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Abstract

Medical imaging plays a key role in the noninvasive diagnosis of prostate cancer,

which is the second most common cancer among men worldwide. Current diagnostic

standards define the terminology used in the description of radiological findings and

methods for assessing the clinical significance of prostate lesions by evaluating signif-

icant imaging sets of features. The results of radiology examinations are subjective

in their interpretations of imaging features and in the narrative form of their reports;

these frequently contribute to diminished diagnostic value.

This thesis considers solutions that are designed to structure and normalise the text

contained in such reports. It also proposes conceptual and computational extensions of

the representation of diagnostic description. Selected semantic forms were integrated

with computational models based on analyses of features relevant to diagnosis and

therapy. Domain knowledge gathered by means of content- and quality-standardised

diagnostic protocols were used to construct solutions that infer interpretations of ob-

jectified diagnostic images to increase the effectiveness of clinical decisions. The bulk

of this thesis concerns the development and verification of the effective use of objec-

tified domain knowledge in computer-aided prostate cancer diagnosis solutions. This

form of support in report generation procedures serves to compile representative and

structured datasets; their analysis contributes to the development of more reliable and

credible computational models.

The concept of computer-assisted structural reporting supplemented with calcu-

lated and explained interpretations of data included in reports enables both the accu-

racy of diagnosticians’ conclusions to be supported and effectiveness of decisions made

by clinicians to be improved. Our experiments have confirmed the validity of these

conclusions.
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Glossary of Common Terms

ACR American College of Radiology

ADC apparent diffusion coefficient

AI artificial intelligence

AS anterior fibromuscular stroma (of the

prostate)

AUC area under the receiver operating

characteristics curve

BI-RADS breast imaging reporting and data system

BPH benign prostate hyperplasia

BPMN business process modelling notation

bpMRI biparametric magnetic resonance imaging

CAD computer-aided diagnosis

CAR/DS computer-assisted reporting and decision

support

CDE common data element

CMA common model architecture

CNN convolutional neural network

csPCa clinically significant prostate cancer

CZ central zone (of the prostate)

DCE dynamic contrast enhancement



DMN decision model and notation

DRE digital rectal examination

DWI diffusion-weighted imaging

EAU European Association of Urology

mpMRI multiparametric magnetic resonance imaging

MRI magnetic resonance imaging

PA percent concordance

PCa prostate cancer

PI-RADS prostate imaging reporting and data system

PSA prostate-specific antigen

PZ peripheral zone (of the prostate)

RADS reporting and data system

RIS radiology information system

T2W T2-weighted imaging

TZ transition zone (of the prostate)

US ultrasonography

UX usability

XAI explainable artificial intelligence
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Chapter 1

Introduction

The prostate gland (prostate) is a reproductive organ that is responsible for the

production of the alkaline liquid that carries sperm; this liquid accounts for 30% of

ejaculate [1]. The gland is located below the bladder, on the anterior side of the

rectum, and measures approximately 25 x 25 x 30 mm. The weight of the organ is

estimated to range between seven and sixteen grams in a typical adult man. The size

of the prostate increases during two phases: first during puberty, when it reaches its

standard size, and second above the age of sixty, when it becomes enlarged and may

cause benign prostatic hyperplasia (BPH).

Figure 1.0.1: Prostate zones. Source [2]

The prostate gland is located around the urethra. Anatomically, the prostate is

divided into four zones [Figure 1.0.1], according to McNeal’s classification [3]:

• the peripheral zone (PZ), which contains 70% of the glandular tissue

• the central zone (CZ), which contains 25% of the glandular tissue



• the transition zone (TZ), which contains 5% of the glandular tissue

• the anterior fibromuscular stroma (AS), which contains no glandular tissue

The part close to the bladder is called the base and the part close to the urethral

sphincters is called the apex.

Figure 1.0.2: The most common malignancies in men by country. Source: World
Health Organization, GLOBOCAN 2020 [4].

Figure 1.0.3: The most common malignancies diagnosed in men in terms of incidence
and mortality. Source: World Health Organization, GLOBOCAN 2020 [4].

Statistically, one in seven males will suffer from prostate cancer (PCa) during their

lifetime. It is estimated that prostate cancer contributed to 3.8% of all deaths in 2020;

in the same year, more than 1.4 million men were diagnosed with PCa and over 375,000

died from the disease [Figure 1.0.3] [4]. Prostate cancer is the fourth most commonly

diagnosed malignancy worldwide. It is the second most commonly diagnosed malig-

nancy in men globally, and the first in Europe, Australia, North, Central and South
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America, and parts of Africa [Figure 1.0.2]. Poland reported over 17,000 new cases

and over 5,500 deaths from PCa in 2019 [5].

Figure 1.0.4: Cancer mortality rates from 1930 to 2016, based on the data from the
National Center for Health Statistics in the United States. Source: American Cancer
Society [6]

PCa is caused by cell proliferation of glandular tissue. It is diagnosed in very few

individuals under the age of 50 (<1% of all patients) [7]. The average age of PCa

patients is 66 years and 86% of all diagnoses are made in patients over the age of 60

[6]. The aetiology of PCa has also been linked to racial ethnicity [8], family history

[9], and genetic factors [9]. Moreover, evidence suggests that height [9], [10], obesity

[8], and smoking [11] increase the risk of developing clinically significant forms of PCa,

while physical activity decreases it [12]. PCa mortality rates have decreased in recent

years due to the development of techniques that enable early detection and treatment

[Figure 1.0.4] [13].
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1.1. Domain knowledge of prostate cancer management

Risk factors alone are insufficient in the diagnosis of PCa; screening tests are also

required to ensure early detection and treatment. Currently, prostate-specific antigen

(PSA) testing [14] and digital rectal examinations (DRE) [15] are used to detect cancer

early. The widespread global introduction of PSA testing has influenced the patterns

seen in case epidemiology; this was particularly evident in the 1990s [Figure 1.0.4],

when the introduction of screening resulted in a dramatic increase in PCa detection

[14], [16].

The classical oncological diagnostic management scheme involves referral to urology

clinics. Patients with suspected PCa then qualify for prostate biopsies. A urologist

performs a rectal examination, interprets the PSA test result, and refers the patient for

multiparametric magnetic resonance imaging (mpMRI) of the prostate, in accordance

with the guidelines of the European Association of Urology (EAU) [17].

Decisions on management are based chiefly on the evaluation of serum PSA, DRE,

risk group for recurrence, life expectancy, comorbidity, performance status, and symp-

toms of dysuria [17]. The steps following a diagnosis are established cooperatively

by clinicians and patients. Imaging diagnostics—particularly mpMRI—play an in-

creasingly important role in the successful diagnosis of PCa, qualification for prostate

biopsies, treatment, and conservative management.

Diagnostic and treatment procedures are invasive, and cause a significant number

of side effects and complications. Active treatment options include radical prostatec-

tomy, radiotherapy, hormonal therapy, and investigational therapies (e.g. cryotherapy,

high-intensity focused ultrasound, and focal therapy) [17]. Such therapies may lead to

urosepsis, urinary incontinence, erectile dysfunction, radiation reactions, psychologi-

cal disorders, and complications [18]. Patients are presented with different treatment

options depending on the stage of their illness. High-risk PCa patients have an in-

creased risk of PSA failure, metastatic progression, and death [17]. The EAU suggests

that treatment of patients with limited life expectancy (lower than ten years) may be

deferred to avoid loss of quality of life.

Advancements in knowledge and the growing number of variables that have resulted

from new technologies impact patient management. Failure to account for all aspects

may result in inaccurate assessment and poor therapeutic decisions. The largest issue
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facing patients with low-risk diseases is overtreatment. Overdiagnosis of clinically

insignificant lesions leads to unnecessary biopsies, a high percentage of referrals to ac-

tive treatment, and inadequate patient management. A need exists for new diagnostic

methods that allow the effective selection of men for active and deferred therapies.

The detection of clinically significant cancer of the prostate gland (csPCa) is a

complex process that must be managed carefully. PSA levels and DRE methods of

assessment are characterised by their low predictive value and are ineffective in the

selection of proper methods of clinical intervention [19]–[21]. Several phenomena mimic

PCa by increasing PSA levels in patients’ blood or by causing palpable nodules that

are subsequently diagnosed as DRE abnormalities. Balancing the PSA threshold is a

choice between sensitivity and specificity, which, in practice, results in a large number

of unnecessary painful and invasive biopsies, diagnoses of clinically irrelevant cases,

and no translation into a decrease in mortality [22]. Although such diagnosis methods

are limited, their use is recommended in European guidelines [23] due to their low cost,

availability, and universality.

Figure 1.1.1: mpMRI modalities in the visualisation of the prostate gland and lesion
assessment. Source: [24]

Multivariate models that employ various other noninvasive biomarkers can help

in more individualised risk assessment [25]. Diagnostic imaging, particularly mpMRI,

has gained considerable recognition in recent years as a tool that can further improve

the detection of csPCa. Such methods also play an increasingly important role in

qualification for prostate biopsy, treatment, or conservative management. mpMRI

considers the following combination of imaging methods [Figure 1.1.1] [24]:
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• T2-weighted imaging (T2W) highlights the differences in T2 tissue relaxation

time by sequence weighting. While normal PZ tissue is characterised by high

signal intensity, the TZ is characterised by heterogeneous nodularity and the

possible coexistence of BPH features. T2W is the most useful sequence in an

analysis of anatomical features—for example, BPH or lesion extraprostatic ex-

tension.

• Diffusion-weighted imaging (DWI) involves using magnetic gradients (known

as ‘b’ values) for quantification of the Brownian motion of free water protons.

Normal glandular prostate tissues do not constrict water diffusion; thus, showing

low signal intensity on high b-value images. Analysis of DWI images in PCa

assessment is complemented by visualisation of the apparent diffusion coefficient

(ADC) maps, constructed using multiple conventional diffusion images with dif-

ferent amounts of weighting, which present an assessment of water diffusion.

Contrary to DWI images, signal intensity on ADC maps correlates inversely

with lesion malignancy.

• Perfusion-weighted imaging (DCE: Dynamic Contrast Enhancement) is used in

the assessment of tumour vascularity through T1-weighted scanning sequences

that are performed before, during, and after the administration of contrast agents.

PCa, due to neoangiogenesis and more permeable vessels than are found in nor-

mal tissue, shows rapid enhancement and early washout; this corresponds to high

signal intensity on the DCE images.

Due to the heterogeneous character of prostate gland tissue, mpMRI modalities

vary in their diagnostic value. This depends of the location of lesions1. The variable

amounts of glandular and stromal tissue in the TZ (often resulting from BPH), creates

difficulty in the identification of cancer from T2W images. Lesions located in the PZ

can be confused on T2W with abnormalities resulting from prostatitis, haemorrhage,

glandular atrophy, BPH, biopsy related scars, or therapy. For such lesions, DWI

demonstrates higher diagnostic value because it enhances the regions that display

restricted diffusion. Due to the technique employed and the resulting high resolution

of T2W, it is frequently used in assessing and differentiating anatomic features, es-

tablishing sectoral locations, and measuring both the prostate gland and the lesions
1 The role of the particular mpMRI modalities in PCa assessment is described in detail as part

of the PI-RADS 2019 v2.1 guidelines [2].
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assessed. Early enhancement displayed on DCE can be indicative of csPCa, but is not

definitive, as similar results can be observed in the case of BPH nodules. Moreover,

the absence of enhancement does not exclude the possibility of PCa. On account of

the variable kinetics of PCa enhancement, its diagnostic value remains debatable. The

specialisation of mpMRI modalities complements PCa assessment; drawing diagnostic

conclusions requires a fusion of information on lesions’ characteristics.

The use of mpMRI in localisation, risk assessment, and lesion classification is be-

coming more widespread as more radiologists become experienced in findings analysis

and interpretation. Due to its higher predictive performance in comparison to PSA

and DRE testing [26]–[30], the role of mpMRI as a screening tool is under consideration.

Using mpMRI as a method of noninvasive diagnosis reduces the number of patients

referred for biopsies without increasing the number of clinically significant cases missed

[31], [32].

1.1.1. Radiological diagnostic standards

Figure 1.1.2: A radiology report was written in 1896 by James Morton that presents
an assessment of X-ray imaging of the abdominal area. It is widely considered to be
the first known radiology report [33].

The effectiveness of radiologists’ work depends strongly on their experience levels

and interpretative skills in the identification and assessment of pathologies on medical
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images. Since the dawn of medical imaging, radiologists and other clinicians have

communicated primarily through reports. Figure 1.1.2, which refers to the findings

of an abdominal X-ray, and assessments of the kidneys and hip bone, constitutes one

of the earliest examples of narrative medical reporting. Reports must be presented

in a manner that facilitates their clarity and legibility for referring clinicians, as well

as providing clear answers to key clinical questions. Choosing the correct diagnosis

and prognosis for cancer patients depends not only on image data, but also heavily

on the content of radiological reports. The high competence of experts is insufficient

for optimal patient management if the findings of radiologists’ work are expressed

unclearly.

The need for standardisation of medical reporting has been apparent for as long

as radiology has been practised. It was expressed in 1904 by Preston Hickey, who

postulated the need for nomenclatural standardisation of radiographic descriptions [34]

as a result of observations he had made on the individual styles used in medical reports.

Hickey’s research indicated that the low quality of reports, which frequently omitted

crucial information, diminished their clinical value and applicability in diagnosis [35].

The problems resulting from the ambiguities and style variety in medical reporting

continue to impede diagnostic processes [36]. The need for standardisation of medical

reporting and the resulting solutions is best illustrated in the history of breast imaging

reporting. With increased utilisation of mammography [37] in the 1980s, a host of

problems arose from inconsistency in reporting and data acquisitions standards, vague

descriptions, and ambiguous recommendations [38].

In response, the American College of Radiology (ACR) charged a committee of

medical experts with developing guidelines on the reporting of breast imaging to

introduce methods for the precise communication of findings [37], [39]. This work

resulted in the first management guidelines: the breast imaging–reporting and data

system (BI-RADS). The standard included semantic lexicons, and recommendations

regarding the way that mammographic imaging should be conducted, the structure of

medical reports, and assessment categories [37]. This was mandated by six standard

final assessment codes [40]. Figure 1.1.3 presents two examples of reports prepared

according to the BI-RADS standard. Since the establishment of BI-RADS in 1993, it
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has become a formally accepted and successful standard component of patient man-

agement pathways.

(a) Structured BI-RADS report, 1998 [41] (b) Structured BI-RADS report, 2009 [42]

Figure 1.1.3: Two sample radiology reports of breast imaging prepared according
to the BI-RADS standard. Despite the records having been written over ten years
apart by radiologists of different backgrounds who worked at different centres and in
different countries, they follow a remarkably similar structure, are based on common
terminology, and refer to the concrete assessment codes.

The breadth of applications of radiology imaging techniques has led to a need for

the standardisation of other diagnostic protocols. As a result of the advanced work of

expert communities, various RADS standards have been proposed for the assessment of

specific types of cancer and noncancer pathologies. The standards provide a common

terminology for describing radiological findings, grading structure, and classification

for reporting and data acquisition. Guidelines are updated periodically by multidisci-

plinary committees of medical experts, based on the most recent advances in methods

of noninvasive diagnosis. Notable examples of RADS diagnostic standards that are

currently used include [43]:

• Liver imaging reporting and data system (LI-RADS), which is based on assess-

ment of computer tomography, MRI, ultrasonography, and contrast-enhanced

ultrasonography

• Lung imaging reporting and data system (Lung-RADS), which is based on as-

sessment of CT

• CT colonography reporting and data system (C-RADS), which is based on as-

sessment of CT colonography

• Coronary Artery Disease reporting and data system (CAD-RADS), which is

based on assessment of CT angiography
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• Neck imaging reporting and data system (NI-RADS), which is based on assess-

ment of positron emission tomography , computer tomography, and MRI

• Ovarian-Adnexal reporting and data system (O-RADS), which is based on as-

sessment of ultrasonography

• Thyroid imaging reporting and data system (TI-RADS), which is based on as-

sessment of ultrasonography

Figure 1.1.4: A PI-RADS v2.1 flowchart prepared by the Department of Radiology at
the University of Texas Southwestern Medical Center. Lesion imaging features assessed
separately on T2W, DWI and DCE images correspond to the assessment codes that
are further fused into the final PI-RADS category based on lesion location.

Diagnostic schemes for PCa are defined within the prostate imaging reporting and

data system (PI-RADS) guidelines introduced in 2011 [44]. The system was initially

based on independently assessed sequences of mpMRI on a five-point scale. They

lacked instructions on how to rate the likelihood of clinically significant cancer for

specific lesions [45].

PI-RADS version 2 was announced in 2015 and introduced the concept of a dom-
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inant sequence, as well as lesion assessment rules [2]. Since then, the standard has

evolved to describe how to report imaging findings and assess the likelihood of lesions’

clinical significance on a five-point Likert scale [2], [46]. The assessment rules were

developed based on the correlation between certain features of lesions observed on the

T2W, DWI-ADC, and DCE sequences and their likelihood of neoplasticity. The most

recent update of PI-RADS was published in 2019 as version 2.1 (presented graphically

in Figure 1.1.4) and addressed the standard’s tendency to score lesions inconclusively

by assigning the third category [47].

1.1.2. Importance of PI-RADS in patient care

Figure 1.1.5: Part of the EAU PCa early detection pathway. Source: [48]

According to the EAU, the decision to perform a biopsy should be based on mpMRI

evaluation using the PI-RADS standard [17]. In the case of a positive MRI (that

indicates the presence of a PI-RADS lesion with assigned category �3), urologists decide

on subsequent steps in the patient management process with consideration for the

patient’s clinical picture—including their symptoms and life expectancy [Figure 1.1.5].

A cognitive fusion biopsy involves a targeted biopsy of the focus lesion and a random

biopsy of the remainder of the gland. The suspicious lesion is plotted on a diagram of

the prostate gland as part of the radiology report, or is viewed using a display adjacent
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to the ultrasound machine. Samples are then obtained from sections of the marked

regions of the prostate.

Histopathological samples are then rated on the Gleason scale based on their visual

assessment to allow distinction of low-, medium-, and high-risk cancers. The clinical

significance of PCa is determined by the pathomorphological evaluation of samples,

based on analysis of microscopic tissue images [49]. This distinction is crucial due to

the nature of neoplastic lesions that occur in the prostate, whose growth may be limited

to the prostate gland, and those that may lead to metastasis (most commonly to the

bone), which directly affects mortality [50]–[52]. Lowered risk means that there is a

lower chance of a cancer progressing and spreading. The Gleason score is a key factor

in determining the proper treatment option based on the prognosis of progression.

A correlation can be observed between the PI-RADS scores and the Gleason scores

of assessed lesions [53]. This indicates that mpMRI evaluation may help to distinguish

low- and high-risk PCa, which is integral in combating overdiagnosis. According to the

EAU guidelines, a decision to perform a prostate biopsy is made based on an mpMRI

assessment using PI-RADS guidelines that displays high sensitivity but low specificity

in the assessment of clinically significant lesions [54]. Focusing on improving mpMRI

assessment protocols by increasing their specificity is crucial in limiting the number of

unnecessary biopsies, which often result in patient discomfort and avoidable costs.

As a direct result of the developments in PI-RADS, which was designed to improve

and standardise the performance and reporting of mpMRI lesions, the standard is

now widely known and practised. Since its introduction, it has proved to hold great

predictive potential in the assessment of lesion progression and severity [55].

Nevertheless, using the PI-RADS standard entails some limitations. Due to the

amount of information generated by multimodal imaging and the relative complexity

of the reporting procedure and PI-RADS rules, the standard’s use in clinical practice

is associated with difficulties and requires high competence. The recent update of

PI-RADS addressed the issue of inter-observer variability [56], which was particularly

noticeable in the evaluations of less experienced radiologists [57].
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1.2. Standardisation of diagnostics processes

Healthcare clinicians and patients alike access radiology reports. This means that

reports must be written in a manner that is easy to understand and contains key

clinical information [58]. PI-RADS does not specify requirements for the structure of

medical reports; the ACR diagnostic protocols outline the scope of information needed

in medical reports, but do not specify how the information should be structured and

presented. Narrative reports are characterised by considerable subjectivity and high

variability in terms of form, language, length, and style.

The likelihood of human error is high due to observer dependency, subjectivity,

and a lack of standards in the structure of reports. The use of ambiguous language

and assumptions can give the appearance of uncertainty of the contributing radiologist.

Problems that occur during the reporting process can negatively affect the patient man-

agement processes. The quality of radiological reporting in various clinical applications

might be improved by the introduction of tailored structured reporting models.

Structured reporting, which is based on the organisation of text into structured

documents that contain dedicated sections, improves the quality of radiological reports.

It brings numerous benefits for both radiologists and clinicians by improving the com-

munication of findings, accuracy of descriptions, readability, form, and accessibility.

Automation and the adoption of workflow in report generation additionally improve

radiologists’ work ergonomics. PI-RADS assessments can be improved through the

use of structured reporting systems that provide interactive templates for examination

descriptions and reproducible final report schemes. Nevertheless, to create effective

standardised communication methods and promote interoperability, improvements in

the terminology of defined PI-RADS lexicon can be implemented. The terms used in

PI-RADS are not unified nor standardised in a way that is shared and reaches beyond

the lexicon defined as part of the guidelines.

As medical records, imaging, and reporting are being digitised, a need has arisen

for a unified language with which they can be retrieved and compared. Specialists

use common, controlled terminology; there is no single unified source of truth, how-

ever, concerning the conclusive meaning of those terms. Most of the medical reports

in clinical databases are stored in an unstructured, narrative form that allows only

rudimentary indexing based on patient admission data. This increases the difficulty
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of querying the records, as well as hampering patient management, diagnosis and the

performance of research based on clinical data. Standardised terms are necessary to

remove the ambiguity introduced both by specialists and by computer systems to

medical records.

