space occlusion as well as an outdated environment
model. In such a situation, the HUMAP undertakes special actions to obtain updated
observations of the robot’s surroundings. Additionally, due to the planner’s awareness
of interpersonal contexts, the weight of the cost function penalising the intrusions into
O-spaces of F-formations is dynamically changed once the global goal is detected to be
placed within the bounds of an O-space.

The proposed planner fulfils numerous requirements from the taxonomy discussed in
Sec. 2.1. The navigation performance necessities are explicitly included in the problem
formulation (5.6), including collision avoidance (Req. 1.1), generating feasible trajector-
ies (considering kinodynamic constraints, Req. 1.2), and capability to reach goal poses
(Req. 1.3). Additionally, the objective function takes into account requirements related
to the social perspective of navigation, e.g., the physical safety of humans (Req. 2.1 real-
ised by the TTC cost function), and perceived safety of humans, which include: avoid-
ing personal space intrusions (Req. 2.2.1), avoiding crossing O-spaces of F-formations

(Req. 2.2.2), modulating speed when passing humans (Req. 2.2.3), and the avoidance
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of heading straight into humans (Req. 2.2.4, motion legibility). Moreover, the robot’s
motion naturalness concepts included in the objective function are the smoothness of the
robot’s velocity profile (Req. 2.3.1.1) and the avoidance of oscillating (Req. 2.3.1.2)
and backward (Req. 2.3.1.4) motions. Notably, a social convention is also implemented
on the behavioural level of the planner (orchestrated by the F'SM), namely, yielding a way
to a human is performed once an individual crosses the robot’s path (Req. 2.4.5). To the
best of our knowledge, the HUMAP planner covers social robot navigation requirements
the most extensively amid the state-of-the-art frameworks.

The collision-free motions of the HUMAP are guaranteed by the "#cfun,,,  cost func-
tion, as it rejects candidate trajectories leading to the collisions according to the dense
environment model. This property applies to the operation in static environments even if
only partial observability of an environment is provided, but requires the full observability
of the environment in the local context. The algorithm can generate collision-free motions
as long as it is aware of all obstacles in its proximity; therefore, possessing an accurate en-
vironment model is crucial. Although there are no guarantees regarding the completeness
of the algorithm, as it uses gradient-based cost functions for scoring movements towards
the global goal (Sec. 5.7.1 and Fig. 5.16), the planner obtained the highest robustness

rates in diverse test scenarios described in Sec. 7.4.

152



Chapter 6
Implementation

The implementation of a robot control system is crucial for the preparation of this thesis,
as it enables the execution of experiments and the evaluation of the effectiveness of various
motion planning algorithms. The goal was to create a flexible and modular system to eas-
ily exchange system components for testing different methods and effectively comparing
their results. Since the comparison of various strategies was meant to be conducted in both
simulated and real-world environments, additional constraints were taken into considera-
tion when designing the system. This chapter focuses on describing the implementation

of the robot control system, which served as the platform for experiments.

6.1 System structure

The implementation concepts primarily regard the structure of the system, as the beha-
vioural aspects are related to a specific planner configuration selected for the operation,
which is instantiated during the system startup. The only task that the described system
must be capable of is navigation, but it can be extended to accomplish complex tasks
relying on navigation.

The basic organisation of the system structure is presented in Fig. 6.1, which illustrates
components arranged into three main groups: Robot Hardware Platform, Perception, and

Motion Planning.

Robot Hardware Platform The Robot Hardware Platform group is related to the
direct management of robot onboard resources that observe the robot’s state and the
environment, and act on it. Namely, the Mobile Base Controller concerns the low-level
motion control that is executed by the robot hardware controllers (usually PID). In con-
trast, Sensor Drivers perform communication with the robot sensors to obtain the most

recent readings, convert them into a unified format for a certain sensor type, and send the
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Figure 6.1: General block diagram of the robot control system. Inputs to the system
are marked with colour, whereas communication channels between functional blocks are

indicated with dashed lines.

prepared messages to the rest of the system. The produced exteroreceptors data (readings
from sensors observing the environment [31]) is specific to a robot and in the implemen-
ted system consists of the LiDAR and RGB-D camera data. In contrast, the odometry
data constitutes the result of a dead reckoning procedure according to the proprioceptors

(sensors assessing the robot’s state without observing the environment).

Perception Another organisational group of the system is Perception, which aggreg-
ates Robot State Estimator, Sparse Environment Model Creator, and Dense Environment
Model Creator. Specifically, the Robot State Estimator is related to the global and local
pose estimation — performs data fusion for obtaining accurate localisation estimates fre-
quently. Separate coordinate systems (local and global) were distinguished for localisation
(and also motion planning) according to [255]. Typically, the origin of the global coordin-
ate system is set to the centre of the static map of the environment, whereas the origin
of the local coordinate system is located at the pose of the robot at the control system’s
startup. Therefore, the system input, Initial Pose Estimate, defines the accurate homo-

genous transformation between the origins of the local and global coordinate systems,
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which facilitates reliable operation from the beginning of the scenario execution.
Another functional block within the Perception group is the Sparse Environment Model
Creator, which uses exteroreceptors data to extract features from the robot environment
in order to prepare a sparse environment representation. In the described system, the
sparse environment model contains, e.g., human and F-formation data; hence, this block
involves human detection and tracking modules (Sec. 6.7). The internal block diagram
that is applicable for operation with most investigated trajectory planners (Sec. 6.4) is
schematically presented in Fig. 6.2, while its modified representation, shown in Fig. 6.3,
is used by TEB-based trajectory planners and HUMAP. Namely, the extended version
contains the Costmap Converter, which processes a local costmap' to obtain environment
obstacles in a segmented form, i.e., sparse representation of robot obstacles identified as
geometric primitives. The data aggregated by the sparse environment model is shown in
the output ports in Fig. 6.2 and 6.3. Moreover, the robot state is used by the Human
Detection and Tracking as a reference (e.g., pose) when calculating the humans and F-

formations information.

Sparse Environment
Model Creator

exteroreceptors

o adlid --humans data. ... .. >
data | Human detection _en\?if(?r:?:ent—o
and trackin
robot state 9 - .F-formations data - - »| model

N J

Figure 6.2: Schematic representation of the internal block diagram of the Sparse Enuvir-

onment Model Creator applicable for most trajectory planners.

The last functional block from the Perception group is Dense Enuvironment Model
Creator, which aims to create metric maps of the environment. Firstly, the Static Map of
the environment, which serves as a system input, is used to create a global environment
representation (in the form of an occupancy grid), and real-time exteroreceptors data are
used to mark obstacles in a resultant occupancy grid (new obstacles might be added,
but obstacles from the Static Map cannot be cleared). Similarly, the exteroreceptors data
is also used to update a local occupancy grid, which is developed only from the sensor
observations (without the Static Map). The occupancy grids are then transformed into

costmaps, which might also include information encoded in the sparse environment model

! The general block diagram (Fig. 6.1) does not contain a communication channel between the Dense
Environment Model Creator and Sparse Environment Model Creator, while in the Fig. 6.3 a port expecting
a local costmap (generated by the Dense Environment Model Creator) appears. This is intentionally

presented in this manner to enhance the clarity of the main diagram.
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Figure 6.3: Schematic representation of the internal block diagram of the Sparse Enuvir-

onment Model Creator applicable for TEB-based and HUMAP trajectory planners.

