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Streszczenie

Niniejsza praca doktorska pt. ,,Narzedzia projektowania hiperparametrycznego. Analiza
kontekstow kompozycyjnych przy pomocy sieci neuronowych’ bada mozliwos$ci i ograniczenia
wykorzystania sieci neuronowych w architekturze 1 urbanistyce, koncentrujac
si¢ na zagadnieniach przetwarzania kompozycji przestrzennych oraz automatycznym
rozpoznawaniu i analizie gtbwnych punktow kompozycyjnych w przestrzeni miejskie;.

Czes$¢ teoretyczna rozpoczyna si¢ od rozdziatu wstepnego, w ktorym zdefiniowano problem
badawczy, metodyke pracy oraz cele 1 pytania badawcze. Rozdziat drugi opisuje aktualny stan
wiedzy, w tym rozwoj architektury parametrycznej oraz jej ewolucje w kierunku architektury
hiperparametrycznej, wprowadzajacej do praktyki architektonicznej glebokie uczenie
maszynowe. W rozdziale przedstawione s3 rdwniez zastosowania sieci neuronowych
w réznych skalach projektowych: urbanistycznej, architektonicznej i detalu. W zwigzku
z wykryta luka badawcza dotyczaca neuronowego przetwarzania kontekstoéw kompozycyjnych,
autor analizuje zagadnienie punktow gléwnych, opierajac si¢ na klasycznych teoriach
kompozycji przestrzennej. W swojej analizie bierze pod uwagg aspekty geometryczne, procesy
powstawania tych punktow, ich skalg, a takze znaczenie w kontek$cie spotecznym,
symbolicznym i ekonomicznym. Rozdzial konczy si¢ identyfikacja narzedzi opartych
0 glgbokie uczenie maszynowe, mogacych stuzy¢ do analizy kompozycji przestrzennych
w projektowaniu architektonicznym wspomaganym komputerowo.

Czg$¢ eksperymentalna pracy, stanowigca rozdzial trzeci dysertacji, obejmuje dwa
eksperymenty: wstepny i gtowny. W podrozdziale opisujacym eksperyment wstepny testowane
sa rozne podejscia do neuronowego przetwarzania syntetycznych zalozen przestrzennych
opartych na zlozonych zasadach kompozycyjnych. Doswiadczenia zdobyte przy
eksperymencie wstgpnym prowadzg do opracowania bardziej zaawansowanego algorytmu
w eksperymencie gtdéwnym. Stworzony prototyp, oparty o przeciwstawne, generatywne sieci
neuronowe, shluzy do rozpoznawania gtownych punktéw kompozycyjnych 1 osi
naprowadzajacych w tkance miejskiej.

W podsumowaniu omoéwione sg wyniki eksperymentéow i badan teoretycznych oraz
ograniczenia wynikajace z zastosowanych metod 1 obecnego stanu wiedzy. Autor rozwaza
potencjalne korzysci ptyngce z wprowadzenia glgbokiego uczenia maszynowego do praktyki
architektonicznej, ocenia praktyczne mozliwosci zastosowania tego typu narzedzi i przedstawia
mozliwe kierunki dalszego rozwoju dziedziny.

Slowa Kluczowe

Projektowanie architektoniczne wspomagane komputerowo, punkty gléwne, kompozycja
przestrzenna,  glebokie  uczenie maszynowe, sieci neuronowe, projektowanie
hiperparametryczne



Abstract

The doctoral dissertation titled “Hyperparametric design tools. Analysis of compositional
contexts using neural networks,” explores the possibilities and limitations of utilizing neural
networks in architecture and urban planning. The research focuses on spatial composition
processing and automatic recognition and analysis of focal compositional points in urban
spaces.

The theoretical part begins with an introductory chapter that defines the research problem,
methodology, as well as research goals and questions. The second chapter describes the current
state of the art, including the development of parametric architecture and its evolution towards
hyperparametric architecture, which introduces deep learning into architectural practice. This
chapter also presents application of neural networks at various design scales: urban,
architectural and detail. In response to the identified research gap concerning the neural
processing of compositional contexts, the author examines the issue of main focal points based
on classical spatial composition theories. The analysis considers the geometric aspects, the
formation process of these points, their scale, as well as their significance in social, symbolic
and economic contexts. The chapter concludes with the identification of deep learning-based
tools that can be used for the analysis of spatial compositions in computer-aided architectural
design.

The experimental part, which forms the third chapter of the dissertation, consists of two
experiments: preliminary and main. In the subchapter describing the preliminary experiment,
various approaches to neural processing of synthetic, complex spatial compositions are tested.
The experiences gained from the preliminary experiment lead to the development of a more
advanced algorithm in the main experiment. The created prototype, based on generative
adversarial networks, serves to recognize main focal points and guiding axes in urban tissue.

The conclusion discusses the results of the experiments and theoretical studies, as well as the
limitations stemming from the applied methods and the current state of the art. The author
considers the potential benefits of introducing deep machine learning into architectural practice,
assesses the practical applicability of such tools, and outlines possible directions for further
development of the field.

Keywords

Computer-aided architectural design, focal points, spatial composition, deep learning, neural
networks, hyperparametric design
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Wykaz wykorzystanych akronimow i tlumaczenia pojec
obcojezycznych

AGI: ang. Artificial General Intelligence (silna sztuczna inteligencja)

Al: ang. Artificial Intelligence (sztuczna inteligencja)

Anything goes: ang. ,,Nic swictego” (hasto oddajace istote anarchizmu epistemologicznego
Paula Feyerabenda, w tlumaczeniu Stefana Wiertlewskiego. Hasto ttumaczone jest czasem

takze jako ,,wszystko ujdzie”)
API: ang. Application Programming Interface (interfejs programowania aplikacji)

Bias: ang. Prog (w kontekscie neurondéw — prog aktywacji) lub Uprzedzenie (w kontekscie sieci

neuronowych — uprzedzenie wzgledem struktury danych)
BIM: ang. Building Information Modeling (modelowanie informacji o budynku)

Black box: ang. Czarna skrzynka (algorytm przetwarzajacy dane wejSciowe na wyjsciowe w

sposob trudny do przewidzenia i interpretacji)
Bottleneck: ang. Zwezenie w sieci typu autoenkoder
BPS: ang. Building Performance Simulation (symulacja wydajno$ci budynku)

Bridging: ang. Mostkowanie. Druk 3D w powietrzu, taczacy ze sobg dwa oddalone od siebie

punkty bez uzycia posrednich podpor.

CAAD: ang. Computer-Aided Architectural Design (projektowane architektoniczne

wspomagane komputerowo)
CAD: ang. Computer-Aided Design (projektowanie wspomagane komputerowo)
CAM: ang. Computer-Aided Manufacturing (wytwarzanie wspomagane komputerowo)

CCPI: ang Climate Change Performance Index (indeks monitorujacych postepy

poszczegbdlnych panstw w tagodzeniu zmian klimatu)

City Country Fingers: ang. Palczaste zatoki miejsko-wiejskie (wydluzone pasma ggstej
zabudowy rozdzielone przez pasma zabudowy wiejskiej zaproponowane w Jezyku Wzorcow

przez Alexandra)

CNC: ang. Computerized Numerical Control (komputerowe sterowanie urzadzen

numerycznych)
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CNN: ang. Convolutional Neural Network (splotowa sie¢ neuronowa)

Convergence: ang. Zbieganie si¢ parametrow sieci neuronowe;j

Covariate shift: ang. Przesunigcie dystrybucji migdzy zbiorem treningowym a testowym
CPU: ang. Central Processing Unit (Procesor)

DA: ang. Daylight Autonomy (autonomia §wiatta dziennego)

Data Augmentation: ang. Zautomatyzowane zwigkszenie liczby danych treningowych
Data Mining: ang. Ekstrakcja danych

Decision Tree: ang. Drzewo decyzyjne

DDPG: ang. Deep Deterministic Policy Gradient. Jeden z algorytméw sterujacych agentem

W glebokim uczeniu ze wzmacnianiem

DGP: ang. Daylight Glare Probability (wspdtczynnik prawdopodobienstwa ol$nienia §wiattem

dziennym)

DRL: ang. Deep Reinforcement Learning (gltebokie uczenie ze wzmacnianiem)
Feature space: ang. Przestrzen cech

Fine tuning: ang. Strojenie wczesniej wytrenowanego modelu do nowego problemu

FNN: ang. Feedforward Neural Network (jednokierunkowa sie¢ neuronowa). Czasem
akronimem tym okre$lane sg sieci neuronowo rozmyte (ang. Fuzzy Neural Networks), jednak
w niniejszej pracy akronim FNN odnosi si¢ jedynie do sieci jednokierunkowych (Tadeusiewicz
i Szaleniec, 2015)

GAN: ang. Generative Adversarial Network (generatywna sie¢ przeciwstawna)
GAN loss: ang. Funkcja straty GAN (wykorzystywana w sieciach GAN)

G-code: ang. Geometric code (kod geometryczny). Popularny jezyk instrukcji dla urzadzen
CNC

Genius loci: tac. Duch miejsca
GPU: ang Graphics Processing Unit (procesor graficzny)

Grasshopper: Graficzny jezyk programowania dostepny w programie Rhino wykorzystywany

czesto w projektowaniu parametrycznym
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Grid search: ang. Przeszukiwanie siatki (metoda strojenia hiperparametrow)
GRU: ang. Gated Recurrent Unit (uproszczony wariant sieci typu LSTM)
Hierarchical clustering: ang. Klastrowanie hierarchiczne

IAAC: ang. Institute for Advanced Architecture of Catalonia (Instytut Architektury

Zaawansowanej w Katalonii)

Integration core: ang. Rdzen integracji

k-means clustering: ang. Klastrowanie metodg algorytmu centroidow
kNN: ang. k-Nearest Neighbors (k najblizszych sgsiadow)

L1 loss: ang. Funkcja straty L1 (wykorzystywana w CNN i GAN)

Latent Space: ang. Przestrzen ukryta

LLM: ang. Large Language Model (duzy model jezykowy)

LSTM: ang. Long Short-Term Memory (sie¢ dtugiej pamigci krotkotrwatej)

MOQO: ang. Multi-Objective Qualitative Optimization (wielocelowa optymalizacja

jako$ciowa)
MSE: ang. Mean Squared Error (btad $§redniokwadratowy)

Multi-hot: ang. Metoda kodowania przypisujaca poszczegdlnym cechom wartosci 0 lub 1

| zestawiajgca je razem w postaci wielowymiarowego wektora

NLP: ang. Natural Language Processing (przetwarzanie j¢zyka naturalnego)
One-hot encoding: ang. Kodowanie ,,jeden z n”

OSM: ang. Open Street Map

Overfitting: ang. Przetrenowanie parametrow do zbioru treningowego
Overtuning: ang. Przestrojenie hiperparametrow do zbioru testowego
PCA: ang. Principal Component Analysis (analiza gtéwnych sktadowych)

PPO: ang. Proximal Policy Optimization. Jeden z algorytméw sterujacych agentem w

glebokim uczeniu ze wzmacnianiem

Prompt: ang. Dane wejsciowe, zazwyczaj w postaci tekstowej, na podstawie ktorych model

generuje dane wyjsciowe. Wyrdznia si¢ rozne metody promptingu, np. prompting
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bezprzyktadowy (zero-shot prompting), podpowiedz jednokrotng (one-shot prompting) lub
podpowiedz wielokrotng (few-shot prompting).

Q-Learning: ang. Jeden z algorytmow sterujacych agentem w glebokim uczeniu ze

wzmacnianiem
Random search: ang. Przeszukiwanie losowe (metoda strojenia hiperparametréw)
RF: ang. Random Forest (losowe drzewo decyzyjne)

SL-Block: ang. Self-Interlocking Block (samounieruchamiajace si¢ bloki); bryly, ktore po
odpowiednim ztozeniu wzajemnie si¢ unieruchamiajg umozliwiajgc budowanie stabilnych

struktur

SNARC: ang. Stochastic Neural Analog Reinforcement Calculator; pierwsza sie¢ neuronowa

stworzona przez Marvina Minsky’ego

Sparse model: ang. Model skapy (w ktorym wiele parametrow ma warto$¢ zerowa)
SVM: ang. Support Vector Machine (maszyna wektorow nosnych)

Target space: ang. Przestrzen celu

t-SNE: ang. t-Distributed Stochastic Neighbor Embedding; algorytm redukcji wymiarowosci,

stuzacy do wizualizacji danych wielowymiarowych

Transfer learning: ang. Uczenie transferowe (dostrojenie sieci neuronowej wytrenowanej na

jednym zadaniu do innego zadania)
Transformer: ang. Typ sieci neuronowej wykorzystujacej mechanizm uwagi
UAV: ang. Unmanned Aerial Vehicle (bezzalogowy statek powietrzny)

ViT: ang. Vision Transformer (transformer wizualny), jeden z nowszych typow sieci

neuronowych stosowanych w przetwarzaniu obrazéw
Weight: ang. Waga (w kontekscie sieci neuronowych — waga potaczen migdzy neuronami)
WiFi: ang. Wireless Fidelity (zestaw standardow bezprzewodowych sieci komputerowych)

WEFC: ang. Wave Function Collapse (kolaps funkcji falowej); samoorganizujacy si¢ algorytm
generatywny opracowany przez Maxa Gumina

14



1. Wstep

1.1. Problem badawczy

Architektura stoi na progu przelomowych zmian. Gilgbokie uczenie maszynowe, ktore
od potowy poprzedniej dekady zrewolucjonizowato juz wiele dziedzin, zaczyna teraz znaczaco
wplywac na praktyke architektoniczng. Komputery nie stuzg juz jedynie do przeprowadzania
obliczen matematycznych i automatyzacji fatwych do sparametryzowania proceséw. Sieci
neuronowe przenikaja do coraz wigkszej liczby obszarow tworczych, takich jak sztuki
wizualne, literatura czy muzyka, ktore do tej pory byty domeng ludzi. Wspotczesni architekci
uzywajg komputeréw i narzedzi cyfrowych na bardzo zaawansowanym poziomie. Nie dziwi
wiec, ze wedlug raportu Royal Institute of British Architects, juz na poczatku 2024 roku
41% brytyjskich biur architektonicznych korzystato w praktyce projektowej z narzedzi
opartych na gtgbokim uczeniu maszynowym (RIBA, 2024).

Ze wzgledu na mozliwos$ci nowoczesnych sieci neuronowych, nalezy si¢ spodziewac, ze coraz
wiecej procesOw tworczych bedzie mozna zautomatyzowad. Sieci neuronowe potrafig
rozwiazywac ztozone problemy nieliniowe, przetwarza¢ dane multimodalne, dobrze skalujg si¢
do zadan o duzym stopniu skomplikowania i skutecznie radza sobie z zadaniami
generatywnymi. Dodatkowo, mozliwo$¢ uczenia si¢ na ogromnych zbiorach danych pozwala
im na uwzglednienie réznorodnych kontekstow przestrzennych i kulturalnych. W procesie
integracji algorytméw neuronowych z praktyka architektoniczng konieczne jest jednak
zwrocenie uwagi na kontrole nad hiperparametrami, czyli zbiorem zmiennych sterujacych
zachowaniem wykorzystanych sieci, oraz na poziom abstrakcji rozwigzywanych problemow.
Obecnie stosowane algorytmy zazwyczaj nie byly tworzone z mys$la o projektowaniu
architektonicznym i sg bardzo trudne w sterowaniu. Na dzisiejszym poziomie zaawansowania
dostgpnych technologii nie mozna powiedzie¢ sieci neuronowej ,zaprojektuj dom”
lub ,,zaplanuj miasto” i oczekiwac¢ sensownych rezultatow. Caly proces projektowy sktada
si¢ Z dziesiatek bardziej szczegotowych zagadnien projektowych, ktore lepiej rozwigzywac

osobno po kolei.

Jednym z takich kluczowych zagadnien jest kompozycja przestrzenna. Analizy kompozycyjne
sg przeprowadzane we wszystkich skalach projektowych, a takze w praktyce planistycznej
i administracyjnej. Automatyzacja czasochtonnych i powtarzalnych proceséw zwigzanych

Z przetwarzaniem kontekstow kompozycyjnych moze zwigkszy¢ efektywno$¢ pracy, skrocié

15



czas realizacji projektow i poszerzy¢ perspektywy inspiracyjne. Konteksty przestrzenne
sg bardzo ztozone, a analizy kompozycyjne logicznie rozmyte i trudne do oprogramowania
metodami klasycznymi. W takiej kategorii probleméw zazwyczaj stosowane metody
automatyzacji (np. oparte na ilosciowych analizach GIS) nie sg wystarczajgce. Sieci neuronowe
jednak radzg sobie ztakimi zadaniami bardzo dobrze. W niniejszej pracy przygladam
si¢ wlasnie temu aspektowi projektowania. Po wstepnym rozpoznaniu ogélnych mozliwosci
przetwarzania przez sieci neuronowe ztozonych zasad kompozycyjnych, bardziej szczegétowo
zajmuj¢ si¢ problemem punktéw gloéwnych w kompozycji przestrzennej. Wybodr tego
konkretnego zagadnienia pozwala na precyzyjne zademonstrowanie potencjatu gle¢bokiego

uczenia maszynowego w praktyce architektoniczne;.

1.2. Struktura pracy

Dysertacja podzielona jest na dwie gtdéwne czgdci: teoretyczng i eksperymentalng. W czesci
teoretycznej zaczynam od rozpoznania obecnego stanu wiedzy dotyczacego projektowania
architektonicznego wspomaganego komputerowo, identyfikuj¢ pierwsze proby wprowadzenia
uczenia maszynowego do architektury i badam stopniowe przesunigcie paradygmatu
od architektury parametrycznej do hiperparametrycznej. Nastepnie przez kwerende literatury
najnowszych zastosowan sieci neuronowych w  projektowaniu urbanistycznym,
architektonicznym i w skali detalu rozpoznaj¢ mozliwosci wspotczesnych sieci neuronowych
I identyfikuje potencjalne luki badawcze. W dalszej czesci przygladam si¢ klasycznym teoriom
kompozycji przestrzennej, identyfikuje elementy kompozycyjne szczegdlnie nadajace
sie do przetwarzania maszynowego i zawe¢zam tematyke do punktow glownych kompozycji

przestrzennej.

W czgéci eksperymentalnej przeprowadzam dwa eksperymenty. Na etapie eksperymentu
wstepnego testuje algorytmy glebokiego uczenia maszynowego réznego typu w przetwarzaniu
syntetycznie stworzonych kontekstow kompozycyjnych. Najlepiej radzaca sobie z problemem
splotowa sie¢ neuronowa jest nast¢pnie testowana w trzech scenariuszach o zréznicowanym
poziomie trudnosci. W kazdym scenariuszu sie¢ ma za zadanie odczyta¢ zadang w zbiorze
treningowym zlozong zasade kompozycyjng i na jej podstawie wygenerowa¢ samodzielnie
nowa kompozycje lub jej fragment. W oparciu o do$§wiadczenia zebrane na przyktadach
syntetycznych w eksperymencie wstegpnym, w eksperymencie gldwnym buduje prototyp
stuzacy do przetwarzania rzeczywistych kontekstow przestrzennych w tkance miejskie;.

Na tym etapie opracowuje¢ metode kodowania kontekstow przestrzennych do postaci nadajace;j
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si¢ do przetwarzania przez generatywne sieci przeciwstawne. Wytrenowana w eksperymencie
gléwnym sie¢ neuronowa, stuzaca do rozpoznawania gléwnych punktéw kompozycyjnych
I powigzanych z nimi osi naprowadzajacych, jest oceniona metodami jako$ciowymi
i iloSciowymi.

W  podsumowaniu pracy prezentuje wnioski ptyngce =z badan teoretycznych
I przeprowadzonych eksperymentow, przedstawiam ograniczenia wynikajace ze stanu wiedzy
i wykorzystanych metod, oraz omawiam wplyw architektury hiperparametrycznej,
wykorzystujacej glebokie uczenie maszynowe, na rozwoj poddziedziny projektowania

architektonicznego wspomaganego komputerowo.

1.3. Metodyka pracy

Architektura jest dziedzing laczaca nauke, inzynierie i1 sztukg. Z jednej strony probuje naukowo
rozwigzywa¢ pytania o natur¢ rzeczy, wykorzystuje metody badan socjologicznych
i srodowiskowych, odwotuje si¢ do ludzkiej biologii i psychologii oraz stara si¢ opisywac sity
sterujace rozwojem ulic, miast 1 regiondw. Z drugiej strony inzZynieryjnie tworzy narz¢dzia
I technologie, bada przez projektowanie i eksperymenty, aktywnie wplywa na rzeczywistosc.
Z trzeciej strony z kolei operuje na dzietach sztuki, eksploruje rzeczy nieoczywiste, pyta
0 przekonania, tworczo interpretuje rzeczywisto$¢ i1 zamiast odpowiedzi poszukuje jeszcze
glebszych pytan. Jakich metod powinno si¢ uzywa¢ w badaniach architektonicznych? Jakie
sgich podstawy filozoficzne? W swoim podrgczniku Metody i Techniki Badawcze
w Architekturze Elzbieta Niezabitowska nazywa architekture dziedzing
przedparadygmatyczng, w ktdrej dopiero tworza si¢ jej podstawy naukowe. Na tym etapie nie
ma niekwestionowanych teorii, symboli, metapoje¢, wartosci 1 wzorcOw rozwiazywania
probleméw naukowych (Niezabitowska, 2014). Stan dziedziny stawia badaczy architektury
W obliczu pewnego anarchizmu metodologicznego, ktéry mozna podsumowac hastem Paula
Feyerabenda: ,,nic $wigtego” [ang. ,,anything goes” (Feyerabend, 2001)]. Zaleznie od punktu
widzenia sytuacja ta stanowi pewien problem, poniewaz utrudnia wybor oczywistych metod
badawczych i uniemozliwia podazanie utartymi i sprawdzonymi szlakami. Z drugiej strony
jednak, pragmatystycznie otwiera perspektywy na nowe, mieszane $ciezki eksploracji tematow
badawczych (Creswell, 2013) i wumozliwia tworzenie nieoczywistych powigzan

interdyscyplinarnych.
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Badania architektoniczne czgsto oparte sg na dogmatycznie stawianych tezach, popartych
anegdotycznym wyborem przyktadow potwierdzajacych gloszong ideg (Niezabitowska, 2014).
Zgodnie z zalozeniami racjonalizmu krytycznego Karla Poppera uwazam, ze twierdzenia
naukowe nie mogg by¢ weryfikowane przez ich indukcyjne potwierdzenie, tylko przez
ich dedukcyjng falsyfikacje (Popper, 1977). Niniejsza praca nie ma charakteru naukowo
empirycznego i opiera si¢ gltéwnie na wnioskowaniu indukcyjnym. Z tego powodu
przeprowadzone badania zostaly oparte nie na hipotezach, a na jakosciowych i ilo§ciowych
pytaniach badawczych odwotujacych si¢ do postawionych celow badawczych. Podobnie
jak sama dziedzina, niniejsza praca ma charakter metodycznie mieszany. W przeprowadzonych
badaniach wykorzystalem metody badan teoretycznych (analiza stanu wiedzy, zastosowanie
modelowania matematycznego, algorytmizacja proceséw), badan rozwojowych i stosowanych
(opracowanie koncepcji praktycznego wykorzystania teorii w projektowanym prototypie),
badan eksperymentalnych (testowanie opracowanych narzedzi w scenariuszach testowych,
zapisywanie 1 analiza wynikow), badan symulacyjnych (uzycie modeli komputerowych
do przeprowadzania symulacji majacych odzwierciedla¢ rzeczywistos¢), badan ilosciowych
(statystyczna analiza danych, opracowanie autorskich metryk i ich wykorzystanie w ewaluacji
stworzonych algorytmow) oraz badan jakos$ciowych (studia przypadkow, metoda ekspercka,
analityczno-syntetyczne przetwarzanie danych). Tematyka doktoratu ma charakter
interdyscyplinarny. Z jednej strony opiera si¢ na architektonicznych teoriach kompozycji
przestrzennej i artystycznych konceptach wrazen estetycznych. Z drugiej, czerpie
Z inzynieryjnych osiggni¢¢ dziedzin glgbokiego uczenia maszynowego, analizy danych
I programowania. W pracy odwotuje si¢ do szeregu teorii architektonicznych. Najwazniejszymi
punktami wyjécia sa: teoria formy architektonicznej Juliusza Zorawskiego (Zérawski, 1962),
teoria struktury przestrzeni urbanistycznej (Lynch, 1960; Wejchert, 1984; Pluta, 2001), jezyk
wzorcoOw Alexandra (Alexander, i in., 1977), ale takze architektura informacyjna (Styk, 2012),
czy w sSzerszym znaczeniu, projektowanie architektoniczne wspomagane komputerowo
(Mitchell, 1975).
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1.4. Cele badawcze

1.4.1. Cele badania stanu wiedzy

Ulokowanie glebokiego uczenia maszynowego na tle teorii architektury informacyjnej,
architektury parametrycznej i projektowania architektonicznego wspomaganego
komputerowo.

Rozpoznanie dotychczasowych zastosowan sieci neuronowych w skali urbanistyczne;,
architektonicznej i w detalu.

Rozpoznanie  kategorii  probleméw  architektonicznych ~ komplementarnych
do mozliwosci glebokiego uczenia maszynowego.

Uporzadkowanie stanu wiedzy dotyczacego mozliwosci wykorzystania sieci
neuronowych w architekturze na podstawie ich historii 1 zastosowan w dziedzinach
pokrewnych.

Identyfikacja luki badawczej migdzy mozliwosciami wykorzystania Sieci neuronowych,

a ich rzeczywistym zastosowaniem w badaniach i praktyce architektoniczne;j.

1.4.2. Cele dotyczace zidentyfikowanej luki badawczej

Ulokowanie problemu neuronowego przetwarzania kontekstow kompozycyjnych na tle
polskiego prawa, teorii formy architektonicznej, teorii struktury przestrzeni
urbanistycznej i jezyka wzorcow.

Identyfikacja elementow kompozycyjnych mozliwych do przetwarzania maszynowego
1 ich wybor na potrzeby demonstracji w czesci eksperymentalne;.

Rozpoznanie problematyki punktéw gidéwnych i punktéw formalnie podkreslonychiich
znaczenia w kompozycji przestrzennej.

Rozpoznanie nie-neuronowych, wspomaganych komputerowo metod przetwarzania

gtownych punktow kompozycyjnych.

1.4.3. Cele eksperymentu wstepnego

Wstepna demonstracja mozliwosci przetwarzania zlozonych zasad kompozycyjnych
przy pomocy sieci neuronowych.
Odizolowanie problemu kompozycji przestrzennej od ogoélnego problemu

syntetycznego przetwarzania obrazéw i danych wielowymiarowych.

19



e Opracowanie i przetestowanie procedur potrzebnych do przeprowadzenia
eksperymentu gtownego.

e Jakos$ciowa i ilo§ciowa ocena przeprowadzonej demonstracji.

1.4.4. Cele eksperymentu glownego

e Demonstracja  zdolnosci  algorytmow  glebokiego uczenia  maszynowego
W przetwarzaniu rzeczywistych, urbanistycznych kontekstow przestrzennych.

e Demonstracja gtownych zatozen projektowania hiperparametrycznego w praktyce.

e Opracowanie prototypowego narzedzia stuzacego ekstrakcji punktow gltoéwnych
z miejskich kompozycji przestrzennych.

e Jakosciowa i iloSciowa analiza skutecznoS$ci prototypu.
1.5. Pytania badawcze

1.5.1. Pytanie glowne
e Jakie sa mozliwosci i ograniczenia wykorzystania algorytméw glebokiego uczenia
maszynowego do przetwarzania kontekstow kompozycyjnych w architekturze

i urbanistyce?

1.5.2. Pytania szczegolowe

e Jak glebokie uczenie maszynowe wpisuje si¢ w teorie architektury informacyjnej,
architektury parametrycznej oraz komputerowego wspomagania projektowania
architektonicznego?

e Jakie sg dotychczasowe zastosowania sieci neuronowych w architekturze 1 urbanistyce
w roznych skalach (urbanistycznej, architektonicznej 1 detalu)?

e Jakie kategorie problemow architektonicznych moga by¢ skutecznie rozwigzywane
przy pomocy glebokiego uczenia maszynowego?

e Jakie s3 mozliwosci 1 ograniczenia wykorzystania sieci neuronowych w architekturze,
na podstawie ich historii 1 zastosowan w dziedzinach pokrewnych?

e Jakie elementy kompozycyjne moga by¢ efektywnie przetwarzane przez algorytmy
glebokiego uczenia maszynowego?

e (Czy jest mozliwe stworzenie narzedzia do ekstrakcji punktow gldéwnych z miejskich

kompozycji przestrzennych przy pomocy sieci neuronowych?
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e Jakie sg mozliwosci i1 efektywnos$¢ opracowanego prototypu?
e Jakie sg perspektywy przysztego rozwoju narz¢dzi opartych na sieciach neuronowych

w kontek$cie wspomagania projektowania architektonicznego i urbanistycznego?

2. Stan wiedzy

2.1. Od architektury parametrycznej do hiperparametrycznej

Warsztat architekta od co najmniej 30 lat jest nieroztacznie zwigzany z komputerami. Juz
w potowie lat 70. William J. Mitchell zauwazyt potencjat wykorzystania nowoczesnych
narzedzi cyfrowych w projektowaniu i zdefiniowat podstawy teoretyczne poddziedziny, ktora
obecnie nazywamy projektowaniem architektonicznym wspomaganym komputerowo
(ang. CAAD — Computer-Aided Architectural Design) (Mitchell, 1975; Mitchell, 1977).
W pézniejszych latach w ramach CAAD zostal sformutowany paradygmat architektury
informacyjnej opisujacy zbior trendow i podstaw filozoficznych zwigzanych z projektowaniem
w erze informacyjnej (Schmitt, 1999; Saggio, 2013; Styk, 2012). Zgodnie z jej klasycznym
znaczeniem architektura informacyjna zwroécita si¢ w kierunku programowania i wykorzystania
komputeréw, z nadziejg na zwigkszenie mozliwosci przechowywania i przetwarzania danych,
usprawnienie komunikacji i wzmocnienie ludzkich zdolno$ci logicznego myslenia (Schmitt,
1999). Rolg architekta projektujacego dla spoteczenstwa informacyjnego byto programowanie
parametrOw procesOw tworczych na pograniczu architektury, urbanistyki, technik
informacyjnych, wytwarzania i uzytkowania (Styk, 2012). Architektura informacyjna siggngta
po techniki heurystyczne charakterystyczne dla klasycznego programowania algorytméow
opartych na wykrytych przez architekta faktach, rozpoznanych wzorcach je taczacych
i hipotezach nadajacych kierunek dziataniom. W takim rozumieniu projektowania procesow
architekt stawiany byt wroli demiurga odpowiedzialnego za definicje poszczegdlnych
parametrOw rozwigzania napotkanego problemu. Jak sygnalizuje stopniowe przesunigcie
paradygmatu ~ w  dziedzinach  informatycznych, takie  dedukcyjne  podejscie
do parametryzowania ztozonych algorytméw zdaje si¢ ustgpowaé miejsca metodom
indukcyjnym i stochastycznym. W coraz wigkszej sferze probleméw programistycznych
odchodzi si¢ od heurystyki na rzecz glgbokiego uczenia maszynowego. Obecnie pokazuje
si¢ komputerom, jak rozwigzywaé problemy, zamiast je programowac¢ (Hinton i Ng, 2017).
Skad ta zmiana? Historyk architektury Mario Carpo z duzg doza nieufnos$ci do tego, jaki wptyw

na teori¢ architektury majg narzedzia oparte o sieci neuronowe, zwraca uwage na przetom
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W sposobie myslenia o praktyce architektonicznej i nazywa ten proces ,,drugim cyfrowym

zwrotem””:

. (...) Ten nowy typ nauki, nieodlgczny od wiekszosci dzisiejszych zastosowarn SI* jest
W gruncie rzeczy tym, co nazywam drugim cyfrowym zwrotem (...). W naszym
tradycyjnym sposobie myslenia fakty sq mozolnie zbierane, sortowane, porownywane
| selekcjonowane, potem generalizowane i formalizowane: kulminacjq tego procesu jest
teoria, czesto skompresowana do formy matematycznych wzorow przydatnych
do przewidywania przysztosci w porownywalnych sytuacjach. Komputery tego nie
robig. (...) Tradycyjni rzemiesinicy, niebedgcy inzynierami i niekorzystajgcy
z matematyki, dziatali metodq prob i bledow: zIoz krzesto, a jesli si¢ rozpadnie, 7oz
kolejne i kolejne, az ktores w koncu wytrzyma. (...) Z tego powodu z czasem zaczelismy
wierzy¢ inzynierom bardziej niz rzemieslnikom. Ale dzisiejsze narzedzia komputerowe
dzialajq jak rzemiesinicy, nie jak inZynierowie. (...) Tworzenie stalo sie kwestiq czucia,

a nie myslenia: po prostu to zrob [wyrdznienie w oryginale] (...). Porzucenie

tradycyjnego rozumowania przyczynowego w wielu przypadkach dziala niezle.”
[ttumaczenie wiasne] (Carpo, 2017, s. 163).

Czy jednak rzeczywiscie korzystanie z glebokiego uczenia maszynowego jest ,,porzuceniem
rozumowania przyczynowego”? Yann LeCun, jeden z ojcéw wspdlczesnego uczenia
maszynowego, uwaza inaczej. Statystyczny charakter rozwigzan opartych na gtgbokim uczeniu
maszynowym nie wyklucza mozliwosci, ze algorytmy podejmujace interakcje ze $wiatem
rzeczywistym, wewnetrznie Kkorzystaja z zaawansowanych modeli mechanistycznych
wyuczonych na podstawie przeanalizowanych danych. Innymi stowy, o ile probkowanie
danych treningowych dla glebokiego uczenia maszynowego jest statystyczne, to same dane

moga odzwierciedla¢ deterministyczne zaleznos$ci rzadzace $wiatem (LeCun i Fridman, 2022).

Proste narzedzia potrafigce autonomicznie przetwarza¢ informacje dostgpne sa juz od lat
50. i 60. dwudziestego wieku, jednak dopiero wspotczesne glebokie uczenie maszynowe ma
szanse na precyzyjne 1 skuteczne przetwarzanie zlozonych i chaotycznych zaleznosci
obserwowanych w rzeczywistosci. Kryzys algorytmow opartych na zasadach heurystycznych,

takich jak systemy eksperckie, wynika w duzej mierze z konieczno$ci zbytniego uproszczenia

1 Sl - Sztuczna Inteligencja (ang. Al — Artificial Intelligence)
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opisywanych problemow i rzadzacych nimi zmiennych. W przeciwnym wypadku opracowane
modele bylyby zbyt ztozone i niemozliwe do udzwignigcia bez skomplikowanych teorii
opisujacych ogrom mozliwych interakcji migedzy licznymi zmiennymi. Przyktadem niech beda
modele ,,mikro$wiatow” 2 opracowywanych przez Nicholasa Negroponte w ramach
Architecture Machine Group. Uproszczone algorytmy majace w zatozeniu symulowaé
odizolowane aspekty rzeczywistosci, w praktyce generowaly stwierdzenia, ktore odniesione do
prawdziwego $wiata bylyby calkowicie falszywe (Steenson, 2017). Mimo, ze ograniczenia
klasycznego programowania w architekturze byly znane od dziesig¢cioleci, do niedawna
brakowato dla niego praktycznych alternatyw. Zaledwie od niewiele ponad dekady
dysponujemy wystarczajaca moca obliczeniowa i dostatecznie niezawodnymi algorytmami,
by efektywnie pozwoli¢ maszynom samodzielnie uczy¢ si¢ rozwigzywania praktycznych
problemow (Krizhevsky, i in., 2012).

Gdy moéwimy o glebokim uczeniu maszynowym, mamy na mys$li uczenie maszynowe
wykorzystujace wielowarstwowe sieci neuronowe. Sieci neuronowe wyrozniajg si¢ wsrod
innych technik uczenia maszynowego gidwnie ze wzgledu na swoja wszechstronnos¢. W 2010
roku Maithani, Arora i1 Jain podali liste czterech przestanek uzasadniajacych mozliwosé

wykorzystania sieci neuronowych w projektowaniu wspomaganym komputerowo:

e Sieci neuronowe moga rozwigzywac ztozone problemy nieliniowe.

¢ Przyjmuja multimodalne dane wejsciowe.

e Nie majg uprzedzen i przewidywan dotyczacych dystrybucji danych wejsciowych.

e Moga przetwarza¢ jednoczesnie wiele danych wejsciowych 1 ich pochodnych
(Maithani, i in., 2010).

Jak przy kazdej nowosci wdrazanej w ramach danej dyscypliny powinnis$my by¢ ostrozni przy

wprowadzaniu glebokiego uczenia maszynowego w praktyke architektoniczng. Jak pisze

2 Ang. Micro-world. Przyktadows demonstracja modelu mikro§wiata sterujacego fizyczng czastka prawdziwego
$wiata byl eksperymentalny projekt ,,SEEK” (nazywany takze ,,Bricks World”). W ramach projektu model
cyfrowy miat za zadanie symulowac potrzeby myszoskoczkow zamieszkujacych terrarium wypelione mozliwymi
do przesuwania bloczkami. Bloczki miaty by¢ przenoszone przez robotyczne rami¢ zgodnie z przewidywaniami
algorytmu w celu dostosowania si¢ do potrzeb gryzoni. Eksperyment zakonczyt si¢ porazka. Myszoskoczki
zachowywatly si¢ niezgodnie z przewidywaniami komputera, niszczyly bloczki i atakowaty si¢ nawzajem

(Steenson, 2017).
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Carpo, wazne, bySmy to my sterowali sztuczng inteligencjg, a nie sztuczna inteligencja nami
(Carpo, 2017). Algorytmy uczenia maszynowego sa czesto nieprzewidywalne, trudne
W interpretacji 1 ocenie w oderwaniu od wyznacznikdw wyprowadzonych heurystycznie.
Skutecznos¢ wspotczesnych systemow jest bardzo silnie powigzana z jako$cig danych
treningowych, a same modele sg wrazliwe na niespotkane wczesniej przypadki brzegowe
i muszg byC¢ precyzyjnie dostrajane. Mimo wszystko, sukcesy glebokiego uczenia
maszynowego w dziedzinach pokrewnych daja podstawy do optymistycznego patrzenia
na mozliwosci implementacji podobnych algorytméw w architekturze. Trudno nie ulec
wrazeniu, ze krok w kierunku uczenia maszynowego jest naturalng konsekwencjg mys$lenia
0 architekturze informacyjnej jako o projektowaniu procesow: 2z programowaniem
hiperparametrycznym zastgpujacym projektowanie parametryczne. Molly Wright Steenson
obrazowo rysuje paralele migdzy programowaniem algorytméw uczenia maszynowego

a architektura:

,Ci,  ktorzy  projektujqg  systemy  sztucznej  inteligencji  nie  tworzg
rzeczownikow - obiektow, budynkow, przedmiotow — tworzq czasowniki. Planujg
architekture algorytméw uczenia maszynowego — kroki, ktére program wykona
by ukorczyé zadanie. Uktadajq na swoje miejsce zbior warunkow poczgtkowych, dzigki
ktorym programy programujq si¢ same. Zauwazycie, ze uzytam stow «projektowacy
i «architektura»®. To wilasnie robig eksperci uczenia maszynowego. Budujq modele
statystyczne, ktore ewoluujq same i si¢ uczq. Wznoszq ramy algorytmow generatywnych.

Tworzq architekture. ” [thumaczenie wlasne] (Steenson, 2017, s. 224)

Wydaje si¢, ze podobienstwa migdzy uczeniem maszynowym a architekturg nie sprowadzaja
si¢ jedynie do gier stownych i wspotwystepowania tych samych poje¢ w obu dziedzinach.
Architektoniczna intuicja przestrzenna przydaje si¢ w zrozumieniu wielowymiarowych
wektorow 1 ukrytych hiperprzestrzeni charakterystycznych dla glebokiego uczenia
maszynowego. Dzigki wyobrazni przestrzennej skomplikowanie wygladajace operacje
na macierzach mozna koncepcyjnie zastapi¢ zestawianiem wielowymiarowych strzatek,

a pozornie zawity* rachunek rézniczkowy opisujacy propagacje wsteczng umozliwiajaca sieci

3 W angielskim oryginale — ,,to architect” w formie czasownikowe;.

4 W rzeczywistosci logika ukryta za rachunkiem rozniczkowym propagacji wstecznej jest zaskakujaco prosta

i intuicyjna, ale stosowana do jej opisu notacja moze skutecznie odstraszy¢ tych nieobytych z matematyka.

24



neuronowej samodzielne uczenie si¢, sprowadza si¢ do schodzenia w  dot
po wielowymiarowych, abstrakcyjnych zboczach funkcji kosztu. Bedac architektem o wiele
tatwiej jest zrozumie¢ przestrzennie koncept separacji liniowej odrgbnych klas lub rzutowania
wielowymiarowych przestrzeni standéw na powierzchnie dwuwymiarowe przy pomocy
narzedzi PCA°® czy t-SNE®. Wedhug tezy gloszonej przez Bruno Zevi’ego, na najogdlniejszym

poziomie architektura moze by¢ rozumiana jako sztuka ksztattowania przestrzeni:

., [Esencja architektury] nie lezy w ograniczeniach materialnych natozonych na wolnosé
przestrzenng, tylko w sposobie, w jaki przestrzen zorganizowana jest w znaczqgcq forme

poprzez proces ograniczenia.” [thumaczenie wiasne] (Zevi, 1993, s. 49)

W projektowaniu hiperparametrycznym architekt nie ksztaltuje wprawdzie klasycznej,
trojwymiarowej przestrzeni euklidesowej, a ogranicza abstrakcyjng, wiclowymiarowa
przestrzen charakteryzujaca badany problem’ poprzez definicje hiperparametréw sterujacych
zachowaniem sieci neuronowej. Znaczenie formie reprezentowanej w tej przestrzeni nadaje
algorytm uczenia maszynowego, definiujac parametry rozwigzania problemu. W Zrédlach
Architektury Informacyjnej Jan Styk poszukiwal nietrywialnego wykorzystania geometrii
nieeuklidesowych w architekturze. W analizowanych przyktadach odnalazt jedynie luzne
inspiracje, ktore w praktyce nie wptywaly na rzeczywistg architektur¢ bedaca wynikiem tych
inspiracji:

., Pomimo licznych nawigzan i deklaracji, trudno pozby¢ si¢ wrazenia, ze wspotczesna

architektura korzysta z geometrii nieeuklidesowych w sposob bardzo powierzchowny.

(...) M6bius House i Muzeum Mercedesa nie powstalyby prawdopodobnie bez swobody

5 PCA — Analiza Gtéwnych Skladowych (ang. Principal Component Analysis) — metoda obrotu ukladu
wspotrzednych danych wielowymiarowych maksymalizujaca wariancje tych danych po rzutowaniu na przestrzen

0 mniejszej liczbie wymiarow (Pearson, 1901).

6t-SNE — ang. t-distributed Stochastic Neighbor Embedding. Algorytm wizualizacji wielowymiarowych danych
W przestrzeni o mniejszej liczbie wymiardw przy probie zachowania struktury sasiedztwa danych wejsciowych,

czyli podobienstwa migdzy punktami, podczas przeksztatcania danych na nizsze wymiary.