The standardisation of medical reporting and introduction of a common language

to communicate radiological findings could be performed on the basis of domain-specific

ontologies. The Radiological Society of North America (RSNA) presents the following

definition of an ontology: ‘An ontology consists of a standardised set of concepts or

terms and the relationships between those concepts’2. Those concepts can be expressed

in the form of lexicons: catalogues of entries and their definitions that describe partic-

ular domains. Radiological lexicons are used to express common terminology used in

diagnostic practice. They are prepared and expanded using the clinical experience of

radiologists and the results of research on diagnosis protocols. Dedicated communities

continuously update lexicons using current knowledge in related fields.

Integrating radiological lexicons with structured reporting systems can solve the

current reporting solutions’ poor data accessibility. Using structured reporting sys-

tems based on standardised terms enables continuous curation of high-quality datasets

during clinical practice. Terms can be used for annotating, indexing, and retrieving

medical image data. As well as reducing the number of ambiguities that result from ra-

diological reports, tools that employ standardised terminology with well-defined value

domains have the potential to improve the communication of findings between clini-

cians.

RADS focuses heavily on the diagnosis and management of patients through as-

sessment involving analysis of key disease features. Guidelines form as combina-

tions of these features’ values indicate the qualities of clinically significant lesions

grouped into rules that are assigned to the RADS categories. These protocols act

as a representation of diagnostic domain knowledge. Structured reporting systems

can integrate the RADS guidelines using the forms of standardised domain knowledge

representation—particularly radiological lexicons. These could be further improved

by clear definitions, and differentiation of concepts (assessed features) and their value

domains.

2 https://www.rsna.org/practice-tools/data-tools-and-standards/radlex-radiology-lexicon
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The exchange of radiology information can be improved using well defined com-

mon units of information. This has been achieved by defining radiology terms within

RadElement common data elements (CDEs). This formulation enables the integration

of accurate definitions of observations in diagnoses [59]. CDEs are key terms; units of

information used to describe and standardise application areas. Their definition rep-

resents a question that acts as a key, and a set of available answers that are mapped

associated values. Using such defined terms allows precise expression of diagnostic ob-

servations. For example, the following features can be defined as CDEs with dedicated

value domains:

• CDE ‘signal characteristics’ with three permissible values: ‘hyperintense’, ‘hy-

pointense’, and ‘isointense’

• CDE ‘image quality’ with three permissible values: ‘adequate’, ‘suboptimal’, and

‘non-diagnostic’

Representation of the RADS diagnostics guidelines as formal descriptions entails

many potential benefits, including a reduction in the ambiguities concerning rule inter-

pretation and improvement in how updates to the assessment standards are introduced.

Moreover, basing the assessment on standardised terminology and domain values en-

ables research on the most suitable definitions of the terms used and their effect on

diagnoses characteristics.

Diagnostic guidelines and best practices can be standardised and presented in the

form of clinical pathways, a method of describing clinical processes in a standardised

way. Clinical pathways benefit from their readability, documentation, communication,

potential for optimisation, cost analysis, and quality assurance. Multiple processes that

follow the guidelines of PCa management have been modelled as clinical pathways—at

least in form of visual representation. For example, the National Institute for Health

and Care Excellence (NICE) presents algorithms for diagnosis and staging as clinical

pathways [Figure 1.2.1], and the EAU presented pathways of PCa early detection in

visual form in its recent whitepaper [Figure 1.1.5]. Clinical pathways are important in

the communication of guidelines in a visually readable and easily digestible manner.
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Positive rebiopsy

Positive rebiopsy

Radical treatment intent

No radical treatment 
intent

Positive initial biopsy

Negative initial 
biopsy

NICE 2019. All rights reserved. Subject to Notice of rights.

Diagnosis and staging

People referred with suspected prostate cancer

• Discuss prostate-specific antigen (PSA) level, digital rectal examination (DRE) findings, co-morbidities, risk 
factors, history of previous negative prostate biopsy.

• Offer multiparametric MRI as the first-line investigation to people with suspected clinically localised 
prostate cancer. Report MRI results using a 5-point Likert scale. 

• Do not routinely offer imaging to people who are not candidates for radical treatment.
• Consider omitting prostate biopsy for people whose multiparametric-MRI Likert score is 1 or 2, but only 

after discussing the risks and benefits with the person and reaching a shared decision.
• Give people information, support and adequate time to make a decision. Explain the risks and benefits of 

biopsy.
• Do not automatically offer prostate biopsy on the basis of serum PSA level alone.
• Do not offer prostate biopsy for confirmation if the clinical suspicion of cancer is high (a high PSA and 

evidence of bone metastases).

• Advise there is still a risk that prostate 
cancer is present.

• Advise the risk is slightly higher if 
biopsy showed High-grade prostatic 
intraepithelial neoplasia (HGPIN), 
biopsy showed atypical small acinar 
proliferation (ASAP), abnormal DRE.

• If there is concern after negative biopsy, 
discuss in MDT meeting with a view to 
repeating biopsy. 

For people who have a raised PSA, Likert 
1 or 2  and negative biopsy, repeat PSA at 
3–6 months and:
• Offer repeat biopsy if there is strong 

suspicion of prostate cancer.
• Discharge the person to primary care if 

the level of suspicion is low.
• Do not routinely offer isotope bone scans to people 

with low risk localised prostate cancer.
• Do not offer CT of the pelvis to people with low or 

intermediate risk localised disease.
• Do not offer PET for prostate cancer in routine clinical 

practice.

Use nomograms to aid decision making, and 
help predict biopsy results, pathological stage 
and risk of treatment failure. Clearly explain 
the reliability, validity and limitations of the 
prediction.

Offer isotope bone scans to asymptomatic 
people on watchful waiting at high risk of 
developing bone complications.

Decision to proceed with biopsy
Offer multiparametric-MRI influenced prostate biopsy to:
• people whose multiparametric-MRI Likert score is 3 or more, or 
• people who have lower scores and have opted for biopsy. 
Only offer mapping transperineal template biopsy as part of a clinical trial.

Repeat PSA in 3–6 months and
• offer prostate biopsy if the index of 

suspicion is still high 
• discharge the person to primary care 

with advice for follow up if the level of 
suspicion is low 

Figure 1.2.1: A simplified flowchart visual representation of PCa diagnosis and stag-
ing. NICE presents clinical pathways as hierarchical diagrams on the NICE Pathway
platform3, which enables ease of navigation through guidelines of clinical subprocesses.
Source: NICE Pathways [60]

The widespread introduction of clinical practice standards is useful to knowledge

engineers in the formalisation of knowledge bases. Diagnostic standards, such as those

presented in RADS guidelines can be presented as deterministic decision tables that

allow constant updates to be implemented and maintenance to ease. This form of

domain knowledge representation introduces a foundation for discussion and agreement

on the scope of decision making. Decision tables are commonly used in business

to represent rules in both computer- and human-readable forms. The method has

also been applied to model clinical practice guidelines, in which the tables serve as a

unifying representation of knowledge [61].

3 the service will be discontinued in spring 2022, as it has become obsolete.
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1.3. Integration of domain knowledge in computer-aided

diagnosis

Imaging diagnostics has developed in decades alongside processes of digitalisation

in medicine. Technology and imaging systems have evolved to the point at which

digital images have replaced radiographic films. As a result, the work of radiologists

has changed radically, as their workplaces have gained digital diagnostic stations and

new working tools. New challenges have also arisen concerning the enormity of data to

be analysed — which is often complex and multimodal — and the need to synthesise

large amounts of information. In the context of staff shortages and the prevalence of

burnout among radiologists [62], modern technologies that improve work ergonomics

and enhance radiologists’ cognitive processes have adopted a new, crucial meaning.

The zoned anatomy of the prostate gland and its heterogeneous structure causes

the interpretation of MRI scans based on the evaluation of multiple sequences to

be a multifaceted and tedious task. Formal descriptions can be used by workflow

and decision-support systems then integrated into structured reporting systems. This

means not only that radiologists benefit from automatic predictions based on inputted

information, but also that high-quality data annotations are collected for the assessed

images during day-to-day work. Applying this form of assistance during structured

reporting has the potential to create a feedback loop in which updates to the diagnostic

standards could be introduced as modifications of defined rules based not only on

experts’ knowledge, but also as a result of analysis of the data that is collected.

Introducing such assistance requires representation of the PI-RADS guidelines as

standardised decision tables that are based on standardised terms. Guidelines would

have to be expressed using a similar form to that of CDEs: with clearly defined

attributes and value domains. Using a defined domain of features assessed during an

mpMRI evaluation, guideline rules could be expressed by composing the predefined val-

ues into sets that reflect the PI-RADS categories. This process is tedious and requires

the engagement of both IT specialists and experienced radiologists to decompose the

narrative guidelines into underlying terms and intermediate variables.

Using computerised methods of image analysis in PCa diagnosis has the potential

to address the current issues concerning the high subjectivity of image interpretation.
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Interest in artificial intelligence (AI) applications in medicine is already high and is

growing rapidly [63]. AI is the study of intelligent agents: systems that perform actions

based on the perceived environment [64]. The aim of researching and developing

AI methods is to provide tools that can match or surpass human performance in

particular domains. The construction of such agents can be achieved through several

means. Machine learning is a subfield of AI that focuses on using data to improve the

probability of achieving defined goals. It utilises algorithms that can generalise from

examples, learn from datasets, and adjust certain actions according to the expected

input data and output results [65]. For many years, machine learning has enabled the

processing and analysis of radiological data.

Machine learning algorithms are utilised in computer-aided diagnosis (CAD) tools:

a class of systems that assists specialists in interpreting medical images through imag-

ing registration and the segmentation, detection, and classification of abnormalities

[66]. The aim of CAD systems is to provide aid that improves the quality of di-

agnostic task outcomes by extending human capabilities. Tools only aid radiologist

with hints - suggestions resulting from the quantified characteristics of the case, which

the expert must complement with the broader clinical context. Machine learning

methods methods applied in CAD could be used to introduce objective measures for

analysed features, potentially improving interobserver agreement and the robustness

of diagnostic standards. The main aspect is to make better use of the capacity of the

diagnostician through supportive tools.

Recently, solutions based on deep learning, a subfield of machine learning, have

played a major role in the development of CAD. Such techniques are capable of learning

high-level feature representations based on analysis of raw data using artificial neural

networks: methods loosely inspired by biological neural structures. The development

of deep learning has accelerated as a result of the availability of large datasets, and the

creation of new algorithms and network architectures. These development opportuni-

ties are paired, however, with threats and challenges [63]. In contrast to the current

direction of AI development, which is measured by its ability to replicate human perfor-

mance, research into computational techniques used in CAD focuses on solutions that

improve diagnostic processes through meaningful integration that support, enhance

and extend capabilities of diagnosticians. Deep learning methods should communicate
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diagnostic decisions in a way that is understandable to radiologists, allowing them to

benefit fully from AI support.

Introducing CAD methods to assist in the process of medical reporting could lead

to a higher quality of diagnosis and affect rates of referral to active treatment. Struc-

tured reporting solutions can be integrated with methods of automated image analysis.

Machine learning algorithms combined with computer-assisted structured reporting

are capable of data extraction and annotation, supporting the process with additional

knowledge in the report-writing phase. This approach reaches beyond organisation

of report structures based on electronic report template, which merely specify certain

image categories and descriptions. The use of such systems introduces protocols that

enforce a particular order in how imaging evaluation is conducted and provides radi-

ologists with crucial information that enhances their cognition before final diagnostic

decisions are made.

In the use of AI in decision support and knowledge discovery, it is vital that the

appropriate CDEs are identified and used to express the variables that influence diag-

nostic decisions. These should be defined using radiological lexicons, which establish

a common vocabulary and provide explicit representation of radiological data. Inte-

gration of computational assistance in report generation process helps to eliminate

the subjectivity in medical imaging evaluation by providing objective measures to

the features being assessed by the diagnostician. In this way, AI can become part of

diagnostic guidelines to further improve the specificity of diagnostic procedures. These

methods should be developed as convenient tools that act as reporting assistants to

enhance radiologists’ cognition, improve their workflow and allay tedious diagnostic

tasks.

The radiologists assess the features of medical images and base their decisions on

guidelines that describe the features that characterise clinically significant lesions. No

consensus has emerged on how to optimally design, develop and integrate computa-

tional methods that are tailored to application in noninvasive cancer diagnostics based

on MRI assessment. The design of those methods would benefit from domain knowl-

edge that derives from clinical practice to enable full integration with diagnostic tools.

Moreover, the results of automated medical image analysis should be communicated

in a human-readable way to reassure clinicians about the usefulness and reliability of
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the technologies used. Domain knowledge must be considered during the design of

computer-aided diagnosis methods to provide solutions that can detect and present

the inconsequences, contradictions, and shortcomings in radiology evaluations during

imaging assessments.

Diagnostic processes could be aided by the integration of computational meth-

ods with the structured reporting systems that incorporate the formalised assessment

guidelines expressed as rule sets on the basis of the identified CDEs. Expression of

automatically assessed features would rely on the standardised terms that comprise

radiological lexicons and extend radiologists’ cognition by providing objective measures

through dedicated image descriptors. This thesis explores these subjects and aims to

answer how the domain knowledge contained within diagnostic standards can be used

to construct and improve the design of solutions that assist the diagnostic processes

of radiological PCa assessment.
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1.4. Theses

It is possible to use formalised domain knowledge to enhance the cognitive abilities

of diagnostician (use of deep learning solutions to support interpretation processes

of imaging examinations) and to improve accuracy of formulated decisions (support

of diagnostic report formalisation procedures through imposed order, inspection, and

verification of diagnostic protocols, as well as inference of decision-making suggestions).

Experimental verification of the effectiveness of the models and computational

methods as well as interfaces and forms of interaction with knowledge resources indi-

cates their usefulness in diagnosis support. The proposed way of integrating domain

knowledge models into the real conditions of diagnostic processes enables significant

improvements in the efficiency of diagnosticians’ work.

The formalisation of domain knowledge in computerised assisted reporting con-

tributes to improving diagnostic procedures. Integration of well-defined, standardised

terminology in imaging feature assessment allows research to be conducted on the

quality, consistency, and variability of diagnostic procedures utilising datasets curated

during clinical use in medical reporting.
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Chapter 2

Domain knowledge applied in computational

models

Abstract The research described in this chapter aimed to establish whether it is pos-

sible to use PI-RADS v2.1 features as sources to identify an effective set of image

descriptors. From the proposed set of feature descriptors, an optimal subset was se-

lected as a result of an experimental feature engineering process to construct effective

machine learning models that are capable of assessing the probability of prostate le-

sions’ clinical significance. The chapter also presents an innovative method of comput-

erised assessment with the use of deep learning methods of domain-knowledge-inspired

architectures. It proposes an intervention in the adjustment of the architecture defini-

tion of multi-modal convolutional neural networks (CNNs) using routing. A custom

fitness function is also proposed to support the training process and simulate the over-

all PI-RADS v2.1 algorithm for assessing prostate lesions depending on their zonal

location. We found that models based on extracted features and models based on

deep learning matched and outperformed inexperienced and experienced radiologists,

respectively. Results indicate that introducing changes into the CNN architecture

results in faster convergence than the classic multimodal approach does. The chapter

concludes that domain knowledge of diagnostic standards can be used to facilitate

feature engineering and improve the training processes of deep learning models.



2.1. Introduction

Due to an increase in the demand for diagnostic imaging specialists and rising

patient numbers, waiting times and the cost of diagnostic results have increased. In-

terviews conducted with radiologists reveal that interpretation of mpMRI according

to the PI-RADS assessment standards is a tedious task that requires approximately

thirty minutes to prepare a single examination report. Moreover, as PCa assessment

requires specialisation, the quality of diagnosis differs between experienced and inex-

perienced specialists; this is reflected in the results of multiple retrospective studies on

PI-RADS diagnostic accuracy involving raters of varying experience levels [30]. The

low interrater agreement can be explained partially by the ambiguity and subjectivity

of features contributing to problems using diagnostic standards. These problems can

be solved partially by methods of CAD, the use of which has the potential to shorten

the time of diagnosis and simultaneously play the role of an additional diagnostician

[63], [66]. The success of AI methods in medical diagnostics depends on reliable verifi-

cation of the methods and tools developed, and the creation of solutions based on the

explainable artificial intelligence (XAI) concept, meaning that the reasoning behind

answers provided by computational models can be reviewed by their users.

In recent years, multiple machine-learning-based solutions that attempt to au-

tomate the estimation of prostate lesions’ clinical significance have been proposed.

This was summarised in a systematic review by Castillo et al in 2020 [67], in which

twenty-seven of the 2,846 articles the authors queried were analysed. Thirteen studies

eligible for meta-analysis were included in the review. Most of the papers were pub-

lished in 2018 and 2019; however, the earliest study included dates back 2013. The

median area under the receiver operating characteristics curve (AUC) achieved by the

solutions was 0.79 (interquartile range 0.77–0.87). According to the meta-analysis,

SVM, the linear mix model, and k-nearest neighbours algorithms demonstrated the

highest performance; the authors noted, however, that most studies did not use ex-

ternal sets for validation—making the results incomparable and likely overestimated.

Moreover, studies indicated that the features selected for classification tasks are of

more relevance to the results than the classifiers themselves. None of the studies tested

reported improvements in PCa assessment that employed tools integrated within CAD

systems in clinical workflows.
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The quality and applicability of the computational solutions proposed in the lit-

erature is difficult to compare, as several factors may influence the performance of

machine learning models in PCa assessment. First, the definition of ground truth

differs between studies; some use prostatectomy results, while others base their eval-

uations on biopsy as the reference standard. Then, the task itself may be defined in

terms of distinguishing clinically significant vs. nonsignificant prostate lesions based on

Gleason score (or its estimation), or on International Society of Urological Pathology

Grade Group classification. Castillo et al report [67] that most of the studies analysed

include ADC and T2W sequences, but DCE was used in only around half of them.

The largest dataset included in the studies contained data on 344 patients, while the

smallest contained data on only 36 (interquartile range of 71-193).

Radiomics is a subfield of AI methods applied in radiology, which aims to improve

the process of image analysis and interpretation through the extraction of features

using image descriptors tailored to particular application domains [68]. Such methods

use mathematical models to obtain and quantify imaging features and enable the dis-

covery of new disease signatures. Features include first-order statistics as well as shape,

size or texture estimation using dedicated descriptors [69]. The advantage of radiomics

is that indications can be explained and justified in language that is understandable to

radiologists. The linking of patterns in imaging and clinical data enables the steering

of a disease’s course and accurate prediction of the possible treatment responses. This

facilitates the application of personalised medicine into patient management processes.

Studies indicate optimistic results of machine learning methods based on radiomics

features in PCa diagnosis [67]; however, their lack of reproducibility and validation

are considered major challenges.

The vast array of possible descriptors (the image biomarker standardisation initia-

tive [IBSI] defines 169 validated radiomics features [70]) and the variability of method-

ology and reported performance in the literature on machine learning methods applied

in PCa diagnosis cause difficulty in concluding which descriptors are significant. Do-

main knowledge contained within the PCa assessment standards and diagnostic rules

can be used to identify important imaging features assessed during mpMRI interpre-

tation and to design optimal algorithms. Most of the crucial features used in the

PI-RADS diagnostics guidelines correspond to signal intensity characteristics, such as
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degree, homogeneity, and regularity. This constitutes a valuable insight that derives

from established diagnostics practice; one that can facilitate the process of feature

engineering and the selection of adequate descriptors.

Unlike solutions based on feature engineering, deep learning methods automati-

cally extract and learn features from raw data. The development of artificial neural

networks, a subset of machine learning techniques, has birthed deep learning meth-

ods that, empowered by GPU computing power, are capable of producing powerful

solutions to modelled problems. Deep learning can be applied to the analysis of types

of data that are otherwise too complex to be properly managed and analysed [66].

As input data is transformed through multiple processing layers, such models are

optimised to accurately represent modelled problems by learning increasingly more

sophisticated features [71]. This process conceals the reasoning processes of trained

deep learning models and complicates the revelation of the characteristics of optimised

feature descriptors. Contrary to the methods that utilise feature engineering tech-

niques, how to apply deep learning solutions in decision support in a manner in which

the reasoning behind the predictions can be understandable to radiologists remains a

challenge. The same challenge hinders efforts to discover new important factors that

could meaningfully enhance the diagnostic protocols.

In [72], the authors revise the major deep learning concepts pertinent to medical

image analysis and summarise over 300 contributions to the field—including the appli-

cation areas of image classification, object detection, segmentation, and registration.

Concerning the current state of the art, the authors present a critical discussion of

open challenges and directions for future research. Although the works they present

are predominantly research papers, several AI-based software solutions for clinical

radiology practice, with CE or FDA certification, are available. The wide range of

limitations, weaknesses, and threats that exist for the practical application of AI in

radiology remains valid. To learn how to perform specific clinical tasks, deep learning

algorithms demand a large volume of training data. Separate problems concern the

models, which, if not properly validated during training, may suffer from overfitting

and loss of their generalisation capabilities. Moreover, reliable validation requires

the participation of professionals to approve or refute the recommendations made by

software or algorithms.
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The use of AI in radiology has already become a reality [66]. Computational meth-

ods used in the analysis of examinations fulfil the role of a second observer, providing a

method of reporting unbiasedly. Deep convolutional neural networks have now become

the primary tool in computer vision. They comprise multiple layers, which use convo-

lution filters to alter their input towards meaningful output by convolution operations

that are used to identify the significant signal patterns. Each CNN is composed of

a stack, which includes an input layer and multiple hidden layers that transform the

input data into a network output. The hidden layers typically comprise convolutional,

pooling, fully connected, and normalisation layers [65]. With the use of CNNs, ra-

diomics is evolving from feature-engineered to non-feature-engineered methods, which

involve using deep learning models as feature extractors [68].