(explained in detail in Sec. 6.3). For brevity, it is assumed that both the global costmap
and local costmap contain the robot’s state in the form of a current pose (expressed in
the coordinate system relevant to the planner) and the velocity expressed in the mobile

base frame.

Motion Planning The third group included in the system structure is Motion Plan-
ning, which utilises environment models developed by the Perception modules to plan
a robot action in the form of a velocity command. The group consists of the Global Path
Planner and Local Trajectory Planner. The Global Path Planner computes a global path
according to the current robot state and the Navigation Goal, which is the system input
represented by a pose. The calculated global path is passed to the Local Trajectory Plan-
ner, which solves the problem of receding horizon trajectory planning — computes the
entire trajectory for a given horizon, but only the first velocity command is applied.

For brevity, it is assumed that traditional local trajectory planners do not make use of
the communication channel providing sparse environment model, which contains humans

data and F-formations data.

Adapter components The system was designed with a focus on compatibility with
various motion planning algorithms, leading to a structure that includes additional ele-
ments utilised only in specific launch configurations (with certain trajectory planners).
These variations in the system’s structure are primarily driven by the utilisation of
learning-based algorithms, which are usually implemented using dedicated libraries and
frameworks; hence, their usage with typical robotic frameworks requires the development
of additional interfaces.

Notably, some planners that have been integrated with the system (Sec. 6.4) require

specialised representation of data; hence, adapter components need to be implemented.
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However, those were not shown in the schematic block diagram (Fig. 6.1), as they often
rely on converting, e.g., a LiDAR scan to the form that has smaller resolution compared to
the robot’s sensor (employed with the RG’s DRL trajectory planner), or merging Point
Clouds representing obstacles detected by LiDAR and RGB-D camera. All additional
system components developed according to the adapter design pattern are published as

open-source software.

6.2 System implementation tools

The implementation of the proposed system exploits the Robot Operating System (ROS)
— version 1 [180]%, which is the most popular robotic framework nowadays. ROS, being
a framework, provides a collection of libraries and development tools for building robotic
systems, as well as ready-to-use algorithms in a modular form. ROS facilitates integrating
robotic systems, as it offers a distributed computing environment, allowing nodes (basic
organisational entities of ROS systems) to communicate with each other over a network.
Furthermore, the integrated visualisation tool, Rviz aids in testing and debugging complex
systems by providing an interactive 3D environment representing the robot’s perception.
ROS contributed to the extensive usage of component-based systems in robotics, since
its modular architecture enables the seamless integration of sensors or algorithms and
using different implementations interchangeably. Additionally, ROS advocates community
collaboration due to its open-source nature.

In the implemented system, each functional block presented (Fig. 6.1) is realised by
one or multiple ROS nodes. Moreover, the development of the navigation system for the
experiments described in Chapter 7 led to the implementation of numerous open-source
packages for ROS that are utilised by the robot launch system.

The ROS is closely integrated with numerous high-fidelity simulators (Sec. 3.3.3), but
the Gazebo (Classic version) was selected as the main simulation platform for testing
and experiments. The main reason is that the manufacturer of the robot, which has been
extensively used during experiments, integrated a well-developed simulation model with
Gazebo. The flexible architecture of the selected simulator also allowed for integrating
the human behaviour control framework (discussed in Sec. 6.8), which facilitated the
conducting of simulation experiments.

The paramount feature of ROS is the launch tool that allows automating the system

instantiation (“bringup”) with different configurations of parameters or algorithms used.

2R0OS1 was selected instead of ROS2 since the target robot for experiments has factory-installed
ROS1 Melodic. Hence, the usage of ROS2 would require a significant amount of additional integration

work when porting the system from simulation to real hardware.
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Its nesting characteristic (ability to include other launch files in the main launch file)
has been widely used for developing our system, which is intended to be started in various

configurations.

6.3 Navigation ecosystem

The control system developed for the studies integrates the ROS1 navigation system,
whose structure consists of a global and a local [147, 12, 170] planners. In ROS, the nav-
igation system is implemented as a monolithic structure with the orchestrating move_base
node that aggregates configurable planners. The reference system was designed with the
idea of modularity; hence, allows developing customised planning components and load-
ing them as plugins in the system runtime. The usage of ROS navigation facilitated the
implementation of our system, whose primary goal is the ability to be launched in vari-
ous configurations, i.e., with different global path planners, local trajectory planners, or
costmap layers.

Namely, the navigation system integrates path and trajectory planners with multilayer
global and local costmaps [170] that take into account real-time obstacle detection, and ro-
bot size (gradient cost around obstacles). Human proxemics, modelled as spatial costs [47],
can also be embedded in costmaps. Additionally, the global costmap includes a prepre-
pared static map of the environment [147].

In all experiments with the explained setup (Sec. 7), the wavefront Dijkstra’s al-
gorithm® has been used as the robot’s global path planner (operating at 2 Hz). Only
trajectory planners were swapped, utilising public ROS-interfaced implementations of
the examined algorithms. Moreover, in all experimental scenarios, the robot operated
with the same preprepared map.? Nevertheless, environment obstacles were detected in
real-time by the robot sensors and added to the costmaps (of global and local planners),
making the robot resistant to the changes not captured in the map. For the global pose
estimation, the AMCL? [417] algorithm was used.

The move_base node detects in real-time whether the global path planner and local
trajectory planner find solutions to the problem at the current state of the robot in the
environment. To increase the robustness of the navigation ecosystem, the orchestrator
investigates whether the timeouts for finding the solutions have been exceeded. Namely,

once the timeout expires, the space-clearing operations on costmaps are performed, so

3https://wiki.ros.org/navfn
4 The layout of the laboratory equipment had changed between the first (Sec. 7.3) and the second

phase of the experiments (Sec. 7.4); therefore, the static map had to be adjusted. The same map was

used in the corresponding real-world and simulation scenarios.
Shttps://wiki.ros.org/amcl
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any persisting outdated environment observations do not influence the planning process.
If a valid solution is not found during the next planning iteration, the navigation task
is aborted. The same scheme applies to both global path planner and local trajectory
planner, but their timeouts are different, namely — 0.5 s and 3.0 s, respectively. Addi-
tionally, an oscillation timeout is defined as 10 s; hence, if the robot does not perform
any significant progressive or rotational movements, the navigation task might also be
aborted.

6.4 Planners integration

The comprehensive conduction of comparative experiments of the proposed HUMAP
with the state-of-the-art trajectory planners requires integrating numerous approaches
with the robot control system. While the structure of the proposed system is planner-
dependent (Sec. 6.1), most ROS-based planners, acting as direct plugins for the ROS
navigation system, can operate without additional components such as adapters or con-
verters. However, learning-based planners usually need to be tailored for a specific robot,
e.g., when transferring the policy learned with a different one. Therefore, the system in-
stantiation procedure accounts for certain planner-specific adjustments that have to be
performed with some planner implementations to prepare them for integration with the
rest of the system.

Research algorithms are often adapted for a specific mobile base; therefore, their para-
meterisation is often required at the first stage to ensure valid operation with other ro-
bots. Those parameters are related to the kinematic or kinodynamic constraints of the
mobile base, but also to the interfaces with the remaining part of the system. Most of
the implementations of examined algorithms underwent minor changes regarding build
or execution issues, as some packages (or their dependencies) were incompatible with
the desired operating system or ROS distribution (ROS Melodic used). Nevertheless, no
functional changes were applied to the algorithms to degrade or enhance their navigation
performance.