" Technicznie rzecz biorgc hiperprzestrzen opisujaca mozliwe stany w glebokim uczeniu maszynowym moze
spetnia¢ definicje wielowymiarowej przestrzeni euklidesowej. Jednak w potocznym, architektonicznym
znaczeniu, moéwigc o przestrzeni euklidesowej, mamy na myS$li otaczajagcg nas klasyczng przestrzen

trojwymiarows.
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wyobrazen, jakie stymuluje wspolczesna matematyka. (...) Jednak niezaleznie od nazw
i wyjasnien, oba te budynki osadzone sq w tradycyjnym, pitagorejsko-kartezjanskim
kontekscie. Dotyczy to zarowno zagadnien projektowych, realizacji, jak i odbioru
uzytkowego. Konstruujgc przedmioty o srednich (w skali doswiadczen fizyki)
rozmiarach, podporzqdkowane prawom ziemskiej grawitacji, dziatamy w srodowisku,
ktore Swietnie opisuje geometria euklidesowa. (...) Warto jedynie dostrzec,
ze Srodowisko tworczosci rozszerza sie. (...) Swiaty przestrzenne Internetu pozbawione
sq grawitacji. Sterowalne mechanizmy projekcji, hipertgcza i parametrycznosé¢ ruchu
istotnie wplywajq na percepcje. W tym kontekscie, zdobycze wspotczesnej matematyki
mogq okazac sie czynnikiem wplywajgcym na tworczos¢ szerzej, niz w sensie estetycznej

inspiracji.” (Styk, 2012, s. 58)

W przypadku glebokiego uczenia maszynowego kazda jego architektoniczna aplikacja
mau swoich podstaw wielowymiarowa kompozycj¢ uporzadkowana w  ukrytej
hiperprzestrzeni stanéw. Hiperprzestrzen ta jest mozliwa do wyobrazenia i zwizualizowania
(Olah, i in., 2017), a co najwazniejsze, moze przetwarzac¢ konteksty przestrzenne, funkcjonalne
czy historyczne dotyczace rzeczywistego $wiata na fizyczng architekture czy urbanistyke.
Ze wzgledu na rozwinigta wyobrazni¢ przestrzenng i wysokie kwalifikacje cyfrowe,
wspoélczesni architekci coraz czeSciej siggaja po narzgdzia oparte na glgbokim uczeniu
maszynowym. Architektura wspomagana komputerowo wydaje si¢ stopniowo ewoluowaé
od algorytméw heurystycznych opisanych parametrycznie na niskim poziomie abstrakcji
do algorytméw stochastycznych sterowanych na wysokim poziomie abstrakcji przez
hiperparametry i odpowiednio sformutowane dane wejSciowe (ang. prompt). Przyjrzyjmy
sige wiec tym algorytmom, opartym na nich narzgdziom 1 ich architektonicznym

zastosowaniom.
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2.2. Sieci neuronowe w literaturze dotyczacej komputerowego wspomagania

projektowania

Aby rozpozna¢ najnowsze zastosowania sieci neuronowych w architekturze i zidentyfikowac
potencjalne luki badawcze, przeanalizowatem 149 publikacji naukowych z ostatnich kilku lat®
dotyczacych implementacji sieci neuronowych w projektowaniu wspomaganym komputerowo.
Zrédla  obejmowaly przekrdj artykuldw z czasopism naukowych i publikacji

pokonferencyjnych do potowy 2021 roku.
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Rys. 1. Wizualizacja 37 cech (os pionowa) wyodrebnionych ze 149 publikacji (os pozioma)
dotyczgcych zastosowania sieci neuronowych w projektowaniu wspomaganym
komputerowo. Bialy kolor oznacza powigzanie danej cechy z publikacjq. Wyodrebnione
cechy pozwolily na organizacje zebranych zZrodet i przeprowadzenie ich analizy ilosciowe;j.

Opracowanie wiasne.

W celu ich organizacji zrodta zostaty zebrane w tabeli umozliwiajacej przeprowadzenie analizy
jakosciowej 1 illosciowej. Na potrzeby analizy jakosciowej w tabeli zapisatem gtowne wnioski
plynace z proponowanych przez autorOw implementacji sieci neuronowych w CAAD.

Dla celow analizy ilosciowej z artykutow wydobytem 37 cech i zapisatem je metoda kodowania

8 Kwerenda zasadnicza zostala objeta okresem do potowy 2021 roku, w ktérym to momencie zamkngtem gtéwna
cze$¢ badan literaturowych. W ramach dalszych prac nad doktoratem bibliografia byta na biezgco
uzupetniana i aktualizowana o najnowsze wyniki badan i dodatkowe zrddla, jednak nie zostaly one ujete w

kwerendzie zasadniczej.

27



,multi-hot”® (dla 35 cech mozliwych do przedstawienia binarnego) i w postaci skalarnych
warto$ci znormalizowanych dla pozostatych cech, takich jak rok i wydawnictwo (Rys. 1).
Cechy binarne opisujace zebrane zroédta obejmowaty grupy zastosowan sieci neuronowych
(Zatgcznik 1), rodzaje implementowanych sieci neuronowych, skal¢ ich zastosowania
(Zatgcznik 2), grupy zrodet danych przetwarzanych przez sie¢ neuronowsg, oraz tematyke

opracowan (Zalacznik 3).

L . ) <t URBANISTYKA oe P
Stosowanie sieci neuronowych w projektowaniu = op
w roznych skalach w publikacjach dotyczgcych % EE;-QII_(ALOWE "...
. . . w0
komputerowego wspomagania projektowania o ® .:: 0‘
architektonicznego % " * :
3 ." ®
ARCHITEKTURA 49,0% g ®
0 .t o * ¢
URBANISTYKA ®
L .
®
DETAL, MATERIALY, CAM .bf‘q ° °
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BEZSKALOWE ... ‘ ‘

0,0% 10,0% 20,0% 30,0% 40,0% 50,0% 60,0%

RODZAJ SIECI NEURONOWEJ

Rys. 2. Stosowanie sieci neuronowych Rys. 3. Wizualizacja skal, w ktorych
W projektowaniu w roznych skalach w publikacjach stosowane sq sieci neuronowe,
dotyczgcych komputerowego wspomagania wykonana przy pomocy algorytmu
projektowania architektonicznego. Opracowanie t-SNE na podstawie
wlasne. 37 wyodrebnionych cech badanych

artykutow. Kazdy punkt reprezentuje
odrebng publikacje, kolor punktu
odpowiada skali zastosowania sieci

neuronowej. Opracowanie wlasne.

Po zakodowaniu, zebrane cechy reprezentujace analizowane zrodta stanowity chmure punktow
w 37-wymiarowej przestrzeni (po jednym wymiarze na wyodrebniong ceche). Badanie
ilosciowe zrodet polegato na ich analizie statystycznej (Rys. 2) oraz wizualizacji korelacji

miedzy nimi przy pomocy algorytmu nienadzorowanego uczenia maszynowego t-SNE,

9 Kodowanie multi-hot polega na przypisaniu poszczegdlnym cechom wartoéci 0 lub 1 i zestawieniu ich razem w
postaci wielowymiarowego wektora. Kodowanie to rozni sie od metody jeden z wielu (ang. one-hot encoding)

tym, ze w multi-hot warto$¢ 1 moze by¢ przypisana do wielu cech jednoczesnie.
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umozliwiajgcego przedstawienie poszczegolnych grup publikacji w bardziej czytelnej formie
wykresu dwuwymiarowego zachowujacego wzajemne podobienstwo miedzy punktami.
Na wizualizacji t-SNE glowne sktadowe (0sie wykresu) sa skorelowane ze skalg zastosowan
i typem wykorzystanych w publikacjach sieci neuronowych Kazdy punkt na wykresie

odpowiada jednej z publikacji przeanalizowanej w kwerendzie zasadniczej (Rys. 3).

Ze statystycznej analizy przeprowadzonej kwerendy wynika, ze w projektowaniu
architektonicznym wspomaganym komputerowo sieci neuronowe s3a wykorzystywane

we wszystkich skalach projektowych:

e Skali urbanistycznej (39,6% analizowanych publikacji).
e Skali architektonicznej (49,0% analizowanych publikacji).
e Skali detalu, w tym wytwarzania wspomaganego komputerowo CAM i materiatow
(25,5%).
Niewielka cze§¢ zebranych zZrédel dotyczyla takze zastosowan bezskalowych

(2,7% analizowanych publikacji).

Na najogoélniejszym poziomie wszystkie zastosowania sieci neuronowych mozna sprowadzi¢
do zadania opracowania funkcji mapujacej dane wejSciowe na dane wyjSciowe w pewien
pozadany sposob. Na troche bardziej szczegbtlowym poziomie (ale wcigz na tyle ogdlnym,
aby umozliwi¢ efektywne grupowanie) podzielitem zastosowania sieci neuronowych

W analizowanych skalach projektowych na pie¢ gtéwnych kategorii:

e Ewaluacja i1 przetwarzanie danych, polegajace na przypisaniu danym wejsciowym
pewnej warto$ci oceniajgcej lub na bezposrednim przetworzeniu danych z jednej formy
na druga (30,9% analizowanych publikacji).

e Dziatalno$¢ generatywna, polegajaca na tworzeniu rozwigzan projektowych lub sugestii
projektowych bezposrednio przez sie¢ neuronowsg (22,1% analizowanych publikaciji).

e Klasyfikacja, polegajaca na podziale danych wejsciowych na kategorie lub
na ich semantycznej segmentacji (17,4% analizowanych publikacji).

e Ekstrakcja i uczytelnianie, polegajace na pozyskiwaniu danych uzytecznych

z obszernych, nieustrukturyzowanych baz (ang. data mining), lub na przedstawieniu

10 CAM — ang. Computer-Aided Manufacturing, wytwarzanie wspomagane komputerowo
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danych nieczytelnych i nienadajacych si¢ do dalszego przetwarzania w czytelniejszej
formie posredniej (15,4% analizowanych publikacji).
e Optymalizacja, polegajaca na poszukiwaniu najlepszych rozwigzan danego procesu
ze wzgledu na zadane kryteria (8,7%).
e Przewidywanie przyszloSci na podstawie sytuacji obecnej i historycznie
zarejestrowanych procesow (5,4%).
W niektérych przypadkach brzegowych zastosowanie sieci neuronowej moze wpisywac si¢
w kilka kategorii jednoczes$nie. Przyktadowo, czasem trudno jest jednoznacznie rozréznié, czy
dana operacja jest przetworzeniem danych (bezposrednim) czy ich uczytelnieniem
(posrednim). Dodatkowo, zaleznie od kontekstu i poziomu analizy poszczegdlne grupy
zastosowan mozna rozumie¢ wieloznacznie. Na przyklad patrzac na sie¢ neuronowq
z perspektywy technicznej, kazdy model bedzie stuzyt optymalizacji funkcji kosztu wzgledem
wag 1 progdw polaczen miedzy neuronami. Z tych powodow zdecydowatem si¢ dokonad
kategoryzacji zastosowan bez precyzyjnego rozgraniczania, skupiajac si¢ na zastosowaniach
rozumianych z perspektywy projektanta (architekta lub urbanisty) 1 nie traktujac przyjetych

kategorii w sposob roztaczny.
2.2.1. Skala urbanistyczna — zastosowania sieci neuronowych

Urbanistyka: ekstrakcja i uczytelnianie danych

W skali urbanistycznej najpopularniejszym w badanym okresie zastosowaniem sieci
neuronowych jest ekstrakcja 1 uczytelnianie danych. Jednym z latwiej dostepnych zrdodet
danych urbanistycznych s3 zdjecia satelitarne, ktore ze wzgledu na swoja obszernos¢
i szczegotowo$¢ reprezentujg ogromng liczbe potencjalnie uzytecznych informacji. Ich reczna
ekstrakcja czesto jest jednak zadaniem bardzo czasochtonnym, lub, zaleznie od zakresu, wrecz
niemozliwym. Przyktadowo, przy pomocy sieci neuronowych mozna automatycznie dzieli¢
zdjecia satelitarne miast na interesujace nas sektory. Zespot badaczy z politechniki
w Singapurze wykorzystal otwarte, darmowe zdjecia satelitarne systemu Sentinel 2 jako baze
danych umozliwiajaca rozpoznawanie poszczegdlnych stref wykorzystania terenu w okolicach
amerykanskich lotnisk. Tak podzielone zdjgcia satelitarne moga by¢ przydatne
W monitorowaniu zmian w sposobie uzytkowania gruntéw, strat wywotanych pozarami,
czy postepow rekultywacji gruntow (Meeran i Joyce, 2020). Proby wykorzystania sieci
neuronowych do identyfikacji zmian w zabudowie miejskiej sg podejmowane juz od wezesnych

lat dwutysiecznych. Liu 1 Lathrop w 2002 roku zaprogramowali prosta sie¢ neuronowg
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rozpoznajagcg nowozurbanizowane tereny na podstawie kilkunastu wybranych cech
wyodrebnionych ze zdje¢ satelitarnych. Nawet prosta, dwuwarstwowa sie¢ neuronowa
operujaca na ograniczonej liczbie cech osiggala wyzsza skuteczno$¢ niz wezesniej stosowane
metody wykrywania roznic w parach zdje¢ satelitarnych (Liu i Lathrop Jr, 2002). Idac krok
dalej, Shota Iino i in. opracowali neuronowy system detekcji krotkoterminowych zmian
w tkance miejskiej. System poréwnuje ze sobg zdjecia satelitarne uzupelnione o numeryczne
modele pokrycia terenu (ang. DSM — Digital Surface Model) w interwatach rocznych i ocenia
prawdopodobienstwo, ze na danym fragmencie obszaru uzytkowanie gruntéw uleglo zmianie
(lino, i in., 2018). Giebokie uczenie maszynowe aplikowane jest takze do uczytelniania zdjec¢
satelitarnych do postaci diagramatycznych schwarzplanéw. Naukowcy z uniwersytetu w Osace
zaproponowali metode trenowania sieci neuronowych rysujacych obrysy zabudowy przy
pomocy syntetycznych par widok-schwarzplan renderowanych z fotorealistycznych,
trojwymiarowych modeli miast. Takie rozszerzenie bazy danych treningowych (ang. data
augmentation) pozwala niskim kosztem zwigkszy¢ skuteczno$¢ trenowanych algorytmow
(Ikeno, i in., 2020). Wychodzac z zatozenia, ze jako$¢ przestrzeni zbudowanej w miescie jest
skorelowana ze stanem zdrowia mieszkancéw, mozna zestawi¢ zdje¢cia satelitarne miast
Z dostepnymi danymi medycznymi, w celu rozpoznania typow tkanki miejskiej powigzanych
z wybranymi zaburzeniami zdrowotnymi. Sama korelacja cech nie oznacza, ze sg one
powigzane  przyczynowo-skutkowo, obie moga by¢ niezaleznym = objawem
wspotwystepujacych przyczyn. Korelacj¢ te mozna jednak wykorzystaé do mierzenia cechy
tatwiejszej do przetworzenia maszynowego (zdjecia satelitarne przestrzeni miejskiej) w celu
identyfikacji potencjalnego wystgpowania cechy trudniejszej do zmierzenia (problemy
zdrowotne mieszkancow). Pewne sukcesy na tym polu wraz z zespotem osiggnat David Newton
w zakresie przewidywania wskaznika otyto$ci na badanym obszarze (Newton, i in., 2020),
analizowania poszczegdlnych cech tkanki miejskiej skorelowanych z konkretnymi problemami
zdrowotnymi (Newton, 2021) czy generowania widokow satelitarnych nieistniejgcych
fragmentéw miast w celu zwizualizowania, jakie typy krajobrazow miejskich sg skorelowane
z wystepowaniem zaburzen nerwowych (Newton, 2020). Sieci neuronowe moga by¢ takze
uzyte do generowania podziatow na grupy typologiczne na podstawie zdj¢¢ satelitarnych. Przy
pomocy sieci neuronowych typu autoenkoder mozna przetworzy¢ wiele przyktadow
interesujacych nas obszarow (np. kampuséw uniwersyteckich) na skompresowang forme
wektorowa. Korzystajac z takiej reprezentacji zabudowy Peiwen Li 1 Wenbo Zhu dokonali

grupowania morfologicznego kampusow opartego na podobienstwie miedzy poszczegolnymi
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wektorami przy pomocy algorytmu centroidow (ang. k-means clustering) i klastrowania

hierarchicznego [ang. hierarchical clustering (Li i Zhu, 2020)].

Pokrewnym do zdje¢ satelitarnych zrédlem danych sa zdjecia z samolotow i drondéw
bezzatogowych. Glebokie uczenie maszynowe pozwala na ekstrakcje trajektorii ruchu pieszego
z materialu wideo zarejestrowanego przez dron. Trajektorie poruszania si¢ pieszych mogg by¢
p6ézniej wykorzystane przy projektowaniu i przebudowie ulic i placow miejskich (Wu, 2021).
Z samych trajektorii (np. uzyskanych bezpo$rednio z systeméw $ledzenia GPS) takze
da si¢ uzyska¢ dodatkowe dane przydatne w dalszych analizach. Katarzyna Sita-Nowicka i in.
proponuja wykorzystanie sieci neuronowych do przetwarzania trajektorii GPS na wzorce
aktywnos$ci miejskiej dotyczacej konkretnych budynkow lub ogoélne wzorce ruchu w miescie
dotyczace poszczegdlnych tryboéw transportu (Sita-Nowicka, i in., 2016). Qayyum i in.
zastosowali sieci neuronowe do ekstrakcji cech z wejsciowych zdje¢ wykonanych przez drona.
Ekstrakcja istotnych cech opierala si¢ na redukcji przez sie¢ wymiarow danych wejsciowych
I zdecydowanie poprawiala skuteczno$¢ podzniejszej klasyfikacji elementow znajdujacych
si¢ na satelitarnych zdjeciach miast (Qayyum, i in., 2019). Od momentu wprowadzenia przez
Google ustugi Street View, urbanis$ci zaczeli zwraca¢ uwage na tatwo dostgpne, sferyczne
zdjecia przestrzeni publicznych jako na potencjalne zrodio informacji miejskich. Dzieki
sieciom neuronowym zdjecia sferyczne pozyskane ze Street View moga postuzyé
do automatycznej ekstrakcji kolorow elewacji na danym obszarze (Zhang, i in., 2020) lub nawet
wydobycia genius loci badanej ulicy (fac. duch miejsca). Zaproponowany przez Kyle’a
Steinfelda system GAN Loci pobiera z serwerow Street View kilkaset zdje¢ sferycznych
znajdujacych si¢ w bezposredniej okolicy badanego punktu i wykorzystuje je do wytrenowania
przeciwstawnej sieci neuronowej. Sie¢ nastgpnie generuje nieistniejacy, fantastyczny krajobraz
ilustrujacy genius loci danego miejsca (Rys. 4) i zawierajacy elementy krajobrazowe

charakterystyczne dla danej okolicy (Steinfeld, 2019).

32



Rys. 4. Nieistniejgcy, syntetyczny krajobraz wygenerowany przez opracowany przez Kyle’a

Steinfelda neuronowy algorytm GAN Loci wizualizujgcy ,, genius loci” dzielnicy Blijdorp
w Rotterdamie (Steinfeld, 2019).

Zdjecia sferyczne Street View, mimo satysfakcjonujacego pokrycia wigkszosci duzych miast,
sg aktualizowane bardzo rzadko, co kilka lat, przez co zawarte w nich informacje sg zazwyczaj
nieaktualne. Recepta na ten problem moze by¢ zbieranie materiatu filmowego poprzez
umieszczenie kamer wideo na pojazdach stuzb miejskich, takich jak $mieciarki, shuzby
parkingowe czy straz miejska. Zebrane w ten sposob dane s3 zbyt obszerne do analizy
manualnej, jednak moga by¢ przetwarzane przez sieci neuronowe. Analiza taka umozliwia
przyktadowo rozpoznawanie problematycznych obiektow, jak porzucone $mieci
czy uszkodzone pojazdy, i nanoszenie ich na map¢ w celu efektywniejszego zarzadzania
miastem (Sukel, i in., 2020a; Sukel, i in., 2020b). System taki moze by¢ takze rozszerzony
0 dodatkowe, multimodalne zrédta danych, jak raporty mieszkancow, dane geolokalizacyjne
I historyczne szeregi czasowe w celu dokladniejszego rozpoznawania ,,mikrowydarzen”
w przestrzeni miejskiej (Sukel, i in., 2019). W temacie danych multimodalnych, glebokie sieci
neuronowe sparowane z dodatkowymi technikami uczenia maszynowego (jak PCE czy t-SNE)
moga by¢ wykorzystane do uczytelnienia wielowymiarowych i zréznicowanych informacji
pochodzacych z wielu zrodet miejskich w formie mozliwej do immersyjnego zwizualizowania
w $rodowisku wirtualnej rzeczywisto$ci (Kampani i Varoudis, 2020). Warto$ciowe informacje
o przestrzeni publicznej da si¢ pozyska¢ takze z jezyka naturalnego zapisanego w formie
tekstowej w mediach spolecznosciowych. Maszynowa analiza wydzwigku emocjonalnego

wypowiedzi (ang. sentiment analysis) pozwala na zmapowanie emocji mieszkancow
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na przestrzeni miejskiej w celu uczytelnienia emocjonalnych kontekstow przestrzennych (Kim

i Rosenwasser, 2020).

Urbanistyka: ewaluacja i przetwarzanie danych

Drugim najpopularniejszym zastosowaniem gl¢bokiego uczenia maszynowego w skali
miejskiej jest ewaluacja danych wejsciowych lub ich bezposrednie przetworzenie na pozadang
form¢ docelowg. W procesach urbanistycznych czgsto przydatne jest przypisanie badanym
zjawiskom pewnej wartosci numerycznej w celu przeprowadzenia ich analizy iloSciowej

zardwno na potrzeby projektowania urbanistycznego, jak i zarzadzania miastami.

Przydatnym zrodtem danych umozliwiajacych ewaluacje miejskich ulic jest baza sferycznych
zdje¢ Street View firmy Google. Yazicioglu i Dino zaproponowali metod¢ semantycznej
segmentacji zdjg¢ sferycznych wzdhuz ulicy 1 pdzniejszego przetworzenia otrzymanych
diagramoéw na przewidywany poziom komfortu termicznego w danym punkcie. Dane
treningowe dla sieci neuronowych zostaly wygenerowane przy pomocy komputerowej
symulacji nastonecznienia przeprowadzonej na urbanistycznym modelu 3D (Yazicioglu i Dino,
2021). Qi i in. opracowali system przetwarzajacy zdjecia Street View na liczbowy wynik
,witalno$ci” danego miejsca. Sie¢ neuronowa zostala wytrenowana na podstawie zbioru
recznie ocenianych wzgledem witalnosci lokalizacji badanych metoda wizji lokalnej.
Tak zebrane dane pozwolity wytrenowac sie¢ neuronowa oceniajacg witalnos¢ dowolnego
fragmentu miasta. Co wigcej, na podstawie analizy reprezentacji danego zdj¢cia w przestrzeni
ukrytej ostatniej warstwy sieci neuronowej, autorzy byli w stanie zidentyfikowaé dwanascie
klas majacych najwigkszy pozytywny wplyw na ocen¢ witalnosci miejsca. Wedtug sieci
najsilniej na witalno$¢ obszaru wplywata obecnos¢ na zdjeciach przechodniow, witryn
sklepowych, chodnikow oraz, co zaskakujace, placow budowy (Qi, i in., 2020). Podobna
metod¢ oceny ,preferencyjnosci” przestrzeni zaproponowali Kinugawa 1 Takizawa
z Uniwersytetu w Osace. W tym przypadku zdjecia sferyczne uzupetione bylty o maszynowo
generowang mape¢ glebi obrazu (wspomagang przez segmentacje¢ semantyczng w celu
doktadniejszego rozpoznawania nieba) i nastepnie poddano je przetworzeniu na metryke
preferencyjnosci danego miejsca. Dane do treningu zebrano dzigki ankiecie przeprowadzone;j
na studentach architektury oceniajacych treningowe zdjecia sferyczne na podstawie
ich projekcji w rzeczywistosci wirtualnej (Kinugawa i Takizawa, 2019). Pokrewny, dawniejszy
system zostal zaprezentowany przez Takizawe¢ 1 Furut¢ dwa lata wczesniej, jednak zamiast

rzeczywistych przestrzeni miejskich dotyczyt ewaluacji wirtualnych zdje¢ sferycznych
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renderowanych w 3D przez silnik Unity (Takizawa i Furuta, 2017). Mozliwosé¢
przeprowadzania przy pomocy sieci neuronowych ewaluacji niezrealizowanych projektow
syntetycznych  jest  szczegélnie przydatna przy  projektowaniu  generatywnym
| parametrycznym. Przy tej kategorii problemow projektant czesto musi dokona¢ wyboru
najlepszych propozycji z obszernego zbioru mozliwych rozwigzan. Sieci neuronowe mogag
szybko oceni¢ wygenerowane projekty pod interesujacymi projektanta aspektami,
umozliwiajac ich dalsza selekcje. Przyktadem takiego zastosowania jest system generujacy
kwartaty urbanistyczne opracowany przez Z. Hana, W. Yana i G. Liu. Autorzy zastosowali
glebokie uczenie ze wzmacnianiem (ang. DRL: Deep Reinforcement Learning), w ktorym
sterowany przez sie¢ neuronowa agent generowal w danej lokalizacji kubaturowy projekt
zagospodarowania kwartatu i jednocze$nie oceniat wygenerowane rozwigzania pod wzgledem
estetyki 1 nastonecznienia. Dzigki przypisanym metrykom mozliwa byla selekcja najlepszego

projektu sposrod dwoch tysiecy wygenerowanych mozliwosci (Han, i in., 2020).

Ewaluacji i przetwarzaniu mozna podda¢ takze zdjecia lotnicze i satelitarne. Za przyktad moze
postuzy¢ technika ewaluacji stanu technicznego drég opisana przez chinskich naukowcow
W 2020 roku. Pan i in. wykorzystali zdj¢cia z autonomicznego drona (ang. UAV: Unmanned
Aerial Vehicle) w celu identyfikacji zarysowan i dziur w drogach oraz oceny stanu uszkodzen
powierzchni asfaltowych — od niewielkich uszkodzen we wczesnym stadium po powaznie
uszkodzone powierzchnie wymagajace interwencji (Pan, i in., 2021). Nie wszystkie
zastosowania sieci neuronowych sa jednak tak pragmatyczne. Zdarzaja si¢ aplikacje mniej
jednoznaczne, o glebszym wydzwigku artystycznym. Claudia Pasquero i Marco Poletto
z Innsbruck University i ecoLogicStudio opracowali algorytm GAN_Physarum umozliwiajacy,
wedtug autoréw, transfer inteligentnych cech biologicznych zaczerpnigtych z kolonii
bezkomoérkowego $luzowca do tkanki miejskiej lub projektu architektonicznego.
Zaproponowany proces ,,urbanistycznej remetabolizacji” jest de facto neuronowym transferem
stylu (Gatys, i1 in., 2016) wytrenowanym na probkach Physarum polycephalum:
nieposiadajgcego ukladu nerwowego $§luzowca wykazujacego zdolnosci do rozwigzywania
zaskakujaco ztozonych probleméw (takze obliczeniowych) i zdolnego do samoorganizacji.
Wygenerowane przez GAN_Physarum abstrakcyjne, wieloskalowe wariacje na temat
urbanistyki (Rys. 5) i architektury (Rys. 6) sktaniajg do refleksji nad podobienstwami miedzy
przejawami inteligencji ekologicznej a algorytmiczng naturg wspotczesnych zalozen miejskich

(Pasquero i Poletto, 2020).
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Rys. 5. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany
przez Pasquero i Poletto zastosowany do przetworzenia satelitarnych zdje¢ tkanki
urbanistycznej w skali 1 x 1 km (po lewej) i 10 x 10 km (po prawej) (Pasquero i Poletto,
2020).

Rys. 6. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany

przez Pasquero i Poletto zastosowany do przetworzenia Centre Pompidou

sfotografowanego z lotu ptaka (Pasquero i Poletto, 2020).

W  temacie ogoélnie rozumianych rozwazah -ekologicznych, sieci neuronowe moga
by¢ przydatne w analizowaniu zaleznosci migdzy morfologig przestrzeni zbudowanej i zieleni

miejskiej, a aktywnos$cia fizyczng mieszkancow na Swiezym powietrzu. Zestawiajac ze sobg
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dwie bazy danych, GIS-owe mapy miejskie systemu Mapbox oraz mapy aktywnosci fizycznej,
Strava- Yunjuan Sun, Lei Jiang i Hao Zheng wytrenowali sie¢ neuronowg przeksztatcajaca
dany na wejsciu plan fragmentu miasta na przewidywang aktywnos$¢ fizyczng mieszkancow
natym obszarze. System taki moze shuzy¢ do przewidywania wzorcéw aktywnosci
na niezagospodarowanych terenach projektowanych, ale takze do analizy korelacji migdzy
cechami danego obszaru a ich wptywem na zachowanie mieszkancow. Przyktadowo, autorzy
zauwazyli, ze zazielenione, kameralne aleje osadzone w krajobrazie o wiele silniej skorelowane
sg z bieganiem 1 spacerowaniem niz z jazdg na rowerze, podczas gdy proste aleje bez czestych
zakretow sprzyjaja jezdzie na rowerze. Przeprowadzajgc drobne interwencje urbanistyczne
na badanym obszarze autorzy sprawdzili takze ich wplyw na przewidywane zmiany
we wzorcach aktywnosci wywotane wprowadzonymi zmianami. Z porOwnania map ciepla
sprzed interwencji 1 po niej, mozna przyktadowo dojs¢ do wniosku, ze poszerzenie ulicy
zwigkszy intensywno$¢ ruchu rowerowego, a zwigkszenie powierzchni zabudowy obnizy

intensywno$¢ wszystkich form aktywnosci fizycznej (Sun, i in., 2020).

Wickszos¢ wymienionych powyzej zastosowan sieci neuronowych jako dane wejSciowe
wykorzystywata informacje zapisane w formie pewnego obrazu: zdjecia, diagramu, mapy
rastrowej czy wizualizacji 3D. Zasadniczo nie ma jednak ograniczen co do typu danych
przetwarzanych przez sie¢ neuronow3a, o ile moga one by¢ zapisane w postaci numerycznej.
Jedno z wezesniejszych przestrzenno-urbanistycznych zastosowan sieci neuronowych z 1993
roku dotyczylto przetwarzania danych tabularycznych. Stan Openshaw z uniwersytetu w Leeds
w latach 90. badal rozne mozliwo$ci wykorzystania uczenia maszynowego i innowacyjnych
algorytméw komputerowych w przetwarzaniu danych geograficznych. W trakcie tych
poszukiwan przyjrzat si¢ takze prostym sieciom neuronowym i podjat probe modelowania przy
ich pomocy interakcji przestrzennych na przyktadzie tabeli opisujacych wzorce
przemieszczania si¢ do pracy i z powrotem mieszkancow miast w poétnocno-wschodniej Anglii.
Modelowane dane opisywaty poszczegoélne srodki transportu i powigzane z nimi koszty
przemieszczania si¢. Sieci neuronowe radzily sobie z tym zadaniem na poziomie
konkurencyjnym do stosowanych wtedy alternatywnych modeli klasycznych i wykazywaty
zdolno$¢ do generalizowania wyuczonych zaleznosci na niespotkane w trakcie treningu
sytuacje (Openshaw, 1993). Innym przyktadem ewaluacji zmiennej zaleznej od zapisanych
liczbowo zmiennych niezaleznych jest przewidywanie cen nieruchomosci na podstawie recznie
wyodrebnionych cech obiektu. Cechy takie moga obejmowaé zmienne mikroekonomiczne

opisujace konkretny budynek (powierzchnia, lokalizacja, rodzaj dachu, liczba sypialni,
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odlegtosci od ustug etC.) oraz zmienne makroekonomiczne opisujace ogolng sytuacje
gospodarczg kraju (PKB, Climate Change Performance Index, stopa bezrobocia etcC.).
Zapewniwszy sieci neuronowej odpowiednig liczbe przykladéw  treningowych
mozna skutecznie przewidywaé ceny rynkowe badanej nieruchomosci (Lam, i in., 2008;
Abidoye i Chan, 2017). Przetwarzane w ramach jednego zastosowania dane nie muszg by¢
takze homogeniczne i moga pochodzi¢ ze zrdznicowanych zrodet. Li i in. opracowali zlozony
system oceniajacy indeks ,,przyjaznosci ulic miejskich dla ruchu pieszego” (ang. WoUS Index:
Walkability of Urban Streets Index) na podstawie wektorowych map GISowych pozyskanych
z Open Street Maps i Google Maps, zdje¢ sferycznych Street View (Google, 2023),
intensywnosci ruchu samochodowego ocenianego na podstawie wideo z monitoringu i danych
srodowiskowych zbieranych przez dedykowane sensory. W zaproponowanym systemie
poszczegbdlne zrodta danych przetwarzane sg przez rézne, dedykowane sieci neuronowe
i dodatkowe algorytmy komputerowe i przeliczane sg wzgledem poszczegolnych wag na indeks
przyjaznos$ci dla ruchu pieszego (Li, 1 in.,, 2020). Xinghua Gao wraz z Pardisem
Pishdad-Bozorgim wykorzystali konglomerat danych wejsciowych sktadajacych si¢ z cech
wydobywanych z modeli BIMowych, dokumentacji projektowych i wykonawczych, danych
Z systemu zarzadzania miejscem pracy (IWMS: ang. Integrated Workplace Management
SysteM) oraz wskaznikéw wykorzystania mediéw do ewaluacji kosztow cyklu zycia obiektow
uzytecznosci publicznej. Autorzy przetestowali rownolegle kilka najpopularniejszych technik
uczenia maszynowego. W przypadku glebokich sieci neuronowych zwrocili uwage na ich
potencjat w zdolnosciach przyblizania skomplikowanych funkcji zaleznych od wielu

zroznicowanych zmiennych (Gao i Pishdad-Bozorgi, 2019) .

Urbanistyka: klasyfikacja

Kolejng grupg zastosowan sieci neuronowych w urbanistyce jest klasyfikacja, czyli
rozpoznawanie w danych wejsciowych pewnych klas i ich podziat na grupy. Najczesciej
klasyfikacji poddaje si¢ dane reprezentowane w formie obrazow: fotografii wykonanych
Z perspektywy czlowieka, zdje¢ z monitoringu, diagraméw, zdje¢ sferycznych czy fotografii
lotniczych. Bardzo ciekawym zastosowaniem sieci neuronowych w klasyfikacji jest
opracowana przez Briana Ho metoda rozpoznawania elementéw kompozycji urbanistycznej
z Obrazu Miasta Kevina Lyncha (Lynch, 1960). W swojej publikacji pt. Making a New City
Image Ho zaproponowal system klasyfikacji fragmentow tkanki miejskiej oparty

na czarno-biatych fotografiach wykonanych z perspektywy cztowieka uzupetionych

38



0 diagramatyczny obraz planu otaczajgcej zabudowy (schwarzplan). Do treningu sieci
neuronowej autor wykorzystat oryginalne, oznaczone przez Lyncha fotografie pochodzace
Zjego roboczego archiwum. Skuteczno$¢ algorytmu zostala oceniona poprzez kolazowe
dodawanie kolejnych obiektéw na testowanych krajobrazach miejskich — zaréwno na
poddanemu fotomontazowi zdjeciu, jak 1 na odpowiadajgcym mu schwarzplanie. W miare
dodawania budynkoéw  do krajobrazu  przedstawiajacego  ,,niedzielnice”,  algorytm
klasyfikacyjny w pewnym momencie zaczyna rozpoznawaé obszar jako ,,dzielnice” (Ho,
2020). Podobny system autorstwa Stephena Lawa i in. klasyfikuje wej$ciowe zdjecia sferyczne
Street View wzgledem typu sfotografowanych fasad na cztery kategorie: fasady puste (pelne
mury, ploty, etc.), aktywne jednostronnie, aktywne dwustronnie oraz zdjecia bez fasad
miejskich. Autorzy nie poprzestali jedynie na wytrenowaniu skutecznego algorytmu, ale
wykorzystali opracowany system do przeprowadzenia dalszych analiz. Sprawdzono mig¢dzy
innymi korelacje migdzy aktywnoscig fasad a rgcznie oznaczanym przez ankietowanych
wspolczynnikiem ,,sceniczno$ci krajobrazu”. Wedlug wynikéw na ograniczonej probie
ankietowanych aktywne fasady zdaja si¢ sprzyjaé ,,scenicznosci” okolicy. Sprawdzono takze
korelacje migdzy aktywnoscia fasad a cenami poszczegodlnych nieruchomosci. Okazalo sig, ze
aktywno$¢ fasad w bezposrednim otoczeniu nieruchomos$ci nie jest istotnym czynnikiem
wplywajacym na ceng, jednak aktywno$¢ fasad mierzona jako $rednia dla catego sgsiedztwa
jest juz czynnikiem silnie skorelowanym z ceng (dzielnice z wyzszym wskaznikiem aktywno$ci
fasad zazwyczaj maja tez wyzsze ceny nieruchomosci). Przy pomocy wizualizacji gradientow
aktywacji poszczegolnych warstw sieci odpowiadajacych za rozrdznianie poszczegdlnych klas,
autorom udato si¢ takze zwizualizowa¢ mapy ,,uwagi”, ktorg sie¢ neuronowa skupia na
konkretnych obszarach zdjecia przy podejmowaniu decyzji. Mapy te pozwalajg na
wizualizacje poszczegdlnych rodzajow fasad bezposrednio na wejsciowych zdjeciach
sferycznych (Law, i in., 2018). Dosy¢ szeroko stosuje si¢ takze klasyfikacje obiektow
widocznych na zdjgciach lotniczych i satelitarnych. Na potrzeby projektowania i zarzadzania
algorytmy takie moga by¢ przydatne do automatycznego rozpoznawania drzew, budynkow,
drog czy wigkszych struktur trudniejszych do uchwycenia z perspektywy cztowieka (Pourazar,
iin., 2021).

Szczegdlnym rodzajem problemow klasyfikacyjnych jest segmentacja semantyczna
(ang. semantic segmentation) nazywana takze klasyfikacja na poziomie piksela (pixel-level
classification) (Long, i in., 2015). Segmentacja semantyczna polega na podziale wejSciowego

obrazu (lub innych danych wektorowych) na strefy odpowiadajace poszczeg6lnym kategoriom
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(Rys. 7). Mozliwe jest wiec przykladowo wyszczegdlnienie doktadnych obrysow
poszczegblnych obiektéw znajdujacych si¢ na zdjeciu. Neuronowa klasyfikacje na poziomie
piksela wykorzystuje miedzy innymi wspomniany juz wczesniej zespot z Osaki, kierowany
przez Tomohire Fukude 1 Nobuyoshi Yabuki. Fukuda 1 in. uzywaja segmentacji semantycznej
do przetwarzania scen miejskich przedstawionych na fotografiach z perspektywy czlowieka
oraz zdje¢ sferycznych na potrzeby urbanistycznych wizualizacji w rzeczywisto$ci mieszanej
(ang. MR: Mixed Reality). Przy pomocy segmentacji neuronowej mozna generowac¢ maski
oddzielajace pierwszy plan zabudowy od jej tta w celu zwizualizowania modelu przestanianych
obiektow projektowanych (Nakabayashi, i in., 2021), lub maski oddzielajace konkretny
budynek od otoczenia w celu zautomatyzowanej wizualizacji krajobrazu miejskiego po jego
wyburzeniu (Kikuchi, i in., 2021; Fukuda, i in., 2017).

Rys. 7. Przyktadowe zdjecia z drona pobrane z bazy danych UAVid stworzonej przez Lyu,

Vosselmana, Xia i in. stuZzgcej do trenowania neuronowych algorytmow semantycznej
segmentacji. Poszczegolne klasy obiektow widoczne na zdjeciu oznaczone sq na

wizualizacjach réznymi kolorami wyznaczajgcymi ich obrysy (Lyu, i in., 2018).

Klasyfikacji i segmentacji semantycznej mozna poddawaé takze inne niz zdjecia formaty
danych. We wczesnych latach dwutysigcznych Kauko, Hooimeijer i Hakfoort wykorzystali
algorytm oparty na sieci neuronowej typu SOM (ang. Self-Organizing Map)
do przeprowadzenia klasyfikacji domoéw na sprzedaz wzgledem ,,podrynkow” rynku
nieruchomosci w Helsinkach. Przez ,,podrynki” autorzy rozumieli grupy zblizonych cenowo
i jakosciowo nieruchomosci oddzielonych od innych grup gwaltownymi, nieliniowymi
rozbiezno$ciami w stosunku ceny do jakosci. Opracowany algorytm dokonywatl klasyfikacji na
podstawie dziesigciu  wyodrgbnionych zmiennych niezaleznych opisujacych dang

nieruchomos$¢. Analiza procesu klasyfikacji przeprowadzanej przez sie¢ neuronowag pozwolita
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autorom na identyfikacj¢ tych zmiennych, ktore miaty kluczowy wptyw na segmentacje rynku
nieruchomosci. Kluczowymi zmiennymi dla kontekstu Helsinek okazaty si¢ lokalizacja i rodzaj
nieruchomosci. Paradoksalnie sama cena miala na podziat rynku o wiele mniejszy wpltyw
(Kauko, i in., 2002). Bardziej wspoiczesnym przyktadem wykorzystania danych
multimodalnych w Kklasyfikacji jest metoda strefowania miasta wedlug obszarow
funkcjonalnych, opracowana przez naukowcéw z uniwersytetu w Wuhan. Zréznicowane dane
opisujace badany obszar, obejmujace odleglosci od centrow handlowych, pochylenie terenu,
zageszezenie placowek medycznych, odleglosci od drég, etc., zostaty przedstawione w formie
gradientowych map pokrywajgcych badany teren. Wytrenowana na tych danych sie¢
neuronowa potrafila skutecznie dzieli¢ miasto na strefy funkcjonalne i, co wiecej, mogla by¢
przydatna przy symulowaniu zmian w strefowaniu wywotanych przez zmiany wprowadzone w

tkance miejskiej opisywanej przez dane wejsciowe (Zhai, i in., 2020).

