
WARSAW UNIVERSITY OF TECHNOLOGY
DISCIPLINE OF SCIENCE INFORMATION AND COMMUNICATION
TECHNOLOGY
FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis
Tomasz Osiński, M.Sc.

Data plane programmability for software datapaths in a virtualized
network infrastructure

Supervisor

Halina Tarasiuk, D.Sc., Ph.D.

WARSAW 2023



Data plane programmability for software datapaths in a virtualized
network infrastructure

ABSTRACT

The advent of Software-Defined Networking radically changed the approach to building

modern network systems such as 5G/6G by enabling programmability in the network. Recent

innovations around data plane programmability allow to express packet processing algorithms

using high-level programming abstractions. Nevertheless, the data plane programmability

has mainly been leveraged for hardware switches and NICs so far, with limited applications

to software switches. At the same time, software switches have become a vital component of

modern Network Function Virtualization (NFV) systems, playing a role of the primary provider

of network connectivity and advanced network services. However, novel applications like 5G

put new demands on software switches. Therefore network owners may want to introduce new

data plane techniques in a timely manner.

This dissertation aims at applying a data plane programmability to software switches run-

ning in the virtualized network infrastructure. We present two novel systems implementing

data plane programmability for software switches, namely P4rt-OVS and NIKSS. These systems

enable expressing how packets should be processed in the software switch using P4, a high-level

language for data plane programming. Therefore, both P4rt-OVS and NIKSS allow to quickly

prototype new network protocols, implement novel packet processing algorithms or customize

existing packet processing pipelines without an intimate knowledge about the internals of a

packet processing engine on general-purpose CPUs. Moreover, when integrated into an end-

to-end programmable network, P4rt-OVS and NIKSS enable novel network applications that

would not have been feasible or would have been difficult to implement in a timely manner. This

dissertation also presents several novel use cases taking advantage of P4rt-OVS and NIKSS in

the context of end-to-end programmable networks.

P4rt-OVS derives from Open vSwitch, a fixed-function SDN software switch commonly

used for multi-tenant network virtualization. P4rt-OVS is an original extension to Open

vSwitch that enables runtime programming of protocol-independent and stateful packet pro-



cessing pipelines. The P4rt-OVS design results in a hybrid approach that provides data plane

programmability without sacrificing well-known features of Open vSwitch. Performance evalu-

ations show that P4rt-OVS does not introduce significant packet processing overhead compared

to the classic OVS forwarding model, yet enables runtime protocol extensions and stateful

processing.

NIKSS is a novel P4-programmable software datapath for Software-Defined Networking

that has been designed around the following principles: high-level and feature-rich program-

ming abstraction, performance, runtime programmability and operability. NIKSS leverages P4

Portable Switch Architecture as feature-rich programming abstraction and eBPF as a packet

processing engine to provide runtime programmability and operability. High performance has

been achieved by combining eBPF with the PSA to eBPF compiler, an original extension to

the open-source P4 compiler that generates efficient packet processing pipeline for NIKSS. As

part of NIKSS we proposed a unique ternary classiciation algorithm based on eBPF primitives

and number of performance optimizations, including table caching and static pipeline-aware

optimizations. We demonstrate that NIKSS can be successfully used as a software switch for

modern NFV systems. We also provide an extensive performance evaluation, proving that

NIKSS might be a viable alternative to existing software switches.

Both P4rt-OVS and NIKSS have been released as open-source projects and are available for

researchers and system developers to build upon.

Key words: Software-Defined Networking, programmable data plane, P4, eBPF
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Programowalna warstwa przekazu danych dla funkcji sieciowych
w środowisku zwirtualizowanej infrastruktury telekomunikacyjnej

STRESZCZENIE

Technika sieci programowalnych (ang. Software-Defined Networking - SDN) radykalnie

zmieniła podejście do budowania nowoczesnych systemów telekomunikacyjnych takich jak sieci

5G i 6G. Jednocześnie ostatnie innowacje w obszarze programowalnej warstwy przekazu danych

dla sieci SDN pozwalają na implementację algorytmów przetwarzania pakietów w urządzeniach

sieciowych wykorzystując wysokopoziomowe abstrakcje programistyczne takie jak język P4. Jed-

nakże techniki programowalnej warstwy przekazu danych są obecnie wykorzystywane głównie

dla sprzętowych urządzeń sieciowych takich jak programowalne switche czy karty sieciowe,

natomiast zastosowania dla funkcji sieciowych w środowisku zwirtualizowanej infrastruk-

tury sieciowej są ograniczone. Jednocześnie switche programowe zrealizowane jako moduły

oprogramowania (ang. software switches) stały się niezbędnym komponentem nowoczes-

nym systemów wirtualizacji funkcji sieciowych NFV (ang. Network Function Virtualization)

umożliwiając komunikację sieciową oraz implementację zaawansowanych usług sieciowych w

centrach danych. Mimo to, nowe rozwiązania takie jak sieci 5G narzucają nowe wymagania (np.

nowe protokoły sieciowe) na funkcje sieciowe w środowisku zwirtualizowanej infrastruktury

sieciowej, a operatorzy sieci chcą mieć możliwość wdrażania nowych technik (m.in. obsługi

protokołów sieciowych) w warstwie przekazu danych w krótkim czasie.

Celem niniejszej rozprawy jest zastosowanie techniki programowalnej warstwy przekazu

danych do switchy programowych, tak aby ułatwić implementację oraz skrócić czas wdraża-

nia nowych technik sieciowych w środowisku zwirtualizowanej infrastruktury telekomunika-

cyjnej. W niniejszej rozprawie zaprezentowane zostały dwa oryginalne rozwiązania: P4rt-OVS

oraz NIKSS. Oba rozwiązania pozwalają definiować sposób przetwarzania pakietów w sieci

wykorzystując technikę P4, wysokopoziomowy język programowania dla warstwy przekazu

danych. Dlatego też systemy P4rt-OVS oraz NIKSS pozwalają w krótkim czasie i bez spec-

jalistycznej wiedzy o mechanizmach przetwarzania pakietów tworzyć protototypy protokołów

sieciowych, wdrażać nowatorskie algorytmy przetwarzania pakietów, czy też dostosowywać



obecnie działające mechanizmy przetwarzania pakietów. Ponadto, rozwiązania P4rt-OVS

oraz NIKSS zintegrowane z siecią programowalną umożliwiają implementację nowatorskich

usług sieciowych, które nie byłyby inaczej możliwe do zaimplementowania lub wymagałyby

znaczących nakładów. W niniejszej rozprawie zaprezentowano również oryginalne zastosowa-

nia wykorzystujące systemy P4rt-OVS oraz NIKSS w kontekście sieci programowalnych od

końca do końca.

Rozwiązanie P4rt-OVS jest oryginalnym rozszerzeniem systemu Open vSwitch, który

jest wykorzystywany w nowoczesnych systemach wirtualizacji sieci. Architektura P4rt-OVS

pozwala wykorzystywać dotychczasowe możliwości platformy Open vSwitch, a jednocześnie

rozszerza ją o programowalną warstwę przekazu danych. Badania wydajnościowe pokazały,

że P4rt-OVS nie wprowadza znaczących narzutów wydajnościowych w porównaniu do obec-

nego modelu przetwarzania pakietów na platformie Open vSwitch, a jednocześnie dostarcza

możliwość rozszerzania tej platformy w czasie działania o dowolne protokoły sieciowe, czy też

stanowe algorytmy przetwarzania pakietów.

Rozwiązanie NIKSS jest oryginalnym switchem zrealizowanym jako moduł oprogramowa-

nia dla sieci SDN. NIKSS cechuje się wysokopoziomowym i w pełni funkcjonalnym językiem

programowania, wysoką wydajnością, możliwością programowania w czasie działania oraz

łatwością w zarządzaniu. Rozwiązanie NIKSS wykorzystuje architekturę PSA (ang. Portable

Switch Architecture) jako abstrakcyjny model przetwarzania pakietów oraz technikę eBPF jako

platformę przetwarzania pakietów zapewniającą programowalność w czasie działania oraz łat-

wość w zarządzaniu. Wysoka wydajność przetwarzania pakietów na sekundę została osiągnięta

poprzez połączenie możliwości techniki eBPF oraz kompilatora PSA-eBPF, autorskiego rozsz-

erzenia do kompilatora języka P4. Jednym z osiągnięć w ramach pracy nad rozwiązaniem NIKSS

jest realizacja algorytmu klasyfikacji pakietów typu "ternary" dla platformy eBPF oraz optymal-

izacje wydajnościowe. W niniejszej rozprawie udowodniono, że rozwiązanie NIKSS może być

z powodzeniem używane w nowoczesnych systemach NFV. Ponadto, badania wydajnościowe

pokazały, że NIKSS jest realną alternatywą dla obecnie istniejących rozwiązań.

Rozwiązania P4rt-OVS oraz NIKSS zostały udostępnione publicznie jako otwarte opro-

gramowanie i mogą być wykorzystywane do prowadzenia badań lub tworzenia systemów teleko-

munikacyjnych.

Słowa kluczowe: sieci programowalne, programowalna warstwa przekazu danych, P4, eBPF
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Chapter 1

Introduction

Over the last decade, the approach to building the computer and telecommunication

networks has been radically changed. In the era of next-generation mobile networks

(5G/6G) [8, 89], we can observe an evolution towards the Network Functions Virtual-

ization (NFV) paradigm [120, 192], from network systems composed of specialized

hardware appliances towards open, programmable and fully-softwarized network

infrastructure built on top of a high-bandwidth optical transport layer and a com-

mon compute and network infrastructure composed of physical servers and network

switches co-located in geographically distributed data centers, often referred to as

clouds. The NFV approach assumes that network functions, which has so far been

offered as hardware appliances, are now implemented as software modules (Virtual

Network Functions - VNFs) running in a virtual execution environment (e.g., virtual

machines or containers), which are connected to software switches running on compute

servers. Software datapaths (also referred to as software switches or virtual switches

and we use these terms interchangeably) are a key component of modern virtualized

network infrastructure [97]. They play a role of a hypervisor switch forwarding packets

to and from Virtual Machines (VMs) or containers, and enable multi-tenant network

virtualization through logical (virtual) overlay networks.

This evolution would not be possible without Software-Defined Networking (SDN)

[98, 185] - a concept of decoupling the control plane from the forwarding devices’ data

plane. The data plane is the plane where network packets are processed and forwarded

between ports (or dropped) based on forwarding or routing tables, while the control

plane implements the network-level intelligence, i.e. decides an end-to-end packet path
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throughout a network and determines an output port within a device (router, switch)

to reach a next hop in the network. SDN moves the control plane from distributed

network nodes to a logically centralized module (called SDN controller), making the

network devices’ functionality limited just to data forwarding. This gives the SDN

controller a global, abstract network view enabling a paradigm shift and enhanced

network programmability - the network system can be now defined and implemented

as a software application. Thus, in the next-generation network infrastructure, the

SDN technology is used to program hardware and software forwarding devices and

dynamically create underlay and overlay networks to provide connectivity between

Virtual Network Functions (VNFs) and, also, between VNFs and external wide area or

enterprise networks.

However, the control and data planes differ in operative requirements. The control

plane does not need to operate at high packet processing speeds, but it needs to

perform relatively complex computations, e.g., perform path computation for routing

protocols such as BGP (Border Gateway Protocol) or OSPF (Open Shortest Path First).

Consequently, control plane implementations have favored general purpose CPUs

(Central Processing Units) and high-level languages such as Java, Python or Go. In

contrast, the data plane should process data units as fast as possible. Thus, it has been

commonly implemented using specialized, low-level programming languages based

on dedicated hardware, such as ASIC (Application-Specific Integrated Circuit), NPU

(Network Processing Unit) or FPGA (Field-Programmable Gate Array). Recently, due to

the development of more powerful modern CPUs and more efficient packet processing

techniques, such as Data Plane Development Kit (DPDK) [83], AF_XDP [177] or XDP

(eXpress Data Path) [75], data planes are written in C/C++ and re-architected to be run

on general-purpose CPUs as well.

In general, network programmability refers to the ability to define entire network

systems as a set of software applications implementing data and control plane mecha-

nisms. Moreover, it enables changing the networks’ design and implementation over

time by only modifying the software applications, without purchasing a new hardware.

The diverse requirements for control and data planes affect how network programma-

bility is enabled. Initially, SDN only enabled programmability of the control plane. In

fact, SDN abstracts data plane devices by means of a programming API (Application

10



Programming Interface) that provides an interface for SDN controllers to communicate

with forwarding devices and instruct them how to process packets. OpenFlow [110]

has been a prominent instance of such an API to forwarding devices, as it provides a

well-defined API to program a device and abstract Match-Action forwarding model en-

abling flow-based packet processing. Nonetheless, the control plane programmability

is only a half of the path towards fully programmable networks. Indeed, the Open-

Flow technology introduced a programming API to forwarding devices and made

switch vendors open their products and offer "white-box" hardware switches that can

be controlled by the third-party software. It is worth noticing that the SDN technology

is not only applied to hardware switches. At the same time, the OpenFlow-compliant

software switches were also brought to the market, with Open vSwitch (OVS) [148]

as a prominent solution used in production [51, 167]. However, OpenFlow assumes

that switches have a fixed and pre-defined set of supported data plane protocols and

actions to be performed on packets. This assumption significantly limits applications,

because the control plane logic is limited to what functionality a given OpenFlow de-

vice offers. This leads to long time to market for new features and slower release and

innovation cycles. Any new feature at the data plane level (e.g., new tunneling protocol

or header extension) would need to be first defined in the OpenFlow specification and,

then, designed and implemented by silicon switching vendors, before it could be used

in production. A similar problem exists in case of software datapaths. Developing a

new network feature requires domain-specific knowledge of network protocol’s design,

low-level programming skills and familiarity with the large and complex codebase of

the software switch or TCP/IP stack implementation in the OS kernel. Next, the feature

must be reviewed, accepted by the community and distributed as a software package.

Data plane programmability and the P4 technology [23] have been proposed to

address these challenges and unleash full network programmability. P4 is a high-level

language for describing how packets should be processed in the network data plane in

the form of a P4 program. P4 was designed around three principles [23]:

1. Reconfigurability in the field. Programmers should be able to change data plane

algorithms that switches use to process packets once they are deployed.

2. Protocol independence. Switches should not be tied to any specific network protocol

and a P4 programmer should be able to implement any data plane protocol.
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3. Target independence. Programmers should be able to describe packet processing

functionality independently of the specifics of the underlying platform.

The P4 language, along with re-programmable platforms (e.g., Tofino ASIC, NPUs)

and SDN controllers, allows network owners to take a full control over their networks

- both data plane and control plane can be described as a software program, enabling

custom use cases and fostering network innovation. Importantly, P4 works in con-

junction with P4Runtime [174], a control plane interface to forwarding devices that

auto-generates control plane APIs for an SDN controller based on a P4 program. Thus,

a P4 program also plays a role of a "contract" between data and control planes. Over

recent years, programmable network devices have emerged as a promising alternative

to traditional switches and Network Interface Cards (NIC) that provides flexibility to

defining packet processing pipelines [72, 106]. Programmable data planes and P4 allow

network operators to define custom protocols and packet processing algorithms and

have become widely used by network operators, software developers and researchers

[72]. BlueBird [12] and SD-Fabric [124] are examples of benefits that programmable de-

vices and P4 bring to the networking area. Both solutions customize the standard data

center fabric network to implement network virtualization system for the bare-metal

cloud service (BlueBird) or to enhance the underlay network with 5G functionality and

in-depth network visibility (SD-Fabric). Moreover, P4 brings the added value to many

areas of network systems including network monitoring (e.g, flow monitoring, heavy

hitter detection, path tracking), traffic management and congestion control, routing

and forwarding (e.g., source routing, data plane resilience), network security (fire-

walls, DDoS mitigation) or advanced networking techniques such as Time-Sensitive

Networking or Internet of Things [72, 106].

However, P4 has so far been used for programmable ASICs and SmartNICs and

has not yet been successfully adopted to software datapaths. Even though a few

P4-programmable software switches have been developed [160, 136, 138, 156], they

are not performant or fully-featured enough to implement all data plane functions

of a hypervisor switch or Virtual Network Function. Having said that, there is no

doubt that with the emergence of NFV, 5G, network slicing and a general network

softwarization trend, software datapaths have become a vital component of the network

infrastructure, playing more and more important role in the network transformation. To
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Figure 1.1: The role of software switches (marked by red callouts) in the end-to-end

5G/6G mobile network.

give an example, the role of software switches in the context of 5G/6G mobile networks

is depicted in Figure 1.1. 5G/6G mobile networks are built from heterogeneous mobile

devices and radio access technologies. The compute and network infrastructure is

geographically distributed and composed of many Edge Clouds and a few Core/Central

Clouds. Software switches play a role of hypervisor switches running in both Edge and

Central Clouds to provide virtual networks for network tenants. Software switches can

also run inside Virtual Machines or Containers and implement a data plane of Virtual

Network Functions.

As more network services are migrated from hardware appliances to the cloud, vir-

tual machine or container density on end hosts increases and the network infrastructure

owners are pushed to adopt high-speed (10/40 or even 100 Gbps) NICs [55]. As a conse-

quence, software switches and VNFs are expected to process higher volume of diverse

network traffic, being generated by hundred of thousands traffic endpoints. Thus,

software datapaths must primarily meet the demands of next-generation networks for

high throughput packet processing, but, at the same time, provide a high degree of

programmability, so that network owners can smoothly introduce new features, fix

network issues, perform software upgrades to the data plane devices or customize

13



their network protocols to meet customers’ requirements.

A sphere of interests of this dissertation is packet processing techniques for a data

plane of software switches. In particular, the aim of the research summarized in this

dissertation is to apply data plane programmability to software switches. Software

switches might require frequent updates to support new protocols or encapsulation

techniques for overlay networking, new network telemetry mechanisms or security

applications. Moreover, network infrastructure owners may need to introduce a custom

protocol extension to optimize their system. It should be possible to use a high-

level programming language to customize a packet processing pipeline without an

intimate knowledge about software switching technology, as it brings similar benefits

to data plane programmability for hardware-based packet processors. Furthermore,

expanding the programmable SDN domain to the end-host networking makes network

platform programmable in an end-to-end fashion and enables new use cases. To name

a few, a programmable software switch could provide an early classification for end-

to-end slicing and Quality of Service (QoS) at the container or VM interface that could

be further used by NICs or hardware switches to enforce network isolation or QoS

policies. Moreover, the coordination between all programmable network devices could

lead to enhanced, end-to-end network visibility (e.g., with In-Band Network Telemetry

[141, 127]) to pinpoint a network element contributing to increased packet latency

or detect packet drops and other anomalies. The end-to-end network visibility also

makes a concept of verifiable networks feasible [57]. Finally, both fabric and end-host

networking can be controlled by the same SDN controller giving an opportunity to

eliminate network overheads and simplify network design by flattening underlay and

overlay networks in virtualized data centers.

We further motivate the work in Chapter 3, but, in a nutshell, fully-programmable

but performant software datapaths would bring a number of benefits that can be

categorized as follows:

1. Building extensible software switch. This dissertation aims at proving that a P4-

programmable software datapath is a viable alternative to already-existing kernel-

based or kernel-bypass software datapaths. The benefits of using a reconfigurable

software switch includes the ease of customizing packet processing pipelines for

a specific use case.
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2. Data plane programming framework for VNFs. P4 was initially designed to

dynamically program hardware switches. However, with the emergence of NFV,

5G and edge computing, there are places (typically small edge sites), where it is

more cost-effective to deploy a network function as a software module on an x86

server, instead of buying a specialized, programmable switch or NIC. Moreover,

developing high-performance Virtual Network Functions on general purpose

CPUs is a challenge [143] as programmers must know underlying specifics of the

packet processing nature in the multi-core CPU environment to write an efficient

code. A fully-programmable software datapath can become a framework for

developing a software-based data plane of network functions, allowing to abstract

the low-level details from programmers. Hence, they can use the high-level data

plane programming language to implement Virtual Network Functions and let

the P4 compiler perform micro-optimizations and ensure that the compiled code

runs efficiently on the general-purpose CPUs.

3. Towards end-to-end programmable network. With the emergence of the end-

to-end, programmable network platform a fully-programmable software switch

might become a vital component enabling programming end-host datapaths in a

portable way. This might enable using P4 as a common language for program-

ming diverse network devices (from hardware switches up to end-host network-

ing) and the P4Runtime API [174] as a unified control plane protocol, making

such concepts as end-to-end verifiable networks [57] feasible.

An SDN software switch is expected to provide high performance, while maintain-

ing a high degree of programmability, flexibility and general-purpose usage. Therefore,

the main research challenge addressed in this dissertation is to design and implement

a programmable software switch that provides enhanced programmability at runtime

without sacrificing performance and operability. To address this challenge we need to

create novel architectures and programming models for software switches as well as to

design new, or adapt existing, packet processing techniques and algorithms. Therefore,

this dissertation presents two novel systems for high performance, yet programmable,

software-based packet processing: P4rt-OVS [132] and NIKSS (Native In-Kernel SDN

Software Switch) [130]. Both solutions have been designed and implemented in coop-

eration with industrial partners: Orange Labs (Poland/France) and Open Networking
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Foundation (USA). Therefore, both P4rt-OVS and NIKSS have practical applications

and implementation potential - both solutions have been used to build systems de-

scribed in [133], [145], [127] and [131]. The evaluation of the exemplary use case for

P4rt-OVS described in [145] is also attached as Appendix B.

P4rt-OVS [132] derives from Open vSwitch (OVS), a fixed-function SDN software

switch commonly used for network virtualization [148]. P4rt-OVS is an original exten-

sion of OVS that enables runtime programming of protocol-independent and stateful

packet processing pipelines. It extends the OVS forwarding model with Berkeley

Packet Filter (BPF) [85], bringing a new extensibility mechanism. The P4rt-OVS de-

sign results in a hybrid approach that provides P4 programmability without sacrificing

the well-known features of OVS. We make the following unique contributions with

P4rt-OVS:

• Design and implementation of runtime data plane programmability for Open

vSwitch using P4. P4rt-OVS has been designed to be programmable at runtime.

Therefore, we leverage userspace Berkeley Packet Filter (BPF) [109, 102] to provide

a runtime extensibility mechanism for OVS.

• Enabling enhanced data plane programmability for OVS without sacrificing the

performance.

• New programming model and control plane API for OVS. P4rt-OVS proposes

extensions to the OVS architecture and programming model that enable extending

the packet processing pipeline at runtime with P4.

• Design and implementation of a novel P4 to userspace BPF compiler that allows

developers to write data plane programs in the high-level P4 language and run

them in userspace BPF VM on general-purpose CPUs. The P4-to-uBPF compiler

is not only limited to P4rt-OVS. On contrary, it is re-usable and can be leveraged

by other solutions. It is currently open-source and publicly available as part of

the open-source P4 compiler [139].

• Performance evaluation showing that P4rt-OVS does not introduce significant

packet processing overhead comparing to classic OVS forwarding model, yet

enables runtime protocol extensions and stateful packet processing.

16



• The P4rt-OVS solution is open-source and publicly available on Github [125].

NIKSS [130] is a novel programmable software datapath for Software-Defined Net-

working that overcomes the limitations of P4rt-OVS. NIKSS has been designed around

the following principles: high-level and feature-rich programming abstraction, per-

formance, runtime programmability and operability. It leverages P4 as a high-level

programming abstraction, Portable Switch Architecture (PSA) as a fully-featured P4

packet forwarding model and eBPF [85] as an extensible, kernel-based packet pro-

cessing engine. According to our knowledge, NIKSS is the first kernel-based and

fully-functional P4-programmable software switch. The NIKSS solution achieves the

following improvements over the state of the art systems:

• Design and implementation of the NIKSS’s P4-programmable packet processing

model. NIKSS supports two alternative designs of a packet processing model:

a general-purpose design able to implement any P4/PSA program and a more

limited specialized design that provides better performance.

• Design and implementation of the ternary packet classification algorithm for

eBPF.

• Design and implementation of the PSA to eBPF compiler, an original extension

to the P4 compiler that implements the PSA model for NIKSS. Moreover, NIKSS

implements several compiler optimizations to maximize generated eBPF code

performance. The PSA to eBPF compiler has been contributed to the official,

open-source P4 compiler [140].

• A thorough performance evaluation of NIKSS, including microbenchmarks and

a comparison with alternative software datapaths. The specialized NIKSS de-

sign can outperform the kernel-based Open vSwitch [148] and P4-DPDK, a main

alternative to NIKSS, for most test programs.

• The NIKSS implementation is also open-source [129].

Finally, this dissertation contributes the added value to the state of the art by ad-

dressing the following research questions:
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• Can programmable data plane and P4 be successfully used for software datapaths without

sacrificing performance?

• Given the hardware focus, is P4 flexible enough to express all software capabilities needed

to implement most common features of a hypervisor switch or Virtual Network Function?

• Is the P4 Portable Switch Architecture (PSA) the right architecture for software datapaths?

What is the price of portability?

This disseration is organized as follows. Chapter 2 provides a necessary background

information on software-based packet processing and data plane programmability.

Chapter 3 motivates the work, defines a set of requirements for a programmable SDN

software switch and discusses the state of the art of software datapaths. In Chapter 4,

we present P4rt-OVS, a framework for programming protocol-independent, runtime

extensions for Open vSwitch using P4. In Chapter 5, we present NIKSS (Native In-

Kernel SDN Switch), a novel programmable software datapath for Software-Defined

Networking. Finally, Chapter 6 concludes this dissertation, answers the research ques-

tions and discusses directions for future work. Additionally, Appendix A describes

a methodology to measure per-component CPU cycles for NIKSS, while Appendix B

presents an implementation and evaluation of the DDoS mitigator use case for P4rt-

OVS.
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Chapter 2

Background

This chapter presents background on software-based packet processing. We first intro-

duce a general-purpose software-based packet processing environment, on which both

P4rt-OVS and NIKSS are based. Next, we present and compare modern packet pro-

cessing frameworks in software: DPDK, eBPF and AF_XDP. P4rt-OVS runs on DPDK,

while NIKSS leverages eBPF. We also present algorithms and data structures used in

software-based packet processing, focusing mainly on packet classification. Selected

algorithms and data structures are used by P4rt-OVS and NIKSS. Finally, we provide

details about performance metrics that are used to evaluate P4rt-OVS and NIKSS.

Next, we introduce the programming models (often referred to as abstractions) for

programmable data planes. We present data plane programming and P4 in detail as

the P4 language is a foundation of P4rt-OVS and NIKSS. Last but not least, we describe

the eBPF framework as it is a technology that is leveraged by both P4rt-OVS and NIKSS

switches.