The testbed system was integrated with several learning-based approaches. Such plan-
ners nominally operate outside of ROS, using popular frameworks such as Stable Baselines
(RG’s DRL and DRL-VO), TensorFlow (GA3C-CADRL), and specialised simulation en-
vironments like CrowdNav (SARL and SARL*). Nevertheless, all planners selected for
integration with our system had ROS interfaces implemented.

The RL-based methods are claimed to be prone to the lack of generalisation to dif-
ferent environments [418]. Not all implementations of the RL planners were prepared by

the authors to be fine-tuned for adapting the algorithm to new environments. On the
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other hand, training algorithms from scratch is impractical and easily undermined by
factors such as insufficient training duration or training on inadequately fast hardware, as
the authors do not always explicitly declare the training time and setup. Therefore, the
overarching goal was to use policies provided by the algorithms’ designers to prevent the
influence of underfitting or overfitting of the algorithms. Due to the specificities of the
mobile bases on which the methods were trained, to use the original policies with another
robot, it was necessary, for example, to adjust sensor characteristics (e.g., resolution of the
LiDAR data), correct robot dimensions, or adapt kinematic constraints (all algorithms).
Additionally, for the planners using LiDAR data to describe the environment, the 2.5D
representation of the world was prepared, i.e., the scans from the robot’s LiDAR and
RGB-D camera were projected onto the base plane to provide a comprehensive under-
standing of nearby obstacles. However, the conducted experiments are easily reproducible
as the modified implementations are publicly available.®

The learning-based navigation approaches are usually developed using different librar-
ies and interfaced with ROS in isolation from the standard, plugin-based navigation frame-
work. Therefore, the external local_planner’ trajectory planning plugin was developed
for easier interfacing with externally-operating approaches. The plugin is configurable in
terms of providing a local goal (located along the globally planned path) or enabling
the “in-place rotation” behaviour once the robot reaches the goal position. Delivering
local goals facilitates the navigation with planners, like SARL*, that expect a periodic-
ally provided local goal, as they do not rely on the global path explicitly. Moreover, the
“in-place rotation” behaviour (preceded by the nominal behaviour of moving towards the
target) allows the robot to reach the goal pose operating with algorithms that only invest-
igate the goal position, disregarding the orientation, which applies to most learning-based
approaches. Therefore, this extension enables objectively comparing the overall navigation

performance of all algorithms integrated with the target robot.

6.5 Environment models used by trajectory planners

As human proxemics [47] can be modelled as soft, spatial constraints around detected in-
dividuals in costmaps, the specialised environment models have been prepared to be used
by all planners. Specifically, layered costmap architecture enables tracked humans to be

embedded as bivariate Gaussians into the costmaps representing the robot’s human-aware

6 The source code for the GA3C-CADRL planner is available at https://github.com/rayvburn/
cadrl_ros, for SARL and SARL* at https://github.com/rayvburn/sarl_star, for RG’s DRL
at https://github.com/rayvburn/drl_local_planner_ros_stable_baselines, and for DRL-VO at

https://github.com/rayvburn/drl_vo_nav.
"https://github.com/rayvburn/external_local_planner
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environment model used for planning [84].% Additionally, the reference ROS implement-
ation package has been modified and extended.?” The substantial contribution is that the
expanded package accounts for the human tracking uncertainty and introduces a new
F-formation layer.

The consequence of utilising extended environment representation (with, e.g., spatial
costs reflecting proxemics) is that the global path planner and both classical and human-
aware local trajectory planners use the environment model that captures personal spaces
and O-spaces of F-formations embedded as spatial costs in the costmaps [71]. Such system
configuration enables effective evaluation of the trajectory planners’ isolating the actual
planning scheme from the underlying environment model.

However, among the evaluated navigation approaches, there are RL-based trajectory
planners that do not make a (full) use of costmap extensions. For example, RG’s DRL
does not employ either a map or global path planning, similar to GA3C-CADRL, which
uses a fully sparse environment model. In contrast, SARL and SARL* make use of the
global costmap extensions, but only SARL* relies on a globally planned path (implicitly,
as it expects poses of subsequent local goals). On the other hand, DRL-VO navigates
using a context-aware global path plan, but the policy calculation is supported by a mere
occupancy grid.

Notably, we aimed to use the same SRL-EBand planner configuration as originally
evaluated in [240]. Therefore, to avoid interfering with the integration of the global path
planner and SRL-EBand planner, this method operated with the different global costmap

configuration (proposed in the referenced work) compared to other trajectory planners.

6.6 Managing different system configurations

The proposed robot control system is prepared for being instantiated in different con-
figurations, which is achieved by the usage of the ROS launch tool and a proper file

organisation.

Simulation and real-world setup The robot control system has been prepared to
switch from the simulation environment to the real-world environment without any source
code modifications. The reason behind this decision is that the analogous scenarios for
experiments conducted for this thesis aimed to be performed in simulation and real-world
environments,

Therefore, the component-based system has been “virtually” divided into parts that

Shttps://wiki.ros.org/social_navigation_layers
Yhttps://github.com/rayvburn/navigation_layers
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operate in unchanged form both in the simulation and in the real world, as well as into
simulation-specific and real-world-specific components. Naturally, the source code for the
ROS-based navigation launch system (tailored for the TIAGo robot but easily general-
isable to other platforms) has also been divided into parts. Namely, the common part

0 and

constituting the configuration and interfaces for motion planning and perception,*
domain-specific extensions: sim for starting the simulated environments with a virtual
robot!'! and real for preparing and launching components on the real hardware!?. Once
the sim and real parts of the control systems are properly integrated with the rest of the
system instantiated on the basis of the common part, the system does not require any

source code changes when launched in sim or real configuration.

Parameterisation of launched components The configuration of the system that
needs to be instantiated is dictated by the various arguments selected by the user (or
a script). Namely, the highest level arguments, e.g., which local planner (local planner)
and global planner (global planner) to use, or which costmap configuration should be
applied (costmap_contexts), are specific to the evaluated case; hence, must be externally
provided to the main launch file. Those crucial arguments are further injected into the
nested parts of the main launch file, so the final structure of the instantiated system is

resolved in runtime (Fig. 6.4).

local planner Main File system
navigation system fle sy
launch file
Planning components ¥
<arg_name>

<arg name>:=<value> —)I: launch file
Planner-specific configuration parameter file

ﬁ local_planner :II
load Planner-specific components "1aunch" file
User or script 4>|:‘:| <arg name> <|‘::‘,>

& algorithms/local_planner_ humap.launch

local planner:=humap

load |\

12 config/humap/local_planner.yaml

Figure 6.4: Procedure of external argument injection into the hierarchical launch setup
using the HUMAP trajectory planner as example. Note that <arg name> represents any
argument and Navigation components launch file provides that all ROS nodes required

for a given navigation system setup are started.