Urbanistyka: przewidywanie przyszlosci

Jednym z ciekawszych zastosowan sieci neuronowych sa proby przewidywania przysztosci
w relacji do zjawisk cyklicznych i procesow cigglych. Na podstawie danych historycznych oraz
informacji o stanie obecnym, w teorii, mozliwe jest formulowanie prognoz o przewidywanych
zmianach urbanistycznych w réznych przedziatach czasowych. W jednym z wczesniejszych
omawianych tu zastosowan sieci neuronowych w modelowaniu zjawisk w przestrzeni
geograficznej, Manfred Fischer i Sucharita Gopal zaproponowali metodg¢ przewidywania
przysziego obcigzenia sieci telekomunikacyjnej w Austrii opartg na historycznych danych
dotyczacych wykorzystania sieci. Mimo ze opracowanie to nie miato charakteru stricte
urbanistycznego, to na podstawie wynikow autorzy juz w 1994 roku zauwazyli potencjal
drzemigcy w sieciach neuronowych i przewidzieli wplyw jaki wywrze glebokie uczenie

maszynowe na przetwarzanie ztlozonych danych przestrzennych:

, Wyniki analiz na chaotycznych, rzeczywistych danych telekomunikacyjnych
0 ograniczonej dlugosci zapisu wykazaly wyzszos¢ modeli opartych na sieciach
neuronowych nad klasycznymi metodami regresji funkcji. (...) Sieci neuronowe
odegrajq wazng role w geografii i badaniach regionalnych nie tylko w modelowaniu
interakcji przestrzennych, lecz takze w sferze rozpoznawczych analiz przestrzennych. Co
do zasady sieci neuronowe dobrze radzq sobie z problemami reprezentowanymi przez

obszerne zbiory danych wybrakowanych, niedokladnych i opisujgcych niejednoznaczne
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zjawiska, ktore trudno modelowaé przy pomocy konwencjonalnych technik

statystycznych.” [thumaczenie wiasne] (Fischer i Gopal, 1994, s. 21)

W 2004 roku Anthony Gar-On Yeh i Li Xia na przykladzie gwaltownie rozrastajacego
si¢ miasta Dongguan w Chinach probowali przewidywac¢ prawdopodobienstwo rozbudowy
miasta na testowanych obszarach. Na podstawie siedmiu zmiennych wyodrebnionych ze zdjec¢
satelitarnych i1 systeméw GIS-owych prosta, trojwarstwowa sie¢ neuronowa wytrenowana
na przyktadach z dwéch momentéw w czasie potrafita wedtug autorow generowac wiarygodne
propozycje przy zatozeniu, ze sie¢ transportu w miescie nie ulegnie zmianie (Yeh i Xia, 2004).
Przy zastosowaniu podobnej metodyki i poréwnywalnych danych wejsciowych (cztery cechy
wyodrebnione na podstawie zdje¢ satelitarnych systemu LISS III) w 2010 roku Maithani i in.
opracowali metode strefowania miasta wzgledem potencjatu rozrostu urbanistycznego. Metoda
zostata przetestowana na indyjskim miescie Dehradun w celu prognozowania jego przysztej

rozbudowy (Maithani, i in., 2010).

Obecnie do przewidywania przysztosci przy pomocy glebokiego uczenia maszynowego
najczesciej wykorzystuje si¢ szeregi czasowe, czyli zbiory obserwacji uporzadkowane wedtug
czasu ich uzyskania (PWN, 2022). Boulila i in. wykorzystali segmentacj¢ semantyczng
miejskich zdje¢ satelitarnych do stworzenia obrazéw przedstawiajacych same tereny
zabudowane ulokowane na czarnym tle. Otrzymane z r6znych okreséw mapy zostaly ustawione
w szeregi czasowe, na podstawie ktorych wytrenowano sie¢ neuronowa przewidujaca
zageszczanie si¢ zabudowy w najblizszej przysztosci. Skuteczno$¢ rozwiagzania przetestowano
na trzech réznych miastach w Arabii Saudyjskiej. Opracowany system moze stuzy¢
identyfikacji obszarow o duzym ryzyku niekontrolowanego rozrostu zabudowy, co z kolei
moze by¢ przydatne w administracyjnym ograniczaniu rozlewania si¢ tkanki miejskiej (Boulila,
i in., 2021). Ze wzgledu na swoja okresowo$¢ w cyklach dziennych, tygodniowych i rocznych
ruch samochodowy w miastach wydaje si¢ dobrym kandydatem do modelowania przez sieci
neuronowe. Przy pomocy gl¢bokiego uczenia maszynowego zatory drogowe w miescie mozna
skutecznie przewidywaé¢ na podstawie szeregow czasowych kolorystycznych diagramow
odpowiadajacych natezeniu ruchu samochodowego w miescie (Ranjan, i in., 2020) lub na
podstawie szeregéw czasowych zbioru trajektorii GPS przedstawionych w postaci wektorowe;j
(Guo, i in., 2019). Prognozowanie nat¢zenia ruchu samochodowego moze by¢ przydatne dla
operatorow systemOw komunikacyjnych, zarzadcéw 1 projektantéw miast oraz samych

mieszkancow. Przy pomocy glebokiego uczenia maszynowego mozna analizowac¢ takze ruch
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pieszy. W tym przypadku duzym problemem jest niska dostepnos¢ danych pomiarowych
umozliwiajacych wytrenowanie algorytmdéw uczenia maszynowego. Nikol Kirova i Areti
Markopoulou z IAAC! proponuja uzbrojenie traktow pieszych w technologie ,.inteligentnych
chodnikéw” miejskich opartych na materiatach sensorycznych. Chodniki takie mogtyby bardzo
precyzyjnie mierzy¢ lokalne natezenie ruchu pieszego. Oprocz prezentacji niewielkiego
prototypu inteligentnego chodnika autorzy przeprowadzili takze komputerowa symulacje
wielkoskalowego systemu. Na podstawie symulowanego ruchu pieszego wytrenowano tez sie¢
neuronow3g zdolng klasyfikowa¢ biezace, indywidualne trasy ruchu poszczegdlnych pieszych i
przewidywa¢é przeptywy ruchu pieszego w niedalekiej przysztosci (Kirova i Markopoulou,
2020).

Urbanistyka: generowanie rozwigzan projektowych

W przypadku neuronowych algorytmow generatywnych gléwnym problemem jest ujgcie
zadania projektowego w ramy umozliwiajace efektywne wykorzystanie glgbokiego uczenia
maszynowego. Konieczne jest odpowiednie sformutowanie treningowych danych wejsciowych
1 wyjSciowych tak, by uchwycic istote funkcji tworczej aproksymowanej przez sie¢ neuronowa.
Jedng z wickszych przeszkod jest praktyczna mozliwos¢ zapewnienia algorytmowi

wystarczajacej liczby przyktadow treningowych.

Najprostsza metoda wydaje si¢ wykorzystanie zebranych automatycznie kontekstow
istniejacych i proba nauczenia sieci odtwarzania wzorcowych rozwigzan w nowych sytuacjach.
Przyktadem takiego podejscia jest algorytm zaprojektowany przez naukowcoé6w z Uniwersytetu
Jiaotong w Pekinie. System ten stuzy generowaniu propozycji obryséw zabudowy w zadanym
kwartale. Zastosowang do tego celu sie¢ neuronowg wytrenowano na 167 przyktadach
schwarzplanow juz zrealizowanych kwartalow znajdujacych si¢ w sasiedztwie obszaru
projektowego (Pan, i in., 2021). Podobny system, ale rozwinigty o mozliwos¢ przetwarzania
oprocz schwarzplanow takze funkcji projektowanej zabudowy, zaproponowat Runjia Tian
Z Harvardzkiej Szkoly Designu. Do treningu autor uzyl istniejacych przyktadow zabudowy
w Bostonie i stanie Massachusetts pobranych z otwartych baz danych GIS. Opracowana metoda
umozliwia przeprowadzenie procesu ,transferu miejskosci”’, czyli generowania propozycji

zabudowy wzorowanej na stylu jednego kontekstu miejskiego w innym kontekscie. Tian

1 1AAC — Institute for Advanced Architecture of Catalonia
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zaprezentowal ten proces generujgc przyktad zabudowy na Manhattanie w stylu zabudowy
bostonskiej (Tian, 2020). Najistotniejszym problemem powyzszych metod jest ograniczona
kontrola nad cechami wygenerowanych rozwigzan. Przy treningu sieci projektant zmuszony
jest korzystac z juz istniejgcych i zrealizowanych obiektow, ktore niekoniecznie majg pozadang
charakterystyke. Kontrola nad zasadami projektowymi sprowadza si¢ do selekcji wzorcowych
rozwigzan shuzacych sieci neuronowej za inspiracj¢. Sformalizowanym przyktadem takiej
kontroli nad projektem jest metoda selekcji danych treningowych wykorzystana przez
naukowcow z uniwersytetu w Kantonie. Przy problemie generowania diagramow
funkcjonalnych 1 obrysow zabudowy kampusoéw uniwersyteckich i szkot podstawowych
selekcja przyktadow istniejacych oparta byta na filtrach zbudowanych z czterech (w przypadku
kampuséw) lub siedmiu (w przypadku szkoét podstawowych) warunkéw, ograniczajgcych
liczbe wzorcow treningowych tylko do tych, ktére spetniaty pozadane cechy projektowe
i zrealizowane byly w podobnych kontekstach. Przyktadowo, brane byly pod uwage jedynie
szkoty podstawowe z wyodrgbnionym placem zabaw, znajdujace si¢ w konkretnej strefie
klimatycznej, zbudowane na ptaskim terenie, etc... Wedlug autorow ograniczenie liczby
przyktadow treningowych tylko do tych spekniajacych zatozone warunki pozwolito

na osiagniecie lepszych i bardziej precyzyjnych rezultatow (Liu, i in., 2020).

Alternatywa do korzystania przy treningu z zalozen istniejacych jest generowanie przyktadow
treningowych przy pomocy algorytméw heurystycznych lub trenowanie sieci w symulacji
metoda glebokiego uczenia ze wzmacnianiem. System stworzony przez Nirvika Sahe, Johna
Haymakera i Dennisa Sheldena opublikowany w formie wtyczki do srodowiska Grasshopper,
wykorzystuje glebokie uczenie maszynowe do sterowania algorytmem generujagcym podzialy
przestrzenne w wielu skalach (ang. SAP — Space Allocation Problem). Zamiast uczy¢
si¢ na zadanych przykladach, system stara si¢ generowal strefowanie przestrzeni
maksymalizujace poziom spelnienia matematycznie sformulowanych wymagan projektowych
(Saha, i in., 2020). W podobny sposob dziata algorytm autorstwa Yanana Songa i Philipa F.
Yuana generujacy forme zabudowy kwartatu. W tym przypadku glebokie uczenie maszynowe
modyfikuje forme zabudowy w $rodowisku symulacyjnym oceniajacym efektywno$¢ modelu

wzgledem podmuchow wiatru wywotanych przez geometri¢ kwartatu (Song i Yuan, 2021).

W przypadku, gdy nie jest mozliwa selekcja wystarczajacej liczby przyktadoéw treningowych
na podstawie rozwigzan istniejgcych, ani nie da si¢ wytrenowac sieci na podstawie symulacji,

rozwigzaniem moze by¢ reczne lub poétautomatyczne przygotowanie danych treningowych
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odzwierciedlajacych pozadang funkcje projektowg. De Yu z Kolegium Uniwersyteckiego
w Londynie opracowal system generujacy proponowane ramy funkcjonalne kwartalow
urbanistycznych podporzadkowanych idei ogrodnictwa miejskiego. Do wytrenowania sieci
neuronowe]j bedacej osig procesu, Yu wykorzystal recznie przygotowane, reprezentatywne
przyktady tréjwymiarowych podzialdéw funkcjonalnych pasujacych do konkretnych
kontekstow przedstawionych w formie rzutow i przekrojow (Yu, 2020). Podejécie takie

zapewnia pelng kontrole nad przyktadami treningowymi, jednak wymaga duzego nakladu

pracy.

Urbanistyka: optymalizacja

W zidentyfikowanych Zrédtach bezposrednia optymalizacja jest najrzadszym z zastosowan
sieci neuronowych w urbanistyce. Nalezy jednak zastrzec, ze, jak wspomniano na poczatku
tego rozdziatu, praktycznie kazdy proces treningu sieci neuronowych to w technicznym
znaczeniu proces optymalizacyjny, ktorego celem jest minimalizacja funkcji kosztu. Podobnie,
przy zastosowaniu glebokiego uczenia ze wzmacnianiem, bezposrednim celem algorytmu jest
maksymalizacja wyniku obliczanego na podstawie interakcji sterowanego przez sie¢
neuronowg agenta ze srodowiskiem symulacyjnym. W tym podrozdziale nie chodzi jednak
0 wewnetrzng, posrednig optymalizacje parametrow sieci neuronowych, tylko o wykorzystanie
algorytmoéw glebokiego uczenia maszynowego w docelowej optymalizacji procesow
lub zjawisk urbanistycznych. W tym znaczeniu optymalizacji mozna podda¢ projekt
zagospodarowania kwartatlu, starajac si¢ metoda glgbokiego uczenia ze wzmacnianiem
maksymalizowac estetyke i nastonecznienie. Metodg¢ takg zaproponowali w swojej pracy Han,
Yan i Liu (Han, i in., 2020). Innym przyktadem jest opracowana przez naukowcow
z uniwersytetu w Alicante w Hiszpanii neuronowa metoda relaksacji i uproszczenia siatki
przestrzennej, maksymalizujacej odlegtosci migdzy weztami przy jednoczesnym zachowaniu
zatozonych ograniczen projektowych i1 obrysu obszaru. W projektowaniu urbanistycznym
system taki moze by¢ wykorzystany w planowaniu wolnostojacej zabudowy jednorodzinnej
W sposob zachowujacy jednorodnos¢ gestosci zabudowy na catym obszarze. Przy weztowych
zatozeniach juz istniejacych, natozenie na nie zoptymalizowanej siatki o okreslonej liczbie
wezlow pozwala na przeprowadzenie roznorodnych dzialan urbanistycznych réwnomiernie
obstugujacych wszystkie wezly siatki pierwotnej. Przykladowo, mozliwe jest pokrycie
dzielnicy bezprzewodowa siecig nadajnikow telekomunikacyjnych zapewniajaca jednorodny

zasigg wszystkim mieszkancom (Oliver, i in., 2011).
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2.2.2. Skala architektoniczna — zastosowania sieci neuronowych

Architektura: generowanie rozwigzan projektowych

W skali architektonicznej sieci neuronowe najczesciej wykorzystywane sg jako algorytmy
generatywne. Potencjat sieci neuronowych do radzenia sobie z zadaniami tworczymi zostat
zauwazony przez architektow w okolicach 2015 roku, gdy opracowany przez Google algorytm
DeepDream uswiadomit §wiatu, Ze sieci neuronowe stosowane w klasyfikacji obrazow tworza
ztozone, wewngetrzne ,,wyobrazenia” na temat wyuczonych klas. Wyobrazenia te mozna
zwizualizowaé poprzez iteracyjne wzmacnianie na danym obrazie cech, ktore zwigkszaja
pewno$¢ przewidywania wybranej warstwy sieci (Mordvintsev, i in., 2015).
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Rys. 8. Fantastyczne krajobrazy ,,wysnione” przez opracowany przez Google algorytm

DeepDream, zaaplikowany do sieci neuronowej stuzgcej klasyfikacji obrazow. Krajobrazy
zostaly wygenerowane na podstawie czystego szumu poprzez iteracyjne wzmacnianie
na obrazie wejsciowym cech zwigkszajgcych site aktywacji wybranych neuronow i warstw

sieci neuronowej (Mordvintseyv, i in., 2015).

Zabieg ten pozwala nie tylko na uczytelnienie samego procesu klasyfikacji, ale takze na
generowanie nowych, fantastycznych obrazow ,,wysnionych” przez sie¢ neuronowg

na podstawie wykorzystanego zestawu treningowego i zadanego obrazu startowego (Rys. 8).

Niewiele pdzniej generatywne zdolnosci sieci neuronowych zostaty ujarzmione w pokrewnych
do DeepDream algorytmach neuronowego transferu stylu, pozwalajacych na kontrolowane

| precyzyjne przetwarzanie stylu jednego obrazu tak, by przypominat stylistycznie inny obraz
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(Gatys, i in., 2016). Juz w 2016 roku badacze z Keio University w Japonii przeprowadzili
wstepng eksploracje architektonicznych zastosowan DeepDream i transferu stylu. DeepDream
zostat wykorzystany do generowania nowej warstwy detali architektonicznych natozonych na
zadany obraz wejsciowy, przedstawiajgcy dom jednorodzinny (Rys. 9) oraz do generowania
wlasnych zalozen architektonicznych od zera na podstawie szumu i obrazéw treningowych

przedstawiajacych ,miejsca” 12 .

Neuronowy transfer stylu zostal przetestowany
W przetwarzaniu wizualizacji architektonicznej oraz w wizualizacji zmiany materiatlow
konstrukcyjnych 1 wykonczeniowych  wykorzystanych  przy  danym  obiekcie
architektonicznym. Efekty tych poczatkowych prob byly obiecujace, jednak dato si¢ w nich
zauwazy¢ brak kontroli nad generowanymi rozwigzaniami, ktére niewiele odbiegaty
od bazowych wizualizacji DeepDream i neuronowego transferu stylu zaprezentowanych przez

Google oraz Gatysa, Eckera i Bethge (Silvestre, i in., 2016).

Rys. 9. Sekwencja generowania warstwy nowych detali architektonicznych na zadanym

zdjeciu domu jednorodzinnego. Metoda zaproponowana przez Silvestra, lkedg
I Guene z Keio University, oparta na opracowanym przez Google algorytmie DeepDream
(Silvestre, i in., 2016).

Obecnie architekcei coraz lepiej radza sobie z kontrolowaniem transferu stylu i algorytmow typu
DeepDream w przetwarzaniu zdje¢ i wizualizacji architektonicznych oraz znajduja dla nich
zastosowania wykraczajace poza ich podstawowe funkcje. Matias del Campo, Alexandra
Carlson i Sandra Manninger zebrali wlasny zbior danych treningowych dla sieci neuronowej
przetwarzane] przez algorytm DeepDream. Stworzony zestaw danych ,,Architecture Parts
Dataset” sktadal si¢ z wielu przyktadow konkretnych elementow architektonicznych, takich
jak fontanny, tawki, tuki, itp. W zatozeniu, sie¢ wytrenowana na takich danych treningowych

I przetworzona przez DeepDream powinna lepiej radzi¢ sobie z generowaniem wyobrazen

2 MIT Places Database (Zhou, i in., 2014).
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nowych rozwigzan architektonicznych. Opracowany system potrafit, przyktadowo, na zadanym
w formie wizualizacji kontekscie architektonicznym proponowac lokalizacje 1 forme¢ fontann,
skalniakow czy innych detali (del Campo, i in., 2020). Korzystajac z transferu stylu jako punktu
wyjécia do procesu projektowego, Giiveng Ozel i Benjamin Ennemoser osiagneli imponujace
wizualnie efekty w przeksztalcaniu istniejgcych obiektow architektonicznych na fantastyczne
wariacje na ich temat (Rys. 10). Autorzy opracowali metod¢ proceduralnego tworzenia modeli
3D o wysokiej szczegblowosci z wygenerowanych przez sie¢ neuronowg obrazow
dwuwymiarowych. Dzigki fotogrametrycznej rekonstrukcji otoczenia oryginalnych budynkow
mozliwe jest takze kompozytowe osadzenie wygenerowanych modeli w istniejgcych

kontekstach, umozliwiajace rendering szczegoétowych wizualizacji (Ozel i Ennemoser, 2019).
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Rys. 10. Wizualizacje stworzone przez Giivenga Ozela i Benjamina Ennemosera na

podstawie neuronowego transferu stylu. Wygenerowane przez sie¢ neuronowq
dwuwymiarowe obrazy zostaly przeksztatcone proceduralnie w modele trojwymiarowe

i osadzone kompozytowo w oryginalnych kontekstach (Ozel i Ennemoser, 2019).
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Przy zastosowaniach generatywnych sieci neuronowe mogg korzysta¢ takze z danych
wejsciowych innych niz zdjecia perspektywiczne. Dosy¢ czgsto podejmowane s3a proby
generowania architektury na podstawie rzutdw i1 przekrojow przedstawionych w formie
obrazow rastrowych. Kontynuujac swoje eksperymenty z transferem stylu i testujgc mozliwosci
generatywnych sieci przeciwstawnych [ang. GAN - Generative Adversarial Network
(Goodfellow, i in., 2014)] del Campo, Carlson i Manninger wykorzystali glgbokie uczenie
maszynowe do tworzenia nowych rzutéw architektonicznych. Zaczynajac od transferu stylu,
autorzy zademonstrowali mozliwo$¢ przetworzenia rzutdw w stylu barokowym na rzuty w stylu
modernistycznym, co poskutkowato wygenerowaniem abstrakcyjnych planéw taczacych cechy
obu stylow. Przetwarzajac rzuty dalej, przy pomocy sieci przeciwstawnych, wygenerowano
obrazy na tyle oryginalne, ze rozrdznienie przestrzeni od elementow ja ograniczajacych
przestato by¢ mozliwe, a same rzuty przestaty by¢ rozpoznawalne jako rysunki architektoniczne
(Rys. 11). Wygenerowane reprezentacje zostaly nazwane przez autorOw ,architekturg ery

postludzkiej” (del Campo, i in., 2019).

Rys. 11. Defamiliaryzacja rzutu architektonicznego bedgca skutkiem prac Matiasa del

Campo, Sandry Carlson i Alexandry Manninger. Po lewej rezultat transferu stylu miedzy
rzutem modernistycznym a barokowym (del Campo, i in., 2019), w centrum z lewej rezultat
transferu stylu miedzy rzutem barokowym a modernistycznym (del Campo, i in., 2020),
po prawej abstrakcyjne ,,rzuty” stworzone przy pomocy generatywnych sieci

przeciwstawnych (del Campo, i in., 2019).

W swoich pracach del Campo i in. wychodzili z zatozenia, Ze sieci neuronowe zdolne sg
odczytywac w planach architektonicznych elementy symboliczno-strukturalne (takie jak okna,
$ciany, pustki wnetrz etc.) oraz stylistyczne (jak grubos$¢ $cian, krzywizny, symetri¢ etc.) i
nastgpnie potrafig przetwarzaé te elementy w celu generowania nowej, oryginalnej
architektury. Teza ta zostala poparta poprzez stworzenie przy pomocy sieci przeciwstawnych

,»architektury modernistycznej w stylu architektury barokowe;j”, w ktdrej symetria, masywnosé¢
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1 bujno$¢ zalozen barokowych S$cierajg si¢ symbiotycznie z asymetrig, otwartoscig

I racjonalno$cig rzutdéw modernistycznych (del Campo, i in., 2020).

Do generowania rzutéw architektonicznych przy uzyciu sieci neuronowych podszedt takze
David Newton, wspomniany wcze$niej w konteks$cie urbanistycznych analiz korelacji miedzy
zdrowiem mieszkancéw miast a morfologig tkanki miejskiej (Newton, i in., 2020; Newton,
2021; Newton, 2020). Zauwazyt on, ze architekci czgsto nie dysponuja odpowiednio duzym
archiwum wzorcowych projektow, ktore mogtyby zostaé wykorzystane przy treningu sieci
neuronowych. Zazwyczaj stworzenie duzego zestawu rzutow treningowych, mogacych by¢
wykorzystanymi przy generowaniu konkretnego projektu, jest bardzo czasochtonne
I kosztowne. Newton przetestowal wigc kilka metod zwigkszenia ograniczonej liczby danych
treningowych (ang. Data Augmentation) poprzez losowe obracanie rzutéw o niewielki kat lub
naktadanie na nie losowego szumu o niewielkim nat¢zeniu. Najlepsze efekty przyniosto
naktadanie na rzuty treningowe szumu (Newton, 2019). Wydaje si¢, ze jeszcze oprocz
syntetycznego zwigkszenia liczby obrazéw treningowych warto bytoby w takim przypadku
skorzysta¢ dodatkowo z uczenia transferowego (ang. Transfer Learning), czyli wytrenowaé
algorytm na obszernym zbiorze zrdznicowanych rzutéw architektonicznych i pdzniej
kontynuowa¢ trening tylko na rzutach wzorcowych dla konkretnego projektu, w celu
dostrojenia sieci do zadanego problemu (ang. Fine-Tuning). W czasach popularnosci metod
BIM-owskich obszernym zrédtem danych treningowych dla gtebokiego uczenia maszynowego
moga by¢ wielobranzowe modele BIM. Zespot z japonskiej korporacji Takenaka sprawdzit
mozliwo$ci automatycznego generowania instalacji przeciwpozarowych na podstawie
zadanych rysunkow architektonicznych. Rzuty stuzace treningowi Sieci i generowaniu
instalacji zostaly wyeksportowane w formie rastrowych obrazow z BIM-owskiego modelu
branzy architektonicznej. Archiwum historycznych projektéw instalacyjnych, do ktérego miata
dostep korporacja, byto wystarczajaco obszerne do wytrenowania skutecznej sieci neuronowej
zdolnej do sensownego generowania instalacji przeciwpozarowych, pokrywajacych wszystkie
niezbedne do obstuzenia obszary budynku (Sato, i in., 2020). Przenoszac si¢ z plaszczyzny
poziomej do ptaszczyzny pionowej, Mohammad, Boerkrem i Ellinger zaj¢li si¢ problemem
generowania elewacji budynkéw. Przeciwstawna sie¢ neuronowa zostata przez nich
wykorzystana do eksploracji przestrzeni projektowej w poszukiwaniu mozliwych
do zrealizowania fasad hybrydowych, tgczacych w sobie cechy dwoch réznych typow elewacji.
W pierwszym kroku przy pomocy algorytmow genetycznych parametrycznie wymodelowano

dwa zestawy elewacji o réznigcych si¢ miedzy soba charakterystykach. W jednej grupie
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znajdowaly si¢ elewacje ciagte, uformowane z wielokrzywiznowych plaszczyzn, w drugie;j,
elewacje z silnie akcentowanymi podziatami, uformowane z prostopadto$ciennych modutow.
Sie¢ neuronowa zostata wytrenowana na obu zbiorach jednoczesnie i w efekcie nauczyta si¢
generowac hybrydowe elewacje tgczace cechy obu grup jednoczesnie (Mohammad, i in., 2019).
Wiekszo$¢ popularnych algorytméw glebokiego uczenia maszynowego, implementowanych
w ogodlnodostepnych bibliotekach programistycznych, domyslnie stuzy przetwarzaniu obrazow
dwuwymiarowych. Z tego powodu wiele z ich architektonicznych zastosowan takze operuje na
rysunkach i1 innych reprezentacjach dwuwymiarowych. Chuan Liu i in. zaproponowali prosta
metode przeniesienia tworczych algorytmow opartych na transferze stylu w trzeci wymiar,
poprzez generowanie kratownicowej struktury nos$nej budynku wysokosciowego osobno dla
kolejnych kondygnacji na podstawie ich obrysow. Stworzone w ten sposob kratownice zostaty
potaczone z kratownicami przyleglych kondygnacji przy pomocy parametrycznie
generowanych sko$nych stupoéw (Liu, i in., 2020). Glownym problemem takiego prostego
rozwigzania byl jednak brak logicznej sekwencyjnosci wygenerowanych kondygnacji i relacji
migdzy poszczegdlnymi pigtrami. Z tego powodu stupy taczace kondygnacje byty generowane

losowo, a to dato dosy¢ chaotyczne rezultaty.

Sieci neuronowe sg jednak bardzo elastyczne co do formatu danych wejSciowych. Nic nie stoi
na przeszkodzie, by zamiast danych przedstawionych w formie obrazéw, przetwarzaé projekty
architektoniczne zapisane przy pomocy innych form reprezentacji danych. Szczegdlnie
obiecujgce s3 numerycznie reprezentowane projekty parametryczne. Przyktadowo, projekt
parametryczny wygenerowany w $rodowisku Dynamo lub  Grasshopper moze
by¢ reprezentowany przez sekwencyjny szereg operacji przetwarzajacych strumien danych
poczatkowych w celu wygenerowania formy docelowej projektu. Tak reprezentowany projekt
parametryczny jest zblizony swoja forma do struktury zdania lub algorytmu (np. ,,weZ punkt
A, potraktuj go jako $rodek kota o promieniu r, wytlocz koto prostopadle do jego ptaszczyzny
na odleglos¢ h tworzac walec...”). Varvara Toulkeridou zauwazyla podobienstwo
tak reprezentowanego projektu do zdania i postanowita wykorzysta¢ sieci neuronowe
stosowane zazwyczaj do przetwarzania j¢zyka naturalnego (ang. NLP: Natural Language
Processing) do eksploracji morfologicznej projektu parametrycznego. Sie¢ neuronowa zostata
wykorzystana do sugerowania alternatywnych drég przeptywdw danych przez rdéznorodne,
dostgpne w Srodowisku operacje. Przyktadowo — zadajac sieci poczatek diagramu opisujacego
przeksztatcenia geometryczne projektu, mozna wygenerowac jego kontynuacje w celu

sprawdzenia mozliwych do uzyskania efektow koncowych. Opracowany przez Toulkeridou
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system byl w stanie tworzy¢ poprawne syntaktycznie i semantycznie projekty parametryczne,
skutkujace wygenerowaniem nowych geometrii (Toulkeridou, 2019). Alternatywna metoda
parametryzacji projektu architektonicznego jest przedstawienie go w formie grafowej, w ktorej
program funkcjonalny budynku reprezentowany jest przez we¢zly oznaczajace poszczegdlne
funkcje i krawedzie tgczace funkcje ze sobg. Taka formalizacja projektu z jednej strony pozwala
na ztozone przedstawienie programu funkcjonalnego przektadajacego si¢ na forme obiektu,
a z drugiej strony jest bardzo prosta do wymodelowania matematycznego przy pomocy teorii
grafow. W glebokim uczeniu maszynowym do przetwarzania takich danych uzywa
si¢ grafowych sieci neuronowych oraz sieci Kohonena (ang. SOM: Self-Organizing Map).
W 2018 roku Imdat As, Siddharth Pal i Prithwish Basu skorzystali z bazy projektow domow
jednorodzinnych platformy Arcbazar i dokonali wyboru modeli dostegpnych w formacie
BIM-owskim. Modele zostaly automatycznie przeksztalcone do formy graféw funkcjonalnych
Z przypisanymi powierzchniami pomieszczen. Projektom nadano takze manualnie oszacowane,
liczbowe warto$ci ,.komfortu zycia” i ,komfortu spania”. Oprocz wykorzystania sieci do
generowania nowych programéw funkcjonalnych, autorom udato si¢ takze zidentyfikowaé
podgrafy funkcjonalne pozytywnie skorelowane z metrykami komfortu. Przyktadowo, wedtug
wytrenowanej sieci neuronowej na komfort spania pozytywnie wptywa uktad sktadajacy
si¢ Z kilku osobnych sypialni potaczonych z tatwo dostgpnymi schowkami, garderobami i
tazienkg. Proponowane przez sie¢ diagramy moga tatwo by¢ przetworzone przez algorytm

parametryczny na trojwymiarowy, kubaturowy model koncepcyjny (Rys. 12) (As, i in., 2018).

Podobny system zostat rownolegle opracowany przez Eisenstadta, Langenhana i Althoffa.
W tym przypadku takze wykorzystano grafowa reprezentacj¢ ukltadow funkcjonalnych
| wytrenowano algorytm glebokiego uczenia maszynowego w celu generowania nowych
uktadow na potrzeby koncepcyjnej fazy projektowej. Model zaproponowany przez Eisenstadta
1 in. jest jednak bardziej zaawansowany ze wzgledu na o wiele wigkszy zestaw danych
treningowych (1000 razy wigkszy) i zdolnos$¢ algorytmu do przewidywania takze mozliwych
zmian w uktadzie funkcjonalnym wprowadzanych przez mieszkancéw w trakcie uzytkowania
obiektu (Eisenstadt, i in., 2019). Przestrzenny model architektoniczny mozna przedstawié
tez W postaci chmury punktéw. Jose Algeciras-Rodriguez, korzystajac z takiej reprezentacji,
zaproponowatl metode tektonicznej eksploracji modeli trojwymiarowych poprzez

przetwarzanie modeli wejsciowych przy pomocy sieci Kohonena. Metoda ta pozwala
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na generowanie hybrydowych form taczacych cechy danych modeli referencyjnych.
Zademonstrowane przez autora wyniki interpolacji migdzy modelem Wenus z Milo a Nike
z Samotraki sg dosy¢ zaszumione i wida¢ w nich pewien brak kontroli nad algorytmem, ale sam

proces wydaje si¢ interesujacy i potencjalnie uzyteczny (Algeciras-Rodriguez, 2018).
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Rys. 12. Demonstracja skutecznosci systemu opracowanego przez Asa i in. Po lewej
wygenerowany przez sie¢ neuronowq graf programu funkcjonalnego domu
jednorodzinnego, po prawej automatycznie wygenerowany na podstawie grafu
parametryczny, koncepcyjny model kubaturowy (As, i in., 2018).

Gdy brakuje istniejacych zestawow danych, umozliwiajacych reprezentowanie pozadanej
funkcji generatywnej w postaci zestawu treningowego, mozna skorzysta¢ z potautomatycznych
metod generowania przyktadoéw lub sformutowac¢ problem przy pomocy symulacji giebokiego
uczenia ze wzmacnianiem. Metody potautomatyczne pozwalaja na zwigkszenie kontroli
nad stosowanymi algorytmami parametrycznymi. Liu, Liao i Srivastava wygenerowali przy
pomocy nieneuronowego algorytmu zbior  zrdéznicowanych bryt  zbudowanych
z wymodelowanych przez autorow elementow modularnych. Wygenerowane bryly zostaly
poOzniej oznaczone rgcznie wzgledem czterech cech: monumentalnos$ci, delikatnos$ci, solidno$ci
1 dynamiczno$ci. Na podstawie stworzonego, oznaczonego zestawu modeli wytrenowano sie¢
przeciwstawna generujaca nowe parametry dla algorytmu wykorzystanego do stworzenia
zestawu poczatkowego. Sie¢ definiowata parametry w ten sposob, by wynikowe bryty spetniaty

wymagane cechy (Rys. 13). Przy takim podej$ciu konieczne jest rgczne oznaczenie
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niewielkiego zbioru wygenerowanych, przypadkowych modeli, ale w zamian zyskuje

si¢ kontrole nad dalszymi rezultatami generowanymi przez algorytm (Liu, i in., 2019).
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Rys. 13. Bryly wygenerowane przez system opracowany przez Liu, Liao i Srivastave.
Przeciwstawna sie¢ neuronowa generowata takie parametry dla algorytmu
parametrycznego, by wynikowe bryly w jak najwigkszym stopniu spetniaty wymagane
cechy. Po lewej u gory — bryta z wysokim wynikiem ,, monumentalnosci”, po prawej
u gory — ,,solidnosci”, po lewej u dotu — ,,delikatnosci” i po prawej

U dotu —, dynamicznosci” (Liu, i in., 2019).

Podejscia wykorzystujace glebokie uczenie ze wzmacnianiem sg bardzo zréznicowane pod
wzgledem stosowanych metod, inspiracji i poziomu abstrakcji. Najwigksza zaleta uczenia sieci
neuronowych poprzez symulacje interakcji agent — srodowisko jest duza kontrola projektanta
nad catoscig procesu generatywnego. Alessandro Mintrone 1 Elessio Erioli z uniwersytetu
w Bolonii opracowali hybrydowy system generujacy zwokselizowane, architektoniczne uktady
przestrzenne. System oparty byt na glebokim uczeniu ze wzmacnianiem i algorytmie ,,Wave
Function Collapse” autorstwa Maxa Gumina (Gumin, 2016). WFC jest algorytmem
generatywnym do uktadow przestrzennych tworzacym zlozone, nieoczywiste kompozycje
przestrzenne w dwoch lub trzech wymiarach na podstawie przyktadowych, mozliwych

do wykorzystania fragmentéw. W pracy Mintrone’a i Erioli WFC decyduje o lokalizacji
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I sposobie tgczenia trojwymiarowych modutow, a DRL generuje wypetienie modutu w sposéob
najbardziej pasujacy do kontekstu okreslonego przez optymalizacje wskaznikow gestosci
globalnej i lokalnej, orientacji, taczno$ci konstrukcyjnej i przestrzennej oraz ciaglosci
ptaszczyzn. Skuteczno$¢ systemu zademonstrowano generujgc wielopoziomowy, stabilny
konstrukcyjnie obiekt architektoniczny o interesujacych, wzajemnie potaczonych
przestrzeniach wewngtrznych (Mintrone i Erioli, 2021). Bastian Wibranek i in. wykorzystali
glebokie uczenie ze wzmacnianiem do tworzenia kompozycji przestrzennych ztozonych
z ,,blokow SL” [ang. SL-Block (Shih, 2016)]. Bloki SL to struktury, ktore mozna tgczy¢ ze sobg
w rozne formy tak, ze bloki wzajemnie si¢ unieruchamiajg. Dzig¢ki temu wynikowa forma jest
statyczna. Forma docelowa jest pod petng kontrolg projektanta. Poprzez optymalizacje procesu
hierarchicznego i1 sekwencyjnego uktadania blokéw wzgledem podobienstwa do formy
docelowej, mozliwe jest wytrenowanie sterowanego przez sie¢ neuronowg agenta tworzacego
ztozone formy architektoniczne stabilne nie tylko po wybudowaniu, ale i w trakcie montazu
(Wibranek, i in., 2021). Mozliwe jest takze podejscie do problemu od drugiej strony, w ktorej
to forma docelowa jest wynikiem procesu tworczego algorytmu, a elementy sktadowe
sg projektowane metodami klasycznymi przez architekta. Hosmer, Tigas, Reeves i He
zaproponowali ramowa metode generowania megastruktur mieszkaniowych zlozonych
z zaprojektowanych  klasycznie, modularnych jednostek mieszkalnych sktadajacych
si¢ Z jeszcze mniejszych blokow konstrukcyjnych opartych o siatke przestrzenng rozpicta
na modutach 3,5 x 3,5 x 3,5 m. Sie¢ neuronowa steruje algorytmem, probujac balansowac
miedzy maksymalizacja metryk celow globalnych (jak minimalizacja kosztow materiatlowych
lub maksymalizacja wspoétdzielonych przestrzeni wspélnych), a lokalnych (prywatnosc,
otwarto$¢ na przestrzenie zewngtrzne), mieszczac si¢ jednocze$nie w ograniczeniach
projektowych, takich jak granice dziatki, zatlozone wskazniki zabudowy i konteksty zewnetrzne
(Hosmer, i in., 2020). Najbardziej pragmatycznym z omawianych przyktadéw wykorzystania
glebokiego uczenia ze wzmacnianiem w projektowaniu generatywnym jest ,,Akademia
Agentow Przestrzennych” autorstwa Pedra Velosa 1 Ramesha Krishnamurtiego, stuzaca
do projektowania w formie diagramow funkcjonalnych doméw jednorodzinnych. ,,Akademia”
stanowi symulacj¢ wieloagentowa, w ktorej kazde pomieszczenie reprezentowane jest przez
sie¢ neuronowa. Pomieszczenia ,,walcza” ze soba i jednocze$nie ,,wspotpracuja” w celu
wygenerowania projektu domu jednorodzinnego maksymalizujgcego funkcje przystosowania,
bedacg wynikowa metryk formy, powierzchni 1 wzajemnego uktadu funkcjonalnego

pomieszczen (Veloso i Krishnamurti, 2020).
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Architektura: ewaluacja i przetwarzanie danych

Drugim najpopularniejszym zastosowaniem sieci neuronowych w skali architektonicznej jest
ewaluacja i przetwarzanie danych. W najogolniejszym znaczeniu chodzi tu o bezposrednie
przetworzenie danych jednego rodzaju na inng forme lub na przetworzenie ich na pojedyncza
metryke w celu oceny pewnego aspektu reprezentowanego przez dane. Zakres mozliwych
zastosowan jest bardzo szeroki 1 obejmuje zaréwno pragmatyczne algorytmy stuzace
rozwigzywaniu jednostkowych problemow, jak i ambitne, ztozone systemy przetwarzajace
wiele kontekstow jednoczes$nie. Ciekawym przyktadem praktycznego przetwarzania danych
przy pomocy sieci neuronowej jest system HorizonNet autorstwa Chenga Suna i in. HorizonNet
umozliwia przetworzenie panoramicznego zdjecia, przedstawiajagcego wnetrze pomieszcezenia,
na jego oteksturowany model 3D. Sie¢ neuronowa odczytuje na zdj¢ciach panoramicznych
krawedzie migdzy sufitem, $cianami i podtogg i na tej podstawie generuje jednowymiarowa
reprezentacje uktadu $cian. Reprezentacja taka jest wystarczajgca do zrekonstruowania modelu
trojwymiarowego catego pomieszczenia. Dzigki odpowiednio duzej grupie w zbiorze
treningowym przyktadow podchwytliwych sie¢ nauczyta si¢ takze prawidlowo generowac
niewidoczne, ukryte za zalomami fragmenty pomieszczen (Sun, i in., 2019). Przykladem
bardziej ztozonego systemu jest wieloskalowy projekt koncepcyjny ,,Emoting City” autorstwa
Sayjela Vijaya Patela i in. W zaloZeniu tym sieci neuronowe maja stuzy¢ przetwarzaniu emocji
uzytkownikéw przestrzeni zbudowanej na aktywna, fizyczng odpowiedz elementéw
architektonicznych. Pomyst zostal zademonstrowany na niewielkiej instalacji, w ktorej
zachowanie uzytkownika przetwarzano przy pomocy sieci splotowych na ruch i o$§wietlenie
zautomatyzowanych, ruchomych luster reagujacych na emocje osoby korzystajacej z instalacji.
W pehoskalowej implementacji ,,Emoting City” interfejsem sterowania byloby samo
zachowanie czlowieka odczytane przez sensory 1 przetwarzane przez sieci neuronowe.
Elementami aktywnymi, dostosowujacymi przestrzen do czlowieka, moglyby by¢ roboty,
ruchome powierzchnie lustrzane i przestrzenie autoplastyczne, potrafigce zmieniaé swoja

form¢ w odpowiedzi na odebrane bodZce sensoryczne (Patel, i in., 2020).