2.1 Software-based packet processing

The nature of packet processing is common to both hardware-based and software-based

switch implementations. Packet processing includes the following basic functional

steps: parsing, classification, modification, deparsing and forwarding. Moreover, most

packet processing systems can provide additional functionalities, such as scheduling,

filtering, metering (often referred to as rate-limiting or traffic policing), or traffic shaping

[115]. All these functional blocks (depicted in Figure 2.1) of packet processing are often
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Figure 2.1: Functional blocks of packet processing pipelines.

referred to as data plane functions.

Parsing is a process of reading packet headers from the packet buffer and extracting

the relevant protocol fields into a packet descriptor - a set of parsed values that are

used as metadata through a packet processing pipeline. Packet classification is a process

of matching a packet with a corresponding rule (stored in classification tables) deter-

mining a forwarding policy that defines processing actions to be applied to a packet.

Actions may define a packet forwarding behavior (e.g., whether to drop the packet or

which output port(s) to use) or required packet modifications (e.g., modify destination

IPv4 address, decrement IPv4 Time-To-Live or add MPLS header). The packet modifica-

tion steps applies the modification actions retrieved from the classification tables. This

step may also include the update of some per-pipeline internal state (e.g., increase a

packet counter). The combination of packet classification and subsequent processing

based on matched rules is commonly referred to as Match-Action processing [115]. As

a next step, a packet may be re-generated from the packet descriptor (deparsing) and,

finally, the forwarding step is performed. The forwarding step may either send a packet

to a single output port (unicast forwarding) or copy a packet and send packet replicas

to multiple ports (referred to as multicast forwarding or packet cloning). Before a packet

leaves the packet processing pipeline, additional steps may also be performed. For

example, packet scheduling enforces network-level QoS policies, metering limits a rate

of outgoing traffic by dropping packets above a given policing threshold, while traffic

shaping manages output packet queues and buffers to achieve an assumed traffic profile.

Nevertheless, packet processing on general-purpose CPUs has specific nature. A

software datapath typically makes use of a packet I/O framework and implements

packet processing algorithms on top of it. In this section, we introduce packet pro-

cessing mechanisms, frameworks and algorithms that are relevant to this dissertation

and are used to implement the aforementioned data plane functions in P4rt-OVS and

NIKSS.
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2.1. SOFTWARE-BASED PACKET PROCESSING

2.1.1 Packet processing in the multi-core CPU environment

Software datapaths typically run on commodity servers and leverage general-purpose

CPUs to perform data plane functions. The higher clock speed of a CPU core, the

more instructions the CPU core can execute and, thus, more packets can be processed

by a software datapath in a given period of time. In the early days of software-based

packet processing the performance had been increasing due to the Moore’s law [157] -

CPUs had been becoming more and more efficient. However, the industry nowadays

observes the slowdown of Moore’s law and the end of Dennard’s scaling [90]. As a

consequence, the performance of a single CPU core has stopped to increase rapidly.

Therefore, commodity servers started adopting the multi-core architecture, i.e. instead

of executing CPU instructions on a single core, the multi-core environment incorporates

multiple CPU cores to perform different tasks in parallel and, so, increase processing

power. This approach has also been adopted by end hosts as a way to increase packet

processing speed, forcing the re-design of packet processing frameworks. Furthermore,

it is worth highlighting that the CPU frequency is not the only CPU-related factor

affecting performance. In particular, the CPU cache plays an important role. The CPU

memory is typically organized in the hierarchical structure composed of multiple levels

(usually 2 or 3) of local-to-CPU memory called CPU caches. This architecture reduces

the average cost to access data from the main memory by caching some data in a local

CPU cache. Therefore, in case of large data and/or sub-optimally written code a packet

processing application might spend more time accessing data if it is missing in the

higher level CPU caches. Therefore, the larger CPU cache size, the higher CPU cache

hit ratio is and, thus, a CPU core may process packets faster.

In the modern multi-core CPU environment, there are generally two processing

models (a way to organize and coordinate between CPUs for a data plane processing):

the Pipeline model and the Run-to-Completion model [49]. The former refers to a model

in which each stage of the packet processing pipeline is mapped to a different core

(or thread). A packet is being sent from one stage to the next one in the pipeline.

Each CPU core running a given stage implements a specific functionality (e.g., core A

performs parsing, while core B classifies packets). The Pipeline model is often used

if more processing power is required than a single CPU core can provide. Also, the

advantage of this model is that it does not require sharing state between CPU cores,
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minimizing the need for shared access synchronization between different CPU cores.

However, the Pipeline model often leads to a sub-optimal resource utilization due to

over-provisioning (most likely some of CPU cores are not fully utilized) and, thus,

waste of computing resources. On the other hand, the Run-to-Completion model

assumes using a single CPU core for a given packet, i.e. a single CPU core handles a

packet from the moment it enters the packet processing pipeline until it is forwarded

or discarded. Typically, software systems implementing the Run-to-Completion model

assign a group of CPU cores for packet processing and distribute incoming packets

over available CPU cores. In this way, more packets can be processed by a system.

The ability to increase packet processing speed by assigning more CPU cores is often

referred to as CPU scaling. The Run-to-Completion model features a better resource

utilization and minimized overhead related to context switching between CPU cores,

but it requires synchronization between CPU cores to access the shared resources

(e.g., classification tables). It is worth noticing that the hybrid model, combining both

pipeline and run-to-completion models, is also feasible.

Figure 2.2: The end-to-end packet path between two NICs within a single Linux server.
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Over years, the research and networking community have developed common

mechanisms and components that compose a reference framework for multi-core

packet processing. Such a standard multi-core packet processing framework is the

Linux network stack. Figure 2.2 explains the Linux network stack based on the packet

path between two NICs of the same server. A packet becomes its journey in the Linux

network stack when it is received by NIC. In the diagram NIC-1 is a receiving (RX) NIC,

while NIC-2 is a transmitting (TX) NIC. Upon receiving a new frame, the NIC uses the

Direct Memory Access (DMA) mechanism to copy a received frame from NIC to the

OS Random Memory Access (RAM) and stored into a DMA ring buffer. The memory

address, where the frame is copied to, is determined by an RX descriptor (each NIC

is configured with a number of RX descriptors). In parallel, the NIC triggers a hard-

ware Interrupt ReQuest (IRQ). This event informs the NIC driver that a new frame

has arrived and must be processed. The CPU core that handles the IRQ is statically

configured (CPU affinity) or is dynamically selected by the NIC using the Reciever Side

Scaling (RSS) mechanism. This is the first place, where the multi-core processing comes

into play. Most modern NICs have the ability to write incoming frames to several dif-

ferent regions of RAM simultaneously and each region constitutes a separate queue.

This allows to use multiple CPU cores to process incoming packet in parallel. RSS is

a process of distributing incoming frames between queues (CPU cores) based on the

hash function calculated from a packet data (typically a 5-tuple composed of source

IP address, destination IP address, IP protocol, source UDP/TCP port and destination

UDP/TCP port).

Upon receiving an IRQ on a given CPU core, the NIC driver triggers NAPI (New

API) polling. The NAPI is a Linux mechanism that has been created to reduce the

number of IRQs generated by network devices on packet arrival. Once a first frame

is received, the NAPI starts polling on incoming frames, eliminating the need for

subsequent IRQs, until a certain number of frames are received or a timer expires. This

allows to handle multiple packets at once. While busy polling, the NIC driver allocates

an skb (socket buffer), a packet descriptor within the Linux network stack. Each skb

keeps a reference to the kernel memory address where the frame has been copied by

DMA, so no additional copy of a packet is made at this point. Next, the network stack
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invokes the GRO1 (Generic Receive Offload) mechanism. GRO attempts to reduce the

number of allocated skb’s by aggregating multiple packets from a single stream into a

large buffer before they are passed higher up to the TCP/IP processing. The purpose

of GRO is to increase inbound throughput by reducing CPU overhead as the TCP/IP

stack must process packet headers only once for a large, aggregated chunk of data.

Once a packet leaves, the RPS (Receive Packet Steering)/RFS mechanisms schedule a

TCP/IP processing on one of the CPU cores. RPS is a software version of RSS. In case

of RPS, there is a single CPU that process the hardware IRQs and distributed the load

across multiple CPU cores based on a calculated hash value. Note that RPS consumes

additional CPU resources in comparison to RSS. RFS (Receive Flow Steering) extends

RPS to increase the CPU cache hit rate by steering the TCP/IP processing to the CPU

where the application thread consuming the packet is running on. Importantly, if

aRFS (accelerated RFS) - a hardware version of RFS - is enabled, all the tasks (the IRQ

handling, TCP/IP and application processing) are performed on the same CPU in the

Run-to-Completion model.

Next, a packet enters the TCP/IP stack, where the data plane functions such as

parsing, classification, etc. are implemented. The TCP/IP processing starts from the

Netfilter framework, which is basically a packet filtering mechanism in the Linux net-

work stack. The Netfilter framework provides so-called kernel hooks, where the packet

can be filtered at. The most commonly used implementation of the Netfilter frame-

work is iptables. In the Netfilter subsystem, an IP header is firstly parsed and passed to

the iptables to perform packet classification based on the user-provided iptables rules.

Then, the packet, if allowed by filtering rules, is passed to the Linux routing engine,

which performs classification and forwarding based on the destination IP address. The

routing engine decides whether a packet is destined to a local application or should be

forwarded to another NIC (either physical or virtual). Depending on this decision, the

TCP/IP stack performs either the local delivery via the Socket API or packet forwarding

to another NIC. If the packet is to be delivered locally, it is passed up to the transport

layer (TCP/UDP) processing, where, for instance, the TCP state machine is running

and, then, the packet’s skb descriptor is appended to the socket’s receive queue. The

application thread receives an OS signal and performs data copy of the packet payload

1There also exists a hardware optimization of GRO that is known as Large Receive Offloading (LRO)
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from skb in the socket receive queue to the user space buffer. It is worth noticing that

this is the only step (when the data is transferred between userspace and kernel space),

in which a packet buffer is copied. All other operations within the kernel space exploit

a reference to skb and do not require data copy.

However, if the routing engine decides to forward a packet based on the routing

table entries, the packet forwarding is performed. First, the packet is processed by the

post-routing packet filtering (Netfilter) and enters Transmit Packet Steering (XPS). XPS

is a mechanism for selecting which transmit queue to choose when transmitting a packet

on a multi-queue device by recording a mapping from CPU to hardware queues. Note

that XPS may be disabled and, then, packets are distributed over transmit queues based

on the hash value calculated from packet fields. Next, the packet is sent to the Queueing

Discipline (qdisc) subsystem. The qdisc is a subsystem that implements the QoS policies

in the Linux OS. It can be configured to enforce advanced QoS mechanisms/behaviors

(e.g., Hierarchical Token Bucket) or various queueing policies. At this point, the Linux

kernel can perform traffic scheduling, shaping or policing. Then, the qdisc is responsible

for enqueueing skbs in the NIC driver TX queue. Finally, the NIC driver processes TX

queues and leverages the DMA to copy the packet data from the kernel buffer referenced

by skb to the NIC.

The described end-to-end data path shows different mechanisms and components

that are involved in the packet processing on general-purpose CPUs. Most software

datapaths rely, to some extent, on the Linux packet processing framework to take

advantage of multi-core environment and, thus, increase packet processing speed,

receive/transmit packets or perform data plane functions (including parsing, classifica-

tion, modification, forwarding and QoS enforcement). Importantly, software datapaths

shall be able to perform local delivery to the application thread via the Socket API, but

their main task is to perform packet forwarding.

Nonetheless, despite the presented general-purpose Linux packet processing pipeline

provides a reference framework for packet processing, its default flavor based on ipt-

ables and the Linux routing engine suffers from inefficiency and can hardly support

multiple 10Gbps processing at line rate [29, 32]. This led to alternative packet process-

ing frameworks, which are introduced in section 2.1.2. It is also worth outlining that

the Linux network stack does not also provide a sufficient degree of programmability
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- each new network feature must be incorporated into the kernel code first and, then,

the OS kernel must be re-compiled and re-installed.

2.1.2 Packet processing frameworks in software

In this section, we introduce packet processing frameworks that have been lately pro-

posed to improve packet processing speed on general-purpose CPUs. In [32] authors

provides an extensive survey on different packet processing frameworks. RouteBricks

[46] runs in the kernel space and extends the Linux Ethernet NIC driver to exploit

parallelism of packet processing among multiple cores of a single server, or on multiple

interconnected servers. This ability enables scaling performance of a software router up

to 1 Tbps, but it requires multiple (100) servers with a speed of 20Gbps each. Moreover,

several user-space I/O frameworks [83, 63, 50, 154, 123, 22] have been recently proposed

to reduce packet processing overheads by bypassing the kernel and receiving packets

directly in a userspace process. All these user space frameworks constantly poll the

NIC for new packets (instead of waiting for the NIC to raise a hardware interrupt to

the CPU), pre-allocate memory to minimize the packet buffer allocation overhead and

process packets in batches to reduce CPU cache misses. They can be categorized into

two groups. The first group including [154], [123] and [22] uses the default NIC driver

and additional kernel component that provides a fast interface based on memory map-

ping for the user space process. The packet I/O from/to the NIC is still handled by the

NIC driver, but the driver is directly connected to the user space application instead

of the Linux network stack. Netmap [154], however, does provide a way to integrate

with the Linux network stack and even to leverage the TCP/IP processing by using

hardware filters that can steer packets to receive queues either managed by the netmap

or kernel. Another category includes drivers that process packets completely in user

space and do not require any kernel module. Nonetheless, since ixy [50] has only been

created for educational purposes and Snabb [63] is not widely supported, only DPDK

[83] is worthy of noting. In fact, DPDK is widely adopted by industry, has mature code

base and large community, supports a wide range of offloading and filtering features

and integrates with most of NICs available in the market. We elaborate more on DPDK

in the next paragraph. Finally, other solutions uses GPUs (Graphics Processing Units)

[69, 172, 180, 62] or FPGAs [105, 118, 10] to offload packet processing, but requires
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(a) DPDK (b) eBPF (c) AF_XDP

Figure 2.3: Packet processing frameworks.

additional hardware and do not run purely on general-purpose CPUs.

Figure 2.3 shows the comparison of three packet processing frameworks that are

most relevant from the perspective of our work as they provide the best trade-off

between performance, maintainability, programmability and resource consumption:

extended Berkeley Packet Filter (eBPF) with eXpress Data Path (XDP), DPDK [83] and

AF_XDP.

DPDK implements a so-called Poll Mode Driver (PMD) that periodically polls the

NIC for new packets. As mentioned before, DPDK processes packets completely in

user space. While DPDK provides an unarguably high performance [58], it suffers

from other issues that are well-summarized in [177]. First of all, DPDK bypasses the

Linux network stack and uses its own network drivers. It causes not only the need for

re-implementing the TCP/IP network stack in userspace, but, also, well-known tools

to configure and manage NICs do not work with DPDK. This affects maintainability.

According to [177], the additional maintenance of the tools and operational cost make

this approach unattractive in large-scale deployments. Moreover, DPDK requires ded-

icated the entire CPU (or set of CPUs) to software switching, making this approach

far from cost-effective solution due to per-core pricing models applied by public cloud

providers. Nevertheless, DPDK is the most efficient packet processing framework for

software datapaths, but the high performance comes at the cost of an increased resource

consumption. Finally, DPDK provides not only the packet I/O framework, but also a

set of libraries and packet processing engine that can be used to implement software

datapaths or VNFs. It is not easily programmable though, as DPDK users cannot use a

high-level, declarative language to define a new network feature (DPDK applications
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are written in C/C++).

eBPF was originally a BSD (Berkeley Software Distribution) technology providing

a minimal instruction set as well as an in-kernel infrastructure for packet filtering

[109]. Over time, it evolved as a Linux kernel technology [85] into a general-purpose

virtual machine in the Linux kernel, designed to allow user space processes to update

the kernel’s behavior at runtime by injecting so-called eBPF programs. It provides

both the execution environment inside the Linux kernel as well as a programming

model to develop new eBPF programs (we elaborate more on eBPF internals and the

programming model in section 2.2.2). Despite eBPF is not only limited to packet

processing, it has been widely adopted by networking industry [121, 11, 37]. In fact,

eBPF extends the general-purpose Linux packet processing framework described in

section 2.1.1 and allows to inject packet processing modules into the OS network stack.

The Linux kernel provides a few BPF hooks - packet interception points in the Linux

network stack, where an eBPF program can be attached to (Figure 2.3b). The TC

(Traffic Control) hook is integrated into the Linux network subsystem. It handles

incoming packets before they reach Netfilter (the TC Ingress hook), or after they are

processed by Netfilter and send out to an output port (the TC Egress hook). The

XDP (eXpress Data Path) hook [75, 181] runs directly in the NIC driver and receives

packets immediately after they are received by the NIC driver, even before the skb

descriptor is allocated. This allows to avoid wasting CPU cycles on other operations

(e.g., memory allocation) and, thus, eBPF programs attached to XDP are able to reach

higher throughput values than programs on TC [181]. The performance of XDP is

still lower than of DPDK [75], but eBPF-based packet processing is highly extensible,

does not consume additional CPU resources and, as it is well-integrated with the Linux

kernel, enables using standard network configuration tools (it means better operability).

Note that eBPF/XDP relies on the standard Linux mechanisms such as IRQ handling,

NAPI, RSS, RPS/RFS, XPS, etc.

Finally, Figure 2.3c depicts the AF_XDP technology [86], which heavily relies on

XDP, but moves the packet processing to the user space. AF_XDP is essentially a new

socket API type that leverages an in-kernel eBPF program attached to XDP to bypass

the kernel and send packets directly to the user space. Importantly, AF_XDP can

operate in a zero-copy mode (if supported by a NIC driver), in which the userspace-
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provided memory is directly used for DMA delivery. The choice between in-kernel XDP

processing vs. AF_XDP depends on the use case. According to [147], their performance

is comparable, with a little advantage of AF_XDP over XDP for packet forwarding.

Since both are integrated with the Linux kernel, they provide a sufficient level of

maintainability. Also, both depend on the Linux mechanisms to handle the multi-core

processing. Thus, the CPU usage characteristics is roughly comparable (and the CPU

usage is much lower than for DPDK [75]). The main difference between eBPF/XDP and

AF_XDP is in programmability and packet processing capabilities. The AF_XDP socket

is, in fact, just a packet I/O framework and requires implementation of packet processing

engine in user space. The user space gives more flexibility in what algorithms and data

structures are feasible, but requires re-implementation of the TCP/IP stack (e.g., ARP

and ICMP handling). Also, a level of data plane programmability depends on the

choice of a packet processing engine. AF_XDP itself (as a packet I/O framework) does

not provide a way to develop packet processing pipeline. On the other hand, eBPF/XDP

provides both a packet I/O framework and a highly extensible packet processing engine

as well as a programming model. Nevertheless, eBPF/XDP may not always be the best

choice, because in-kernel packet processing is constrained and some network features

may not be feasible there.

2.1.3 Packet classification algorithms

The previous section focuses on the packet I/O frameworks - a way to deliver packets

to a software application implementing a packet processing pipeline. In this section,

we describe algorithms and data structures that are used to implement data plane

functions, once a packet is delivered to a packet processing pipeline.

The main challenge for software-based packet processing is an efficient packet

classification. Parsing is simply done by mapping a packet buffer referenced by a packet

descriptor to protocol headers’ format. Deparsing is a reverse operation that either

modifies a packet buffer or copies data from a packet descriptor to the packet buffer.

Packet modification typically modifies just a packet descriptor or a packet buffer directly,

but it does not require significant computing cost. Finally, forwarding is performed by

means of a packet I/O framework.

SDN software datapaths requires an online packet classification system. This means
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that a classification table may be frequently updated, i.e., forwarding rules may be

often inserted, modified or removed - depending on the intelligence implemented in

an SDN controller. Therefore, packet classification algorithms for software datapaths

must not only offer an efficient classification in the data plane, but, also, fast table

updates. Moreover, software systems are typically provisioned with a large number of

forwarding rules. Hence, packet classification mechanisms must scale, i.e. a growing

number of forwarding rules should not degrade classification performance and, in

consequence, packet forwarding rate (throughput).

We can distinguish four main types of classification: exact, Longest-Prefix Match

(LPM), ternary (or wildcard) and range. The exact classification looks for a one-to-one

mapping between a packet header’s field and forwarding rule and can be implemented

with hash tables [158]. Hash tables provide O(1) average complexity for lookups, up-

dates and deletions, regardless of the number of entries2. For instance, a cuckoo hashing

has been proven to process packets at high rates [195].

The drawback of the exact classification is that it requires a huge number of entries

in a large-scale system to cover all network policies, routes and network endpoints.

Therefore, more scalable classification schemes have been proposed: Longest-Prefix

Match, ternary (also known as wildcard) and range matching. All these algorithms

can be easily implemented in hardware with Ternary Content-Addressable Memory

(TCAM) at the cost of memory resources. However, general-purpose CPUs do not

have an efficient way to perform this kind of classification. Thus, some algorithmic

techniques for software are used.

The LPM classification aggregates network flows into subsets. The primary use case

for Longest-Prefix Match is IP routing, in which a forwarding decision is made based

on a destination IP address. In case of LPM, table entries matching on a destination

address are aggregated per IP subnet and selected according to a prefix (the number

of leading address bits of the destination address that matches a table entry). The

longest prefix has always the highest priority. The LPM classification is typically based

on a trie, a variant of a tree data structure. Many trie-based algorithms has been

proposed for LPM including unibit tries, multibit tries, level-compressed tries, Lulea-

Compressed tries and tree bitmap [179]. Also, binary search techniques have been

2The worst case complexity of hash tables is O(n) due to hash collisions that might occur.
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adapted to implement Longest-Prefix Match [101, 179]. The range-based classification

checks if a packet’s field is within the specified value range. The range matching is

typically implemented using range-to-prefix conversion [65], where a W-bit range can

be represented by at most 2W - 2 prefixes, and implemented using LPM tables. Over

years, some optimizations to range-to-prefix conversion have been proposed [52].

Finally, the ternary (wildcard) matching is a general classification scheme that can

match on arbitrary packet fields, where a particular field (or even individual bits) can

be set as "don’t care" in a flow rule. The ternary classification provides a full flexibility

to defining flow rules and it is often used for Access Control Lists (ACLs). Software-

based packet processing systems have leveraged different algorithms for the wildcard

classification. One solution is Tuple Space Search (TSS) algorithms [169, 40]. TSS [169]

decomposes a ternary lookup into a sequence of lookups to hash tables, where each

hash table represents a set of wildcard fields being matched. Thus, a lookup to such a

ternary table is implemented as a linear search over each hash table. TupleMerge [40]

optimizes the TSS algorithm by merging some hash tables to reduce number of lookups.

The TSS algorithms are marked by fast updates and memory resources linear in the

number of rules. Another group of ternary classification algorithms are decision-tree

based classifiers such as HiCuts [66], HyperCuts [164] or EffiCuts [178]. These algo-

rithms generally provide faster lookups than TSS, but consume memory polynomial

in the number of rules. Moreover, decision trees must be usually re-constructed when

inserting or updating a flow rule. Thus, they require complex computations making

the update time slower comparing to TSS. Yet another approach are cross-producting

[170] and solution based on binary logic [14, 100]. However, both approaches have

prohibitive memory costs. A final choice of a wildcard classification algorithm should

depend on throughput requirements, memory limitations and expected forwarding

rule patterns. Nevertheless, the TSS algorithms have so far been preferable for SDN

software datapaths (e.g., OVS [148]) mainly due to linear memory requirements and

faster updates that are frequently performed in SDN systems. Therefore, TSS has also

been adopted by NIKSS.

LPM, range or ternary matching on general-purpose CPUs is basically a costly

operation that consumes significant amount of CPU cycles. Hence, it is inefficient

to apply complex packet classification for each incoming packet. Flow caching is a
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known technique for reducing the average cost of complex packet classification [95, 163,

193]. The concept of flow caching is straightforward. The simplest design assumes an

existence of exact-match cache (typically based on hash tables) before the classification

table. If a packet misses the cache, it is further processed by the packet classification

engine. After the packet has been classified, a rule is installed in the cache, so that

all subsequent packets of the same network flow will hit the cache and skip the costly

packet classification. Some papers [163, 94, 148] also propose second-level caches to

optimize for the case of short-lived connections that may be handled inefficiently with

just a simple single-level cache. In our work the flow caching technique is applied to

optimize the performance of lookups to P4 tables in the NIKSS solution.

2.1.4 Performance metrics for software-based packet processing

The following key performance metrics have been defined [26] to evaluate the perfor-

mance of any kind of a data plane device:

• Frame loss rate (or Packet loss ratio) - percentage of frames that should have been

forwarded by a network device under constant load that were not forwarded due

to lack of resources.

• Throughput - defines a maximum rate at which a given device is able to process

packets, assuming a certain maximum frame loss rate. Throughput is typically

reported in packets per second (pps) or bits per second (bps). The former does

not depend on a packet size of generated traffic stream and, thus, provides a clear

metric about how fast a given system processes packets. Given a packet size in

bytes, it is straightforward to calculate the throughput value in bits per second.

Finally, the throughput is often measured in the Non-Drop Rate (NDR) scenario,

which assumes 0% packet loss. On the contrary, a Partial-Drop Rate (PDR) is a

throughput value measured assuming a certain level of packet loss ratio.

• Latency - for store-and-forward devices (such as software datapaths), it is defined

as the time interval starting when the last bit of the input frame reaches the

input port and ending when the first bit of the output frame is seen on the

output port. Naturally, the latency is reported in seconds. However, the most

meaningful metrics are the minimum and maximum latency, and the latency
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distribution that shows different percentiles (e.g., 50%, 90%, 99%) from a set of

latency measurement results.