Solutions based on deep learning have achieved promising results in applications in

PCa diagnostics. Table 2.1.1 presents a brief review of different approaches to csPCa

detection using CNNs. It can be observed that the use of CNNs in the diagnosis of PCa

is strongly differentiated. Computational PCa assessment tasks can be formulated in

two different ways: as classification problems [73]–[77] or as a semantic-segmentation

problems [73], [78]–[80]. In the first case, a patch-based classification of suspected

tissue samples is typically performed, which retrospectively exploits annotated image

patches. The result of this classification is valid for the whole image patch (unified for

all pixels). The second approach utilises a pixel-level classification, the goal of which

is to assign a label to each pixel, indicating its association to a proper class (typically

cancer tissue, normal organ, or background). The selection of basic architecture de-

pends on the task formulation. VGG [73], [76], ImageNet [74], GoogLeNet [75]–[77],

and ResNet [76] have all been used in the classification approach. The segmentation

approach favours encoder-decoder architectures, and promotes U-Net [73], [80], ResNet

[81], SegNet [79], and VGG16 [78] architectures. The selection of a network is usually

motivated by the opportunity to use its most interesting features, or by its effective

performance in other application areas.
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Comparing the effectiveness of the models is a challenging and ambiguous task.

The possibility of multiple formulations of the PCa assessment task hinders the defi-

nition of consistent benchmarking criteria. In addition, the datasets are characterised

by different sizes, differently defined ‘ground truth’, and varying ratios of training, val-

idation, and test sets. The best results were mostly obtained on the smallest datasets.

Except for [81], most of the authors used mpMRI data acquired on 3.0 T MRI ma-

chines. In addition to three or more mpMRI series [73], [79], [80], the reduced concept

of biparametric magnetic resonance imaging (bpMRI) was often used, exploiting only

the T2W and ADC series, and eliminating the use of the dynamic DCE series [75]–[77].

In some cases, only T2W images were used [74], [78]. Some studies have attempted

to experimentally verify the reduction of mpMRI to bpMRI and its impact on the

accuracy of the CNN model [79], [80].

One crucial aspect that occurs widely in medical imaging is the multimodality of the

image data. In the case of PCa, multimodality is expressed in the multiparametric form

of MRI scans. The problem of multimodal fusion in CNNs was analysed extensively

in [82], whose authors proposed various strategies. Most solutions in PCa detection

exploit the concept of input-level fusion or of decision-level fusion. In the input-level

fusion strategy, multiparametric images are fused before being passed to the network.

The most common form of input-level fusion is image registration, in which coregistered

multiparametric image series constitute input for network training [73], [79].

The use of an input-level fusion strategy is usually simple and allows analysis

of information from different modalities in all layers of a CNN. Decision-level fusion

usually assumes the use of individual networks for each multiparametric series [75]–[77],

[80]. Each network can learn unique and mutually complementary information from

different multiparametric images. This allows the creation of modality-specific feature

representations. The results from individual networks are integrated and fused at the

classification stage to reach a final decision.

There is no established consensus on how domain knowledge can be best utilised

in the design the optimal deep learning solutions; many possibilities exist, however.

We propose methods that focus on adjusting the network architectures and facilitat-

ing the model training processes. First, the optimal base network architecture can

be identified based on the qualities of imaging data and characteristics of diagnos-
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tic evaluation—for example, by selecting the multimodal architectures for analysis of

mpMRI. The integration of reasoning behind radiology diagnostics guidelines into the

CNN models could be performed by limiting the degrees of freedom in network defi-

nitions guided by the specifics of applied domain knowledge. To further enhance the

training processes, a custom loss function can be used to integrate the characteristics

of diagnostic procedures. Using those interventions, it is possible to assist the training

process in formulating the internal knowledge representation of classification problems.

We propose applying these concepts to integrate the domain knowledge of the PCa

diagnostic guidelines into the CNN architecture. Integration of the assessment algo-

rithms is achieved using the decision-level fusion in adapted multimodal architecture

with routing. Network optimisation is enhanced using a complex loss function that

includes the results of subnetwork predictions and integrates the overall PI-RADS

assessment algorithm (loss depends on the location of the lesion being assessed). The

potential benefits resulting from such interventions are investigated by comparing the

performance of the resulting model with the baseline model definition.
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2.2. Methods

International competitions based on open, public datasets have enabled compar-

isons of the quality between the predictions that computational models provide. Chal-

lenge organisers formulate the problems and provide datasets, which are used by com-

petitors to develop and submit their optimal solutions for evaluation. Using credible

reference datasets standardises experimental methodology and enables validation and

benchmarking of, and comparison between machine learning algorithms to draw mean-

ingful conclusions on the optimal approach to modelled problems. This makes machine

learning and data science competitions an important method of discovery and the sites

of initial verification of innovative techniques. To evaluate proposed methods, we con-

ducted a series of studies based on a publicly available reference dataset published

as part of a PCa classification challenge. This research methodology allowed us to

compare model performance results with other solutions submitted by competitors.

Table 2.2.1: Lesions and their locations in the ProstateX dataset

Lesion location Not significant Significant Total
Peripheral zone 155 36 191
Transition zone 73 9 82
Anterior Stroma 24 31 55
Seminal Vesicle 2 0 2

Total 254 76 330

A PCa classification challenge held in 2017 (ProstateX) provided a way of compar-

ing methods of supporting PCa diagnosis [83]. Competitors’ methods were evaluated

on the task of differentiating between clinically significant and nonsignificant lesions.

We used the ProstateX dataset to develop and validate computational solutions. We

then selected thirty-two lesions from the training dataset to evaluate model perfor-

mance compared with that of experienced and inexperienced radiology specialists using

assessments collected during the retrospective study described in the Methods section

of the third chapter. We tracked the performance of our methods using ROC curve

analysis (calculating AUC). This approach allowed us to compare the diagnostic accu-

racy of our methods with results reported by other competing teams and obtained by

human raters.
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2.2.1. Defining the radiomics workflows

Our studies on feature extraction methods aimed to develop a comprehensive ra-

diomics analysis pipeline for automated extraction of properties and features from

individual lesions, and a radiomics framework adapted for discrimination of clinically

significant and nonsignificant prostate lesions.

Analysis of the PI-RADS lexicon reveals descriptions of multiple characteristics

of prostate lesions that correspond to statistical and texture features. Abnormalities

are assessed by estimation of their focality, uniformity, evaluation of margins (e.g.

well-defined, ill-defined, blurred), and signal characteristics (having a higher or lower

signal intensity that corresponds to a brighter and darker appearance on MRI). Based

on that insight, we selected statistical features (mean, skewness, and range of per-

centiles able to capture the signal hypo- and hyperintensity), and texture features

derived from the grey level co-occurrence matrix (GLCM) [84] as a base for predic-

tions. Research on mpMRI analysis methods indicates that these texture descriptors

(e.g. Haralick features [85], [86]), combined with statistical features, can be used to dif-

ferentiate the PCa of various Gleason gradings [87]–[90] and achieve high performance

in classification tasks [67]. Restricting the feature descriptors considered allowed us to

limit the degrees of freedom in the research.

First, we focused on developing a simple prototype method that bases its predic-

tions on imaging features that are essential in mpMRI diagnosis. This work resulted in

two models that were submitted as entries to the ProstateX 2017 Challenge. Following

two prototype configurations were established for evaluation[91]:

Prototype #1 relied on 126 attributes corresponding mostly to statistical fea-

tures:

— age of the patient obtained from image metadata

— provided prostate zone of the lesion location as a feature

— single voxel signal intensity

— statistical features of the signal intensity for each of the modalities on the

whole-slide of provided lesion location and five, ten, and fifteen millimetre le-

sion margins: average, standard deviation, skewness, kurtosis, and percentiles

(5th, 10th, 15th, 25th, 75th, 90th, and 95th)

Prototype #2 involved 72 additional texture features: estimated Haralick fea-
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tures (contrast, dissimilarity, homogeneity, ASM, energy, and correlation) of

whole slides, and ROI at five, ten, and fifteen millimetre lesion margins.

Lesion locations provided as part of the dataset were used to obtain square, lesion

centred regions of interest (ROIs) and to calculate features on 2D image slices with

various lesion margins (five, ten, and fifteen millimetres). Capping the margin at

fifteen millimetres was dictated by the PI-RADS guidelines, as lesions larger than that

size are assumed to be clinically significant. We employed histogram normalisation,

rescaling the input values to 128 intensity levels.

The classifier and optimal configuration were established as a result of experimen-

tal performance evaluation involving an array of classification methods. We used

three-fold stratified cross-validation on the ProstateX training dataset to estimate the

performance of the models. Folding the set into three parts was inspired by the relative

sizes of the test and training sets. Both prototypes relied on multilayer feed-forward

artificial neural networks trained using stochastic gradient descent and maxout activa-

tion function. The layer configuration comprised two hidden layers with seventy-five

and fifty neurons, respectively. The use of other classifiers and different configurations

were also analysed; the artificial neural network achieved superior performance in the

validation phase.

Feature extraction based on image patches proposed in prototype methods pro-

duces a vast number of features, which causes difficulty in determining the influence

of particular descriptors on classification outcomes. The goals of the follow-up ex-

periments performed on the feature selection were to determine an optimal subset

of features and to further investigate the potential performance of PI-RADS-inspired

imaging descriptors. This study aimed to perform an in-depth analysis on which

modalities, features, and normalisation methods contribute to the best classification

results, and which carry the best predictive power in the clinical significance of lesions.

We expanded the set of imaging descriptors under consideration[92] and established

the potential performance of the selected methods of image pre-processing and feature

extraction through a series of feature selection experiments.

Following extension of feature set applied in prototype configurations was consid-

ered to describe the characteristics of each image sample:

• The co-occurrences computed in four directions were used to compute standard
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GLCM texture features: contrast, dissimilarity, homogeneity, ASM, energy, and

correlation. For these, we experimented with the degree of spatial relation be-

tween the pixels that configured different offsets: the closest (1), the closest and

one separated by two pixels (1, 3), and the closest with one separated by two

pixels and one separated by four pixels (1, 3, 5);

• Haralick features: angular second moment, contrast, correlation, the sum of

squares—variance, inverse difference moment, sum average, sum variance, sum

entropy, entropy, difference variance, difference entropy, and the information

measure of correlations (1 and 2). The features then were reduced using statisti-

cal methods: average, standard deviation, skewness, and kurtosis.

Texture features from MRI images depend on imaging and pre-processing parame-

ters [88]. We considered different approaches to image normalisation to test the effect

of image pre-processing methods on model performance (no pre-processing, standard-

isation, and dividing the signal intensity by the sum of mean and doubled standard

deviation [93]). The images were then rescaled to the scale of 255 intensity values.

Additionally, we considered the 2D and 3D regions of the margins surrounding the

lesions. We also expanded the array of margin sizes considered (ranging from 2.5

to 45 mm) and features obtained from the whole slices presenting the regions. We

extracted separate features for all mpMRI modalities and three (sagittal, transverse,

and coronal) views in the T2W modality. Image normalisation and pre-processing

methods are described in detail in the following published papers, which present the

results of our research on feature engineering methods in PCa assessment [91], [92].

Lesions from MRI were analysed at several levels of detail with the extraction of

first-order features like intensity histogram distribution and extracted higher-order fea-

tures that describe different aspects of tissue texture. Given the very large number of

attributes, a feature selection step was included using a genetic algorithm [94], which

allowed the search of complex feature space for variable interactions. Fitness func-

tion was defined in terms of the cross-validation results, whereby the most predictive

features were used for the final classification and prediction of relevant pathological

features.

To find an optimal, trimmed set of features that allowed us to draw conclusions on

which parameters influenced model performance the most, we decided to test feature
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set performance based on a simple k-nearest neighbours classifier with different neigh-

bours (n= 1, 3, 5). The model performance (AUC) was defined as a mean three-fold

cross-validation result. The best k-nearest neighbours classifier score and feature set

configuration were stored for each generation. The following configuration was used

for the genetic algorithm: generation quantity 1,000, mutation probability 0.1, mating

probability 0.5, and tournament selection. Specimen per generation quantity was equal

to the feature vector (for example, the generation counted 200 specimens if a subset

of 200 features was considered).

Second-order statistics were obtained from GLCM using the open-source computer

vision Python library, Mahotas [95], following the recommendations of IBSI [70].
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2.2.2. Integration of domain knowledge into the CNN architectures

To investigate the benefits that insights from diagnostics standards like PI-RADS

can bring into the solutions based on deep learning methods, we proposed a method

of integrating domain knowledge into CNN architectures. Focusing our work on mod-

ifications of one popular architecture allowed us to reduce the number of variables

considered in the studies. Literature analysis shows that VGG is a commonly applied

architecture that demonstrates high performance in PCa classification tasks. It was

also used in one of the top-scoring models in the ProstateX challenge. We opted to

use it as a baseline for research on methods of a priori knowledge integration into the

network structures and training processes.

Figure 2.2.1: Common model architecture reflects multi-modal VGG (A) dedicated
to T2W, DWI-ADC and DCE sequences. CMA part of the network architectures (B)
was the same for the two proposed models that underwent experimentation. Each
modality subnetwork has been parametrised [abbreviation ’VGG(x,y,z,c)’ is explained
in Table 2.2.2]. Source: [96]

We decided to integrate the following setups into the CNN architecture, which were

inspired by the diagnostic standard guidelines on feature evaluation:

1. PI-RADS v2.1 deliberately states that the shape and margin features findings

should be assessed in at least two planes on T2W MRI; therefore all T2 axes

(traverse, coronal, and sagittal) were used for evaluation on separate subnetworks.

The system analyses 3D image fragments for all modalities to allow recognition

and estimation of high-level features, such as lesions’ dimensions, shape, and

invasiveness.

44



2. As in diagnostic standard recommendations, the system analyses mpMRI modal-

ities separately; the input image modalities are not fused and treated in disjunc-

tion.

3. The PI-RADS assessment algorithm considers sets of imaging features to estab-

lish the probability of lesions’ clinical significance. Separate subnetworks com-

posed of convolutional/pooling layers are used for feature extraction designed

for the input modalities analysed. Analogous architecture is parameterised to

address the different resolutions of T2, DWI /ADC, and DCE images. Outputs of

subnetworks that extract features from T2 views (traverse, coronal, and sagittal)

as well as DWI and ADC modality pairs are combined before the dense layers.

This replicates high-level feature estimation based on the low-level descriptors.

4. Radiological assessment algorithms differ for PZ and TZ lesions, and lesions’

zonal locations are considered in the estimation of clinical significance during

modality assessment. The zonal position of the lesions is integrated after the

feature extraction stage to allow composition of the high-level feature represen-

tation, depending on lesions’ locations.

Id Operation Filter Strides Width Height Depth Channels
Conv 0_1 Convolution 3x3x1 1x1x1 2x 2y z c/2
Conv 0_2 Convolution 3x3x1 1x1x1 2x 2y z c/2
Pool 0 Max pooling 3x3x1 2x2x1 x y z c/2
Conv 1_1 Convolution 3x3x1 1x1x1 x y z c
Conv 1_2 Convolution 3x3x1 1x1x1 x y z c
Pool 1 Max pooling 3x3x1 2x2x1 x/2 y/2 z c
Conv 2_1 Convolution 3x3x3 1x1x1 x/2 y/2 z 2c
Conv 2_2 Convolution 3x3x3 1x1x1 x/2 y/2 z 2c
Conv 2_3 Convolution 3x3x3 1x1x1 x/2 y/2 z 2c
Pool 2 Max pooling 3x3x3 2x2x2 x/2 y/2 ⌊z/2⌋ 1 2c
FC Average pooling global global - - - 2c

Table 2.2.2: Details of parametrised VGG-inspired CMA architecture [Figure 2.2.1]
abbreviated as ’VGG(x,y,z,c)’, where: x and y = layer width and height, z = layer
depth and c = number of channels. Conv 0_1, 0_2 and Pool 0 layers are used only
in T2W modality to compensate modality higher resolution rich in textural features.
Source: [96]

These assumptions allowed us to devise a baseline multimodal architecture, which,

in turn, allowed us to expand and represent approaches to the classification task in re-

spect to high-level features extracted from the input images. The output of each T2W,
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DWI-ADC, and DCE subnetwork is a thirty-two-neuron dense layer, which enables

interpretation of the models as high-level feature extractors. The whole model, com-

prising the subnetworks, was named common model architecture (CMA) and further

integrated into the classification models [Figure 2.2.1].

Figure 2.2.2: Diagrams representing architectures of two deep learning models: M1(A)
and M2(B) used in the experiments. Source: [96]

We devised two models that can represent two different ways of interpreting the

mpMRI images [Figure 2.2.2]. These are based on the same CMA model and include

information on the zonal location of lesions.

In the first case, the simple CNN model (M1) represents a classical approach to di-

agnostics, which assumes that input image modalities contribute equally to the output

prediction. This can be treated as analogous to the PI-RADS v1 standard, in which

modalities were analysed separately, but the Likert scores were summed to represent

an output evaluation. This is common among the models described in the literature,

in which information from multiple modalities is fused before the output prediction

[82].

To integrate the domain knowledge of diagnostic standards into the model archi-

tecture, we used the CMA output for submodalities to form separate predictions and

produce the final prediction in regards to lesion location. Instead of one network out-

put, as in the M1 model, the M2 model has four separate outputs that represent the

predictions from the subnetworks (T2, DWI-ADC, and DCE-out), as well as the final

prediction (NET-out). The final layer of the M2 network integrates routing between

two top-level subnetworks that represent classification models for TZ and PZ lesions

(as in PI-RADS v2.1 guidelines, in which two separate algorithms are proposed for TZ
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and PZ lesions). The softmax activation function is used to estimate the probability

of a lesion’s clinical significance.

The PI-RADS standard does not deliberately define diagnostic algorithms for eval-

uation of lesions located in the AS and seminal vesicles; however, to balance data

distribution, we decided to include those lesions in the analysis as ‘TZ’ lesions for the

purpose of diagnostic evaluation; this was consulted with radiologists and reflected

diagnostic practice. Depending on the lesion location, the network outputs the predic-

tion from the PZ or the TZ (for TZ, AS, and seminal vesicle lesions) subnetworks.

Network Location M1 M2
NET - 100 100
Subnetworks
DCE TZ - 5
DCE PZ - 20
T2W PZ - 5
T2W TZ - 20
DWI-ADC PZ - 12.5
DWI-ADC TZ - 12.5

Table 2.2.3: Minor weights for the defined complex loss function - total loss is the
sum of the weighted average of sub-losses given the lesion location. M1 loss includes
only global, NET output. For M2 model, total loss includes auxilary losses resulting
from intermediate subnetwork outputs [Figure 2.2.2]. Loss varies for PZ and TZ
lesions reflecting the domain knowledge of PCa diagnostics - preference of modalities
is dependent on a lesion location. Specific weight values have been set experimentally
through analysis of learning curves. Source: [96]

A training process using the minor loss weights was introduced to enable the sub-

networks to be trained simultaneously to the integrated model. To achieve that, a

complex loss function—defined as a weighted average of subnetwork predictions and

final prediction—was devised, in which the weights are preset in regards to the sub-

network type and lesion zonal location. A detailed definition of a proposed complex

loss function is offered in a published article that describes our methods [96]. The

idea originates from the assumption resulting from the domain knowledge of lesion

assessment that T2/DCE and DWI-ADC subnetworks’ specialisation should depend

on lesion location. PI-RADS standard guidelines emphasise T2 and DWI-ADC modal-

ities for TZ lesions, and the DWI-ADC and DCE modalities for PZ lesions. This is

reflected in the weights of the complex loss functions presented in Table 2.2.3. Low
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Parameter Values
Batch size 4, 8, 16, 32, 64
Training optimization algorithm mini-batch SGD, RMSprop, Adam, Adagrad
Learn rate 0.001, 0.01, 0.05, 0.1
Momentum 0.9
Network weight initialization random normal, random uniform, Xavier
Neuron activation function leaky relu, relu
Weight constraint 0, 0.01, 0.1, 0.2
Dropout regularization 0, 0.125, 0.25, 0.5, 0.75

Table 2.2.4: CNN Hyperparameters. Boldened values are considered to be optimal.
Source: [96]

weight is also applied to the DCE predictions on TZ lesions and T2 predictions on PZ

lesions so that the subnetworks are capable of making their predictions independently.

This was implemented to reflect the diagnostic procedures, as lesions are assessed on

all modalities during mpMRI evaluation.

We performed a series of hyperparameter tuning tasks while optimising the ex-

perimental method. Table 2.2.4 presents the results of the architecture and training

process configuration. This proved to achieve the best and most consistent results. The

definition of the complex weight function and routing in architecture made the model

prone to stagnation and gradient loss, which was solved primarily using a Leaky reLU

neuron activation function. Weighted cross-entropy was optimised using the stochastic

gradient descent. We found that the use of more sophisticated optimisation algorithms

often led to overfitting or contradicted the idea of proposed complex fitness function

(for example by maintaining the learning rate for each network weight instead of using

a single learning rate [97]).

The data was standardised (Z-score normalisation) and augmented ten-folds us-

ing random rotation and was cropped with a 1.5 centimetre lesion margin. As with

the feature engineering pipelines, we selected that value as lesions’ maximum dimen-

sions reaching beyond 1.5 centimetres is a strong indicator of clinical significance,

according to the diagnostic protocols. A smaller margin was not considered, as the

three-centimetre ROI size accounted for the potential misalignment of the lesion pixel

coordinates provided in the training dataset. Online augmentation was performed dur-

ing training with random histogram shifting and stretching, Gaussian noise addition,

and data flipping along three dimensions.

48



We trained the models twice for 500 epochs and stored the five-fold stratified

cross-validation results for each run, resulting in ten evaluations. The training was

stopped at the twenty-fifth, seventy-fifth, and one-hundredth epochs to compare the

performance of the models and estimate the model convergence rate. This allowed us

to estimate whether regulation of network degrees of freedom and the introduction of

the complex fitness function significantly affected the training processes.

The CNN models were constructed and trained using the Tensorflow 1.12.0 [98]

for Python framework and evaluated on a local Windows 10 machine with a i7-7700K

IntelCore CPU, 32GB RAM, and an NVIDIA GeForce GTX 1080 Ti GPU graphics

card. We selected Tensorflow as the framework for the CNN definitions as it enables

far-reaching customisations in network and training process configurations using its

low-level API.
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2.2.3. Statistical analysis

AUC was used as a measure of performance for each of the models. In the study on

the integration of domain knowledge into the deep learning architectures, we repeated

the model training ten times to perform a statistical analysis of the differences between

the performance of the M1 and M2 models. We deployed the Wilcoxon signed-rank

test [99] to compare the results. The test set scores were provided by the ProstateX

challenge organisers, who performed ROC curve analysis based on the binormal ROC

model with AUC as a figure of merit to estimate the potential of methods in reducing

the number of unnecessary biopsies [83].