Zdolnosci sieci neuronowych do aproksymowania réznorodnych funkcji wykorzystywane
sado przyblizania wynikéw kosztownych pod wzgledem obliczeniowym symulacji
komputerowych. Sieci neuronowe latwo mozna wytrenowaé na rzeczywistych danych
pomiarowych lub na precyzyjnych wynikach bardziej skomplikowanych symulacji.
Wytrenowana sie¢ moze generowa¢ wyniki zblizone do rzeczywistych bez konieczno$ci

dokonywania kosztownych pomiarow lub przeprowadzania czasochtonnych symulacji
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wymagajacych duzych zasobdéw obliczeniowych. W latach 90., gdy symulacje energetyczne
budynkow nie byly jeszcze szeroko stosowane, sieci neuronowe byly jedynymi dostgpnymi
algorytmami potrafigcymi przeprowadza¢ trafne symulacje pewnych zlozonych proceséw.
W 1994 roku William Stevenson wytrenowal na danych pomiarowych sie¢ neuronowg
przetwarzajacg wejSciowe szeregi czasowe opisujace nastonecznienie budynku i1 temperaturg
na zuzycie energii elektrycznej oraz zuzycie cieptej i zimnej wody. Dzigki takiej sieci mozliwe
jest przewidywanie wydajnos$ci energetycznej budynku wzgledem warunkow zewnetrznych.
Biorac pod uwage prostote wykorzystanej sieci, osiggni¢te wyniki byty zaskakujaco doktadne.
Najgorzej sie¢ radzila sobie z przewidywaniem zuzycia energii elektrycznej, poniewaz przez
brak dostepu do informacji o dniu tygodnia pomiaru sie¢ nie byla w stanie uchwycic¢
weekendowych zmian w zapotrzebowaniu na energi¢ elektryczna (Stevenson, 1994b). loannis
Chatzikonstantinou 1 Sevil Sariyildiz przeprowadzili bardzo skrupulatne badanie zdolnos$ci
réznych algorytmoéw uczenia maszynowego do przyblizania dwoch metryk komfortu
wizualnego w przestrzeniach biurowych: autonomii®® $wiatla dziennego DA (ang. Daylight
Autonomy) 1 wspolczynnika prawdopodobienstwa ol$nienia $wiattem dziennym DGP
(ang. Daylight Glare Probability). Przetestowane algorytmy obejmowaty jednokierunkowe
sieci neuronowe FNN (ang. Feedforward Neural Network), maszyny wektorow nosnych SVM
(ang. Support Vector Machine) oraz losowe lasy decyzyjne RF (ang. Random Forest). Dane do
treningu sieci neuronowej i metod alternatywnych wygenerowano przy pomocy symulacji
komputerowej. W przewidywaniu autonomii $wiatta dziennego najlepiej radzita sobie maszyna
wektorow nosnych, ale  juz przy bardziej skomplikowane;j metryce
prawdopodobienstwa Wystapienia ol$nienia, najlepsze wyniki osiggneta sie¢ neuronowa
(Chatzikonstantinou i Sariyildiz, 2016). Asl, Das, Tsai, Molloy i Hauck stworzyli hybrydowy
system ,,Energy Model Machine”, wykorzystujacy sie¢ neuronowa i drzewo decyzyjne (ang.
Decision Tree) do ewaluacji wydajno$ci energetycznej budynkow. Model zostal wytrenowany
na danych wygenerowanych symulacyjnie. System umozliwia przyspieszenie procesu
projektowania iteratywnego dzigki ominigciu konieczno$ci przeprowadzania pelnych symulacji
przy kazdym wygenerowanym ukladzie przestrzennym. Na zademonstrowanym przez autorow

przyktadzie parametrycznego projektu budynku biurowego implementacja algorytmu

13'W tym kontekscie ,,autonomia” oznacza procent czasu, w ktdrym poziom o$wietlenia przekracza wartoéé

docelowa (Heschong, i in., 2012).
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pozwolita na doktadniejsza eksploracje¢ przestrzeni projektowej. Mozliwa byta szybka
ewaluacja energetyczna az siedmiu tysiecy wariantow (Asl, i in., 2017). Podobny algorytm
zaproponowali Singh, Schneider-Marin, Harter, Lang i Geyer. Stworzyli oni system
pozwalajagcy na ewaluacje wydajnosci srodowiskowej budynku we wczesnej fazie
projektowania poprzez probabilistyczne szacowanie kosztow energii zuzytej w catym cyklu
zycia obiektu. Podobnie jak przy propozycji Asla i in., gtowna korzyscig plynaca z
zastosowania algorytmu jest usprawnienie procesu projektowego (Singh, i in., 2020). Walter
Mazuroski i1 in. wykorzystali sieci neuronowe do przyblizania wynikow szeregu symulacji typu
BPS (ang. Building Performance Simulations), w tym przeplywu powietrza we wnetrzach,
trojwymiarowego transferu ciepta oraz symulacje systemoéw instalacyjnych (ogrzewanie,
wentylacja i klimatyzacja) (Mazuroski, i in., 2018). Podchodzac do problemu
fragmentarycznie, Adam Sebestyen i Jakub Tyc skupili si¢ na wydajnosci srodowiskowej
samych elewacji i wytrenowali sie¢ neuronowa przewidujaca, na podstawie zadanej geometrii,
spodziewane zacienienie wytworzone przez projektowang elewacje 1 intensywno$é
promieniowania stonecznego we wnetrzach (Sebestyen i Tyc, 2020). Ze wzgledu na swoja
uniwersalnos¢, sieci neuronowe moga by¢ takze stosowane przy przyblizaniu wynikéw bardziej
skomplikowanych symulacji, utatwiajacych podejmowanie decyzji projektowych. Sherif
Tarabishy, Stamatios Psarras, Marcin Kosicki i Martha Tsigkari opracowali neuronowy system
upraszczajacy ztozone, czasochlonne symulacje stuzace ocenie tacznosci przestrzennej i
wizualnej w projektowanej przestrzeni. Stworzony algorytm moze przetworzy¢ dowolny rzut
architektoniczny na mapy intensywnosci potaczen migdzy pomieszczeniami oraz na diagramy
facznosci wizualnej. Analizy takie sg szczegolnie uzyteczne przy projektowaniu miejsc pracy
w przestrzeniach biurowych. System dziata wystarczajgco sprawnie, by ocenia¢ rzuty tworzone

przez architekta w czasie rzeczywistym (Tarabishy, i in., 2020).

Ciekawe zastosowanie dla sieci neuronowych znalezli takze Nicholas, Chen, Borpujari, Bartoc
i Refsgaard ze Szkoty Architektury Dunskiej Akademii Krolewskiej. Stworzyli oni
sekwencyjny system ztozony z kilku dziatajacych w tandemie sieci neuronowych, stuzacych
ewaluacji skutkéw modernizacji elewacji i dachow domoéw jednorodzinnych. Najpierw, przy
pomocy transferu stylu, generowana jest wizualizacja pokrycia budynku nowymi, izolacyjnymi
panelami wykonczeniowymi. Potem, na podstawie wygenerowanych elewacji, inna siec¢
neuronowa przeprowadza gradientowe symulacje energetyczne biorgce pod uwage strefe
klimatyczng, w ktorej znajduje si¢ dany budynek. Kolejna sie¢ neuronowa przetwarza zebrane

w ten sposob informacje w celu obliczenia wskaznikow skalarnych przeprowadzonej
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modernizacji: przewidywanego kosztu zakupu i instalacji paneli oraz zyski z ograniczenia
emisji CO2 do atmosfery wynikajace ze zmniejszenia zapotrzebowania energetycznego
budynku. W artykule opisujacym opracowany system autorzy zwracaja uwage na korzysci
wynikajace z mozliwosci eksploracji przestrzeni ukrytej (ang. Latent Space) sieci neuronowe;j.
W czasie treningu sie¢ neuronowa tworzy wewnetrzne reprezentacje wyuczonej dystrybucji
danych treningowych w postaci hiperprzestrzeni, w ktorych wymiarami sg mozliwe warto$ci
aktywacji neuronow w jednej z warstw sieci'®. Wszystkie mozliwe do wygenerowania przez
sie¢ dane wyjsciowe sg reprezentowane jako punkty lub wektory probkowane z przestrzeni
ukrytej. Nicholas i in. wykorzystali reprezentacje w przestrzeni ukrytej do probkowania z niej
wizualizacji o réoznym stopniu pokrycia elewacji i dachu zmodernizowanymi panelami.
Po przeprowadzeniu redukcji wymiar6w z przestrzeni wielowymiarowej na czterowymiarowa
przy pomocy analizy gtownych sktadowych PCA (obrocenie uktadu wspolrzednych
i rzutowanie na przestrzen mniej wymiarowa), autorzy zidentyfikowali dwie glowne osie
sktadowe przestrzeni ukrytej: jedna odpowiadajaca za liczbe paneli na $cianach,
druga — za liczbe paneli na dachu. Zidentyfikowane osie byly wykorzystane do liniowej
kontroli nad stopniem pokrycia budynkéw nowymi panelami (Nicholas, i in., 2021).
Z tandemowych sieci neuronowych przetwarzajacych sekwencyjnie dane wejSciowe
skorzystali takze Hamid Mehmood i Nitin K. Tripathi w opracowanym w 2011 roku systemie
lokalizacyjnym dzialajagcym we wnetrzach budynkéw na podstawie sity sygnatu Wi-Fi.
Stworzony system potrafit w przyblizeniu ocenia¢ potozenie w budynku w trzech osiach
Z doktadnos$cia $rednia wynoszaca 1,9m, co zapewnialo lepsza precyzj¢ lokalizacji

we wngtrzach niz system GPS (Mehmood i Tripathi, 2013).

Przetwarzanie danych wejsciowych do ich reprezentacji w przestrzeni ukrytej jest bardzo
poteznym narzgdziem umozliwiajagcym nie tylko kontrole nad samg siecig neuronows, lecz
takze przeprowadzanie operacji geometrycznych 1 przestrzennych, ktérych nie datoby
si¢ przeprowadzi¢ bezposrednio na przestrzeni cech danych wejsciowych. Jaime de Miguel i in.
zaproponowali metode eksploracji przestrzeni projektowej opartej na reprezentacji
W przestrzeni ukrytej. Zaczynajac od dwodch poczatkowych, uproszczonych modeli

architektonicznych reprezentowanych w formie mapy polaczen w zwokselizowanej przestrzeni

14 W klasycznych, w pehi polaczonych sieciach jednokierunkowych, kazdej warstwie sieci odpowiada osobna

przestrzen ukryta o liczbie wymiaréw odpowiadajacej liczbie neurondw.
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trojwymiarowej, wygenerowano zbiér 3000 modeli bedacych pochodnymi modeli
podstawowych poddanych pewnym przeksztalceniom (ang. Data Augmentation). Modele
te zostaty wykorzystane do wytrenowania sieci typu autoenkoder, ktora stworzyta w przestrzeni
ukrytej dwuwymiarowg reprezentacje dystrybucji modeli treningowych. Probkujac punkty
Z tej przestrzeni, mozna generowa¢ nowe modele, znajdujgce si¢ na dwuwymiarowym
spektrum mi¢dzy modelami poczatkowymi (de Miguel, i in., 2019). Zaproponowana metoda
poszukiwania formy bylaby niemozliwa do zrealizowania bez glgbokiego uczenia
maszynowego. Podobny algorytm zostat opracowany przez Adama Sebestyena, Johann¢ Rock
i Ursa Leonharda Hirschberga. W tym przypadku takze wytrenowano autoenkoder na zbiorze
15000 prostych, wygenerowanych automatycznie bryl geometrycznych. Pierwsza potowa
modeli oparta byta na poddanej przeksztatceniom kuli, druga na przeksztalconym szescianie.
Na wejsciu sieci neuronowej modele reprezentowane byly w formie zwokselizowanej. Autorzy
nie tylko zademonstrowali mozliwo$¢ ptynnego przechodzenia migdzy réoznymi brytami, lecz
takze zaprezentowali mozliwo$¢ przeprowadzania semantycznych operacji arytmetycznych
na geometriach poprzez dodawanie i odejmowanie wektorOw reprezentacji w przestrzeni
ukrytej (Rys. 14) Wyniki tych operacji dowodza, ze wytrenowana reprezentacja ukryta rozpigta

jest na sktadowych o dosy¢ wysokim poziomie abstrakcji (Sebestyen, i in., 2021).

L sUBSTRACT 4| ADD + A

Rys. 14. Mozliwos¢ przeprowadzania semantycznych operacji arytmetycznych na wektorach
w przestrzeni ukrytej zademonstrowana przez Sebestyena i in. Scis'nigly szescian minus

szescian plus kula = scisnieta kula (Sebestyen, i in., 2021).

Alternatywne podejscie do eksploracji przestrzeni projektow trojwymiarowych bryt
architektonicznych zaproponowali Hang Zhang i Ye Huang z uniwersytetu w Pensylwanii.
Zamiast korzysta¢ z reprezentacji ukrytej zakodowanej przez autoenkoder, autorzy stworzyli
wlasng metode wykorzystujaca przeciwstawne sieci generatywne. W metodzie tej model

trojwymiarowy krojony jest najpierw na seri¢ uszeregowanych przekrojow, na ktorych trenuje
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si¢ sie¢ przeciwstawng. Generowane przez sie¢ przekroje moga by¢ z powrotem przeksztatcone
w model trojwymiarowy. Dzigki zastosowanej metodzie mapowania 3D-2D-3D mozliwe jest
przetwarzanie geometrii trojwymiarowych przy pomocy klasycznych sieci przeciwstawnych
operujagcych na obrazach dwuwymiarowych. Opracowany algorytm takze pozwala
na przeprowadzenie eksploracji formalnej. Mozliwa jest przyktadowo interpolacja migdzy
budynkami w dwdch réznych stylach architektonicznych skutkujaca wygenerowaniem nowe;j
formy, jak bryty znajdujacej si¢ migdzy stylem opery w Sydney a stylem katedry Notre Dame
w Paryzu (Zhang i Huang, 2020). Bardzo przyszto$ciowym kierunkiem badan wydaje
si¢ podej$cie zaproponowane przez Hanga Zhanga z Uniwersytetu Pensylwanii. Autor
opracowat wlasny system przetwarzania tekstu naturalnego opisujacego szczegoétowo projekt
architektoniczny na macierze reprezentujace uklad funkcjonalny obiektu. Macierze
sa nastepnie przetwarzane przez grafowa, splotowa sie¢ neuronowg na diagramatyczne,
grafowe przedstawienie ukladu funkcjonalnego pomieszczen i1 potaczen migdzy nimi.
Na tej podstawie parametrycznie generowany jest model budynku. Pomyst oparcia systemu
na tekstowej reprezentacji architektury wydaje si¢ bardzo trafiony ze wzgledu na potencjat
wykorzystania w ramach dalszych prac najskuteczniejszych 1 najpotezniejszych modeli
glebokiego uczenia maszynowego, stuzacych przetwarzaniu jezyka naturalnego (Zhang, 2020).
Podobne nadzieje wzgledem mozliwos$ci implementacji pochodnych najnowszych algorytmow
NLP (ang. Natural Language Processing) budzi system ,,BIMToVec” autorstwa Mahankaliego,
Johnsona i1 Andersona sluzacy do przetwarzania modeli BIMowskich do zakodowanej
semantycznie formy wektorowej (Mahankali, i in., 2018). Jeszcze inny system oparty na
grafowej sieci splotowej opracowali del Campo, Carlson i Manninger. W pierwszym kroku
wytrenowano sie¢ neuronowg do klasyfikacji prostych, niskopoligonowych, recznie
tworzonych modeli przedstawiajacych kolumny i domy jednorodzinne. Modele oznaczono
dodatkowo warto§ciami oceniajagcymi ich styl, estetyke i funkcjonalno$¢. Wytrenowany
algorytm z jednej strony moze bezposrednio ocenia¢ klas¢ 1 zmienne warto$ciujagce model,
ale z drugiej strony, propagowany wstecz moze stuzy¢ eksploracji przestrzeni projektowej
i generowaniu nowych modeli spetniajacych zadane wymagania. Niestety, interpretacja
osiagnietych przez del Campo i in. dosy¢ abstrakcyjnych wynikow jest trudna ze wzgledu na
zastosowane przez autorOw agresywne przeksztalcenia sluzace zwigkszeniu liczby danych

treningowych, ktére utrudniaja rozpoznanie poszczegdlnych klas juz w zbiorze treningowym

(del Campo, i in., 2020).
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Przetwarzaniem danych jest takze wizualizacja projektow architektonicznych. Sieci neuronowe
moga by¢ wykorzystane do tworzenia fotorealistycznych lub stylizowanych wizualizacji na
podstawie prostych, linearnych szkicow. Podstawowe mozliwosci wykorzystania transferu
stylu w wizualizacji architektonicznej zaprezentowali Yick Hin Edvin Chan i A. Benjamin
Spaeth z Universytetu Cardiff. Autorzy zdecydowali si¢ wytrenowaé system na recznie
rysowanych, perspektywicznych szkicach budynkéw wolnostojacych  zestawionych
Z odpowiadajacymi im fotografiami. Przez r¢czne rysowanie przykladoéw treningowych sie¢
zostala wytrenowana jedynie na 84 obrazach, przez co wykazywala objawy
przetrenowania (ang. overfitting) i miata problem z generalizacjg na niespotkane w treningu
przyktady (Chan i Spaeth, 2020). O wiele bardziej funkcjonalny, analogiczny system zostat
stworzony przez Kyle’a Steinfelda z Uniwersytetu Kalifornii w Berkeley. Napotkane przez
Chana 1 Spaetha problemy zostaly rozwigzane poprzez wyspecjalizowanie algorytmu
i zautomatyzowanie  generowania  przyktadow  treningowych.  Algorytm  zostal
wyspecjalizowany jedynie do widokow aksonometrycznych o staltym nachyleniu kamery
I jednorodnym o$wietleniu, co znaczaco ujednolicito przyktady treningowe i uproscito problem
aplikacji transferu stylu. Pary treningowe zostaly wygenerowane automatycznie poprzez
komputerowe renderowanie wizualizacji zbioru modeli trojwymiarowych w formie
fotorealistycznej (z teksturowaniem i cieniowaniem) oraz w formie linearnej stylizowanej
na rysunek odreczny. Podejscie zautomatyzowane pozwolilo na wygenerowanie znacznie
wiekszego zbioru treningowego, co umozliwito modelowi nauczenie si¢ radzenia sobie
z 0 wiele bardziej zréznicowanymi geometriami i teksturami. Opracowany algorytm zostat
zaimplementowany w postaci wtyczki do programu Photoshop i wykorzystany w trakcie zajeé
projektowych ze studentami architektury (Rys. 15). Wytrenowane przez sie¢ neuronowg
aksonometryczne wizualizacje poshuzyty studentom jako punkty wyjscia do dalszych prac

projektowych (Steinfeld, 2020).
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Rys. 15. System Sketch2Pix opracowany przez Kyle’a Steinfelda stuzgcy do przetwarzania
linearnych szkicow aksonometrycznych na ich fotorealistyczne wizualizacje. Po lewej
przyktady prostych modutow zwizualizowanych przez algorytm, po prawej dwa przykiady
kolazy stworzonych przez studentow architektury korzystajqcych z algorytmu Sketch2Pix
W trakcie zaje¢ projektowych (Steinfeld, 2020).

Architektura: klasyfikacja

W wigkszosci dziedzin klasyfikacja, detekcja 1 segmentacja semantyczna sa jednymi
Z popularniejszych zastosowan dla glebokiego uczenia maszynowego. Klasyfikacja jest
stosowana takze w problemach projektowych w skali architektonicznej. Najczesciej
do klasyfikacji wykorzystywane sg projekty architektoniczne przedstawione w formie
rastrowych rzutow i przekrojow. Jednym z prostszych zastosowan jest sam problem
rozpoznawania, czy dany rysunek architektoniczny przedstawia rzut czy przekrdj. Algorytm
zdolny do klasyfikacji typow rysunkow technicznych mogtby by¢ przydatny przy cyfryzacji
papierowych archiwoéw architektonicznych. Zautomatyzowane sortowanie materiatlow
mogloby zwigkszy¢ efektywnos¢ procesu cyfryzacji duzych zbiorow rysunkow. W 2019 roku
Jennifer Mei Yee Ng i in. opracowali wiasnie taki system wykorzystujacy sie¢ neuronowg
do rozrdzniania rzutoéw od przekrojow (Ng, i in., 2019). O krok dalej poszli Can Uzun i Meryem
Birgiil Colakoglu z Politechniki w Istambule, wykorzystujac gtebokie uczenie maszynowe

nie tylko do klasyfikacji rzutéw i przekrojow, ale i do ich detekcji, czyli doktadnej lokalizacji
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na arkuszu 1 rozpoznawania ich obryséw. Detekcja pozwala na odpowiednie przycigcie
arkusza, tak by rysunek przedstawial jedynie rzut czy przekroj, bez elementéw dodatkowych
jak tabele czy opisy (Colakoglu i Uzun, 2019). Rzuty i przekroje mozna poddaé takze
segmentacji semantycznej, czyli grupowaniu fragmentow obrazu wejsciowego wzgledem
wybranych klas. Jednoznaczna segmentacja poszczegolnych elementéw rysunkow
architektonicznych, jak sciany, drzwi, okna i klatki schodowe, moze by¢ przydatna
przyktadowo przy automatycznej konwersji klasycznych, dwuwymiarowych rysunkow
CAD-owskich na modele trojwymiarowe lub BIM-owskie. System stuzacy rozpoznawaniu
elementow sktadowych rzutow architektonicznych przy pomocy segmentacji semantycznej
zostal opracowany przez naukowcoéw z Uniwersytetu Keio w Japonii (Xiao, i in., 2020). Na
wyzszym poziomie abstrakcji projektowej rzuty moga by¢ takze dzielone wzglgdem funkcji
poszczegbdlnych pomieszczen w budynku. Algorytmy takie zaproponowali miedzy innymi
Zheng i Huang (Zheng i Huang, 2018) oraz Brown i in. (Brown, i in., 2020). Oprocz
rozpoznawania juz zdefiniowanych w planie funkcji pomieszczen algorytmy tego typu moga
shuzy¢ do sugerowania najlepszych funkcji przy projektach adaptacyjnych, a takze pomoc przy
badaniu cech rzutéw skorelowanych z poszczegdlnymi funkcjami poprzez analizowanie
aktywacji poszczegolnych warstw sieci neuronowej (Brown, i in., 2020). Zespo6t z Politechniki
Warszawskiej, ktorego bylem czlonkiem, wykorzystat klasyfikacyjne zdolnosci sieci
neuronowych do ulepszenia zdolno$ci generatywnych nieneuronowego algorytmu PatchMatch.
W projekcie tym algorytm PatchMatch shuzacy do bezszwowego uzupetiania brakujacych
fragmentow obrazéw zostal przez nas wykorzystany do generowania zagospodarowania
dziatki, projektéw elewacji 1 detali plomby architektonicznej na podstawie otaczajacej
zabudowy (Rys. 16). Wygenerowane rezultaty byly nastepnie klasyfikowane przez zestaw
pigciu réznych sieci neuronowych. Pewnos$¢ klasyfikacji danego elementu postuzyta do selekcji
najlepszych przyktadow wygenerowanych przez algorytm. Wyselekcjonowane przez sieci
neuronowe rozwigzania zostaty skompilowane do postaci projektu architektonicznego plomby

architektonicznej (Dzieduszynski, i in., 2020).
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PRZYKEADOWA WIZUALIZACJA:

Rys. 16. Projekt plomby architektonicznej wygenerowany przez algorytm PatchMatch

wspomagany przez zespol pieciu klasyfikacyjnych sieci neuronowych dokonujgcych selekcji
najlepszych elementow projektowych (Dzieduszynski, i in., 2020).

Klasyfikacji w skali architektonicznej mozna dokonywac takze na danych wej$ciowych innego
rodzaju. Zespol z German Research Center for Artificial Intelligence Uniwersytetu
W Monachium przeprowadzit szczegélowe badanie majace na celu sprawdzenie, ktore formy
tensorowej,  semantycznej,  grafowej  reprezentacji  funkcjonalnych  diagramow
architektonicznych najlepiej sprawdzaja si¢ w problemach klasyfikacyjnych 1 ktére
reprezentacje sprzyjaja nabywaniu przez sie¢ neuronowa zdolno$ci do generalizowania.
Przetestowano reprezentacje projektu w formie mapy wielowarstwowej (ang. multilayer map),
w formie tekstu i w formie wektora w kodzie ,,jeden z n” (ang. one-hot vector). W testowanym
problemie klasyfikacyjnym sie¢ neuronowa musiata klasyfikowaé poszczegélne strefy
funkcjonalne w mieszkaniach. Przy badanym zastosowaniu zdecydowanym zwyciezcg wsrdd

badanych formatow okazato si¢ kodowanie ,,jeden z n” (Eisenstadt, i in., 2021).

W dobie dostepnosci 1 popularnosci skanowania laserowego i fotogrametrii coraz czesciej
W projektowaniu wykorzystywane sg chmury punktéw. Stojanovic i in. wykorzystali splotowe
sieci neuronowe do segmentacji semantycznej chmur punktow (np. rozpoznawanie obiektéw
we wngetrzach architektonicznych lub do ich ,,wzbogacania semantycznego” (ang. semantic
enrichment) poprzez powiazanie poszczegélnych punktow z odpowiadajagcymi im danymi,

pochodzacymi z sensorow dokonujgcych pomiaréw w badanej przestrzeni [np. pomiary
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temperatury (Stojanovic, i in., 2019)]. Semantycznie pogrupowane chmury punktow mogg by¢
w tatwiejszy sposob przetworzone na modele trojwymiarowe, stluzace do dalszych dzialan
projektowych lub konserwatorskich (Croce, i in., 2021). W architektonicznej klasyfikacji
typologicznej bardzo przydatne sg takze reprezentacje przestrzeni przedstawione w formie
szeregu diagramow typu isovist'®. Isovisty w przyblizeniu modeluja percepcije przestrzeni przez
znajdujacego si¢ w niej cztowieka i moga by¢ skutecznie wykorzystane w klasyfikacji przez
sie¢ neuronowg przestrzeni wewnetrznej oraz zewngtrznej (Sedimeier i Feld, 2018). Metoda
ta pozwala na statystyczne probkowanie percepcji przestrzeni w catym budynku i w jego
otoczeniu, pozwalajagc na podejmowanie decyzji projektowych na podstawie danych
statystycznych opisujacych kompozycj¢ przestrzenng projektu (Peng, i in., 2017). Uzytecznym
zbiorem danych moga by¢ takze informacje zebrane przez sensory znajdujace si¢ w telefonach
komoérkowych. Judit Tamas i Zsolt Toth przyjrzeli si¢ problemowi nawigacji we wnetrzach
architektonicznych i przetestowali rozne algorytmy uczenia maszynowego W przewidywaniu
klasy pomieszczenia na podstawie hybrydowych, multimodalnych danych sensorycznych
zebranych przez system ILONA (Indoor Localisation and Navigation). Z testowanych
algorytméw w klasyfikacji pomieszczen najlepiej radzily sobie sieci neuronowe,
K najblizszych sasiadow” (KNN, ang. k-Nearest Neighbors) oraz naiwne Kklasyfikatory
bayesowskie (Tamas i Toth, 2018).

Klasyfikacji i segmentacji semantycznej mozna dokonywacé takze na fotografiach. Przyktadem
takiego zastosowania jest algorytm autorstwa Islama Zohiera, Ahmeda El Anably’ego
i Ahmeda S. Madaniego stuzacy do oznaczania na zdjeciach minaretow, odrézniania
ich od wiez innego typu i segmentacji semantycznej wzgledem stylu architektonicznego
(Zohier, i in., 2020). W celu uzyskania zbioru danych treningowych dla sieci neuronowej
dokonujacej segmentacji semantycznej obiektow architektonicznych mozna wykorzystaé
obecnie dostgpne narzedzia, stuzace do fotorealistycznego renderingu wizualizacji
architektonicznych. Mohammad Alawadhi 1 Wei Yan zaproponowali ciekawe podejscie

do renderingu par treningowych z architektonicznych modeli BIM-owskich. Dzigki klasom

15 Diagramy isovist s3 dwuwymiarowa lub trojwymiarowa reprezentacja obwiedni przestrzeni dostepnej bez
przeszkdd z badanego punktu. Isovisty dwuwymiarowe stanowig wielokat wyznaczony przez konce promieni
wysylanych z badanego punku we wszystkich kierunkach, a konczacych si¢ na ograniczajacych przestrzen

przeszkodach (Tandy, 1967).
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elementéw architektonicznych wbudowanych w model BIM mozliwy jest automatyczny
rendering fotorealistycznej, perspektywicznej wizualizacji oraz odpowiadajacych jej masek
semantycznych  grupujacych poszczegdlne kategorie na dodatkowych obrazach.
Zautomatyzowane generowanie fotorealistycznych danych treningowych pozwala
na efektywne wytrenowanie sieci neuronowej potrafigcej radzi¢ sobie z problemem
segmentacji semantycznej takze na prawdziwych zdjeciach przedstawiajacych obiekty

architektoniczne (Alawadhi i Yan, 2020).

Architektura: ekstrakcja i uczytelnianie danych

W kategorii uczytelniania i ekstrakcji danych architektonicznych sieci neuronowe pozwalaja
na domknigcie petli sprz¢zenia zwrotnego w projektowaniu poprzez ekstrakcje informacji
0 rzeczywistym sposobie wykorzystywania przestrzeni zbudowanej przez uzytkownikow
I przedstawienie ich projektantowi w uczytelnionej, mozliwej do interpretacji formie. Jens
Jorgensen i in. wykorzystali splotowe sieci neuronowe do zbierania informacji o ,,sytuacjach
behawioralnych” zachodzacych w przestrzeni i rejestrowanych na surowym materiale wideo
Z monitoringu. Sytuacj¢ behawioralng w rozumieniu autoréw stanowi¢ moze przyktadowo
jednoczesna detekcja w danym obszarze czlowieka i krzesta oznaczajaca ich wzajemng
interakcje, czyli czynno$¢ siedzenia. Zebrane zachowania organizowane sg przez algorytm
w formie grafu integrujacego uzytkownikdw, obiekty, wyposazenie przestrzeni i ich wzajemne
interakcje. System taki, dzigki implementacji neuronowego rozpoznawania obiektow
bezposrednio w module kamery, umozliwia zbieranie i1 przetwarzanie danych w sposéb w petni
anonimowy (Jergensen, i in., 2020). W projektowaniu parametrycznym przydatna moze
by¢ takze ekstrakcja parametrow istotnych z obszernej grupy parametrow pierwotnych.
Algorytm autorstwa Johna Hardinga pozwala na analize parametrow numerycznych
definiujgcych model trojwymiarowy pod wzgledem ich rzeczywistego wptywu na geometri¢
lub inne cechy modelu. Redukcja liczby wymiarow definiujgcych model (np. do formy
powierzchni dwuwymiarowej, Rys. 17) pozwala na efektywniejsza eksploracje mozliwych
rozwigzan przy jednoczesnym zwigkszeniu czytelnosci wpltywu zmian wprowadzonych

W parametrach na zmiany zachodzace w modelu (Harding, 2016).
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Rys. 17. Proces treningu algorytmu stuzgcego do redukcji liczby wymiarow definiujgcych

projekt parametryczny stworzony przez Johna Hardinga. Na ilustracji przedstawiono
proces redukcji parametrow z pieciu do dwoch, mozliwych do zwizualizowania w postaci

dwuwymiarowej ptaszczyzny (Harding, 2016).

Sieci neuronowe pozwalaja tez na wydajniejsze przetwarzanie obszernych baz danych
architektonicznych. System DANIEL opracowany przez Sharmeg i in. stuzy do automatycznego
przeszukiwania repozytoriow CAD-owskich rzutéw architektonicznych w celu odnalezienia
przyktadow projektow, ktorych uklad przestrzenny i funkcjonalny jest zblizony do zadanego
rzutu. Mozliwe zastosowania takiego systemu wydaja si¢ szerokie. Przyktadowo, projekty
znalezione przez DANIEL mogg stuzy¢ za inspiracje¢ do dalszych prac projektowych lub moga
by¢ potencjalnymi pokrewnymi ofertami dla klientéw na rynku nieruchomosci. System moze
takze by¢ przydatny przy zarzadzaniu obszernymi zbiorami projektéw katalogowych,
wyszukiwaniu historycznych projektow w duzych biurach architektonicznych, wykrywaniu

plagiatow czy w rozstrzyganiu konkursow projektowych (Sharma, i in., 2017).

Architektura: optymalizacja

Ostatniag kategoria zastosowania sieci neuronowych w skali architektonicznej jest
optymalizacja proceséw. Danymi do treningu sieci neuronowych stuzacych optymalizacji
architektonicznej zazwyczaj s3 dane bedace wynikami symulacji komputerowych, symulacji
$rodowisk uczenia ze wzmacnianiem lub dane wygenerowane syntetycznie w sposob
zautomatyzowany. Juz w 1996 roku Jefrey Ignatius Kindangen wykorzystal prosta,
jednokierunkowg sie¢ neuronowa do optymalizacji naturalnej wentylacji w projektowanym
budynku na podstawie danych symulacyjnych. Algorytm potrafil na uproszczonym modelu
pomieszczenia modyfikowa¢ rozmiar i polozenie okien w celu zapewnienia uktadu
gwarantujacego odpowiednie przewietrzanie pomieszczenia przy zadanym kacie natarcia
wiatru (Kindangen, 1996). Sieci neuronowe mogg by¢ wykorzystywane pomocniczo jako

algorytmy optymalizacyjne w bardziej zlozonych systemach generatywnych. Sevil Yazici
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zastosowal sie¢ neuronowa do optymalizacji wydajnosci strukturalnej generowanego
parametrycznie projektu dwuplaszczyznowych przekry¢ wzgledem mierzonego symulacyjnie
odksztatcenia struktury poprzez dobor materiatéw o odpowiednich wtasciwosciach w ré6znych
regionach struktury (Yazici, 2020). Jingyi Li i Hong Chen wytrenowali sie¢ neuronowa w celu
optymalizacji zmiennych projektowych w budynku biurowym wzgledem jego wydajnosci
energetycznej. Bledy przewidywanych przez algorytm warto$ci symulacji energetycznych
W najgorszych przypadkach nie przekraczaty 15%, a oparta na gtebokim uczeniu maszynowym
optymalizacja pozwolita na znalezienie rozwigzan projektowych oferujacych az do 37,5%
oszczgdnosci energetycznych wzgledem bazowego projektu zaproponowanego przez architekta
(Li i Chen, 2021). Tyson Hosmer i Panagiotis Tigas w pracach nad zautomatyzowanymi,
robotycznymi modutami konstrukcyjnymi w ustroju tensegrity'® wykorzystali sieci neuronowe
jako algorytmy optymalizujace w symulacjach glebokiego uczenia ze wzmacnianiem.
Algorytm sterujacy ruchem i napr¢zeniem poszczegdlnych modutéw tensegrity pozwala na
tworzenie ustrojow zdolnych do samoorganizacji, dynamicznego i Statycznego utrzymywania
rownowagi oraz rekonfiguracji przestrzennej. System wytrenowany jest w symulacji
komputerowej, jednak skutecznie moze by¢ aplikowany takze w fizycznym ustroju tensegrity.
Dzigki zastosowaniu symulacji wieloagentowej liczne moduly moga wspotpracowac ze soba,
by osiggnaé zadany cel. Geometria jest optymalizowana przez sie¢ neuronowa wzgledem
zadanej pozycji i parametrow strukturalnych ustroju (Hosmer i Tigas, 2019). Dzigki
zdolnosciom sieci neuronowych do przyblizania ztozonych, nieliniowych funkcji, sa one
dobrymi kandydatami do rozwigzywania probleméw optymalizacji wielokryterialnej, w ktorej
konieczna jest maksymalizacja kilku celow jednocze$nie. W 2018 roku David Newton
zaproponowat system stuzacy wielocelowej, jakosciowej optymalizacji projektow
architektonicznych (MOQO, ang. Multi-Objective Qualitative Optimization). W algorytmie
tym poszczegodlne cele jakosciowe (jak horyzontalno$¢, modularnos¢ czy strzelistos¢ obiektu)
konwertowane byly na podstawie badania ankietowego do postaci warto$ci numerycznej.
Na podstawie tych danych wytrenowano sie¢ neuronowa przypisujaca zadanym,

zwokselizowanym modelom architektonicznym wynik dla kazdego z celow jako$ciowych.

16 Tensegrity — (ang. tension + integrity; naprezenie + integralno$¢) ustréj konstrukcyjny, w ktérym elementy
przenoszace $ciskanie sg ze sobg potaczone posrednio poprzez ciggna przenoszgce rozcigganie. Ustrdj zostat
opisany teoretycznie i opatentowany na poczatku lat 60. przez Buckminstera Fullera (Fuller, 1961; Fuller, 1962)

i rownolegle stosowany w instalacjach przestrzennych przez Kennetha Snelsona (Heartney, 2013).
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Wynik ten stuzyl nastepnie za metryke dla potrzeb dalszej optymalizacji modelu (Newton,
2018).

2.2.3. Detal, materialy i komputerowe wspomaganie wytwarzania (CAM) — zastosowania

sieci neuronowych

Detal, materialy, CAM: ewaluacja i przetwarzanie danych

Glebokie uczenie maszynowe stosowane jest takze w problemach dotyczacych skali detalu
architektonicznego, materialbw oraz wytwarzania wspomaganego komputerowo.
Przy ewaluacji 1 przetwarzaniu danych sieci neuronowe moga operowa¢ na zmiennych
liczbowych przedstawionych w formie tabularycznej, recznie oznaczanych modelach
parametrycznych, szeregach czasowych, danych symulacyjnych czy fotografiach. Zespét pod
kierownictwem Any Silvy z Politechniki w Lizbonie od 2011 roku bada mozliwosci
wykorzystania maszynowych metod stochastycznych i sieci neuronowych w modelowaniu
przewidywanej zywotno$ci materiatéw elewacyjnych. W zaproponowanym podejéciu dane
wejSciowe stanowi zbidér numerycznych zmiennych charakteryzujacych stan materialow
elewacyjnych. W przypadku paneli kamiennych, zastosowanych do wykonczenia elewacji,
zmienne te opisujg cechy materiatlowe, jak typ wykonczenia, wiek, rodzaj kamienia, wielko$¢
paneli, a takze cechy srodowiskowe, jak ekspozycje i odlegtos$¢ od morza. Na podstawie tych
danych algorytm ocenia przewidywane poziomy degradacji elewacji w skali od zera do stu lat
(Silva, i in., 2011). Zespot opracowal zblizony system stuzacy przewidywaniu zywotnosci
powierzchni malowanych. Podobnie jak w przypadku elewacji kamiennych, cechy wejsciowe
dla sieci neuronowej opisywaty wiek, orientacj¢ oraz dystans od morza, ale dodatkowo takze
wielko§¢ 1 wysoko§¢ budynku, kolor i typ farby, odleglos¢ od zrdodet zanieczyszczen,
ekspozycje na wilgo¢, funkcje budynku i teksture powierzchni. W przypadku powierzchni
malowanych algorytm jest w stanie trafnie ocenia¢ zywotnos¢ wykonczenia na jedenascie lat

w przdd (Dias, i in., 2013).

Wspolczesnie bardzo aktualnym tematem sg aktywne 1 inteligentne materiaty architektoniczne.
Glebokie uczenie maszynowe pozwala na zwigkszenie kontroli nad wytwarzaniem materiatow
tego typu i nad ich zachowaniem w trakcie eksploatacji. Daniil Koshelyuk i in. z IAAC
W Barcelonie wykorzystali sie¢ neuronowg do interpretacji zmian oporno$ci pradu
elektrycznego przeptywajacego przez membrang grafenowg w celu przewidywania kata ugigcia

odksztatconej powierzchni. Stworzony system pozwala na precyzyjne przyblizanie

71



prawdopodobnej formy geometrycznej aktywnego materiatu poddanego dziataniu sit
zewngtrznych, umozliwiajac efektywniejszy nadzér nad poddanym deformacji elementem
(Koshelyuk, i in., 2019). Dan Luo, Jingsong Wang i Weiguo Xu stworzyli linearny elastomer
o niejednorodnych przekrojach wzdhuz osi gtownej. W zalezno$ci od wykorzystanej sekwencji
przekrojow elastomer poddany obcigzeniu przyjmuje rozne formy geometryczne. Korzystajac
z ramienia robotycznego i danych symulacyjnych, autorzy elastomeru wytrenowali sie¢
neuronowg przetwarzajaca sekwencje przekrojow wzdhuz osi materiatu na przewidywang pod
obcigzeniem geometri¢. Algorytm dziata takze w druga strong, umozliwiajac przetworzenie
zadanej geometrii docelowej na konieczng do uformowania sekwencje przekrojoéw materiatu
(Luo, i in., 2018). Gabriella Rossi i Paul Nicholas zastosowali sieci neuronowe do zwigkszenia
sztywnoS$ci gietych, elewacyjnych paneli blaszanych. W ramach proponowanego procesu
w pierwszej kolejnosci docelowa geometria panelu kodowana jest w formie obrazu, w ktérym
poszczegblne kanaly opisujg krzywizng docelowego panelu i punkty mocowania do elewacji.
Nastgpnie na podstawie tych obrazéw sie¢ neuronowa przewiduje naprezenie w panelu
wywolane przez parcie wiatru i generuje $ciezki dla wydruku 3D wzmacniajacego najbardziej
obcigzone regiony panelu (Rys. 18). Wzmocnienia mogg by¢ takze implementowane w postaci
podhuznych zeber wytlaczanych przez tandem dwoch ramion robotycznych (po jednym

na kazda strone¢ panelu) (Rossi i Nicholas, 2020).

[ %

Rys. 18. Wspomagane przez sie¢ neuronowg metody fabrykacji gietych, blaszanych paneli
elewacyjnych opracowane przez Gabrielle Rossi i Paula Nicholasa. Po lewej — druk 3D
wzmochnien wygenerowanych przez sie¢ neuronowg w odpowiedzi na przewidywane
obcigzenia wywotane parciem wiatru. Po prawej — wytwarzanie podobnych wzmocnien

W formie wyttoczonych w blasze podtuznych zeber (Rossi i Nicholas, 2020).
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Ten sam zespot wytrenowat sie¢ neuronowa stuzacg do generowania instrukcji dla numerycznie
sterowanego kola angielskiego w celu wytwarzania dwukrzywiznowych paneli blaszanych
0 zadanej geometrii. Sie¢ zostala wytrenowana na recznie przygotowanych parach docelowych
geometrii 1 odpowiadajgcych im $ciezek giecia. Do tej pory koto angielskie zazwyczaj byto
traktowane jako narzedzie r¢czne, przy pomocy ktorego ciezko jest osiggna¢ powtarzalne,
precyzyjne rezultaty. Sieci neuronowe pozwalaja na doktadne przetwarzanie ksztattu panelu
na wlasciwe instrukcje dla kota angielskiego. Zaproponowana zautomatyzowana metoda jest
jedna z tanszych opcji formowania elewacji wielokrzywiznowych (Rossi i Nicholas, 2018).
Czes¢ z cztonkdw zespotu zajmujgcego si¢ wspomaganym przez glgbokie uczenie maszynowe
gieciem metalu zwrocita si¢ w kierunku mniej sztywnych materialdow 1 przyjrzata
si¢ mozliwosciom wykorzystania sieci neuronowych w projektowaniu tkanych cyfrowo
dzianin, stuzacych za membrany ostaniajace wnetrza przed stoncem. Stworzony przez Paula
Nicholasa, Martina Tamke i in. prototyp przetwarza zadane warunki zacienienia na pliki
produkcyjne dla maszyny dziewiarskiej. System umozliwia architektom bardziej intuicyjne
projektowanie detalu membrany zacieniajacej poprzez definiowanie oczekiwanego efektu
$wietlnego w projektowanej przestrzeni bez konieczno$ci zagl¢biania sie w szczegdly
techniczne sztuki dziewiarskiej (Thomsen, i in., 2019). Sieci neuronowe moga réwniez
przetwarza¢ projekty dzianych membran w celu osiagni¢cia ztozonych form geometrycznych.
Poprzez modyfikacje w pliku produkcyjnym poszczegdlnych typow Sciegdbw w rdéznych
rejonach ptaszczyzny sieci neuronowe moga kontrolowac ksztalt, jaki osiagnie membrana
po rozciagnigciu (Sinke, i in., 2021). Dechen Chen i in. przetestowali kilka r6znych rodzajow
sieci neuronowych w przewidywaniu geometrii wydruku 3D niepodpartego mostka (ang.
bridging) w zaleznosci od przekazanych drukarce 3D instrukcji w formie szeregdw czasowych
G-code. System zostal wytrenowany przy pomocy prostego algorytmu widzenia maszynowego,
interpretujacego geometri¢ krzywej, bedacej efektem wydruku 3D drukarki sterowanej przez
konkretng sekwencje instrukcji. W zadaniu przewidywania geometrii mostka na podstawie
instrukcji najlepiej radzita sobie sie¢ typu LSTM (ang. Long Short-Term Memory, sie¢
Z mechanizmem dhugiej pamigci krotkotrwalej). W zadaniu odwrotnym, polegajacym
na przewidywaniu koniecznych instrukcji na podstawie zadanej krzywej lepiej radzita sobie
sie¢ jednokierunkowa (Chen, i in., 2019). Pradeep Devadass i in. uzyli sieci neuronowych
do mapowania relacji migdzy parametrami wejsciowego projektu mostu tukowego
na instrukcje stuzace do wytworzenia drewnianych elementow sktadowych z uwzglednieniem

ograniczen procesu fabrykacji. Wygenerowane przez sie¢ polecenia steruja ramieniem
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robotycznym przycinajacym odpowiednio drewniane moduly na pile taSmowej. Sama
geometria mostu optymalizowana jest przez osobny algorytm genetyczny (Devadass, i in.,
2019).