In case of software datapaths, these metrics depend on execution efficiency of packet

processing on general-purpose CPUs. Therefore, the major meaningful performance

indicator for packet processing on general-purpuse CPUs is a number of CPU cycles

per packet (CPP), which is defined as follows:

CPP =
#instructions

packet
∗

#cycles
instruction

=
IPP
IPC

The above equation binds two other important metrics: IPP (Instructions per Packet)

and IPC (Instructions per Cycle). IPP depends on the packet processing program

structure and can be improved by minimizing the number of CPU instructions needed

to perform a packet processing task. IPC defines a number of instructions executed by a

CPU per cycle. Software developers may optimize IPC by writing a more CPU-friendly

code. Nevertheless, CPP is the most common performance metric for software packet

processing and is experimentally measured using CPU profiling tools (e.g., Linx perf

[126]). Importantly, the throughput rate can be bound with CPU cycles per packet as

follows:

Throughput[pps] =
1

CPP ∗ cycle_time[sec]
=

CPU f req[Hz]

CPP

In practice, it is extremely hard to mathematically predict the target performance

of a software system. First of all, there are many components consuming CPU cycles

and contributing to the performance overhead, including packet processing on CPUs,

memory bandwidth, I/O bandwidth and inter-socket transactions. Moreover, there

are many OS-level mechanisms that have significant impact on performance (e.g.,

scheduling, DCA, IOMMU, NUMA node allocation) [29]. Therefore, the software

datapath benchmarking typically measures CPU cycles per packet and/or Instructions

per packet taken by a program implementing a packet processing pipeline, in isolation

from other performance-affecting factors and under a given, fixed OS configuration.
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Figure 2.4: Typical performance evaluation framework for software switches with

measurement points marked by red circles.

Figure 2.4 shows a typical performance evaluation framework for software switches.

A Switch Under Test (SUT) is usually running on a multi-core CPU environment and

receives traffic from high-speed NICs. At the other end, a traffic generator is connected

to those NICs. The traffic generator sends a stream of packets to the SUT machine,

the SUT processes packets and sends them back to the traffic generator. Figure also

shows the measurement points. Packet loss ratio, throughput and latency is measured

by the traffic generator (measurement point 1.), while CPU Cycles per Packet (CPP),

Instructions per Packet (IPP) and Instructions per Cycle (IPC) are registered by polling

CPU statistics on the SUT machine (measurement point 2.).

2.2 Abstractions for programmable data planes

Programming abstractions (or programming models) are essential to enable users,

software developers and researchers a way to design and implement flexible packet

processing pipelines, without an intimate knowledge about the underlying hardware

(e.g., ASIC or CPU) architecture. There are two main programming models that have

so far been proposed for data plane programming: data flow graphs and Match-Action

processing.

Data flow graphs have been initially used in the early designs for packet processing

systems. This model assumes that a packet processing pipeline is abstracted as a

data flow graph, with the nodes representing packet processing stages and edges

representing transitions from one processing stage to another. Most packet processing
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engines based on the data flow graphs enable users to dynamically define and insert

processing nodes and modify transitions. This leads to high flexibility and extensibility,

but hinders the ability to implement platform-specific performance optimizations as

a packet processing pipeline might be highly dynamic. A precursor of the data flow

graph abstraction was the Click modular router proposed in 2000 by E. Kohler et

al. [96]. Nowadays, the data flow graph abstraction is still used by the state-of-the-

art software switches such as ClickOS [108], Vector Packet Processing (VPP) [15] or

Berkeley Extensible Software Switch (BESS) [68].

Match-Action processing describes data plane programs using a sequence of clas-

sification tables (flow or Match-Action tables) organized into a hierarchical structure

[115]. Each Match-Action table defines a match key, a subset of the packet header fields

that are used to perform a table lookup (classification) to find a corresponding action.

Network engineers or administrators configure the Match-Action tables with a set of

rules (match key + action) defining packet processing behavior. The Match-Action pro-

cessing is sometimes referred to as flow-based packet processing, as packets matching

a given Match-Action table are represented as a flow. A prominent example of the

Match-Action processing abstraction is OpenFlow [110], which had been an evolution

of Ethane [30]. OpenFlow provides an abstract forwarding model based on Match-

Action processing for open and programmable data plane devices and the OpenFlow

protocol, an API to control such devices. With OpenFlow, SDN controllers or network

administrators can instruct OpenFlow-compliant devices how to forward packets by

installing the rules in the devices’ Match-Action tables.

OpenFlow is a stateless data plane abstraction though, i.e. the data plane cannot

modify a forwarding state itself (e.g., depending on packets seen by a switch). Over

time, a number of stateful data plane abstractions extending the Match-Action pro-

cessing model has been proposed [20, 21, 151]. Moreover, OpenFlow suffers from two

major limitations [24]: 1) the Match-Action forwaring model allows processing on only

a fixed, pre-defined set of packet fields, and 2) the OpenFlow specification only defines

a limited repertoire of packet processing actions. In [24], authors propose the RMT (Re-

configurable Match Tables) model enabling more flexibility in how packet processing

pipelines are defined. RMT allows defining custom protocol headers, matching pack-

ets on arbitrary header fields and applying packet modifications in a programmable
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manner. dRMT [24] is an extension of RMT that relaxes some constraints on sequen-

tial processing and the forwarding state sharing between the pipeline stages. In 2014,

a group of researchers borrowed from such techniques as RMT and programmable

parsers [61] to overcome OpenFlow limitations and proposed the P4 technology [23],

starting an industry move towards data plane programmability [72].

2.2.1 Data plane programmability and P4

Data plane programmability means that the network data plane realized by packet

processors (e.g., ASICs, NPUs, general-purpose CPUs) can be re-programmed and

a packet processing pipeline can defined as a software program. With data plane

programmability everyone can build a custom network protocol or packet processing

algorithm on a re-programmable packet processor. This provides full flexibility to

designing network systems. Authors in [72] and [78] list the following benefits of data

plane programmability:

• New features. Data plane programmability provides full flexibility to network

packet processing. Novel data plane algorithms, protocols and techniques can be

invented by students, researchers, network administrators or network programmers

and quickly implemented. This can foster network innovation and produce many

new network services.

• Reduced complexity and efficient use of resources. Typically, platform vendors

provide all-in-one appliances that implement a wide spectrum of network protocols.

It is up to a network administrator to choose and configure required protocols.

With data plane programmability, a network owner can just implement protocols

or mechanisms that are required for a particular use case and remove others. This

decreases the overall complexity of a data plane implementation, improves security

as a hacker cannot leverage unused protocols to attack a system and implies more

efficient use of resources as unmaintained protocols do not occupy limited memory

resources.

• Fast prototyping and short time to market. Network system or protocol designers

can quickly experiment with novel protocols or packet processing techniques and

build prototypes to validate their ideas. Compared to long development cycles of
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new hardware-based solutions, new data plane algorithms can be implemented and

tested in a matter of days.

• Software style development. Data plane programmers can apply development

tools that are used for typical software development, e.g., Continuous Integration

and Deployment, Agile development, bug fixing, automated tests, etc. All these

tools and techniques allows to build more reliable software.

• Intellectual property. Data plane programmers keeps their own ideas and do not

need to share know-how with silicon/ASIC vendors. This opens the market for

smaller companies and can break a vendor lock-in.

In 2014, Bosshart et al. [23] proposed P4, a framework for programming protocol-

independent packet processors. P4 defines both a high-level, domain-specific pro-

gramming language to define packet processing behavior and an abstract forwarding

model of a P4-compliant network device. The P4 framework was designed around

three principles:

• Runtime re-configurability. A programmer or SDN controller should be able to

replace or modify the way switches process packets once they are deployed.

• Protocol independence. Packet processing pipelines should not be tied to any spe-

cific network protocol. Instead, a P4 programmer should be able to define and

implement any packet header that can be used in the packet processing pipeline.

• Target independence. P4 should be able to describe packet processing pipeline

without the in-depth knowledge about the architecture and specifics of an underlying

platform (called P4 target).

P4 is an open-source technology and all specifications are being maintained by the

P4.org consortium. The first version of the P4 language, P414, was proposed in 2015.

P414 was significantly based on the PISA (Protocol-Independent Switch Architecture)

switch and consisted of the basic programming abstractions such as Parser, a Control

flow, including Match-Acton tables and stateful objects (e.g., packet counter, register),

and Deparser. Since 2015 the P4 language has evolved and currently the up-to-date

language version is P416 [28].
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Figure 2.5: The P4 workflow.

P4 is designed to be implementable on a large variety of targets, including pro-

grammable network interface cards, FPGAs, software switches and hardware ASICs.

The basic P4 workflow is depicted in Figure 2.5. The P4 architecture assumes that a net-

work forwarding device is fully programmable, i.e. its packet processing pipeline can

be dynamically changed at runtime. Firstly, a P4 programmer writes a P4 program, a

high-level description of a packet processing pipeline, using programming abstractions

provided by the P4 language. Moreover, the P4 program must be written according

to an abstract forwarding model defined by P4. Next, the P4 program is translated

to the target-specific microcode by the P4 compiler. The P4 compiler turns a target-

independent representation of packet processing into a target-dependent binary that is

loaded onto a device. In this way, the P4 compiler abstracts low-level platform details

from a programmer and can optimize a target binary for a given platform. Finally,

the target binary is injected into the network forwarding device. Additionally, the P4

compiler generates a control plane API, a meta-description of a forwarding pipeline,

that can be used by an SDN controller to manage P4-capable devices (e.g., to insert

table entries). Currently, P4Runtime API [174] is a standard control plane protocol for

P4-programmable devices.

A basic P4 program is composed of at least three programmable blocks: Parser,

Control and Deparser. A standard information flow between them is depicted in

Figure 2.6. A Parser reads incoming packets and extracts header fields into header

data and metadata. Since P4 does not include pre-defined packet header definitions,
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Figure 2.6: P4 information flow in the PISA model.

a programmer must define all required header formats and make sure that they are

parsed correctly. Parsers are abstracted as a Finite State Machine (FSM) with an ex-

plicit start, reject and accept states and other custom states. Deparser performs a

reverse operation to Parser - it serializes a packet from header data and metadata and

reassembles the packet header and payload back into a byte stream. A Control block is

placed in between Parser and Deparser and it implements data plane algorithms using

Match-Action processing. The P4 language provides general-purpose statements such

as if-else, switch or return to express the program flow within a control block. More-

over, it allows, among others, to perform assignments between header data, metadata

and arbitrary constant values, to lookup Match-Action tables (called P4 tables) and to

invoke external, platform-specific functions (called P4 externs) that might involve ad-

ditional state preserved between program run. All these programmable blocks operate

on shared data types such as header (defining a packet header) or struct that defines

a custom metadata container.
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header ethernet_t {

bit<48> dst_addr;

bit<48> src_addr;

bit<16> etherType;

}

header mpls_t {

bit<20> label;

bit<3> tc;

bit<1> bos;

bit<8> ttl;

}

header ipv4_t {

bit<4> version;

bit<4> ihl;

bit<6> dscp;

bit<2> ecn;

bit<16> totalLen;

bit<16> identification;

bit<3> flags;

bit<13> fragOffset;

bit<8> ttl;

bit<8> protocol;

bit<16> hdrChecksum;

bit<32> srcAddr;

bit<32> dstAddr;

}

[... TCP, UDP definitions

...]

struct headers {

ethernet_t ethernet;

mpls_t mpls;

ipv4_t ipv4;

tcp_t tcp;

udp_t udp;

}

Listing 2.1: Sample declaration

of packet headers supported by

a P4 program.

parser IngressParserImpl(packet_in packet,

out headers hdr, ...) {

state start {

transition parse_ethernet;

}

state parse_ethernet {

packet.extract(hdr.ethernet);

transition

select(hdr.ethernet.etherType) {

TYPE_IPV4: parse_ipv4;

TYPE_MPLS: parse_mpls;

default: accept;

}

}

state parse_mpls {

packet.extract(hdr.mpls);

transition parse_ipv4;

}

state parse_ipv4 {

packet.extract(hdr.ipv4);

transition select(hdr.ipv4.protocol) {

PROTO_UDP: parse_udp;

PROTO_TCP: parse_tcp;

default: accept;

}

}

state parse_udp {

packet.extract(hdr.udp);

transition accept;

}

state parse_tcp {

packet.extract(hdr.tcp);

transition accept;

}

Listing 2.2: Sample Parser implementation

extracting Ethernet, MPLS, IPv4, UDP and TCP

headers.
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control IngressControl(inout headers_t hdr, inout metadata user_meta, in

psa_ingress_input_metadata_t std_meta) {

Counter<bit<32>, bit<32>>(100, PSA_CounterType_t.PACKETS) in_pkts;

[... declarations of tbl_ingress_vlan, tbl_routable, tbl_routing ...]

action mac_learn() {

user_meta.send_mac_learn_msg = true;

user_meta.mac_learn_msg.mac_addr = hdr.ethernet.src_addr;

user_meta.mac_learn_msg.port = std_meta.ingress_port;

user_meta.mac_learn_msg.vlan_id = hdr.vlan_tag.vlan_id;

}

table tbl_mac_learning {

key = {

hdr.ethernet.src_addr : exact;

}

actions = {

mac_learn;

NoAction;

}

const default_action = mac_learn();

}

action forward(PortId_t output_port) {

send_to_port(ostd, output_port);

}

action broadcast(MulticastGroup_t grp_id) {

multicast(ostd, grp_id);

}

table tbl_switching {
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key = {

hdr.ethernet.dst_addr : exact;

hdr.vlan_tag.vlan_id : ternary;

}

actions = {

forward;

broadcast;

}

}

apply {

in_pkts.count((bit<32>)std_meta.ingress_port);

tbl_ingress_vlan.apply();

tbl_mac_learning.apply();

if (tbl_routable.apply().hit) {

switch (tbl_routing.apply().action_run) {

set_nexthop: {

if (headers.ipv4.ttl == 0) {

drop();

exit;

}

}

}

}

tbl_switching.apply();

}

}

Listing 2.3: Sample Control block implementing basic L2/L3 processing.

control DeparserImpl(packet_out packet, ..., inout headers_t hdr, in metadata

user_meta, ...) {

Digest<mac_learn_digest_t>() mac_learn_digest;
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apply {

if (user_meta.send_mac_learn_msg) {

mac_learn_digest.pack(user_meta.mac_learn_msg);

}

packet.emit(hdr.ethernet);

packet.emit(hdr.vlan_tag);

packet.emit(hdr.mpls);

packet.emit(hdr.ipv4);

packet.emit(hdr.tcp);

packet.emit(hdr.udp);

}

}

Listing 2.4: Sample Deparser implementation emitting a combination of Ethernet,

MPLS, VLAN, IPv4, TCP and UDP headers.

Listings 2.1-2.4 show sample implementations of different sections of a P4 program.

Listing 2.1 shows declaration of packet headers supported by the sample P4 program

- all headers should be implemented as they are defined in specifications. It is worth

noting that a user has full flexibility in defining packet headers, so any custom fields

are also allowed. Listing 2.2 depicts sample Parser implementation that uses packet

headers defined in Listing 2.1. The process starts in the Start state and switches to the

user-defined parse_ethernet state. Next, the following headers (MPLS, IPv4, TCP, UDP)

are parsed according to the defined conditions. A packet header is parsed by calling the

extract() function on a packet. The header data is then filled with data copied from

the packet buffer. Once a packet is parsed, the processing moves to the Control block,

which is shown in Listing 2.3. This sample implements a basic L2/L3 processing. Thus,

it defines Match-Action tables and the control flow that performs such operations as

ingress VLAN filtering, MAC learning, routing and switching. Each P4 table typically

defines a set of match keys (the key keyword), a list of actions, a default action if no

match is found and optionally a size of the table (maximum number of allowed table

entries). A match key can be a packet field or user-defined metadata. The control

plane software can install P4 table entries that maps a given set of match keys’ values
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Figure 2.7: Portable Switch Architecture (PSA) for the P4 language

to an action. A P4 action can perform direct operations on packet headers (e.g., modify

Ethernet destination address or decrement IPv4 TTL), assign some runtime-provided

value to a metadata field or invoke a P4 extern. The control flow typically contains

P4 tables’ invocations (by calling apply() on a P4 table instance) and/or calls to P4

externs, all of them guarded by conditional statements. Finally, Listing 2.4 shows a

sample Deparser implementation. A packet is reassembled by calling emit() functions

on pre-defined packet headers in a user-defined order.

There are two significant extensions that were brought by P416. First, it introduces a

concept of an architecture model, a platform-specific description of a forwarding model

that can be changed by target manufacturers. As a consequence, a P4 target vendor

should provide the target-specific P4 compiler along with a P4 architecture model

that a P4 programmers can follow to implement packet processing pipelines. The

P4 architecture typically defines P4-programmable blocks (e.g., parser, control flow,

deparser). Another important extension to the P4 language are so-called P4 externs

that should be part of the P4 architecture model definition. P4 externs are architecture-

specific functions that can be used to describe a packet processing behavior. Examples

of them are: a Register used for stateful packet processing, a Counter to count packets

or bytes or a Meter to limit a packet rate. It is worth noticing that the P4 architecture

model describes an extern functionality and API that externs expose to the control

plane, but their implementation is still target-specific.

Over time, many P4 architecture models have been proposed [72], but none of

them provide the portability of P4 programs between different P4 targets. To address
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this challenge, the P4 Architecture Working Group has developed Portable Switch

Architecture (PSA) [175]. PSA defines a set of P4 externs and APIs that every target

mapping PSA should support. Also, PSA brings a fully-featured architecture model

for network switching devices. PSA is illustrated in Figure 2.7. Since PSA provides a

general overview of P4 capabilities (and it is also used by the NIKSS solution presented

in this dissertation) we provide a detailed description of it.

The packet processing pipeline of PSA is divided into an ingress and egress pipeline,

and each is composed of three P4-programmable blocks: a Parser that extracts head-

ers, a Control block that specifies the control flow among Match-Action tables, and a

Deparser, which writes the header fields back onto the packet before sending it further.

PSA also defines configurable, platform-dependent blocks: the Packet buffer and Repli-

cation Engine (PRE) is responsible for packet buffering and replication, while the Buffer

Queuing Engine (BQE) is responsible for packet queueing at egress. Furthermore, PSA

specifies basic primitives (e.g., to drop or forward a packet) as well as a set of possible

packet paths within a P4 target. At ingress, a packet may be received from a port

(normal packet from port - NFP) or from a CPU port (NFCPU). The ingress pipeline de-

termines the output port for a packet. Then, it can be unicasted (normal unicast - NU),

sent back to the beginning of the ingress pipeline (RESUBMIT) or replicated - either by

using a multicast (normal multicast, NM) or a clone session (CI2E). At the end of the

egress pipeline, a packet may be sent to the normal port (NTP) or CPU port (NTCPU).

Additionally, it can be duplicated at the end of the egress pipeline (CE2E) - in this case,

the cloned packet starts processing at the beginning of the egress pipeline. Finally, a

packet may be recirculated and sent from the end of the egress pipeline back to the

beginning of the ingress pipeline (RECIRCULATE). PSA defines a set of externs that

implement built-in packet processing primitives. Counters are used to count packets or

bytes. Registers allow for stateful packet processing. Meters enable rate limiting, while

Checksum, InternetChecksum and Hash are used to retrieve a checksum or hash value

from a piece of data. Packet Digest can send user-defined data from the data plane to

a control plane. Action Profile introduces a level of indirection to P4 tables and, thus,

can reduce the size of the tables or the time to update them. Finally, Action Selector

enables to dynamically select an action from a user-defined set, based on a hash value

calculated from packet fields.
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Figure 2.8: The eBPF subsystem.

At last, it is also worth mentioning NPLang [122], a main alternative to P4 supported

by Broadcom switches. NPLang, however, have not been widely adopted and is only

limited to Broadcom products. More importantly, NPLang does not provide a related

control interface such as P4Runtime for P4.

2.2.2 Programming end-host network stack with eBPF

Unlike P4, eBPF [85] is a technology that has been designed for end hosts (commodity

servers with general-purpose CPUs) and is not only limited to packet processing - it

is also used for tracing, observability or profiling. Nonethelees, for the sake of this

thesis, we focus on eBPF applications in the networking space. Moreover, eBPF as a

programming abstraction is neither tightly coupled to data flow graphs nor Match-

Action processing. It provides flexibility to users on how to design and implement a

packet processing pipeline providing an assembly-like, Turing-complete language, but

both data flow graphs and Match-Action processing are feasible.

eBPF can be seen as a framework for extending operating system’s capabilities at

runtime. It provides a general-purpose in-kernel virtual machine that can safely run

eBPF programs (a set of eBPF instructions) within the kernel context on the operating

system. The high-level overview of the eBPF subsystem is depicted in Figure 2.8. The

eBPF virtual machine uses ten 64-bit, general-purpose registers and a single frame
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pointer register to run eBPF instructions. Furthermore, eBPF provides two execution

modes: eBPF instructions are either interpreted or Just-In-Time (JIT) compiled. eBPF

instructions are typically compiled from a higher-level language such as C or Rust. eBPF

instructions can be further loaded into the in-kernel eBPF virtual machine. Before that

happens, instructions are first analyzed by the eBPF verifier - an in-kernel static analyzer

that ensures the safe execution of an eBPF program and its successful termination within

the kernel context. An eBPF program runs in the Run-to-Completion mode within a

given BPF context and is triggered by a specific event (e.g., a packet reception). During

its execution, an eBPF program can perform various operations in a BPF context.

However, some complex tasks cannot just be defined by a set of eBPF basic instructions

(e.g., they usually require privileged access to kernel data). To overcome this limitation,

eBPF programs can use BPF helpers that implement more complex operations, such as

checksum computation, packet buffer resizing or access to protected kernel memory

areas. Each eBPF program runs in the per-BPF context scope. This means that the

program’s stack is not maintained across subsequent runs. To persist and share a

state between multiple executions, BPF maps can be used. A BPF map is a key-value

store that is declared at compile time and loaded into the kernel memory when an

eBPF program is injected into the eBPF virtual machine. It can be accessed either from

userspace, by invoking system calls, or from within an eBPF program, by calling BPF

helpers. Among others, eBPF provides the BPF hash map that implements a hash table

and provides constant lookup and update times, if no collision occurs, and a BPF array

map that is organized as a fixed-size array providing the fastest possible lookup time.

Listing 2.5 shows a sample eBPF program written in C, with its corresponding

bytecode form in Listing 2.6. The eBPF program implements simple packet forwarding

based on destination IPv4 address. It firstly parses Ethernet and IPv4 headers, reads

destination IPv4 address and performs lookup to the routing BPF map that is declared

at the top of the snippet. A control plane is responsible for inserting BPF map entries

that map a destination IPv4 address to an output port. The result of the BPF map

lookup is an output port. Then, a packet is forwarded by calling bpf_redirect() BPF

helper. Listing 2.6 depicts the eBPF program compiled to eBPF bytecode. As you can

see eBPF executes assembly-like instructions as defined by eBPF Instruction Set. The

eBPF bytecode can make use of all ten general-purpose registers and BPF helpers to
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implement a packet processing algorithm.

/* eBPF map declaration */

struct {

__uint(type, BPF_MAP_TYPE_HASH);

__type(key, int) ;

__type(value, int) ;

__uint(max_entries, 100);

__uint(pinning, LIBBPF_PIN_BY_NAME);

} routing SEC(".maps");

/* eBPF program */

SEC(" classifier / tc−ingress")

int tc_main(struct __sk_buff *ctx) {

void *data_end = (void *)(long)ctx−>data_end;

void *data = (void *) (long)ctx−>data;

struct ethhdr *eth = data;

if (eth + 1 > data_end) {

return TC_ACT_SHOT;

}

struct iphdr *iph = data + sizeof(*eth) ;

if (iph + 1 > data_end) {

return TC_ACT_SHOT;

}

__be32 dst_ip = iph−>daddr;

int *out_port = bpf_map_lookup_elem(&routing, &dst_ip);

if (! out_port) {

return TC_ACT_SHOT;

}

return bpf_redirect(*out_port, 0) ;

}
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Listing 2.5: Snippet of a BPF program implementing simple packet forwarding based

on destination IPv4 address.

r0 = 2

r2 = *(u64 *) (r1 +80)

r1 = *(u64 *) (r1 +200)

r3 = r1

r3 += 14

if r3 > r2 goto pc+18

r3 = r1

r3 += 34

if r3 > r2 goto pc+15

r1 = *(u32 *) (r1 +30)

*(u32 *) (r10 −4) = r1

r2 = r10

r2 += −4

r1 =map[id:1]

call __htab_map_lookup_elem#141104

if r0 == 0x0 goto pc+1

r0 += 56

r1 = r0

r0 = 2

if r1 == 0x0 goto pc+3

r1 = *(u32 *) (r1 +0)

r2 = 0

call bpf_redirect#8525776

Listing 2.6: BPF bytecode for the C program in Listing 2.5.

As mentioned before, eBPF programs can run within various BPF contexts. For

the sake of this thesis, we focus on TC and XDP hooks, BPF contexts related to packet

processing within the Linux kernel, which has already been introduced in Section 2.1.2

and we extend their description in this section. The eXpress Data Path (XDP) hook is

the lowest packet handling point in the network stack, where an eBPF program can be
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triggered by the arrival of a packet. In fact, XDP is implemented by the NIC driver and

the eBPF program is executed there before the allocation of the Linux socket buffer (skb)

- a packet descriptor within the Linux network stack. Another network related BPF

hook is Traffic Control (TC). On the RX side, eBPF programs attached to the TC hook

are executed after the skb is allocated but before a packet reaches the upper layers of the

network stack (the IP layer and higher). There are major differences between XDP and

TC. First of all, XDP runs eBPF programs immediately after a packet is received by the

NIC driver and avoids wasting cycles on some operations done by higher layers (e.g.,

skb’s allocation). Therefore, XDP usually offers higher throughput than TC. However,

the capabilities of XDP are more limited [112]. TC and XDP also differ in the set of BPF

helpers they support. Finally, the XDP hook is only available on ingress, while the TC

layer provides both ingress (RX) and egress (TX) hook points.

The in-kernel implementation is the most adopted flavor of eBPF. It has also been

selected as a packet processing engine for NIKSS. However, since P4rt-OVS processes

packets in userspace with DPDK, it cannot use the in-kernel eBPF. Therefore, P4rt-OVS

relies on a userspace BPF (uBPF) [102, 34], another flavor eBPF that implements eBPF

VM and can execute eBPF programs in userspace. The uBPF implementation follows

the same model as the in-kernel eBPF flavor and supports BPF maps, similar set of

BPF helpers, can JIT-compile programs to x86-64, and includes a limited BPF verifier.

Finally, it is worth noticing that there were also attempts to use eBPF for hardware-

based packets processors. The hXDP project presents a solution to run XDP programs

written in eBPF on FPGA cards using only a fraction of the available hardware resources

while matching the performance of high-end CPUs [27].