The main launch file of the navigation system launches the perception and motion

planning components. As some software components might require special interfaces (ad-

Onttps://github. com/rayvburn/tiago_social_robot
Uhttps://github.com/rayvburn/tiago_social_robot_sim
2https://github.com/rayvburn/tiago_social_robot_real
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ditional adapting components) and different parameters, performing some adjustments,
or even optional activities during the system instantiation must be available. Therefore,
the mechanism allowing such behaviour is that the planning-related launch file includes
another abstract launch file, with the name conforming to the local planner argument
value. Similarly, the planning components’ launch prepares the path to the trajectory
planner parameters file, filling up the predefined naming pattern with the local planner
argument value. For example: launching the system with local_planner:=humap addi-
tionally runs a nested algorithms/local _planner humap.launch, in which some activ-
ities of system components can be started on demand, and loads the trajectory planner
parameters that are located at config/humap/local _planner.yaml. Provided the relev-
ant package files are systematically organised, the instantiation procedure will select the
required files and launch the system in the desired form.

The simple rule to adhere to is to structure the source code of the system, so both
the launch and trajectory planning parameter files are separated between individual al-
gorithms. Nonetheless, parameterisation of the local trajectory planner that is intended
to be started within the system is only an example, as similarly, costmap configurations
(enabled layers [170]), initial pose estimates in different scenarios, and other parameters
are organised in the source code according to a specific naming pattern. The appropriate
file selection is resolved at runtime, ensuring adaptability to the requirements of differ-
ent planners. The feature of launching additional interfacing components is also widely
used in learning-based planning approaches that require, e.g., sensor data conversion or
transforming human information to a different format. Default values of arguments are
provided to disallow starting a malfunctioning system.

Overall, the fundamental aspect of the system usage (and extension) is the adherence
to the file naming convention according to the expected argument names. The system
prepared according to these rules is easily extendable and can be integrated with more

algorithms for trajectory planning, global path planning, or human tracking.

6.7 Human detection and tracking

Detecting and tracking humans in the robot environment is one of the fundamental re-
quirements of a socially navigating robot. Namely, the SPENCER human perception
stack!® was employed in the proposed system as the Human Detection and Tracking func-
tional block. It provides information about human poses along with estimation uncer-
tainties represented by covariances of Gaussian distributions, as well as human velocities.

Moreover, human relations are also estimated, and on this basis, F-formation membership

3https://github.com/spencer-project/spencer_people_tracking
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data are assigned to each human.

The SPENCER human perception stack is capable of utilising multimodal sensor
data [149]. The usage of only LiDAR-based human detections was tested and the results
were often false positives. Therefore, detection modules were configured to primarily use
RGB-D vision data supported by LiDAR-based detections once the tracked human is
no longer visible to the camera. In all experiments, human tracking was performed by
the robot’s onboard sensors. Employing ground truth human poses in simulation was not
an option, since the results from simulation experiments were intended to be directly
compared with those from real-world tests (Sec. 7.2).

To facilitate the usage of the SPENCER detections with software packages relying on
ROS’ standardised people msgs'® (applies to several integrated trajectory planning meth-
ods), the component aggregating current detections into the SPENCER-specific format
has been extended.!> Namely, for broader compatibility, the original messages are conver-
ted to the standardised ROS people msgs. Then, messages in such a form are processed
with the usage of libraries from the people msgs_utils,'® package, as at the stage of
developing people_msgs messages some additional information is encoded in a serialised

form.

6.8 Simulating human behaviour

Conducting social robotics experiments in simulation assists the development of robot
control systems considerably. For this purpose, the Gazebo simulation platform, which
is closely integrated with ROS, has been used throughout the development stage but
has also been employed for conducting experiments in virtual scenarios. Moreover, for
controlling humans in virtual scenarios the HuBeRo framework!” [377] has been used.

HuBeRo is a framework that simulates human behaviours typical for social robotics
research tasks by providing navigation skills and realistic animation management for simu-
lated human characters (actors). Additionally, given that the simulator provides a realistic
3D model of a person, the framework allows a more detailed examination of robot per-
ception in the simulation. HuBeRo proved to be helpful in conducting various virtual
tests.

The framework is simulator-agnostic, but the Gazebo interface has been developed.

Namely, the Gazebo’s Actor plugin®® is used as the provider of movable human postures.

Ynttp://wiki.ros.org/people_msgs
5https://github.com/rayvburn/spencer_people_tracking
6https://github.com/rayvburn/people_msgs_utils
"https://github.com/rayvburn/hubero
Bhttp://classic.gazebosim.org/tutorials?tut=actor
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However, due to the plugin’s implementation intricacies, the simulated actors are non-
collision but detectable by robot sensors.

In all virtual experiments, HuBeRo-controlled dynamic human agents used online mo-
tion planning modules employing the same path planner as the robot and the TEB tra-
jectory planner (due to the limited computational burden). The actors operated according
to the scenario-specific initial and goal poses via defined waypoints. Their activities are

explained in detail in Chapter 7.

6.9 HUMAP implementation

The proposed planning approach — HUMAP, is implemented in C++ programming lan-
guage as a direct plugin to the ROS1 navigation ecosystem. It is organised in the open-

source software package named humap local planner.'’

Planner’s structure Internal structure of the HUMAP is shown in Fig. 6.5 that illus-
trates which parts of the HUMAP’s planner implementation were developed from scratch,
which were modified, and which are directly inherited from the base local planner
package — an element of the ROS1 navigation ecosystem (Sec. 6.3). The activity of the
base_local _planner:: SimpleScoredSamplingPlanner class, which aggregates traject-
ory generators and cost functions, is described in Alg. 2.

In the HUMAP, the hybrid method for producing trajectory candidates is used. The
velocity sampling trajectory generator is used in an unchanged form implemented as the
base_local_planner::SimpleTrajectoryGenerator, whereas the model-based candid-
ates’ generator is dedicated to the HUMAP. Notably, the original trajectory selection
strategy implemented in the base_local planner::SimpleScoredSamplingPlanner al-
lows the use of multiple trajectory generation methods, but once the primary generator
finds a valid trajectory, candidates from other generators are not considered. Therefore,
the customisation?® had to be implemented and relies on enabling the usage of multiple
generators in an unconditional sequence.

Furthermore, the set of cost functions regarded during the trajectory scoring scheme
has also undergone a substantial extension. Novel cost functions related mainly to the ro-
bot’s human awareness (Sec. 5.7) are applied for scoring trajectory candidates. Moreover,
several cost functions, mainly performance-related (Fig. 5.16), are directly inherited from
the original ROS resources also implemented in the base local planner package.

The enhancements of the ROS navigation ecosystem involve all cost functions assessing

Yhttps://github.com/rayvburn/humap_local_planner
2Onttps://github.com/ros-planning/navigation/pull/1201
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Figure 6.5: A schematic structural representation of the implemented planning framework.
The elements added in the HUMAP are marked green, whereas white blocks indicate
parts inherited from the ROS1 navigation ecosystem. Customised modules are highlighted

yellow, and grey blocks identify type interfaces (ecosystem’s base classes).

the trajectory concerning the humans’ perceived safety, i.e., evaluating the robot’s head-
ing direction, "cfung;,, personal zones and F-formation’s O-spaces intrusions — HcfumpSi
and Gcfunfsi, accordingly, and the discomfort induced to humans by the robot’s passing

speed — Hcfun Furthermore, dedicated cost functions evaluating the robot’s motion

psd-
naturalness are also implemented, particularly, cfun .. — penalising oscillating motions, as
well as cfun, and cfun,,, — penalising velocity changes, linear and angular, accordingly.
Complementary ROS cost function penalises backward motions of the robot, cfun, .
Additionally, the cost function assessing the physical safety of humans constitutes a novel
implementation of the Zcfun,,..