Podobnie jak w skali architektonicznej, w skali detalu i w wytwarzaniu wspomaganym
komputerowo sieci neuronowe takze s3 wykorzystywane do przyblizania wynikow
kosztownych czasowo i obliczeniowo symulacji komputerowych. Effima Giannapoulou i in.
dzigki glebokiemu uczeniu maszynowemu opracowali cyfrowa metod¢ projektowania
cienko$ciennych, rozgalezionych ustrojow powlokowych. Sie¢ neuronowa wytrenowana
na parametrach wejsciowych modeli parametrycznych zostata wykorzystana do przewidywania
cech strukturalnych generowanego modelu. Algorytm dziata o wiele szybciej niz petna
symulacja, jest wystarczajaco precyzyjny do eksploracji przestrzeni projektowej na wezesnych
etapach prac i potrafi skutecznie przetwarza¢ niespotkane w trakcie treningu warto$ci
parametrow wejsciowych (Giannopoulou, i in., 2019). W najmniejszej z analizowanych skal
Runjia Tian, Yujie Wang i Onur Yiice Giin zaproponowali wykorzystanie sieci typu LSTM,
zwykle stosowanych do przetwarzania jezyka naturalnego, do wspomagania generowania
ergonomicznych podeszew w obuwiu na podstawie szeregéw czasowych opisujacych rozktad
cisnienia pod stopg w trakcie biegu i odpowiadajace mu deformacje powierzchni podeszwy.
Zastosowanie to wykracza w prawdzie poza zakres CAAD, jednak przyktad ten bardzo dobrze
pokazuje nieszablonowe mozliwosci przetwarzania danych projektowych przy pomocy
glebokiego uczenia maszynowego. Sie¢ neuronowa zostala wykorzystana do konwersji
wielowymiarowych danych wejsciowych opisujacych obciazenia podeszwy do formy sygnatu
jednowymiarowego. Na tej podstawie osobny algorytm generatywny definiowal azurowa,
elastyczng strukture podeszwy, by w jak najbardziej ergonomiczny sposob przenosi¢ sity
dynamiczne w trakcie biegu. Podobna metodyka moze by¢ stosowana takze w problemach
projektowych innego typu, w ktorym podstawa do podejmowania decyzji projektowych
sa pochodzace z pomiaréw szeregi czasowe (Tian 1 Giin, 2020). Ciekawa demonstracje
zdolnosci sieci neuronowych do ztozonego przetwarzania kontekstow projektowych na
przyktadzie detalu zaproponowali Jacek Markusiewicz i Ander Gortazar Balerdi. W czasie
warsztatow projektowych ze studentami autorzy opracowali algorytm glebokiego uczenia
maszynowego rozpoznajacego, czy dany projekt parametryczny krzesta jest projektem
oryginalnym, czy plagiatem krzesta DCW Cahrlesa 1 Raya Eamesa =z lat
40. dwudziestego wieku. Stworzenie algorytmu zostato zainspirowane przez krzesto Loti,

bardzo zblizone do krzesta DCW, popularne w Kraju Baskow w latach 50. i 60. W celu
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uchwycenia rozmytej granicy mig¢dzy plagiatem a projektem oryginalnym zorganizowano
parametryczne warsztaty projektowe. Wygenerowane modele zostaly przy pomocy ankiety
ocenione pod katem ,,stopnia nasladownictwa”. Na podstawie zebranych danych wytrenowano

sie¢ neuronowg potrafigcg decydowac, czy dane krzesto jest plagiatem, czy nie (Markusiewicz
i Balerdi, 2020).

Detal, materialy, CAM: algorytmy generatywne

Rozwigzania glebokiego uczenia maszynowego s3 implementowane w rdéznorodnych
algorytmach generatywnych. Wsrod przyktadow w mniejszych skalach Jose Luis Garcia
del Castillo y Lopez zademonstrowat system sterowania ramieniem robotycznym, stuzacym
do cyfrowej fabrykacji, zdolnym odczytywaé intencje cztowieka w celu dokonczenia
rozpoczetego przez niego procesu. W zaprezentowane] implementacji sie¢ neuronowa
rozpoznawata fragment szkicu narysowanego przez czlowieka 1 proponowala jego
uzupehienie. Jesli uzytkownik zaakceptowat propozycje algorytmu, rami¢ robotyczne
konczyto flamastrem rozpoczety szkic (del Castillo y Lopez, 2019). Kacper Radziszewski i Jan
Cudzik wytrenowali sie¢ neuronowa na przyktadach kapiteli kolumn korynckich
przedstawionych w postaci zrasteryzowanych map glgbi. Wytrenowana sie¢ potrafila
generowa¢ nowe, oryginalne przyklady kapiteli inspirowanych przez kapitele korynckie
(Cudzik i Radziszewski, 2018). Mostafa W. Alani i Bilal R. Al-Kaseem zebrali zestaw
przyktadow heksagonalnych rozet charakterystycznych dla architektury islamskiej z okresu od
dziewiagtego do pigtnastego wieku. Zebrane dane postuzyly przeciwstawnej sieci neuronowej
za zbior treningowy. Algorytm zostal wykorzystany przez autorow do wygenerowania
projektow wspotczesnych rozet opartych na przyktadach historycznych (Alani i Al-Kaseem,
2021).

W troche wigkszej skali Zandavali 1 Garcia skorzystali z sieci przeciwstawnych przy
rozwigzywaniu problemu generowania wzorow stuzacych do pisania instrukcji dla ramienia
robotycznego odpowiedzialnego za uktadanie cegiet. Opracowana metoda brata pod uwage
kolejno$¢ uktadania cegiet oraz sity oddziatujace na strukture w trakcie budowy, dzieki czemu
mozliwe bylo ksztattowanie takze delikatnych nadwieszen (Zandavali i Garcia, 2019). Yetkin
i Sorgu¢ uzyli glebokiego uczenia maszynowego do eksploracji przestrzeni projektowe;j
mozliwych do wygenerowania struktur kratownicowych. Sie¢ neuronowa zostata wytrenowana
do tworzenia propozycji kratownic na podstawie zadanych wymagan dotyczacych

przemieszczenia pod obcigzeniem i pozadanej masy konstrukcji (Yetkin i Sorgug, 2019). Zheng
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i in. stworzyli algorytm do generowania kielichowych, zebrowych konstrukcji stropowych
mozliwych do fabrykacji przy pomocy druku 3D. Forma otrzymanych projektéw stropéw jest

efektem neuronowej optymalizacji sit wynikajacych z cigzaru struktury (Zheng, i in., 2020).

Detal, materialy, CAM: optymalizacja

Niektore z zastosowan wymienionych w poprzednich sekcjach mogloby by¢ traktowanych
posrednio jako zadania optymalizacyjne, jednak warto wspomnie¢ osobno o aplikacjach sieci
neuronowych, w ktoérych optymalizacja procesoOw jest bezposrednim celem koncowym
wykorzystania glebokiego uczenia maszynowego. W badaniach Gabreielli Rossi i Paula
Nicholasa nad algorytmami sterujacymi dla robotoéw wyposazonych w sensory haptyczne,
uzyto sieci neuronowych do optymalizacji generowania $ciezek, w sposdéb umozliwiajacy
robotowi reagowanie na przeszkody obecne w jego bezposrednim otoczeniu. Celem
optymalizacji bylo proponowanie takich instrukcji, ktore jednocze$nie zapewniaja
najptynniejszy ruch i minimalizujg ryzyko kolizji z przeszkodami. Sie¢ neuronowa byla wiec
zastosowana do optymalizacji wielocelowej. Sterowany na podobnej zasadzie robot
uniwersalny moze by¢ wdrazany w procesach wytwarzania wspomaganego komputerowo
w chaotycznych $rodowiskach, w ktorych system musi dostosowywac si¢ np. do ludzi
znajdujacych si¢ w przestrzeni roboczej i powinien odpowiednio reagowaé na sytuacje
nieprzewidywalne (Rossi i Nicholas, 2019). Podobng rol¢ odgrywaja sieci neuronowe
w proponowanym przez Zhihao Fanga i in. ramowym projekcie wieloagentowego systemu
stuzacego budowie struktur ceglanych przez rgj latajagcych dronow. W proponowanym systemie
glebokie uczenie maszynowe roéwniez odpowiada za optymalizacje wielocelowg trajektorii lotu
dronéw, tak by minimalizowa¢ ryzyko kolizji i maksymalizowa¢ trajektorie zblizajace drony

do ich indywidualnych celow (Fang, i in., 2020).

Detal, materialy, CAM: klasyfikacja

W projektowaniu architektonicznym wspomaganym komputerowo w skali detalu sieci
neuronowe nie sg czesto wykorzystywane w klasyfikacji. W projekcie ,,Lace Wall” autorstwa
Martina Tamke, Mateusza Zwierzyckiego, Andersa Holdena Deleurana i Yuliya’i Sinke
Baranovskaya’ey sie¢ neuronowa zostala wykorzystana jako cze§¢ sktadowa bardziej
ztozonego systemu przestrzennego (Rys. 19). Gilgbokie uczenie maszynowe poshuzyto
do eksploracji przestrzeni projektowej poprzez klasyfikacje i grupowanie mozliwych
do uzyskania form instalacji wzgledem obcigzen poszczegdlnych modutow w rozpatrywanych

sytuacjach. W ,,Lace Wall” sie¢ neuronowa byta odpowiedzialna za identyfikacje modutow
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poddanych dziataniom warunkéw brzegowych, w ktorych ze wzgledu na deformacje konieczne
bylo przeprowadzenie dalszej optymalizacji. Sklasyfikowane przez sie¢ neuronowa moduly
przetwarzane byly ponownie przez algorytm genetyczny, az do osiggni¢cia optymalnego

rozwigzania mieszczgcego si¢ w zadanych zakresach (Tamke, i in., 2017).

Rys. 19. Instalacja przestrzenna ,, Lace Wall ” autorstwa Tamke, Zwierzyckiego i in. W

,,Lace Wall” sieci neuronowe zostaly wykorzystane do klasyfikacji modutow, ktore ze
wzgledu na zbyt duze deformacje w skali mikro uniemozliwialy stworzenie docelowej formy

w skali makro (Tamke, i in., 2017).

Detal, materialy, CAM: przewidywanie przyszlosci

W trakcie badan literaturowych trafitem na jedno zastosowanie w skali detalu urbanistycznego,
w ktorym sieci neuronowe zostaly wykorzystywane do krotkoterminowego przewidywania
przysztosci. Jiaxu Wu 1 in. opracowali metod¢ przewidywania przysztych trajektorii ruchu
poszczegblnych pieszych w przestrzeni miejskiej na podstawie monitoringu wideo. Mozliwos¢
dynamicznej ekstrapolacji ruchu pieszego w czasie rzeczywistym moze by¢ przydatna przy
projektowaniu szczegdtowych rozwigzan z zakresu Smart City i ulic aktywnych dynamicznie
reagujacych na zachowanie poszczegdlnych uzytkownikow w celu zwigkszenia
bezpieczenstwa lub komfortu korzystania z przestrzeni miejskiej (Wu, i in., 2019). W skali
dhugoterminowej do przewidywania przysztosci mozna zaliczy¢ takze omowiony wczesniej w

kategorii ewaluacji i przetwarzania danych algorytm przewidujacy zywotnos¢ materiatow
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wykonczeniowych fasad (Dias, i in., 2013). W publikacji tej autorzy przewidywali stopien
zuzycia elewacji na podstawie szeregu czynnikow obejmujacych lokalizacje, typ wykonczenia,

wiek czy dystans od morza.

2.3. Luka badawcza - neuronowe przetwarzanie Kkontekstow
kompozycyjnych, przestanki

Jednym z zaskakujacych wnioskéw pltynacych z kwerendy jest bardzo mata liczba publikacji
dotyczacych kompozycji przestrzennej. Analizy kompozycyjne przeprowadzane sg praktycznie
we wszystkich skalach projektowo-planistycznych. We wszystkich tych skalach dysponujemy
tez wieloma danymi typu big-data, zawierajagcymi w sobie wartosciowe informacje
0 kompozycji przestrzennej. Zaliczaja si¢ do nich miedzy innymi bazy projektéw
architektonicznych (bazy projektow archiwalnych!’, projekty sktadane w urzedach, projekty
konkursowe, bazy BIM-owskie), cyfrowe reprezentacje przestrzeni miast (bazy GIS, mapy,
modele Digital Surface Model, zdj¢cia satelitarne, geolokalizowane media spolecznos$ciowe,
sensory smart-city), czy nawet zdigitalizowane dzieta sztuki (reprodukcje cyfrowe, skany
fotogrametryczne, skany laserowe). Konteksty kompozycyjne czesto sa rozlegte, ztozone,
logicznie rozmyte i trudne do oprogramowania metodami klasycznymi. Analizy przestrzenne
wymagaja duzo czasu itrzeba je w pewnym stopniu przeprowadza¢ zaréwno przy
projektowaniu  architektonicznym, planowaniu urbanistycznym i przy zadaniach
administracyjnych. Badacze poszukuja ostatnio mozliwosci automatyzacji czgsci analiz
przestrzennych. Anna Jachimowicz z Politechniki Warszawskiej zauwaza, ze ze wzgledu na
ciggly charakter planowania przestrzennego analizy nie powinny by¢ przeprowadzane
jednorazowo. Automatyzacja proceséw analitycznych oferuje mozliwos¢ wielokrotnego
przetwarzania zmieniajacych si¢ uwarunkowan, co pozwala zaoszczedzi¢ czas i zasoby biur
projektowych oraz utatwia uchwycenie proceséw ciaglych, dla ktérych pojedynczy przekroj
danych w jednej chwili jest niewystarczajacy (Jachimowicz, 2022; Jachimowicz, 2023). Sieci
neuronowe pozwalajg na automatyzacje czesci procesoOw, ktore dotychczas byly wykonywane

przez ludzi, umozliwiajac przetworzenie duzych zbioréw danych w krotkim czasie.

17 Szczegolnie ciekawa polska baza projektéw archiwalnych jest cyfrowa kolekcja Muzeum Architektury
we Wroctawiu. Obejmuje ona kilka tysiecy zdigitalizowanych rysunkéw projektowych z okresu

migdzywojennego i powojennego w formie rastrowej (Muzeum Architektury we Wroctawiu, 2019).
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Coraz czg$ciej mowi si¢ o zastepowaniu analiz eksperckich przez narzedzia cyfrowe.
Czy jednak tak skomplikowany temat, jak kompozycja przestrzenna, moze by¢ uchwycony
przez sie¢ neuronowa? Sieci neuronowe juz od lat biegle radza sobie z klasyfikacja obrazu
[np. AlexNet (Krizhevsky, i in., 2012)], jego syntetyzowaniem [Dall-E (Ramesh, i in., 2021),
Dall-E 2 (Ramesh, i in., 2022)] czy uzupetianiem brakujgcych fragmentow [ImageGPT (Chen,
I in., 2020), Stable Diffusion (Rombach, i in., 2022)]. Zadania te wymagaja praktycznego
operowania zasadami kompozycyjnymi i pewnego ,,rozumienia” kompozycji przestrzennej
jako catosci. Mikotaj Malkinski 1 Jacek Mandziuk przeprowadzili w 2022 roku badanie
przegladowe, w ktoérym bardzo szeroko przeanalizowali skuteczno$¢ réznych algorytmow
uczenia maszynowego (w tym sieci neuronowych) w abstrakcyjnym rozumowaniu wizualnym
polegajacym na rozwiagzywaniu testow matryc Ravena®®. Wiele z badanych sieci neuronowych
osiggato wyniki zblizone do tych osigganych przez cziowieka, a niektore byly od ludzi
zdecydowanie lepsze (Matkinski i Mandziuk, 2022). Skuteczno$¢ sieci neuronowych w tego
typu testach jest silng przestankg za postawieniem przypuszczenia, ze wspotczesne sieci
neuronowe sg wystarczajaco potezne, by moc wykorzystac je do rozwigzywania rzeczywistych
problemow kompozycyjnych. Nawet jesli sieci neuronowe nie b¢da w stanie zastapi¢ eksperta
moga by¢ wykorzystane jako narzedzia wspomagajace podejmowanie decyzji lub postuzy¢

w procesie projektowym jako inspiracja.

Ze 149 przeanalizowanych w kwerendzie prob wykorzystania sieci neuronowych
w projektowaniu wspomaganym komputerowo 27 z nich dotyczyto morfologii i typologii
miast, a jedynie 13 posrednio odnosito si¢ do kompozycji przestrzennej (Rys. 20).
W rozwigzaniach tych kompozycja przestrzenna traktowana byla zazwyczaj jako element
sktadowy wigkszych problemoéw, a zagadnienia kompozycyjne nie byly analizowane
W oddzieleniu od innych zmiennych. Wyjatkiem jest praca Briana Ho opisana w publikacji
Making a New City Image, ale zakres rozwazan kompozycyjnych przeprowadzonych przez
autora byl niestety dosy¢ ubogi i1 sprowadzit si¢ jedynie do klasyfikacji ,,dzielnic”
I ,nie-dzielnic” w miastach na podstawie kolazy fotograficznych i odpowiadajgcych

im schwarzplanéw (Ho, 2020).

18 Test matryc Ravena — ang. Raven’s Progressive Matrices, test inteligencji opracowany przez Johna C. Ravena
w 1939 roku, polegajacy na przewidywaniu kompozycji wizualnej poprawnie wpisujacej sie w zadang macierz

kompozycji nadajacych kontekst (Raven, 2000).
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Artykuty posrednio dotyczgce morfologii (urbanistyka),
kompozycji przestrzennej oraz artykuty przegladowe w publikacjach
dotyczgcych komputerowego wspomagania projektowania
architektonicznego przy wykorzystaniu sieci neuronowych

MORFOLOGIA (URBANISTYKA)

18,1%

PRZEGLADOWE

0,0% 20% 4,0% 6,0% 8,0% 10,0% 12,0% 14,0% 16,0% 18,0% 20,0%

10,1%

8,7%

Rys. 20. Artykuly posrednio dotyczqgce morfologii urbanistycznej, kompozycji przestrzennej
oraz artykuty przeglgdowe w publikacjach dotyczgcych komputerowego wspomagania
projektowania architektonicznego przy wykorzystaniu sieci neuronowych. Opracowanie

wlasne.

Podsumowujac, przeprowadzona kwerenda ujawnia, ze pomimo potencjatu sieci neuronowych
w rozwigzywaniu problemoéw pokrewnych do kompozycji przestrzennej, istnieje zaskakujaco
mata liczba publikacji skupiajacych si¢ bezposrednio na tym zagadnieniu. Chociaz technologia
glebokiego uczenia maszynowego zdaje si¢ wystarczajaco rozwinigta, by wspierad
automatyzacj¢ analiz kompozycyjnych w roznych skalach projektowych 1 procesach
urbanistycznych, temat ten pozostaje niedostatecznie eksplorowany w literaturze. Wyniki

kwerendy sugeruja potrzebe dalszych badan i rozwoju narzedzi cyfrowych w tej dziedzinie.
2.4. Punkty glowne kompozycji przestrzennej

2.4.1. Elementy kompozycyjne i ich przetwarzanie maszynowe

Cyfrowe narzedzia stuzace rozpoznawaniu 1 przetwarzaniu kontekstéw kompozycyjnych moga
by¢ przydatne wszedzie tam, gdzie konieczne jest podejmowanie decyzji poprzez przestanki
wynikajace z uwarunkowan kompozycyjnych. W mysl Ustawy o planowaniu
I zagospodarowaniu przestrzennym uwarunkowania kompozycyjno-estetyczne bezposrednio
przektadajg si¢ na jako$¢ przestrzeni, jej harmonie 1 sg jednym z wyznacznikéw osiggniecia
tadu przestrzennego (Sejm RP, 2003). Ekstraktory zasad kompozycyjnych moglyby utatwié¢
urzedom pracg¢ przy sporzadzaniu planéw ogoélnych gmin, planow rewitalizacji, tworzeniu

miejscowych planéw zagospodarowania przestrzennego, podejmowaniu decyzji o warunkach
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zabudowy 1 formutowaniu dokumentéw strategicznych. Uwarunkowania kompozycyjne moga
przektada¢ si¢ na podziat funkcjonalny miasta, a w szczegodlnosci na lokalizacj¢ waznych
funkcji publicznych. W skali urbanistycznej pracownie projektowe moglyby wykorzystywac
sieci neuronowe przy projektowaniu uktadéw urbanistycznych wpisujacych si¢ w okoliczng
zabudowe. Dzigki neuronowym ekstraktorom zasad kompozycyjnych deweloperom tatwiej
bytoby identyfikowa¢ kompozycyjnie podkreslone lokalizacje nowych inwestycji, co przektada
si¢ na ich atrakcyjno$¢ i1 warto$¢. Biura architektoniczne takze zyskalyby mozliwos¢

zautomatyzowanego odczytywania uwarunkowan przestrzennych projektowanej inwestycji.

Dobrym punktem wyjécia do przeanalizowania mozliwosci aplikacji sieci neuronowych
W problematyce kompozycji przestrzennej jest przyjrzenie si¢ klasycznym elementom
kompozycyjnym, opracowanym przez teoretykéw oraz praktykéw formy i kompozycji
architektoniczno-urbanistycznej.  Juliusz Zoérawski w pracy O Budowie Formy
Architektonicznej wyr6znia nast¢pujace elementy i aspekty kompozycji przektadajace sie na jej

charakter, estetyke oraz na spoistos¢ formalna:

e (Czesci proste, z ktorych sktada si¢ kompozycja. Odczytywane jako osobne elementy
wigkszych catosci (s. 18).

e Grupy elementéw, ktore same stanowig kompozycje punktow sktadowych, ale same
staja si¢ punktami w kompozycji bardziej ztozonej (s. 28).

e Punkty gtéwne oraz punkty wazne umieszczone w miejscach formalnie podkreslonych,
przez co wybijajg si¢ spomigdzy innych punktéw (s. 48, 118).

e Dominanty, czyli przyciagajace uwage formy silne (s. 28).

e Liczbe elementdw, ktore daje si¢ percepcyjnie od siebie odrozni€ i policzy¢ w liczbie
od jednego do pigciu, a ktore powyzej tej liczby stanowig niepoliczalng grupe ,,wielu”
(s. 27).

e Polozenie elementu, ktory moze by¢ osadzony w kompozycji spoiscie lub rzucony
bardziej swobodnie (s. 90).

e Osiowos$¢ i powigzang z nig symetri¢ osiowg (s. 36, 79).

e Katy ustanowione przez osie, ktore, jesli sa ortogonalne, sprzyjaja spoistosci formy
(s. 79).

e Rytm, ktéry musi mie¢ wigcej niz 3 lub 4 elementy sktadowe (w zaleznosci od

otaczajacego kontekstu), poniewaz inaczej odczytywany jest jedynie jako pewien uktad
osiowy (s. 62, 74, 110).
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Pole dziatania formalnego oznaczajace obszar oddziatywania elementu w kompozycji
(s. 103, 117).
Wytyczng generalng, czyli gtéwng zasad¢ kompozycyjna decydujacag migdzy innymi

0 swobodnosci lub spoistosci uktadu (s. 120).

Oprocz powyzszych Zoérawski wyrdznia takze powigzane z nimi rodzaje form przestrzennych:

Formy oraz otoczenie stanowigce dla nich tlo. Tlo takze moze si¢ sktada¢ z form, jednak
w zestawieniu z formg silniejsza o mocnym konturze zostaja one percepcyjnie
zepchnigte do roli tta (s. 66).

Formy spoiste (uporzagdkowane, czytelne, harmonijne) oraz formy swobodne (beztadne,
Z nieczytelng wytyczng generalng, organiczne) (S. 23).

Silniejsze formy matki i podporzadkowane im formy sktadowe (s. 30).

Formy zalezne od cze$ci i formy od nich niezalezne (s. 31).

Ograniczone formy skonczone i otwarte formy nieskoficzone (Zérawski, 1962, s. 101).

W ksigzce Architecture Form, Space, & Order Francis D.K. Ching troche szerzej niz Zorawski

wyrdznia wigcej podstawowych elementow kompozycyjnych i podaje rodzaje ztozonych z nich

kompozycji. Ching proponuje nastepujacy podziat typologiczny kompozycji przestrzennych:

Kompozycje oparte na siatkach regularnych (s. 66, 230).
Kompozycje oparte na siatkach nieregularnych (s. 72).
Kompozycje centralne (s. 198).

Kompozycje radialne (s. 216).

Kompozycje liniowe (s. 206).

Kompozycje klastrowe (s. 222).

Kompozycje hierarchiczne, w ktorych jedne elementy sa wazniejsze od innych (s. 212).

W obrebie tych typow kompozycyjnych Ching wyrdznia nastgpujace elementy oraz zasady

ich porzadkowania:

Punkty i centra, czyli percepcyjnie nierozdzielane elementy podstawowe odczytywane
jako obiekty bezwymiarowe (s. 4, 216).

Plaszczyzny odczytywane jako podstawowe elementy dwuwymiarowe (s. 14).
Objetosci odczytywane jako podstawowe elementy trojwymiarowe (s. 14).

Dominanty podkreslone przez wtasng forme lub umiejscowienie (s. 206).
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Data (I. poj. Datum), czyli elementy odniesienia zbierajagce i organizujgce kompozycje
w catos¢ podobnie do pigciolinii w zapisie nutowym (s. 366).

Grupy elementow tworzace wicksze catosci. Juz dwa punkty zaczynaja wyznaczaé
miedzy sobg pochodng 0§ (s. 6).

Linie, osie i naprowadzenia, czyli elementy podstawowe o jednym z wymiaréw
zdecydowanie wigkszym od pozostatych lub grupy elementéw utozonych liniowo
(s. 8, 62, 206, 242, 340).

Symetrie osiowe lub punktowe (s. 222, 348).

Rytmy proste, niejednostajne lub progresywnie zmienne (s. 382).

Podobienstwa czgéci odczytywane jako pokrewienstwo fragmentow kompozycji
(s. 222).

Klastry obejmujace wiele wyrdzniajacych si¢ z otoczenia elementow podstawowych
tworzacych percepcyjnie czytelng catosc¢ (s. 68).

Skale oznaczajace rozmiary elementéw lub wizualne postrzeganie ich rozmiardéw
zalezne od potozenia obserwatora (s. 293, 330, 333).

Proporcje bedace wzajemnymi relacjami migdzy rozmiarami elementow (S. 29).
Hierarchie wedtug rozmiarow, form czy lokalizacji (s. 358).

Transformacje, oznaczajace przetworzenie kompozycji lub ich cze$ci zachowujace
pierwotne znaczenie (s. 402)..

Krawedzie, czyli liniowe granice formy (S. 82).

Narozniki bedgce zatamaniami krawedzi i punktowymi ograniczeniami formy (S. 82).
Pelnie, czyli trojwymiarowe objetosci ograniczajace pustg przestrzen (S. 96).

Pustki, czyli przestrzenie miedzy elementami pelnymi (S. 96).

Petle oznaczajace ciaglte obrysy biegnace przez kompozycje lub dookota niej (s. 222).
Sciezki stanowigce sekwencyjny, linearny plan poruszania si¢ uzytkownika
w przestrzeni (s. 264).

Zakonczenia osi, $ciezki lub rytmu (s. 278).

Wejscia i otwarcia wyznaczajace poczatek nowej Sciezki (Ching, 2007, s. 250, 283).

W Elementach Kompozycji Urbanistycznej Kazimierz Wejchert zwraca uwage glownie

na kompozycje tkanki miejskiej 1 wyrdznia:

Elementy krystalizujace, wokot ktorych narasta reszta kompozycji (S. 52).
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Ulice 1 drogi, czyli liniowe elementy przeznaczone do ruchu uzytkownikéw przestrzeni
(s. 56).

Rejony wyrozniajace si¢ pod jakim$ wzgledem od innych obszaréw (S. 59).

Linie 1 pasma graniczne bedgce wyraznymi ograniczeniami przestrzeni lub stanowigce
przerwy miedzy poszczegdlnymi rejonami (S. 64).

Dominanty uktadu przestrzennego, czyli elementy o duzym znaczeniu (S. 67).
Wybitne elementy krajobrazu bedace swoistg wizytowka danej przestrzeni (S. 71).
Punkty weztowe, w ktorych stykajg si¢ elementy przestrzenne o réznych strukturach
(s. 71).

Znaki szczegoblne unikalne dla konkretnej przestrzeni i wyrozniajace jg (Wejchert, 1984,
s. 74, 90).

W odréznieniu od Wejcherta, Kevin Lynch pisze o mentalnych, dwuwymiarowych mapach

przestrzeni miejskiej. W The Image of the City opisuje nastgpujace elementy kompozycyjne:

Drogi, czyli linie, wzdtuz ktorych przemieszcza si¢ uzytkownik przestrzeni (S. 49).
Wezly, czyli miejsca przecinania si¢ elementow liniowych (s. 72).

Charakterystyczne elementy krajobrazu, czyli punkty orientacyjne, na podstawie
ktorych uzytkownicy okreslaja swoje potozenie (S. 78).

Rejony, czyli elementy powierzchniowe (s. 66).

Krawedzie rozumiane jako linie rozgraniczajace obszary oraz bariery i niecigglo$ci

przestrzeni (Lynch, 1960, s. 62).

Wymienione powyzej elementy kompozycyjne, zasady ich porzadkowania oraz typy

kompozycji przestrzennych wydaja si¢ mozliwe do przedstawienia maszynowego. Modele sieci

neuronowych wykazujgce przestrzenne uprzedzenie dotyczace struktury danych (Mitchell,

2017), takich jak sieci CNN, moga dobrze radzi¢ sobie z przetwarzaniem elementow

kompozycyjnych (Dzieduszynski, 2022b) charakteryzowanych przez ich relacje geometryczne

(punkty glowne, osie kompozycyjne, osie symetrii, rejony, klastry, rozmiary, proporcje, €tc.).

Modele sekwencyjne takie jak RNN, LSTM czy transformery mozna wykorzystac

do przetwarzania elementéw uporzadkowanych sekwencyjnie w pewne logiczne ciagi ($ciezki,

drogi, rytmy, hierarchie lub transformacje uktadu na osi czasu).
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2.4.2. Punkty glowne w teorii kompozycji przestrzennej

Jednym z wazniejszych elementow kompozycyjnych, na ktére zwracaja uwage teoretycy,
sg punkty gtowne i punkty formalnie podkreslone. Ich waga wynika z psychosomatycznych
uwarunkowan cztowieka, ktory przyciggany jest przez podkreslone kompozycyjnie,
dominujace formy. Zjawisko to trafthie podsumowuje w swojej pracy o ksztalttowaniu panoram

miejskich Karolina Sobczynska:

LIW] (...) obserwatorze przestrzeni miasta, powstajq wrazenia ogolne pochodzgce
od cafosci obrazu, ale tez nastepuje rejestracja czqstkowa niektorych elementow,
PO ktorych przesuwa sig jego wzrok. Dominujgce doznanie powstaje w momencie, kiedy
wzrok czlowieka zatrzymuje sie na formie architektonicznej, ktora w jakis sposob
wyroznia sie od pozostalych form lub formie, ktora stanowi gtowny punkt kompozycji
przestrzennej. (...) Tendencjq czlowieka obserwujgcego jakgs forme czy kompozycje
Z pewnej odleglosci jest poszukiwanie punktu gtownego, dominanty ukladu.”

(Sobczynska, 2021, s. 64)

Wedlug Zérawskiego punkty gldowne to wazne punkty kompozycji przestrzennej umieszczone
w miejscach formalnie podkreslonych. Wybijaja si¢ one na pierwszy plan spomiedzy innych
punktow i sg potencjalnym miejscem dla umieszczenia dominanty. Oprocz punktow glownych
sa takze punkty wazne, ktore takze sg formalnie podkres$lone, jednak nie zawsze stanowia
dla kompozycji pojedynczy punkt gtdéwny. W punkcie formalnie podkre§lonym niekoniecznie
musi znajdowac si¢ jaki$ obiekt architektoniczny. Punkt gtowny moze by¢ pustka, przejsciem,
potencjatem dla pojawienia si¢ czego$ lub kogo$. Zorawski odréznia takze od punktow
gltéwnych jadra kompozycji, ktorych wazno$¢ nie wynika z kompozycji formalne;,
a jest uwarunkowana przez ich znaczenie funkcjonalne. Przyktadowo jadrem kompozycji
W piramidzie jest ukryta komora grobowa, a podkre§lony formalnie jest jej szczyt. Zespot jadra
nie musi by¢ formalnie podkreslony przez punkt glowny, ale gdy tak si¢ dzieje, sprzyja

to spoistosci formy (Zorawski, 1962).

Ching takze posrednio nawigzuje do idei punktow gldwnych, jednak nie nazywa ich wprost.
Mowi o dominantach ze wzgledu na umiejscowienie, wyznaczonych przyktadowo przez
zakonczenie zalozenia osiowego czy centralno$¢ punktu. Drugorzednymi punktami formalnie
podkreslonymi sa takze rozne akcenty wizualne. Formalnie podkreslone bywaja narozniki,

jednak nie kazdy naroznik ma wystarczajaca wage, by od razu uzyskac range punktu gléwnego.
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Ching zwraca uwagg takze na punkty wyznaczone przez wezly zatozen sieciowych

oraz zakonczenia i rozpoczgcia waznych dla uzytkownikow przestrzeni $ciezek (Ching, 2007).

Wejchert méwi o dwoch kategoriach elementéw kompozycyjnych, wpisujacych si¢ w kategorie
gtéwnych punktéw formalnie podkreslonych. Pierwszymi sg dominanty uktadu przestrzennego
wyrédzniajace sie¢ w skali architektonicznej ze wzgledu na swoje umiejscowienie w kompozycji
miejskiej, unikalno$¢ oraz topografi¢ terenu (np. jako punkty najwyzsze). Dominanty moga
takze by¢ podkreslone przez naprowadzenia widokowe, otwarcia szczelinowe, otwarcia waskie
lub kierunkowe. Druga kategoria to znaki szczegdlne, czyli punkty w miescie o nieco mniejsze;j
wadze, ktore, mimo ze nie sg dominantami, zapisujg si¢ W mapie mentalnej uzytkownikow
miast ze wzgledu na swoja unikalno$¢ (moga to by¢ przyktadowo atrakcyjne rzezby czy
elewacje). Wejchert w kontekscie komunikacyjnym wyrdznia takze punkty weztowe
umozliwiajagce zmiang trybu transportu, ktére maja bardzo wazng pozycje¢ w mapach
mentalnych uzytkownikdéw miast, jednak niekoniecznie musza stanowi¢ formalnie podkreslone
punkty gtowne (Wejchert, 1984). Kevin Lynch zwraca uwage na punkty orientacyjne (ang.
landmarks), ktore moga mie¢ rézne skale, ale niezaleznie od rozmiaréw
sg dobrze zapamigtywalne ze wzgledu na znaczgca lokalizacje w kompozycji przestrzenne;.
Punkty orientacyjne czesto sa podkreslone przez ich wysokos¢ 1 widocznos¢, przez co stanowia

formy wyrozniajace si¢ z tta (Lynch, 1960).

Podsumowujac, w kontek$cie przestrzeni miejskiej punkty glowne to wazne geometrycznie
punkty znajdujace si¢ w miejscach formalnie podkreslonych. Podporzadkowuja one sobie
calo$¢ okolicznej kompozycji przestrzennej. W pojedynczym zatoZzeniu moze wystgpowac
jeden punkt gléwny, kilka rownorzednych 1 najwazniejszych punktow formalnie podkreslonych
lub kompozycja moze by¢ takich punktéw pozbawiona. W takim przypadku wszystkie
elementy kompozycyjne znajdujace si¢ w polu percepcji sa rownie wazne (Marynczuk, 2012).
Punkty gléwne moga mie¢ zarowno charakter pozytywowy (znaczaca forma wyrdzniajaca si¢
z tta) lub negatywowy (pustka bedaca potencjalem do pojawienia si¢ czegos). Punkt taki moze
wigc stanowi¢ dominant¢ przestrzenng, ale takze by¢ placem miejskim — miejscem dla
aktywnos$ci publicznych. Jego umiejscowienie moze by¢ podkre$lone przez kompozycje
miejskg oraz topografi¢ terenu. Przyktadowo, podkreslenie takie moze mie¢ forme przecigcia
czy zakonczenia osi, lub zalozenia radialnego, kierujacego uwage na punkt centralny.
Ze wzgledu na swojg lokalizacje, widoczno$¢ 1 znaczaca skale punkty glowne moga petni¢

funkcje punktow orientacyjnych.

86



2.4.3. Punkty glowne spontaniczne i projektowane

Punkty glowne zazwyczaj krystalizujg si¢ w przestrzeni miejskiej spontanicznie na skutek
nawarstwienia wielu, roztozonych w czasie decyzji projektowych, planow i zdarzen
przypadkowych. Co wiecej, poszczegodlne zespoty kompozycyjne zdefiniowane na réznych
uktadach punktow formalnie podkreslonych wzajemnie si¢ na siebie naktadajg i nawarstwiajg
(Mironowicz i Ossowicz, 1997). Kompozycja przestrzenna jest fenomenem rozpigtym
w czasie. Katarzyna Pluta zwraca uwage, ze ,, [r]/ola kompozycji w ksztaltowaniu miasta polega
na ochronie jego kulturowego oblicza z zastosowaniem historycznej kontynuacji” (Pluta, 2014,
S. 79). Projektanci inspirowani zastang topografia, uktadem komunikacyjnym, symbolicznym
znaczeniem lokalizacji, czy wczesniejsza zabudowa moga intuicyjnie podkresla¢ kolejnymi
interwencjami rang¢ danego miejsca zwigkszajac stopniowo jego wage w kompozycji
przestrzennej. Jak pisze w Jezyku wzorcéw Christopher Alexander o wzorcach formujacych

si¢ w skali urbanistycznej:

., Te wzorce nigdy nie mogq by¢ «zaprojektowane» czy «zbudowane» za jednym
zamachem — wzrastajg one po kawatku, sq projektowane w sposob, w ktorym kazde
pojedyncze dzialanie zawsze pomaga w tworzeniu lub generowaniu wzorcow

globalnychy...)” [ttumaczenie wiasne] (Alexander, i in., 1977, s. XIX).

Spontaniczne wydarzenia formujace jedne punkty gtowne moga doprowadza¢ jednocze$nie
do zatarcia pozycji innych punktow. Przyktadem organicznie ewoluujgcego punktu gtdéwnego
moze by¢ opisany przez Kevina Lyncha gmach State House w Bostonie. Miegjsce to poczatkowo
byto podkreslone przez topografi¢ terenu jako zatamanie krawedzi wzgoérza Beacon Hill.
Dodatkowo jedna z gtownych drog bostonskich (obecnie Beacon Street), skrecajac nagle wraz
z uktadem terenu, wyznaczyta swoja osig domagajacy si¢ zaakcentowania punkt. Ekspozycja
widokowa przetozyla si¢ na decyzj¢ o zlokalizowaniu tam w 1798 roku zaprojektowanego
przez Charlesa Bulfincha gmachu miejskiego. Powigzanie miejsca z wazng funkcja jeszcze
bardziej zwigkszylo jego range, przez co gmach byt wielokrotnie rozbudowywany, a w 1874
roku jego szczyt zaakcentowano ztota koputg. W 1960 roku, gdy Lynch prowadzil swoje
badania, zlota koputa wybijajaca si¢ na tle nieba, widoczna z kazdego punktu Parku Boston
Common i znajdujaca si¢ na zakonczeniu kilku osi komunikacyjnych, zdecydowanie stanowita
punkt glowny catego zalozenia urbanistycznego Beacon Hill (Lynch, 1960). W kolejnych
latach jednak, z kazdym ukonczonym bostonskim wiezowcem, ranga State House stopniowo

malata. Obecnie gingca wsrod betonowych 1 szklanych prostopadio$cianéw ztota koputa
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stanowi punkt formalnie podkreslony jedynie w lokalnej skali naroznika parku Boston

Common (Rys. 21).

O ile opisywane przez Alexandra wzorce spoleczno-przestrzenne potrzebuja czasu,
by si¢ w petni uformowac, to czysto formalnie rozumiane punkty gtowne moga jednak takze
byé tworzone przez celowe, pojedyncze decyzje projektowe. Swiadomie projektujac otwarcia
widokowe i formujac linie naprowadzajace, architekt czy urbanista moze tworzy¢ catosciowe
kompozycje rozpigte na planowanych punktach gtéwnych. Przyktadem moze by¢ ujazdowskie
zatozenie placow gwiazdzistych z lat 70. osiemnastego wieku, w ktorym centra placow
stanowig rownorz¢dne wzgledem siebie wezly zatozenia sieciowego (Szwankowski, 1970).
Osie wyznaczone wsrod podwarszawskich pol (Zannoni, 1772; Aubert i Tardieu, 1788) staty
si¢ szkieletem pod jedno z najbardziej rozpoznawalnych warszawskich zalozen

urbanistycznych (Rys. 22).

[ 1]
% o
Rys. 21. Ztota koputa State House w Bostonie Rys. 22. Widok na plac Zbawiciela
gingca na tle nowszych wiezowcow, m.in. One bedqgcy punktem gtownym zalozenia

Beacon Street z roku 1972 (fot. Google Maps,  gwiazdzistego (fot. Google Maps, 2023)
2023)

2.4.4. Punkty glowne a skala kompozycji

Zatozenie ujazdowskie dobrze ilustruje kolejng ceche punktéw gtownych (i ogdlnie
kompozycji przestrzennych), mianowicie ich charakter fraktalny. W zaleznosci od przyjetej
skali analizowanej przestrzeni bedziemy zwraca¢ uwage na punkty gtowne o réznych polach
oddziatywania formalnego. W skali calej warszawskiej dzielnicy Srodmiescie plac Zbawiciela

stanowi jedynie jeden z kilku formalnie podkreslonych punktow weztowych catego zalozenia
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ujazdowskiego. Jesli zblizymy si¢ do trojkata wyznaczonego przez osie ulic Warynskiego,
Koszykowej i al. Armii Ludowej, to plac Zbawiciela przyjmie charakter pojedynczego punktu
gléwnego jako centrum zalozenia gwiazdzistego. Gdy zblizymy si¢ jeszcze bardziej do samego
placu, nasza uwaga padnie juz bezposrednio na Ko$ciot Najswietszego Zbawiciela jako
dominanty przestrzennej lub na sam centralny punkt placu wyznaczony przez przecigcie osi
widokowych (jesli kosciot Zbawiciela nie pojawi sie akurat w polu naszej percepcji)*®. Punkty
gléwne nie wystepuja w pojedynczej, wlasciwej sobie skali. Uwidaczniajg si¢ wzglednie
ptynnie w zalezno$ci od przyjetego w danej chwili zakresu pola postrzegania i moga
funkcjonowa¢ w skali zarowno urbanistycznej, architektonicznej, jak i detalu. W skali
wielkomiejskiej punkty gtowne beda budowane przez elementy takie jak: bramy, ciagi
komunikacyjne, ulice wlotowe do miasta, stale elementy przestrzenne planu miasta, zatozenia
przestrzenne w duzej skali, uktad komunikacyjny oraz gtowne elementy tozsamosci miasta
takie jak doliny rzeczne i skarpy (Pluta, 2001). W mniejszej skali pojedynczego placu punkty
gléwne beda wyznaczane przez detal Scian, podlogi i stropu wnetrza urbanistycznego. Detale
te uczytelniaja i harmonizujg kompozycje przestrzenng. Najwigksze znaczenie maja detale
podtogi urbanistycznej, takie jak: naprowadzajace tafle wody, rysunki na posadzce, mata
architektura, zr6znicowania materiatowe, porecze, pochylnie i murki. W drugiej kolejnosci
wplyw majg $ciany wnetrza przez sama tektonike pierzei, ale tez szpalery zieleni, pergole,
skarpy, elementy rytmiczne, bramy czy tablice reklamowe. W skali tej najmniejszg wage ma
ptaszczyzna stropu dysponujaca zadaszeniami, tacznikami architektonicznymi czy liniami

energetycznymi (Pluta, 2014).
2.4.5. Znaczenia punktéow glownych

Znaczenie funkcjonalne i spoleczne

Punkty gtdéwne nie sg jedynie stricte geometrycznym fenomenem zaleznym od fizycznego
zagospodarowania miasta. Elementy te zawsze bedg miaty swoje znaczenia takze w wymiarach
funkcjonalnym, spotecznym, symbolicznym 1 ekonomicznym. Ze wzgledu na ich wage

W kompozycji przestrzennej punkty gldwne naturalnie zyskuja takze na atrakcyjnosci w sferze

19 Napiecie miedzy tymi dwoma kandydatami na punkt gtéwny kompozycji uzyskato swojg symboliczng
kulminacje w momencie zlokalizowania w centrum placu Zbawiciela stynnej teczy projektu artystki Julity Wojcik.