2.3 Conclusions

P4rt-OVS and NIKSS take advantage of the multi-core CPU environment to scale

throughput. P4rt-OVS leverages DPDK as a packet processing framework, while NIKSS

makes use of eBPF/XDP. For both solutions, we measure throughput, latency distribu-

tion and CPU cycles per packet as described in Section 2.1.4. Both P4rt-OVS and NIKSS

implement the exact and LPM packet classification. Moreover, NIKSS additionally im-

plements ternary classification using Tuple Space Search algorithm and also employs
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flow caching to optimize performance.

Furthermore, both P4rt-OVS and NIKSS use P4 over eBPF (or uBPF in case of

P4rt-OVS) as a programming abstraction. P4 is a high-level language that can largely

simplify the development of software switches, but it is less flexible than eBPF. On the

other hand, eBPF provides a Turing-complete language for packet processing, but, as a

low-level technology, it requires a strong development expertise and domain-specific

knowledge about the OS network stack. This dissertation argue that the P4 technology

can bring significant benefits to software switches. First and foremost, P4 provides an

auto-generated control plane interface (P4Runtime [174]) and, thus, it provides interop-

erability with existing SDN controllers (such as ONOS [19]). This enables integrating

software switches into the end-to-end programmable network and can lead to novel

network applications. Second, P4 can lower a development complexity for network

developers - they no longer need to satisfy the eBPF verifier, as it is a role of the P4

compiler to generate a code that is compatible with the underlying packet processing

framework. Moreover, as shown in [160], the P4 language can significantly simplify

the development of new network applications by reducing the lines of code compared

to an equivalent C code.
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Chapter 3

Need for a programmable SDN

software switch

The main motivation for this thesis is to apply an approach of programmable data

planes to software switches that are vital component of modern network virtualization

systems [97]. In network virtualization, software switches play a role of the primary

provider of virtual (overlay) network services for VMs or containers, while data center

networks (often referred to as underlay networks) only provide IP connectivity between

servers, where VMs/containers are running on. This approach allows overlay networks

to be decoupled from their underlying networks, and by leveraging the flexibility of

general purpose packet processors, virtual switches can provide VMs, their tenants,

and administrators with logical network abstractions like Security Groups or ACLs,

services (e.g., Firewall, NAT).

Network virtualization demands a capable software switch. The increasing com-

plexity of virtual networking, emergence of network virtualization, and limitations

of existing virtual switches led to novel solutions such as Open vSwitch (OVS) [148]

that provide a certain degree of flexibility in defining packet processing pipelines using

OpenFlow [110]. In fact, such a general-purpose software switches as OVS are currently

widely deployed [182, 51, 167]. However, the emergence of 5G/6G networks, machine

learning, artificial intelligence, augmented and virtual reality puts new demands on

network virtualization platforms. First of all, software switches might require frequent

updates to support new protocols or encapsulation techniques for overlay networking,

new network telemetry mechanisms or security applications. Moreover, a network
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Figure 3.1: Vision of end-to-end programmable network.

infrastructure owner may need to introduce a custom protocol extensions to optimize

their systems. It should be possible to use a high-level programming language such as

P4 to dynamically customize a packet processing pipeline without an intimate knowl-

edge about software switching technology, so that network owners can smoothly in-

troduce new features, fix network issues, perform software upgrades to the data plane

devices or customize their network protocols to meet customers’ requirements.

Furthermore, real benefits of programmable software switches are more demon-

strable once we put them in the context of an end-to-end programmable network

(Figure 3.1), where each device on the packet path (including WiFi access points, radio

base stations, aggregation switches, core routers, NICs and software swithes) exposes

programmable data plane and the network behavior is entirely defined in software.

Expanding a programmable SDN domain to end hosts makes networks programmable

in an end-to-end fashion using a common programming language (P4) and a unified

control plane interface (P4Runtime). This approach enables new use cases that would

not have been possible (or would be difficult to implement in a timely manner) without

P4-programmable software switches. To name a few, a P4-programmable software

switch could provide an early classification for end-to-end network slicing and QoS at

the container or VM interface that could be further used by each network element on

53



the packet path to enforce isolation or QoS policy. Moreover, coordination between all

programmable network devices could lead to enhanced, end-to-end network visibility

(e.g., with In-Band Network Telemetry [141]) to pinpoint a network element contribut-

ing to increased latency or detect packet drops or other anomalies. The end-to-end

network visibility also makes a concept of verifiable networks feasible [57]. Looking

ahead, the end-to-end programmable network could also enable deploying completely

new networking paradigms such as Named Data Networking [116]. Finally, both un-

derlay and overlay networking can be controlled by the same SDN controller giving an

opportunity to eliminate network overheads and simplify network design by flattening

underlay and overlay networks.

It is worth motivating a P4-programmable software switch through case studies

that prove usability of the P4-capable software datapath.

Case study #1: End-to-end network visibility. Let us start from already-mentioned

example - end-to-end network visibility with In-Band Network Telemetry (INT). INT

[141] is a promising technology that has been enabled by P4-programmable switches.

It defines an open framework that uses data plane elements to produce per-packet

fine-grained telemetry information such as input and output ports, per-hop packet

latency, queue congestion status or, if a packet is dropped, a reason code (e.g., TTL

zero, table miss, etc.). It is achieved without any intervention of network control plane

- telemetry reports are generated and collected by network data plane. In the INT

architecture, each element on the packet path collects information about how packet

has been processed internally (e.g., processing latency, input/output port, etc.). Then,

depending on the INT mode, the telemetry information is either inserted to a packet as

an INT header or sent to an INT collector via an out-of-band channel. So far, INT has

been mainly implemented for P4 programmable hardware switches and integrated into

data center underlay networks or wide-area networks. However, observing packets

as they travel through data center switches is knowing only half of the story and it

does not provide a full network visibility. Nowadays, a journey of a packet starts

inside VM or container at end hosts. Therefore, observing hardware switches only is

not enough. Forwarding scenarios in modern virtualized data centers are complex.

Packets are encapsulated using different tunneling protocols for different portions of

the path, they travel through end hosts multiple times because of the network services
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such as load balancers, and they are transformed using NAT in the middle of the path.

Many things can go wrong on the end hosts too. For example, packets can be dropped

because of table miss in the packet processing pipeline of a software switch, because of

an explicit network policy applied by a network administrator, or because of a bug in

a packet processing pipeline of a software datapath. Similarly, packets can be delayed

because of a congested end-host queue, or because the end-host CPU is overloaded

with other tasks. INT provides a way to quickly detect and react to such anomalies.

To obtain visibility on these and other anomalies, INT must be supported by software

switches as well. However, none of existing software datapaths implement INT. There

are research projects investigating an approach to add the INT support into the OVS

pipeline [64], but it has not so far been accepted and merged by OVS maintainers. This

is where P4-programmable software switches bring the added value. INT extensions

can be implemented in a P4 program and compiled to the on-CPU packet processing

pipeline. Network owners can implement INT on their own, without waiting for

the INT framework to be implemented by software switches. Once implemented,

the end-to-end network visibility with INT can be leveraged to validate Service Level

Agreements (SLA) for QoS metrics and to provide faster network troubleshooting.

More on the Host-INT use case can also be found in our paper [127].

Case study #2: Scalable large flows’ detection. Real-world measurements [92]

show that a large fraction of datacenter traffic is carried in a small fraction of flows.

These flows that transfer significant amount of data are called large (or elephant) flows.

Elephant flow detection is a significant research problem addressed by many papers

e.g., [17, 67, 186]. This problem may be important due to several reasons. For exam-

ple, it can aid QoS-aware traffic engineering decisions. Moreover, limited resources

on hardware switches cause the need for hybrid software/hardware flow tables [184],

where a subset of traffic is handled by switch CPU instead of hardware packets pro-

cessor (e.g., ASIC). In such a case, it is important to handle elephant flows directly in

the ASIC. Otherwise, the switch CPU would not manage to process such a volume

of traffic, leading to packet drops and overall performance loss. Most of proposed

detection mechanisms incur high monitoring overheads, consume significant switch

resources, and/or have long detection times. These methods typically use periodic

polling of statistics from switches, streaming techniques like sampling, or even L7
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application-level modifications. Both per-flow statistics-based and sampling-based

approaches can be implemented either on the switch CPU or in the controller - both

methods have notable drawbacks. The switch CPU is typically not powerful enough to

perform complex flows’ analysis. On the other hand, sending packet samples or statis-

tics to a remote controller causes longer detection times. Furthermore, an approach

based on per-flow statistics is considered to be not scalable enough for large networks,

while sampling-based methods introduce overheads to the detection process. In [39]

authors presented a novel, scalable solution to large flows’ detection problem. Instead

of performing detection process in the network, they propose to run detection jobs at

the end hosts, before a packet leaves a server. They implement a custom OS kernel

extension that monitors socket buffers to detect elephant flows leaving a host. Once

an elephant flow is identified, information is signalled to network devices by mark-

ing IP packets with a custom DSCP field value. It turns out that this brilliant idea

is difficult to implement in real-world deployments. First of all, implementators are

rarely willing to use custom OS extensions that have not been verified and accepted

by the Linux community. It would be optimal to run the detection process inside a

packet processing pipeline of a software switch. However, none of software switches

provide elephant flows’ detection mechanisms as it is an advanced feature, which is

not typical for software datapaths. Furthermore, the DSCP field is usually used for

QoS signalling. Therefore, it is not always possible to use it and it is hard to find other

field to signal elephant flow existence to the network. However, an end-to-end pro-

grammable network with P4-programmable software switches at end hosts can change

the status quo. With a P4-programmable software switch at end hosts, a network

owner can extend the packet processing pipeline of the software switch and implement

a detection method. A naive approach would be to inspect outgoing packets, check

their size (packet length) and persist aggregated statistics in a stateful object such as a

P4 Register. This is straightforward to implement with a P4-programmable software

switch. Moreover, a P4 software switch provides a way to insert custom packet head-

ers into a packet. This can be used to carry information about elephant flows. As far

as other devices in a network are also P4-programmable, all elements on the packet

path are able to recognize and read the custom header. Moreover, P4-programmable

network devices can be managed by a single SDN controller making deployment of

56



3.1. USE CASES

the elephant flows’ detection framework more smooth. Finally, the custom header may

also carry some additional meta-information about a flow to provide an input to the

decision algorithm for QoS-aware traffic engineering, hybrid software/hardware flow

table offloading or other network services.

The above case studies clearly show benefits that a P4-programmable datapath

can bring, particularly when deployed as part of an end-to-end programmable SDN

domain. There are a lot more practical P4 applications for P4 software switches that

we briefly present in the next section.

3.1 Use cases

Both P4rt-OVS and NIKSS have been built as the enablers of various P4 use cases that

are well-summarized in [106] and [72]. We also briefly present some of these P4 use

cases to show the full spectrum of P4 applications for which P4rt-OVS and NIKSS can

be used. All the undermentioned examples show a great potential of the P4 technology

and we believe that P4rt-OVS and NIKSS can successfully become enablers for future

innovations in programmable networks.

Advanced network monitoring. An efficient network monitoring solution usually

requires an advanced mechanisms to count flows, detect anomalies or sample packets.

P4rt-OVS and NIKSS can be used on hypervisor servers to implement the state-of-the-

art solutions that rely on stateful packet processing using P4 registers: SpreadSketch

[173] to identify hosts with a large number of distinct connections using P4 registers,

TurboFlow [168] to generate flow records using microflow aggregation, or ElasticSketch

[188] to implement the measurement solution that is adaptive to available bandwidth,

packet rate and flow size distribution.

Stateful firewall in data plane. Recent firewalls perform stateful analysis of packets

to keep track of network connections. Existing software switches such as OVS already

provide an integration with the Linux connection tracking module that enables stateful

processing of network connections. However, P4rt-OVS and NIKSS can enable more

advanced or customized solutions for stateful firewalls such as firewall for 5G networks

[153] or P4Guard [42], a P4-based, configurable firewall.

Heavy hitter detection. Heavy hitters (traffic that consumes a lot of bandwidth
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for a short period of time) often remain undetected by conventional solutions due to

their specific traffic characteristics. P4rt-OVS and NIKSS could be used at end hosts

to implement novel P4-based solutions such as network-wide heavy hitter detection

[71, 45] or HashPipe [166], a heavy-hitter detection entirely in the data plane.

In-network DDoS mitigation. The P4 language can implement various strategies

for DDoS detection and mitigation [7, 145]. Therefore, P4rt-OVS and NIKSS can be used

to extend the end-host networking with those strategies. Moreover, offloading anti-

DDoS applications from separate boxes (virtual machines) to the virtual switches inside

the data center may also significantly improve the overall performance of network

security functions [87, 33].

Traffic management and congestion control. First of all, P4 switches enable novel

load-balancing schemes that improve traditional mechanisms. To name a few, SHELL

[149] combines IPv6 Segment Routing with stateless flow recording to implement

application-aware load balancer. HULA [93] and MP-HULA [18] propose scalable

load-balancing with the mutlipath TCP support using programmable data planes.

Other papers [189, 76, 150] leverages P4 switches to improve a classic ECMP-based

multipath routing. Furthermore, P4 switches can improve congestion control in the

networks. For instance, QoSTCP [35], TCP-INT [81] and [103] take advantage of mea-

surement reports generated by P4 switches to optimize the TCP performance. Finally,

P4 can improve traffic scheduling mechanisms. Authors in [31, 162] show how to use

different P4 constructs such as Counters, Meters or Registers to provide fair queuing

or bandwidth sharing.

Custom routing and switching schemes. P4 also enables innovation in routing and

switching domains. From event-based packet processing in P4 [79] up to P4-enabled

source routing [104] and multicast [161]. Importantly, P4 enables to prototype and

deploy novel paradigms for data forwarding such as Named Data Networks [116] and

routing with packet subscriptions [88].

VNF offloading. P4 switches can be used to offload packet processing tasks from vir-

tual machines and, consequently, accelerate Virtual Network Functions. For instance,

researchers presented P4-based prototypes of Broadband Network Gateway (BNG)

[99, 128] or 4G/5G gateways [107, 159]. Moreover, several orchestration frameworks

for P4-based network functions have been proposed [133, 117, 73].
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In-network computations. One of remarkable P4 applications is offloading of

computations, that were typically performed by endpoints, to programmable network

switches. P4xos [41] accelerates the Paxos consensus protocol by implementing it

directly in the forwarding plane with P4. In [187] authors show how to leverage

P4-programmable switches to offload machine learning classification. P4rt-OVS and

NIKSS can be certainly used in these use cases as well. Furthermore, BMC [60] uses

eBPF as an in-kernel cache to accelerate Memcached, an in-memory key-value store.

However, systems like BMC can be successfully implemented with NIKSS too.

3.2 Requirements for programmable software switches

Based on the analysis of the state of the art, we have selected the following requirements

that a programmable software datapath should fulfill:

• High-level and fully-fledged programming abstraction. Developing new net-

work features (e.g., adding new protocol extensions, packet headers or packet

processing mechanism) should not require a deep knowledge of the underlying

CPU architecture, system design or packet processing framework being used.

A programmable software datapath should provide a high-level programming

abstraction. At the time of writing this dissertation, P4 [23] is the best candi-

date providing high-level and declarative language to define packet processing

behavior.

• Performance. A programmable software datapath should provide high enough

performance to consider it as a reasonable choice from the cost-per-bit1 perspec-

tive. It can be assumed that the throughput higher than 1 MPPS per a single

CPU core for real-world network functions (such as IPv4 router or 5G User Plane

Function) should be sufficient for a programmable software datapath to compete

with other existing solutions.

• Runtime programmability. A highly programmable software datapath should

offer the possibility to change the packet processing pipeline at runtime without

need for recompilation or system reboot.

1A cost in terms of CPU/memory resources that has to be paid to handle a given volume of traffic.
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• Operability. It is defined as a general ease of use of a solution. This includes

the configuration overhead to deploy and keep running a software switch, re-

source overhead (e.g., extra CPU usage) as well as the ability to use well-known

and proven in practice management tools (e.g., ethtool, ip link, tcpdump, etc.)

and APIs to configure a software datapath. A programmable software datapath

should ideally be integrated with the Linux configuration tools and require no

additional resources or dependencies.

Combining all these design principles in a single solution is a key challenge ad-

dressed in this dissertation. In particular, an SDN software switch is expected to

provide high performance, while keeping a high degree of programmability, flexibility

and general-purpose usage. Therefore, the main goal of the research work presented

in this dissertation is to obtain enhanced programmability at runtime for software

switches, without sacrificing performance and operability.

3.3 Existing solutions

There have been many software switching solutions proposed so far. Several Kuber-

netes plugins [1, 5, 4] base on iptables to implement the Kubernetes network model.

However, iptables is not programmable and efficient enough [29]. A few solutions

are based on eBPF. bpf-iptables [113] is a re-implementation of iptables in eBPF. It im-

proves the iptables performance but it suffers from the same programmability issues as

the classic implementation. Both Calico [2] and Cilium [3] eBPF datapaths provide a

high performance, programmable and highly operable Kubernetes datapath. However,

eBPF programming is not easy as it requires an intimate knowledge of a restricted eBPF

programming model, eBPF internals, and low-level details about the Linux network

stack.

Over the years, researchers and engineers have proposed various software datap-

aths. VALE [155] is a L2 software switch based on the Netmap packet I/O framework,

but it provides neither a high-level programming abstraction nor runtime programma-

bility. Cuckoo Switch [195], which is based on DPDK and implements an efficient

hash-based classification algorithm, falls into the same category. Some solutions are

specialized for NFV such as Netbricks [143] and NetVM [77]. Furthermore, Snabb
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[63] is a modular, re-programmable software switch using a custom vhost-user packet

I/O framework, but LuaJIT as its programming abstraction is not high-level enough.

Many of software switches use data flow graph abstraction, with Click [96] being a

precursor. ClickOS [108] is an extension of Click for virtualized environments (NFV).

FastClick [16] integrates both DPDK and Netmap in Click. ClickNF [59] extends Click

with the support for complex L2 to L7 network functions. Both BESS [68] and VPP [15]

are modern, DPDK-based software switches that borrow from the Click principles and

apply batch packet processing. However, according to [194] VPP lacks modular design

and, thus, it is less programmable than BESS. It is worth noticing that all DPDK-based

solutions may suffer from worse operability. Moreover, writing modules for BESS still

requires low-level programming skills in the C language as well as an internal BESS

architecture, but the data flow graph abstraction allows to easily stitch them together

and dynamically manage. There are also several OpenFlow software switches such

as Lagopus [152] (based on DPDK) and ofsoftswitch13 (often referred to as CPqD or

BOFUSS) [53]. Most likely the most popular software switch, that is also used in pro-

duction [167, 182, 51], is OVS [148]. It implements the OpenFlow model and uses

the Tuple Space Search algorithm with the multi-level flow table caching architecture.

Its performance depends on the datapath choice among three possible options: 1) an

in-kernel datapath using custom Linux kernel module and a userspace datapath based

on 2) DPDK or 3) AF_XDP. The two last flavors are able to provide high performance.

Nevertheless, OVS, as an OpenFlow switch, suffers from the limitations of the Open-

Flow model mentioned in Chapter 2. Linux bridge has been considered as an OVS

alternative, but it is a simple Ethernet software switch and does not meet requirements

for neither performance nor runtime programmability and programming abstractions.

Three other OVS extensions [34, 87, 176] try to increase a degree of programmability, but

none of them meets the aforementioned requirements. SoftFlow [87] allows to execute

arbitrary network functions as OVS actions, but is not programmable at runtime. Oko

[34] integrates BPF with OVS and can be extended at runtime, but it is limited only to

programmable packet filters. OVS-eBPF [176] applies eBPF to OVS to provide runtime

extensibility, but eBPF turned out to be too limited to implement the OpenFlow model

that fully relies on the wildcard packet classification [177]. Anyway, OVS-eBPF would

still suffer from OpenFlow limitations. Finally, the Virtual Filtering Platform (VFP) [54]
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goes beyond the OVS principles and proposes a kernel-based software switch leverag-

ing a specialized slowpath classifier with a single exact-match flow cache. Nonetheless,

VFP is a protocol-dependent software switch.

There is also a group of state-of-the-art P4-programmable switches. BMv2 [136] is a

reference implementation of a P4 software switch, but it lacks performance [135] and it

is not meant to be a production-grade solution. P4-eBPF [138] and p4c-xdp [156] target

eBPF with TC and XDP hooks, respectively. These P4-to-eBPF compilers come with

their own custom P4 architecture model with limited capabilities. [138] only supports

packet filtering while [156] has no support for both ingress and egress pipelines. Other

P4 compiler backends are based on DPDK [160, 137, 183]. In [160], PISCES has been pro-

posed as a protocol-independent software switch based on OVS, whose behavior can

be easily customized. PISCES enables custom protocol specification in the P4 language

with negligible performance overhead and without the need for direct modifications

to the switch codebase. PISCES, however, has two main drawbacks. First, it requires

re-compilation every time the P4 program is changed. Such a design does not allow

injecting custom, vendor-specific data plane applications at runtime. Second, PISCES

implements a limited version of P4 (e.g., does not provide mechanisms to implement

stateful data plane programs) and, thus, it does not provide a fully-fledged program-

ming abstraction. Worthy of noting is P4-DPDK [137] that aims at implementing PSA

for DPDK and makes use of the DPDK SWX pipeline to dynamically load P4 programs

[48]. It provides a rich programming abstraction due to the use of P4 and the PSA

model, enough performance and runtime programmability. The use of DPDK might

affect the operability though.

3.4 Conclusions

A programmable software switch should fulfil the following requirements: high-level

programming abstraction, performance, runtime programmability and operability.

Table 3.1 presents a comparison of the most relevant state-of-the-art programmable

switches with emphasis on how they meet requirements defined in Section 3.2. Among

all the aforementioned software switches there are five solutions that offer a reasonable

compromise between programming abstractions, performance, runtime programma-
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Software switch High-level programming abstraction Performance Runtime programmability Operability

BMv2 Yes Low Yes Good enough

Native eBPF/XDP No
High

(but worse than DPDK)
Yes High

PISCES
Yes

(but uses the depracated version of P4)
High

No

(needs re-compilation)

Low

(due to DPDK)

P4-DPDK Yes High Yes
Low

(due to DPDK)

BESS

No

(requires C expertise to develop

new packet processing modules)

High Yes
Low

(due to DPDK)

VPP

No

(requires C expertise to develop

new packet processing modules)

Very High Yes
Low

(due to DPDK)

Open vSwitch
No

(OpenFlow)

Depends on datapath choice

(Medium for kernel datapath,

High for AF_XDP and DPDK)

No

Depends on datapath choice

(High for kernel and AF_XDP datapath,

Low for DPDK)

P4rt-OVS Yes (OpenFlow + P4) High Yes
Low

(due to DPDK)

NIKSS Yes
High with XDP acceleration,

Medium with TC-based datapath
Yes High

Table 3.1: Comparison of the most relevant state-of-the-art programmable software

switches

bility and operability: native eBPF/XDP, OVS, BESS, VPP and P4-DPDK. It is worth

noticing that the solutions proposed in this dissertation, P4rt-OVS and NIKSS, are not

expected to replace them, but both P4rt-OVS and NIKSS should be treated as com-

plementary projects to these projects with different trade-offs between programming

abstractions, performance, runtime programmability and operability. The final choice

between these packet processing systems should depend on a use case and functional

or performance requirements.
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Chapter 4

P4rt-OVS: Programming

Protocol-Independent, Runtime

Extensions for Open vSwitch with P4

A software switch, such as Open vSwitch (OVS) [148], plays the role of a hypervi-

sor switch forwarding packets to and from VMs or containers. Hypervisor switches

implement a set of network protocols to enable, among others, multi-tenant network

virtualization through overlay tunneling, ACL, and QoS [97]. Moreover, as network

virtualization systems are evolving, more complex middlebox functions (such as state-

ful firewalls or NATs with connection tracking) are being implemented inside software

switches to offload VM-based network functions, while preserving their flexibility and

performance [87, 111].

Although OVS provides some degree of programmability through the use of the

OpenFlow forwarding model [110], it is still difficult to extend its packet processing

pipeline. Developing a new network feature requires domain-specific knowledge of

network protocol’s design, low-level C skills, and familiarity with the large codebase

of the software switch. Moreover, OVS adopts the stateless forwarding model of

OpenFlow, which prevents the implementation of stateful use cases, including many

security services.

In this chapter, we present the design and implementation of P4rt-OVS, which

allows programming protocol-independent, runtime extensions for a software switch

with P4. P4rt-OVS [125] is an original extension of OVS, designed around the following
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design principles:

Enable runtime programmability. We design our solution to be programmable

at runtime. Therefore, we leverage the Berkeley Packet Filter (BPF) [85] to provide a

runtime extensibility mechanism for OVS.

Provide performance for NFV. OVS can be used as a virtual switch in NFV systems.

To meet the performance requirements of NFV, the OVS datapath has been ported to

DPDK [83]. Therefore, to achieve high performance, we have built P4rt-OVS on top of

OVS-DPDK. This decision also implies the use of the userspace BPF implementation.

Support stateful operations. Many network functions require access to the state

of connections to fulfill their goal. As the P4 language provides a way to save custom

data structures in the switch’s memory, we treat the support for stateful operations as

an added value for OVS.

Figure 4.1: The concept of offloading packet processing tasks from the Virtual Network

Function (VNF) to a virtual switch.

4.1 Motivation

The primary motivation to build P4rt-OVS is to enable offloading packet processing

tasks from a Virtual Network Function (VNF) to a virtual switch in the NFV environ-

ment. The high-level concept of the VNF offloading is depicted in Figure 4.1. In such a

scenario, a VNF intercepts packets destined to it, but it may install a dedicated packet

processing module in a virtual switch, so that the packet processing may be offloaded
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and subsequent packets will be handled directly by the virtual switch without involv-

ing the VNF. It may result in a noticeable increase of the VNF’s performance. Moreover,

P4rt-OVS can be used to implement various P4 use cases described in Chapter 3.

4.2 Design and implementation

This section provides an overview of the design of P4rt-OVS and description of internal

mechanisms used to implement the design, including modifications to the OVS archi-

tecture, design of P4 to userspace BPF compiler and P4runtime-based control plane.

4.2.1 Open vSwitch design

The P4rt-OVS prototype enables the upgrade and customization of the OVS network

protocol stack at runtime. This is achieved by integrating P4, as a high-level data plane

programming language, and BPF, which provides the runtime extensibility mechanism,

with OVS.

In OVS, two major components participate in packet processing. The datapath

is the main component responsible for packet forwarding and is also referred to as

the fastpath. In the case of OVS-DPDK, the fastpath component is implemented in

userspace. The second component is ovs-vswitchd, a userspace daemon, also called the

slowpath. It tells the fastpath how to forward incoming packets based on flow rules

in Match-Action tables. Finally, ovs-vswitchd also exposes the OpenFlow interface to

external SDN controllers. OVS provides a wide range of OpenFlow actions to modify

packets in the fastpath.