The processes of data cleaning, restructuration, statistical analysis, and visualisa-

tion were performed in Python (v 3.6.9) using the Pandas (v1.3.5), Scipy (v1.4.1), and

Seaborn (v0.11.2) packages. All scripts were written in the Google Collaboratory tool

using dedicated notebooks.
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2.3. Results

2.3.1. Performance of the defined radiomics pipelines

Training set cross-validation results indicate that the texture features included in

the second prototype model contributed to a significant increase in its performance

(AUC = 0.723 ± 0.009) vs. (AUC = 0.692 ± 0.048). These results were confirmed by

evaluation on the test set performed as a result of the submission of models during

the challenge. A more sophisticated prototype, which incorporates second-order tex-

ture descriptors, scored 0.73 AUC on the test set, while the simpler one, which uses

first-order features, achieved 0.63 AUC.

Feature Region T2-TRA T2-SAG T2-COR DCE DWI-ADC
Intensity Voxel 0,678**** 0,687**** 0,642**** 0,668**** 0,713****

2D 0,819*** 0,771** 0,812* 0,778* 0,812***
3D 0,794** 0,804** 0,836* 0,756** 0,803**

GLCM: D=1* 2D 0,738** 0,742** 0,807*** 0,731*** 0,772***
D=1,3* 2D 0,759*** 0,752* 0,821** 0,739*** 0,785***
D=1,3,5* 2D 0,778** 0,749** 0,823* 0,745* 0,777*

Haralick: Mean 2D 0,786** 0,759*** 0,835* 0,743* 0,790*
3D 0,755** 0,796*** 0,833* 0,738** 0,777**

Haralick: Skewness 2D 0,840* 0,840** 0,806** 0,824* 0,792**
3D 0,812*** 0,807* 0,813* 0,807*** 0,812*

Haralick: Kurtosis 2D 0,830*** 0,786* 0,805* 0,793* 0,805***
3D 0,785*** 0,820*** 0,819*** 0,785*** 0,800*

Normalization method used:
* none, ** method #2, *** method #3, **** no effect of applied normalization

Table 2.3.1: Maximum AUC for modalities depending on used features and normaliza-
tion method. Source: [92]

Table 2.3.1 presents partial results of the feature set optimisation. First, the effect

of feature extraction on model performance on single modalities was analysed. The

performance of the models ranged between 0.64 and 0.84 AUC. Overall, the best

performing models were obtained on T2W modalities that scored equally in the T2W

sagittal and transverse views, followed by the coronal view. Interestingly, the perfor-

mance of models with DWI-ADC image source was inferior in comparison with the

those that based their predictions on features obtained from DCE.

Experiments showed that the models based on Haralick features were superior to

others with the exception of the best model configuration for the T2W coronal view
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that was optimised to base on statistical features (n = 12). In most of the cases,

models of features calculated on images that were not normalised displayed the best

performance. Although the qualities of T2W modality images were similar across the

views, different Haralick features were selected as optimal for each. The simplest model

in terms of the number of features (n = 5) included was optimised for DWI-ADC and

included three Haralick features. Model based on DCE was optimised to include twelve

features. Details on selected best configuration of features for modalities are presented

in [92].

Based on the results of experiments performed on single modalities, we used the

model configurations and reran the experiments on a combined feature set of features

from subsets of modalities. Then we compared the mean obtained cross-validation

results. Combining the features from T2W views enabled improvements in the per-

formance of models that based their predictions on single views, achieving (AUC =

0.88). A combination of T2W and DWI-ADC features achieved superior performance

(AUC = 0.90) to the T2W and DCE (AUC = 0.88) images. Overall, the model that

produced the best results included features from all of the modalities (AUC = 0.92).

2.3.2. Effects of CNN architecture modification

In this section, we present a comparison of the two deep learning models, highlight-

ing the effect of introducing PI-RADS v2.1 guidelines into the CNN architectures.

Model Averaged CV results Test set result
M1 0.831 ±0.019 0.82
M2 0.843 ±0.021 0.84

Table 2.3.2: Validation and test set results for models M1 and M2. The averaged CV
results proved to be comparable with the test set results.

Table 2.3.2 presents the results of the deep learning models. The M2 model pro-

duced a superior test set result of 0.84 AUC. The Wilcoxon signed-rank test indi-

cated that the differences in mean cross-validation results between the models were

statistically significant (Z = 7, p < .05). Statistically significant differences in the

cross-validation-scored model performance were confirmed by the test set results. The

results obtained on the test dataset indicate that the analysis of model performance

using mean cross-validation results proved to be the most reliable method of establish-
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ing model performance; the results obtained on the test set fell within the margin of

error of the mean cross-validation results (across epochs).

Figure 2.3.1: M1(A) and M2(B) learning curves expressed by mean cross-validation
results of multiple model instances (n=10). Differences between obtained performance
in regards to the epoch is presented on C. Regions of statistically significant differences
are marked with bold line. Source: [96]

Figure 2.3.2: ROC curve analysis has been performed to investigate predictions of M1
and M2 models by early stopping the training at 25th (A), 50th (B), 75th (C) and
100th (D) epochs. Source: [96]

The effect of the proposed methods of using domain knowledge to optimise deep

learning training processes was investigated using learning curves and estimations

of model performance at several stages of training [Figure 2.3.2]. Analysis of the

learning curves of models M1 and M2 reveals faster convergence in the M2 model.

This is visible in the first 100 epochs of training, in which the differences between

AUC are statistically significant (p < .05) [Figure 2.3.1]. No significant differences in

model performance were observed after that. The models demonstrated a significant

difference in the performance of 0.15 AUC after the first twenty-five epochs (Z=0, p

< .001), decreasing to 0.1 AUC at the fiftieth epoch (Z = 0, p < .001), 0.07 AUC at
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the seventy-fifth epoch (Z = 5, p < .05), and an insignificant difference of 0.04 AUC

(Z = 17, p = .28) at the one-hundredth epoch.

(a) M2 learning curve, PZ lesions (b) M2 learning curve, TZ lesions

Figure 2.3.3: M2 learning curves of modality subnetworks depending on lesion location.

Using modality subnetworks combined with the complex loss function allowed us

to investigate the predictive performance of models based on single modality images.

Figure 2.3.3 presents the learning curve of the model M2 PZ and TZ subnetworks.

In the case of PZ lesions, performance of subnetworks closely follows the PI-RADS

guidelines, in which DCE serves as a supporting modality to the DWI-ADC evalua-

tion. However, in the case of TZ lesions, subnetwork performance indicates that T2

performance is lower than DWI-ADC, which is contrary to the PI-RADS guidelines

(according to which, the DWI-ADC should be referenced in the case of inconclusiveness

in T2 evaluation).
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2.3.3. Comparison with radiology specialists

Using the results from the study that involved inexperienced and experienced radi-

ology specialists evaluating part of the ProstateX dataset, we compared the humans’

with the final models’ performance.

Figure 2.3.4: Mean AUC of Inexperienced, Experienced and CNN raters for AS, PZ
and TZ lesions.

The results achieved by the CNN model (AUC = 0.836) demonstrate superior diag-

nostic accuracy in comparison with both experienced (AUC = 0.811) and inexperienced

(AUC = 0.714) specialists in the evaluation of lesions’ clinical significance using the

PI-RADS v2.1 standard. This is particularly visible in the case of lesions located in

the AS [Figure 2.3.4], where deep learning solution provides higher quality estimations

of lesions’ clinical significance in comparison both to experienced and inexperienced

radiologists (AUC = 0.792 vs. AUC = 0.667 vs. AUC = 0.583). In the case of

other lesion locations, the differences between the neural network and the experienced

radiology specialists were less pronounced: PZ (AUC = 0.878 vs. AUC = 0.858 vs.

AUC = 0.714) and TZ (AUC = 0.883 vs. AUC = 0.850 vs. AUC = 0.783).
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2.4. Discussion

Experiments demonstrate that it is possible to use diagnostic standards as a guide-

line to design, construct and improve the computational methods of PCa assessment.

We used the domain knowledge to identify the significant intensity, and statis-

tical and textural features considered during mpMRI assessments. The results of

experiments on the engineering of the optimal feature set prove that it is possible to

construct effective methods of diagnosis support that are based on first-order statistical

and second-order texture features tailored to reflect the specifics of PCa characteristics

on mpMRI. The performance predictions generated by the machine learning classifiers

based on selected features can be compared to the diagnostic accuracy of inexperienced

radiology specialists (based on comparison with a result prototype submitted to the

ProstateX challenge that based its prediction on texture features). This indicates

the potential of the method in guiding diagnostic decisions by providing significant

indicators that correlate with features of clinically significant PCa.

Overall, the results indicate that most optimal models base their predictions on

features that derive from all of the mpMRI modalities analysed. This aligns with the

PI-RADS standard and diagnostic practice, during which lesion characteristics are in-

spected on all modalities. The integrated analysis of complementary imaging methods

plays a major role in lesion identification and sizing, and estimation of assessed features.

The models based on the T2 and DWI image modalities scored higher than the T2

and DCE-based ones on classification tasks. According to the diagnostic standards,

DCE plays a minor role in determining PI-RADS assessment when T2W and DWI

are of diagnostic quality [2]. The results obtained on feature selection based on the

fusion of features from various modalities align with the (recently widely studied) use

of biparametric MRI [100], [101].

A study of the effects of the feature selection that constructs an optimal machine

learning solution allowed us to investigate the effect of particular features on model

performance. The results of the initial studies suggested that similar classification mod-

els with texture features scored higher than those based on basic statistical analyses

of imaging signal intensity. These results were replicated during the study on model

optimisation: texture descriptors yet again proved beneficial in comparison with the

sole statistical signal intensity analysis in PCa classification on mpMRI images. The
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results confirm that the research reported in the literature suggesting that Haralick

(energy, contrast, and entropy) features correlate with the indications of clinically

significant PCa on mpMRI images [87], [88]. This can be explained by the significance

of lesion and lesion margin imaging features that correspond to the homogeneity as-

sessment in PCa assessment, according to the diagnostic standards. The proposed

optimal set of descriptors that correspond to the features estimated by radiologists

during mpMRI assessment can be integrated with CAD systems to aid diagnostic

decisions by introducing objective measures and indicators of imaging features.

Nevertheless, our study involved limitations. The methods of feature selection and

model optimisation that are based on the maximisation of stratified cross-validation

results using genetic algorithms are prone to overfitting. This is visible when analysing

the selected optimal configuration of features included in the best DCE-based model.

The PI-RADS standard bases its predictions on this sequence mostly on signal intensity

analysis and acknowledges its poor diagnostic accuracy [2]. DCE image modality is low

resolution, and the benefit of in-depth texture analysis in its case is doubtful; however,

the selected optimal configuration shows otherwise as it uses ten texture descriptors.

The accuracy of feature selection for DCE is doubtful, as the best DWI-ADC model

uses only five texture descriptors, despite the modality being richer in information due

to the imaging method.

The AUC for the seventy-two methods of the groups that competed in the 2017

ProstateX PCa classification challenge ranged between 0.45 and 0.87 [83]. There was

one winning group (AUC 0.87) and two groups that tied for second place (AUC 0.84);

however, no statistically significant differences were observed in performance among

the top-performing methods [83]. The top-scoring models submitted to the ProstateX

challenge were based on CNNs [102], [103]. This can be explained by the complexity

of prostate lesion assessment based on the evaluation of compound features like lesion

shape and invasiveness [97]. This, along with the results achieved by the machine

learning methods illustrate that more sophisticated solutions that are capable of as-

sessing the high-level features are required to create effective computational methods

of PCa assessment.

We demonstrated that the domain knowledge contained within the PI-RADS v2.1

diagnostic standard can be used to improve the deep learning solutions. This was
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achieved by modifying the architecture and introducing a complex loss function. The

deep learning model with architecture that reflects the PI-RADSv2.1 guidelines achieved

a score close to the best models submitted during the ProstateX challenge. Although

test results demonstrated superior performance of the model in comparison to the base-

line, the differences between the models were minor (0.02 AUC). This was expected, as

both models are similarly complex and carry the potential to discover patterns within

the imaging data.

The experiments highlighted a mismatch between the PI-RADS v2.1 guidelines in

establishing the base and supporting modalities in lesion evaluation and the perfor-

mance results of modality subnetworks in case of TZ lesions. This can be explained by

the key role that DWI-ADC plays in distinguishing clinically significant and insignifi-

cant lesions in cases of inconclusive evaluation [47].

The primary advantage of the method of a priori knowledge integration was illus-

trated by its faster convergence than the experimental method. Significant changes

were introduced, which affected the training process and allowed the method to achieve

the same results in a lower number of iterations. This is an important discovery, which

demonstrates that domain knowledge of PCa diagnostics is correctly represented in the

architecture. Its role can be observed in its increased robustness and stabilised learn-

ing. Accordingly, domain knowledge played a role in network regularisation. Faster

convergence, and thus learning, can lead to lower numbers of iterations with potential

benefits in hyperparameter tuning. Decreasing training time allows us to search more

network configurations and maximises predictive accuracy.

Comparing the neural network model’s performance with that of radiology spe-

cialists based on the assessment of a subset of suspicious lesions leads us to conclude

that the deep learning model demonstrates diagnostic accuracy in predicting clini-

cally significant PCa at least at the level of experienced radiologists. The largest

differences were observed in the assessment quality of lesions located in the AS where

the PI-RADS diagnostic guidelines do not provide a tailored algorithm for clinical

significance evaluation. This exemplifies the potential of introducing methods of com-

puter aid to diagnosis and expanding diagnostic protocols through various applications.

The predictions of sophisticated models can be complementary to PI-RADS evalua-

tion: estimated probabilities of lesions’ clinical significance can be included as part
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of radiology reports, expressed in the form of degree of confidence in cases in which

assessment is inconclusive. Integrating the model that utilises subnetworks capable of

forming predictions on mpMRI modalities separately aids diagnostic decisions on all

partial PI-RADS assessments. Moreover, the method could be extended to estimate

imaging descriptors using the dataset that involves the estimation of features assessed

during the diagnostic process by the radiologists. Both constituting features and final

PI-RADS levels could be predicted and assigned credibility scores based on the objec-

tively measured features. That could lead to greater explainability and credibility in

diagnostic processes.

Although the differences between the diagnostic accuracy of the deep learning mod-

els and those of inexperienced and experienced radiologists are statistically significant,

this comparison has limitations; only thirty-two prostate lesions were assessed during

the process. To settle that matter, the experiment should be repeated on a larger an-

notated multicenter mpMRI dataset. An additional evaluation should be performed

that incorporates models integrated with the PCa CAD system to verify the methods’

clinical applicability.
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2.5. Conclusions

Computational methods designed for the evaluation of lesions on mpMRI images

that are based on texture analysis have been repeatedly proved to be viable and

optimal in the recognition of PCa. This has been demonstrated by multiple studies,

including the most recent ones that employ publicly available datasets. The Prosta-

teX challenge allowed comparisons to be made between multiple approaches to the

application of AI in PCa diagnostics. Our research on solutions that base their pre-

dictions on statistical and textural features suggests that domain knowledge described

in diagnostic standards offers crucial insight into the construction of machine learning

models. RADS guidelines can be used as a source of inspiration in the selection of

imaging descriptors to implement an optimal method of automated diagnosis. This

concept reaches beyond prostate evaluation to diagnosis of other cancer pathologies

on medical imaging that employs magnetic resonance.

RADS standards include more features in their guidelines that are high level and

require more sophisticated solutions. Texture features alone cannot represent the

complete array of rules in the PI-RADS standard, which include high-level descriptors,

such as lesion dimension, shape, and invasiveness estimations. This is confirmed by the

high efficiency of solutions based on deep learning, which can automatically discover

and represent high-order patterns.

Recent advancements in the application of deep learning in PCa diagnosis present

a variety of approaches that employ CNNs . Our study failed to demonstrate any clear

benefits of domain knowledge encoding in terms of improving model performance. This

was expected, as the number of possible states between models was similar—as was

their capacity to learn, recognise patterns, and form problem representations. Instead,

our research illustrates that encoding domain knowledge in neural architectures brings

benefits during training in the forms of stable performance and faster convergence.

To conclude, if the method of integrating domain knowledge into neural network

architectures can be generalised, the experiments should be repeated using other anal-

ogous domains of cancer diagnostics. Similar architecture modifications could be made

to networks that simulate other RADS standards.
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Chapter 3

Structured reporting with integrated formal

descriptions

Abstract The research described in this chapter aims to investigate the effects of intro-

ducing assistance to diagnostic processes in the form of structured reporting based on

the standardised lexicons. Domain knowledge of PCa diagnosis was integrated within

the system as constructed decision tables that model the PI-RADS v2.1 guidelines.

Based on the defined lesion properties, the tool automatically estimates the assessment

category for the given modalities, and, using the assessments verified by radiologists,

generates an overall category. The system’s usability was examined during research in-

volving both experienced and inexperienced radiology specialists on retrospective data

and in clinical environment as part of the diagnostic procedure. Data curated during

the interaction of users with a structured reporting system was used to examine the

agreement between raters and their diagnostic accuracy. The experiments described

in this section were performed on the web-based eRADS platform, which is specially

designed for research on the standardisation of medical reports.



3.1. Introduction

The radiological reports of prostate mpMRIs play a significant role in patient care,

as according to the EAU, the choice to perform a biopsy should be based on the

radiological findings. The PI-RADS radiological report of a prostate mpMRI contains

an assessment category PI-RADS score, which is used—along with factors that con-

tribute to the patient’s overall clinical picture—by the referring clinician to decide

subsequent steps in patient management. Depending on the radiologist’s experience

and the terminology used to convey the relevant diagnostic information, the structure

of the report—as well as its readability and utility—varies greatly and can directly

contribute to impeding treatment outcomes.

The potential of structured reporting in radiology was investigated in a recent

integrated review that analysed 223 publications on the subject to select thirty-two

for in-depth evaluation [33]. Multiple aspects of structured reporting were considered

and studied within the relevant literature: evaluation of terminology, accuracy, com-

pleteness or consistency (twelve papers), clarity, readability or quality (nine papers),

efficiency, and effectiveness (six papers). Six papers attempted to establish whether

structured reports helped in clinical decision making, and only three papers investi-

gated whether such reports brought any benefits to patients’ health. The conclusions of

the papers included observations of increased accuracy, integrity, consistency, clarity,

readability, and overall quality when structured reporting was used. Introducing the

tools of structured reporting made reports more effective and brought improvements

to patients’ health.

Studies show that structured reporting has the potential to reduce the time neces-

sary to prepare reports, decrease the incidence of errors, and improve the quality of

diagnoses [33]. By improving the specificity of applied methods of PCa assessment, it

supports clinical decisions by reducing the number of invasive diagnostic procedures

and improving the share of patients referred for active surveillance instead of active

treatment. A reduction in unnecessarily performed prostate biopsies decreases patients’

discomfort and reduces the number of complications that result from such procedures

[104]. Both reductions in the time needed to prepare reports and the potential to

avoid active treatment have positive effects on the social and economic costs of PCa

management.
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An overview of structured reporting in radiology was presented in a paper by the

European Society of Radiology [105], in which a three-level structure of reports was

proposed based on the previous work by Weiss and Bolos [106]:

1. The structured format includes paragraphs, subheadings that provide sections

designed for clinical information, examination protocol, radiological findings, and

conclusions

2. Consistent logical organisation of reports based on ordering the information using

an internal logical order

3. Use of dedicated terminology related to domain ontologies

The inclusion of integration with standardised lexicons in the definition of struc-

tured reporting enables the indexing of information resulting from imaging interpreta-

tions and the reusability of radiology reports. The ease of creating interactive forms

has resulted in a range of solutions for building structured reports being available.

One example is the RadReport application [107] under the supervision of the RSNA,

which acts as a source of standardised report templates based on the best practices in

reporting. Key clinical observations are captured on the resulting reports using the

terminology, measurements, technical parameters, and annotations appropriate to the

problem domain.

Many reporting solutions are simple and based on forms with inputs dedicated to

reporting sections. Reports generated from those systems are based on the interme-

diate variables defined, but often are exported in text form to radiology information

systems (RISs): a class of systems that support the management of medical imagery re-

sulting from the clinical workflow. Formulating the diagnostic conclusions in narrative

textual form does not enforce report completion nor compatibility of structure. It also

does not allow means of aiding diagnosticians in the generating reports by providing

suggestions and hints regarding possible mistakes. Documentation stored in text form

is stripped from the important annotations resulting from variables that underline the

diagnostic processes. The data specified during report generation that could be used

to curate the datasets for research purposes is lost. Such data could be only prepared

by manual report text decomposition, which is tedious and prone to error.

63



Figure 3.1.1: Report of head MRI examination presented in the Meddo+ RIS. The
generated narrative report does not include the intermediate features assessed during
the diagnostic process, as the reporting module supports report generation using pre-
defined report templates. Source: Meddo241

Moreover, not all variables assessed during the reporting stage are included in

final reports. Unstructured reports in text form do not contain all information that

is considered when making a diagnosis decisions [Figure 3.1.1]; the assessment of the

intermediate variables that describe lesion characteristics is one prime example. In

the case of PCa assessment, reports present only dimensions of lesions, their locations,

and the estimated probability of their clinical significance expressed by a score on the

five-point PI-RADS scale. They do not contain information on homogeneity, level, nor

type of signal intensity that characterises lesions. As a result, information that could

be used to expand clinicians’ knowledge on the efficiency of diagnostic procedures is

lost.

To maximise the benefit of structured reporting, the data that results from imag-

ing interpretation must be integrated with full clinical information to enhance clini-

cal decision-making and, therefore, the quality of diagnosis and patient management.