Luk teczy jeszcze bardziej zaakcentowat przecigcie osi ulic i odciggnat uwage od kosciota Zbawiciela.
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funkcjonalnej. Radialne przeciecie kilku osi multimodalnego transportu wyznacza punkt
dla wezta przesiadkowego. Dominanta wysokos$ciowa ze wzgledu na swoje gabaryty pozwala
na lokalizacj¢ w swoim wnetrzu atrakcyjnych funkcji o duzej intensywnosci. Naprowadzenia
i ekspozycje widokowe zwigkszajg range miejsca w mapach mentalnych uzytkownikow
przestrzeni, zwickszajac warto$¢ ekonomiczng miejsca i przekladajagc si¢ na potrzebe
lokowania funkcji spotecznie waznych. Niemiecki geograf i etnograf Friedrich Ratzel w swojej
Antropogeografii postawil wrecz teze, ze zadne miasto nie moze powsta¢ bez istnienia
pierwotnego punktu glownego wyznaczonego przez centralno$¢, skrzyzowanie Szlakow
komunikacyjnych i dost¢pnos¢ topograficzng (Ratzel, 1882). Osada zlokalizowana w takim
miejscu dziala jako punkt $ciagajacy kontakty, zardbwno z otaczajacych terenéw wiejskich,
jak i z sgsiednich miast. Punkty gtéwne moga dziata¢ jak generatory rozwoju organizujgce

strukturg catych miast (Mironowicz, 2013).

W Jezyku Wzorcow Christopher Alexander, wychodzac od spotecznych zatozen formowania
si¢ miast, mowi o dwoch skalach centrow w tkance urbanistycznej. W skali obszaréw
zamieszkanych przez 300 tysi¢cy mieszkancow identyfikuje intensywne centra miejskie bedace
jadrami dla catych regiondw miejskich. Przy proponowanym przez Alexandra uktadzie
palczastych zatok miejsko-wiejskich 2 , centra takie majg tendencj¢ do formowania
si¢ na przecigciu osi stykajacych si¢ ze sobg podtuznych zatok miejskich (Alexander, i in.,
1977, s. 59). W bardziej lokalnej skali obszaréw zamieszkalych przez 7 tysigcy mieszkancow
Alexander pisze o centrach wspolnotowych, wynikajacych ze struktury sasiedzkiej miasta.
Centra te s3 uwarunkowane przez dzienne migracje mieszkancow, presje ekonomiczng i uktad
morfologiczny klastrow sasiedzkich. Tom Brennan w latach 40. zauwazyt na przyktadzie
angielskiego miasta Wolverhampton, ze zlewiska funkcjonalne centrow lokalnych nie majq
formy zblizonej do okregdw, a bardziej do potokregow, w ktorych handlowe centra lokalne
powigzane z we¢ztami komunikacyjnymi przesunigte sa w kierunku gtownego centrum calego
miasta (Brennan, 1948). Wynika to z determinujgcej dzienne migracje ludnosci sily

przyciggania centrum gltdéwnego oddziatujgcego na obszarze catego miasta (Rys. 23).

20 Ang. City Country Fingers oznaczajace wydluzone pasma gestej zabudowy miejskiej o szerokosci do jednej
mili, rozdzielone przez bardziej naturalne pasma zabudowy wiejskiej o szerokosci minimum jednej mili

(Alexander, i in., 1977, s. 25)

90



(Lo \\ )
i 1>

Rys. 23. Zlewiska centrow Rys. 24. Centra Rys. 25. Zblizenie
lokalnych Brennana. Centra  ekscentryczne Alexandra. na centrum ekscentryczne
lokalne przesuniete Znajdujgce sie na granicach  Alexandra. Naprowadzajq
sq W kierunku gtownego miedzy obszarami na nie sciezki i bariery
centrum miasta [na spotecznosci [na podstawie wyznaczajgce obszar
podstawie (Brennan, 1948)] (Alexander, i in., 1977)] spotecznosci. Opracowanie
wlasne

Alexander rozwija mys$l Brennana i proponuje struktury ,.centréw ekscentrycznych”
zlokalizowanych na granicy pomigdzy sasiadujagcymi ze soba spotecznosciami. Centrum takie
obstuguje gléwnie spotecznos¢ znajdujaca si¢ w wigkszym oddaleniu od centrum gldwnego
miasta (Rys. 24). Ekscentryczne centra powinny krystalizowac si¢ w okolicy bramy tgczacej
sgsiednie spotecznos$ci. Lokalizacja taka generuje naprowadzenia geometryczne — z jednej
strony przez $ciezki, ulice i przejscia zbiegajace si¢ w rejonie bramy, z drugiej przez bariery
wyznaczajace granice odrgbnych spotecznosci, Bariery naprowadzajace na centrum mogg mie¢
forme pierzei zabudowy, szpalerow zieleni, barier topograficznych, cieckow wodnych czy linii
kolejowych (Rys. 25). Centra ekscentryczne charakteryzujg si¢ najwigkszg w sgsiedztwie
gesto$¢ zabudowy (z gradientem intensywnos$ci malejacym w miare oddalania si¢ od centrum
glownego miasta). W obrebie centrow ekscentrycznych znajduja si¢ wazne przestrzenie
publiczne, takie jak ulice i place handlowe uzupetione o wezly komunikacyjne. Centra te
powstajg wzdhuz barier i gtbwnej osi naprowadzajgcej na bram¢ w granicy otaczajacej obszar
zamieszkania danej spotecznosci. Przez to centra takie zyskuja forme podkowy z lekkim

wybrzuszeniem na jej osi symetrii (Alexander, i in., 1977, s. 90, 151).
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Znaczenie symboliczne

Podkreslona formalnie lokalizacja punktow gtownych przektada si¢ na ich duza range
symboliczng. Punkty gltoéwne zapisuja si¢ w mapach mentalnych uzytkownikow przestrzeni.
W przypadku dominant wysokosciowych i1 obiektow wykorzystujacych topografie terenu
fizycznie goruja one nad reszta krajobrazu i sa widoczne z wielu lokalizacji. Sredniowieczne
zamki zaktadano na wzgorzach nie tylko ze wzgledow obronnych. Miaty one przypominad
0 swojej obecnos$ci, symbolizowaé wladze, autorytet i wzbudza¢ w mieszkancach podgrodzia
poczucie bezpieczenstwa. Symbole z definicji obejmuja jednoczesnie wiele znaczen. Widoczne
na dziesiatki kilometrow zamki obronne z jednej strony obiecywaty zysk i wyznaczaly kierunek
dla zmierzajacych do miasta kupcow, a z drugiej budzity strach i odstraszaly potencjalnych
najezdzcow. Przez wieki podporzadkowywania sobie okolicznej kompozycji przestrzennej
punkty gltowne staja si¢ elementami dziedzictwa historycznego i kulturowego. Znajdujace
si¢ W podkreslonych kompozycyjnie punktach wazne funkcje administracyjne, religijne,
edukacyjne czy spoteczne oddziatujg na cate pokolenia stopniowo wpisujac si¢ coraz mocniej
w tozsamo$¢ mieszkancow dzielnic czy miast. Obiekty takie jak Zamek na Wawelu, Wieza
Eiffla, Akropol czy pomnik Waszyngtona oddziatuja w kulturze tak szeroko, ze funkcjonuja

jako ikony dla catych narodow.

Nastawieni przyszto§ciowo projektanci, swiadomi tych relacji, takze przy wspolczesnych
realizacjach moga  ksztaltowa¢  symbolike  projektowanych  miejsc.  Krystyna
Guranowska-Gruszecka zwraca uwage na przyktady wzglednie nowych warszawskich
dominant wysokosciowych funkcjonujacych jako punktowe podkreslenia rangi weztow
miejskosci. Warto wspomnie¢ migdzy innymi o Blekitnym Wiezowcu podkreslajacym wage
placu Bankowego 1 sprzegajacym jego cate zalozenie kompozycyjne w calo$¢. Innymi
wysokosciowcami  pelnigcym  podobng role sg Intraco, wyznaczajacy  granice
Srédmiescia Polnocnego czy Plac Unii wyznaczajacy granice Srodmiescia Poludniowego

(Guranowska-Gruszecka, 2018).

Znaczenie ekonomiczne

Nasycone symbolicznie, dobrze skomunikowane punkty gléwne czgsto powigzane
sg Z aktywnymi 1 atrakcyjnymi ekonomicznie przestrzeniami publicznymi. Wigksza
intensywno$¢ zabudowy wigze si¢ z duzym zaggszczeniem roznego rodzaju funkcji
stymulujacych interakcje migdzy nimi. Mieszanka wzajemnie wspierajacych si¢ obiektow

ustugowych, handlowych, kulturalnych, rekreacyjnych, edukacyjnych i administracyjnych
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tworzy stymulujacg rozwoj miejsca sie¢ lokalnych powigzan. Christopher Alexander $cisle
taczy ide¢ ekscentrycznych centrow sagsiedzkich z ich funkcjami komercyjnymi proponujac
lokalizacje w ich obrebie ulic i promenad handlowych oraz weztéw aktywnosci lokalnej
(Alexander, i in., 1977). Jan Gehl takze zwraca uwage na fenomen zaggszczenia sieci
aktywnos$ci miejskich oraz interakcji miedzyludzkich w obrgbie intensywnych, dost¢pnych
i dobrze zintegrowanych funkcjonalnie przestrzeniach publicznych (Gehl, 1971). Kompozycja

urbanistyczna jest w duzej mierze procesem komercyjnym. Stawomir Gzell pisze:

, Powiada sie, zZe wurbanistyka preferuje sytuacje w ktorej strumien pieniedzy
Z niesprecyzowanego zrodla pomagal bedzie w tworzeniu pieknych krajobrazow
dla samej mitosci do urody otaczajgcego nas swiata. Tak nie jest. Kazdy urbanista wie
(chocby z wyktadanej na uczelniach) historii urbanistyki, zZe teoria ,,wartosci rzeczy
pigknej” (...) obowigzuje od dawna — trzeba tylko to zrozumiec. Dzis tez urbanistyka
powiada, Ze nie ma kontradyktoryjnosci miedzy tym, co komercyjne a tym,
co zakomponowane, albo inaczej: kontradyktoryjnos¢ ta moze nie wystepowaé
I nie powinna.” (Gzell, 2013, s. 236)

Ceny nieruchomosci charakteryzuja si¢ bardzo duzym zrdéznicowaniem i sg pochodna wielu
czynnikow, jednak ze wzgledu na prestizowa lokalizacj¢ mozna spodziewac si¢, ze warto$¢
dzialek znajdujacych si¢ w obrgbie lub poblizu kompozycyjnego punktu gldwnego moze
by¢ wyzsza niz dzialek okolicznych. Harmonia kompozycji bezposrednio przektada si¢ na
estetyke przestrzeni, a walory estetyczne sa jednym z kryteriow decydujacych o cenie
nieruchomosci (Sleszynski, i in., 2018). W przypadku punktéw gtéwnych wyznaczonych przez
przecigcie osi, w ktorych jedna z nich stanowi krawedz urbanistyczng (jak w proponowanych
przez Alexandra centrach ekscentrycznych) wartos¢ ekonomiczna terenu jest dodatkowo
zwigkszona przez pozytywny wplyw krawedzi kompozycyjnych na ceny nieruchomosci.
Lokalizacje znajdujace si¢ w przestrzeniach stykowych charakteryzuja si¢ wigkszymi walorami
krajobrazowymi w stosunku do przestrzeni wewngtrznych obszaréw (Paszkowski, 2007).
Mocnym przyktadem tego efektu jest krajobrazowy wplyw krawedzi tworzonej przez skarpe
warszawskg na wyzsze ceny nieruchomosci znajdujacych sie w jej obrebie (Sleszynski, i in.,
2018; Achmatowicz-Otok i Jarosz, 1996). Kompozycyjne punkty glowne o ponadlokalnej skali
oddzialywania, stanowigce jednocze$nie ikony dziedzictwa kulturowego moga zwigkszaé

potencjat turystyczny danego miejsca, a nawet calego miasta. Ze wzgledu na znaczenie
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ekonomiczne punktéw gtownych, ich rozpoznawanie, wzmacnianie 1 tworzenie powinno leze¢

w sferze zainteresowan deweloperéw budujacych nasze miasta.

2.4.6. Rola punktéw glownych w planowaniu przestrzennym

Analizy kompozycyjne oraz rozpoznawanie i wyznaczanie punktéw gldownych zajmujg wazna
role w planowaniu przestrzennym. W publikacji Przestrzenie publiczne miast europejskich:

Projektowanie urbanistyczne prof. Katarzyna Pluta pisze:

. (...)Kompozycja urbanistyczna stanowi gltowne kryterium urody kazdego miasta, jest
to czynnik, ktory decyduje o jakosci przestrzeni (...). Poczqtkiem wszelkich prac
zwigzanych z poprawq krajobrazu miasta, wykorzystujgcych teorie kompozycji
urbanistycznej, powinna by¢é analiza morfologii  stanu istniejgcego. Dotyczy

to zwlaszcza stanu istniejgcego.” (Pluta, 2014, s. 79-81)

Ustawa o planowaniu i zagospodarowaniu przestrzennym jest podstawowym aktem prawnym
regulujagcym planowanie przestrzenne w Polsce. W artykule 2. zaznacza, ze uwarunkowania
kompozycyjno-estetyczne sg jednymi z kluczowych wyznacznikow osiagnigcia tadu
przestrzennego (Sejm RP, 2003). Istniejace i projektowane osie naprowadzen widokowych
wskazujacych na lokalne punkty gltéwne sg waznymi aspektami $wiadczacymi o jakos$ci
przestrzeni miejskiej. Ich uwzglednianie jest jednym 2z wazniejszych obowigzkow

spoczywajacych na urbanistach probujacych osiagna¢ tad przestrzenny. Cytujac Jana Gehla:

., Patrzenie na zycie miasta — oto jedna z najwazniejszych i najpopularniejszych jego
atrakcji. (...) Urbanista powinien jednak poswieca¢ uwage takze widokowi na inne
atrakcje: wode, drzewa, kwiaty, fontanny czy architekture, bo tylko wtedy mozemy
mowic o petniejszej dbalosci o dobrg jakos¢ miasta. (...) Poniewaz niezaktocony widok
na miejskie atrakcje jest tak istotny, to pole widzenia i wyznaczajqce je linie muszq by¢

traktowane rownie powaznie jak same widoki.” (Gehl, 2014, s. 148)

W Zyciu miedzy budynkami Gehl definiuje przestrzen projektowa planowania przestrzennego
rozpinajagc ja na pigciu wymiarach reprezentujacych mozliwe do podjecia dziatania
planistyczne. Kazdy z tych wymiaréw opisywany jest przez dwa przeciwne sobie kierunki:

e Rozpraszanie i gromadzenie.

e Segregowanie i integrowanie.

e Odpychanie i zapraszanie.

e Zamykanie i otwieranie.
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e Zmniejszanie i zwigkszanie (Gehl, 1971).

Punkty gltowne sa elementami kompozycji maksymalizujacymi te procesy. Maja potencjat
do gromadzenia ludzi i integracji funkcji ze wzgledu na naprowadzajace na punkt osie i
otwarcia widokowe. Moga charakteryzowac si¢ zwigkszong w stosunku do otoczenia
intensywno$cig — Z jednej strony aktywno$ci mieszkancow, a z drugiej — zlokalizowanej

W obrebie punktu zabudowy.

Wprowadzone do polskiej teorii planistycznej przez Zbigniewa Zuziaka ,,wezly miasta”
oznaczajace intensywne, wielowarstwowe, metropolitalne struktury przestrzenno-funkcjonalne
czesto tworza si¢ w poblizu lub bezposrednio w obrebie urbanistycznych punktéow gléwnych
(Guranowska-Gruszecka 1 Laskarzewska, 2018). Krystyna Guranowska-Gruszecka

I Malgorzata Laskarzewska pisza o weztach miasta nastepujaco:

. Wezly  miasta mogq dotyczy¢é  roznych zagadnien: gtownie przestrzennych
| funkcjonalnych tworzy je zabudowa ksztaltowana jako identyfikacja miasta
wyrozniajgca si¢ dominacjq przestrzenng np. poprzez wysokoS¢ Ilub intensywnosé,
0 wyrozniajqcej sig¢ funkcji — np. nowe centra ustugowe, administracyjne, koncentracje
miejsc pracy, centra kultury a takze koncentracje funkcji

rekreacyjnych. Istotq tych miejsc powinna by¢ dbatos¢ o tozsamosé kulturowg.’

(Guranowska-Gruszecka i Laskarzewska, 2018, s. 10)

Trochg¢ innym terminem s3 definiowane osobno ,,wezty miejskosci”. O ile wezty miasta mozna
wyrozni¢ gtownie w skali catej metropolii to wezty miejskosci moga przyjmowac rdzne skale,

a glownym ich wyznacznikiem jest zwigkszony poziom aktywnos$ci miejskiej w ich obrebie:

, Wezly  miejskosci  (WM) — to wielowarstwowe formy zagospodarowania
przestrzennego odpowiadajqce koncentracjom funkcji, czyli aktywnosciom, zwigzanym
z miejskosciq. Przyktadami weztow miejskosci sq: centra miast, centra dzielnicowe
i osiedlowe, a takze inne koncentracje funkcjonalno-przestrzenne, np. miejsca
Czy obszary wokol przystankow transportu zbiorowego, gdzie intensywnos¢ zabudowy
rosnie odpowiednio do dostgpnosci komunikacyjnej centralnego miejsca danego
skupiska i gdzie wyksztalcit sie lub pojawia si¢ pewien typ przestrzeni urbanistycznej,
ktory mozna uznac jako przestrzen publiczng. W przypadku uktadow miejskich majgcych
silny zwiqzek z gospodarkq opartq na wiedzy (...), istotng rolge odgrywajg wezly
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miejskosci odpowiadajgce kampusom uniwersyteckim, parkom nauki, parkom

technologicznym itp.” (Guranowska-Gruszecka i Laskarzewska, 2018, s. 11)

Punkty formalnie podkreslone czesto podawane sg jako przyktady miejsc sprzyjajacych
formowaniu si¢ weztow miejskosci. Anna Jeziorska podaje jako przyktad wspomniany juz
wczesnie] Plac Zbawiciela w Warszawie bedacy kompozycyjnym centrum zatozenia
gwiezdzistego (Jeziorska, 2018). Do podobnych wnioskéw doszli urbanisci z Oddziatu
Warszawskiego SARP w Studium Koncepcyjnym dotyczgcym centréw lokalnych w \WWarszawie
z 2015 roku. W badaniu ankietowym majagcym pomodc w identyfikacji centrow lokalnych
zauwazono, ze warto, by centrum takie wyrdzniato si¢ jakim$ punktem charakterystycznym
nadajagcym mu niepowtarzalny charakter. Jako przyktad Krzysztof Herman w jednym
Z aneksOw podaje park im. Zastawa Malickiego w Warszawie, w ktorym punktem ogniskowym
calego zespotu parkowo-mieszkaniowego jest centralny staw (Herman, 2015). Wiele
proponowanych w studium centréw lokalnych powigzanych jest ze znaczacymi wezlami
komunikacyjnymi, przecigciami osi naprowadzajacych, dominantami przestrzennymi

I miejscami intensyfikacji aktywnosci miejskiej (SARP, Oddziat Warszawski, 2015).

Punkty gléwne i1 punkty kompozycyjnie podkre§lone uwzgledniane sa w procesie planowania
przestrzennego. Dobrym przyktadem byta trzydziesta pigta wersja, paryskiego planu
urbanistycznego PLU (fr. Plan Local d’Urbanisme de Paris). Plan ten chronit istniejace
zalozenia kompozycyjne i ekspozycje widokowe (Rys. 26, Rys. 27). Nowsze wersje
PLU podporzadkowuja wszelkie interwencje projektowe obowigzujacej logice kompozycyjne;j
(Le Conseil de Paris, 2023). W PLU znajduja si¢ zapisy identyfikujace i chronigce
najwazniejsze dla kompozycji urbanistycznej punkty orientacyjne oraz obiekty wspottworzace

elementy ciggle naprowadzajace na te punkty (Le Conseil de Paris, 2023).
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Rys. 26. Strefy ochronne z wyraznie oznaczonymi Rys. 27. Legenda do rysunku stref
punktami glownymi pochodzqce z trzydziestej pigtej ochronnych z trzydziestej pigtej

wersji paryskiego planu urbanistycznego PLU dla wersji PLU (Le Conseil de Paris,
obszaru Pol Elizejskich (Le Conseil de Paris, 2015). 2015).

Rozwazania na temat punktéow glownych znalezé mozna takze w opracowaniach
planistycznych polskich miast. Za przyktady mozna poda¢ dokumenty planistyczne Warszawy
i Lodzi. W obecnie obowigzujacym Studium Uwarunkowan i Kierunkow Zagospodarowania
Przestrzennego Warszawy z 2006 roku (ze zmianami z 2021 roku) wskazane centra dzielnicowe

i lokalne takze sg Scisle powigzane z kompozycja przestrzenna:

,, Dla tworzenia elementow identyfikacji przestrzennej w strukturze przestrzennej miasta
(...) istotne jest zaakcentowanie centrow dzielnicowych i lokalnych jako dominant
(wyroznikow) urbanistycznych o wysokich walorach architektonicznych. (...)
[Wymagane jest] ksztaltowanie zabudowy centrow w sposob tworzqcy spojng
kompozycje przestrzenng, podkreslajgcq range miejsca, miedzy innymi poprzez
wprowadzanie wysokiego standardu rozwigzan architektonicznych, technicznych

| materiatowych.” (Prezydent m.st. Warszawy, 2006 ze zmianami, s. 106)

Projekt nowego Studium Warszawy z 2023 roku rozwija t¢ my$l i wyznacza trzy hierarchie
centrow urbanistycznych. W najwigkszej skali zdefiniowanych jest pigé¢ ,bram
wielkomiejskich” petligcych funkcje centrow ponaddzielnicowych. Powigzane sa one
Z multimodalnymi we¢zlami komunikacyjnymi (takze komunikacji dalekobieznej), koncentruja
one funkcje ustugowe, miejsca pracy i charakteryzuja si¢ wysoka intensywnos$cia zabudowy.

Ranga bram wielkomiejskich powinna by¢ podkre§lona przez dominanty wysokos$ciowe
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sprzegajace kompozycje przestrzenng. Kolejng kategori¢ stanowig centra dzielnicowe
funkcjonujace w skali pojedynczych dzielnic?'. One takze maja potencjal do wigzania si¢
Z kompozycja przestrzenng w celu podkreslenia ich tozsamos$ci, wzmocnienia indywidualnych
cech 1 budowania ich rozpoznawalnos$ci. W najmniejszej skali studium definiuje centra lokalne
obstugujace obszary wyznaczone przez zasigg pieszego spaceru. Studium dopuszcza
lokalizacj¢ dominant wysoko$ciowych i miejscowych podwyzszen zabudowy wzgledem
otoczenia w celu podkreslenia kompozycji urbanistycznej centrow lokalnych, dzielnicowych
i bram wielkomiejskich. Dominanty takie powinny by¢ powigzane z osiami kompozycyjnymi
i widokowymi oraz z panoramami i sylwetami miasta. Studium rekomenduje, by kompozycja
urbanistyczna byta budowana takze przy wykorzystaniu niskiej, $redniej i wysokiej zieleni

miejskiej (Prezydent m.st. Warszawy, 2023).

Studium Lodzi z 2018 roku wskazuje obiekty wyrdzniajace si¢ w krajobrazie miasta ze wzgledu
na znaczenie kompozycyjne, kubature, forme¢, wysokos$¢ lub walory architektoniczne. Punkty
te stanowia wazny element analiz krajobrazowych, polegajacych miedzy innymi
na sprawdzaniu ich widoczno$ci z osi widokowych i z punktow widokowych. W czgsci
kierunkowej studium zalecono zagospodarowywanie terenow sagsiednich wyrdzniajacych si¢
obiektéw, zapewniajace ich odpowiednig ekspozycje i1 relacje widokowe. Nowe obiekty
projektowane jako wyr6zniajace si¢ w krajobrazie powinny by¢ lokalizowane
z uwzglednieniem powigzanych z nimi ciaggéw widokowych (Prezydent miasta f.odzi, 2018).
Archiwalne studium Lodzi z 2010 roku uwzglednia dwa punkty gtowne. Pierwszy z nich, czyli
tzw. ,,L.odzki Manhattan” z centralnym weztem komunikacyjnym, wyznaczony jest przez
przecigcie dwoch gtownych osi krystalizujgcych plan Lodzi (osi historycznej poéinoc-potudnie
1 osi wspotczesne] wschod-zachdd). Drugi punkt to Atlas Arena, bedaca dominantg
w zamknieciu kompozycyjnym wewnetrznej osi krystalizujacej wschod-zachod (Prezydent
miasta Lodzi, 2010).

2.4.7. Automatyczne rozpoznawanie punktéw gléwnych

O ile projektowanie punktéw gtéwnych w kompozycjach przestrzennych lezy gtoéwnie w sferze

zainteresowan architektow, urbanistow, planistow, artystow 1 projektantéw interfejsow

2l Nazwa ,centrum dzielnicowe” jest troche niefortunna, poniewaz sugeruje pojedynczy punkt
administracyjno-ustugowy obstugujacy dang dzielnice. W rzeczywisto$ci autorzy studium wyznaczyli

w wiekszosci dzielnic po kilka centrow dzielnicowych.
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graficznych, to, ze wzgledu na ich rozlegle znaczenia opisane powyzej, rozpoznawanie
punktéw glownych jest przydatne takze w innych branzach. Ekstrakcja punktow formalnie
podkreslonych moze by¢ przydatna nie tylko w praktyce projektowej, lecz takze w pracy
jednostek samorzadu terytorialnego, administracji, deweloperow, inwestorow, rzeczoznawcow
majatkowych, aktywistow oraz moze by¢ wykorzystywana przez samych mieszkancow

zainteresowanych jakoscig urbanistyczng ich miast.

Wraz ze stopniowym wchodzeniem otaczajacych nas miast do sfery wirtualnej i pojawianiem
si¢ ich cyfrowych reprezentacji, mozliwo$ci automatyzacji analiz przestrzennych stajg si¢ coraz
wicksze. Pojawiajg si¢ coraz to nowsze narzedzia GIS-owskie, operujgce na réznorodnych
danych zrodtowych, a istniejace bazy danych staja si¢ coraz obszerniejsze i doktadniejsze.
Kompozycja przestrzenna jest jednak dziedzing mocno subiektywna, w literaturze brak jest
wspolnego jezyka i1 konstrukeji teoretycznej pozwalajacej na techniczng analiz¢ elementow
kompozycyjnych (Mironowicz, 2013). Co wigcej, zautomatyzowane rozpoznawanie punktow
gtownych w kompozycjach przestrzennych jest dosy¢ niszowym problemem i nie jest Szeroko
dyskutowane w literaturze. Za inspiracj¢ i podstawe metodyczng moga jednak postuzyé

narzedzia stosowane do rozwigzywania problemow pokrewnych.

Wskazywanie pewnych istotnych punktéw jest dosy¢ szeroko stosowane jako narzedzie
wspomagajace i uczytelniajace cyfrowe interfejsy graficzne. Przyktadem moze by¢ program
AutoCad, ktoéry juz w wersji 2.0 z 1984 roku wprowadzit opcje ,,OSNAP” (ang. Object Snap)
pozwalajaca na automatyczne przyciaganie kursora do pewnych punktow referencyjnych takich
jak centrum okregu, $rodek lub zakonczenie odcinka albo miejsce przecigcia linii (Hurley,
2008). Funkcja ,,OSNAP” jest na tyle intuicyjna, ze 30 lat pdzniej w najnowszych wersjach
programu dziata ona niemal identycznie jak w wersji 2.0. Rozpoznawanie tych punktow oparte
jest na bardzo prostych zasadach matematycznych i nie uwzglednia bardziej ztozonych zasad
kompozycyjnych, chociaz biorac pod uwage mozliwosci obliczeniowe wspotczesnego sprzetu
komputerowego, zdecydowanie moglaby uwzglednia¢ takze punkty istotne na wyzszych

poziomach abstrakcji kompozycyjnej.

Innym przyktadem automatycznego rozpoznawania pewnych istotnych punktow
sg wspOlczesne sterowniki aparatow fotograficznych w telefonach komorkowych, ktore
potrafig automatycznie rozpoznawa¢ wazne elementy znajdujace si¢ w kadrze (jak np. twarze)
1 ustawia¢ na nich ostros¢. Niektore z nich dostarczajg takze uzytkownikom informacji o tym,

jak ustawi¢ aparat w przestrzeni, aby kompozycja na zdjeciu byta jak najlepiej wykadrowana.
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Jednym z takich systemow jest program Camera51 z 2014 roku (Rehm, 2014). Algorytm
w programie Camera51 opracowany zostal przez Ofriego Masada i Ariela Shamira z firmy
ArtInCam Ltd (Rys. 28). Program wykorzystuje nieneuronowe metody rozpoznawania obrazu
do ekstrakcji ze zdjecia podstawowych, dwuwymiarowych elementéw kompozycyjnych
w postaci jednolitych obszardéw i ich geometrycznych centrow, klastréw zgrupowanych ze sobg
obszaréw, glownych elementow liniowych i osiowych, punktéw $wietlnych oraz ludzkich
sylwetek i twarzy. Nastepnie dla rozpoznanych elementdéw obliczane sg funkcje reprezentujace

najbardziej zblizone mozliwe zasady kompozycyjne, obejmujace:

e Zasade trojpodziatu kadru (podziat kadru na 3 rowne czesci horyzontalne 1 wertykalne.
Elementy liniowe powinny pokrywac¢ si¢ z liniami definiujgcymi podziat, a obiekty
punktowe 1 obszarowe powinny pokrywac si¢ z punktami przecigcia linii podziatu).

e Zasade przekatnych (linie skosne powinny pokrywac si¢ z przekatnymi kadru).

e Zasad¢ przestrzeni (wykorzystanie tla kompozycji do podkreslenia elementu
pozytywowego).

e Zasad¢ kompozycji centralnej (elementy punktowe i obszarowe powinny znajdowac
si¢ w centrum kadru).

e Zasad¢ kompozycji symetrycznej (z osig symetrii umieszczong w centrum kadru).

e Zasadg zlotego podziatu (podzial kadru na cze¢s$ci odpowiadajace ztotemu podziatowi).

Funkcje te sa nastepnie sumowane dla rozpoznanych elementow kompozycyjnych
I na tej podstawie generowane jest maksimum funkcji pochodnej ztozonej z wybranej sumy
zasad kompozycyjnych. Punkt ten reprezentuje potozenie centrum nowego kadru. Uzytkownik
otrzymuje na ekranie aparatu intuicyjng instrukcj¢ jak przesuna¢ aparat, by poprawic

kadrowanie kompozycji (Masad i Shamir, 2017).
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Rys. 28. Zrzut ekranu z trybu deweloperskiego programu Camerab1, pokazujgcy
rozpoznane przez aplikacje elementy kompozycyjne. Ikona w centrum ekranu pokazuje,

W jaki sposob przesungé aparat, by polepszy¢ kompozycje kadru (Masad i Shamir, 2017).

Punkty gtowne ogdlnie mozna traktowac jako swego rodzaju maksima w wielowymiarowe;j
przestrzeni cech kompozycyjnych. W ich obrebie dochodzi do przecigcia osi, natozenia
na siebie pol ekspozycji widokowych, intensyfikacji aktywno$ci miejskich, zageszczenia
znaczen symbolicznych, a czgsto tez punkty gtowne znajduja si¢ na szczytach wzniesien
lub stanowig dominant¢ przestrzenng. Problem w tym, ze sam gradient ,.kompozycyjnej
waznosci punktu” zalezny jest od wielu naktadajacych si¢ na siebie czynnikow, ktore cigzko
jednoznacznie zidentyfikowac 1 opisa¢ numerycznie. Mozna probowac¢ w takich przypadkach
poszukiwa¢ tatwo mierzalnych wskaznikow skorelowanych z wystepowaniem punktow
gtownych. W kontekscie urbanistycznym w analizach przestrzennych czesto stosowana jest
tak zwana metoda ,,transectowa”, nazywana takze metodg profili urbanistycznych. Metoda
ta opiera si¢ na podziale morfologicznym miasta na strefy przy pomocy wybranych
wskaznikow urbanistycznych (Duany i Talen, 2002). Glownym wskaznikiem sktadowym
zazwyczaj jest gesto$¢ zabudowy. Za przyktad takiego systemu mozna podaé ,,SmartCode”,
opracowany przez firm¢ DPZ CoDesign, ktory stanowi modelowy szablon do projektowania
urbanistycznego. W SmartCode wyszczegdlniono zbior stref uszeregowanych od terenow
naturalnych przez strefe wiejska, podmiejska, miejska, sSrodmiejska az po rdzen urbanistyczny

(Duany Plater-Zyberk & Company, 2003). Zaktadajgc za Christopherem Alexandrem,
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ze lokalne i globalne punkty centralne w miastach skorelowane sg z maksimami intensywnosci
tkanki miejskiej, gradienty profili ,transectowych” mozna wykorzysta¢ do wskazywania
potencjalnych punktéw gtownych w duzych skalach urbanistycznych. Sam proces
rozpoznawania stref ,.transectowych” moze by¢ przeprowadzany automatycznie na podstawie

wskaznikow GIS-owskich (Jachimowicz, 2023).

W projektowaniu architektonicznym wspomaganym komputerowo czesto do odczytywania
podobnych, ukrytych gradientéw i odnajdywania ich maksiméw wykorzystuje si¢ uczenie
maszynowe i sieci neuronowe. Oprocz zastosowan omowionych szczegoétowo w kwerendzie
zastosowania glebokiego uczenia maszynowego w CAAD za przyklad mozna podaé
opracowany przez badaczy z IAAC system ,,Context Decoder”, stuzacy do okreslania jakosci
miejsc w przestrzeni publicznej na podstawie osmiu wskaznikow, obejmujacych miedzy
innymi gesto$§¢ zaludnienia i zabudowy, mape komfortu termicznego, indeks powigzan
Z r6znymi trybami transportu czy popularno$¢ danego miejsca wsréd mieszkancoOw. System ten
zostal przetestowany na przyktadzie Neapolu i potrafit trafnie ocenia¢ atrakcyjnosé
poszczegolnych stref (Marsillo, i in., 2022). Sieci neuronowe dobrze nadajg
si¢ do odczytywania tego typu kontekstow, mozna wigc oczekiwaé, ze dobrze poradzg sobie
takze w przetwarzaniu probleméw kompozycyjnych. Jesli pobierzemy z Internetu niewielka
sie¢ neuronowa typu VIiT (Dosovitskiy, i in., 2021), wytrenowang do rozpoznawania obiektow
znajdujacych si¢ na zadanych zdjeciach 1 pokazemy jej przyklady prostych kompozycji
przestrzennych, zauwazymy, ze sie¢ taka bedzie przyktadata wage do punktéw formalnie
podkreslonych (Rys. 29). Dzieje si¢ tak pomimo faktu, Ze sie¢ ta nie zostata wytrenowania
stricte do czytania kompozycji przestrzennych. Probuje ona tylko rozpoznac¢, czy dany obraz

przedstawia kota, drzewo czy fancuch.
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Rys. 29. Wizualizacja wybranych glowic uwagi sieci neuronowej przetwarzajgcej proste
kompozycje przestrzenne naszkicowane przez Juliusza Zérawskiego (Zorawski, 1962).
Kolorem czerwonym oznaczone sq miejsca w obrazie, ktoére dana glowica uwagi uznata
za istotne. Wykorzystana sie¢ to Vision Transformer (Dosovitskiy, i in., 2021) wytrenowany
przez Rossa Wightmana (Wightman, 2019) do rozpoznawania klas ze zbioru obrazéw
ImageNet (Russakovsky, i in., 2015). Sie¢ nie probuje odczytywaé kontekstow
kompozycyjnych, tylko stara sie rozpoznaé, co znajduje si¢ na obrazie (w tym przypadku
wszystkie szkice Zérawskiego zostaly rozpoznane jako zdjecia taricuchéw). Sie¢ zwraca
uwage na rozne fragmenty obrazu, jednak duzq wage przyktada takze do punktow formalnie

podkreslonych. Opracowanie wilasne.

Najbardziej zblizong do rozpoznawania punktow glownych metode proponuje Bill Hillier,
w ksigzce Space is the machine. Tworca teorii sktadni przestrzeni opisuje rdzenie integracji
(ang. Integration cores). Hillier definiuje integracj¢ jako miarg przestrzeni bedaca odwrotnoscia
sumy liczby osobnych przestrzeni, jakie musi przejs¢ obserwator poruszajacy si¢ miedzy
wszystkimi tymi przestrzeniami po kolei. Punkty, w ktorych dochodzi do maksymalizacji tej
miary, to rdzenie integracji (Hillier, 2007). W publikacji zaprezentowane sa dwie metody ich
wyznaczania. Pierwsza to dwuwymiarowa analiza naktadajacych si¢ elementéw wypuktych
przeprowadzana przy pomocy komputerowej symulacji ruchu uzytkownika przestrzeni w skali

lokalnej. Druga to analiza jednowymiarowych elementéw liniowych, polegajaca na integracji
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w skali globalnej wszystkich elementéw liniowych rownolegtych do krawedzi kwartatow

zabudowy. Obie metody przynosza podobne rezultaty (Rys. 30).

Rys. 30. Dwie metody wyznaczania rdzeni integracji zaproponowane przez Billa Hilliera.

U gory — metoda analizy naktadajgcych si¢ elementow wypuktych, u dotu — metoda analizy
jednowymiarowych elementow liniowych. Metody zostaly zaprezentowane na dwoch
modelach tkanki miejskiej, jednej z czytelnym punktem gltownym, drugiej bez takiego

punktu. Obie metody dajq zblizone rezultaty (Hillier, 2007).

Podsumowujac, automatyczne rozpoznawanie punktow gtownych w kompozycjach
przestrzennych, z uwagi na ich funkcjonalne, spoleczne, symboliczne i ekonomiczne znaczenie,
moze znalez¢ szerokie zastosowanie na wielu polach. Punkty te sg istotnie nie tylko
dla urbanistow i architektow, lecz takze dla jednostek administracyjnych, deweloperow,
rzeczoznawcOw oraz mieszkancoOw miast. Cho¢ istnieja narzedzia do automatycznego
wskazywania pewnych kluczowych punktow, problematyka automatyzacji rozpoznawania
punktow gléwnych w kompozycjach przestrzennych nie byta do tej pory eksplorowana. Biorac
pod uwage ztozono$¢ uktadoéw przestrzennych i wiclowymiarowo$¢ opisujacych je cech, sieci

neuronowe wydaja si¢ obiecujacym narzedziem, ktore moze sprosta¢ temu zadaniu.
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2.5. Uwarunkowania do wykorzystania sieci neuronowych w CAAD

2.5.1. Sieci neuronowe — narzedzie wielu dyscyplin

W celu pehiejszego zrozumienia potencjatu sieci neuronowych mogacych postuzy¢
do rozwigzania problemu rozpoznawania kompozycyjnych punktow gltéwnych, nalezy
przyjrze¢ si¢ ich strukturze, historii 1 zasadom dziatania. Na samym poczatku warto dokonaé
rozréznienia migdzy uczeniem maszynowym, giebokim uczeniem maszynowym i Sieciami
neuronowymi a sztuczng inteligencjg. Wszystkie te pojecia stosowane sg w literaturze dosy¢
nieprecyzyjnie, autorzy czesto decyduja si¢ na korzystanie z dziatajgcych na wyobrazni¢ pojeé
w celu przykucia uwagi, ale niekoniecznie zgodnie z rzeczywistg tematyka publikacji. Glgbokie
sieci neuronowe (nazywane w tej pracy synonimicznie z glebokim uczeniem maszynowym)
sa podkategoria uczenia maszynowego. Wielu autorow kazde zastosowanie uczenia
maszynowego nazywa ,,sztuczng inteligencja” (Al od ang. Artificial Intelligence). Al jest
terminem nierozerwalnie budzacym skojarzenia z jej przedstawieniami w fantastyce naukowe;.
Mowiac ,,sztuczna inteligencja” widzimy oczyma wyobrazni komputer HAL9000 z Odysei
Kosmicznej Kubricka (2001: A Space Odyssey, 1968), Skynet z Terminatora (The Terminator,
1984) czy zabojcze maszyny z Matrixa (The Matrix, 1999). Okreslenie, czym rzeczywiscie jest
sztuczna inteligencja, nie jest celem niniejszej dysertacji, jednak z utylitarnego punktu widzenia
uwazam, ze naduzywanie tego terminu moze prowadzi¢ do niekorzystnych skutkéw. Juz
w latach 50. tworca jednej z pierwszych sieci neuronowych Frank Rosenblatt probowat
podnieca¢ opini¢ publiczng zestawiajac swoj wynalazek z popularnymi wyobrazeniami science

fiction. Jak pisat w 1958 roku New York Times:

. Marynarka Wojenna pokazala dzisiaj embrion elektronicznego komputera, ktory
zgodnie z przewidywaniami bedzie w stanie chodzi¢, mowi¢, widzie¢, pisac,
samodzielnie si¢ reprodukowac i bedzie swiadomy swojej egzystencji. (...) Dr Frank
Rosenblatt, projektant Perceptronu przeprowadzit demonstracje. Powiedzial,
ze maszyna bedzie pierwszym urzqdzeniem myslgcym jak ludzki mozg. (...)
[Plowiedzial, ze Perceptrony mogg by¢ wysylane ku planetom jako mechaniczni
odkrywcy kosmosu. (...) Pozniejsze Perceptrony bedq potrafity rozpoznawacé ludzi
I wotac ich po imieniu, oraz bedq natychmiastowo ttumaczyé mowe z jednego jezyka
na mowe lub tekst w innym jezyku.” [thumaczenie wtasne] (New York Times, The, 1958,
s. 9)
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Sieci neuronowe s3 w gruncie rzeczy prostymi w zatozeniach, tatwymi w implementacji
algorytmami uczacymi si¢ statystycznie przetwarza¢ dane wejsciowe na dane wyjsciowe. Takie
pragmatyczne podejScie do sieci neuronowych zdecydowanie ujmuje im troch¢ uroku,
ale myslenic o nich w kategorii ,,sztucznej inteligencji” wydaje si¢ zbyt romantyczne,

nacechowane emocjonalnie i moze oniesmiela¢ ich potencjalnych uzytkownikow.