When it comes to packet tunneling, OVS uses a concept of packet’s recirculation.

When a packet arrives at the switch, only the outer header is extracted and known to

the datapath. Therefore, if there are nested packet’s headers, OVS needs to recirculate

the packet, i.e. send it back to the beginning of the datapath processing to extract inner

headers and allow for further processing.

OVS implements flow caching mechanisms to prevent sending packets to the slow-

path for every packet in a flow. As illustrated in Figure 4.2, whereas the slowpath

implements a Tuple Space Search classifier [169] for each OpenFlow table, the fastpath

only implements caches. There are two levels of caches. The first level consists of

66



4.2. DESIGN AND IMPLEMENTATION
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Figure 4.2: Open vSwitch’s two-level caching architecture.

a simple hash table with exact-match rules for recent flows. The second-level cache

(so-called megaflow cache) stores wildcarded rules in a simplified Tuple Space Search

classifier. When a first packet is received, it will go through the OpenFlow tables in the

slowpath. After the first packet has been processed, the corresponding entry is installed

in the megaflow cache. Then, subsequent packets matching the megaflow cache will

not need to go through the slowpath again. This second-level cache is therefore more

general than the exact-match cache since it can match on all subsequent packets with

the same packet fields and not only subsequent packets with the exact same headers

(i.e. other packet headers are wildcarded).

4.2.2 P4rt-OVS overview

Figure 4.3 depicts the proposed extensions to the OVS architecture that enable pro-

gramming the packet processing pipeline at runtime. It also shows the P4rt-OVS

programming workflow. First of all, the userspace datapath of OVS has been extended

with an additional BPF subsystem. This enables the injection of packet forwarding

programs at runtime and their integration with the OVS forwarding pipeline. The

BPF subsystem consumes bytecode that implements the packet processing model. In

the framework, the P4-to-uBPF compiler is used to generate bytecode from the P4

program. Moreover, apart from OpenFlow, a P4Runtime abstraction layer (P4RT-AL)

has been built to enable the integration of P4Runtime-compliant SDN controllers with

P4rt-OVS. It results in a hybrid approach, which can be controlled by both OpenFlow

and P4Runtime control protocols.
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Figure 4.3: The overall architecture of P4rt-OVS

The P4rt-OVS programming workflow assumes that P4rt-OVS has been compiled

and run beforehand and is as follows. In the first step, a programmer designs and

creates a P4 program implementing specific network features. According to the P416

specification, P4rt-OVS also provides a P4 architecture model, which guides the pro-

grammer on how to write a data plane program for P4rt-OVS. Next, the user generates

BPF bytecode using the P4-to-uBPF compiler and, optionally, the P4Info metadata file

to be used by the control plane as a contract describing the data plane implementation.

Then, the BPF bytecode is injected in the OVS forwarding pipeline by either the SDN

controller using OpenFlow or P4Runtime, or is injected through a local CLI. The data

plane program appears in the switch as a BPF program with a new identifier. The last

step for the user is to define an OpenFlow flow rule that will invoke the BPF program.

The user can also configure BPF map entries for the BPF program before configuring a

flow rule or when the BPF program is already in action. To modify a data plane program

a user can create a new BPF program, inject it with a new identifier and modify flow

rules to point to the new BPF program. P4rt-OVS does not replace the entire datapath,

while installing a new P4 program. In fact, the OpenFlow datapath is not affected. This

feature of P4rt-OVS allows the user to inject new data plane features without traffic

interruption if a seamless modification strategy is used.
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Figure 4.4: The BPF subsystem and forwarding model of OVS

4.2.3 Modifications to OVS

Four modifications to OVS have been made to enable programming protocol-independent,

runtime extensions using P4.

The BPF subsystem for OVS. The first design principle was to provide the runtime

extensibility mechanism to OVS. We extended OVS with a new subsystem based on

the userspace BPF (uBPF) implementation (see Chapter 2). P4rt-OVS retains the BPF

infrastructure (abstract machine, BPF verifier, and set of external functions) of Oko [34],

but it also introduces several modifications needed to implement certain P4 capabilities.

Unlike the Oko [34] approach, we propose to pass the whole dp_packet structure,

which represents a packet inside the userspace datapath. The dp_packet structure

contains various information about a packet and not all of them are needed by the

BPF program. However, such a design is necessary to implement arbitrary packet

tunneling, which we will explain further in this subsection. The BPF program takes the

dp_packet structure as an argument that does not represent a packet data directly.

Hence, for packet data to be processed by the BPF program, a new uBPF helper,

ubpf_packet_data(), has been implemented to retrieve a packet’s data from the

dp_packet structure. Such a design requires a modification to the uBPF verifier to

prohibit illegitimate accesses to the dp_packet structure.

Programmable actions. The implementation of the Oko switch [34] assumes that

BPF programs are used as an enhanced filtering program to match packets. With

the design proposed by Oko, a user cannot modify packets, neither to write a packet

field nor to encapsulate them inside a uBPF program. In contrast, P4rt-OVS is de-
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signed to allow a uBPF program to modify a packet. Therefore, P4rt-OVS exe-

cutes BPF programs as an OpenFlow action by implementing the new action type

OVS_ACTION_ATTR_EXECUTE_PROG. Figure 4.4 presents this new design for the

OVS forwarding model. In addition, contrary to Oko, because we integrate BPF pro-

grams as OpenFlow actions, we do not need to extend the flow caching architecture.

Therefore, BPF can be integrated without significant modifications to the OVS forward-

ing model, and all the actions defined in the P4 program are executed in the fastpath.

However, with the introduction of programmable read-write actions, we face a new

problem when dealing with multi-tables pipelines. If the action of the first table is

now a BPF program, the packet may have its destination IP address rewritten to any

value when it moves from table 1 to table 2. The rule matched in the second table will

therefore depend on the actions of the BPF programs. This dependency prevents from

aggregation rules from multiple tables in a single rule in the second-level cache.

One, rather inefficient, solution is then to recirculate the packet after each BPF

program execution. Because of recirculations, rules are not aggregated in the cache,

thus ensuring correct behavior, at the cost of significant additional overhead.

Another solution, implemented in [87], requires the BPF program’s developer to

request recirculations when appropriate, that is when a packet is modified in such a way

that it impacts forwarding through the OpenFlow pipeline. This approach however

requires that BPF developers maintain a detailed understanding of the OpenFlow

pipeline of the switch at any time. Failure to consider interactions between the BPF

program and the pipeline may result in incorrect actions being executed on packets.

P4rt-OVS requires that BPF programs are always executed as the last action of

the last table, thereby avoiding the drawbacks of previous solutions. This constraint

is what allows P4rt-OVS to retain the high-performance caching mechanism of OVS

while enabling programmable read-write actions. On the other hand, it increases the

complexity of the development of the P4rt-OVS pipeline as a developer must take this

constraint into account during the design phase. It does not limit the number of feasible

use cases though.

Support for tunneling. An inseparable feature of the P4 language is support for

arbitrary packet encapsulation. To implement this support, the BPF programs must

be able to change the length of packets, to add and remove headers. The packet
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adjustment requires access to the dp_packet structure from BPF. Therefore, to support

arbitrary tunneling, we added a new uBPF helper function, ubpf_adjust_head(int

offset), which has access to dp_packet and adjusts the packet’s length according

to the offset value.

Exposing the interface to the BPF subsystem. To use our new BPF subsystem, it

has to be exposed to the control plane. To that end, additional OpenFlow messages

have been implemented so that they can be used to manage BPF programs and their

maps. These messages are as follows.

• LOAD_BPF_PROG to install a new BPF program.

• UNLOAD_BPF_PROG to remove an existing BPF program with a given identifier.

• SHOW_BPF_PROG to list all BPF programs or show the information about a given

BPF program.

• UPDATE_BPF_MAP to add or update an existing entry of the BPF map.

• DUMP_BPF_MAP to dump the content of the BPF map of a given BPF program.

• DELETE_BPF_MAP to remove an entry with a given key from the BPF map.

4.2.4 P4 to uBPF compiler

In compliance with the P416 compiler’s design [28] the P4-to-uBPF compiler implements

a new backend, uBPF, for the compiler’s frontend [139]. The P4-to-uBPF compiler

generates a target-specific, restricted C code, which is compatible with uBPF and can be

further compiled to the BPF bytecode using the Clang compiler. This one intermediate

stage allows to leverage the existing compiler optimizations implemented by Clang.

Along with the implementation of the P4-to-uBPF compiler, we have designed the

architecture model for P4rt-OVS, which in particular, describes the forwarding model

of the uBPF program. The forwarding model is tailored to the architecture of OVS and

is depicted in Figure 4.5. In the architecture model, P4rt-OVS prevents P4 programs

from forwarding packets themselves; it is therefore still the responsibility of OVS to

determine an output port for a packet. As a result, the P4/BPF program can filter,

inspect or modify a packet, but the only forwarding decision it can make is to decide
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Figure 4.5: The forwarding model of the BPF program generated from the P4 language

whether to drop a packet or send it back to the OVS forwarding pipeline. This decision

is due to the usage model of P4 in P4rt-OVS. Originally, P4 is designed to describe the

whole functionality of a switch. In our case, P4 is used only to describe a specific part of

a switch, a custom action. Thus, other OVS actions can still be used to perform packet

forwarding and the P4 language is just utilized to play its role: providing a high-level

language to process packets’ headers.

The forwarding model of the BPF program generated from the P4 language consists

of three packet processing blocks: a parser, control block, and deparser.

Parser. A parser is responsible for reading a packet’s headers and copying them

to the Headers_t structure. The parser reads each header field by field by loading

bits and shifting or masking bits, if necessary. The output of a parsing stage is the

Headers_t structure filled with a packet headers’ data. Additionally, for each header

in the Headers_t structure, a validity bit is associated. According to [142], if a header

has been parsed correctly, the validity bit is set. The validity bit is further used to

perform operations on headers (encapsulation or decapsulation) in a control block and

deparser.

Control block. A P4 control block is composed of a set of Match-Action tables imple-

menting a packet processing pipeline. In the P4rt-OVS design, to implement a packet

processing pipeline, a programmer can use read-only Match-Action tables (for stateless

network functions) or registers with read-write permissions to implement stateful net-

work applications. P4rt-OVS provides two uBPF helpers, ubpf_map_lookup() and

ubpf_map_update(), to read from the BPF map (table or register) and write to the

BPF map (only registers), respectively. Since P4 tables and registers are implemented

as BPF hashmaps, both ubpf_map_lookup() and ubpf_map_update() have an
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average-case complexity of O(1). In particular, in a control block, a P4 program can

encapsulate or decapsulate a packet by validating (setValid() operation) or inval-

idating (setInvalid() operation) the validity bit of a packet’s header, respectively.

The validity bit is further used in a deparser to define the order of headers for an

outgoing packet.

Deparser. Its function is to prepare a packet to be sent back to the OVS pipeline. In

particular, it is responsible for modifying the packet’s headers and performing arbitrary

packet encapsulations. The current design of the P4-to-uBPF compiler uses post-pipeline

editing. It means that all modifications of the packet’s headers are made in the deparser.

The intermediary Match-Action tables modify the header’s metadata structure, which

is further used to generate an outgoing packet.

The deparser makes use of the ubpf_adjust_head() helper to adjust the length

of a packet and perform an arbitrary encapsulation. Before adjusting a packet’s head,

the offset is calculated. If it is negative, bytes are removed from the head of a packet.

Otherwise, zero bytes are added to the front of a packet. In comparison to previous

versions of the language, P416 requires an explicit definition of the deparser. Thus,

the programmer has to define the order of headers for the outgoing packet in the P4

code. Then, the deparser fills in the packet’s payload with data from the Headers_t

structure. As described above, the deparser decides to append a particular header

based on the validity bit associated with each packet’s header.

As is the case with other P4 compilers, the P4-to-uBPF compiler also generates the

P4Info metadata, which can be used by the P4Runtime-based control plane to interface

with Match-Action tables.

4.2.5 P4Runtime-based control plane

To effectively use P4rt-OVS via an external SDN controller, a user needs to leverage

the OpenFlow and P4Runtime protocols in conjunction. It is the result of the hybrid

design that P4rt-OVS follows. P4rt-OVS extends the OpenFlow protocol to support

a new OpenFlow action, prog, in the FLOW_MOD message. The prog action invokes

a given BPF program for packets matching the corresponding flow rule. The current

implementation also provides all the OpenFlow messages listed in the last paragraph

of subsection 4.2.3.
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The P4Runtime protocol has also been extended. P4rt-OVS introduces a new usage

model for P4 devices: P4rt-OVS may be configured with multiple P4 programs, each

of them describing a separate forwarding element, with OpenFlow rules to dispatch

between the P4 programs. Therefore, in order to support multiple P4 programs, the

P4Runtime protocol has been customized by introducing a new field for the P4Runtime

messages, pipeline_id. The pipeline_id field defines the P4 pipeline inside the P4 target.

Thus, if the P4 target (identified by the device_id) supports multiple P4 pipelines running

simultaneously, the P4Runtime controller can use the pipeline_id field to refer to a given

P4 pipeline. The P4Runtime abstraction layer (P4RT-AL) has been implemented as a

proof-of-concept Python application to control BPF programs using the P4 semantics.

Figure 4.6: The test topology for P4rt-OVS

4.3 Performance evaluation

In this section, we compare the packet processing performance of P4rt-OVS, OVS [148]

(the reference implementation), and PISCES [160] (a P4-capable OVS). The goal of the

evaluation is to check 1) whether P4rt-OVS introduces any performance overhead and

2) how P4rt-OVS performs in comparison to other solutions. We also measure the

overhead and efficiency of P4 extensions to OVS through a set of microbenchmarks.

4.3.1 Evaluation environment

Figure 4.6 shows the test topology. The experiments are conducted in the PL-LAB

environment1. The Switch Under Test (SUT) running on top of the DPDK framework

is installed on the HP ProLiant DL380 Gen9 server equipped with 2x Intel(R) Xeon(R)

CPU E5-2690 v3 running at 2.60GHz, with 128 GB RAM and two dual-port Intel 82599ES

10GE NICs. We use an IXIA hardware traffic generator connected directly to the ports

1www.pllab.pl
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of the server, so that the SUT handles a total of 40 Gbps of traffic. For all experiments,

Linux (Ubuntu 16.04) is configured to isolate DPDK cores from the Linux scheduler and

disable frequency scaling. The DPDK framework has been configured with 4 receiving

queues per port running on 2 physical (4 logical) CPU cores. In all experiments, the

IXIA tool generates four traffic flows per port to test SUT with multiple flows.

Three software switches are compared: Open vSwitch (version 2.13), PISCES (based

on OVS v2.5) and P4rt-OVS (based on OVS v2.13). To measure the results, the method-

ology from RFC2544 [25] is used (we assume a 0.002 % packet loss). In end-to-end

comparisons, each experiment lasts 60 seconds and we report the mean throughput in

millions of packets per second (Mpps). For a mean throughput, we calculate the 95%

confidence interval over 10 runs2. In the microbenchmarks, we measure CPU cycles

per packet using the machine’s time-stamp counter (TSC).

4.3.2 End-to-end performance

We first measure the end-to-end performance of example network functions to illustrate

the cost of the P4 programmability in a near-realistic scenario.

(a) With the microflow enabled (b) With the microflow disabled

Figure 4.7: L2 Forwarding performance in Mpps for input traffic of 40 Gbps with and

without the microflow.

Overhead evaluation. First, we conduct the experiment to evaluate the overhead

of introducing P4 extensions to OVS. For this purpose, we compare the simple L2 for-

warding performance of OVS and P4rt-OVS with the baseline P4 program performing

2We assume that the sampled values follow a normal distribution to be able to compute the confidence

interval from estimated means and standard deviations.
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no operations on packets. Thus, the experiment shows just the overhead introduced by

a new OVS action, which invokes the BPF program to handle packets. The throughput

rate is measured in two scenarios: with the microflow cache enabled and disabled.

The results are shown in Figure 4.7. The most important observation is that invoking

the BPF program to process a packet introduces a negligible overhead. Neverthe-

less, a more complex packet processing pipeline of the P4 program could increase the

overhead. That impact is analyzed in the next paragraph.

(a) DNAT (b) NAPT

(c) MPLS LER

Figure 4.8: Comparison of OVS, P4rt-OVS, and PISCES’s throughputs with three net-

work functions: DNAT, NAPT, and MPLS LER.

Packet processing evaluation. We selected a few scenarios, in which different

packet operations (complex packet parsing, tunneling, packet modifications) are exe-

cuted to compare the performance in a near-realistic environment. We compare the

performance of three solutions: P4rt-OVS, OVS, and PISCES. We measure the perfor-

mance of the following stateless network functions. Note that this comparison does

not involve any stateful network functions as OVS and PISCES do not support them;

We evaluate the stateful capabilities of P4rt-OVS in Section 5.3.3.

• Static Destination NAT (DNAT) that matches a destination IPv4 address and
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translates it based on static flow rules.

• Static Network Address Port Translation (NAPT) that matches source and desti-

nation IPv4 addresses and source and destination UDP ports and translates them

based on static flow rules.

• MPLS Label Edge Router (LER) that matches an ingress port and destination

IPv4 address and appends the MPLS label to a packet.

Figure 4.8a shows the performance results for DNAT, MPLS LER and NAPT.. Based

on these results, we can conclude that the performance of P4rt-OVS is comparable to

both OVS and PISCES for packet sizes of 64, 128, and 256 bytes. The mean throughput

with 64B packets for MPLS LER in P4rt-OVS is lower than for OVS or PISCES; it may

be caused by the overhead introduced by the ubpf_adjust_head() helper, which

adds zero bytes to the head of a packet before sending it to the wire. For larger

packets (512 bytes) the performance of P4rt-OVS is comparable to OVS and higher than

the performance of PISCES. The results show that the overhead of more realistic P4

extensions to OVS is negligible in terms of the obtained throughput rate.

4.3.3 Microbenchmarks

As a next step, we evaluate each component of the BPF program (parser, deparser,

Match-Action pipeline) separately. Moreover, we measure how much overhead the

P4 programmability introduces in comparison to writing the BPF program in the C

language.

Figure 4.9: The performance of parser and deparser as more protocols are handled.
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Figure 4.10: The impact of parser and deparser on the aggregated performance in

millions of packets per second as more protocols are handled.

Parser and deparser performance. Figure 4.9 shows how CPU cycles per packet

increase for both parser and deparser as the P4 program handles additional protocols.

To parse only the Ethernet header, the parser consumes about 20 CPU cycles per packet,

while the deparser consumes twice as many cycles, about 40 per packet. The deparsing

process is more costly if there are a few protocols handled (up to 2). However, as the

P4 program handles more protocols (layer 4 and above) the parser stage becomes more

costly.

The cost of the parser for the protocol stack composed of seven protocol’s headers

is about 2.4 times greater than the cost of the deparser. It means that the performance

results may be degraded for the P4 programs handling more complex protocol stacks.

To show how much the performance of P4rt-OVS with a P4 program could be degraded

due to the complexity of a parser and deparser, we measure the aggregated throughput

for different protocol stacks (Figure 4.10). We can observe a strong correlation between

the number of CPU cycles spent on packet processing and the overall throughput. If

more protocols are handled by a P4 program, the throughput decreases.

Match-Action pipeline’s performance. The packet processing pipeline is described

in a control block of a P4 program. The control block may be composed of multiple

Match-Action tables. As the P4-to-uBPF compiler generates the code that modifies

packets in the post-pipeline editing, the cost of a write action (set or modify a field)

is included in the cost of a deparser. Therefore, the main factors that impact the

performance of the packet processing pipeline are operations on Match-Action tables.

Figure 4.11 shows how many CPU cycles are required for the Match-Action table’s

operations (lookup and update actions) as more tables are used to process a packet.
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Figure 4.11: Performance in CPU cycles of the control block as more Match-Action

tables are used to process a packet.

Figure 4.12: The impact of number of Match-Action tables in the control block on the

aggregated performance in millions of packets per second.

As expected, the cost of the Match-Action table’s operations grows almost linearly

when the number of Match-Action tables is increased. If there is a match in the table

lookup, appropriate action is invoked. However, the overhead of invoking an action is

negligible due to post-pipeline editing.

Figure 4.12 shows the impact of the number of Match-Action tables on the overall

throughput. As there is no significant difference between the Match and No Match

scenarios, we measure throughput only for the latter case. The results confirm the

observations in Figure 4.11. More Match-Action tables reduce performance. Therefore,

we recommend to minimize the number of P4 tables to optimize the performance of a

P4 program dedicated for P4rt-OVS.

We also measure how many CPU cycles per packet are required to perform table

lookup and update (Figure 4.13). As expected, the cost of these operations is constant re-
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Figure 4.13: Performance of table operations as more table entries are added.

gardless of the number of entries stored in the P4 table. It is a consequence of using hash

maps to implement P4 tables. However, we can observe that ubpf_map_update()

uses many more CPU cycles per packet than the map lookup. This is due to the memory

allocation required to add new entries to the hash map. In this case, we do not measure

the overall throughput, because we expect the performance to be the same as the cost

of table operations is constant.

Figure 4.14: The performance of data plane programs written in P4 and C.

Overhead of the P4 programmability. The data plane programs for P4rt-OVS do

not necessarily have to be developed in P4. A skillful programmer may also use the

C language with standard userspace libraries to implement runtime extensions for

P4rt-OVS. P4 provides an expressive, declarative, high-level language, but a protocol-

independence and programmability come with the cost of a more complex program
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structure and costly parsing and deparsing stages. In this experiment, we compare how

many CPU cycles are consumed by the BPF program generated from P4 in comparison

to the C-based program.

Figure 4.14 depicts the performance results for several programs written in either

P4 or C. It shows that P4 introduces overhead in comparison to C programs, especially

for VXLAN and stateful firewall. Based on these results, we can conclude that the

performance of a data plane program performing MPLS tunneling is comparable for

both C and P4. For this kind of program, a protocol stack is quite simple and, therefore,

the cost of parsing and deparsing is low. However, we can observe significant overhead

when comparing results for the VXLAN tunneling example. As observed in Figure 4.9,

the cost of parsing and deparsing in P4 increases as more protocols are handled. This

does not apply to the C program, as there is no need to perform a costly deparsing

process.

We also measure the performance for two stateful programs, namely the rate limiter

and the stateful firewall. The performance of C and P4 implementations of the former

are comparable because there is no need to implement parser and deparser for simple

rate limiting in P4. However, the performance of a stateful firewall written in C is

higher than the corresponding P4 program. A stateful firewall tracks the state of the

TCP connection, so the P4 program must parse headers up to layer 4. Again, due to the

high cost of parsing and deparsing stage, the stateful firewall written in P4 performs

worse.

Note also that the performance of a particular BPF program depends strongly on

how the function is implemented and the results can vary considerably from one

program to another. For instance, we have implemented a stateful firewall in C such

that the packet processing is finished just after saving the state of the connection.

On contrary, the program generated from P4 always reaches the deparser (as the P4

language does not provide an explicit keyword to drop packet and stop execution, such

as return in C). This is also the reason why the C-based stateful firewall performs

better.

In the case of measurements considered for the stateful firewall, there are many

outliers. These are mainly values for map_update() operations as they are quite rare

(an update of the state is done only when a session’s state is changed); once the session
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is open, map_update() is not invoked until the end of the session. To conclude,

P4 introduces a notable performance overhead in comparison to C programs. It is

mostly caused by the costly parsing and deparsing process performed in the BPF

program generated from the P4 language. Based on the analysis of the results shown

in Figure 4.12 and Figure 4.10, we expect similar throughput decreasing for scenarios

with complex parsing and deparsing processes. Hence, there is a room for performance

optimizations of the P4-to-uBPF compiler by generating a more efficient parser and

deparser code.

4.3.4 Evaluation of an exemplary network function

In this section, the implementation of an exemplary network function for P4rt-OVS is

presented. The Broadband Network Gateway (BNG) has been selected as a realistic

and relatively complex network function to obtain performance results for the telecom

operator use case. The PPP/PPPoE protocols used by BNG also represent the example of

a domain-specific protocol. In order to take advantage of OVS built-in mechanisms and

present the recommended way to implement new applications for P4rt-OVS, the BNG

function has been implemented in a hybrid way: using both OpenFlow-based actions

and P4 programming enabled by P4rt-OVS. Note that we evaluate only the data plane

part and the example is not composed of both control and data plane components.

Figure 4.15 shows the design of the BNG’s packet processing pipeline. It implements

the most important functions of the BNG data plane, but some functions (such as traffic

accounting) are missing. The BNG pipeline handles Ethernet, VLAN, PPPoE, PPP,

and IP protocols, and performs VLAN encapsulation and decapsulation, routing table

lookup based on the destination IP address, decrementation of TTL, and PPPoE/PPP

encapsulation and decapsulation. In the upstream direction, the pipeline firstly de-

capsulates a packet from the VLAN header and passes the packet to the ppp_decap

P4 program, which enhances P4rt-OVS with PPP decapsulation function. Then, the

routing decision is made and the ACL table is applied. In the downstream direction,

the reverse operations are performed with the use of the ppp_encap P4 program. The

ppp_encap P4 program is presented in Listing 4.1. It is a dedicated P4 program re-

sponsible for only one task: performing PPP encapsulation based on the destination

IP address. It is written for the uBPF architecture model and encapsulation is simply
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Figure 4.15: The packet processing pipeline of the BNG application

performed by validating the PPPoE header and filling its fields. In particular, a session

identifier is provided as a flow rule installed by a control plane. Except for two P4

programs, all the other stages of the BNG pipeline are implemented as OpenFlow rules

for OVS.

parser prs(packet_in packet, out Headers_t headers, inout metadata meta, inout

standard_metadata std_meta) {

state start {

packet.extract(headers.ethernet);

transition select(headers.ethernet.etherType) {

16w0x800 : parse_ipv4;

default : reject;

}

}

state parse_ipv4 {

packet.extract(headers.ipv4);

transition accept;

}

}

control pipe(inout Headers_t headers, inout metadata meta, inout
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standard_metadata std_meta) {

action ppp_encap(bit<16> session_id) {

headers.pppoes.setValid();

headers.ethernet.etherType = 0x8864;

headers.pppoes.version = 4w1;

headers.pppoes.type_id = 4w1;

headers.pppoes.code = 8w0; // 0 means session stage.

headers.pppoes.session_id = session_id;

headers.pppoes.length = headers.ipv4.totalLen + 16w2;

headers.pppoes.protocol = 0x0021; // PPPoES IPv4 protocol

}

table encap_tbl {

key = { headers.ipv4.dstAddr: exact; }

actions = { ppp_encap; }

}

apply {

encap_tbl.apply();

}

}

control deparser(packet_out packet, in Headers_t headers) {

apply {

packet.emit(headers.ethernet);

packet.emit(headers.pppoes);

packet.emit(headers.ipv4);

}

}

Listing 4.1: Pseudocode of the P4 program implementing PPP Egress Processing for

P4rt-OVS. Pseudocode does not present the definition of protocols’ headers.