The dedicated trajectory generator along with cost functions are implemented using
the base class interfaces, which is crucial to utilise new modules with the original planning
scheme (implemented in the base_local planner: :SimpleScoredSamplingPlanner) em-

ploying the polymorphism principle of Object-Oriented Programming.

Planner’s behaviours While Fig. 6.5 shows the structural elements of the planning
framework, the high-level behavioural aspects of the trajectory planner are described in

Sec. 5.2.2 and constitute a dedicated implementation utilising finite state machines. The
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orchestration of the HUMAP’s states is implemented in the PlannerState class.

Notably, the robot’s behaviour in the FExecution Initialisation and Orientation Ad-
gustment states relies on the slightly modified version of the base_local planner::
LatchedStopRotateController — modified class has been directly incorporated into the
HUMAP planner’s package.

Parameters Various parameters regarding planning scheme and system configuration
were introduced in the HUMAP. However, embedding all those parameters in this thesis
is impractical;?! therefore, a snapshot of the public repository has been created?? to easily
reproduce the results of the experiments (Chapter 7).

Nonetheless, the crucial parameters influencing the HUMAP’s operation are (in the
order of importance): the cost function weights (Sec. 5.7), number and values of pedes-
trian motion model’s multipliers (Sec. 5.5.7), and number of trajectories generated with
the method of sampling feasible robot velocities (Sec. 5.6). Identified parameters affect
the form of the scoring function and the solution space, whose influence is examined in
Sec. 7.5.1.

Furthermore, the fundamental parameters influencing the computational complexity
of the planner are the number of generated trajectories (all trajectories are scored in each
step; hence, the duration of the scoring stage is affected) and the planning/prediction
horizon (in the experiments, ¢, = 2 s). The reference parameters of the HUMAP have
been selected by experimentally achieving a compromise between the emphasised respect
to social aspects of robot navigation and the task performance, as well as computational
complexity.

Numerous parameters, that are less important or rarely changed, serve to enable or
disable the system modules (useful in the development stage) or are related to the configur-
ation of the planner’s visualisation (for debugging purposes). Additionally, most paramet-
ers are integrated with the ROS dynamic reconfigure tool that enables the capability

to change the parameters in a runtime.

SFM and FIS The trajectory generator that employs the pedestrian motion model

formulated as Fuzzy-Fxtended Social Force Model utilises implementations of the Social

21'The HUMAP exposes approximately a total of 130 parameters to the user (as a comparison — TEB

approximately 160).
22 In the source code (the URL is placed in footmark 19), the dynamically adjustable para-

meters are available in the cfg/HumapPlanner.cfg file, whereas complementary parameters (mainly
a robot’s kinodynamic specification) loaded statically at the system startup, are placed in the
src/humap_config ros.cpp. Relevant documentation regarding planner parameters is prepared in the

repository’s information file.
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Force Model and Fuzzy Inference System. The underlying SFM is implemented as a dedic-
ated C++ library, whereas the FIS part is designed using the fuzzylite C++ library [419]
(version 6.0). Both SFM and FIS are aggregated in the same software package along with

the rest of the source code.

6.10 SRPB implementation

The proposed Social Robot Planner Benchmark (Chapter 4) has been widely used for
conducting the quantitative evaluation of robot performance while executing navigation
tasks for the experiments discussed in this thesis (Chapter 7). The benchmark has been
published as open-source software.

The SRPB’s operational procedure consists of two main stages — online and offline.
During the online stage (Fig. 6.6), the logging modules are instantiated and periodic-
ally update the text files stored in the filesystem. Specifically, in the ROS1 implement-
ation, the logging components are aggregated into the modified move_base node, i.e.,
srpb_move_base,?® which acts as the original navigation orchestrator but also collects
data for further evaluation. The data sampling is performed at the frequency of the local
planning scheme to avoid (possibly) inaccurate interpolation of data (if the logging would

be performed at the rate of the system’s module operating with the highest frequency).

trajectory
SRPB Benchmark Online Logging C)j planning
frequency

pose with covariance

______________________________ Robot
»
velocity command Data f--------- F--- robc;itledata
""""""""""""""" > Logger

A 4

E I__(chs_t_"_“'_’lf’ _____ )[ Obstacle Distance __E

Calculator

. =

. human . humans

:and F-formations —————————————— ________ L---»| data file
' data —————
--------------- People Data Logger F-formations

________ - ;
data file

Figure 6.6: Schematic presentation of the SRPB’s logging scheme.

In Fig. 6.6, the Obstacle Distance Calculator uses bicubic interpolation to calculate the

closest distance between the robot and any obstacle. The calculations are performed using

Zhttps://github.com/rayvburn/srpb_move_base
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costmap, which aggregates sensor observations gathered throughout the scenario progres-
sion. The implementation of this module is inherited from the MRPB benchmark [33].
In contrast, during the offline stage, the standalone programs process the content of
the files updated during the previous stage and compute the metrics. A typical workflow
for obtaining data with the SRPB benchmark from large-scale experiments conducted for
this thesis is presented in Fig. 6.7. The figure shows that 100 trials need to be repeated
in 3 scenarios with a certain system configuration, i.e., with a specific local trajectory
planning method. As stated, data logging is performed during the online stage of the
SRPB’s operation. Then, metric results are computed based on each collected set of
logging artefacts (output files in Fig. 6.6). After that, using the provided SRPB tooling,
the metric results are loaded in a batch and inserted into a new spreadsheet file that
contains both raw metric values as well as filtered ones (medians). The spreadsheet files
are generated to facilitate the diagnostics of the results, as the collected dataset might be
significant. Usually, the metric batch loading is performed on results related to numerous

trajectory planning algorithms.

Launch experiment trial

|
v v v v

SRPB log robot log robot log robot log robot
online and human data and human data and human data and human data
f f 0 f f

stage or scenario N, trial 1 or scenario N, trial 10 or scenario M, trial 1 or scenario P, trial 1
Y Y Y Y
SRPB - - - :
offline calculate metric ’ ‘ calculate metric ’ ‘ calculate metric ’ ‘ calculate metric ’
stage values values values values
~ \ 4 Y Y Y
4 collect raw and collect raw and
collect raw and calculate filtered metric values calculate filtered metric calculate filtered metric
and insert them into a spreadsheet values and insert them values and insert them
S into a spreadsheet into a spreadsheet
SRPB
.4
tooling v i v v
. create bar |[|visualise robot,
create violin lots from human and F-
plots from raw | | . p . V) (B) (T) V) (B) (T)
values (V) filtered values forma'tlon
(B) trajectories (T)
-

Figure 6.7: A typical workflow of the SRPB benchmark usage.

After collecting data in the spreadsheets, results can be used for visualisation pur-
poses. Specifically, the tooling of the srpb_evaluation software package supplies the user
with scripts for creating violin plots, bar plots, or visualising trajectories executed by
a robot, humans or F-formations during experiments. Additionally, XTEX tables can also

be generated using the provided script. All those data representations except trajectory
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visualisation are created on the basis of the spreadsheets’ contents. Typically, separate

spreadsheets are created with data related to different scenarios.
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Chapter 7
Experiments

This thesis proposes study-based metrics for the quantitative evaluation of human-aware
motion planning algorithms, as well as the novel approach for the socially-aware trajectory
planning method. Therefore, numerous experiments have been conducted to assess the
performance of the state-of-the-art approaches focused on traditional navigation against
the methods that are focused on human awareness concepts.