Structured reporting should be integrated with methods that allow storage of research

data to make imaging data more accessible, quantitative, uniformed, and structured

[108]. Data must be stored in a way that allows effective querying; this can be achieved

1 https://www.meddo24.pl/system-ris-funkcje
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by indexing medical images using the significant variables assessed during medical

reporting. This enables the introduction of tools of statistical analysis, knowledge

discovery, data mining, and integration with AI and clinical-decision-support systems

[109] to improve the quality of diagnostic decisions. Analysis of curated data can be

used to evaluate and compare radiologists’ performance, optimise the reporting pro-

cess, introduce quality control, and provide departmental quality indicators [110]. The

interoperability required to integrate the clinical data can be achieved by applying the

common nomenclature of structured reports that goes beyond the domain of diagnostic

standards for given pathologies (i.e. the PI-RADS lexicon) to the generalised concepts

of radiological image assessment.

RADS provide standardised terminology for imaging results, which reduces the

reported variability and improves the communication of findings [109]; each system,

however, is based on disease-specific lexicons. This stands in the way of data inter-

operability by introducing ambiguities in definitions, and interpretations that result

from a lack of standardisation across the widely recognised lexicons. For example, the

interchangeable use of the terms ‘invasiveness’ and ‘aggressiveness’ in the description

of lesions assessed during prostate mpMRI examinations is caused by ambiguity in

the terms’ definitions across problem domains, and strongly depends on a specialist’s

experience.

Structured reporting could result in improved diagnostic decision specificity while

improving, or at least maintaining, the degree of sensitivity. This outcome can be

accomplished in mpMRI assessments by improved adherence to PI-RADS guidelines

by the standardised structured form of reporting, which is based on an established

conceptual terminology and formalised rules. This can be achieved by the expression

of RADS guidelines using the concept of CDEs, and by improving the process of data

organisation and management in structured reporting.

The efficient exchange of information between reporting systems and structured

databases is crucial for the reproducibility of reports and simplified data exchange, and

can facilitate knowledge extraction and adaptation of clinical decision support. Many

forms of standards, lexicons, and term sets currently utilised in radiology include:

• ACR Index, created in 2004 as an online system that allows specialists to access

65



the ACR index for radiological diagnosis, which was created for the indexing of

image-based teaching files [111];

• SNOMED-CT, created in 1999, contains over 350,000 concepts organised into

hierarchies, with unique meanings and formal logic definitions [112];

• LOINC (Logical Observation Identifiers Names and Codes), developed and up-

dated since 1994, contains over 71,000 ‘observation terms’, each record includes

fields used for unique specifications [113];

• RadLex, proposed by the RSNA, is a specialised ontological radiology lexicon that

contains imaging terms and their relationships with each other [114], adopts the

best features of existing terminology systems and currently contains more than

34,000 terms [115];

• ICD (International Statistical Classification of Diseases and Related Health Prob-

lems) is a medical classification created by the World Health Organisation (WHO)

(On 1 January, 2022 the last revision, ICD-10, which contains 14,400 positions,

was replaced by ICD-11, which contains over 55,000 diseases [116]);

• DICOM (Digital Imaging and Communications in Medicine), which has func-

tioned since 1993, was developed by the ACR and the (US) National Electrical

Manufacturers Association to organise methods of medical data exchange and

interpretation, and is used chiefly in medical imaging [117].

The RadLex lexicon—which was designed to provide radiologists and educators

with an online index of educational materials—demonstrates the most promise for

application in radiological structured reporting. Radiology experts have expanded the

domain of defined terms to create a unified source of standardised terminology that

can be referred to by researchers, clinicians, and developers. The RadLex lexicon

aims to form a single source for medical imaging terminology that integrates other

medical terminology systems, such as SONOMED-CT and ICD while addressing the

missing areas through continuous extensions. Systems that use RadLex facilitate

the analysis of radiological data and allow the uniform indexing of medical datasets

[118]. The defined set of radiology terms can be used not only in knowledge discovery

and decision-support systems, but also in education and research. Using the CDEs

based on RadLex definitions in the standardisation of diagnostic domain knowledge
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unlocks the opportunity to utilise formal descriptions that can be used by workflow

and decision-support systems to ensure adherence to diagnostic guidelines.

Clinical practice guidelines have been already formalised for various cases using the

Arden syntax, a language released in 1992 that is applied for representing and sharing

medical knowledge and is used as an executable format by clinical decision-support

systems. Rules are represented in the form of medical logic modules (MLM) that

assist in medical decisions [Figure 3.1.2]. The program’s code is designed in a format

that is readable to humans and resembles natural language, and its structure makes it

easier to be understood by non-programmers. Using Arden-based decision rules allows

interpretations to be generated and communicated to clinicians. It is currently part

of Health Level Seven International, a health data interoperability standard. Scripts

written in Arden can be understood and validated by experts in a particular clinical

field, but their development and verification requires some programming knowledge.

(a) Part of the variables specification sec-
tion

(b) Part of the logic underlying the deci-
sion support

Figure 3.1.2: An example of a medical logic module categories in Arden Syntax. The
example shows a module that helps determine whether a patient has symptoms of a
urinary tract infection (UTI). [119]

Management information systems have introduced clinical pathway solutions analo-

gously to business processes in the form of business process modelling notation (BPMN)

and Unified Modelling Language diagrams, flow charts, process chains, or dedicated

languages. Some initiatives promote BPMN as a tool to model clinical pathways, as it

is a widely recognised standard in industry, used for modelling business processes. Its

widespread use makes it possible to allocate human resources to the highly demanding

task of modelling clinical pathways. Moreover, using the standard brings additional

benefits in the form of possible deployment on dedicated workflow engines in an ex-
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ecutable form. BPMN is well suited to the modelling of clinical processes due to its

widespread use and support. Some advocate BPMN as the dedicated modelling tool for

clinical pathways in the academic community; for example, Braun et al recommend

the extension model, BPMN4CP as a tool dedicated to clinical pathway modelling

[120], [121].

Another form of modelling standard, decision model and notation (DMN) is a

language used to define the precise specifications of business decisions and business

rules. Tables are represented by sets of rules based on the attributes introduced and

their values. Correct rules are found to be applied for input cases based on the hit

policies (resolution strategies that match the input parameters towards finding the

first matching rule).

Figure 3.1.3: An example of a DMN decision table that selects discounts based on
customer type and order size. Source: [122]

Decision tables benefit from their use of visual interpreters and editors. Many

common software modelling tools, such as Enterprise Architect2 and Camunda Mod-

eller3 support the DMN standard and allow editing rules by directly modifying entries

in tables. This makes the process easy to manage by users that are not experts in

computer science. DMN tables can be also deployed to decision engines, such as the

Camunda Workflow engine4, and be integrated into the BPMN processes.

It is possible to express the PI-RADS v2.1 guidelines using DMN notation based

on the CDEs definitions. Such a method would benefit from possible integration

within the clinical pathway that is defined using BPMN processes. Constructing the

decision tables requires the decomposition of guideline rules into the sets of identified

CDEs to which the diagnostic algorithms refer. Using the DMN standard as a method

of modelling the domain knowledge contained within RADS standards removes the

ambiguities of rule formulation and can improve how changes in PI-RADS versions
2 https://sparxsystems.com/
3 https://camunda.com/download/modeler/
4 https://camunda.com
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are communicated. Moreover, formalised guidelines presented as decision tables could

be used to automatically generate predictions based on the predefined features accord-

ing to current domain knowledge—thus aiding radiologists throughout the diagnostic

process.

This methodology is compatible with computer-assisted reporting and decision

support (CAR/DS), a novel class of systems that integrate the guidelines as clinical de-

cision structured reporting tools [123]–[125]. CAR/DS is an open framework, initially

proposed by the ACR, for integrating clinical decision support tools with radiology

reporting systems. It implements clinical guidelines in the form of modules deployed

in the radiology workflow system, embedded in the reporting environment [125]. An

article published in February 2022 investigates the impact of CAR/DS application

in abdominal CT assessment; its results suggest increased compliance with follow-up

imaging and improved adherence to guidelines [124].

Figure 3.1.4: An T2W assessment section of the ACR Assist PI-RADS CAR/DS
module5. Radiologist selects the rule matching the lesion picture on the T2W image.
Overall PI-RADS category is automatically estimated based on the specified grades
for modalities. The assessment with the CAR/DS tool concludes with a structured
report text that can be copied to the local system.

ACR assist is an open web-based platform supporting CAR/DS models [125]. It

integrates a tool to support reporting according to PI-RADS guidelines. Decision

support within this module is limited to estimating the overall PI-RADS score based

on manually selected appropriate T2W, DWI and DCE algorithm rules (assessment

categories) matching the lesion features [Figure 3.1.4]. What is missing from this form
5 The ACR Assist PI-RADS module is available at https://assist.acr.org/assistweb/PI-RADS
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of assistance is the exploitation of the potential benefits of expanding the collected set

of annotations resulting from the intermediate variables that make up the PI-RADS

rules. The ACR assist PI-RADS module is currently under final verification.

The quality of the PI-RADS lexicon’s formulation can be verified by conducting

studies that involve the assessment of mpMRI features by experienced and inexpe-

rienced radiologists. Results from research reported in the literature on agreement

among raters using PI-RADS demonstrate varied agreement among specialists. Most

of the research analysed the assessment of PI-RADS categories, not the composite fea-

tures that affect the diagnosis outcomes. The evaluation of agreement among experts

who use the PI-RADS lexicon [55], [103] expands understanding of the reproducibility,

uniformity, and quality of diagnoses [55]. The development of a computer-assisted

structured reporting system integrated with formalised standard definitions allows

research to be conducted on the qualities of mpMRI assessment based on continuously

curated data during system use [108]. The indexing of medical imaging using the

radiological lexicons resulting from application within structured reporting systems

has already been proposed [108], [126]; however, the most common utilisation of the

common terminology is report text standardisation. Knowledge resulting from the

assessment of intermediate variables that constitute diagnostic evaluation in the form

of CDEs provides insights on the quality of radiological evaluation that goes beyond

domain-specific tasks.

In this chapter, we present our work on enhancing diagnostic procedures using a

CAR/DS system of mpMRI PCa assessment integrated with formal descriptions based

on the RadLex lexicon. We propose an innovative formalisation of the PI-RADS guide-

lines that utilises decision tables composed of rules that are based on CDE attributes.

We demonstrate that it is possible to investigate the quality of radiological assessment

using the datasets created during interaction with the tool in the course of clinical

practice. To achieve this, we identified the sources of variability among experts, which

continues to pose a key challenge in the development of PI-RADS. We present an

analysis of interobserver agreement of CDE-standardised features that expand beyond

the PI-RADS lexicon. Moreover, by performing repeated assessments of imaging by

the same radiologists, we evaluated the intraobserver agreement on feature estimation,

which allows investigation into the consistency of image interpretation.
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3.2. Methods

Our goal was to develop an optimal proposition for CAR/DS in PCa diagnosis.

The reporting procedure is based on the PI-RADS structured reporting scheme for

mpMRI assessment. An article published in 2021 described a method of automatic

PI-RADS assignment that employed formal methods generated on the basis of ex-

tracted radiomics features from DWI-ADC mpMRI from ninety-one patients [127].

This approach, however, does not guarantee adherence to the PI-RADS guidelines and

is input-data dependent [88]. We propose a formalisation of the diagnostic guidelines

in the form of defined rule sets expressed as decision tables modelled using DMN. This

approach benefits from its ease of introducing iterative improvements and updates, and

full transparency in regards to the inner logic of decision support. Rules can be easily

investigated using the DMN visual interpreters by users without specialist technical

expertise. Possible integration within workflow engines enables further utilisation of

formalised guidelines as part of clinical processes.

3.2.1. Formalisation of PI-RADS diagnostic guidelines

An iterative analytic process was established in a series of consultations with an

experienced radiologist (who had more than five years’ experience using the PI-RADS

standard in clinical practice) to identify the set of CDEs and develop the decision

tables. Our work on reproducing the PI-RADS guidelines in the form of decision

tables was divided into two stages:

1. A subset of RadLex and non-RadLex terms was defined that reflect the concepts

in the PI-RADS guidelines to propose a set of CDEs

2. Based on the selected and defined CDEs, PI-RADS score decision tables were

prepared that base their rule definition on CDE values and their outputs on

lesion evaluation scores

The catalogue of the defined CDEs included elements that appear in the PI-RADS

lexicon (relating to various categories, including abnormality, shape, margins, signal

characteristics, etc.), as well as elements that exceed the standard and refer to clinically

significant features or morphometric lesion features. The CDEs and decision rules

were initially defined by the decomposition of the PI-RADS narrative guidelines into
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Variable Label Related Radlex Terms Possible Values
Input Variables
lesion_dim_max Lesion Max Dimension (mm) Diameter [RID13432] <5, >=5, >=15
lesion_location Zone Zone of prostate [RID38890] PZ, TZ, NOT AVAILABLE
t2w_present_and_adequate T2W present and adequate Adequate [RID39308] YES, NO
t2w_abnormality T2W lesion present Lesion [RID 38780] YES, NO
t2w_invasive T2W Invasive Invasive [RID5680] YES, NO
t2w_signal_intensity_type T2W Signal Intensity Type Signal characteristic [RID6049] HYPOINTENSITIVITY, ISOINTENSITIVITY, HYPERINTENSITIVITY
t2w_signal_intensity T2W Signal Intensity Scale Signal characteristic [RID6049] MILD, MODERATE, MARKEDLY
t2w_uniformity T2W Lesion uniformity Uniformity descriptor [RID43293] HOMOGENEOUS, HETEROGENEOUS
t2w_focality T2W Focality Focal [RID5702] YES, NO
t2w_shape T2W Shape Morphologic descriptor [RID5863] LINEAR, WEDGE, LENTICULAR, WATER-DROP
t2w_shape_category T2W Shape category Morphologic descriptor [RID5863] LINEAR, ROUND, IRREGULAR
t2w_margin T2W Margin Margin [RID5972] PARTLY_ENCAPSULATED, ENCAPSULATED, WELL_DEFINED
t2w_margin_category T2W Margin category Margin [RID5972] CIRCUMSCRIBED, NON_CIRCUMSCRIBED
Output Variables
t2w_pirads T2W PI-RADS Evaluation PZ [RID50301], TZ [RID50307] 1,2,3,4,5, X
t2w_pirads_description T2W PI-RADS Rule Descripton <string>

Table 3.2.1: Input and output variables of decision table representing the PI-RADS
T2W assessment algorithm

logical statements using a subset of identified RadLex terms. The resulting decision

tables were used as a base for review by an experienced radiologist and introduced

improvements through interviews. Overall, the decision tables were concluded to be

final and complete after three iterations. Then, to validate the decision tables, an

independent experienced radiologist who was not engaged in the development of the

decision tables, verified the rules and declined to recommend the introduction of any

changes; the tables were then assumed to be valid and complete.

Four decision tables were prepared, which reflected the PI-RADS algorithm. Sep-

arate decision tables calculate the partial scores for T2W [Table 3.2.3], DCE, and

DWI-ADC modalities, as well as the final PI-RADS score based on the partial evalu-

ations and lesion location6. Each rule was defined using a subset of CDEs, an output

variable (PI-RADS score), and a description that acts as an explanation for a given

decision. Decision tables were prepared using the DMN standard, which allows ease

in communication and the introduction of minor updates.

Although definition of the decision table input variables and their possible values

was based on the identified related RadLex terms [Table 3.2.1], it was also necessary

to introduce additional variables that were not included in the lexicon. This was

dictated by the distributed character of RadLex terms: they are frequently duplicated

or inconsistent due to the inclusion of domain-specific lexicons. A prime example

of this can be found when signal characteristic property is considered. The terms

‘Hypointense’ [RID35804], ‘T2 hypointensity’ [RID49501] and ‘Markedly hypointense’

[RID49500] are all contained in the RadLex lexicon; however, the corresponding terms,

6 DCE, DWI-ADC and Overall PI-RADS decision tables are included in the Appendix
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PI-RADS Rule Description
X [#1] PI-RADS evaluation not avaible for the selected zone
1 [#2] No lesions
5 [#3] Zone: PZ or TZ; Invasive; Max dim.>=5mm
5 [#4] Zone: PZ, Circumscribed, Focal, Moderate/Markedly, Hypointense, Homogenous, Non-invasive; Max dim.>=15mm
4 [#5] Zone: PZ, Circumscribed, Focal, Moderate/Markedly, Hypointense, Homogenous, Non-invasive; Max dim.[5, 15)mm
3 [#6] Zone: PZ, Heterogenous, Non-invasive; Max dim.>=5mm
3 [#7] Zone: PZ, Round, NonCircumscribed, Moderate/Markedly, Hypointense, Non-invasive; Max dim.>=5mm
2 [#8] Zone: PZ, Linear/Wedge shaped, NonCircumscribed, Hypointense, Non-invasive; Max dim.>=5mm
2 [#9] Zone: PZ, NonCircumscribed, Non-focal, Mild, Hypointense, Non-invasive; Max dim.>=5mm
5 [#10] Zone: TZ, Lenticula/Water-drop shaped, Moderate/Markedly, Hypointense, Homogenous, Non-invasive, Max dim.>=15mm
5 [#11] Zone: TZ: NonCircumscribed, Moderate/Markedly, Hypointense, Homogenous, Non-invasive, Max dim.>=15mm
4 [#12] Zone: TZ, Lenticula/Water-drop shaped, NonCircumscribed, Moderate/Markedly, Hypointense, Homogenous, Non-invasive, Max dim. [5, 15) mm
4 [#13] Zone: TZ: NonCircumscribed, Moderate/Markedly, Hypointense, Homogenous, Non-invasive, Max dim.[5, 15)mm
3 [#14] Zone: TZ, NonCircumscribed, Heterogenous, Non-invasive; Max dim.>=5mm
2 [#15] Zone: TZ, Partly Ecapsulated, Focal, Round, Non-invasive, Max dim.>=5mm
2 [#16] Zone: TZ, Well-defined, Focal , Round, Homogenous, Non-invasive, Max dim.>=5mm (Atypical nodule)
2 [#17] Zone: TZ, Non-focal, Mild, Hypointense, Non-invasive; Max dim.>=5mm
1 [#18] Zone: TZ, Encapsulated, Focal, Round, Non-invasive, Max dim.>=5mm (Typical nodule)
3 [#19] Others that do not qualify as PI-RADS 2, 4, or 5.
X [#20] T2W image is unavailable
X [#21] Unclassified case

Table 3.2.2: Decomposed rules of the PI-RADS T2W assessment algorithm

‘DWI Hypointensity’ or ‘Moderately hypointense’ are absent, as they do not occur in

domain lexicons. For that reason, we opted to define a specific set of CDEs and to

relate those to the RadLex terms.

The high number of rules derived from the PI-RADS guidelines is a result of

the translation of descriptive characteristics into logical statements. This reduced

ambiguities in the diagnostic standard rules’ definitions. For example, the PI-RADS

v2.1 T2W evaluation rule for TZ lesion states that PI-RADS category 2 is assigned

for lesions that display the following characteristic: ‘A mostly encapsulated nodule

OR a homogeneous circumscribed nodule without encapsulation (“atypical nodule”)

OR a homogeneous mildly hypointense area between nodules’. This statement was

translated into three rules in the decision tables [Tables 3.2.2 and 3.2.3]:

[#15] Lesion: TZ, Partly Encapsulated, Focal, Round, Noninvasive, Max dim.>=5mm

[#16] Lesion: TZ, Well-defined, Focal, Round, Homogenous, Noninvasive, Max

dim.>=5mm (Atypical nodule)

[#17] Lesion: TZ, Non-focal, Mild, Hypointense, Noninvasive; Max dim.>=5mm

Based on radiologists’ insights, two additional CDEs were incorporated to simplify

the rule sets. According to the experts, assessment of particular shape and margin

type features on mpMRI images is highly subjective and could potentially decrease

diagnostic accuracy if implemented as part of a formalised model. Instead, categorisa-

tion was suggested: mapping the particular values into more general feature types to

simplify the defined rules. As a result, eight shapes described as part of the PI-RADS

lexicon (round, oval, lenticular, lobulated, tear-shaped, wedge-shaped, linear, and ir-
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regular) were simplified to three shape types (linear, round, and irregular) and seven

types of lesion margin (circumscribed, noncircumscribed, indistinct, obscured, spicu-

lated, encapsulated, and erased charcoal sign) were simplified to two significant types

(circumscribed and noncircumscribed).
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3.2.2. PI-RADS CAR/DS form

Based on the agreed CDEs, an interactive electronic form was developed and made

available for collecting and annotating data on the dedicated platform. A special

mpMRI evaluation form was constructed as a system module, built based on selected

groups of lesion-relevant attributes for which radiologists mark specific values, such

as ‘shape: round’ and ‘margin: circumscribed’, according to the properties of defined

CDEs. An imposed order of assessment that uses a computer-assisted reporting tool

assures adherence to diagnostic guidelines and guarantees complete evaluation, thus

allowing verification of intermediate steps of diagnosis.

Defined decision tables were integrated with the structured reporting form. Using

the marked lesion features, the system automatically suggests the value of PI-RADS

scores using the implemented PI-RADS 2.1 decision rules. Such suggestions play the

role of a ‘second opinion’ and allow radiologists to make final decisions in adherence

with the diagnostic guidelines. This constitutes a form of diagnosis support, in which

users receive feedback from the platform based on the domain knowledge of the di-

agnostic standard on which the system’s logic is based. A diagnosis protocol and

decision-making suggestions can be inspected and verified to ensure efficacy. Given

the specified input variables, radiology specialists are informed of the assessment cate-

gory and the specific rule that applies to the inputted case. The resulting automated

assessment can then be manually corrected if a specialist disagrees with the suggestion.

Two experienced radiology consultants were engaged in the process of form design

and development. First, all defined descriptions of decision table rules, CDEs, and

related RadLex-lexicon terms were translated to Polish language, as their definitions

and values had to match the language of the narrative report text the system generates.

Based on the knowledge gathered, several form prototypes were iteratively developed

and reviewed by diagnosticians, who identified flaws introduced during the form’s

development and recommended changes to improve the quality of user experience

(UX). An additional two CDEs related to the categories of shape and margin type

CDEs were included on the form, and their value was automatically set based on the

estimation of base CDE.