We measure the performance of the BNG application by using the IXIA generator

that emulates PPPoE traffic in the upstream and downstream directions. Figure 4.16
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Figure 4.16: The performance of the BNG pipeline implementation for P4rt-OVS

shows the performance results measured for different lengths of packets. Depending

on the packet size, the obtained throughput is between 10 Gbps and the line rate (40

Gbps) and based on that we can conclude that it is a satisfying level of performance for

software switching solutions running on commodity hardware.

4.4 Conclusions

Even though OVS provides a high degree of programmability to the data center net-

working, it is still difficult to extend its packet processing pipeline to implement novel

or domain-specific network protocols or stateful data plane programs. In this chapter,

the design and implementation of P4rt-OVS, an original extension of OVS that allows

for programming protocol-independent and stateful runtime extensions for OVS, has

been presented. P4rt-OVS offers network engineers a flexible architecture to introduce

new network features to OVS’s forwarding pipeline dynamically and, therefore, to

shorten the time to market for network protocols. The obtained performance evalua-

tion results show that P4rt-OVS introduces a negligible overhead, unless a P4 program

has complex parser and deparser or a high number of Match-Action tables is used.

Moreover, the microbenchmarks provided guidelines on how to write efficient P4 pro-

grams for P4rt-OVS. Nevertheless, as microbenchmarks proved, there is still room for

performance optimizations.

P4rt-OVS has been designed to allow for the extension of OVS’s packet processing

pipeline without the need for in-depth knowledge on OVS. Moreover, it enables the

injection of those extensions at runtime, without the need for re-compilation. Anyone
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can use P4rt-OVS’s language, P4, which is a high-level and user-friendly way to describe

the behavior of a network devices, and write their own network application with no

need to use low-level languages such as C or to be familiar with the large codebase of

OVS.

However, it is worth noticing that P4rt-OVS has some limitations. First, it is not a

fully-featured P4 software switch. In fact, P4rt-OVS only implements a subset of P4

features and some complex operations (e.g., packet cloning or recirculation) cannot be

described in the P4 architecture model for P4rt-OVS. Therefore, to implement more

advanced network applications, users still have to rely on native OVS mechanisms.

P4rt-OVS merely provides a way to extend the functionality of OVS at runtime (e.g.,

adding support for a new protocol). Second, P4rt-OVS was primarily motivated by the

VNF offloading use cases. In this context, P4rt-OVS is also restricted by the limitations

of the P4 language itself. In particular, even though some attempts were made to use

P4 for NFV [131, 99, 165], it is sometimes not expressive enough to implement complex

network functions, and it would need specialized P4 externs to support a wider range

of the VNF offloading use cases.

To sum up, the P4rt-OVS solution does meet the requirements for performance

and runtime programmability. However, as it uses DPDK, it does not fully meet

the operability requirement. Moreover, since P4rt-OVS uses the restricted uBPF P4

architecture model as well as built-in OpenFlow mechanisms provided by OVS, it

does not provide a sufficient level of programming abstraction and feature-richness.

Therefore, in the next chapter, we come up with the NIKSS solution, a novel, kernel-

based software datapath that meets all the design principles defined in Chapter 3.
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Chapter 5

NIKSS: A novel programmable

software datapath for Software-Defined

Networking

This chapter introduces NIKSS (Native In-Kernel SDN Switch), a novel programmable

software datapath for Software-Defined Networking, that enables the customization

of end-host packet processing pipelines for specific use cases. NIKSS has been de-

signed around the design principles that are mentioned in Chapter 3: High-level and

feature-rich programming abstraction, Performance, Runtime programmability, and

Operability. Combining all these design principles in a single solution is a key chal-

lenge addressed the NIKSS solution. In particular, an SDN software switch is expected

to provide high performance, while keeping a high degree of programmability, flexibil-

ity and general-purpose usage. Therefore, the main goal of the research around NIKSS

is to obtain enhanced programmability at runtime without sacrificing performance and

operability.

All the aforementioned design principles together differentiates NIKSS from existing

programmable software datapaths. P4-DPDK [137], a main alternative to NIKSS, may

suffer from operability issues due to DPDK as discussed in [177]. Similarly, PISCES

[160] is based on DPDK and, additionally, requires re-compilation every time the P4

program is changed. Furthermore, BMv2 [136] is not performant enough, while use

cases of P4-eBPF [138] and P4-XDP [156] are very limited as they do not provide a

fully-featured programming model. The former only provides packet filtering, while
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the latter does not provide some P4 capabilities such as stateful packet processing or

packet cloning. Open vSwitch (OVS) [148] suffers from OpenFlow limitations [24].

Finally, other solutions such as Click [96] or BESS [68] still require a domain-specific

knowledge about a low-level platform design to implement custom packet processing

modules.

NIKSS leverages eBPF [85] as a packet processing engine. eBPF allows to inject

packet processing modules at runtime and, with eXpress Data Path (XDP) [75], provides

a technology for flexible and high-speed packet processing on the Linux operating

system. Moreover, it is highly operable since it is well-integrated with the Linux

networking tools. Furthermore, NIKSS leverages P4 as a high-level, declarative data

plane programming language that abstracts a restricted eBPF programming model,

eBPF internals and low-level details about the Linux network stack and, thus, hides

eBPF intricacies. Benefits of using P4 over eBPF for end-host network programming

could be twofold. First and foremost, P4 provides an auto-generated control plane

interface (P4Runtime [174]) and, thus, it provides interoperability with existing SDN

controllers (such as ONOS [19]) and enables integrating software switches into the end-

to-end programmable network. Second, P4 can lower a development complexity for

network developers - they no longer need to satisfy the static eBPF in-kernel verifier,

as it is a role of the P4 compiler to generate a safe and verifiable eBPF code. Moreover,

as shown in [160], the P4 language can significantly simplify the development of new

network applications by reducing the lines of code compared to an equivalent C code.

The P4 processing model has also been selected due to its proven Match-Action pipeline

that has been successfully adopted by OpenFlow [110]. Moreover, P4 has been selected

as DSL over its main alternative - NPLang [122] - because P4 works in conjunction with

the P4Runtime, a control plane API for P4-programmable devices. This is in contrary to

NPLang that does not provide a unified control interface. Finally, the NIKSS prototype

leverages a P4 Portable Switch Architecture (PSA) as an abstract forwarding model.

PSA is a fully-featured switch architecture that provides a set of packet processing

primitives that are necessary to implement a fully-functional SDN switch.

In summary, the main contributions of this chapter are as follows:

• The design of the NIKSS P4-programmable packet processing model. NIKSS

supports two alternative designs of a packet processing model: a general-purpose
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design able to implement any PSA program and a more limited, XDP-based design

that provides better performance.

• The design and implementation of the PSA to eBPF compiler (Section 5.2), an

original extension to the P4 compiler, that implements the PSA model for NIKSS.

In particular, this chapter presents the design and implementation of a ternary

packet classification based on eBPF primitives and a number of compiler’s opti-

mizations to maximize performance of generated eBPF code.

• A thorough performance evaluation of NIKSS1 (Section 5.3), including microbench-

marks and a comparison with alternative software datapaths.

• A public, open-source implementation of the PSA-to-eBPF compiler [140] and

NIKSS [129].

5.1 Design

In this section, we describe how the NIKSS packet processing pipeline is designed

and mapped to the eBPF subsystem following the workflow shown in Figure 5.1. In

particular, we provide two alternative designs of generated eBPF code: a general-

purpose TC-based design and an XDP-based design. A user may choose between

these two alternative designs, depending on the required capabilities and expected

performance level.

PSA-eBPF compiler +
Clang

P4 
program

eBPF
bytecode 

nikss API + CLI 

Linux kernel  
(eBPF execution env.)

load
programs 

install flow
rules 

write P4 program 

Figure 5.1: NIKSS workflow.

1Documentation and scripts to reproduce our results are available at https://github.com/P4-

Research/nikss-artifacts
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5.1.1 General-purpose design

To achieve the best performance, the entire packet processing should be offloaded to

the XDP layer. However, during the design phase, several limitations of XDP had been

encountered that prevent XDP from being used as a general-purpose target for NIKSS:

(1) a lack of egress processing, (2) a lack of a BPF helper for packet cloning, and (3)

no QoS mechanisms (e.g., traffic shaping or prioritization) due to a lack of a built-in

buffering mechanism. We were able to provide a partial solution to (1) and (2), hence we

present a limited, XDP-based design in section 5.1.2. Nonetheless, the limitation related

to QoS is still valid, as QoS mechanisms are only available using queueing disciplines

(qdisc), which are executed on the egress path at the TC layer. Therefore, we decided to

leverage TC as the main packet processing engine for NIKSS. This choice allows us to

provide a generic solution that makes the implementation of any P4 program written

for PSA architecture feasible but implies lower performance.

 XDP 

RX NIC/vNIC

 TC Ingress

TX NIC/vNIC

Userspace
application

User space
Kernel space

 XDP helper

 PSA PRE

NFP
XDP_PASS

NU, NM, CI2E 

NFP 

bpf_redirect(), 
bpf_clone_redirect()

bpf_clone_redirect()
RECIRC

bpf_redirect() to PSA_PORT_RECIRCULATE with flag BPF_F_INGRESS

 PSA Ingress

RESUBMIT

NFCPU

Raw packet to PSA_PORT_CPU

BPF: Function call in loop

Network stack

TC qdisc

 TC Egress 

 PSA PRE PSA Egress

CE2E

NTP

NTP

Socket API

Figure 5.2: General-purpose TC-based NIKSS design (the red color depicts PSA con-

structs, while the green color represents mapping to eBPF primitives).

The TC-based NIKSS design (Figure 5.2) is composed of several eBPF programs

generated by the PSA-eBPF compiler. First of all, a single P4 pipeline (composed of
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a parser, a control block and a deparser) is implemented by a single eBPF program.

Representing a single P4 pipeline by a single eBPF program makes sharing the packet

processing state between the parser, control and deparser blocks straightforward. The

PSA Ingress pipeline is represented as an eBPF program attached to a TC Ingress

hook point, while the eBPF program implementing the PSA Egress pipeline is attached

to the TC Egress hook point. To simplify the design, we decided to decompose the

Packet Replication Engine (PRE) block into two independent functions placed at the

end of both the ingress and egress eBPF programs. This design choice allows us

to simplify implementation and avoid the performance overhead caused by jumping

between eBPF programs. The decomposition of PRE was possible using the shared

BPF map - both ingress and egress PREs have access to the same BPF maps and share

multicast groups and clone sessions. Finally, we also provide the XDP helper program

attached to the XDP hook point at the ingress interface, as we encountered a significant

limitation for using the TC layer as the execution environment for P4 programs during

the prototyping phase. It turns out that some BPF helpers available at the TC layer

(e.g., bpf_skb_adjust_room()) are dependent on the IPv4/IPv6 EtherType and fail for

different packet types (e.g., MPLS). As a P4 target must support protocol-independent

packet processing, this limitation appears as a significant blocking point to enable all

PSA mechanisms at the TC layer. To overcome this restriction, an XDP helper program

is provided to make the TC layer protocol-independent by replacing the EtherType

with a TC-compatible value.

The TC-based NIKSS design realizes all the packet paths that are defined by the

PSA specification. The NFP path refers to the process of receiving a packet by the

eBPF program attached to the TC Ingress. The XDP helper program is involved in the

receiving process and sends a packet up to the TC stack. Once a packet leaves the

PSA Ingress pipeline, it may be resubmitted back to the ingress pipeline. In eBPF, the

RESUBMIT paths is implemented by calling the ingress packet processing function in a

bounded loop. Next, there are three packet paths from the ingress to the egress pipeline.

In the basic scenario, a packet is redirected as a unicast packet to the egress port by

using the bpf_redirect() helper (the NU packet path). If a packet is cloned (the CI2E

path) or sent to a multicast group (the NM packet path), the ingress eBPF program calls

the bpf_clone_redirect() helper. We use the SKB control block (skb->cb) to share
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per-packet metadata between ingress and egress. On the egress path, a packet is, firstly,

intercepted by the PSA Egress pipeline. If the packet is sent directly towards the egress

interface (the NTP path), the egress eBPF program accepts the packet. The packet is

then sent to the TC qdisc to shape or prioritize traffic based on the Class of Service

(skb->priority) assigned by the PSA Ingress pipeline and sent out to the output port.

Note that the TC qdisc maps the Buffer Queuing Engine of the PSA. Furthermore, in the

PSA Egress pipeline, a packet may be cloned and sent back to the PSA Egress pipeline

(CE2E) or recirculated. In the former case, the bpf_clone_redirect() helper is used,

similarly to packet cloning at ingress. In the latter case, the bpf_redirect() helper

is called with the BPF_F_INGRESS flag to recirculate the packet and handle it in the

PSA Ingress pipeline, again. However, the packet is not redirected back to the same

ingress interface. We assume that there is at least one dedicated interface created as

a PSA_PORT_RECIRCULATE port. Then, in the case of packet recirculation, one of these

ports is used to handle the recirculated packet. Last but not least, a control plane

application may also send a packet to the data plane (the NFCPU path). For this case,

we designed another dedicated interface (called the PSA_PORT_CPU), which is used for

communication between a user space application and the data plane.

5.1.2 Specialized XDP-based design

As mentioned before, XDP has three major limitations that prevented us from using it

as the main BPF hook. We present a partial solution to the first two problems in this

subsection.

Figure 5.3 shows the XDP-based NIKSS design. First of all, we offload the PSA

Ingress pipeline to the ingress XDP hook. Then, we mimic egress processing by using

the BPF DEVMAP, which enables attaching BPF programs to a map entry. When the

ingress XDP program calls the bpf_redirect_map() to forward a packet, an attached

program is executed. In the XDP-based design, the XDP program attached to the

DEVMAP implements the PSA Egress pipeline. Furthermore, we solve the lack of packet

cloning in XDP by using eBPF/TC programs to assist in the packet cloning process. For

the XDP-based design, the PSA-eBPF compiler generates two more eBPF programs.

The TC Ingress hook runs the PRE program, while the TC Egress program implements

a mirror reflection of the PSA Egress pipeline attached to the DEVMAP and the egress
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Figure 5.3: Specialized, XDP-based NIKSS design (the red color depicts PSA constructs,

while the green color represents mapping to eBPF data types or primitives).

PRE. If the ingress pipeline performs packet cloning, it sends a packet up to the TC

layer, including the per-packet state (e.g., parsed packet headers) that is injected to

the packet using the bpf_xdp_adjust_head(). Next, the PRE program intercepts the

packet and performs packet cloning. The packet is further handled by the TC Egress

in the same way as for the TC-based design.

However, the XDP-based design implies other limitations. Due to the fact that

the XDP program attached to the DEVMAP cannot take the control back to the ingress

program, this approach does not enable packet recirculation. For the same reason, the

CLONE_E2E is not supported as there is no way to pass a packet up to TC from an

XDP program attached to the DEVMAP.

5.2 PSA-eBPF compiler

The eBPF backend supporting PSA for the P4 compiler is implemented in compliance

with the P416 compiler’s design [28]. We base it on the already-existing ebpf_model.p4

backend for the P4 compiler [138] and, similarly, the PSA-eBPF compiler firstly gen-
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erates the C code, which is further compiled down to the eBPF bytecode by Clang. In

this section, we provide an overview of the PSA-eBPF compiler and describe technical

details about the implementation of the PSA externs, ternary matching algorithm and

compiler’s optimizations.

Packet buffer 

P4 Table Lookup(s) 
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Figure 5.4: NIKSS: P4 pipeline to eBPF translation.

5.2.1 P4 pipeline to eBPF translation

Figure 5.4 shows the eBPF representation of a single PSA pipeline. A single PSA

pipeline (Ingress/Egress) is translated to a single eBPF program2. A single eBPF pro-

gram implements a parser, a control block and a deparser and uses a combination of

BPF maps to implement more complex constructs such as P4 tables and PSA externs.

Parser. A parser is responsible for extracting packet headers from the packet buffer

and copying them to the Headers structure (hereinafter referred to as Headers), which

stores all the headers defined in a P4 program. Initially, the PSA-eBPF compiler was

implemented to generate Headers as an on-stack variable. However, for more complex

P4 programs, defining multiple packet headers and large user-defined metadata, we

met compiler issues due to the exceeded BPF stack size (512 bytes). Hence, to free

up space on the stack, we decided to use the per-CPU array map for storing Headers

2Latest kernels support up to 1M instructions per eBPF program, which is enough for most P4

programs. Larger P4 programs can be divided into several eBPF programs and integrated via BPF tail

calls.
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and user-defined metadata. When a new packet arrives on the interface, the parser

reads each header field by field by loading byte words and shifting or masking bits, if

necessary. The PSA-eBPF compiler supports standard P4 primitives for packet parsing

such aslookahead()orValueSet. The output of a parsing stage is theHeaders structure

filled with a packet headers’ data. The Headers data is further used as an input to the

control block’s operations and the deparser.

Control block. A control block is composed of a set of Match-Action tables and

actions implementing a packet processing algorithm. The PSA-eBPF compiler gener-

ates the C code that implements the control block’s flow. Each P4 table is implemented

as a BPF map, and each apply() operation on a table is translated to the BPF map

lookup. For each instance of a P4 table, the compiler generates two BPF maps - the first

map stores runtime-configurable table entries, while the second map only has a single

element storing the default action in the BPF array map to provide the fastest possible

access. The type of first map depends on the P4 match kind. If a P4 table only defines

the exact match kind (we refer to such a table as an exact table), it is translated into the

BPF hash map, where the hash key is a structure composed of all P4 table keys and the

value stores the action identifier as well as action parameters provided by the control

plane. If a P4 table defines at least one LPM match kind (LPM table), the entire P4 ta-

ble is represented as BPF_MAP_LPM_TRIE, a BPF map implementing the Longest-Prefix

Match (LPM) lookup. The PSA specification also defines range and ternary match kinds,

for which there are no eBPF primitives available. We describe the implementation of

the ternary table in section 5.2.5. The PSA-eBPF compiler’s prototype does not cover

the range match kind, but according to our study its implementation in eBPF is feasible

(e.g., using range to prefix conversion [65]). Apart from P4 tables, a control block may

make use of PSA externs. The PSA-eBPF compiler implements all PSA externs (see

Section 5.2.4 for implementation details). Furthermore, we provide a nikss C library as

well as a nikss-ctl command line tool that provide APIs to manage P4 tables and PSA

externs.

Deparser. Its function is to prepare a packet buffer to be sent out from the pipeline.

In particular, it is responsible for writing data from the Headers structure to the packet

buffer. Before data is actually copied to the packet buffer, the size is adjusted by using

the bpf_skb_adjust_room() (in TC) or bpf_xdp_adjust_head() (in XDP) helper that
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sets the size of the outgoing packet. Next, the packet headers’ fields are copied from

the Headers structure to the packet buffer byte by byte.

5.2.2 XDP helper program

The role of the XDP helper program in the general-purpose TC-based NIKSS design is

to make the TC layer protocol-independent by replacing an original EtherType by a TC-

compatible value. To do that, the XDP helper program must read an original EtherType

from a packet, save it, replace the original one with the IPv4 EtherType and then pass

a packet up to the TC layer. By default, PSA-eBPF uses the bpf_xdp_adjust_meta()

helper to append the original EtherType to the skb’s data_meta field, which is further

read by the TC Ingress to restore the original format of the packet.

The way of passing metadata is determined by the xdp2tcmode. We have noticed

that some NIC drivers does not support the bpf_xdp_adjust_meta() BPF helper and

the default mode cannot be used. Therefore, we come up with a more generic mode

called head, which uses bpf_xdp_adjust_head() instead to prepend a packet with

metadata. In this mode, the helper must be invoked twice - in the XDP helper program

to append the metadata and in the TC Ingress to strip the metadata out of a packet. We

also introduce the third mode - cpumap, which can be used, if and only if, the Receive

Packet Steering mechanism is not used. This assumes that the single CPU core handles

a packet in the run-to-completion mode from XDP up to the TC layer (in other words,

for a given packet, the CPU core running the TC program is the same as the one for

XDP). If the above condition is met, the cpumapmode uses the per-CPU BPF array map

to transfer metadata from XDP to TC.

Note that the XDP helper program introduces a constant but noticeable per-packet

overhead. Though, it is necessary to implement P4 processing in the TC layer.

5.2.3 Packet Replication Engine

The Packet Replication Engine (PRE) is placed at the end of both the ingress and egress

pipelines and is responsible for making copies of a packet (for simplicity, we describe

the algorithm based on clone sessions, though the multicast process does not differ

significantly). Once a packet is parsed and classified, a clone flag may be set. If so, PRE
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Figure 5.5: The memory organization of Packet Replication Engine implementation in

NIKSS. It shows the example of inserting a new clone session member: 1) a new clone

session member is allocated, and the next element is set as an element located in the

front of the list; 2) the head of the list is updated to point to a new element.

must find a corresponding clone session identified by a clone session identifier. Then,

if the clone session exists, PRE clones a packet to each clone session member. It is

implemented by invoking the bpf_clone_redirect() helper N-times, where N is a

number of clone session members. To implement the packet replication procedure, an

eBPF program must operate on two maps: the outer map - indexed by the clone session

identifier - stores pointers to an inner map, which contains clone session members.

The PSA-eBPF compiler leverages the BPF_MAP_TYPE_ARRAY_MAP_OF_MAPSmap to store

clone sessions.

NIKSS is based on kernel v5.8, but this kernel version does not provide a built-in

helper to iterate over a BPF map. Thus, an efficient way to iterate over clone session

members becomes a challenge. One way is to visit every index in a map, check if a

clone session member at a given index exists and, if so, execute the clone() action. This

is a naive approach that results in a constant, but long time (dependent on the map

size) to perform packet cloning (even if there are no clone session members). To solve

the above-described problem, we suggest using a linked list abstraction for an eBPF

map. The mechanism is depicted in Figure 5.5. First, as the PSA specification imposes

the uniqueness of a clone session member (identified by a (egress_port, instance) pair),

we use BPF_MAP_TYPE_HASH to store clone session members. Then, we treat the BPF
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hash map as a memory space with fixed-size memory blocks. Each memory block has

its address (hash map index (egress_port, instance)) and stores a value (clone session

parameters). We assume that each value of the hash map not only contains clone

session parameters, but also a "pointer" (a hash map index) to the next element (a

memory block) in the list. Therefore, iterating over clone session members in the eBPF

program is as simple as performing a lookup and jumping to the next element. Since we

implement a clone session table as a linked list, we can easily iterate over its elements

in the data plane. The complexity of a lookup to a clone session table is still linear but

depends on the number of clone session members.

For online packet processing systems, what is as important as execution time is the

time needed to update a table. As elements in a clone session table do not need to be

ordered, we assume that a new element is added to the front of a linked list to optimize

insertion time. Deleting a clone session member also becomes straightforward but

requires iterating over a list to find a previous element. Then, the pointer to the next

element of the previous element must be updated and the element can be deleted. To

further optimize deletion complexity, implementation should be changed to a doubly

linked list.

5.2.4 PSA externs

In this subsection, we briefly describe how PSA externs are implemented using eBPF

data types and primitives to provide a fully-functional programming abstraction for

NIKSS.

Parser Value Set. Technically, ValueSet is not defined as a PSA extern, but we find

it useful to provide details about its implementation along with PSA externs. ValueSet

is used to select the next parser state based on a comparison between a packet’s field

and a value provided by a control plane at runtime. The PSA-eBPF compiler generates

a BPF hash map for each ValueSet instance. If a parser state invokes the select()

operation on ValueSet, a lookup to the BPF map is performed to check if a given key

exists in the map. The value of the BPF map’s entry is ignored. If a match is found, the

eBPF program jumps to a next parser state, according to the state machine defined in a

P4 program.

Register. Register enables stateful packet processing. The PSA-eBPF compiler either
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generates an array or a hash map for each Register instance. If Register defines an index

shorter than 32 bits, the compiler generates the BPF array map for each Register instance.

Otherwise, the BPF hash map is generated. Then, the bpf_map_lookup_elem() helper

is used to read from Register, and the bpf_map_update_elem() helper is generated to

write a value to a Register.

Counter and Direct Counter. The PSA-eBPF compiler generates a BPF array map

for each instance of an indirect counter. This choice has consequences - the Counter

size (number of indexes) is limited by the size of the BPF array map (a 32-bit unsigned

integer). When Counter is updated, the packets counter and/or bytes counter are incre-

mented using a built-in function called __sync_fetch_and_add() to provide atomicity

of the operation. Direct Counter is implemented similarly but stores the packets and/or

byte counters as a part of a table entry, within action data, instead of a dedicated BPF

map.

Checksum, InternetChecksum and Hash. These externs do not need additional

BPF helpers or maps to be implemented. The PSA-eBPF compiler generates a sequence

of mathematical operations to calculate checksums or hash from a given portion of

data.

Meter and Direct Meter. Each indirect Meter instance defined in a P4 program is

translated by the compiler into a BPF hash map, where the map key refers to the meter

index. The map value stores the Meter state and configuration (e.g., Peak Burst Size).

The PSA-eBPF compiler generates a dedicated eBPF function performing metering

each time the Meter instance is invoked. Each metering operation includes retrieving

the current Meter state, performing a calculation to determine the packet color and

updating the Meter state. An important aspect of Meter implementation is concur-

rency management between multiple CPU cores. Each time a packet is metered, our

algorithm must perform a lookup and an update to a BPF map, which might simul-

taneously be used by some other eBPF program on another CPU core. This situation

may cause some inaccuracy of the metering mechanism. To overcome concurrency

issues and make operations on Meters atomic, we make use of the BPF spinlock [91].

The BPF spinlock introduces additional overhead, which is, unfortunately, necessary

for correct implementation. Another factor affecting the accuracy of metering is the

fact that bpf_ktime_get_ns() is used to get a current timestamp for a packet. It has
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experimentally been proven that both BPF spinlocks and the BPF helper introduces a

non-negligible overhead to the metering process in eBPF [146]. Direct Meter uses the

same mechanisms as Meter, but it stores the Meter configuration and state as a part of

an entry within a map representing a P4 table instead of a separate BPF hash map.