This chapter is divided into two major parts. The first part of the experiments aimed to
determine, whether motion planning for human-aware navigation is still an open problem.
It can be assessed by exploring if state-of-the-art human-aware local trajectory planners
significantly outperform classical algorithms in terms of social metrics (Sec. 7.3). On the
other hand, the second phase of the experiments relies on the multi-scenario comparison of
the performance and social appropriateness of the proposed trajectory planning method —
HUMAP, against various methods — classical and specialised for social robot navigation,
including learning-based approaches (Sec. 7.4).

In both parts of the experiments, the same assessment methodology was implemented
— the controlled studies were designed and conducted to isolate the factors that might
influence the results. The second common aspect of both parts of the conducted experi-
ments is the quantitative evaluation approach, relying on the metrics implemented in the
SRPB. The application of the same method ensures a systematic and independent com-
parison, which is paramount when inspecting state-of-the-art methods against the novel
algorithm. Nevertheless, each phase of the experiments differs in terms of the scenarios
selected for the study.

The metrics embedded into the proposed SRPB benchmark approximate the human
impressions directly on the basis of the examinations published in the literature. Namely,
the proposed metrics implement continuous models that serve as indicators of human
discomfort, conforming to the multiple social robot navigation requirements developed

based on the extensive literature review (Chapter 2). In particular, the metrics assessing
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Table 7.1: Trajectory planners’ parameters that were constant throughout the experi-

ments.

the robot’s motion naturalness (Sec. 2.4) and the impact of the robot’s trajectory on
the perceived safety of humans (Sec. 2.3) are the main indicators in the evaluation of
the social acceptance of a certain algorithm. Taking into account the above premises,
primarily that the SRPB metrics were designed based on results from different studies,
we did not attempt to revalidate the human impressions of interacting with the robot, as
it has already been a broad topic of numerous user studies and surveys, which we take
advantage of.

The majority of results from the first phase of the experiments (Sec. 7.3) have been
included in our previous works [20, 21], while elements of the second phase of the experi-

ments (Sec. 7.4) have been encompassed in the conference paper [24].

7.1 Hardware setup

Real-world experiments were conducted with PAL’s TTIAGo Iron robot, and simulation
results were obtained with the robot’s digital twin provided by PAL. Although the robotic
platform is under constant development by the laboratory team,! during the experiments
only its factory equipment has been used. The main sensors of the robot are: a Sick TIM571
LiDAR (0.05 — 25 m scan range, 180° field of view, 0.33° step angle) and an Orbbec Astra
RGB-D camera (depth stream with a resolution of 640 x 480 pixels and a 0.6 — 8 m depth
sensor range). Parameters related to kinematic and dynamic constraints of the mobile
base, shown in Tab. 7.1, were common for all examined trajectory planners.

The factory control interface of the mobile base is implemented with ROS and follows
the standards, expecting velocity commands to be sent at least each 500 ms. Once the
new command is not obtained in time, the safety layer of the robot control system stops
the mobile base until the new velocity command is received. Therefore, only trajectory
planners capable of real-time operation were suitable for real-world tests.

Since the target robot has factory-installed ROS Melodic, we performed simulated

trials with the same framework version. We have chosen Gazebo (version 9) as the simu-

'https://www.robotyka.ia.pw.edu.pl/
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lation platform due to its integration with ROS. Simulation experiments were performed
on a laptop with an Intel Core i7-4720HQ CPU and 16 GB RAM.

In our experiments, social metrics were computed based on data gathered by the
robot’s onboard sensors during the run to a goal pose. That approach is appropriate
for rapid prototyping and often sufficient to obtain representative results; however, still
prone to poor performance of the limited-range robot sensors, e.g., RGB-D cameras.
Thus, integrating a robot with an external, e.g., vision-based system, can increase the
evaluation robustness, decreasing metric deviations between subsequent trials. We argue
that external systems for human tracking can be used for benchmarking once the robot
control system is integrated with them. Otherwise, planners may be penalised for actions
disregarding surrounding humans that the planners are unaware of. Nevertheless, both
the SRPB benchmark, as well as HUMAP trajectory planner, can be interfaced with any

source of aggregated information about humans surrounding the robot.

7.2 Experiments design methodology

The experiments described in this thesis aim to inspect the state-of-the-art social robot
navigation methods and compare them in different scenarios. The previous approaches
are evaluated against the novel HUMAP planner; hence, selecting a proper experiment
design methodology and applying it systematically ensures that results are accurate and
unbiased, and allows viable comparisons of outcomes obtained in different scenarios.

The experiments described in this chapter were conducted as controlled studies. This
type of assessment has been selected to isolate the factors that might appear during the
experiments and might influence the results. Specifically, in human-aware robot navigation
experiments, the crucial factor is the unintended presence of humans (or other dynamic
agents) who were not supposed to participate in scenarios. Detecting them by the robot
causes unintentional modification of its environment model. While it is straightforward
and easy to achieve in the simulation experiments, it might not always be feasible in
real-world trials. Therefore, the experiments were conducted during off-peak hours and
on weekends.

This chapter discusses the experiments performed in two phases, each differs in terms
of the scenarios selected for the study. In contrast, a common aspect of both parts of
the conducted experiments (after the applied methodology) is the quantitative evaluation
approach, relying on the metrics implemented in the SRPB which were computed based
on data gathered during the real-world and simulation trials. The SRPB’s parameters
used for the evaluation were static and are shown in Tab. 7.2.

Although several tests were conducted to verify the HUMAP’s performance across
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Parameter | "%d_. Y "y "

min x Y osc y Y osc lin Yosc

Value 0.55m | 0.025 = | 0.025 = | 0.025 =

.
Parameter w Prov docp Qex

Value || 0.05 ¢ | 3.3rad | 0.28m | 0.275 m

Table 7.2: Configurable parameters of metrics that were used in the experiments.

its various configurations and scenarios (Sec. 7.5), the majority of results were obtained
from extensive comparisons of different local trajectory planners operating under the same
environmental conditions but in various scenarios. The goal was to design scenarios that
enabled the robot to reach a goal pose operating with each examined trajectory planner,
navigating collision-free from the shared start pose. Thus, we started with evaluating
the capabilities of various planners integrated into the robot’s control strategy while the

robot operated in partially unknown,?

static or dynamic environments. While selecting
the scenario configuration admissible for all trajectory planners was possible during the
first phase of the experiments (Sec. 7.3), it was not viable in the second phase (Sec. 7.4), in
which more planners were tested. This topic is detailed in relevant sections of the chapter.

The test environment for the real-world experiments was a robotics laboratory at
Warsaw University of Technology (Fig. 7.3b, 7.4b, 7.7b, 7.8b, and 7.9b) and it was only
minimally prepared for the study, remaining cluttered, which poses an additional chal-
lenge for the navigating robot. One of the main goals was to compare real results with
outcomes obtained from the simulation; therefore, analogous scenarios have been per-
formed in a virtual equivalent of the environment.?

During the comparative experiments, the environment configuration in the following
trials had to be replicated to evaluate different trajectory planners under the same con-
ditions (fundamental principle of a controlled study). In real-world tests, ensuring that
human participants move similarly in each trial is a challenging task, particularly in dy-
namic scenarios. Hence, to maximise the path similarity, the entire paths (not only the
starting and ending points) of dynamic actors were indicated with a tape glued to the
floor. Additionally, for trajectory similarity, paths were equipped with subsequent pose
markers (Fig. 7.4b, 7.7b, 7.8b, 7.9b) and the participants were asked to finish each step
with a tick of a metronome that was programmed to 60 beats per minute.