Przed przejsciem do dalszej czgsci wywodu warto pokrdtce, na intuicyjnym poziomie,
przedstawi¢ podstawy dziatania sieci neuronowych i ich histori¢. Mimo, ze w ramach naszej
dziedziny gtebokie uczenie maszynowe wydaje si¢ technikg nowatorska, W swoich zatozeniach
sieci neuronowe nie sg niczym nowym. Ich podstawy teoretyczne byly opracowane w latach
50. dwudziestego wieku, a w praktyce byly stosowane w ramach CAAD juz od lat
90. dwudziestego wieku (Openshaw, 1993; Stevenson, 1994a; Stevenson, 1994b; Black, 1995;
Kindangen, 1996).

Pierwsza siecig neuronowg byt opracowany w latach 50. dwudziestego wiecku SNARC Marvina
Minsky’ego (ang. Stochastic Neural Analog Reinforcement Calculator). Gtowne inspiracje
teoretyczne dla Minsky’ego (Minsky i Sykes, 2017) stanowily: teoria matematycznego opisu
biologicznych sieci neuronowych Warrena McCullocha i Waltera Pittsa z lat 40. dwudziestego
wieku (McCulloch i Pitts, 1943), ksigzka o matematycznej biofizyce Nicolasa Rashevsky’ego
z lat 30. (Rashevsky, 1938) oraz jeszcze starsza proba opisu psychologii jako scistej dziedziny
naukowej opracowana w 1895 roku przez Sigmunta Freuda (Freud, 1950/1895)?2. Sie¢ ta byta
urzadzeniem mechaniczno-elektrycznym potrafiacym uczy¢ si¢ na zasadzie uczenia
ze wzmacnianiem. SNARC zostal przetestowany na problemie nawigacji w labiryncie.
Za kazdym razem gdy podejmowat prawidtowg decyzje, zostawal nagradzany przez operatora.

SNARC byt modelem stochastycznym, w ktorym polaczenia migdzy neuronami byty

22 W Projekcie Naukowej Psychologii Freud nie tylko zaproponowat swoja dosyé ezoteryczng i niepodpartg
eksperymentalnie teorie sieci neuronowych (McCarley, 1998), ale przedstawit miedzy innymi takze pomyst zasad
»przyjemnosci” i ,nieprzyjemnosci” sterujacych systemami biologicznymi. Wedlug Freuda systemy takie
wyposazone sa W sprzezenie zwrotne, pozwalajace na wzmacnianie zachowan skutkujacych otrzymaniem
bodzcow przyjemnych i oslabianie zachowan skutkujacych otrzymaniem bodzcoéw nieprzyjemnych. Idea ta
stanowi podstawe pod wspoélczesnie rozumiany trening sieci neuronowych, w ktorym polaczenia miedzy
neuronami przynoszgce sieci korzy$¢ ulegaja wzmocnieniu, podczas gdy potaczenia niekorzystne ulegaja
ostabieniu (Freud, 1950/1895). Freudowi nie udalo sie¢ za zycia opublikowa¢ ,,Projektu” w formie publikacji

naukowej. Zostata ona wydana dopiero w latach 50. dwudziestego wieku.
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probabilistyczne. Szansa, ze sygnal z poprzedniego neuronu aktywuje neuron kolejny, zalezata
od elektronicznie ustawionego prawdopodobienstwa. Im czesciej dany neuron aktywowatl si¢
przy jednoczesnym otrzymaniu przez sie¢ nagrody, tym bardziej zwickszato

si¢ prawdopodobienstwo aktywacji neuronu (Minsky i Sykes, 2011).
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Rys. 31. Szkic Sigmunta Freuda z 1885 roku, bedgcy prawdopodobnie pierwszym

koncepcyjnym modelem sieci neuronowej. Rysunek przedstawia przeplyw energii od bodzca
Q’n przez neuron a do neuronu b (Freud, 1950/1895). Teoria Freuda byfa dosy¢
niejasna, niepoparta empirycznie i ostatecznie okazata si¢ btedna (McCarley, 1998), jednak
stata sie jedng z wielu inspiracji dla twércow pierwszych funkcjonalnych sieci

neuronowych z lat 50. dwudziestego wieku (Minsky i Sykes, 2017).

We wspodlczesnych sieciach neuronowych polaczenia migdzy neuronami dziataja troche
inaczej. Poszczegolne sygnaty wejsciowe do neuronu sg najpierw skalowane przez wage sity
potaczenia, a potem sg ze sobg sumowane. Jesli suma osiggnie pewng graniczng wartosc,
neuron ulega aktywacji. Pierwszg siecig wykorzystujaca te¢ wspotczesng zasade byt perceptron
Rosenblatta opracowany juz kilka lat po SNARCu. Poczatkowo perceptron zostat opisany
teoretycznie jako model biologicznego mozgu (Rosenblatt, 1958), potem zostatl zbudowany
w formie fizycznego urzadzenia (Rosenblatt, 1961). Perceptron byl w praktyce
jednowarstwowa sieciag neuronowg, zdolna dokonywac¢ prostej klasyfikacji na podstawie
bodzcéw optycznych. W sieciach neuronowych informacje potrzebne do rozwigzania danego
problemu sg zapisywane w sile potaczen migdzy danymi wejsciowymi, neuronami mogacymi

ulec aktywacji i danymi wyjsciowymi (Rys. 32).
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Rys. 32. Diagram perceptronu elementarnego z jednym neuronem dokonujgcym klasyfikacji
binarnej. Dane wejsciowe zespolone sq stalym potgczeniem z jednostkami asocjacyjnymi
A" Polgczenia miedzy jednostkami ,,A” a jednostkq responsywnq ,,R” sq skalowane
wzgledem wag, w ktorych zapisana jest ,,zdolnos¢” perceptronu do rozwigzania danego
problemu. Jednostka ,,R”, ktorq dzisiaj nazwalibysmy neuronem, liczy Srednig wazong
sygnatow wejsciowych i przepuszcza jq przez schodkowq funkcje aktywacji. Efektem jest
dana wyjsciowa: klasa przyjmujgca wartosé -1 lub 1. llustracja przygotowana
na podstawie (Rosenblatt, 1961).

W przypadku perceptronow wagi polaczen mogly by¢ ustalane re¢cznie przez operatora
na podstawie  eksperymentdow lub  automatycznie przez jeden z mozliwych
algorytméw zmieniajacych wagi potaczen w przypadku blednej klasyfikacji danych
treningowych (Hay, i in., 1960; Widrow i Hoff, 1960). W praktyce, algorytmy treningowe byty
bardzo powolne (czas potrzebny na wytrenowanie perceptronu wzrastal wyktadniczo wraz
ze wzrostem poziomu trudnosci problemu) (Olazaran, 1996) i pozwalaty na trenowanie jedynie
perceptronéw jednowarstwowych (Hawkins, 1961). Stanowito to powazny problem. Gtowna
wada jednowarstwowego perceptronu Rosenblatta byta zdolno$¢ do przeprowadzania jedynie
liniowe] separacji uczonych klas. Innymi slowy, jednowarstwowa sie¢ neuronowa nie jest
W stanie rozwigza¢ problemu alternatywy wykluczajacej (XOR), co bardzo ogranicza
jej mozliwosci (Minsky i Papert, 1969). Konieczne sa minimum dwie warstwy, by moc
reprezentowac alternatywe wykluczajgcg, a co za tym idzie — mie¢ aparat do operowania peing

logika matematyczng (Rys. 33).

108



Rys. 33. Porownanie rozwigzania problemu alternatywy wykluczajqcej przez

jednowarstwowgq i dwuwarstwowg sie¢ neuronowq. Klas XOR nie da si¢ oddzieli¢ przy
pomocy jednej prostej. Jednowarstwowa sie¢ neuronowa nieprawidtowo klasyfikuje wyjscie
y dla x1=-1 i Xo=-1. Dwuwarstwowa sie¢ neuronowa rozwiqzuje problem bez trudu.
Zamiast aktywacji schodkowej zastosowano jej rozniczkowalne przyblizenie: funkcje
sigmoidalng. llustracja oparta na wynikach symulacji przeprowadzonej w przeglgdarkowej
implementacji jednokierunkowej sieci neuronowej ConvNetJS (Karpathy, 2014).

Problemy perceptronéw jednowarstwowych, trudnosci z trenowaniem perceptronow
wielowarstwowych, ograniczona moc obliczeniowa i zbyt optymistyczne obietnice gloszone
przez Rosenblatta doprowadzity w latach 70. do glebokiego zawodu $rodowiska wczesnego
uczenia maszynowego sieciami neuronowymi i zwrocenia si¢ w kierunku poszukiwania
symbolicznej sztucznej inteligencji opartej na S$cisle zdefiniowanej logice i zasadach
heurystycznych (Olazaran, 1996). Tak zwana ,,pierwsza zima sztucznej inteligencji”, podczas
ktorej mato kto zajmowat si¢ sieciami neuronowymi, trwata az do potowy lat 80., kiedy to
Goeffrey Hinton spopularyzowal metode, umozliwiajacg efektywne trenowanie
wielowarstwowych sieci neuronowych — propagacj¢ wsteczng. W swoim artykule, Learning

representations by back-propagating errors opublikowanym w Nature, Hinton zdefiniowat
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podstawy teoretyczne wspotczesnych, glebokich sieci neuronowych potrafigcych samodzielnie

uczy¢ si¢ na podstawie danych treningowych (Hinton, i in., 1986).
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Rys. 34. Sie¢ neuronowa przeksztatcajgca wektor wejsciowy X na wektor wyjsciowy Y.
Przyktadowo: mozemy wytrenowanej sieci pokazac zdjecie kota i na wyjsciu otrzymacé

prawidtowo zidentyfikowang etykiete ,, KOT!”. Opracowanie wiasne.

Podstawg dziatania sieci neuronowej jest przetworzenie wielowymiarowego wektora
wejsciowego X na wielowymiarowy wektor wyjsciowy Y. O przetwarzanych wektorach
mozemy mysle¢ jako o uporzadkowanych ciggach danych liczbowych, albo o strzatkach
lub punktach rozpietych w wielowymiarowej, abstrakcyjnej przestrzeni. W praktyce wektor
wejsciowy moze reprezentowac prawie dowolny typ danych — zdjecie kota (zapisane w formie
ciggu warto$ci jasnosci pikseli), model GIS-owski miasta czy zwokselizowang bryte
architektoniczng. Wektor wyjsciowy moze by¢ interesujaca nas klasa obiektu, przyblizeniem
funkcji matematycznej czy innym, prawie dowolnym efektem przeksztalcenia obiektu

wejsciowego (Rys. 34).

Sie¢ neuronowa podejmuje decyzje na etapie ,,propagacji w przod”. W fazie tej informacje
przekazane sieci na wejsciu przeplywaja przez kolejne neurony zorganizowane w warstwach.
Im wigcej warstw ma siec, tym jest glebsza. W klasycznej, jednokierunkowej sieci neuronowej
pojedynczy neuron w danej warstwie polaczony jest ze wszystkimi neuronami w warstwie

poprzedniej i wszystkimi neuronami w warstwie kolejnej. Neurony w ramach jednej warstwy
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nie sg ze sobg wzajemnie potaczone. Kazde poltaczenie ma przypisang konkretng wage (ang.
weight). W ramach neuronu najpierw liczona jest suma wazona sygnatow ptynacych
do neuronu z poprzedniej warstwy, potem do sumy dodawany jest prog (ang. bias) i wynik

przepuszczany jest przez nicliniowa, rézniczkowalng funkcje aktywacji (Rys. 35).

X 1" W’ AKTYWACJA
1 \ ENEURON/
X. -W

\

X
N
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+
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Rys. 35. Diagram propagacji w przod na poziomie pojedynczego neuronu. Sygnaty
wejsciowe x,, sumowane sq zgodnie z ich wagami w',, do sumy dodawana jest wartos¢
progu b’. Wynik przepuszczany jest przez nieliniowq, rozniczkowalng funkcje aktywacji.
Wartos¢ funkcji stanowi sygnat dla neuronow w kolejnej warstwie. Opracowanie wlasne

na podstawie (Hinton, i in., 1986).

Sie¢ neuronowa uczy si¢ na etapie ,propagacji wstecznej”, w ktorym progi neurondw
| potaczenia miedzy konkretnymi neuronami sg odpowiednio wzmacniane lub ostabiane w celu
optymalizacji rozwigzania zadania. Parametry (wagi i1 progi) aktualizowane sg proporcjonalnie
do pochodnej czastkowej funkcji kosztu 2 (metryka tego, jak zle sie¢ radzi sobie
W rozwigzywaniu danego problemu) wzgledem danego parametru. Dzieki temu, Ze funkcja
aktywacji kazdego neuronu jest rozniczkowalna, mozna obliczy¢ pochodng wzgledem kazdego

parametru. Z kazdym krokiem propagacji wstecznej w czasie treningu funkcja kosztu maleje,

23 Warto w tym miejscu dokona¢ rozréznienia miedzy funkcja kosztu (ang. cost function) i funkcjg straty (ang. loss
function). Funkcja straty oznacza btad sieci przy przewidywaniu konkretnego przyktadu treningowego, funkcja
kosztu oznacza usredniony btad sieci na calym zestawie przykladow treningowych. Potocznie oba te pojecia

$g uzywane zamiennie.
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asie¢ radzi sobie coraz lepiej az do osiggni¢cia minimum lokalnego. Méwimy wtedy,

Ze parametry sie zbiegaja (ang. convergence) (Rys. 36).

od
: W - Osw, * >
xn OPTYMALIZACJA

FUNKCJI KOSZTU V"

Rys. 36. Diagram propagacji wstecznej na poziomie pojedynczego neuronu. Parametry
w'', oraz b"' sq aktualizowane proporcjonalnie do szybkosci uczenia a i pochodnej
czqgstkowej funkcji kosztu J wzgledem danego parametru. Globalnie, z kazdym cyklem
propagacji wstecznej, funkcja kosztu schodzi w kierunku lokalnego minimum. Im wiecej
parametrow trenowalnych ma sie¢ tym wigcej wymiarow przestrzennych jest dostepnych
na ,,obejscie’” minimum lokalnego (minimum lokalne moze okazac sie w nowym wymiarze
hiperprzestrzeniq siodlowg). Zwigksza sig¢ tym samym szansa osiggniecia minimum

globalnego. Opracowanie wiasne na podstawie (Hinton, i in., 1986).

Dzigki temu, ze w glebokiej sieci neuronowej znajdujg si¢ tysigce, miliony lub miliardy
neuronow utozonych w wielu warstwach, zlozona sie¢ jest w stanie nauczy¢ si¢ nawet bardzo
skomplikowanych konceptow. Na podstawie danych treningowych sie¢ buduje wewngtrzng
reprezentacje mapowania danych wejsciowych na dane wyjsciowe. Wyuczony przez siec
koncept zapisany jest w warto$ciach parametrow wag i progdéw sieci. Zestawienie wielu
nieliniowych aktywacji poszczegdlnych neuronow w kolejnych warstwach pozwala sieci
na rozwigzywanie funkcji nieliniowych. Gdyby neurony korzystaty z aktywacji liniowych,
niezaleznie od 1ilosci neurondéw 1 warstw ukrytych cata sie¢ neuronowa upro$citaby
si¢ do prostej funkcji liniowej (Ng, 2017). Wprowadzenie nieliniowych aktywacji do sieci
neuronowych bylo oryginalnie inspirowane dziataniem biologicznych neuronéw w uktadach
nerwowych ludzi i zwierzat. Opracowujac swoj perceptron, Rosenblatt myslat o nim przede

wszystkim jako o modelu ludzkiego mézgu:
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,, Perceptron jest po pierwsze i przede wszystkim modelem mozgu, a nie wynalazkiem
stuzgcym do rozpoznawania wzorcow (...). Nie jest to w Zadnej mierze model
«kompletnyy i jestesmy w petni swiadomi uproszczen, jakie zastosowalismy wzgledem
systemow biologicznych, ale jest to przynajmniej model, ktory mozna poddac analizie.”

[ttumaczenie wiasne] (Rosenblatt, 1961, s. VIII)

Wedhuig bardzo uproszczonych modeli, biologiczny neuron w stanie niepobudzonym moze
zostaé pobudzony przez odpowiednio silny bodziec, przekazujac impuls nerwowy dalej
poprzez synapsy do kolejnych neuronow. Aktywacja taka moze by¢ w przyblizeniu
wymodelowana matematycznie jako funkcja schodkowa (jak w perceptronie)
lub, po wygltadzeniu, jako funkcja sigmoidalna, ktora byta najpopularniejsza funkcja aktywacji
neurondéw w sieciach neuronowych do mniej wiecej 2010 roku?* (Nair i Hinton, 2010). Obecnie
najczesciej korzysta si¢ z funkcji aktywacji ReLU, ktora w praktyce przyspiesza proces uczenia
sieci neuronowej, pozwala na przesylaniec w giab sieci informacji o intensywnosci sygnatu
i sprzyja przyjmowaniu przez parametry wartosci zerowej>. Mimo biologicznych inspiracji,
syntetyczne sieci neuronowe s3 w rzeczywistosci dosy¢ dalekie od ich biologicznych
odpowiednikow. Jak wskazuja wspoélczesne badania, do wymodelowania pelnej
funkcjonalno$ci pojedynczego neuronu konieczne jest wytrenowanie catej sieci neuronowej,
sktadajacej si¢ z tysigca neurondw syntetycznych uszeregowanych w minimum pig¢ warstw

(Beniagueyv, i in., 2021).

Po publikacji Hintona w Nature wspotczesne sieci neuronowe powoli byly rozwijane, jednak
przez kolejne ¢wier¢ wieku bylo o nich dosy¢ cicho ze wzgledu na stabe mozliwos$ci

obliczeniowe komputerow 1 nieefektywno$¢ stosowanych algorytmow. W potowie

24 Oprocz podobienstwa do funkcji aktywacji neuronu biologicznego, funkcja sigmoidalna ma bardzo duzg zalete
z obliczeniowego punktu widzenia. Pochodna funkcji sigmoidalnej o (z) wynosi a(z)(1 — a(z)). Przy obliczaniu
pochodnej podczas propagacji wstecznej mozemy skorzystaé z funkcji 0(z), ktéra byta juz obliczona na etapie
propagacji w przdd. Znaczaco przyspiesza to proces uczenia sieci neuronowej wzgledem funkcji o bardziej

skomplikowanych do obliczenia pochodnych.

%5 Ang. sparse model (czy ,,model skapy”) to taka sie¢ neuronowa, w ktorej wiele parametréw ma warto$¢ rowna
zero. Model taki jest 1zejszy obliczeniowo, czytelniejszy w interpretacji i tatwiejszy do zapisania na dysku ze
wzgledu na mozliwo$¢ kompresji powtarzajacych si¢ wielokrotnie zer. W przypadku aktywacji sigmoidalnej
parametry mogg zblizaé si¢ asymptotycznie do zera jednak nigdy go nie osiagaja, przez co zawsze majg przypisang

jaka$ warto$¢ utamkowsa.
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lat 90. zacze¢ly pojawiac sie pierwsze proby implementacji sieci neuronowych w projektowaniu
architektoniczno-urbanistycznym. Stosowane algorytmy ograniczaly si¢ do prostych,
kilkuwarstwowych sieci ztozonych z kilkunastu do kilkudziesigciu neuronéw. Szczegdlowo
zastosowania te zostaty omoéwione w podrozdziale 2.2., ale skrotowo, podejmowane proby
obejmowaly miedzy innymi modelowanie naturalnej wentylacji wewnatrz budynkow
w zalezno$ci od kierunku wiatru (Kindangen, 1996), modelowanie interakcji przestrzennej
na przyktadzie wzorcow migracji (Black, 1995) lub przemieszczanie si¢ mieszkancow miast
do pracy z uwzglednieniem kosztow podrozy (Openshaw, 1993). W tej ograniczonej grupie
problemow proste sieci neuronowe generowaly satysfakcjonujace i precyzyjne rezultaty,
szczegblnie w porownaniu z konkurencyjnymi metodami opartymi na regresji liniowej
czy metodach intuicyjnych. Gléwnym problemem, na ktdry zwracali uwage autorzy, byly
limitacje obliczeniowe sprz¢tu komputerowego, ograniczajace mozliwos¢ stosowania

wiekszych sieci.

Kolejny przelom w popularnosci sieci neuronowych nastapit w 2012 roku, kiedy splotowa sie¢
neuronowa AlexNet druzyny SuperVision pokonata wszystkie alternatywne metody uczenia
maszynowego i metody heurystyczne w konkursie ImageNet Large Scale Visual Recognition
Challenge, polegajacym na rozpoznawaniu i klasyfikacji zdjgé przedstawiajacych réznego
rodzaju obiekty i zwierzeta (Russakovsky, i in., 2015). Moment ten rozpoczat trwajaca do dzis
,rewolucje glebokiego uczenia maszynowego”. Kluczowymi cechami sieci AlexNet byly jej
stosunkowo duze rozmiary (650 tysigcy neuronow i 60 miliondw parametréw zorganizowanych
w 8 warstwach) i nowoczesna metoda implementacji, wykorzystujaca procesor graficzny GPU
zamiast tradycyjnego procesora CPU, co umozliwilo trening tak duzego modelu w ciggu
jedynie pigciu-szesciu dni. W 2012 roku byto to sporym osiggnigciem (Krizhevsky, i in., 2012).
Demonstracja mozliwosci glgbokiego uczenia maszynowego W syntetycznym przetwarzaniu
obrazu przez AlexNet zainspirowala znaczacy wzrost popularnosci sieci neuronowych
w architekturze. Dla architektow obraz jest podstawowym medium prezentacji projektu, wiec

W naturalny sposob sieci neuronowe pobudzity wyobrazni¢ duzej czesci srodowiska CAAD.

2.5.2. Rodzaje sieci neuronowych wykorzystywanych w CAAD

W ostatnich latach pojawilo si¢ wiele rodzajow sieci neuronowych stuzacych rozwigzywaniu
problemow réznego typu. Maithani, Arora 1 Jain widza mozliwo$¢ wykorzystania glebokiego
uczenia maszynowego tam, gdzie mamy do czynienia ze ztozonymi problemami nieliniowymi,

opisanymi przez dane multimodalne, tam, gdzie musimy przetwarza¢ jednoczes$nie duze ilosci
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danych wejsciowych i tam, gdzie zalezy nam na obiektywnym przetwarzaniu nieobarczonym

przyjetymi a priori zatozeniami (Maithani, i in., 2010). Oprocz tych czterech podstawowych

czynnikow, na podstawie rozpoznanych w podrozdziale 2.2. zastosowan, mozna takze zwroci¢

uwage na dodatkowe zalety sieci neuronowych:

Bardzo dobrze skaluja si¢ do zréznicowanej liczby danych wejsciowych 1 poziomu

trudnosci przetwarzanych problemow.

Na wspotczesnym sprzecie komputerowym dziataja wzglednie szybko, moga
by¢ trenowane i uruchamiane na biurowych i domowych komputerach, na serwerach

w chmurze, a nawet na nowoczesnych smartfonach.

Sa proste w implementacji dzicki szerokiej ofercie istniejacych $rodowisk uczenia

maszynowego i duzej dostepnosci kompatybilnego sprzetu.

Moga czerpa¢ korzySci z obszernych baz danych dostepnych przez Internet
czy zebranych przez systemy Smart-City.

Rodzaje sieci neuronowych w publikacjach dotyczacych % CNN oo ®
! . . . . <| INNE (np. SOM) &g
komputerowego wspomagania projektowania architektonicznego E ‘..
2 »
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® [ ]
v | - 2| FNNiVAE o S8
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Rys. 37. Rodzaje sieci neuronowych w publikacjach Rys. 38. Wizualizacja rodzajow
dotyczgcych komputerowego wspomagania sieci neuronowych w publikacjach
projektowania architektonicznego. Opracowanie CAAD wykonana przy pomocy
wlasne. algorytmu t-SNE na podstawie 37

wyodrebnionych cech badanych
artykutow. Kazdy punkt
reprezentuje odrebng publikacje.

Opracowanie wiasne.
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Warto przyjrze¢ si¢ najpopularniejszym rodzajom sieci neuronowych wykorzystywanych
w projektowaniu architektonicznym wspomaganym komputerowo w celu poznania podstaw
ich dziatania i rozpoznania mozliwosci ich zastosowania z punktu widzenia projektanta
chcacego rozszerzy¢é swoj warsztat o narzedzia oparte na giebokim uczeniu maszynowym.
W tym celu ponownie przeanalizowatem wyniki kwerendy zastosowan gl¢bokiego uczenia
maszynowego w CAAD omoéwione w sekcji 2.2. Tym razem jednak podzielitem zebrane

publikacje wzgledem typu zastosowanej sieci neuronowej (Rys. 37, Rys. 38).

Jednokierunkowe sieci neuronowe (FNN)

Najprostszym i najstarszym typem sieci neuronowych sg sieci FNN, czyli jednokierunkowe
sieci neuronowe o warstwach w petni potaczonych (ang. Fully-Connected Feedforward Neural
Network), co znaczy, ze kazdy neuron jednej warstwy jest potaczony z kazdym neuronem
warstwy kolejnej i kazdym neuronem warstwy poprzedniej. W FNN sygnat przeplywa w sieci
jednokierunkowo od warstwy wejsciowe] przez warstwy ukryte po warstwe wyjsciowa. Sieci
jednokierunkowe roznig si¢ od siebie liczbg warstw oraz liczba znajdujacych si¢ w nich

Nneuronow.

Sieci jednokierunkowe maja szeroki zakres zastosowan tam, gdzie bezposrednio mozna
dokona¢ mapowania pewnego wektora wejsciowego na odpowiadajacy mu wektor wyjsciowy.
W przeanalizowanych w sekcji 2.2. publikacjach FNN czesto wykorzystywane
sg do przyblizania wynikow ztozonych symulacji komputerowych w celu oszczednosci czasu
I zmniejszenia zapotrzebowania na moc obliczeniowg. Przyktadowo, przy pomocy FNN mozna
przewidywa¢ wyniki symulacji wydajnosci sSrodowiskowej i energetycznej elewacji (Sebestyen
i Tyc, 2020) lub catych budynkow (Stevenson, 1994b; Asl, i in., 2017; Singh, i in., 2020).
Przybliza¢ mozna takze metryki normalnie dost¢gpne jedynie metodami pomiarowymi w juz
wybudowanym obiekcie, w fizycznym prototypie lub modelu. FNN wykorzystywane
sa W przyblizaniu warto$ci metryk komfortu wizualnego stanowisk pracy w przestrzeniach
biurowych (Chatzikonstantinou i Sariyildiz, 2016) czy w przewidywaniu kosztow
i konsekwencji §rodowiskowych projektowanej modernizacji obiektu (Nicholas, i in., 2021).
Na podstawie parametrow opisujacych projekt lub budynek istniejacy oraz jego lokalizacje
mozna takze przewidywac cene¢ nieruchomosci (Lam, i in., 2008; Abidoye i Chan, 2017), koszty
cyklu zycia budynku (Gao i Pishdad-Bozorgi, 2019) czy zywotno$¢ jego elewacji (Silva, i in.,
2011; Dias, i in., 2013). FNN dobrze radza sobie tez w prostych problemach klasyfikacyjnych

danych wejsciowych przedstawionych w postaci numerycznej. Mozna przy ich pomocy
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klasyfikowac¢ typologicznie przestrzenie we wnetrzach budynkow (SedImeier i Feld, 2018) lub
rozpoznawa¢ pomieszczenia i pozycj¢ we wnetrzu na podstawie zbioru danych nawigacyjnych
(Mehmood i Tripathi, 2013; Tamas i Toth, 2018). Jednokierunkowe sieci neuronowe moga
stuzy¢ optymalizacji parametrow projektu wzgledem interesujacej projektanta metryki, jak
wydajnosci energetycznej obiektu (Li i Chen, 2021) lub wydajno$ci wentylacji naturalnej
wewnatrz budynku (Kindangen, 1996). FNN moga takze przetwarza¢ sensoryczne dane
pomiarowe pomagajac w ich interpretacji. Przykladowo, mozliwe jest rozpoznawanie liczby
uzytkownikoéw przestrzeni publicznej na podstawie sensorow znajdujacych sie w chodnikach
(Kirova i Markopoulou, 2020), przetwarzanie surowych trajektorii GPS na wzorce aktywnosci
w  przestrzeni miejskiej (Sita-Nowicka, 1 in., 2016), identyfikowanie terenow
nowozurbanizowanych poprzez pomiary satelitarne (Liu i Lathrop Jr, 2002) czy rozpoznawanie
ugigcia elastycznych materiatbw budowlanych na podstawie mierzonej opornosci pradu w
odksztatconej membranie (Koshelyuk, i in., 2019). Jednokierunkowe sieci neuronowe
sprawdzajg si¢ takze jako Samodzielne, proste algorytmy generatywne, przetwarzajace
parametry wejsciowe na geometri¢ (Cudzik i Radziszewski, 2018; Yetkin i Sorgug, 2019;
Zheng, i in., 2020).

Szczegdlnym typem jednokierunkowej sieci w pelni polaczonej s3 autoenkodery
(ang. Autoencoders), w ktorych kolejne warstwy sieci majg stopniowo coraz mniej neuronow,
az do zwezenia w potowie glebokosci sieci (ang. Bottleneck). Po zwezeniu warstwy stopniowo
si¢ rozszerzaja az do osiagni¢cia rozmiardw warstwy wejsciowej. Sie¢ takg mozna wyobrazi¢
sobie jako klepsydre, w ktorej pierwsza potowe nazywamy enkoderem, druga — dekoderem
(Rys. 39). Autoenkoder uczy si¢ kompresowa¢ dane wejsciowe do jej mniej wymiarowej
reprezentacji w przestrzeni ukrytej (ang. Latent Space) definiowanej przez parametry
najwezszej warstwy w centrum sieci. Dekoder uczy si¢ odtwarza¢ dane wej$ciowe na podstawie
ich skompresowanej reprezentacji w przestrzeni ukrytej. Struktura taka moze by¢ szczegdlnie
przydatna w eksploracji przestrzeni projektowej modeli parametrycznych. Na reprezentacjach
projektow w  przestrzeni ukrytej mozna przeprowadza¢ operacje semantyczne
[np. odejmowac¢ reprezentacje wektorowa jednej geometrii od reprezentacji innej geometrii
(Sebestyen, i in., 2021)], a eksploracja ciagtej przestrzeni ukrytej pozwala na odnajdywanie
nowych form przestrzennych stworzonych w oparciu o0 interpolacj¢ miedzy formami zadanymi
(de Miguel, i in., 2019). Mozliwe wariacje parametrow projektu mapowane sg na przestrzen
0 stosunkowo niewielkiej liczbie wymiarow. Dzigki znacznej redukcji liczby wymiaréw

wzgledem warstwy wej$ciowej, analiza wzorcow aktywacji neurondw w przestrzeni ukrytej
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moze by¢ takze pomocna w identyfikacji 1 interpretacji najwazniejszych parametrow
przetwarzanego problemu. Wykorzystanie autoenkoderéw w ten sposob moze by¢ szczeg6lnie
korzystne w sytuacjach, w ktoérych alternatywne metody redukcji wymiarow, takie jak PCA
(Pearson, 1901) czy t-SNE (Hinton i van der Mateen, 2008) nic sg wystarczajace.

Rys. 39. Diagram klasycznej, jednokierunkowej sieci w petni potgczonej (po lewej) oraz
sie¢ typu autoenkoder (po prawej). Wykorzystywane w praktyce sieci zazwyczaj majq wiecej

neuronow oraz warstw. Opracowanie wlasne.

Splotowe sieci neuronowe (CNN)

Kolejnym, czesto wykorzystywanym w kontekstach architektoniczno-urbanistycznych typem
sieci neuronowych sa CNN, czyli splotowe sieci neuronowe (ang. Convolutional Neural
Networks). W sieciach splotowych zamiast warstw w petni potaczonych stosowanych w FNN
wykorzystuje si¢ warstwy splotowe zlozone z filtréw splotowych potaczonych jednoczesnie
tylko do czesci aktywacji warstwy poprzedzajacej. Filtry splotowe pokrywaja cato$¢
przestrzeni wejsciowej przesuwajac si¢ po niej sekwencyjnie. Dzieki temu rozwigzaniu jeden
wytrenowany filtr moze rozpoznawa¢ wiele podobnych cech w réznych rejonach przestrzeni
wejsciowej (Rys. 40). Splotowe sieci neuronowe zostaty stworzone z myslg o syntetycznym
przetwarzaniu obrazoéw, rozpoznawaniu w nich wzoréw i ich klasyfikacji (Fukushima, 1980;
LeCun, i in., 1989; Krizhevsky, i in., 2012). Dzigki sekwencyjnemu skanowaniu danych

wejsciowych przez filtry sieci typu CNN wykazuja przestrzenne uprzedzenie dotyczace
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struktury danych [ang. Spatial Inductive Bias (Mitchell, 2017)]. Oznacza to, ze sieci splotowe
szczegllnie dobrze radza sobie z danymi powigzanymi przestrzennie (takimi jak obrazy,
chmury punktoéw czy wielowymiarowe diagramy). Wydaje si¢, ze dzieki temu bardzo dobrze
nadajg si¢ do przetwarzania architektoniczno-urbanistycznych kontekstow przestrzennych
(Dzieduszynski, 2022b). W splotowych sieciach neuronowych oprocz warstw splotowych
wykorzystywane sa takze warstwy innego typu, np. warstwy w peini potaczone. Sieci,
w ktorych wystepuja jedynie warstwy splotowe, nazywamy sieciami w petni splotowymi (FCN,
ang. Fully-Convolutional Network). Jedng z zalet takich modeli jest niezalezno$¢ struktury
sieci 1 liczby trenowalnych parametrow od wymiarow danych wejsciowych. Przykladowo,
FCN moga by¢ wykorzystywane do przetwarzania obrazoéw wejsciowych o réznych

rozmiarach i proporcjach.

Ze wzgledu na duzy wybor gotowych rozwigzan do przetwarzania obrazow, w CAAD sieci
splotowe najczesciej stosowane s3 do przetwarzania danych przedstawionych
w formie graficznej, takich jak: zdj¢cia panoramiczne ulic i wngtrz (Zhang, 1 in., 2020;
Yazicioglu i Dino, 2021; Qi, i in., 2020; Kinugawa i Takizawa, 2019; Law, 1 in., 2018; Fukuda,
i in., 2017; Sun, i in., 2019), zdjecia satelitarne i lotnicze (Meeran i Joyce, 2020; lino, i in.,
2018; lkeno, i in., 2020; Newton, i in., 2020; Newton, 2021; Li i Zhu, 2020; Qayyum, i in.,
2019; Pan, i in., 2021), obrazy z kamer monitoringu (Sukel, i in., 2019; Sukel, i in., 2020a;
Nakabayashi, i in., 2021; Jergensen, i in., 2020), rzuty, przekroje i inne rysunki architektoniczne
(Liu, 11n., 2020; Ng, i in., 2019; Colakoglu i Uzun, 2019; Xiao, i in., 2020; Brown, i in., 2020;
Sharma, i in., 2017) czy stworzone cyfrowo wizualizacje modeli trojwymiarowych (Takizawa
i Furuta, 2017). Niektorzy wykraczajg jednak poza tatwo dostepne modele stuzace analizie
obrazoéw i wykorzystuja CNN do przetwarzania danych architektonicznych reprezentowanych
w inny sposob. Przykladowo sieci splotowe dobrze radza sobie z projektami
przedstawionymi w formie graféw reprezentujacych uktad funkcjonalny lub przestrzenny
obiektu (Eisenstadt, i in., 2019; As, i in.,, 2018; Zhang, 2020), sparametryzowanymi
modelami przedstawionymi w postaci grafow (del Campo, i in., 2020), chmurami punktow

(Stojanovic, i in., 2019; Sinke, i in., 2021), czy reprezentacjami isovist (Peng, i in., 2017).

Mimo rosnagcej obecnie popularno$ci nowszych typoéw sieci neuronowych, takich
jak transformery wizualne czy modele dyfuzyjne, proste sieci splotowe nadal stosowane
sg bardzo czgsto (Rhee, i in., 2023) i po odpowiednim skalowaniu pozwalaja osiggngc

wyniki porownywalne z tymi oferowanymi przez nowsze, bardziej skomplikowane algorytmy
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(Liu, i in, 2022). Wsrdéd najpopularniejszych  modeli  splotowych  sieci
neuronowych stosowanych w CAAD warto wyroznic¢: AlexNet (Krizhevsky, i in., 2012), VGG
(Zisserman i Simonyan, 2015), ResNet (He, i in., 2016), U-Net czy ConvNeXt (Liu, i in., 2022;
David i Leitao, 2022).
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Rys. 40. Diagram warstwy splotowej w splotowej sieci neuronowej. Dane wejsciowe
skanowane sq sekwencyjnie przez filtry splotowe obliczajgce wartosci funkcji splotu
na podstawie odczytanych sygnatow. Dane na wyjsciu majq forme wielowymiarowych
tablic, po jednej tablicy na jeden filtr splotowy. Trenowalne parametry znajdujq

sie W filtrach splotowych. Opracowanie wiasne.

Generatywne sieci przeciwstawne (GAN)

Podobnie jak architekci, badacze 1 inzynierowie dziatajacy w dziedzinie uczenia maszynowego
czesto wykorzystuja dostepne im prostsze moduty w celu sktadania z nich wigkszych catosci,
oferujacych szersze mozliwosci niz same elementy sktadowe. Jednym z przykladéw takich
kompleksowych rozwigzan sg GANy, czyli generatywne sieci przeciwstawne (ang. Generative
Adversarial Networks) (Goodfellow, i in., 2014). GANy sa algorytmami ztozonymi z dwdch
konkurujacych ze soba sieci neuronowych. Pierwsza z nich to generator odpowiedzialny
za tworzenie danych jak najlepiej wpisujacych si¢ w dystrybucj¢ zbioru treningowego, druga

Z nich to dyskryminator probujacy odrdzni¢ oryginalne dane treningowe od tych stworzonych
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przez generator. W trakcie treningu obie sieci uczg si¢ wspdlnie. W miare jak dyskryminator
coraz trafniej odroznia dane syntetyczne od prawdziwych, generator tworzy dane coraz bardziej
podobne do danych treningowych. Gdy GAN jest juz wytrenowany, do przetwarzania danych
zazwycza] uzywa si¢ tylko generatora. Jako generatory w GANach najcze$ciej
wykorzystywane sg sieci CNN (np. U-Net) (Isola, i in., 2017).

W CAAD GANy uzywane s3 zazwyczaj tam, gdzie na podstawie pewnych warunkow
wejsciowych chcemy wygenerowaé realistycznie wygladajace dane (np. obrazy), trafnie
wpisujace si¢ w dystrybucje treningowg. Przykladowo, GANy mozna wykorzystac
do wizualizacji projektoéw poprzez naniesienie na zdjecia elewacji projektowanych elementéw
(Nicholas, i in., 2021) czy tez usuwanie i maskowanie na zdj¢ciach elementow, ktore w planach
majg by¢ rozebrane lub wyburzone (Kikuchi, i in., 2021). GANy stosowane sg do odczytywania
ukrytych informacji z kontekstow przestrzennych (przy zalozeniu, Ze interesujace nas
informacje sg skorelowane z prezentowanymi danymi wejsciowymi). Badacze podejmowali
proby przewidywania aktywnosci fizycznej na projektowanych terenach na podstawie map
GIS (Sun, i in., 2020), odczytywania funkcji pomieszczen z rzutow architektonicznych (Zheng
i Huang, 2018), czy nawet odczytywania genius loci okreslonej okolicy ze zbioru
panoramicznych zdjg¢ Street View (Steinfeld, 2019). GANy mozna tez wykorzystaé
do proponowania docelowych rozwigzan projektowych, takich jak: systemy instalacyjne
wpisujace si¢ w zadany rzut architektoniczny (Sato, i in., 2020), koncepcyjne rozktady
funkcjonalne (Eisenstadt, i in., 2019; As, i in., 2018), podziaty funkcjonalne projektowanych
kwartatow (Tian, 2020) czy rozwigzania detali (Alani i Al-Kaseem, 2021; Zandavali i Garcia,
2019; Thomsen, i in., 2019).

Najpopularniejszymi modelami GANoOw stosowanych w CAAD sg Pix2Pi2x (Isola, i in., 2017),
StyleGAN (Karras, i in., 2021) i StyleGAN2 (Karras, i in., 2020).

Glebokie uczenie ze wzmacnianiem (DRL)

Glebokie uczenie ze wzmacnianiem DRL (ang. Deep Reinforcement Learning) stanowi wariant
uczenia ze wzmacnianiem, w ktorym agent sterowany przez sie¢ neuronowa, lub grupa takich
agentow, podejmuja akcje w Srodowisku symulacyjnym. Sterujgca agentem sie¢ neuronowa
uczy si¢ podejmowac decyzje zapewniajace jak najwyzsza nagrode (Rys. 41). Ostatnimi czasy
najwicksze sukcesy w dziedzinie DRL osiagat zespot Google Deepmind. Opracowany przez
nich system AlphaGo osiagnat mistrzowski poziom w grze planszowej Go (Silver, i in., 2016),
AlphaStar potrafil biegle gra¢ w gre komputerowa Starcraft 2 (Vinyals, i in., 2019),
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a AlphaFold perfekcyjnie przewidywat trojwymiarowe struktury skomplikowanych biatek

na podstawie sekwencji ich aminokwasow (Jumper, i in., 2021).

Rys. 41. Diagram ilustrujgcy petle dziatania agenta DRL w srodowisku symulacyjnym.
Drziatanie agenta zostaje nagrodzone przez funkcje straty i skutkuje zmiang jego stanu.

Opracowanie wlasne.

W problemach architektonicznych DRL dobrze radzi sobie tam, gdzie w S$rodowisku
symulacyjnym mozna wymodelowa¢ zachowanie rzeczywistych fenomenow projektowych,
wykonawczych czy eksploatacyjnych. W aplikacjach tego typu wytrenowani symulacyjnie
agenci sterowani przez sieci neuronowe reprezentowa¢ mogg dynamicznie sterowane
ustroje konstrukcyjne (Hosmer i Tigas, 2019), charakterystyke s$rodowiskowg obiektu
budowlanego (Song i Yuan, 2021), poszczegolne pomieszczenia w budynkach mieszkalnych
(Veloso i Krishnamurti, 2020) czy autonomiczne drony odpowiedzialne za cyfrowg fabrykacje
obiektow budowlanych (Fang, i in., 2020). Srodowiska wykorzystywane w DRL moga by¢
takze bardziej abstrakcyjne i1 niekoniecznie musza reprezentowac Srodowisko fizyczne.
Glebokie uczenie ze wzmacnianiem moze by¢ wykorzystywane jako podstawa algorytmow
generatywnych poszukujacych najlepszych rozwigzan w przestrzeni projektowej (Han, i in.,
2020). W takich symulacjach agenci starajg si¢ optymalizowa¢ podejmowanie decyzji
projektowych (Mintrone i Erioli, 2021), wybierajac przyktadowo najlepsze do sytuacji moduty

architektoniczne zaprojektowane innymi metodami (Hosmer, i in., 2020).
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Algorytmy DRL wykorzystywane w CAAD zazwyczaj nie korzystaja z gotowych,
ogo6lnodostepnych rozwigzan. Wigkszo$s¢ z nich projektowana jest bezposrednio
do rozwigzywanego problemu. Do tworzenia srodowisk symulacyjnych najczgsciej stosowane
sg platformy Rhino Grasshopper, Unity 3D lub Python TensorFlow. Agenci zazwyczaj opieraja
si¢ na technikach Q-Learning (Watkins i Dayan, 1992), DDPG [ang. Deep Deterministic Policy
Gradient (Lillicrap, i in., 2015)] lub PPO [ang. Proximal Policy Optimization (Schulman, i in.,
2017)].