Packet Digest. Digests are intended to carry a small piece of user-defined data

from the data plane to a control plane. The PSA-eBPF compiler translates each Digest

instance into BPF_MAP_TYPE_QUEUE that implements the FIFO queue. If a deparser

triggers the pack() method, data defined for a Digest is pushed into the BPF queue

map. A control plane is responsible for performing periodic queries to this map to read

a Digest message.

Action Profile. The Action Profile is a PSA extern that introduces a level of in-

direction to P4 tables. Our implementation does not differ from the implementation

proposal in [175]. Hence, each P4 table using the Action Profile is translated to two BPF

maps. The first map is a hash map matching on packet fields and storing references to

actions, while the second one is an array map that is indexed by action references and

stores action parameters.

Action Selector. The Action Selector is an extension of the Action Profile, enabling

a dynamic selection of an action reference. The dynamic selection algorithm uses a

hash calculated from selector fields to determine an action reference. The PSA-eBPF

compiler generates a set of BPF maps to implement the Action Selector. During a

lookup to a map, a so-called group reference is, firstly, retrieved from the hash map

based on match fields (excluding selector fields). Then, a group (implemented as a

BPF map of maps) is found based on the group reference. The first entry of the group

stores an actual number of entries in the group. The number is taken as an input to

the selection algorithm, which calculates a hash and picks an action reference from the

group by performing the modulo operation of the number of entries in the group for a

calculated hash. Thus, a lookup to the Action Selector table requires a lookup to three

BPF maps and the calculation of a hash from arbitrary selector fields.

Random. This extern can be used to get a random number from within a P4 program.

PSA-eBPF generates a random value by using the bpf_get_prandom_u32() helper and

converts an obtained value to a requested range by performing a few mathematical

operations.
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5.2.5 Ternary matching algorithm

The eBPF subsystem does not provide a built-in BPF map implementing the wildcard

(i.e., ternary) lookup. Hence, the PSA-eBPF compiler relies on basic eBPF primitives

to implement the ternary matching algorithm. We analyzed several state-of-the-art

algorithms [65, 190, 74, 178, 13]. However, either their implementation was not feasible

in the restricted eBPF environment or their complexity made eBPF implementation

inefficient. Finally, we decided to adapt the Tuple Space Search (TSS) algorithm [169].

We found TSS suitable for eBPF because (1) it relies on hash maps and, thus, its

implementation is feasible in a restricted eBPF environment and provides reasonable

classification time, (2) it is flexible enough to support arbitrary packet fields used for

the P4 table’s lookup, and (3) provides constant-time updates.

Concisely, TSS decomposes a ternary lookup into a sequence of lookups to hash

tables (called tuples3). Each tuple stores all the table entries that share the same ternary

mask (a bit mask defining the particular bits of packet fields that are used during a

lookup to a P4 table). Thus, TSS groups table entries based on a ternary mask and

creates a hash table for all rules that share the same unique ternary mask. All the match

fields specified in a P4 table form the hash table’s key. The nikss library is responsible

for inserting a P4 table entry to a relevant tuple based on a ternary mask provided

by a user. However, a P4 table may be composed of match fields of different types.

Therefore, the exact field is always masked to use all the bits of a field. The ternary

mask for the lpm field is created based on the prefix length, while the arbitrary mask

for the ternary field is provided by a user. Then, masks of all the fields are concatenated

to construct a single ternary mask. If there is no tuple created for a given ternary mask,

nikss creates a new hash table. During the P4 table lookup, each tuple is analyzed to

find a matching entry. Hence, for each tuple, relevant bits are extracted from a packet

using a ternary mask associated to a tuple and then the masked bit array is used as a

search key to a hash map storing a group of table entries. The TSS algorithm searches

all the tuples to find a matching entry with the highest priority. This leads to the linear

(O(n)) lookup time where n is the number of unique ternary masks created for a given

P4 table.
3Properly, a tuple is the set of fields that form the hash table key, but the hash table itself is often

called the tuple. This is a handy short-cut.
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The foundation of TSS implementation in eBPF is the BPF hash map of maps. The

outer map stores all the tuples and associated ternary masks created using nikss-ctl at

runtime. Each inner map stores a group of table entries that share the same ternary

mask. For each apply() operation on the P4 table containing a ternary match field, the

PSA-eBPF compiler generates a piece of code that iterates over tuples (the outer map),

masks header fields extracted from a packet and performs a lookup to the inner map

using the masked hash key.

5.2.6 Compiler optimizations

In this subsection, we present the PSA-eBPF compiler’s optimizations.

Table caching. Flow caching is a known technique for optimizing the packet clas-

sification time at an average case [95, 163, 193]. However, implementing the per-flow

generic cache in a P4-programmable software switch is not straightforward since a

P4 program may define a custom packet processing algorithm, including conditional

statements and stateful processing. Therefore, the PSA-eBPF compiler implements a

per-table cache - a hash map matching on all the fields defined for a P4 table - examined

before the lookup to the P4 table is performed. The PSA-eBPF compiler generates a

per-table cache in three cases. Firstly, if a P4 table defines the ternary match, the PSA-

eBPF compiler generates a table cache in the front of such a table to avoid costly ternary

classification for subsequent packets matching a table entry. Secondly, our benchmark-

ing showed that the LPM_TRIE map suffers from inefficiency, especially if it contains

more map entries. Hence, we also decided to generate a table cache for LPM tables.

Finally, the PSA-eBPF compiler generates a cache for tables using the Action Selector

extern. This is motivated by the fact that the dynamic, hash-based selection requires a

significant amount of CPU cycles affecting the packet classification time. Considering

the fact that the selection algorithm should be consistent (i.e., each packet with the

same calculated hash value should get the same action specification), the PSA-eBPF

compiler can safely apply the table caching technique to reduce CPU cycles spent for

the lookup to Action Selector tables.

The PSA-eBPF compiler uses the LRU (Least-Recently Used) hash map to implement

per-table cache. The LRU map is optimized for the cases in which the number of reads

is much higher than the number of writes to the map. Additionally, it simplifies the
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management of per-table caches. If a P4 table match is found for a ternary, LPM or an

Action Selector table, the data plane inserts a new entry to a per-table cache and all

subsequent packets matching the P4 table skip the costly classification. If a table cache

is full, the LRU map itself removes the least-recently used entry and inserts a new one.

The current prototype invalidates the entire cache if a user adds a new table entry.

Pipeline-aware optimization. The optimization is based on two principles: (1) at

compile time, analyze a P4 program to generate a more efficient packet processing

pipeline in eBPF (if possible), and (2) at run time, share Headers between the ingress

and egress pipelines to avoid additional processing (e.g., the headers’ extraction) in

the egress pipeline. The PSA-eBPF compiler applies the rules below when generating

code:

• If a P4 program does not define egress processing (all P4 programmable blocks

of the egress pipeline are empty), the compiler does not generate an egress eBPF

program.

• At runtime, if a packet header has already been extracted or added in the ingress

pipeline, the egress parser skips extracting it to free CPU cycles and retrieves

packet header fields from the shared Headers data instead.

• If a packet header is valid in the ingress pipeline and is parsed by the egress parser,

but the egress deparser does not emit the header, the compiler skips emitting the

header in the ingress deparser. This operation can free CPU cycles required to

deparse the header. A common use case is bridged metadata that is typically

appended to the front of a packet to transfer user-defined, per-packet metadata

from the ingress to egress pipeline.

• If a packet header is placed at the same position in both ingress and egress

deparsers and the packet header is unconditionally parsed by the egress parser,

the compiler skips emitting the packet header in the ingress deparser to avoid

deparsing a packet twice (it will only be emitted by the egress deparser). A

common case is the Ethernet header, which is typically emitted by both deparsers

at the first position.

The last three optimizations listed above are feasible only if Headers can be shared

between the ingress and egress pipelines. For the XDP hook, Headers can be shared by
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changing the way the compiler generates the XDP egress program - if pipeline-aware

optimization is enabled, instead of using a BPF program attached to the DEVMAP entry,

the ingress pipeline invokes the egress eBPF program by using the bpf_tail_call()

helper that guarantees the program be run on the same CPU core. Therefore, the

compiler uses a per-CPU array map to transfer Headers.

5.3 Performance evaluation

In this section, we evaluate the performance of NIKSS. Firstly, we show the packet

forwarding rate for different test programs and provide an in-depth analysis of their

performance. Next, we present microbenchmarks of the NIKSS itself and compare its

performance with that of other software datapaths.

5.3.1 Environment setup

The Switch Under Test is installed on the HP ProLiant DL380 Gen9 server equipped

with 2x 12-core Intel(R) Xeon(R) CPU E5-2690 v3 running at 2.60GHz and one dual-port

Intel 82599ES 10GE NIC. We use TRex [80] as the traffic generator connected directly

to the ports of the server. For all experiments, we use Linux kernel v5.11.3 and disable

Turbo Boost and Hyper-Threading. We also turn off the irqbalance, set the maximum

RX descriptor ring size for the NIC, set IRQ affinities to pin a single CPU core for the

NIC receive queues and isolate CPU cores from the Linux scheduler. Furthermore,

the PSA-eBPF compiler makes use of Clang v10.0 and the v1 eBPF instruction set.

In the spirit of benchmarking methodology outlined in [25], we measure the Partial-

Drop Rate of a single core, assuming 0.1 % packet loss (we follow the settings defined

by NFVBench [56]). Furthermore, we use the bpftool prog profile tool to count

average CPU cycles per packet over all packets forwarded in an experiment run that

lasts 30 seconds and generates traffic at a line-rate. For both throughput rates and CPU

cycles we calculate the 95% confidence interval (CI) over 10 runs. We also use Linux

perf profiling utility [126] to analyze the costs of underlying internal processes. Finally,

we measure latency using TRex and report latency distribution by percentiles.
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Name Supported protocols No. of P4 tables Externs Functionalities

L2FWD Ethernet 1 - L2 Forwarding

L2L3-ACL
Ethernet, VLAN, IPv4,

UDP, TCP

7

(incl. 1 LPM)

ActionSelector,

Counter,

InternetChecksum,

Digest,

DirectCounter

L2 Forwarding,

VLAN tagging,

MAC learning,

ECMP, L3 routing,

port statistics, ACL

UPF
Ethernet, IP, UDP, GTP-U +

inner IP, UDP, TCP, ICMP

9

(incl. 1 LPM,

1 ternary)

InternetChecksum
GTP-U tunneling,

PFCP model

BNG
Ethernet, VLAN QinQ,

PPPoE, MPLS, IPv4

10

(incl. 1 LPM,

3 ternary)

Meter (if encap),

Counter,

InternetChecksum

VLAN QinQ

tagging,

PPPoE tunnelling,

traffic accounting,

rate limiting

Table 5.1: Test programs used for NIKSS evaluation; UPF - User Plane Function, BNG

- Broadband Network Gateway.

5.3.2 Packet forwarding rate

Firstly, we measure the packet forwarding rate of NIKSS for a set of representative test

programs described in Table 5.1: L2FWD, L2L3-ACL, BNG and UPF. Figure 5.6 shows

the results for both TC (hereinafter referred to as NIKSS-TC) and XDP (NIKSS-XDP)

variants. First of all, we can clearly see the major difference in the throughput rate

between TC and XDP. Depending on the test program, the throughput of programs

executed by NIKSS-XDP is higher by 123% (BNG) up to 343% (L2FWD). This clearly

shows the benefits of using the NIKSS-XDP mode, if possible. The throughput rate

measured in packets per second for both NIKSS-TC and NIKSS-XDP is independent of

the packet size (hence we only report throughput for 64B for other results), however

a drop in the throughput rate is observed, if traffic achieves a line-rate. In the case of

NIKSS-TC, we achieve a line-rate for L2FWD (for a packet size of 1024B and larger)

and UPF (1512B) only, while NIKSS-XDP saturates the link for all programs.

Among test programs, L2FWD performs the best (1.33 MPPS for TC and 5.9 MPPS

for XDP) because it is the least complex program (uses only a single P4 table) comparing

to others. BNG experiences the worst performance (0.62/1.34 MPPS) for both design
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Figure 5.6: Packet forwarding rate of NIKSS-TC (left) and NIKSS-XDP (right) with only

pipeline-aware optimization enabled for different packet sizes (in bytes). The 95% CI

is less than 0.007 MPPS for all data points. The Y axis has a different scale in the left

and right plots.

variants because it implements complex packet classification based on ternary matching

and makes use of Meter that introduces significant overhead (see subsection 5.3.3).

L2L3-ACL only runs slightly faster (0.69/1.65 MPPS) due to its complexity. Finally, the

UPF program provides a reasonably high performance (0.87/1.99 MPPS) because it is a

simplified version of 5G UPF that makes modest use of PSA externs.

Table 5.2 provides an in-depth analysis of test programs to better understand their

performance and the impact of individual components on overall performance. First,

we analyze non-optimized programs for TC and XDP. At the beginning, it is worth

noting that the total number of CPU cycles for XDP-based programs is lower than

for the corresponding TC-based program. Except for minor differences in how the

PSA-eBPF compiler generates code for XDP and TC (visible for the parser and control

blocks), we should notice that the deparser in XDP consumes less CPU cycles than the

deparser in TC. With the help of perf, we observed that bpf_skb_adjust_room() used

by TC introduces a noticeable overhead, while the cost of bpf_xdp_adjust_head() is

almost negligible (about 0.5% of CPU time). We can also observe that the number of

instructions for the XDP-based L2L3-ACL program is higher than for TC. It is due to

the additional instructions required in XDP to pass packets marked to be cloned up to

the TC layer, according to the NIKSS-XDP design.

Next, we analyze the per-block overhead based on the XDP flavor of L2L3-ACL,
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Program BPF hook Optimization
Average number of CPU cycles per packet Throughput

(Mpps)

# of instructions

Ingress parser Ingress control Ingress deparser Egress parser Egress control Egress deparser Total Ingress Egress

L2L3-ACL

TC none 79 799 290 52 77 103 1400 0.75 1464 304

XDP

none 86 796 172 48 73 50 1225 1.68 1808 259

+ table caching - -121 - - - - -121 +0.21 +83 -

+ pipeline opt. - - -55 -17 - +9 -63 +0.06 -74 +76

All optimizations 86 675 117 31 73 59 1041 1.947 1817 335

BNG

(encap)

TC none 160 1051 340 115 19 272 1957 0.654 1977 1027

XDP

none 173 1013 219 119 19 173 1716 1.304 1938 1020

+ table caching - -353 - - - - -353 +0.259 +314 -

+ pipeline opt. - - -54 -42 - +51 -45 +0.076 -78 +139

All optimizations 173 660 165 77 19 223 1318 1.639 2174 1159

UPF

(decap)

TC none 131 1005 268 47 0 16 1467 0.7558 1889 57

XDP

none 145 948 201 53 0 0 1347 1.606 1874 45

+ table caching - -456 - - - - -456 +0.633 +202 -

+ pipeline opt. - - - -53 - - -53 +0.161 -46 -45

All optimizations 145 492 201 0 0 0 838 2.4 2122 0

Table 5.2: The in-depth performance analysis of test programs. The average number

of CPU cycles per packet is approximated as described in Appendix A ("-" indicates no

change compared to the row above). 95% CI of the throughput rate is less than 0.004

MPPS for all measurements.

which is the most realistic (hence representative) test program. On average, L2L3-ACL

takes 1225 CPU cycles per packet in total, out of which 1054 are spent for ingress pro-

cessing because it implements most of the functionality. Ingress Control consumes 65%

of total CPU cycles, even though it is implemented using only 23.5% of all instructions.

The same observation applies to other programs. The reason is that BPF helpers used

to implement Match-Action tables and PSA externs introduce a significant overhead.

To give a benchmark, the lookup to a single P4 table done by the Egress Control con-

sumes 73 CPU cycles, while the Ingress Control block uses as many as six P4 tables.

Together, the ingress parser and the ingress deparser consume 21% of total CPU cycles,

but the deparser is usually more costly than the parser (twice in the case of L2L3-ACL).

There are two reasons. Firstly, the parser reads chunks of data (e.g., 16/32/64 bits) at

once, while the deparser writes to the packet buffer byte by byte. As a result, the de-

parser takes 974 instructions (47% of all instructions), while the parser only needs 347

instructions. We see room for improvement by minimizing the number of instructions

generated for the deparser. The second reason is that the L2L3-ACL appends the VLAN

tag to packets and, thus, bpf_xdp_adjust_head() is called, contributing to additional

CPU cycles. Finally, the entire egress pipeline only takes 14% of total CPU cycles as it

defines the less complex parser, control block and deparser.

When looking at the results for the BNG and UPF programs, we can make similar
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observations. The Ingress Control of these two programs uses more tables (including

ternary tables) and, therefore, takes more CPU cycles (59% and 70% of total CPU cycles

for BNG and UPF, respectively). However, the difference between the parser and

deparser is not so significant for UPF and BNG. In the case of UPF, this is because

we measure a decapsulation scenario, in which the parser performs more operations

(reads 6 packet headers in total), while the deparser only emits 3 headers. When it

comes to BNG, the protocol stack is not so complex, but the high number of CPU

cycles for the parser is caused by the fact that the cost of the parser also includes the

cost of intrinsic variable initialization. In this case, this is the timestamp retrieved by

bpf_ktime_get_ns() that is further used by the Meter extern. It is also worth noting

that the Egress Control of BNG only consumes 19 CPU cycles as it only performs

operations on headers, without any P4 table.

The impact of compiler optimizations. We analyze the impact of compiler opti-

mizations based on XDP-based programs. Table caching optimization is in place for

each test program. It is worth noting that we generate a single traffic flow (causing

a very high cache hit ratio), so the performance gain due to table caching may be

much lower in the case of more real-world traffic workload. However, the cache hit

ratio depends on packet fields, which are matched using the ternary algorithm. For

instance, the BNG program makes use of a table defining the ternary match kind for

the Ethernet destination MAC and EtherType that are less likely to be changed for

different flows. On the contrary, the UPF’s classification table uses source and desti-

nation IP addresses that are typically unique per flow. For a single flow we can see

that table caching reduces the average number of CPU cycles per packet by 15% for

L2L3-ACL (due to the caching of the LPM table and Action Selector’s decisions), 35%

for BNG and 48% for UPF (due to the caching of ternary tables). Consequently, table

caching noticeably improves throughput. Pipeline-aware optimization has a minor

impact on the performance of L2L3-ACL and BNG. In fact, it only slightly optimizes

the egress parser (due to a lack of need to parse bridged metadata and already-parsed

packet headers) and moves the cost of the bpf_redirect_map() to the egress deparser.

However, contrary to L2L3-ACL and BNG, the UPF program does not define egress

processing and pipeline-aware optimization gets rid of the egress program. This causes

a significant throughput improvement by 0.161 MPPS. Analysis using perf indicated
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that the kernel spends additional CPU cycles to call the dev_map_run_prog(). It shows

that even an empty egress program causes an overhead that decreases throughput.

5.3.3 Microbenchmarks

This subsection presents the evaluation of individual blocks contributing the packet

processing overhead to the overall performance of PSA programs compiled to eBPF.
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Figure 5.7: The cost of different P4 match kinds measured in the throughput rate with a

95% CI of less than 0.015 MPPS (left) and average CPU cycles per packet over a baseline

with 95% CI of less than 3 cycles (right), depending on the number of table entries.

The cost of P4 table’s lookup. Figure 5.7 depicts the cost of different P4 match

kinds depending on the number of table entries. As expected, the exact match table

provides the constant lookup complexity as it is implemented using the hash map. The

impact of LPM and ternary match kinds is more significant. We can observe that the

more entries or distinct prefixes in the LPM table, the less efficient the lookup is. On

the other hand, the ternary table provides a constant complexity as long as a single

ternary mask is used. Once a user adds more ternary masks, performance decreases.

This behavior is the feature of the TSS algorithm, which we use for ternary tables. In

this test case, we used the same flow ruleset for both LPM and ternary tables. Given the

same flow ruleset for LPM_TRIE and TSS, we can notice that our TSS implementation

performs better than the built-in LPM_TRIE, if the number of table entries is greater than

100. However, the performance of TSS may vary depending on the actual state. In

the best case scenario, all rules are placed in the same tuple, providing the best lookup
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performance. On the other hand, if each rule occupies a separate tuple (the worst case

scenario), the lookup complexity will be linear.
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Figure 5.8: The cost of PSA externs measured in average CPU cycles per packet over a

baseline program with 95% CI of less than 2 cycles for all data points.

The cost of PSA externs. Figure 5.8 proves that the performance of a PSA program

differs depending on the set of PSA externs being used. We observe that the Action

Selector contributes the greatest overhead (312 CPU cycles per packet). This justifies the

need for applying table caching for Action Selector tables. We should also notice that

the Checksum using the CRC16 algorithm is as cost ineffective as the Action Selector.

Furthermore, as we have already indicated in previous sections, Meter does also intro-

duce significant cost due to the use of the BPF spinlock (for concurrency management

in the multi-core environment) and the bpf_ktime_get_ns() helper. Let us note that

it has been experimentally proven that both BPF spinlocks and the helper introduces

a non-negligible overhead and inaccuracy to the metering process [146]. On the other

hand, Counters and Registers have a negligible impact because they are based on BPF

array maps. Let us note that, in this test case, Registers used indexes shorter than 32

bits and their overhead is expected to increase if a programmer defines wider indexes

(due to a fallback to hash maps). The InternetChecksum is also very efficient (12 cycles

only), as long as it only re-calculates a few fields, with its impact growing if more fields

are re-calculated.
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Figure 5.9: The throughput of test programs (left) and latency distribution by percentiles

for L2L3-ACL and 0.8 MPPS of the offered load (right) for NIKSS and P4-DPDK.

5.3.4 Comparison with software datapaths

First, we compare the performance of NIKSS with other software PSA implementation -

P4-DPDK4 [137]. We decided not to compare NIKSS with BMv2 [136] as it is a reference

model and is not meant to be a production-grade software switch. In fact, the authors

claim the expected throughput rate is about 80 KPPS [135], which is several orders

of magnitude lower than for NIKSS. Due to differences in supported features between

NIKSS and P4-DPDK, we adjusted test programs to make them run on both targets. For

instance, the current version of P4-DPDK does not support egress processing properly,

hence we use ingress-only processing for all programs. In this test case, we disable table

caching to avoid a high cache hit ratio as we generate a single flow. Figure 5.9 shows the

obtained results. We can observe that NIKSS-XDP and P4-DPDK provides comparable

throughput for the simplest program (L2FWD), outperforming NIKSS-TC. However,

for more complex programs (L2L3-ACL, BNG, UPF), NIKSS-XDP outperforms both

P4-DPDK and NIKSS-TC. In fact, P4-DPDK only provides a slightly higher throughput

for L2L3-ACL (1.2 MPPS vs. 1.0 MPPS) than NIKSS-TC and comparable throughput

for BNG and UPF. We can observe that the performance of P4-DPDK decreases and

becomes comparable to NIKSS-TC if a P4 program uses ternary or LPM tables, which are

implemented as scalar ACL-like tables [47]. Figure 5.9 also shows latency distribution

by percentiles of the L2L3-ACL program for both NIKSS and P4-DPDK. NIKSS-TC

provides the lowest latency (50-th/90-th/99-th percentiles of 21/38/242 µs) for most

4We use version v21.11.0 of DPDK SWX pipeline and the P4-DPDK compiler retrieved from

https://github.com/p4lang/p4c on December 13, 2021
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Figure 5.10: The throughput of test programs (left) and latency distribution by per-

centiles for L2L3-ACL and 0.8 MPPS of the offered load (right) for kernel datapaths.

(90%) packets, but experiences very high latency for minority traffic. P4-DPDK offers

lower latency (38/51/128 µs) than NIKSS-XDP (48/76/100 µs) for most packets (exactly

98.8% of packets) and features a roughly comparable latency distribution for 1% of

packets. Nevertheless, the P4-DPDK throughput and latency do not reach the same

level as we might expect from DPDK [75], as it uses the interpreter mode to run P4

programs [48]5. Moreover, NIKSS is more resource-efficient than P4-DPDK in terms of

CPU usage [114].

Next, we compare the performance of NIKSS to OVS [148], which is a kernel data-

path commonly used for network virtualizaton [182, 51]. We also show the overhead

of P4 programmability, in comparison with native eBPF programming. Figure 5.10

shows a comparison between NIKSS, OVS and native eBPF/XDP programs written in

C. We use L2FWD, L2L3-ACL, and VXLAN (as an example with a complex parser

and deparser, feasible on all kernel datapaths) as test programs. First of all, XDP-based

programs outperform programs running in TC or by OVS in terms of throughput. Nev-

ertheless, we observed NIKSS-TC performing better than OVS for L2FWD (by 19%)

and VXLAN (by 110%). On the other hand, the more complex program (L2L3-ACL) is

about 9.5% faster on OVS. The difference between NIKSS-XDP and native eBPF/XDP

programs shows the cost of P4 programmability. We observe lower throughput for

NIKSS-XDP by 12%, 31% and 24% for L2FWD, L2L3-ACL and VXLAN, respectively.

5the version of P4-DPDK compiler translates a P4 program into assembly-like instructions that are

interpreted by the virtual machine provided by the DPDK pipeline library. A patch is in progress to

translate a P4 program into a C program like NIKSS
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The performance difference is mainly caused by a more efficient parser and deparser in

the case of native eBPF/XDP programs. Looking at latency distribution, we can again

see that NIKSS-TC behaves well (21/66/481 µs), on average, but experiences very high

tail latency. OVS provides the lowest latency in the average case (21/36/309 µs) but,

similarly, a minority of traffic (1%) experiences high processing time (more than 309

µs). On the other hand, both NIKSS-XDP and native XDP programs have compara-

ble latency distribution (48/77/106 µs and 48/75/97 µs, respectively) providing higher

latency than OVS and NIKSS-TC for 90% of packets, keeping reasonably low latency

(less than 106 and 97 µs, respectively) for 99% of packets.