Conducting experiments with simulated humans poses another substantial challenge.

The behaviour of virtual dynamic agents, namely their movements, can be scripted or

2“Partially unknown” in this context means that despite the provided map of the environment, some

differences in the operating area might be present, but those were common to all investigated planners.
3https://github.com/rayvburn/tiago_sim_integration
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based on planning. Scripting human trajectories provides that they will behave exactly
the same in each simulation trial. However, experiments rely on testing different trajectory
planning methods, that directly affect where the robot is located in subsequent time
steps. Therefore, when the scripted movements method is applied, virtual humans will
not interact in the same way with a planner that needs 30 seconds to reach the goal, as
the planner that requires 60 seconds. Hence, as stated in Sec. 6.8, virtual dynamic agents
utilise motion planning modules for online replanning, As a consequence, the simulated
humans might not necessarily exactly reproduce their trajectories in subsequent trials, but
rather naturally interact with the environment in an unfocused manner. Human operation
in all scenarios is defined by fixed waypoints in key places (near corners or walls) and such
an approach is still suitable for the controlled studies.

A fundamental necessity of conducting social robot navigation experiments is providing
the robot’s capability to detect humans. As denoted in Sec. 6.7, the robot’s raw sensor
data are used to detect and track people in the environment. This is contrary to a more
common approach of using the perfect data about humans, e.g., [168, 156], that is provided
by a simulator; however, using the same perception methods in the simulation and in the
real-world experiments (where ground truth data are not available) is crucial to allow
direct comparisons of the results obtained in different domains (simulation and real world).

While for real-world experiments only the most reliable planners were designated, the
simulation tests were conducted using various trajectory planning methods that performed
differently in the designed scenarios. A practical assumption of the experiments’ conduc-
tion is that a timeout value of 120 s has been set for the execution of each simulated trial.
Nonetheless, most of the planners that consequently completed the navigation task were

able to finish designed runs within 60 s.

7.3 Evaluation of the state-of-the-art trajectory plan-

ners

The experiments described in this section intend to determine whether state-of-the-art
human-aware trajectory planners perform superior to traditional ones regarding the mit-
igation of discomfort among humans in the robot’s environment. To gather insights on
this topic, different robot navigation methods were validated utilising the proposed SRPB
benchmark (Sec. 4.1) for the quantitative evaluation. The assessment criteria of robot op-
eration involve the metrics regarding the robot’s motion naturalness and the perceived
safety of humans that are influenced by the movements of the robot. Additionally, the
overall robot navigation performance was examined and the qualitative assessment of each

planner’s characteristics has been outlined.
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7.3.1 Scenarios description

We conducted experiments in which humans participate as static or dynamic elements of
the robot environment; therefore, tests are identified as static in a simulation (Fig. 7.3a),
static in the real world (Fig. 7.3b), dynamic in a simulation (Fig. 7.4a), and dynamic in
the real world (Fig. 7.4b). These scenarios are later referred to as 1-S, I-R, 2-S, and 2-R,
accordingly.

In the static scenario (Fig. 7.3), an F-formation of two humans stays near the robot’s
goal. Reaching the goal by the robot requires passing the humans, so when approaching the
final pose, the robot is foreseen not to distract the humans involved in a focused interaction
and take an outside path. Instead, in the dynamic scenario (Fig. 7.4), the robot moving
to the goal pose along a narrow corridor encounters a moving human followed by another
moving human, both going opposite to the robot.

The sequence diagrams illustrating the scenario progression are shown in Fig. 7.1
and 7.2 for static and dynamic scenarios, accordingly. The diagrams describe the task
interaction between the robot and humans, which applies to both simulation and real-

world experiments.

{ User/Script Robot } { Actorl } {Actorz }
[ [ [ [
1 Navigation 1 | |
| Goal | | |
\%\ | |
| | | |
| | Proceed | |
| . Navigation |
! ' Task ! !
| ‘ | |
| | |
| Ioop / [until the scenario
| execution f|n|$hes]
| | |
| Locallsatlon | |
| \ Data | |
: ‘ > >
| | | |
{ User/Script } { Robot } {Actorl } {Actorz}

Figure 7.1: The sequence diagram of the robot and humans’ activity during the static

scenario. Humans are stationary in this scenario.

In both scenarios, the robot interacts with humans in an unfocused way; therefore, the
robot is expected to avoid collisions and maximise the perceived safety of humans.* Each
evaluated trial involved one-shot navigation (“PoseGoal” in the nomenclature from [420])

from a start pose to a goal pose — both fixed but scenario-specific.

4A video presenting test scenarios is available at https://vimeo.com/805337193.
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Figure 7.2: The sequence diagram of the robot and humans’ activity during the dynamic

scenario. In this scenario, one actor explicitly executes the following task, trying to main-

tain 1.5 m distance from the other.

7.3.2 Evaluation principles

Multiple planning approaches were integrated with the TTAGo robot and their operation
under the same environmental conditions have been evaluated. In each scenario, tradi-
tional trajectory planners for mobile robots were tested, namely: Elastic Bands [310],
DWA [144], Trajectory Rollout [161, 147], TEB [162], as well as human-aware trajectory
planners: Human-aware TEB (HaTEB) [216] and Co-operative Human-Aware Naviga-
tion (CoHAN) [168]. The public ROS implementations of the evaluated algorithms were
utilised. The remainder of the navigation ecosystem’s configuration (global path plan-
ner, localisation algorithm) is described in Sec. 6.3, whereas the framework for simulating
humans in virtual trials is explained in Sec. 6.8. The distinctive feature of this study
is that all trajectory planners (also the traditional ones) utilised costmap environment
representations with human proxemics modelled as spatial costs around detected indi-
viduals [47, 84], without regarding F-formations.®

During the study, each trajectory planner operated with the maximum possible fre-

quency which ensured that the designated trajectory planning period was not surpassed,

5The F-formation costmap layer was not developed at the time of the first phase of the experiments.

The discussion on extensions of the navigation ecosystem is in Sec. 6.5.
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(a) Simulation (b) Real world

Figure 7.3: An overview of the static scenario.

(a) Simulation (b) Real world

Figure 7.4: An overview of the dynamic scenario.

but the frequencies did not exceed 10 Hz. Specifically, the Flastic Bands operated at
10 Hz, DWA at 4 Hz, Trajectory Rollout at 8 Hz, and TEB, HaTEB, CoHAN — at 10 Hz.