Diagnosticians can benefit from integration with PI-RADS v2.1 decision tables,

which automatically suggest PI-RADS scores for the modalities. The system auto-
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Figure 3.2.1: Part of PI-RADS CAR/DS form for assessment of lesion features in
T2W images (corresponding to the T2W decision table input variables [Table 3.2.1]).
The left sidebar allows for navigation between sections. The selected section, Zmiany
chorobowe (lesions) allows for evaluation of detected lesions in mpMRI. Each lesion is
evaluated separately.

Figure 3.2.2: Radiologists are presented with semi-automatically determined PI-RADS
v2.1 scores (here, using the T2W decision table [Table 3.2.3]) and explanations of which
rules have been detected [Table 3.2.2].

matically generates a text-based, synoptic final report that follows the report formula

proposed in the PI-RADS guidelines. The structured reporting form is divided into

the following sections: patient identification and clinical data, identified pathological

lesions, and narrative report. During the main assessment phase, radiologists can
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access multiple lesions within the prostate gland. Each lesion evaluation involves

specifying lesion sectoral location using the prostate sector map, lesion dimensions, as-

sessment of lesion characteristics on T2W, DWI, ADC and DCE images, and finalising

the assessment by deciding on the overall PI-RADS score. The completed structured

reporting form is then used to generate the report narrative text [Figure 3.2.3].

Figure 3.2.3: In the report section, an automatically generated text is presented to the
user in a structured form. The report includes clinical information and a summary of
the findings, in addition to prostate volume estimated using the dimensions provided,
calculated PSA density, and parameters that were included to conduct research on
signal intensity normalisation.

Using the PI-RADS CAR/DS form, clinicians can perform complete mpMRI assess-

ments according to the current PCa diagnostic standards. Instead of writing reports,

clinicians interact with the system through a web browser. The form comprises mostly

radio buttons that are used to define CDEs’ values that correspond to the visually

assessed lesion properties. Based on the completed form, the generated text of the

report can be manually copied to the local HIS/RIS; this means that the tool is ready

for production use.
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Figure 3.2.4: eRADS system homepage

3.2.3. CAR/DS research platform: eRADS

During our work on an optimal CAR/DS solution, we developed a research plat-

form named eRADS [Figure 3.2.4], which was designed to enable the standardisation

of radiological reporting and integration with decision-support solutions. It was used

as a research tool for the elaboration, implementation, and evaluation of the structured

reporting models. The design, analysis and development of structured reporting is tai-

lored to specific clinical problems and includes algorithms and schemes for descriptions

of pathological lesions. The platform’s goal is to develop methods and practices for

creating good and reliable structured reports in radiology, with particular emphasis

on the reporting of cancer lesions backed with integrated methods of decision support.

The eRADS platform possesses modular architecture [Figure 3.2.5], which allows

rapid implementation of newly-created structured reporting models. For image data

management, eRADS integrates with the XNAT imaging informatics software platform

with archiving and management functionalities. Integration with the OHIF web-based

DICOM image viewer is provided for medical image viewing and analysis. eRADS

integrates with the Camunda business process model engine and supports a decision

table engine for models defined using DMN.

The eRADS platform and integrated systems are accessible via web browser and

have been made available for production use. Radiologists can access the program us-

ing a local station and use the functionalities that enable structured report generation
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Figure 3.2.5: eRADS System architecture

based on the manually specified features. Structured reporting forms are developed

using XForms technology allowing dynamic interactive forms to be constructed using

XML definitions [128], [129]. Forms are deployed on the Orbeon platform, which is

used as an XForms engine integrated into the eRADS system. Orbeon provides a

form-builder user interface that allows developers to visually construct forms using

drag-and-drop controls. The engine also supports calling web services, which enables

integration with the models of decision support. This feature is used to integrate the

benefits of decision tables deployed on the Camunda platform into the form logic. The

possible extension and direct integration with hospital information system are possible

via web-service calls from using XForms within the form definition; that, however, is

dependent on software API and would require secure network access to local hospital

infrastructure from the platform or localised deployment in a target diagnostic centre.

Using integrated Orbeon and Camunda applications on a custom content manage-

6 https://www.orbeon.com/
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ment system platform decreases the cost of introducing changes to the functionalities.

Business logic can be extended or modified without engaging developers in the pro-

cess. Forms (XForms), processes (BPMN), and decision tables (DMN) are defined

with the support of editors using a graphic user interface. This enables modularity

and prototyping. New forms and decision tables can be deployed onto the platform

independently with limited risk of regression errors.

3.2.4. Experiments

To investigate the effects of our method of computer-aided diagnosis, we conducted

experiments that involved radiology specialists interacting with the CAR/DS form de-

ployed on the eRADS platform. Two studies were conducted. The retrospective study

involved two evaluations of preselected subsets of lesions sourced from the ProstateX

training dataset. The study was conducted by six radiologists accessing the platform

remotely using home workstations, outside of the clinical environment. The imaging

was accessible through the integrated, web-based OHIF viewer. The study aimed

to investigate inter- and intrarater agreement among experienced and inexperienced

specialists, as well as verifying the proposed interpretation of the PI-RADS guidelines

as decision tables. The prospective study, which involved two radiology specialists

occurred in a clinical environment during usual work practice. The imaging was as-

sessed on a hospital’s certified diagnostic workstations. The aim of studying the tool

in a clinical setting was to verify the applicability of the assessment method beyond

the research environment. Contrary to the retrospective study, no biopsy results were

available for the lesions analysed, as the mpMRI assessment practised at the facility

was performed without further feedback on patients outcomes.

Retrospective study

This study was performed on a specially prepared mpMRI dataset, and the results

of targeted magnetic resonance biopsies. The data was balanced, and included sixteen

clinically significant and sixteen clinically nonsignificant lesions. The nonsignificant

lesions included abnormalities scored as PI-RADS <= 2 for which biopsy had not

been performed and those for which histopathology assessment had assigned the first

Gleason category. The experiment was performed on the preselected subset of the

ProstateX challenge training dataset. The selected lesions were located in the AS
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(seven, of which four were clinically significant), TZ (eleven, of which five were clinically

significant), and PZ (fourteen, of which seven were clinically significant).

The experiment was conducted with the participation of experienced and inexperi-

enced radiologists. These experts were not involved in the development process of the

methodology. The study was conducted on a group of radiology specialists who used

the RADS standards during the diagnostic practice:

• Three specialists with diagnostic experience of one to five years

• Three specialists with more than ten years’ diagnostic experience and at least

five years’ experience using the PI-RADS standard (since the first version of the

standard)

The study involved two sessions that required the full assessment of thirty-two se-

lected lesions using the structured reporting forms deployed on the eRADS system. In

the first phase, the radiologists assessed all cases by specifying the imaging features

(the values of the identified CDEs) and assigned the manual PI-RADS categories for

lesions. The second phase was conducted two weeks after the first to eliminate the

memory effect. All cases were assessed using the computer-assisted structured report

tool integrated with the decision tables. The form included text fields that acted as

comments that could be filled by radiologists to express their reasons for disagree-

ment with suggestions resulting from the formalised model’s assessments. The time

spent on interaction with the computer-assisted reporting form during each mpMRI

examination assessment was measured automatically.

The interactive form enhanced the procedure of mpMRI assessment, supporting

the data collection process and suggesting the PI-RADS scores based on the answers

provided on the structured reporting form. The results of both study stages were com-

pared to establish inter- and intrarater concordance in assessing the imaging features

and PI-RADS categories, and in determining the resulting quality of diagnosis.

UX and ergonomics tests of the CAR/DS tool were conducted between the two

study sessions. The goal was to verify the implementation of the support method—in

particular, the verification of the decision tables and the mapping of the evaluation

rules according to the PI-RADS guidelines. UX tests were conducted in a specially

prepared environment, which was adapted for usability testing. This allowed us to

consider the specific needs of radiologists and the clinical conditions of mpMRI exam-
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ination evaluation. The interviews with the radiologists were conducted and recorded

to gather their insights on the quality of interaction with the solution and to estimate

its potential in clinical settings.

Prospective study

To validate the solutions in a clinical setting, we conducted a prospective study

on the premises of a radiology diagnostic centre during a weekend shift of the spe-

cialists. The study was conducted on two radiology specialists of the same radiology

department, who used the PI-RADS standard in daily diagnostic practice. The study

included a specialist with one to five years’ diagnostic experience and more than one

year’s experience using the PI-RADS standard, and a specialist with ten years’ diag-

nostic experience and more than five years’ experience using the PI-RADS standard.

The structured report generated by the tool was copied manually into the hospital

RIS system. Patient data stored in the eRADS database was anonymised by referring

only to the generated imaging study identifiers to identify the cases.

Figure 3.2.6: Setup of the diagnostics workstation during validation of the method
in a clinical setting at the Department of Radiology, Centre of Postgraduate Medical
Education in Warsaw, Poland. The radiologists were interviewed after the conducted
study. Photo obtained from: [130]

The specialists were instructed not to contact each other during the study to discuss

the cases they had assessed. The prostate imaging examinations of eighteen patients

were assessed by both radiologists. The data was not specifically preselected and

reflected the true nature of diagnostic work during clinical practice [Figure 3.2.6]. The

data was acquired using three-tesla mpMRI; the data was complete and all images
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analysed were diagnostic. Due to the type of diagnostic work performed at the insti-

tution and the prospective nature of the study, the data did not include the biopsy

results of reported findings. For that reason, it was not possible to perform analysis

of the diagnostic accuracy.

3.2.5. Statistical analysis

To compare the results of interrater agreement of the CDEs to similar research on

interobserver agreement of the PI-RADS v2 lexicon published by Mussi et. al. [131]

in 2020, we followed similar statistical analysis protocols. We present the percent

concordance (PA) and first-order agreement coefficient (AC1) [132] obtained using

Gwet’s method for the CDEs. Additionally, the intrarater agreement was estimated

using the same measures by comparing the assessments between the two study sessions

performed on the retrospective data. Statistical significance levels were set at 5% and

interpretation of agreement levels was defined as excellent for AC1 values (≥ 0.81),

good (0.61–0.80), moderate (0.41–0.60), fair (0.21–0.40), and poor (≤ 20). We used

a Wilcoxon signed-rank test to compare the means of assessed features. AUC, Recall

and Precision were used as measures of the diagnostic methods’ performance.

Data cleaning, restructuration, and visualisation were performed in Python (v3.7.12)

using the Pandas (v1.3.5) and Plotly (v5.5.0) packages. Statistical analysis was per-

formed using R (v4.1.2) and irrCAC (v1.0)[133] package. All scripts were written in

the Google Collaboratory tool using the dedicated notebooks.
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3.3. Results

In this section, we present the results of the retrospective study conducted on

thirty-two prostate lesions drawn from the ProstateX training dataset. Those lesions

were preselected for evaluation by six radiologists. The results are compared to that of

the prospective study, which was conducted in a clinical environment and involved two

specialists evaluating eighteen mpMRI studies that were not pre-selected, but resulted

from the clinicians’ regular work during their shift.

3.3.1. Quality and variability of PI-RADS v2.1 assessment

Interrater agreement of defined CDEs

Session 1 Session 2 Overall
PA AC1 (95% CI) PA AC1 (95% CI) PA AC1 (95% CI)

Modality Feature
Lesion >= 1.5cm 72.3 0.45 (0.26; 0.63) 69.2 0.40 (0.21; 0.58) 70.7 0.42 (0.29; 0.55)
Zone (selected) 76.9 0.66 (0.51; 0.81) 79.4 0.70 (0.56; 0.84) 78.1 0.68 (0.58; 0.78)

T2W Abnormality 94.0 0.94 (0.87; 1.00) 99.0 0.99 (0.97; 1.00) 96.5 0.96 (0.93; 0.99)
Focality 66.6 0.48 (0.30; 0.65) 74.4 0.65 (0.49; 0.80) 70.5 0.57 (0.45; 0.68)
Homogeneity 63.9 0.38 (0.19; 0.56) 62.7 0.37 (0.19; 0.54) 63.3 0.37 (0.25; 0.50)
Invasiveness 68.1 0.45 (0.23; 0.66) 72.7 0.57 (0.38; 0.77) 70.4 0.51 (0.37; 0.65)
Margin 26.5 0.13 (0.06; 0.20) 28.2 0.18 (0.11; 0.24) 27.3 0.16 (0.12; 0.21)
Margin cat. 73.0 0.56 (0.36; 0.76) 69.2 0.50 (0.29; 0.71) 71.1 0.53 (0.39; 0.67)
Shape 27.4 0.18 (0.13; 0.23) 23.0 0.13 (0.07; 0.18) 25.2 0.15 (0.12; 0.19)
Shape cat. 46.2 0.22 (0.10; 0.35) 50.6 0.31 (0.16; 0.45) 48.4 0.26 (0.17; 0.35)
Signal int. 45.2 0.24 (0.15; 0.33) 54.4 0.38 (0.24; 0.52) 49.8 0.37 (0.30; 0.44)
Signal int. type 95.3 0.95 (0.90; 1.00) 100.0 97.7 0.98 (0.95; 1.00)

DWI Abnormality 85.0 0.81 (0.69; 0.93) 94.0 0.93 (0.87; 1.00) 89.5 0.87 (0.81; 0.94)
Focality 73.0 0.61 (0.41; 0.80) 77.2 0.68 (0.50; 0.86) 75.1 0.64 (0.52; 0.77)
Homogeneity 70.0 0.54 (0.33; 0.75) 77.0 0.69 (0.53; 0.85) 73.6 0.62 (0.49; 0.75)
Invasiveness 65.1 0.42 (0.22; 0.62) 70.0 0.52 (0.32; 0.72) 67.6 0.47 (0.33; 0.61)
Shape 25.2 0.16 (0.08; 0.23) 20.3 0.10 (0.04; 0.15) 22.7 0.12 (0.08; 0.17)
Shape cat. 46.8 0.24 (0.10; 0.38) 51.2 0.31 (0.17; 0.46) 49.0 0.28 (0.18; 0.37)
Signal int. 50.2 0.26 (0.13; 0.40) 55.5 0.34 (0.18; 0.50) 52.9 0.38 (0.29; 0.47)
Signal int. type 89.0 0.88 (0.75; 1.00) 94.6 0.94 (0.87; 1.00) 91.9 0.91 (0.84; 0.98)

ADC Abnormality 92.3 0.91 (0.84; 0.99) 94.4 0.94 (0.88; 1.00) 93.3 0.93 (0.88; 0.98)
Focality 74.2 0.64 (0.46; 0.82) 76.4 0.67 (0.52; 0.83) 75.3 0.66 (0.54; 0.78)
Homogeneity 65.3 0.49 (0.33; 0.65) 73.6 0.63 (0.46; 0.80) 69.5 0.56 (0.44; 0.68)
Invasiveness 67.1 0.45 (0.25; 0.65) 71.2 0.54 (0.34; 0.75) 69.2 0.50 (0.36; 0.64)
Shape 23.5 0.13 (0.08; 0.19) 21.1 0.11 (0.05; 0.16) 22.3 0.12 (0.08; 0.16)
Shape cat. 46.5 0.23 (0.09; 0.37) 50.5 0.30 (0.17; 0.44) 48.5 0.27 (0.17; 0.36)
Signal int. 47.4 0.24 (0.08; 0.41) 59.9 0.44 (0.27; 0.61) 53.6 0.39 (0.29; 0.48)
Signal int. type 94.8 0.95 (0.87; 1.00) 100.0 97.4 0.97 (0.94; 1.00)

DCE Abnormality 77.9 0.64 (0.47; 0.82) 75.0 0.65 (0.52; 0.78) 76.5 0.65 (0.54; 0.75)
BPH Features 82.7 0.77 (0.57; 0.95) 85.7 0.81 (0.67; 0.95) 84.3 0.79 (0.68; 0.91)
Enhancement 79.3 0.75 (0.57; 0.93) 75.7 0.60 (0.41; 0.79) 77.3 0.68 (0.55; 0.80)
Focality 43.7 0.32 (0.17; 0.47) 45.6 0.35 (0.19; 0.51) 44.7 0.34 (0.23; 0.44)

Table 3.3.1: Inter-observer agreement of PI-RADS v2.1 CDEs (p<.01)
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Based on the results obtained from the two stages of the retrospective study, the

mean interrater percentage agreement and AC1 values with 95% confidence intervals

are presented in Table 3.3.1 for estimated values of PI-RADS v2.1 CDEs. Overall, the

table presents the mean of fifteen pairs of radiologists’ evaluations that were compared

to estimate their concordance.

Figure 3.3.1: Mean interrater agreement among experienced (red) and inexperienced
(blue) raters and 95% confidence intervals.

The highest agreement between the radiologists was observed for abnormality de-

tection, assessment of signal intensity type, and BPH feature CDEs. The results

were expected for the first two features, as radiologists were presented with reference

images of abnormalities on all modalities as a guide. Signal intensity type connects

strongly with the occurrence of lesions on those modalities; hypointensity indicated the

abnormalities for the T2W and ADC images and hyperintensity for the DWI images.

Given a study design that assesses the preselected potentially clinically significant

lesions, those features demonstrated high agreement between raters; this, however,

was not observed for DCE images, for which abnormalities were not observed in all
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of the cases analysed. This resulted in decreased agreement of abnormality detection

(PA = 76.5%) and enhancement indication (PA = 77.3%), which suggests that not all

abnormalities are evident on all mpMRI sequences and that the evaluation of signal

enhancement on DCE is subjective. The lowest agreement was observed for highly

subjective features: shape, signal intensity level, and type of lesion margins. The

simplification of lesion shape and margin features by grouping the values into types

improved the concordance between raters.

Analysis of differences in interrater agreement among the experienced and inexperi-

enced raters (within groups) reveals several significant differences in agreement values

[Figure 3.3.1]. The results present mean comparisons of five pairs of assessments

for inexperienced and inexperienced groups, each of which was represented by three

experts. The largest difference between the groups was observed in their assessment of

focality on DCE images: agreement among inexperienced raters was not statistically

significant (AC1 = -0.03, p = .37) and was good for experienced raters (AC1 = 0.78,

p < .001). However, this was the only case for which the experienced raters agreed

more on the feature assessment. The opposite tendency was observed for:

• Zonal locations of lesions

— Experienced AC1 = 0.57, p < .001 vs. Inexperienced AC1 = 0.83, p < .001

• Homogeneity on:

— T2W (AC1 = 0.14, p = .13 vs. AC1 = 0.56, p < .001),

— DWI (AC1 = 0.30, p < .01 vs. AC1 = 0.83, p < .001),

— ADC (AC1 = 0.27, p < .05 vs. AC1 = 0.79, p < .001);

• Invasiveness on:

— T2W (AC1 = 0.42, p < .001 vs. AC1 = 0.75, p < .001),

— DWI (AC1 = 0.30, p < .01 vs. AC1 = 0.83, p < .001),

— ADC (AC1 = 0.27, p < .05 vs. AC1 = 0.79, p < .001);

• Abnormality detection on:

— DCE (AC1 = 0.48, p < .001 vs. AC1 = 0.80, p < .001).

Figure 3.3.2 presents the concordance analysis of each CDE evaluated on lesions

located in the PZ, TZ, and AS in comparison to the overall results. The results reveal

that evaluation of AS lesion features demonstrated lower agreement among raters in
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Figure 3.3.2: Mean interrater agreement (AC1) of composite PI-RADS CDEs in the
PZ, TZ, and AS zones and overall results. The colours correspond to the modality
sources of the features.

comparison to PZ and TZ lesions. The overall wider range of confidence intervals can

be explained partially by the smaller number of lesions (seven) evaluated in that zone.

Overall, it was observed that the shape and signal intensity features demonstrated the

lowest agreement between raters. Analysis of interrater agreement dependent on lesion

locations indicate that overall no statistically significant differences were demonstrated

in agreement between PZ (mean PA = 69.7%), TZ (mean PA = 67.3%) and AS (mean

PA = 65.5%) features. The agreement between radiologists displayed high variability.

The highest deviations in agreement between the experts were observed for features of

lesions located in the AS. This was particularly visible for highly subjective features

based on the evaluation of signal intensity, focality and texture features (homogeneity).
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Intrarater agreement of defined CDEs

Analysis of intrarater agreement indicated that most feature evaluations displayed

moderate or good agreement between the study stages [Figure 3.3.3]. The lowest

intrarater agreement was observed for the highly subjective low-level features (except

homogeneity estimation). For example, the signal intensity evaluation, in which the

repeated feature estimation on ADC images demonstrated no significant agreement

in rater estimations between the study sessions. Overall, the inexperienced raters

displayed higher consistency in their evaluations compared with the experienced radi-

ologists, except in focality assessment on DCE images.

Figure 3.3.3: Mean intrarater agreement (AC1) among the experienced (red) and
inexperienced (blue) raters and 95% confidence intervals.

Agreement of the assessment categories

Statistical analysis of the interrater agreement of the PI-RADS categories for the

same evaluated lesions between stages [Table 3.3.2] was generally fair to moderate (0.2

< AC1 < 0.6). The highest percentage agreement was observed for DCE PI-RADS
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Session 1 Session 2 Overall
PA AC1 (95% CI) PA AC1 (95% CI) PA AC1 (95% CI)

Modality Algorithm
OVERALL PI-RADS Auto. 42.1 0.29 (0.19; 0.39) 42.1 0.29 (0.19; 0.39)

PI-RADS Man. 47.1 0.35 (0.25; 0.46) 42.7 0.30 (0.19; 0.41) 44.9 0.33 (0.26; 0.40)
T2W PI-RADS Auto. 41.1 0.28 (0.17; 0.39) 41.1 0.28 (0.17; 0.39)

PI-RADS Man. 47.1 0.35 (0.26; 0.45) 43.8 0.31 (0.19; 0.43) 45.4 0.33 (0.26; 0.41)
DWI PI-RADS Auto. 53.0 0.44 (0.33; 0.54) 53.0 0.44 (0.33; 0.54)

PI-RADS Man. 50.0 0.39 (0.28; 0.50) 49.2 0.38 (0.29; 0.47) 49.6 0.39 (0.32; 0.46)
DCE PI-RADS Auto. 69.6 0.41 (0.23; 0.59) 69.6 0.41 (0.23; 0.59)

PI-RADS Man. 69.5 0.48 (0.28; 0.68) 69.8 0.42 (0.24; 0.60) 69.6 0.45 (0.31; 0.58)

Table 3.3.2: Inter-observer agreement of the PI-RADS v2.1 category assessments that
were assigned manually (PI-RADS Man.) and determined by the decision tables
(PI-RADS Auto.) (p<.001).

evaluation, but it is crucial to note that this evaluation type allows only three out-

comes: positive, negative, and unavailable (X). The overall PI-RADS scores assigned

by the experienced radiologists (mean = 4.58, standard deviation = 0.71) to the clin-

ically significant lesions were higher (Z = 147, p < .001) than those assigned by the

inexperienced radiologists (mean = 4.09; standard deviation = 1.05).