5.4 Limitations

There are a few P4 and PSA features that NIKSS does not currently support, because

they were not feasible in eBPF. First of all, we did not find a way to implement table

entry timeout notification (i.e., psa_idle_timeout), as BPF maps do not provide an

appropriate mechanism. Since the BPF spinlock cannot be used for the LPM_TRIEmap

and the BPF map-in-map, NIKSS does not support Direct Meter for tables using lpm

or ternary match kinds. Moreover, the number of distinct tuples for ternary tables is

constrained by BPF complexity issues (the 1 million instructions limit), and the actual

limit depends on a P4 program (e.g., the BNG program can use up to 37 tuples per

ternary table). Finally, the XDP hook has limitations that prevents it from being used as

the PSA target for P4 programs leveraging the Buffer Queueing Engine, CLONE_E2E

or packet recirculation.

We started the design and implementation of NIKSS, when the Linux kernel v5.11

was the most recent version6. Since that time, kernel developers have provided features

that enable implementing missing or improving existing mechanisms, but they have

not been incorporated into the NIKSS design yet. The BPF helper enabling iteration

over BPF maps from within an eBPF program [191] would eliminate BPF complexity is-

sues for ternary tables. BPF maps with timeouts [38] are required to implement timeout

notifications for P4 table entries. The XDP multicast support [70] might enable imple-

menting the Packet Replication Engine entirely in XDP. Furthermore, some extensions

6However, NIKSS is verified to work with kernel versions later than v5.8
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of the PSA specification or eBPF subsystem would make NIKSS implementation more

efficient. We believe that to improve performance, PSA should allow a P4 programmer

to explicitly skip egress processing for certain packets, as Tofino Native Architecture

does [82]. Another PSA extension - that has already been accepted, but not yet released

[134] - is the optional match kind that will greatly improve the scalability of ternary

tables. Moreover, support for XDP in the egress path [43] is a missing piece, causing

the NIKSS to imitate egress processing in XDP. We also find early discussions on QoS

support in XDP [119] needed from a NIKSS perspective. Finally, we believe that a built-

in wildcard (ternary) BPF map would be a useful extension that gives programmers

more flexibility in implementing packet processing algorithms.

5.5 Conclusions

This chapter presented NIKSS, a novel programmable software datapath for Software-

Defined Networking. NIKSS applies a concept of programmable data planes to soft-

ware switches, allowing for rapid development of new network features and tight in-

tegration with an end-to-end programmable network infrastructure. NIKSS has been

designed around the following principles: high-level and feature-rich programming

abstraction, performance, runtime programmability and operability. Hence, the main

challenge addressed by the NIKSS solution is how to obtain enhanced programmability

without sacrificing performance and operability.

NIKSS leverages P4 and eBPF to fulfil design principles. We presented the design

of the NIKSS P4-programmable pipeline that leverages PSA as an abstract forwarding

model and eBPF as an in-kernel packet processing engine. In particular, two alterna-

tive designs of NIKSS have been proposed. The TC-based NIKSS provides a general-

purpose architecture that can implement any PSA program at the cost of performance.

The XDP-based NIKSS implements a limited version of PSA but offers better perfor-

mance. Moreover, the PSA-eBPF compiler, an original extension to the open-source

P4 compiler, have been developed to generate efficient eBPF programs composing the

NIKSS packet processing pipeline.

Enhanced programmability due to P4 does not come without a cost, though. We

observed lower performance by 12-31% for the XDP-based NIKSS compared to native
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XDP programs written in C. Additionally, microbenchmarks showed that the actual

performance of eBPF programs used by NIKSS depends on the complexity of a P4

program (including the number of P4 tables or PSA externs used). Nevertheless,

the performance evaluation proved that NIKSS might still be a viable alternative to

kernel-based (e.g., OVS) or kernel-bypass solutions (e.g., P4-DPDK), however, there

is a trade-off between a full set of PSA functionalities (TC-based NIKSS) and high

performance (XDP-based NIKSS).

In future work, we plan to integrate NIKSS with a P4Runtime software stack,

implement missing features for the PSA-eBPF compiler (e.g., the range match kind) and

achieve parity with the eBPF capabilities of the latest Linux kernel. We would also like

to investigate the hardware offload of NIKSS, possibly with hXDP [27]. Finally, the

primary goal is to release NIKSS and interact with developers and protocol designers

to make the community adapt NIKSS as the standard, high-performance P4 software

switch.
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Chapter 6

Summary

With the advent of SDN the approach to designing modern network systems such as

5G has been radically changed. SDN enables programmability in the network and

significantly facilitates building scalable virtualized network infrastructure. However,

the early OpenFlow-based SDN systems have been based on fixed-function data plane

devices that were limited to a pre-defined set of supported network protocols and

packet processing algorithms. With data plane programmability, a next step in the

evolution of SDN, data plane devices became programmable too. Network operators

can now define their own custom packet processing pipelines in a software program

using high-level data plane programming language such as P4 and deploy them on

white-box programmable switches.

Nevertheless, the data plane programmability has mainly been leveraged for hard-

ware switches and NICs so far, with limited applications to software switches. At the

same time, software switches have become a vital component of modern multi-tenant

systems, playing a role of the primary provider of network services to virtualized end

applications. With the emergence of 5G and NFV more and more network functions

are moved from hardware appliances to software modules running in the virtualized

data center, putting higher demands on software switches. The software switches must

primarily meet the demands of software-defined networks for high throughput packet

processing, but, at the same time, provide a high degree of programmability, so that

network owners can smoothly introduce new features, fix network issues, perform

software upgrades to the data plane devices or customize their network protocols to

meet customers’ requirements. Thus, network operators should be able to use a high-
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level domain-specific language such as P4 to customize a packet processing pipeline

without an intimate knowledge about underlying software switching platform. More-

over, programmable data planes for software switches is a missing piece to enable

end-to-end programmable network, where each data plane device on the data path is

programmable. Such the end-to-end programmable network enables new use cases

that would have not been possible or would be difficult to implement in a timely

manner without P4-programmable software switches.

In this dissertation, we present the design, implementation and evaluation of a pro-

grammable data plane for software switches in the virtualized network infrastructure.

In particular, we present two novel systems, P4rt-OVS [132] and NIKSS [130], that apply

data plane programmability to software switches and provide a unique contribution to

the research area on programmable networks.

In Chapter 2, we introduced background on software-based packet processing, in-

cluding characteristics of multi-core CPU environment, packet processing frameworks

and packet classification algorithms in software, and performance metrics used to

evaluate software switches. Next, we present two main technologies used for P4rt-

OVS and NIKSS: P4 and eBPF. P4 is a high-level language for programming protocol-

independent packet processing pipelines and is designed to be implementable on a

variety of targets, including programmable NICs, FPGAs, software switches and hard-

ware ASICs. On the other hand, eBPF, that originates from the Linux OS, is designed as a

technology for commodity servers equipped with general-purpose CPUs and provides

a generic framework to extend OS capabilities at runtime. In particular, eBPF enables

attaching packet processing modules written in an eBPF assembly-like language to the

NIC driver (XDP) or Linux network stack.

Both P4rt-OVS and NIKSS use the eBPF framework as a packet processing engine

for end-host networking, but leverages P4 as a high-level language for describing

packet processing pipelines. In this dissertation, we argued that the P4 language can

bring significant benefits to software switches. First and foremost, P4 provides an

auto-generated control plane interface (P4Runtime [174]) and, thus, it provides inter-

operability with existing SDN controllers (such as ONOS [19]). This enables integrating

software switches into the end-to-end programmable network and can lead to novel

network applications. Second, P4 can reduce a development complexity for network
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developers - they no longer need to satisfy the eBPF verifier, as it is a role of the P4

compiler to generate a code that is compatible with the underlying packet processing

framework. Moreover, as shown in [160], the P4 language can significantly simplify

the development of new network applications by reducing the lines of code compared

to an equivalent C code.

In Chapter 3, we motivated the need for a P4-programmable software switch for

SDN by showing different use cases of the P4 programmability at the end hosts, in-

cluding advanced network monitoring, stateful firewalls, heavy hitter detection, in-

network DDoS mitigation and more. In particular, we presented two case studies: 1)

end-to-end network visibility with In-Band Network Telemetry and 2) scalable large

flows’ detection, to prove that P4rt-OVS and NKSS can provide advantages over the

state of the art. Furthermore, we performed analysis of existing solutions and defined

the following requirements for programmable software switches: 1) high-level, fully-

fledged programming abstraction, 2) high performance, 3) runtime programmability

and 4) operability. NIKSS fulfills all of them, while P4rt-OVS lacks better programming

abstraction and operability.

In Chapter 4, we presented P4rt-OVS [132], an original extension of Open vSwitch

(OVS) that enables runtime programming of protocol-independent and stateful packet

processing pipelines. It extends the packet forwarding model with userspace eBPF,

bringing a new runtime extensibility mechanism to OVS. The P4rt-OVS design results

in a hybrid approach that provides P4 programmability without sacrificing well-known

features of OVS. The main advantage of P4rt-OVS is that anyone can use the P4 language

to develop custom packet processing modules for OVS with no need to use low-level

language such as C or to be familiar with the large codebase of OVS. P4rt-OVS makes

also a number of unique contribution to the state of the art. We presented a new

programming model and control plane API for OVS to enable extending the packet

processing pipeline at runtime with P4. We designed and implemented a novel P4

to userspace eBPF (P4-uBPF) compiler that allows developers to write P4 programs

and run them in userspace BPF VM on general-purpose CPUs. The P4-uBPF compiler

has been publicly released [139] and can be used by the community to build other

solutions. Furthermore, we conducted performance evaluation showing that P4rt-OVS

does not introduce significant packet processing overhead comparing to the classic OVS
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forwarding model, yet enables runtime protocol extensions and stateful processing.

Finally, the P4rt-OVS solution is open-source [125] and available for researchers and

system developers to build upon. Nevertheless, P4rt-OVS suffers from limitations such

as a constrained P4 architecture model and high CPU usage due to DPDK. Therefore,

we developed a novel solution based on learnings from the work on P4rt-OVS.

In Chapter 5, we presented NIKSS (Native In-Kernel SDN Software Switch) [130],

a novel programmable software datapath for Software-Defined Networking. NIKSS

leverages P4 as a data plane programming language providing high-level and feature-

rich programming model along with the Portable Switch Architecture forwarding

model. eBPF has been used for NIKSS as a packet processing engine to provide runtime

programmability and operability. Performance has been achieved by combining the

native eBPF environment with the PSA to eBPF compiler that generates efficient eBPF

bytecode. The PSA to eBPF compiler [140] is an original extension to the P4 compiler

that implements the PSA model. We implemented several compiler’s optimizations to

maximize NIKSS performance, including table caching and pipeline-aware optimiza-

tions. We also presented a unique ternary matching algorithm based on eBPF primi-

tives. Last but not least, we designed and implemented the NIKSS P4-programmable

packet processing pipeline leveraging either Traffic Control (TC) or eXpress Data Path

(XDP) hooks in the Linux kernel. The TC-based design provides a general-purpose

model able to implement any PSA program, while the XDP-based NIKSS design is

more limited, but provides better performance. Our performance evaluation showed

that the TC-based NIKSS offers comparable throughput and latency distribution to

alternative software datapaths, while the XDP-based NIKSS outperforms evaluated

alternatives.

According to our knowledge, NIKSS is the first kernel-based solution that imple-

ments P4 Portable Switch Architecture. Nevertheless, there are several features that

are left for future work on NIKSS, including the P4Runtime support, design and im-

plementation of missing features (e.g., range matching algorithm) and further perfor-

mance optimizations. Moreover, to foster the adoption of NIKSS, we plan to provide a

reference P4 program implementing most common features for end-host networking.

Finally, the primary goal is to interact with network system developers and protocol de-

signers to make the P4 community adapt NIKSS as the standard, high-performance P4
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software switch. The source code of NIKSS has been publicly released under the open

source Apache 2.0 license for academic and industry use [129]. Going forward, we be-

lieve that NIKSS can be used by researchers and system developers either as a software

switch emulator to conduct new research or as a high-performance P4-programmable

datapath to build production systems.

Finally, P4rt-OVS and NIKSS can be used wherever P4-programmable software

switches are needed. They can be used for research experiments or real-world network

applications, either as a standalone packet processor or integrated into the end-to-end

programmable network. Both have already been used in some applications. In [145] we

showed how P4rt-OVS can be used to enhance 5G SDN/NFV edge deployments with P4

and data plane programmability based on the P4-based implementation of the DDoS

mitigation. We also researched the VNF offloading to programmable infrastructure

[133, 131], where both P4rt-OVS and NIKSS can provide an offloading engine for

network functions. Moreover, in [127] we showed a prototype of end-to-end network

visibility with INT, where the NIKSS switch could play a role of a software switch

providing telemetry information about how packets have been processed by end hosts.

6.1 Research outcomes

At the beginning of this dissertation we stated several research questions. Our research

experiments have led to the following lessons learned:

• Can programmable data plane and P4 be successfully used for software datapaths without

sacrificing performance?

Yes. This thesis has proven by the examples of P4rt-OVS and NIKSS that, in

general, the P4 language can be used to implement software-based packet pro-

cessing pipelines. P4rt-OVS has shown almost no performance overhead over

the fixed-function software switch, while the performance gap of NIKSS com-

pared to native eBPF programming is not significant. There is still a trade-off

between programmability and performance, but the benefits from using P4, such

as auto-generated control plane interface, faster time to market for new network

features, lower learning curve and development burden, makes the performance

gap acceptable.
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• Given the hardware focus, is P4 flexible enough to express most common features of

software switches?

Generally yes, but there are limitations. P4 as a language is flexible enough

to express major data plane functions for software switches such as parsing, de-

parsing, encapsulation, decapsulation, packet filtering, stateful processing, load

balancing and more. Some of features require support from P4 externs. How-

ever, although the P4 language can cover majority of data plane functions of a

modern hypervisor switch or VNF, there are still some functionalities, which are

typically implemented as software modules, but cannot be defined by the P4

language itself. For example, software switches may require to provide end-host

encryption (e.g., with IPSec). Furthermore, some VNFs requires L7 processing

to perform Deep Packet Inspection (DPI) or Intrusion Detection and Prevention

Systems (IDS/IPS). These functions should be defined as new P4 externs that are

dedicated for software switches.

• Is the P4 Portable Switch Architecture (PSA) the right architecture for software datapaths?

What is the price of portability?

Partially. PSA is a fully-featured forwarding model and, as proven by NIKSS,

can be successfully used to implement common functions of a software switch.

Nevertheless, as described in the previous bullet, P4 can describe majority of

data plane functions in software, but not all of them. Similarly, PSA does not

provide a complete list of P4 externs to cover all data plane functions that are

typically implemented on general-purpose CPUs (e.g., IPSec encryption). This

is a known cost of portability - the feature set is limited to those supported by

most network devices. Otherwise, PSA programs would not be portable among

different P4 targets. However, there is an ongoing standardization work on

defining a Portable NIC Architecture (PNA) that targets programmable NICs and

extends the PSA model with IPSec encryption and better support for stateful

connection tracking. The capabilities of software switches running on general-

purpose CPUs are typically more advanced than programmable ASICs and NICs.

Therefore, we see the need for defining a Portable vSwitch Architecture (PvS)

that would define missing P4 primitives for software switching such as in-built

support for connection tracking exposed as a P4 extern, basic support for DPI or
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packet buffering. In fact, the PvS architecture could be built on top of PSA, but

extend it with more advanced packet processing capabilities.

6.2 Future work

We conclude this dissertation with a discussion of future research directions, open

challenges and opportunities for improvement.

Need for a novel P4 architecture model for software switches. As summarized in

the research outcomes, the existing P4 architecture models are not enough to cover all

features of modern software switches. Therefore, we see a need for Portable vSwitch

Architecture (PvS) that will extend the Portable Switch Architecture with packet pro-

cessing primitives that are specific to software switching. Furthermore, we believe

that, going forward, data plane programming frameworks should be flexible enough

to express custom packet processing algorithms, but, on the other hand, provide as

much as possible packet processing building blocks, which are re-usable components

with a well-defined API ready to be used by data plane programmers. Since software

switches typically work better for use cases requiring a lot of memory, the PvS archi-

tecture should at least provide building blocks to implement fine-grained connection

tracking and NAT, packet buffering, security functions such as IPSec or TLS offload

and Deep Packet Inspection. Finally, the PvS architecture should be extensible enough

to allow developers define and integrate their own building blocks without the need

to modify the architecture model definition. Such an extensible system to derive from

is λ-NIC [36], a framework to run interactive workloads directly in the data plane.

Disaggregating network functions on heterogeneous network processors. Pro-

grammable networks can leverage a variety of network processors, including pro-

grammable switches, SmartNICs, FPGAs and software switches. P4 as a language can

express packet processing pipelines for all of them. However, each of these platforms

has different characteristics when it comes to throughput, latency, available memory

or energy consumption. For instance, programmable switches can offer Tbps of ag-

gregated throughput, but suffers from limited memory. On the other hand, software

switches running on general-purpose CPUs provide a lot of memory resources, but can-

not achieve the throughput equivalent to hardware-based packet processors. At the
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same time, most advanced network functions require diverse functionalities and high

performance. We believe that network functions should be disaggregated on hetero-

geneous packet processors to combine strengths of different programmable platforms.

With the data plane dissegration, a single network function would be decomposed into

several P4 programs, each running on a different packet processor, but the P4 programs

would be coordinated to implement the network function. This approach requires

new techniques such as Flightplan [171] to chain service functions running on different

targets and orchestrate P4 programs.

Towards the end-to-end programmable network. It is worth emphasizing that the

end-to-end programmable network leveraging a common data plane programming

framework such as P4 and unified control plane could unleash unseen innovation in

the networking systems. With a network that is full of programmable devices, nothing

than creativity stems network researchers and system designers from implementing

sophisticated yet efficient solutions. In the short-term, data plane programmability can

provide significant improvements in some network domains such as IT data centers

or NFV deployments as shown in Chapter 3. However, looking ahead, the end-to-end

programmable network could become the enabler to replace the TCP/IP model or build

a completely new network based on novel networking paradigms such as Information-

Centric Networking (ICN) [9], ETSI Non-IP Networking (NIN) [6], NewIP [84] or RINA

[44] as the interoperability with the existing TCP/IP systems is no longer a technology

limitation. In future, the programmable network devices can be a foundation for

deploying these or other novel network paradigms. Today, programmable switches,

NICs and software switches can already be used to build experimental testbeds to

conduct a research on novel networking techniques. Finally, it is also worth noting that

the data plane programmability will not only be limited to traditional network devices

such as programmable switches, NICs and software switches - the programmability

domain can eventually span WiFi hotspots, mobile terminals, software-defined radio

base stations and more.
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Appendix A

Methodology to measure

per-component CPU cycles for NIKSS

To count the average number of CPU cycles per packet we leverage the bpftool prog

profile that provides a way to measure CPU cycles taken by the execution of an eBPF

program. However, in our microbenchmarks we were interested in observing how

much overhead individual building blocks contribute. Therefore, we came up with

a slightly inaccurate, but only feasible way to measure CPU cycles consumed by a

sub-component of an eBPF program. In summary, the methodology can be described

as follows:

1. Perform a test run of N iterations of a pass through an eBPF program (return

XDP_PASS for XDP and return TC_ACT_OK for TC). We call it a baseline program

and mark CPU cycles measured for this scenario as Cbaseline.

2. Perform a test run of N iterations of an eBPF program that uses a component (e.g.,

a PSA extern, or a P4 table).

3. Calculate the difference in average CPU cycles per packet between the two pro-

grams to get the cost of a component.

We use this methodology to measure the cost of PSA externs and matching algo-

rithms for P4 tables. We also follow this methodology to measure an average number

of CPU cycles per P4 block (a parser, control block or deparser), reported in Table 5.2.

However, to measure CPU cycles consumed by a particular P4 block, we use hand-

crafted eBPF programs (based on C programs generated by the PSA-eBPF compiler)
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that only includes a parser (CP), parser and control block (CP,C) and the entire pipeline

(CP,C,D). Then, the average number of CPU cycles consumed by a parser (CParser) is

calculated as follows:

CParser = CP−Cbaseline

The average number of CPU cycles consumed by a control block (CControl) is calculated

as:

CControl = CP,C−Cbaseline−CParser

The average number of CPU cycles consumed by a deparser block

(CDeparser) is calculated as:

CDeparser = CP,C,D−Cbaseline−CParser−CControl

Then, the total number of CPU cycles per pipeline (CTotal) is calculated as:

CTotal = CParser+CControl+CDeparser

, which is roughly the same as:

CTotal = CP,C,D−Cbaseline

We follow exactly the same methodology to find the difference between non-optimized

and optimized PSA-eBPF programs. However, this methodology suffers from slight

inaccuracy for the following reasons:

• If we compile crafted eBPF programs down to an eBPF code, the Clang compiler

optimizes the piece of code that is not used by a given block. For instance,

for the handcrafted eBPF program consisting of just a parser, the instructions

filling the PSA standard metadata (used further by a control block) is optimized

out. However, this does not have a significant impact on the total number of CPU

cycles. From our experience, the Clang compiler only optimizes a few instructions.

This can lead to the inaccuracy of a few CPU cycles per packet.

• We observed that the number of CPU cycles measured for handcrafted eBPF pro-

grams might be different, depending on surrounding eBPF instructions. This is

related to how a CPU executes a unique set of instructions. To give an exam-

ple, when we enabled table caching, we retrieved different values of an average
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number of CPU cycles (±5-20 cycles) for a parser or deparser, even though table

caching neither modifies the parser or deparser.

Therefore, we made the following assumption. If a compiler’s optimization does

not modify a P4-programmable block (table caching just modifies a control block and

pipeline-aware optimization only affects the ingress deparser, egress parser and egress

deparser), we do not measure CPU cycles for the block again, but we take the base

measurement for the block (measured for the non-optimized case). To sum up, this

leads to a slight inaccuracy of results as they are approximated. However, the results

are in line with what can be expected from given blocks and optimizations. It is worth

outlining that, from our experience, the approximation error is not more than ±10-20

CPU cycles.
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Appendix B

Online DDoS mitigator with P4rt-OVS

In [145], we ported the P4 DDoS mitigator program (around 100 lines of code) written

for NetFPGA [144] to P4rt-OVS to show the P4 potentials in terms of performance in

virtualized scenarios. The P4 DDoS mitigator exploits P4 stateful objects. With respect

to stateless firewalls, the P4 switch processing is able to store and correlate protocol

field values belonging to the same sessions, thus identifying suspected flows (e.g., port

scan behavior) that may be dynamically blocked. However, it may not be sufficient to

detect complex distributed attacks, simultaneously affecting multiple fog/edge nodes.

Selected mirroring is then introduced to enable an external monitor to correlate packets

traversing different edge nodes and potentially part of a more complex attack.

Listing B.1 shows an excerpt of the P4 code exploiting novel stateful objects to

implement DDoS mitigator. For selected sessions, a register stores the last TCP port

port_r and the number of related scan occurrences scan_r. The ingress control applies

the update_scan_param action through the m_table table, storing the TCP port of

the current session packet and retrieving the relative session stateful values as packet

metadata. The scan condition (i.e., an incremental port pattern) determines a pipeline

switch where, upon a given threshold, the packet is dropped, or subject to selected

counter-actions, such as mirroring to a monitoring element in charge of intelligent

correlations.

@name(".port_register") register<bit<16>>(32w16384) port_register;

@name(".scan_register") register<bit<32>>(32w16384) scan_register;

@name(".m_action") action update_scan_param(bit<32> register1) {
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port_register.read(meta.meta.previous_port, (bit<32>)register1);

meta.meta.current_port = hdr.tcp.dstPort;

scan_register.read(meta.meta.scan_occurrences, (bit<32>)register1);

}

control ingress {

m_table.apply(); // run update_scan_param

if (meta.previous_port == meta.current_port - 1) {

attack.apply();

m_filter.apply();

} else{

no_attack.apply();

m_go.apply();

}

}

Listing B.1: P4 code excerpt of DDoS port scan mitigator.

The evaluation of NetFPGA-based implementation has been shown in [144]. In

[145], the P4 program was deployed on two platforms: Behavioral Model version 2

(BMv2) - the most common software switch employing the P4 language, and P4rt-OVS.

We tested it over a standard Linux box server (Intel Xeon CPU E5-2620 6-core 2.10GHz,

16GB RAM). In the Main (M) configuration the P4 virtual switch runs directly on the

bare-metal server, while in Docker (D), runs as a virtual container. The P4 virtual switch

is loaded with 1000 flow entries and attached to 10 Gigabit Ethernet optical interfaces

I1 and I2. TCP traffic (frame length 1500 byte) generated by the Spirent N2U Traffic

Generator and Analyzer is injected in I1 and received by I2 crossing the P4 virtual

switch.

We measured the BMv2 throughput and latency as a function of the number of

utilized cores (i.e., 1, 2 and 4). Results show that, using four cores, the BMv2 switch

is capable of sustaining more than 1Gb/s traffic while applying the DDoS mitigator,

introducing an average latency below 150 s. The utilization of a reduced number of

cores impacts the maximum throughput linearly (one core achieves around 200Mb/s,

two cores around 500Mb/s) and the latency (reaching 105s and 140s approaching the
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Figure B.1: P4rt-OVS DDoS mitigator latency and throughput: main (M) and Docker

(D) instances.

maximum throughput, respectively). This is because the software switch always runs

four parallel threads. A significant result is derived by comparing the main and the

virtual container instances. In fact, the docker instance does not impact negatively

on networking performance. Indeed, a slight improvement was observed due to a

better thread scheduling among the available cores, which limits the 100 percent CPU

load events that are at the basis of the BMV2 packet drop statistics. In light of this,

the docker version achieves an improvement of 100-150 Mb/s of additional sustainable

throughput. Moreover, docker assures no latency degradation, rather showing a slight

improvement with a higher number of available cores serving BMV2 threads. Such

effect was analyzed in the literature, confirming that containers are particularly suitable

for virtualizing P4 stateful switches.

In order to prove that the virtualized P4 application can run at the 10G+ speed, the

DDoS mitigator was also tested with P4rt-OVS. The test setup was the same as for BMv2,

but the P4 program was adapted to make it compatible with the architecture model of

P4rt-OVS. Figure B.1 shows the throughput and latency observed for P4rt-OVS. Because

P4rt-OVS is based on DPDK to poll packets from an interface, the measured latency is

comparable for every test scenario. The latency behavior is similar to results obtained
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with FPGAs, with stable floor not exceeding 20s (using FPGA the floor was around

5us) under 90 percent interface nominal speed utilization [144]. However, similarly to

BMv2, the latency observed for Docker was slightly lower than for physical machine,

thus confirming the effectiveness of containerized solutions. It is worth noting that

the test session successfully achieved the link speed (10G). Other tests confirmed wire

speed performance at even 40G for flows having a packet size of 1500 bytes.
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