Each trajectory planner was tested in each scenario’s simulated and real-world vari-
ants. At least five representative trials were benchmarked for each case, and then, the
median of each metric was computed to score a trajectory planner. The results of our
experiments, shown in Tab. 7.3, are discussed in the following sections. Examples of tra-
jectories performed by each planner are shown in Fig. 7.5 (static) and Fig. 7.6 (dynamic

scenario).
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1-5 || 5851 | 33.98 | 39.15 | 36.10 | 22.83 | 44.17

Mo 1R || 5044 | 4225 | 4339 | 36.77 | 21.88 | 41.53

[%] 2.5 || 24.03 | 3544 | 28.13 | 28.39 | 19.16 | 53.55

2R || 23.46 | 52.93 | 71.65 | 38.67 | 19.81 | 46.02

15 || 7330 | 25.50 | 26.50 | 29.75 | 55.70 | 27.90

Mt I-R || 85.84 | 28.63 | 20.00 | 31.15 | 38.70 | 39.70

5] 2.5 || 52.80 | 20.50 | 28.00 | 32.90 | 38.80 | 55.10

2R || 59.19 | 37.70 | 4750 | 38.70 | 57.50 | 40.10

15 || 1027 | 980 | 9.78 | 10.18 | 10.90 | 10.00

M in 1R || 1178 | 10.59 | 1065 | 11.14 | 12.37 | 12.30

[n] 2.8 || 12.90 | 11.98 | 11.66 | 12.03 | 13.10 | 15.71

2R | 13.96 | 13.08 | 11.93 | 1278 | 15.09 | 12.63

1-5 || 32.62 | 10.68 | 10.72 | 14.09 | 28.35 | 12.09

M 1R || 5061 | 1155 | 8.11 | 12.84 | 25.10 | 12.37

[rad] 2-8 || 38.11 | 4.55 | 3.91 | 15.14 | 30.77 | 13.14

2R | 66.96 | 7.11 | 35.48 | 16.68 | 55.31 | 13.54

125 || 333 | 66.02 | 3345 | 2.50 | 4.42 | 3.80

Mot IR || 512 |160.15 | 78.88 | 4.99 | 10.30 | 6.61

[107%s] | 5.9 || 1.92 | 65.23 | 36.13 | 220 | 331 | 2.63

2R || 2.42 | 12313 | 6431 | 454 | 880 | 7.88

15 || 380 | 3457 | 999 | 2.35 | 3.44 | 3.27

Mere 1R || 391 | 81.93 | 1595 | 2.05 | 442 | 429

[107%s] || 9.9 || 247 | 2844 | 1156 | 2.21 | 328 | 3.88

2R || 253 | 7580 | 2846 | 1.64 | 389 | 7.15

15 || 007 | 005 | 0.04 | 0.11 | 032 | 0.14

Myem || -R || 022 | 011 | 012 | 014 | 039 | 0.22

(%] 25| 015 | 009 | 0.05 | 012 | 034 | 0.16

2R | 028 | 018 | 0.17 | 019 | 035 | 025

15 || 144 | 018 | 021 | 093 | 089 | 085

Myem || 1-R || 154 | 0.22 | 037 | 086 | 1.16 | 0.78

[5] 2.5 | 144 | 018 | 019 | 110 | 092 | 056

2R | 168 | 0.33 | 057 | 096 | 1.01 | 0.78

15 || 379 | 195 | 0.95 | 1.18 | 3.67 | 1.69

Mg 1R | 970 | 380 | 262 | 1.30 | 327 | 2.12

(%] 2.5 || 073 | 178 | 090 | 091 | 211 | 7.0

2R | 601 | 2.5 | 215 | 457 | 568 | 2.50

15 || 0.00 | 0.00 | 0.00 | 150 | 3.44 | 6.04

Miwa || -R | 000 | 000 | 000 | 1.58 | 535 | 7.79

[%] 2.5 || 000 | 000 | 0.00 | 000 | 1.74 | 0.00

2R | 0.00 | 1082 | 026 | 026 | 292 | 2.50

179




=) >

Slegl = |SE| = | B |3

8 2% 2| B T 2| R = =

Co 2 3 ° = uy

2 = =2 q Q S S &~ 3 3

% Q(./- [N S = S}
a%o =

15 || 518 | 13.72 | 13.69 | 0.00 | 1.63 | 0.40
Mipor || 1-R || 574 | 979 | 10.19 | 094 | 148 | 0.12

[%] 2.5 || 641 | 351 | 363 | 030 | 031 | 0.00
2R | 407 | 040 | 2406 | 028 | 3.24 | 0.00
1-5 || 22.35 | 15.00 | 16.47 | 19.32 | 14.30 | 19.78
Mo I-R || 15.88 | 20.94 | 31.37 | 17.88 | 24.29 | 24.88
(%] 2-§ || 20.24 | 31.53 | 38.07 | 40.70 | 35.35 | 40.44
2-R || 19.88 | 42.60 | 30.00 | 25.40 | 34.48 | 39.74
1-5 || 3820 | 42.07 | 53.25 | 32.11 | 36.60 | 45.32
Mg 1R || 3.33 | 31.85 | 41.05 | 1330 | 825 |35.73
[%] 2.5 || 000 | 000 | 0.00 | 000 | 0.00 | 0.00
2R | 000 | 000 | 000 | 000 | 0.00 | 0.00
15 || 0.20 | 076 | 1.04 | 131 | 077 | 087
Mgin R | 023 | 238 | 069 | 046 | 1.09 | 0.62
[%] 2.5 | 0.22 | 132 | 039 | 056 | 1.34 | 055
2R | 031 | 213 | 074 | 062 | 097 | 1.46

Table 7.3: Results of simulation and real-world experiments conducted in the WUT labor-
atory environments. Tests are identified as: 1-S — static scenario in a simulation, 1-R —
static scenario in the real-world, 2-S — dynamic scenario in a simulation, and 2-R —

dynamic scenario in the real-world.

7.3.3 Robot navigation task performance

The HaTEB planner was the safest in all scenarios, as it maintained the greatest distances
from obstacles (m,,,, Req. 1.1), which is related to its characteristic of taking wide
paths at corners (similar to going along the centre line of the available space). However,
it came at the cost of the time required to reach the goal (m,,). By contrast, the robot
operating with DWA planner traversed closer to obstacles, i.e, the robot has spent a higher
percentage of time within the T’Qdmin distance from obstacles along the path — reflected
by the m,,. Still, it reached the goal significantly faster (Req. 1.3). The reason behind
such timing performance is that weights of cost functions in the objectives of DWA and
Trajectory Rollout planners were tuned with a focus on approaching the goal with the
shortest possible path avoiding high-cost areas (obstacles or humans embedded into the
costmaps, detailed in Sec. 6.3) along the way. The best timing results (m,,.¢) are confirmed

by the values of path-related metrics, m ;. (Euclidean length of the path) and m,

plin
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Figure 7.5: Robot trajectories generated by different planners in the static scenario. The

colour of a symbol represents its occurrence in time (g). Solid circles with dark edges

represent humans, whereas partially transparent circles indicate F-formations. Due to the

perception inaccuracy, human positions float over time, especially, after robot rotation at

the very end of the scenario.

(cumulative rotations along the path), which DWA and Trajectory Rollout planners have

the lowest.

The results of the computation time metrics, namely, m_; and m
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Figure 7.6: Robot trajectories generated by different planners in the dynamic scenario.
The colour of a symbol represents its occurrence in time (g). Solid circles with dark
edges represent humans. Due to the robot’s perception inaccuracies, human positions
may fluctuate over time, especially when humans become occluded after being passed by
the robot.

lysed, remembering that the simulated scenarios were performed on a different computer
than real-world experiments. Nevertheless, data show that optimal velocity search meth-

ods (DWA and Trajectory Rollout) exhibit a higher computational burden (m,,) than
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force-based (Elastic Bands) and graph optimisation-based (TEB, HaTEB, CoHAN) ap-
proaches. These latter, mainly TEB, have much more stable computation times in different
scenarios (M, )-

An interesting observation concerns the values of m .,