PA AC1 (95% CI) P-value
Modality Algorithm
OVERALL PI-RADS Man. 64.2 0.56 (0.48; 0.65) <.001
T2W PI-RADS Man. 66.3 0.59 (0.50; 0.67) <.001
DWI PI-RADS Man. 61.5 0.53 (0.44; 0.62) <.001
DCE PI-RADS Man. 76.0 0.55 (0.41; 0.69) <.001

Table 3.3.3: Intra-observer agreement of manual PI-RADS v2.1 assessment

Table 3.3.3 presents the intraobserver agreement of manual PI-RADS v2.1 cate-

gory assessments according to the T2W, DWI, DCE, and Overall algorithms between

the study stages. All scoring methods demonstrate similar, moderate statistically

significant (p < .001) interobserver agreement with respect to AC1 scores.

Agreement between the manually assessed PI-RADS scores and the categories esti-

mated using the PI-RADS algorithm decision table rules [Table 3.3.4] display excellent

agreement (PA > 88%, AC1 > 0.86). The agreement between the automatically as-

signed PI-RADS scores based on the manually specified composite features and man-

ually assessed categories was higher than both the intra- and interobserver agreement

for all PI-RADS algorithms.
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PA AC1 (95% CI) P-value
Modality
OVERALL PI-RADS 88.3 0.86 (0.80; 0.92) <.001
T2W PI-RADS 89.4 0.87 (0.81; 0.93) <.001
DWI PI-RADS 92.1 0.90 (0.84; 0.96) <.001
DCE PI-RADS 99.5 0.99 (0.97; 1.00) <.001

Table 3.3.4: Intra-observer agreement of manual and automatic PI-RADS v2.1 assess-
ment

Diagnostic accuracy based on category assessment

To investigate the quality of the radiologists’ diagnoses, we used the manually

assessed PI-RADS v2.1 categories as a measure of the probability of each lesion’s

clinical significance. Diagnostic accuracy was assessed by assuming the EAU guidelines

of consideration for patient active treatment, in which PI-RADS >= 3 lesions are

considered clinically significant and recommended to be histopathologically evaluated.

The AUC results suggest that despite the lower interrater agreement between the

experienced radiologists in both estimated features and PI-RADS category assessment,

their diagnoses demonstrated superior performance compared with that of the inexpe-

rienced radiologists7. This applied to lesions located in all zones [Figure 2.3.4]. The

assessments of the experienced radiologists showed higher sensitivity (recall = 0.97

vs. 0.85) and precision (0.61 vs. 0.58). Overall the diagnostic decisions demonstrated

excellent sensitivity (>0.81, mean = 0.91); the precision, however, was moderate (0.5

< precision < 0.67, mean = 0.58). Maximum observed specificity was 0.50 and lowest

0.06 (mean = 0.34). No statistically significant differences were observed between the

results of the first and second stages in terms of assessment quality.

3.3.2. Method validation in a clinical setting

Below we present the results of the prospective study. To analyse feature agreement

with respect to the lesions assessed in eighteen patients, the lesions were identified by

their sectors by the experts. The majority of lesions were located in the PZ (thirty-eight

assessments); lesions were observed three times in the TZ and once in the CZ and

AS zones. This aligns with the general tendencies for PCa of incidence frequency

7 results are presented in the second chapter in the Comparison with radiology specialists subsec-
tion of the Results section.
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concerning lesions’ zonal locations. Overall, the experts differed in the number of

lesions they located. In nine cases, the same number of findings was assessed; in five

cases, one of the experts failed to locate any lesions; in four cases, the number of

findings differed significantly.

PA AC1 (95% CI) P-value
Modality Algorithm
OVERALL PI-RADS Auto. 56.2 0.48 (0.13; 0.83) <.01

PI-RADS Man. 50.0 0.41 (0.04; 0.78) <.05
T2W PI-RADS Auto. 43.8 0.33 (-0.00; 0.67) .05

PI-RADS Man. 43.8 0.33 (-0.00; 0.67) .05
DWI PI-RADS Auto. 42.9 0.30 (-0.26; 0.85) .26

PI-RADS Man. 50.0 0.40 (-0.12; 0.91) .12
DCE PI-RADS Auto. 68.8 0.50 (0.01; 0.98) <.05

PI-RADS Man. 81.2 0.72 (0.30; 1.00) <.01

Table 3.3.5: Inter-observer agreement of PI-RADS category assessment during the
prospective study

Table 3.3.5 presents the inter-observer agreement of the PI-RADS category assess-

ments that were assigned manually and automatically using the formal model. In

terms of AC1 values, agreement ranged from fair to good; however, only the DCE and

final PI-RADS scores agreement between raters indicated statistical significance. In

only three cases did the experts agree that the images did not contain any clinically

significant lesions; in ten cases, they agreed on the lesions’ significance. The experts

disagreed in their assessments in five cases; in one case, one of them located PCa, while

the other did not locate any clinically significant lesions.

PA AC1 (95% CI) P-value
Modality
OVERALL PI-RADS 84.2 0.82 (0.67; 0.98) <.001
T2W PI-RADS 97.5 0.97 (0.88; 1.00) <.001
DWI PI-RADS 90.0 0.89 (0.63; 1.00) <.001
DCE PI-RADS 93.0 0.92 (0.82; 1.00) <.001

Table 3.3.6: Intra-observer agreement of manual and automatic PI-RADS category
assessment during the prospective study

The evaluation of the PI-RADS algorithm was performed by analysing the inter-

rater agreement between the assigned assessment categories. Table 3.3.6 presents the
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levels of agreement between the automatically determined assessment based on defined

features and the manual assessment performed by the radiologists. As with the ret-

rospective study, excellent agreement was observed (AC1 > 0.80, p < .001) between

the results of the automatic assessment algorithms and the expert assessments. The

highest agreement occurred in the assessment of PI-RADS categories based on the

T2W images (PA = 97.5%) and the lowest (PA = 84.2%) in the determination of the

final PI-RADS category for a given lesion.

PA AC1 (95% CI) P-value
Modality Feature

Lesion >= 1.5cm 75.0 0.50 (0.02; 0.98) <.05
Zone (selected) 100.0 1.00 (0.67; 1.00) <.001

T2W Focality 50.0 0.04 (-0.52; 0.61) .88
Homogeneity 50.0 0.08 (-0.48; 0.63) .77
Invasiveness 86.7 0.84 (0.48; 1.00) <.001
Margin cat. 78.6 0.74 (0.32; 1.00) <.01
Shape cat. 28.6 -0.01 (-0.40; 0.38) .95
Signal int. 46.7 0.20 (-0.21; 0.62) .32
Signal int. type 100.0

DWI Focality 60.0 0.28 (-0.29; 0.85) .32
Homogeneity 53.3 0.14 (-0.46; 0.74) .64
Invasiveness 80.0 0.77 (0.40; 1.00) <.001
Shape cat. 33.3 0.04 (-0.36; 0.44) .84
Signal int. 46.7 0.25 (-0.16; 0.66) .22
Signal int. type 93.3 0.92 (0.58; 1.00) <.001

ADC Focality 66.7 0.43 (-0.11; 0.96) .11
Homogeneity 53.3 0.09 (-0.47; 0.65) .74
Invasiveness 86.7 0.84 (0.48; 1.00) <.001
Shape cat. 33.3 0.04 (-0.35; 0.43) .84
Signal int. 60.0 0.46 (0.07; 0.85) <.05
Signal int. type 100.0

DCE Enhancement 84.6 0.83 (0.42; 1.00) <.001

Table 3.3.7: Inter-observer agreement of PI-RADS CDEs during the prospective study

Analysis of interobserver agreement of the estimated values of PI-RADS CDEs

demonstrates excellent agreement for the evaluation of the enhancement on DCE im-

ages, invasiveness, and signal intensity type [Table 3.3.7]. The lowest agreement was

observed for the shape category and signal intensity assessment on the ADC, DWI,

and T2W images. Due to the limited size of the dataset, only a handful of features

that displayed high percentage agreement can be considered statistically significant
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according to the analysis of AC1 values. The high-level features that are critical in the

estimation of prostate lesions’ clinical significance demonstrated highly statistically

significant agreement: maximum lesion dimension (AC1 = 0.50, p < .05); estimation

of invasiveness on T2W (AC1 = 0.84, p < .001), DWI (AC1 = 0.77, p < .001), ADC

(AC1 = 0.84, p < .001).

3.3.3. Usability tests and conducted interviews

The median time required to assess a single lesion according to the measured

interaction time with the tool during the retrospective study was nine minutes and

fifteen seconds; this, however is incomparable with clinical practice, as, due to the

design of the study, only single-lesion prostate mpMRIs were evaluated, which is not

typical for PCa assessment.

Analysis of the comments entered in the text fields in the cases of disagreement

between raters and the suggestions that resulted from the integrated decision tables

allowed us to investigate the reasons behind some of the disagreements between the

automatic and the manual PI-RADS assessments. We have interviewed radiologists

involved in both studies and established following reasons for the disagreements:

• manual assessment of PI-RADS category in cases in which the dedicated algo-

rithm was inapplicable (lesions located in the CZ in the prospective study)

• manual assessment of PI-RADS 5 category in cases in which a lesion’s maximum

dimension extended fifteen millimetres, but estimated features did not qualify

the lesion to a higher PI-RADS category according to the official guidelines and

defined formal model

• manual assessment of lower categories in cases in which a lesion’s maximum

dimension did not extend fifteen millimetre, but demonstrated invasive behaviour

and qualified for a PI-RADS 5 category according to the official guidelines and

defined formal model

• errors made by radiologists during completion of the forms (for example, mark-

ing a lesion as hypointense on DWI instead of hyperintense), which resulted in

inapplicable rules

• deliberate disagreement with the PI-RADS guidelines and modification of sug-

gested final assessment
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• ‘intuition’ was also stated as reason of disagreement with automatic assessments

The conclusions we drew from the interviews during the retrospective and prospec-

tive studies have resulted in several improvements in the design of the proposed

CAD/DS form. Changes concerning users’ interaction with the tool involved improve-

ments in form layout, limitations of unnecessary fields, improvements in navigation

between form sections, and simplification of assessment (for example, hiding unre-

lated controls, introducing ‘YES’/‘NO’ questions instead of CDE value selection, and

automatic categorisation of features). We have also removed the redundant signal

characteristic control that corresponds to the signal intensity type, as hypointensity is

typical for abnormalities on T2W and ADC, while DWI lesions are hyperintense; this

was confirmed by analysis of interrater variability demonstrating almost full agreement

in the estimation of signal intensity type.
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3.4. Discussion

Our research demonstrates that it is possible to curate annotated datasets through

the standardised-structured reporting methods used during diagnostic practice. Inter-

faces prepared using diagnostic lexicons and the collective knowledge of experienced

radiologists enables high-resolution assessment, and the capturing of the intermediate

variables that compose final radiological evaluations. By analysing those characteris-

tics, the quality of radiology assessments can be investigated more deeply, enabling

the introduction of data-driven improvements to the diagnostic protocols and defined

terminology in the radiology lexicons.

Radiologists differ in their assessment of lesions’ qualities, number, and the prob-

ability of their clinical significance. Our research has shown that inexperienced radi-

ologists tend to underestimate the PI-RADS assessment scores of clinically significant

lesions compared with experienced radiologists. This has been also noticed in the

work by Mussi et al [131], which indicates that moderately experienced raters were

more likely than highly experienced ones to score lesions inconclusively as PI-RADS 3

category than indicating their clinical significance (PI-RADS 4 and 5). These findings

suggest that studies on the consistency of PI-RADS evaluation are important, as po-

tential differences in diagnosis contribute to lower recall rates and, thus, the possibility

of failing to identify clinically significant lesions. Introducing dedicated computational

indicators that estimate the confidence in cases of inconclusive assessment could im-

prove diagnostic accuracy.

Results show that high-level features that require expert knowledge and subjective

interpretation demonstrate decreased agreement between raters. During the inter-

views, the radiologists established that disagreement existed in their interpretations

of the ‘invasiveness’ feature: for some, that feature indicates an extraprostatic ex-

tension behaviour; for others, that definition also incorporates lesions that extended

to the surrounding zones/sectors. According to the PI-RADS standard, the latter

interpretation is correct when considering the assessment rules. High concordance

was observed for other high-level features, including part of the DCE algorithm and

evaluation of the ‘BPH features’, which indicate that the gland presents features of

benign prostate hyperplasia. Overall, the experienced radiologists demonstrated less

agreement than the inexperienced ones did. This was particularly evident in their
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evaluations of invasiveness and homogeneity at all stages and focality at the second

stage. This contradicts other findings, in which the less experienced raters displayed

inferior agreement when evaluating the MRI features [131].

Due to the subjective nature of mpMRI assessment, interrater agreement varies

for particular features. No ‘gold standard’ can be defined by the estimations of a

particular radiologist. To construct a reference dataset and assure high-quality anno-

tations, a committee of experienced diagnosticians would have to be involved in rating

a substantial dataset of prostate mpMRI. Such data could be then used to enhance

the formal model using radiomics to provide objective measures and confidence levels

for the features. Setting a gold standard with the help of an expert panel was beyond

our organisational and financial capacity. However, in 2021 we received funding for

a project in which such verification will be reliably carried out during a multi-centre

study8.

Analysis of interrater agreement performed on the results of the retrospective study

reveals that although both the experienced and inexperienced raters differed in their

assessments of the PI-RADS categories for the preselected lesions, their evaluations

demonstrated high recall scores. Results indicate that the method shows low specificity,

meaning that mpMRI diagnosis using the PI-RADS standard can lead to many unnec-

essary biopsies. Significant differences in the predictive value of the experienced and

inexperienced radiologists’ diagnoses can be explained by the low agreement between

specialists in assessing the high-level features that indicate a lesion’s clinical signifi-

cance, such as invasiveness. Correctly evaluating those traits requires experience in

PCa diagnosis.

The excellent agreement between the manual assessments and those resulting from

the decision tables support the thesis that the terms of the radiological lexicons can

be used to automate the mechanics of estimating the assessment of prostate lesions

according to the PI-RADS guidelines. This was verified during the controlled study

and in clinical settings. Overall, no cases have been identified in which improper rules,

contradictory to the PI-RADS guidelines, were matched by the decision tables based

on the features assessed. In all cases of differing manual and automatic assessments,

in both the retrospective and prospective studies, the disagreements were caused by

8 details of this project are presented in the Future Work section of the General Discussion
chapter
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differences in interpretation of the diagnostic standards for specific cases and deviation

(deliberate or unintentional) from the official PI-RADS guidelines.

One limitation of the prospective study is that in many dimensions, the agreement

of responses cannot be considered as statistically significant due to the low number

of cases analysed and raters engaged. For assessment of the agreement of most of the

individual features that comprise final diagnoses, the power of the AC1 test was insuf-

ficient for the results to be evaluated as meaningful. Moreover, the experts-engaged in

the prospective study worked at the same department, which potentially introduced

interpretation bias; this, however, was not the case in the controlled study, in which

the radiologists did not have a history of cooperation. Confirming the effects observed

in the clinical setting would require a study involving multiple radiologists on a larger

number of cases.

Another limitation resulted from the design of the retrospective study, which in-

volved two sessions of lesion assessment using the structured reporting tool. To as-

sess the overall usefulness of the tool and not merely the added value of automated

PI-RADS assessment using integrated decision support, an additional, initial session

should occur that involves lesion assessment without any method of computer aid. Due

to the limited resources that confined our research to only two sessions, we decided

to conduct the first study stage using the structured reporting form that gathered

the assessment of CDEs: intermediate variables of mpMRI assessment that used the

PI-RADS standard. That allowed us to estimate interrater variability and consistency

in assessment using the tool; as a result, however, we were unable to compare the

diagnostic accuracy to that resulting from usual diagnostic practice.

We collected opinions of the diagnosticians participating in the test, who pointed

to a number of usability advantages, including: verification of inference through sug-

gestions for compliance with diagnostic guidelines, simplicity of report creation (min-

imising the use of the keyboard in favour of the mouse when completing the form),

and clarity and uniformity of the resulting textual reports. Radiologists confirmed the

potential of the tool in increasing the availability and reliability of diagnostic standards

in clinical practice. The tool allowed radiologists to verify entered parameters in case

of discrepancies between manual and suggested assessments. Both experienced and

inexperienced professionals noted the potential of the tool in supporting compliance
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with diagnostic standards for radiologists in training. Experienced radiologists pointed

out that the greatest benefit would provide a solution that reduces the time needed to

assess the examination (primarily the time needed to prepare the examination report

after visual assessment of the imaging). Additionally, they pointed out the subjectivity

of radiological assessment in estimating individual parameters and indicated the po-

tential for introducing objective measures that could assist them in estimating imaging

features.
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3.5. Conclusions

Structured reporting remains a developing field of research. It enables improve-

ments to the workflows in diagnostics based on medical imaging by reducing ambigui-

ties in the communication of clinical findings to patients and specialists.

We have demonstrated that it is possible to develop structured reporting systems

of radiological assessment in PCa diagnosis that integrate with formal descriptions.

The domain knowledge contained within diagnostic standards can be integrated with

the concept of standardised radiology through the decomposition of guidelines to rules

based on well-defined terminology. The use of decision tables based on the features

specified by radiologists allows the current standards to be integrated into clinicians’

workflows. The diagnostic tool that resulted from the methodology has been verified

in a clinical setting and during a controlled study.

Knowledge representation of diagnostic guidelines based on the decision tables ap-

plied in structured reporting systems enables constant curation of high-quality datasets.

Collecting the data during medical assessments makes the data more accessible for

drawing conclusions and further improving the diagnostics without retrospective cura-

tion and data annotation. Moreover, it facilitates the introduction of iterative improve-

ments to clinical workflows and improves diagnostic standards based on the insights

gathered. This constitutes a feedback loop in which applied domain knowledge enables

the collection of datasets that allow further improvements in diagnostic standards.

Our research has demonstrated the need for further work to clarify the concepts

and features considered in PI-RADS assessment.
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Chapter 4

General Discussion

The contributions of our work must be considered in the context of patient manage-

ment guidelines, in which noninvasive diagnostics play a major role in patient referral

to active surveillance, watchful waiting, and active treatment. Expanding radiolo-

gists’ cognition through enhanced domain knowledge solutions carries the potential to

improve diagnostic decisions; this, in turn, improves patients’ quality of life by avoid-

ing unnecessary biopsies and improves active treatment outcomes by early pathology

detection and correct identification.

We have demonstrated that domain knowledge can be efficiently applied to con-

struct and improve the machine learning models of PCa diagnosis. Our research on

radiomics shows that the feature domain can be designed based on the CDEs that

derive from diagnostic standards. Those can be used to identify significant image

descriptors that can be used in machine learning models. Radiomics can be used in

tandem with mpMRI assessment based on the PI-RADS v2.1 standard and enhance ra-

diologists’ cognitive processes by providing concrete objective measures of the features

analysed. The results of our work on this subject were presented at two international

conferences in 2017 [91], [92]. Our work has contributed towards the machine learning

solutions and radiomics used in PCa assessment1[134]–[137].

Based on the domain knowledge and the set of defined CDEs, we can identify

areas that are not covered by feature extraction and might constitute limitations to

our method. We have demonstrated that automated solutions of PCa lesion assessment

based on intensity and texture features are unable to match the diagnostic performance

1 Resulting articles were published in conference proceedings and achieved a total of fifteen
citations according to Google Scholar as of 10.03.2022.



of experienced radiology specialists. In PCa diagnostics, evaluation of lesions’ shape

and invasiveness are considered key features.

In addition to being employed in the identification of methods’ weaknesses, domain

knowledge can also be integrated into deep learning solutions. We have shown that

the PI-RADS algorithm can be represented using subnetworks integrated with routing

on multimodal CNNs, and tailored fitness functions that favour specific modalities,

which are more efficient in the diagnosis of lesions, depending on their locations. Our

results show that this intervention resulted in an improved convergence rate in the

model—a significant benefit. The results of our work have been published in the

PeerJ journal (IF=2.984) [96]. The contributions of our work have been recognised

as key in improving the methods of CAD: our published article was among the top

five most-viewed ‘Radiology and Medical Imaging’ and ‘Urology’ papers published in

PeerJ Journal in 2021, reaching 1,057 views and over 250 downloads. This indicates

that deep learning methods are gaining more attention in terms of their applications

in the automatic diagnosis of PCa. This is indicative of the importance of our study’s

subject matter in the expansion of diagnostic protocols, in which deep learning can

provide crucial new indicators in the assessment of lesions’ clinical significance.

Computational methods show great promise in aiding PCa diagnosis. A review of

AI methods applied in the field illustrates the dominance of CNN models in their di-

agnostic accuracy in lesions’ clinical significance assessment. This can be explained by

the method’s ability to construct tailored image descriptors and extract high-level fea-

tures. Using deep learning signatures alone, or those integrated with classical radiomics

signatures can unlock a new method of lesion characterisation. Computer-assisted

reporting systems can be enhanced with objective measures of confidence estimated

that utilise computational methods as ‘second observers’, aiding radiologists in cases

of doubt or inconclusiveness, and, therefore, supporting specialists’ clinical decisions.

Integration of tailored descriptors within diagnostic processes can improve consistency

among radiologists in the evaluation of certain imaging features.

Multiple ideas and solutions exist that have the potential to improve the work of

radiologists by making the domain knowledge better defined, accessible, and applica-

ble during diagnostics workflows. These include structured reporting tools, radiology

lexicons, CDEs, and assessment and reporting standards; the integration of these
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solutions, however, is lacking. RADS assessment methodologies require continuous

improvements that translate into clinical decisions. Diagnostic standards in many

cases are not defined based on CDEs, which means that it is impossible to correlate

them with other radiology lexicons and create interoperable databases. Moreover, this

hinders research on the standards themselves and the features defined in diagnostic

decision rules.

In this work, we have demonstrated that it is possible to express RADS rules in

terms of CDEs—for example, the PI-RADS diagnostics standard. The data generated

through the interaction of radiologists with structured reporting systems facilitates

research by constructing annotated datasets that can be utilised to investigate as-

sessment qualities and introduce improvements in diagnostic protocols. Based on the

retrospective and prospective studies, which involved multiple inexperienced and expe-

rienced radiologists, we have proved that it is possible to formalise diagnostic standards

using DMN decision tables. Such tables can easily be updated and integrated within

CAR/DS systems to assist radiologists in diagnosis by ensuring assessments’ validity

and completeness through adherence to diagnostic guidelines.

Basing the computer-assisted structure reporting on CDEs is a form that, through

the application, results in possible in-depth analysis of the problem domain by the

curation of high-quality annotated datasets. We have demonstrated that data col-

lected through interaction with our system during PCa assessment can be used to

analyse the characteristics of features that comprise the PI-RADS guidelines. It is

possible to identify the descriptors that characterise poor intra- and interrater agree-

ment; these could potentially benefit from redefinition in radiological lexicons or from

the integration of automatically quantified image features. The domain knowledge

identified and applied to developing the solutions can be continuously extended by

the data-driven conclusions. Overall, we have collaborated on this subject with twelve

radiologists—six of whom are experts in the field with over ten years’ experience. The

interviews we conducted with specialists who had interacted with the CAR/DS system

allowed us to improve the solution’s usability and confirmed its promise in improving

work ergonomics and, by further integration with computational methods, in providing

an interface for CAD through structured reporting.

Structured reporting continues to advance radiology. In the future, radiology re-
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ports will become more structured, standardised, and patient-specific. The data from

structured reports can be analysed to support clinical decisions and enhance patient

management through data mining and knowledge discovery. We have demonstrated

how domain knowledge may be used to improve the computerised methods of PCa

diagnosis and how the solutions can be integrated into diagnostic procedures. More-

over, the experience from radiologists’ practice can be used to extend the domain of

descriptors, or CDEs—potentially expanding the definitions of diagnostic guidelines.

4.1. Future work

The integration of AI algorithms with the CAR/DS systems can enhance radi-

ologists’ work by strengthening the processes of recognition and interpretation of

changes with image analysis results that are based on explainable and reliable ma-

chine learning methods. This leads directly to the realisation of AI-enhanced radiol-

ogy. Enhancement of clinical pathways that use computational methods integrated

with computer-assisted reporting opens new prospects for personalised medicine by

possible integration of clinical pictures resulting from risk factors—as well as clinical,

radiomics, genetic, and histopathology data at the stage of medical imaging. Our

work in this field contributes to this area of research, which remains open to new

solutions—particularly in the case of the evolving RADS guidelines in multiple fields

of noninvasive diagnostics.

Reporting processes can integrate formalised models and computational methods

to improve diagnosis processes and enable the integration of vast amounts of data

to personalise clinicians’ approach to diagnostics. This approach can expand beyond

radiology, extending its support to clinicians to improve the diagnostic and patient

management processes, and, as a result, provide more personalised final clinical de-

cisions. The eRADS system could be expanded into a clinical workflow tool that

integrates pathways represented as BPMN diagrams with integrated DMN decision

tables that reflect formalised domain knowledge. This advances the formalisation of

diagnostic guidelines presented in this thesis into the much broader concept of complete

clinical pathway standardisation.

AI systems are often implemented as ‘black boxes’ in which the steps taken to
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reach output are uninterpretable by humans. This incurs ethical and legal impli-

cations that impede such systems’ use in medical applications and leaves radiologists

distrustful towards the technology [66]. The implementation of deep learning solutions

that can provide readable interpretations of predictions remains a problematic area of

active research. Researchers are attempting to prove that deep learning models are

capable of making decisions that match or surpass human performance, and provide

understandable justifications for their decisions [62]. The CAR/DS concept can be

enhanced using machine learning methods, as modern structured reporting demands

AI as an integrated element. Basing computational methods on domain knowledge

and high-quality reference datasets enables the creation of explainable and reliable

decision-support systems that can be back-integrated with structured reporting tools.

Structured reporting can be further enhanced by the integration of feedback from

models that are already trained. Such models could be used to automatically com-

plete structured reporting forms and facilitate the process of reporting, which presents

radiologists with pre-prepared assessments of imaging. This would decrease the time

necessary for experts to produce narrative reports and would alter radiologists’ role

in the diagnostic process to that of reviewing experts who investigate the diagnosis of

independent observers (AI models).

Low interrater agreement in the assessment of mpMRI features negatively affects

the quality of the annotations that are assigned to medical examinations. The cre-

ation of high-quality reference datasets that could be used for research and the further

development of the computational method is crucial to achieving advancements in

AI-enhanced CAR/DS systems. This would require the conductance of a multicentre

retrospective study involving multiple experienced radiologists who evaluate repre-

sentative datasets of prostate imaging. A ‘gold standard’ could then be established

by estimating the confidence levels for variables based on expert estimations. The

assessments of multiple experienced radiologists are crucial in capturing the intuitions

involved in estimating the values of the defined CDEs—for example, the meaning of

moderate signal intensity on T2W images: establishing the requirements to classify

signal intensity as moderate would require multiple ratings of varying imaging char-

acteristics. This expands to other features— particularly those with high interrater

variability.
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We propose a particular methodology of integrating the AI models with CAR/DS

systems. The reference datasets that utilise the data captured during reporting can

be used to feed the AI models; these, in turn, can be used to predict the interme-

diate variables determined during preparation of reports. Automatic estimation of

the attributes that compose final structured reports allows radiologists to investigate

and understand the decisions made by the computational methods; this constitutes

a way of introducing explainable AI into diagnostic workflows. These models can

improve diagnostic accuracy, locate lesions, and act as a ’second opinion’, which en-

ables faster and more accurate identification and reporting of suspicious or positive

cases. This form of support and decision-making assistance is an important aid in the

context of human fatigue, distraction, and concentration problems that often result

from overwork (which is common among radiologists due to staff shortages). Basing

AI solutions on domain knowledge enables the development of explainable and reliable

support systems.

We have received funding for further research on AI-enhanced CAR/DS for PCa

assessment2. A major part of the project funding is designated for the development

of a high-quality reference dataset comprising hundreds of annotated mpMRI images

by multiple radiologists. The dataset will be used to develop computational models

that are able to pre-fill report forms based on the estimated CDEs from imaging data.

The project will result in a state-of-the-art e-learning platform for learning structural

reporting of prostate mpMRI studies.

2 The project, AI-augmented radiology - detection, reporting and clinical decision making in
prostate cancer diagnosis has been funded by the National Centre for Research and Development with
7,347,082.50 PLN as part of the INFOSTRATEG I programme (INFOSTRATEG-I/0036/2021-00).
The project’s realisation is planned from 2022 to 2025 at the National Information Processing Institute
in Warsaw, Poland. The imaging database and medical subtasks will be implemented in collaboration
with the Lower Silesian Oncology Center in Wroclaw, Poland.



Chapter 5

Conclusions

This thesis verifies a research hypothesis concerning the diagnosis of clinically sig-

nificant PCa. The standardisation of radiological reporting—alongside the elaboration

of the PI-RADS reporting standards and the development of CAD methods for PCa

detection on mpMRI—remains an active area of research worldwide.

We have demonstrated that it is possible to improve diagnostic procedures by

formalising domain knowledge in the CAR/DS system. We have elaborated and tech-

nically validated the reporting model on retrospective data and validated its usability

in clinically realistic settings during the prospective study. To create the standardised

structured reporting method, we utilised common lexicons, reporting templates, and

clinical decision-support algorithms. By integrating well-defined, standardised termi-

nology into imaging assessment, the quality and reliability of diagnostic procedures

could be investigated.

Our experiments have demonstrated the usefulness of the computational methods

and models in supporting the diagnosis process. The domain knowledge can be used

to effectively construct and improve tools that support PCa diagnosis. Our results

prove that diagnostic guidelines can be integrated into CNN models to facilitate the

convergence rate. The research methodology, which is based on the integration of

domain knowledge into methods of structured reporting and computational methods,

is universal and can easily be adapted to the needs of the radiological reporting and

diagnostics of other types of cancer.

The results have further development potential and can contribute significantly

to structured reporting methods and the application of machine learning in radiol-

ogy. Multicentre reference datasets must be curated with a significant number of



CDE-based data annotations to implement AI-enhanced CAR/DS systems. Such

methods have the potential to increase the availability of AI-based clinical guidance

in radiological reporting, improve communication between radiologists and referring

physicians, and lead to practical, reliable, and ethical applications of AI in medicine.
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Appendix

A1. Decision tables definitions

A1.1. DWI PI-RADS variables and rules

Variable Label Related Radlex Terms Possible Values
Input Variables
lesion_dim_max Max dim (mm) Diameter [RID13432] <5, >=5, >=15
lesion_location Zone Zone of prostate [RID38890] PZ, TZ, NOT_AVAILABLE
adc_present_and_adequate ADC present and adequate Adequate [RID39308] YES, NO
dwi_present_and_adequate DWI present and adequate Adequate [RID39308] YES, NO
adc_abnormality ADC lesion present Lesion [RID38780] YES, NO
adc_invasive ADC Invasive Invasive [RID5680] YES, NO
adc_signal_intensity_type ADC Signal Intensity Type Signal characteristic [RID6049] HYPOINTENSITIVITY, ISOINTENSITIVITY, HYPERINTENSITIVITY
adc_signal_intensity ADC Signal Intensity Scale Signal characteristic [RID6049] MILD, MODERATE, MARKEDLY
adc_focality ADC Focality Focal [RID5702] YES, NO
adc_shape ADC Shape Morphologic descriptor [RID5863] LINEAR, WEDGE, LENTICULAR, WATER-DROP
adc_shape_category ADC Shape category Morphologic descriptor [RID5863] LINEAR, ROUND, IRREGULAR
dwi_abnormality DWI lesion present Lesion [RID38780] YES, NO
dwi_invasive DWI Invasive Invasive [RID5680] YES, NO
dwi_signal_intensity_type DWI Signal Intensity Type Signal characteristic [RID6049] HYPOINTENSITIVITY, ISOINTENSITIVITY, HYPERINTENSITIVITY
dwi_signal_intensity DWI Signal Intensity Scale Signal characteristic [RID6049] MILD, MODERATE, MARKEDLY
dwi_focality DWI Focality Focal [RID5702] YES, NO
dwi_shape DWI Shape Morphologic descriptor [RID5863] LINEAR, WEDGE, LENTICULAR, WATER-DROP
dwi_shape_category DWI Shape category Morphologic descriptor [RID5863] LINEAR, ROUND, IRREGULAR

Output Variables
dwi_pirads PI-RADS Evaluation PI-RADS DWI Lesion Assessment Category [RID50313] 1, 2, 3, 4, 5, X
dwi_pirads_description PI-RADS Rule Descripton - <string>

Input and output variables of decision table representing the PI-RADS DWI-ADC
assessment algorithm

PI-RADS Description
X [#1] PI-RADS evaluation not avaible for the selected zone
1 [#2] No lesions
5 [#3] ADC: Invasive; DWI: Invasive; Max dim. >=5 mm
5 [#4] ADC: Invasive; DWI: Non-invasive; Max dim. >=5 mm
5 [#5] ADC: Non-invasive; DWI: Invasive; Max dim. >=5 mm
5 [#6] ADC: Focal, Markedly, Hypointense, Non-invasive; DWI: Focal, Markedly, Hyperintense, Non-invasive; Max dim. >=15 mm
4 [#7] ADC: Focal, Markedly, Hypointense, Non-invasive; DWI: Focal, Markedly, Hyperintense, Non-invasive; Max dim. [5, 15) mm
3 [#8] ADC: Focal, Mild/Moderate/Markedly, Hypointense, Non-invasive; DWI: Focal, Mild/Moderate, Hyperintense, Non-invasive; Max dim. >=5 mm
3 [#9] ADC: Focal, Mild/Moderate, Hypointense, Non-invasive; DWI: Focal, Mild/Moderate/Markedly, Hyperintense, Non-invasive; Max dim. >=5 mm
3 [#10] ADC: Focal, Mild/Moderate/Markedly, Hypointense, Non-invasive; Max dim. >=5 mm
3 [#11] DWI: Focal, Mild/Moderate/Markedly, Hypointense, Non-invasive; Max dim. >=5 mm
2 [#12] ADC: Non-focal, Linear/Wedge shaped, Hypointense, Non-invasive; DWI: Non-focal, Linear/Wedge shaped, Hyperintense, Non-invasive; Max dim. >=5 mm
2 [#13] ADC: Non-focal, Linear/Wedge shaped, Hypointense, Non-invasive; Max dim. >=5 mm
2 [#14] DWI: Non-focal, Linear/Wedge shaped, Hyperintense, Non-invasive; Max dim. >=5 mm
X [#15] The lesion can not be evaluated (no PI-RADS algorithm).
X [#16] PI-RADS evaluation not avaible: at least one of the ADC / DWI images is unavailable
X [#17] PI-RADS evaluation not avaible: at least one of the ADC / DWI images is unavailable
X [#18] Unclassified case

Decomposed rules of the PI-RADS DWI-ADC assessment algorithm
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A1.2. DCE PI-RADS decision table

Variable Description Related Radlex Term Possible Values
Input Variables
lesion_location Zone Zone of prostate [RID38890] PZ, TZ, NOT_AVAILABLE
dce_present_and_adequate Is DCE present and adequate? Adequate [RID39308] YES, NO
dce_abnormality Does an abnormality appear on the DCE image? Lesion [RID38780] YES, NO
dce_enhancement Enhancement Pattern Enhancement pattern [RID6058] POSITIVE_DCE, NEGATIVE_DCE
dce_corresponds_to Corresponds to finding MR tissue contrast attribute (Mr procedure attribute) [ RID10791] T2, DWI, NOT_AVAILABLE
dce_bph_features BPH features on T2 Benign prostatic hyperplasia [RID3784] YES, NO

Output Variables Output Variables
dce_pirads PI-RADS Evaluation PI-RADS DCE Lesion Assessment Category [RID50319] 1, 2, 3, 4, 5, X
dce_pirads_description PI-RADS Rule Descripton - <string>

Input and output variables of decision table representing the PI-RADS DCE assess-
ment algorithm

Location Adequate Abnormality Enhancement Corresponds to BPH Features DCE PI-RADS Description
PZ,TZ YES YES POSITIVE_DCE T2 DWI,DWI T2 NO POSITIVE [#1] Positive Enhancement, Corresponds to finding T2 and DWI, no BPH on T2
PZ,TZ YES YES POSITIVE_DCE T2 NO POSITIVE [#2] Positive Enhancement, Corresponds to finding T2, no BPH on T2
PZ,TZ YES YES POSITIVE_DCE DWI NO POSITIVE [#3] Positive Enhancement, Corresponds to finding DWI, no BPH on T2
PZ,TZ YES YES NEGATIVE [#4] Negative Enhancement
PZ,TZ YES NO NEGATIVE [#5] Negative Enhancement
PZ,TZ NO X [#6] DCE image is unavailable
NOT_AVAILABLE X [#7] PI-RADS evaluation not avaible for the selected zone

X [#8] Unclassified case

Decision table representing the PI-RADS DCE assessment algorithm
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A1.3. OVERALL PI-RADS decision table

Variable Label Related Radlex Terms Possible Values
Input Variables
lesion_location Zone Zone of prostate [RID38890] PZ, TZ, NOT_AVAILABLE
t2w_pirads_score T2W score PI-RADS T2W Lesion Assessment Category: PZ [RID50301], TZ [RID50307] 1, 2, 3, 4, 5, X
dwi_pirads_score DWI / ADC score PI-RADS DWI Lesion Assessment Category [RID50313] 1, 2, 3, 4, 5, X
dce_pirads_score DCE score PI-RADS DCE Lesion Assessment Category [RID50319] POSITIVE, NEGATIVE, X

Output Variables
pirads PI-RADS Evaluation PI-RADS Overall Assessment Category [RID50294] 1, 2, 3, 4, 5, X
pirads_description PI-RADS Rule Description - <string>

Input and output variables of decision table representing the PI-RADS Overall assess-
ment algorithm

Location T2W PI-RADS DWI PI-RADS DCE PI-RADS PI-RADS Description
PZ 1,2,3,4,5 1 POSITIVE,NEGATIVE 1 [#1] PZ; DWI/ADC = 1; T2W = Any; DCE = Any
PZ 1,2,3,4,5 2 POSITIVE,NEGATIVE 2 [#2] PZ; DWI/ADC = 2; T2W = Any; DCE = Any
PZ 1,2,3,4,5 3 NEGATIVE 3 [#3] PZ; DWI/ADC = 3; T2W = Any; DCE -
PZ 1,2,3,4,5 3 POSITIVE 4 [#4] PZ; DWI/ADC = 3; T2W = Any; DCE +
PZ 1,2,3,4,5 4 POSITIVE,NEGATIVE 4 [#5] PZ; DWI/ADC = 4; T2W = Any; DCE = Any
PZ 1,2,3,4,5 5 POSITIVE,NEGATIVE 5 [#6] PZ; DWI/ADC = 5; T2W = Any; DCE = Any
TZ 1 1,2,3,4,5 POSITIVE,NEGATIVE 1 [#7] TZ; DWI/ADC = Any; T2W = 1; DCE = Any
TZ 2 1,2,3 POSITIVE,NEGATIVE 2 [#8] TZ; DWI/ADC = 1-3; T2W = 2; DCE = Any
TZ 2 4,5 POSITIVE,NEGATIVE 3 [#9] TZ; DWI/ADC = 4-5; T2W = 2; DCE = Any
TZ 3 1,2,3,4 POSITIVE,NEGATIVE 3 [#10] TZ; DWI/ADC = 1-4; T2W = 3; DCE = Any
TZ 3 5 POSITIVE,NEGATIVE 4 [#11] TZ; DWI/ADC = 5; T2W = 3; DCE = Any
TZ 4 1,2,3,4,5 POSITIVE,NEGATIVE 4 [#12] TZ; DWI/ADC = Any; T2W= 4; DCE = Any
TZ 5 1,2,3,4,5 POSITIVE,NEGATIVE 5 [#13] TZ; DWI/ADC = Any; T2W= 5; DCE = Any
PZ,TZ 1 X POSITIVE,NEGATIVE 1 [#14] PZ/TZ; DWI/ADC = X; T2W = 1; DCE = Any
PZ,TZ 2 X POSITIVE,NEGATIVE 2 [#15] PZ/TZ; DWI/ADC = X; T2W = 2; DCE = Any
PZ,TZ 3 X NEGATIVE 3 [#16] PZ/TZ; DWI/ADC = X; T2W = 3; DCE -
PZ,TZ 3 X POSITIVE 4 [#17] PZ/TZ; DWI/ADC = X; T2W = 3; DCE +
PZ,TZ 4 X POSITIVE,NEGATIVE 4 [#18] PZ/TZ; DWI/ADC = X; T2W = 4; DCE = Any
PZ,TZ 5 X POSITIVE,NEGATIVE 5 [#19] PZ/TZ; DWI/ADC = X; T2W = 5; DCE = Any
PZ 1,2,3,4,5 1 X 1 [#20] PZ; DWI/ADC=1; T2W = Any; DCE = X
PZ 1,2,3,4,5 2 X 2 [#21] PZ; DWI/ADC=2; T2W = Any; DCE = X
PZ 1,2,3,4,5 3 X 3 [#22] PZ; DWI/ADC=3; T2W = Any; DCE = X
PZ 1,2,3,4,5 4 X 4 [#23] PZ; DWI/ADC=4; T2W = Any; DCE = X
PZ 1,2,3,4,5 5 X 5 [#24] PZ; DWI/ADC=5; T2W = Any; DCE = X
TZ 1 1,2,3,4,5 X 1 [#25] TZ; DWI/ADC = Any; T2W = 1; DCE = X
TZ 2 1,2,3 X 2 [#26] TZ; DWI/ADC = 1-3; T2W = 2; DCE = X
TZ 2 4,5 X 3 [#27] TZ; DWI/ADC = 4-5; T2W = 2; DCE = X
TZ 3 1,2,3,4 X 3 [#28] TZ; DWI/ADC = 1-4; T2W = 3; DCE = X
TZ 3 5 X 4 [#29] TZ; DWI/ADC = 5; T2W = 3; DCE = X
TZ 4 1,2,3,4,5 X 4 [#30] TZ; DWI/ADC = Any; T2W = 4; DCE = X
TZ 5 1,2,3,4,5 X 5 [#31] TZ; DWI/ADC = Any; T2W = 5; DCE = X
PZ,TZ 1,2,3,4,5 X X X [#32] PZ/TZ; DWI/ADC = X; T2W = Any; DCE = X.
PZ,TZ X 1,2,3,4,5,X POSITIVE,NEGATIVE,X X [#33] PZ/TZ; T2W = X. No PI-RADS algorithm
NOT_AVAILABLE 1,2,3,4,5,X 1,2,3,4,5,X POSITIVE,NEGATIVE,X X [#34] PI-RADS evaluation not avaible for the selected zone

X [#35] Unclassified case

Decision table representing the PI-RADS Overall assessment algorithm
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A2. CAR/DS form screenshots

A2.1. Sectoral location subsection

Part of PI-RADS CAR/DS form for specifying lesion location. Multiple sectors can
be selected.
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A2.2. ADC subsection

Part of PI-RADS CAR/DS form for assessment of lesion features in ADC images.
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A2.3. DWI subsection

Part of PI-RADS CAR/DS form for assessment of lesion features in DWI images. User
is presented with automatically estimated category based on the specified DWI and
ADC features.

136



A2.4. DCE subsection

Part of PI-RADS CAR/DS form for assessment of lesion features in DCE images.
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A2.5. Final assessment

Part of PI-RADS CAR/DS form for final assessment.
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