Rekurencyjne sieci neuronowe (RNN) i sieci dlugiej pamieci krotkotrwalej (LSTM)
Wspoélczesnie jedne z najwigkszych 1 najbardziej imponujacych sukceséw w dziedzinie
glebokiego uczenia maszynowego osiggane sga na polu przetwarzania jezyka naturalnego NLP
(ang. Natural Language Processing). Jednymi z pierwszych modeli sieci neuronowych
potrafigcych skutecznie przetwarzac ciagi dlugiego tekstu byty rekurencyjne sieci neuronowe
RNN (ang. Recurrent Neural Networks) i ich wariant, czyli sieci dtugiej pamieci krotkotrwate;j
LSTM (ang. Long Short-Term Memory Networks). Sieci te operujg na danych sekwencyjnych
takich jak tekst, dzwigk, uporzadkowane ciagi czy szeregi czasowe. W klasycznych RNN sie¢
otrzymuje sekwencje danych wejsciowych podzielonych na pojedyncze pakiety. Oprécz nich
sie¢ dostaje takze wartosci stanow ukrytych obliczonych przez t¢ samg sie¢ w poprzednich
krokach. Dzigki temu polaczeniu rekurencyjnemu sieci tatwiej jest nauczy¢ si¢ sekwencyjnych
zalezno$ci w analizowanych danych (np. zasad gramatycznych wystepujacych w ciagu
tekstowym. Proste RNN bywajg jednak dosy¢ niestabilne ze wzglgdu na problem
z eksplodowaniem lub zanikaniem sygnatow wraz z kolejnymi krokami w dluzszych
sekwencjach danych wejsciowych (Tadeusiewicz i Szaleniec, 2015). Jednym z rozwigzan tego
problemu jest wyposazenie sieci w mechanizm pamigci kréotkotrwatej. Pamigé taka pozwala
siect LSTM na zapisywanie najwazniejszych informacji do wykorzystania w przysztych
krokach (Rys. 42). Dzi¢ki pamigci sieci typu LSTM o wiele lepiej radzg sobie z przetwarzaniem
dtuzszych ciagéw danych (Hochreiter i Schmidhuber, 1997).
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Rys. 42. Diagram ilustrujgcy sposob dziatania sieci RNN typu LSTM. W nastepujgcych
po sobie krokach sie¢ otrzymuje wejsciowe dane z sekwencji wejsciowej X i przetwarza
je na sekwencje wyjsciowg Y. Dodatkowo sie¢ otrzymuje na wejsciu stany ukryte sieci
Z poprzedniego kroku. W modelu LSTM sie¢ otrzymuje takze mechanizm pamieci,
pozwalajgcy jej nauczy¢ sig mozliwosci zapisywania pewnych istotnych danych
W komdrkach pamigci, ktorych stan sie¢ moze odczyta¢ W Kolejnych krokach iteraciji.

Opracowanie wlasne.

Obecnie istnieja nowsze 1 bardziej skuteczne modele do przetwarzania danych sekwencyjnych
(omowione w kolejnym punkcie), jednak w projektowaniu architektonicznym wspomaganym
komputerowo RNN i1 LSTM nadal s3 czasem wykorzystywane. LSTM dobrze ucza
si¢ szeregOw czasowych, wiec potrafig wzglednie trafnie przewidywac przyszie stany procesoOw
ciggtych. Wykorzystuje si¢ je miedzy innymi do przewidywania zatorow komunikacyjnych
na ulicach miast (Guo, i in., 2019), rozpoznawania przysztych trajektorii uzytkownikow
przestrzeni miejskiej (Wu, i in., 2019) czy identyfikacji potencjalnych obszaréw objetych
rozrostem tkanki urbanistycznej (Boulila, i in., 2021). Sieci rekurencyjne nadaja
si¢ do sterowania cigglymi procesami fabrykacji robotycznej reprezentowanej przez szereg
czasowy instrukcji narzedzi CAM (Luo, 1 in., 2018; Chen, 1 in., 2019; del Castillo y Lépez,
2019). Moga takze robi¢ to, do czego byly pierwotnie zaprojektowane, czyli przetwarzac tekst
naturalny. Przykladowo, mogg by¢ sktadowymi systemow klasyfikacji zgloszen problemow
urbanistycznych wysytanych przez mieszkancow w formularzach kontaktowych administracji
miast (Sukel, i in., 2020a). W niektorych przypadkach dane wej$ciowe trudno jest przetwarzaé

w ich pierwotnej formie. Niekiedy warto przetworzy¢ je wtedy do formy sekwencyjne;j.
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Przyktadowo, w celu odczytania z dwuwymiarowych zdje¢ panoramicznych wnetrz mieszkan
informacji o potozeniu krawedzi $cian obraz wej$ciowy mozna przedstawic jako ciag kolumn
jego pikseli skltadowych. Mozliwe jest wtedy wykorzystanie zdolnosci LSTM
do rozpoznawania  zaleznoSci  sekwencyjnych  do  rozpoznawania  naroznikéw
W pomieszczeniach. Przy takim przedstawieniu danych LSTM fatwo uczy si¢ przyktadowo,
Ze pomieszczenia sg zazwyczaj prostopadioscianami, wigc odleglos¢ miedzy naroznikami
pierwszym a drugim czgsto bywa zblizona do odleglosci migdzy naroznikiem trzecim
a czwartym. System taki potrafi znajdywac¢ narozniki nawet wtedy, gdy sg one cze$ciowo
przestonigte przez wyposazenie wnetrza (Sun, i in., 2019). Innym przyktadem takiego podejscia
jest potraktowanie projektu parametrycznego obiektu jako pewnego rodzaju ,,zdania”
ztozonego z sekwencyjnie utozonych blokow instrukcji mozliwego do analizy przy pomocy
LSTM. Sie¢ pozwala wtedy na eksploracje przestrzeni projektowej poprzez sugerowanie

alternatywnych drog przeptywu danych w modelu parametrycznym (Toulkeridou, 2019).

Podobnie jak w przypadku DRL, proste sieci RNN i LSTM zazwyczaj przygotowywane
sg 0d zera na potrzeby konkretnego problemu. Dostrajanie wczesniej wytrenowanych modeli
nie jest czesto stosowane. Z najpopularniejszych typodw prostych sieci rekurencyjnych warto
wymieni¢ dwukierunkowe RNN i1 LSTM (ang. Bidirectional RNNs/LSTMs), skanujace
sekwencj¢ wejsciowga w obu kierunkach, oraz sieci GRU (ang. Gated Recurrent Unit

Networks), bedace uproszczonym wariantem sieci LSTM (Cho, i in., 2014).

Inne sieci neuronowe, transformery, modele dyfuzyjne

Chcac ustali¢, w ktorym momencie rozpoczgta si¢ trwajgca obecnie rewolucja glebokiego

uczenia maszynowego mozna wskaza¢ przynajmniej kilka dat:

e 1951: stworzenie przez Marvina Minsky’ego SNARCa, czyli pierwszej funkcjonalnej
sieci neuronowej (Minsky i Sykes, 2011).

e 1986: publikacja Rumelharta, Hintona i Williamsa w Nature popularyzujaca propagacje
wsteczng umozliwiajaca projektowanie samouczacych si¢ sieci neuronowych (Hinton,
iin., 1986).

e 2012: sie¢ AlexNet Alexa Krizhevskiego wprowadzajaca splotowe sieci neuronowe

do gtownego nurtu badan (Krizhevsky, i in., 2012).

Najnowszym pretendentem jest rok 2017, czyli moment publikacji artykutu Attention Is All You

Need, w ktorym zaprezentowano nowy typ sieci neuronowej — transformer (Vaswani, i in.,
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2017). To wilasnie na transformerach oparta jest wigkszo$¢ duzych modeli jezykowych LLM
(ang. Large Language Model) zdobywajacych szturmem kolejne miliony uzytkownikoéw
na caltym s$wiecie (Hu, 2023). Transformery sa sieciami neuronowymi wyposazonymi
w mechanizm uwagi, dzieki ktéremu na kazdym etapie generowania danych wyjsciowych sie¢
moze zwraca¢ uwage na kontekst znajdujacy sie w roznych miejscach sekwencji wejsciowe;]
oraz we fragmentach sekwencji wygenerowanych przez model w poprzednich krokach
(Vaswani, i in., 2017). Transformery najczesciej wykorzystywane sa w NLP, ale sg one takze
stosowane do przetwarzania obrazow przedstawionych w postaci sekwencyjnej. Sieci takie
nazywamy transformerami wizualnymi ViT (ang. Vision Transformer) (Dosovitskiy, i in.,
2021; Radford, i in., 2021). W CAAD transformery czesto wykorzystuje si¢ do tzw. analizy
sentymentu (ang. sentiment analysis) polegajacej na ocenie, czy dany tekst jest nacechowany
pozytywnie czy negatywnie. Wyniki analizy sentymentu tekstow pochodzacych przyktadowo
z medidw spotecznosciowych powigzanych z ich danymi geolokacyjnymi pozwalaja
na przeprowadzanie analiz urbanistycznych (Aman, i in., 2022). Dodatkowo, ze wzgledu
na ich zdolno$ci generalizacyjne, duze modele jezykowe takie jak GPT4 (OpenAl, 2023),
Llama2 (Meta Al, 2023) czy Gemini (Google, Gemini Team, 2023) zaczynaja
by¢ wykorzystywane w biurach projektowych jako syntetyczni asystenci wspierajacy
architektéw w oprogramowywaniu rozwigzan, poszukiwaniu inspiracji i przetwarzaniu danych.
Dostepnos¢ LLM w postaci tanich lub darmowych API i interfejsoéw czatowych zwigksza liczbe
ich potencjalnych uzytkownikéw o projektantow bez odpowiedniego przygotowania
informatycznego i o biura projektowe niedysponujace odpowiednio duza moca obliczeniowa,

pozwalajaca na korzystanie z wtasnych modeli gtebokiego uczenia maszynowego offline.

Oproécz transformeréow duzg popularnoscia ciesza si¢ obecnie generatywne modele dyfuzyjne
stuzace do tworzenia z szumu obrazow 1 innych typéw danych (np. wideo lub audio).
Algorytmy dyfuzyjne stopniowo usuwaja szum progresywnie, generujac coraz lepiej
zdefiniowane dane wyjsciowe. Modele dyfuzyjne czesto oparte sg na transformerach
wizualnych, ale moga wykorzystywaé takze prostsze sieci, jak np. CNN (Ho,, i in., 2020).
Podobnie jak w przypadku LLM, duze modele dyfuzyjne takie jak Dall-E 2 (Ramesh, i in.,
2022), Stable Diffusion (Rombach, i in., 2022) czy Disco Diffusion (Alembics, 2021) dostepne
sa w postaci prostych w uzytkowaniu interfejséw online, dzigki czemu weszty juz do wielu biur
projektowych jako narzedzia shuzgce poszukiwaniu rozwigzan i wizualizacji projektow (RIBA,

2024).
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3. Cze$¢ eksperymentalna

3.1. Eksperyment wstepny

3.1.1. Cele szczegolowe eksperymentu wstepnego

Whioski ptyngce z kwerendy stanu wiedzy sugeruja, ze prawidtlowo zaprojektowane,
odpowiednio duze sieci neuronowe powinny dobrze radzi¢ sobie w przetwarzaniu
przestrzennych kontekstow kompozycyjnych. Co wiecej, wydaje si¢, ze przynajmniej w czesci
zaprezentowanych zastosowan glebokiego uczenia maszynowego w CAAD i dziedzinach
pokrewnych konteksty kompozycyjne sa w jakim$ stopniu uwzglgdniane przez stosowane
algorytmy. Wzgledy kompozycyjne nie zostaty jednak do tej pory przebadane w oderwaniu
od innych aspektéw neuronowego przetwarzania danych. Do momentu przeprowadzenia
eksperymentu wstegpnego nie bylo takze jasne, do jakiego stopnia zlozone, rozmyte logicznie
zasady kompozycyjne, stosowane zazwyczaj przez ludzi, moga by¢ odczytywane,
przetwarzane i aplikowane w praktyce przez maszyny. Eksperyment wstgpny mial stanowic
weryfikacje koncepcji, operujaca na abstrakcyjnych 1 mierzalnych zasadach kompozycyjnych,
przed opracowaniem docelowego narzedzia wykorzystujacego glebokie uczenie maszynowe
do  ekstrakcji rzeczywistych  elementow  kompozycyjnych ~ w  przestrzeni
architektoniczno-urbanistycznej. W celu odizolowania problemu kompozycji przestrzennej
od innych zmiennych, przygotowatem eksperyment w sposob, ktory umozliwit jako$ciowa
i ilociowg analize skuteczno$ci zastosowania prostych sieci neuronowych w przetwarzaniu
kontekstow kompozycyjnych. W ponizszym podrozdziale znajduje si¢ sumaryczne
podsumowanie przebiegu eksperymentu. W szczegétach zostat on opisany w International

Journal of Architectural Computing (Dzieduszynski, 2022a).

3.1.2. Metodyka eksperymentu wstepnego

Ze wzgledu na uprzedzenie dotyczace struktury danych (ang. spatial inductive bias) dajace
splotowym sieciom neuronowym przewage nad sieciami jednokierunkowymi w przetwarzaniu
danych przestrzennych (Mitchell, 2017) oraz w zwiazku z wynikami testow wstepnych
poréwnujacych ze sobg sieci typu FNN i CNN (Rys. 43), zdecydowatem si¢ na wykorzystanie
w prototypie sieci typu CNN.
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Tworzenie obrazu 16x16, pojedyncza
zasada kompozycyjna

Tworzenie obrazu 16x16, podwdjna
zasada kompozycyjna

Tworzenie obrazu 16x186, potrojna
zasada kompozycyjnha

Tworzenie fragmentu obrazu 11x11,
pojedyncza zasada kompozycyjna

Tworzenie fragmentu obrazu 11x11,
podwadjna zasada kompozycyjna

Tworzenie fragmentu obrazu 11x11,
potréjna zasada kompozycyjna

FNN mCNN 0% 10% 20% 30% 40% 50% 60% 70% mCNN
Rys. 43. Wstepne testy skutecznosci (%) FNN oraz CNN w przetwarzaniu
wielowymiarowych zadan przestrzennych (po lewej) oraz przyktady rozwigzan
wygenerowanych przez oba typy sieci (po prawej). Oba typy sieci mialy za zadanie
wygenerowanie trzech wysp spetniajgcych serig zasad kompozycyjnych reprezentowanych

w zbiorze treningowym. CNN osigga skutecznos¢ 0 4 - 14% lepszq niz FNN
0 porownywalnej liczbie parametrow (Dzieduszynski, 2022b).

Wybrana sie¢ neuronowa miala za zadanie nauczenie si¢ ztozonej zasady kompozycyjnej
na podstawie zadanych przyktadow treningowych. Nastepnie sie¢ byta testowana pod
wzgledem jej umiejetnosci do odczytywania nowych, niespotkanych w trakcie treningu
kontekstow kompozycyjnych 1 do projektowania nowych kompozycji wpisujacych
sie¢ W konteksty i respektujacych wytrenowana, ztozong zasade kompozycyjna. Wykorzystana
w badaniu ztozona zasada kompozycyjna sktadata si¢ z nastgpujacych, trzech prostych zasad

sktadowych:
e Na monochromatycznym obrazie znajdujg si¢ trzy biale wyspy na czarnym tle.
e  Wyspy r6znig si¢ migdzy sobg rozmiarem.

e  Wyspy ulozone sg osiowo w kolejnosci od najmniejszej do najwigkszej (Rys. 44)

(Dzieduszynski, 2022a).

128



3 wyspy... ...0 réznym rozmiarze... ...w kolejnosci... ...wzdtuz osi

Rys. 44. Proste zasady kompozycyjne sktadajgce sie na ztozong zasade kompozycyjng

wykorzystang w eksperymencie wstepnym (Dzieduszynski, 2022a).

Spetnienie kazdego z tych warunkdw mozna jednoznacznie oceni¢ przy pomocy

parametrycznych algorytmow ilosciowych. Algorytmy iloSciowe testujace poszczegolne

zasady kompozycyjne zostaly przeze mnie opracowane w $rodowisku Python. Przy

wystarczajacej liczbie przyktadow testowych skuteczno$¢ sieci neuronowej mozna ocenic

statystycznie wzgledem kazdego ze zdefiniowanych warunkow kompozycyjnych. W celu

wytrenowania i przetestowania sieci neuronowej stworzytem baze¢ danych podzielonych

na cztery podzbiory:

Zbidr treningowy — ztozony z obrazéw reprezentujacych badana, zlozona zasade
kompozycyjng. Zbior ten stuzyt sieci do ustawienia parametréw minimalizujacych
funkcje straty.

Zbior walidacyjny — stuzacy do zaprojektowania hiperparametrow sieci osiggajacej
najlepsze  wyniki, przy jednoczesnym ograniczeniu ryzyka przestrojenia
hiperparemetrow do zbioru testowego (ang. over-tuning), czyli sytuacji, w ktorej
dobrane hiperparametry sieci zapewniaja szczegolnie dobry wynik dla konkretnego
zbioru danych.

Zbior testowy — wykorzystywany do finalnej oceny skuteczno$ci sieci neuronowej
osiggajacej najlepsze wyniki na zbiorze walidacyjnym. Zbior testowy sktadat
si¢ Z innych przyktadow niz zbiér treningowy i1 walidacyjny. Przyktady byly takze
probkowane z innej dystrybucji niz przyktady treningowe (Rys. 45, Rys. 46). Dzi¢ki
temu rozwigzaniu nie bylo mozliwosci, by obrazy ze zbiorow testowych pokrywaty
si¢ z obrazami ze zbioréw treningowych.

W celach diagnostycznych stworzytem takze zbidr testowy probkowany z dystrybucji

treningowej, shuzacy do rozpoznania, czy wprowadzone rdéznice w dystrybucji
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nie wptywajg zbyt powaznie na osiggniete przez sie¢ wyniki (ang. covariate shift)

(Dzieduszynski, 2022a).

2/3m 1/3n 2/3n 1/3n
n omn i
2n
4/3n 5/3n 4/3n 5/3n
Rys. 45. Dozwolone osie kompozycyjne Rys. 46. Dozwolone osie kompozycyjne
dla zbioru treningowego i zbioru testowego  dla zbioru walidacyjnego i zbioru testowego
o dystrybucji treningowej (Dzieduszynski, (Dzieduszynski, 2022a).
2022a).

Sieci typu CNN zostaly poddane probom w trzech zadaniach o zr6znicowanym poziomie
trudnosci (Rys. 47). Kazdy scenariusz operowal na osobnej bazie danych (ze wzgledu

na réznice w rozmiarach obrazow i trybow zakrywania kompozycji):

e |. Generowanie catosci kompozycji (zakrytych fragmentéw o rdéznych rozmiarach
wraz z odtworzeniem zadanych kontekstow) na obrazach wielko$ci 16 x 16 pikseli.

e II. Generowanie zakrytych fragmentow o wielkosci 11 X 11 pikseli uzupetniajacych
kompozycje wielkosci 16 x 16 pikseli.

e III. Generowanie pojedynczych, zakrytych pikseli kompozycji wielkosci 8 x 8 pikseli
(Dzieduszynski, 2022a).

B-H - 3

Generowanie catosci kompozycii Generowanie fragmentu kompozycji Generowanie pojedynczych pikseli

Rys. 47. Trzy scenariusze testowane w prototypie wstepnym polegajgce na generowaniu

catosci kompozycji, jej fragmentu oraz pojedynczego piksela (Dzieduszynski, 2022a).
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Zastosowane sieci neuronowe zostaly zaprojektowane hiperparametrycznie w Srodowisku
Tensorflow 2. Ich struktura byta luzno inspirowana sieciag AlexNet (Krizhevsky, i in., 2012).
Liczba neuronoéw, warstw i pozostate hiperparametry zostaly dopasowane do Sscenariusza,
formatu danych wejsciowych i wyjSciowych oraz zoptymalizowane wzgledem maksymalnej
skutecznosci na zbiorze walidacyjnym metodg poszukiwania losowego (ang. random search).
Warto$¢ progu aktywacji pikseli wyjsciowych zostala ustalona metoda poszukiwania
sieciowego (ang. grid search) dla zakresu 0,3 - 0,65 (Rys. 48). Definiowane hiperparametry

obejmowaty:

e Liczbe neurondéw w sieci i w poszczegdlnych warstwach.

e Liczba i rodzaj warstw (warstwy splotowe 1 warstwy w pelni potaczone).

e Techniki regularyzacyjne (dropout w zakresie 0 - 10% neuronéw w warstwach w petni
potaczonych oraz early stopping).

e Funkcje aktywacji neuronow w poszczegdlnych warstwach (ReLU i sigmoida).

e Funkcje straty (strata Hubera w scenariuszu I i II, binarna entropia krzyzowa (ang.
binary cross-entropy) w scenariuszu I11).

e Algorytm optymalizujacy (Adam).

e Szybkos¢ uczenia si¢ (0.001).

e  Wielko$¢ partii treningowych (ang. batch size, 256 - 4096).

e (Czas treningu.

e Wartos¢ progu aktywacji pikseli wyjsciowych [0,4 oraz 0,5 (Dzieduszynski, 2022a)].

Na wej$ciu sieci neuronowe otrzymywaly monochromatyczny obraz z zakrytym fragmentem
kompozycji 1 musialy przewidzie¢ uzupelnienie zakrytego fragmentu pasujace do zasad
kompozycyjnych reprezentowanych przez przyktady w zbiorze treningowym. Kompozycje
wykorzystane do stworzenia zbiorow treningowych, walidacyjnych i testowych zostaly
zsyntetyzowane przy pomocy osobnego, autorskiego narzedzia parametrycznego
zaprogramowanego w jezyku Python 1 niewykorzystujacego uczenia maszynowego. Zbiory
treningowe sktadaty si¢ z 7000 zréznicowanych obrazow, a zbiory testowe, walidacyjne
i walidacyjne o dystrybucji treningowej — z 700 kazdy. Czas treningu liczony w epokach ro6znit
si¢ w zaleznosci od przyjetych wielko$ci partii treningowych w poszczegolnych epokach,
ale kazda z sieci trenowano przez porownywalny €zas, wynoszacy okoto dwa dni na karcie

graficznej Nvidia GTX960M.
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Rys. 48. Przykiad przeprowadzonej optymalizacji hiperparametru znormalizowanej
wartosci progu aktywacji pikseli wyjsciowych. Optymalizacja przeprowadzona zostata
metodg grid search w zakresie od 0,35 do 0,65 na zbiorach walidacyjnych dla scenariusza
| i Il wzgledem skutecznosci sieci na badanych zasadach kompozycyjnych. Optymalna

wartos¢ wyniosta 0,5 dla scenariusza I (po lewej) i 0,4 dla scenariusza II (po prawej)

(Dzieduszynski, 2022a).

3.1.3. Wyniki eksperymentu wstepnego

Generowanie calosci kompozycji, scenariusz I

W najtrudniejszym scenariuszu pierwszym, w ktorym sie¢ neuronowa musiata radzi¢ sobie
ze zmiennym rozmiarem 1 proporcjami okna zakrywajacego kompozycje i musiata
jednoczes$nie odtworzy¢ konteksty kompozycyjne, sie¢ poradzita sobie najstabiej [Rys. 49
(Dzieduszynski, 2022a)]. W tym przypadku na zbiorze testowym sie¢ osiggneta wynik 51,9%
dla jednej zasady kompozycyjnej, 42,9% dla dwoch zasad kompozycyjnych jednoczes$nie
1 22,7% dla wszystkich trzech zasad [Rys. 50 (Dzieduszynski, 2022a)]. Sie¢ w miarg dobrze
radzita sobie z przypadkami, w ktorych w zadanych kontekstach byto wida¢ zalazek wszystkich
trzech wysp 1 w ktorych zakryty obszar nie byt duzy. Najczestsze bledy wynikaty ze zbyt malej
pewnosci przewidywan sieci skutkujgcej zbyt stabymi aktywacjami niegenerujgcymi pikseli,
mimo widocznej w aktywacjach struktury trzech wysp. W innych przypadkach sie¢ nie radzita
sobie z samym zadaniem odtworzenia niezastonigtych fragmentow kompozycji (co nie bylo

zmienng badang w eksperymencie), przez co obraz wyjSciowy nie pasowal do obrazu
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wejsciowego. Sie¢ nie potrafita takze generowac prawidtowych kompozycji, gdy zadane

konteksty byty zbyt ubogie (Rys. 51).
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Rys. 49. Diagram sieci neuronowej wykorzystanej w scenariuszu | (Dzieduszynski, 2022a).
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Rys. 50. Wykres przedstawiajgcy ewolucje skutecznosci sieci w scenariuszu I w miare
treningu. By zapobiec przetrenowaniu Sieci, trening zostat zatrzymany w epoce trzeciej

(technika regularyzacyjna early stopping) (Dzieduszynski, 2022a).
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Rys. 51. Wybor przyktadow pozytywnych rozwigzanych prawidlowo i negatywnych,
W ktorych sie¢ miata problemy (Dzieduszynski, 2022a).

Generowanie fragmentu kompozycji, scenariusz 11

W drugim scenariuszu sie¢ hie musiata juz uczy¢ si¢ odtwarzania catosci kompozycji wiacznie
z jej odkrytymi fragmentami. Sie¢ musiata jedynie generowa¢ zakryty fragment kompozycji
o wymiarach 11 x 11 pikseli (Rys. 52). Staty rozmiar generowanego fragmentu kompozycji
wynikat z faktu wykorzystania nie w pelni splotowej sieci neuronowej (Long, i in., 2015)
I koniecznos$ci dopasowania wymiarowosci wyjscia sieci neuronowej do statej struktury sieci
(ang. dimensionality mismatch). Uniknigcie bledow wynikajacych z nieprawidtowego
odtworzenia kompozycji uczytelnilo otrzymane wyniki. Co wigcej, nawet pomimo
statystycznego zwigkszenia obszaru generowanej kompozycji wzgledem scenariusza
pierwszego (121 pikseli w scenariuszu II i $rednio 81 pikseli w scenariuszu 1), nieznacznie
poprawita si¢ skuteczno$¢ sieci. Sie¢ na zbiorze testowym osiagnela wynik 52,9% dla
pojedynczej zasady kompozycyjnej, 41,6% dla podwdjnej zasady i 22,8% dla petnej zasady
potrojnej [Rys. 53 (Dzieduszynski, 2022a)]. W wigkszosci przypadkow zasada liczby
sktadowych elementow kompozycji byta zachowana. W przypadkach, w ktérych zadany
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kontekst okazywat si¢ w scenariuszu I zbyt ubogi, sie¢ scenariusza Il radzita sobie o wiele lepiej
(Rys. 54).
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Rys. 52. Diagram sieci neuronowej wykorzystanej w scenariuszu Il (Dzieduszynski, 2022a).
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Rys. 53. Wykres przedstawiajgcy ewolucje skutecznosci sieci w scenariuszu II w miare
treningu. By zapobiec przetrenowaniu sieci, trening zostat zatrzymany w epoce 75
(Dzieduszynski, 2022a).

135



00 25 50 75 100 125 150

50 75 100 125 150 00 25 S0 75 100 125 150 00 25 50 75 100 125 150 00 25 & 5 100 125 1S 00 25 50 75 100 125 150

Pozytywny Pozytywny Negatywny przyktad, Sie¢ wygenerowata Nawet z jednym pikselem
przykiad przykiad ztamanie zasady cztery wyspy kontekstowym rozwigzanie
osiowosci zamiast trzech jest poprawne

Rys. 54. Wybor przyktadow pozytywnych, z ktorymi sie¢ scenariusza Il radzita sobie bardzo
dobrze i negatywnych, w ktorych sie¢ miatla problemy (Dzieduszynski, 2022a).

Generowanie pojedynczych pikseli, scenariusz 111

W trzecim scenariuszu przetestowatem skuteczno$¢ sieci w podejmowaniu najbardziej
podstawowych decyzji kompozycyjnych, polegajacych na generowaniu pojedynczych
brakujacych pikseli w kompozycji przestrzennej (Rys. 55). Dzigki zmniejszeniu rozmiaru
przetwarzanych obrazow do kwadratow wielkosci 8 x 8 pikseli, juz pojedynczy,
zle wygenerowany piksel, mogt ztamaé¢ zasade osiowosci. Jeden piksel mogt w wielu
przypadkach lamac¢ takze zasade liczby elementow (poprzez wygenerowanie nowe;j,
jednopikselowej wyspy lub poprzez potaczenie istniejacych wysp ze sobg) oraz zasade

kolejnosci wysp (jeden piksel mogl doprowadzi¢ do zrownania wielkosci wysp).
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Rys. 56. Wykres przedstawiajgcy ewolucje skutecznosci sieci w scenariuszu IIl w miare
treningu. W tym przypadku doprowadzono trening do konca, early stopping nie byt
konieczny (Dzieduszynski, 2022a).

W scenariuszu trzecim sie¢ radzita sobie prawie perfekcyjnie w przetwarzaniu calosci ztozonej
zasady kompozycyjnej (Rys. 56). W zbiorze testowym kompozycja prawidtowo sktadata
si¢ Z trzech wysp w 97,9%, z trzech wysp ulozonych osiowo w 96,7%, a z trzech wysp
utozonych osiowo i uszeregowanych od najwigkszej do najmniejszej w 95,1% (Dzieduszynski,
2022a). W prawie kazdym przypadku sie¢ prawidlowo uzupetniata brakujacy piksel
kompozycji. Analiza wzorcoOw aktywacji pozwala zauwazy¢, ze sie¢ bardzo konsekwentnie

unika generowania pikseli w miejscach, w ktorych wygenerowanie piksela skutkowatoby
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zespoleniem dwoch wysp ze sobg. Sie¢ takze bardzo silnie unikata generowania nie-osiowych
pikseli w pustce otaczajacej wyspy. Ciaglo$¢ cienkich wysp o szeroko$ci jednego piksela
tez byla zachowywana w wickszosci przypadkéw. Kilka biedow popetnionych przez

sie¢ dotyczyto okazjonalnego taczenia wysp ze sobg 1 przetamywania ciggtosci cienkich wysp

(Rys. 57).
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Rys. 57. Diagram przedstawiajgcy wyniki dziatania sieci w scenariuszu. Kazdy z pikseli
W kompozycji byt sekwencyjnie zakrywany i generowany przez sie¢ osobno. W gornym
rzedzie — kompozycje wejsciowe, w Srodkowym — mapa aktywacji dla kazdego z 64 pikseli,
w dolnym — decyzje podjete przez sie¢ dla kazdego piksela (czerwony kolor oznacza decyzje
0 narysowaniu biatego piksela, niebieski kolor oznacza decyzje o wygenerowaniu czarnego

piksela). Wybor przyktadow pozytywnych i negatywnych (Dzieduszynski, 2022a).

W celu dodatkowego przetestowania sieci, recznie narysowatem kilka nietypowych
kompozycji przestrzennych niewpisujacych si¢ w dystrybucje zbioru treningowego,
ale spetniajgcych wszystkie warunki kompozycyjne (Rys. 58). Przypadki te testowatly
wystepowanie wysp o wielkosci pojedynczego piksela oraz wystepowanie wysp roéznigcych

si¢ rozmiarem jedynie o jeden piksel. Ostatnim przypadkiem byta kompozycja ztoZzona z wysp
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0 maksymalnej mozliwej wielkosci (podzielonych jedynie cienkimi pasmami o szerokos$ci
jednego piksela). Rowniez na tych przyktadach brzegowych sie¢ osiagneta bardzo wysoka

skuteczno$¢ wynoszaca 98,8%.
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Rys. 58. Wyniki sieci dla recznie rysowanych przyktadow brzegowych. Kazdy z pikseli

W kompozycji byt sekwencyjnie zakrywany i generowany przez sie¢ osobno. W gornym
rzedzie — kompozycje wejsciowe, w Srodkowym — mapa aktywacji dla kazdego z 64 pikseli,
w dolnym — decyzje podjete przez sie¢ dla kazdego piksela (czerwony kolor oznacza decyzje
0 narysowaniu biatego piksela, niebieski kolor oznacza decyzje o wygenerowaniu czarnego

piksela) (Dzieduszynski, 2022a).

3.1.4. Whnioski z eksperymentu wstepnego

Prototyp wstepny zostal oceniony zarowno jako$ciowo, jak i iloSciowo. Opracowany system

wykazat bardzo wysoka skutecznos¢ siggajaca 95,1 - 97,9% w przetwarzaniu ztozonych zasad
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kompozycyjnych przy podejmowaniu prostych decyzji przestrzennych w scenariuszu Ill.
Im trudniejsze stawato si¢ zadanie, tym stabsze wyniki byty osiggane przez sie¢ neuronowas,
jednak nadal zawieraly si¢ we wzglednie wysokim zakresie 22,7 - 52,9% w zalezno$ci
od ztozonosci mierzonych zasad. Bardzo wysoka wydajno$¢ w scenariuszu trzecim sugeruje,
ze sie¢ na podstawie zbioru treningowego potrafi prawidtowo nauczy¢ sie zadanych zasad
kompozycyjnych, jednak w scenariuszach I i Il otrzymany wynik obnizyto dodanie zadania
na etapie przetwarzania i aplikacji zasad kompozycyjnych, polegajace na koniecznosci
odtwarzania niezakrytych fragmentéw kompozycji lub przetwarzania wigkszej liczby
sygnatow. By¢ moze dodatkowym czynnikiem ograniczajagcym skutecznos¢ w scenariuszach
| i IT byt stosunkowo niewielki rozmiar wykorzystanej sieci neuronowej i zbioru treningowego.
7000 przyktadéw treningowych to w kontek$cie glgbokiego uczenia maszynowego bardzo

mato i taka objetos¢ zbioru treningowego prowadzi do bardzo szybkiego przetrenowania sieci.

Innym problemem zidentyfikowanym w badaniu byly zbyt agresywne roéznice wprowadzone
do dystrybucji miedzy zbiorami treningowym i walidacyjnym, a zbiorem testowym. Roznice
te mialy docelowo zademonstrowaé¢ zdolno$¢ sieci do generalizowania na niewidziane
w treningu rodzaje kompozycji, jednak doprowadzily do znacznego obnizenia wynikow
na zbiorze testowym. Mozliwe, Ze sie¢ ,,uznata” roznice w dystrybucji za pewne dodatkowe
zasady kompozycyjne. Problem ten w dziedzinie glgbokiego uczenia maszynowego nazywa
si¢ problemem przesunigcia dystrybucji (ang. covariate shift). Wydajno$¢ sieci mierzona
na zestawie walidacyjnym (sktadajacym si¢ rowniez z przyktadéw niewidzianych przez sie¢
na etapie treningu, jednak trzymajacych si¢ tego samego zakresu mozliwych osi
kompozycyjnych), osiggneta w scenariuszu 1 40 -58%, w scenariuszu Il 46 - 65%,
a w scenariuszu 111 96 - 98,5%.

Ze wzgledu na ztozonos¢ rzeczywistego procesu projektowania
architektoniczno-urbanistycznego wydaje si¢, ze bezposrednie zastosowanie narzedzia
na podobnym poziomie zaawansowania co opracowany prototyp wstepny mogtoby przynies¢
ograniczone rezultaty. By sprawdzi¢ jednak, do jakiego stopnia podobne narzedzie radzitoby
sobie w rozpoznawaniu prawdziwych kontekstow przestrzennych, wytrenowatem nieznacznie
powigkszong sie¢ ze scenariusza Il na diagramatycznych schematach zabudowy
warszawskiego Srodmiescia (tzw. szwarcplany). Nastepnie aplikowatem tak wytrenowang sie¢
neuronowg do uzupetniania brakujacej zabudowy na terenie bardziej peryferyjnej dzielnicy

Biatotgka. Sytuacja ta w zatozeniu miata symulowac ,,przeszczepienie” zasad kompozycyjnych
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z warszawskiego $srodmiescia na Biatoleke przy jednoczesnym uzupeinianiu i respektowaniu
zastanych na Biatolece kontekstow (Rys. 59). Co ciekawe, nawet niewielka sie¢ neuronowa,
wytrenowana na bardzo ograniczonych, dwuwymiarowych kontekstach przestrzennych
potrafita odczytywac¢ 1 wykorzystywa¢ pewne urbanistyczne zasady kompozycyjne. Sie¢
wydawata si¢ respektowac¢ zasady takie jak gesto$¢ zabudowy, osiowo$¢ zabudowy, ogolng

skale obrysow budynkéw i1 konieczno$¢ kontynuacji pierzei.

Rys. 59. Przyktady biatoteckich struktur urbanistycznych zaproponowanych przez sie¢

neuronowq wytrenowang na szwarcplanach zabudowy Srédmiescia Warszawy. Zabudowa
proponowana przez sie¢ znajduje si¢ w czerwonych ramkach. Nawet przy niewielkiej
rozdzielczosci wynikajgcej z ograniczen strukturalnych sieci i bardzo ograniczonych
kontekstach reprezentowanych w przetwarzanych danych, sie¢ wydaje sie respektowaé
gestosc i osiowos¢ zabudowy, skale obrysow budynkow i koniecznos¢ kontynuacji pierzei

(Dzieduszynski, 2022a).

3.2. Eksperyment glowny

3.2.1. Cele szczegotowe eksperymentu glownego

Po zademonstrowaniu zdolno$ci algorytmoéw  glebokiego uczenia maszynowego
do przetwarzania abstrakcyjnych kontekstow przestrzennych, kolejnym krokiem byla proba

aplikacji bardziej zaawansowanych sieci neuronowych do analizowania realnych
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i obszerniejszych kontekstow przestrzennych w rzeczywistych miastach. Gtownym celem
eksperymentu gltéwnego bylo stworzenie prototypowego ekstraktora punktow gldwnych
I punktow formalnie podkreslonych w kompozycjach urbanistycznych. Projektowane
narzedzie miato umozliwia¢ seryjne i powtarzalne przeprowadzanie czasochtonnych analiz
kompozycyjnych. Ekstraktor taki stanowitby wsparcie w praktyce projektowej architektow
I urbanistow poprzez zmniejszenie ryzyka przeoczenia istotnych kontekstow i popehnienia
btedu projektowego. W praktyce planistycznej i administracyjnej ekstrakcja punktow gtownych
potencjalnie mogtaby stuzy¢ do uczytelniania pozornie chaotycznych uktadow przestrzennych
poprzez wskazywanie miejsc, ktérym powinna by¢ poswigcona szczegdlna uwaga
(np. ze wzgledu na konieczno$¢ ich ochrony czy ze wzgledu na ich potencjal rozwojowy
I krystalizacyjny). Prototypowany algorytm mogtby by¢ takze wykorzystywany przez wszelkie

instytucje zainteresowane ekonomicznym znaczeniem punktéw gtéwnych.

Przetwarzanie kontekstow kompozycyjnych jest jednym z wazniejszych elementéw procesu
projektowego. Eksperyment glowny stanowil szans¢ na zademonstrowanie w praktyce
koncepcji  projektowania  hiperparametrycznego, bedacego ewolucjg paradygmatu
projektowania parametrycznego. Demonstracja wymagata wykorzystania algorytmow uczenia
maszynowego do przetwarzania ztozonych, realnych kompozycji przestrzennych
w rzeczywistych miastach. Proces przygotowania prototypu mozna bylo oprze¢ na gtownych

zatozeniach architektury hiperparametrycznej:

e Podejscie do problemu projektowego na wyzszym poziomie abstrakcji, niz
W projektowaniu parametrycznym poprzez definiowanie hiperparametrow sieci
neuronowej.

e Wspdlne odczytywanie kontekstow projektowych, zardwno przez projektanta, jak
i algorytm glebokiego uczenia maszynowego.

e Uzupetnienie narzedzi opartych na dedukcji takze o narzedzia wykorzystujace
rozumowanie indukcyjne.

e Automatyzacja procesow, ktore do tej pory mogly by¢ przeprowadzane jedynie przez

cztowieka.

Celem byta takze jakosciowa 1 iloSciowa ocena skuteczno$ci opracowanego prototypu
I sprawdzenie, czy zwigkszenie zlozono$ci problemu wzglgdem eksperymentu wstepnego

doprowadzi do osiggnigcia granic mozliwos$ci stosowanych sieci neuronowych.
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3.2.2. Metodyka eksperymentu gléwnego

Kodowanie kontekstéw przestrzennych — mapa cech

Projektowane narzedzie w zatozeniu odczytywaé ma geometryczne uwarunkowania
przestrzenne i na ich podstawie ustala¢ lokalizacj¢ ewentualnych gléwnych punktéw
kompozycyjnych. Uwarunkowania przestrzenne musialy by¢ przedstawione w sposob

spetniajacy nastepujgce zatozenia:

e Dane powinny reprezentowac¢ kluczowe, geometryczne cechy przestrzenne opisujace
W mozliwie pelny sposdb kompozycje przestrzenng w skali urbanistyczne;.

e Dane powinny by¢ aktualne 1 na biezaco aktualizowane, by odzwierciedla¢ obecny stan
przestrzeni.

e Poszczegdlne cechy powinny by¢ jak najbardziej od siebie niezalezne (jedna cecha
nie powinna bezposrednio wynikac z innej).

e Powinno by¢ mozliwe pobranie danych opisujacych dowolne miejsce na Ziemi
(lub mozliwie najwigckszego zakresu mozliwych miejsc) z zachowaniem zgodnosci
danych miedzy poszczegdlnymi miejscami.

¢ Dane nie powinny narusza¢ prywatnosci osob i innych interesariuszy.

e Dane powinny mie¢ wystarczajaco duza rozdzielczos¢ umozliwiajaca odczytywanie
zZ nich kontekstow kompozycyjnych w skali urbanistyczne;j.

e Dane powinny mie¢ wystarczajaco niska rozdzielczo$s¢ umozliwiajacg ich efektywne
przetwarzanie maszynowe na dostepnym sprzecie.

e Dane powinny by¢ tatwo dostepne, darmowe i na otwartej licencji.

e Dane powinny by¢ mozliwe do pobrania przez Internet przy pomocy API.

e Dane powinny by¢ przedstawione w formacie umozliwiajgcym ich przetworzenie przy

pomocy dostepnych algorytmoéw uczenia maszynowego.

Do projektowania map cech wybratem narzedzie Mapbox Studio (Mapbox, 2023), pozwalajace
na tworzenie wilasnych, rastrowych map opartych na Open Street Map (OpenStreetMap
contributors, 2023). Szablony stworzone w Mapbox Studio mozna opublikowac i nastepnie
odczytywac przy pomocy zapytan API dla dowolnych wspotrzednych geograficznych w duzym
zakresie skal 1 rozdzielczosci. O$§ horyzontalna map rastrowych odpowiada dlugosci
geograficznej, a o$ wertykalna szerokosci geograficznej. W serwisie Mapbox Studio

przygotowatem 3 osobne szablony reprezentujace trzy osobne przestrzenie cech uznane
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za najbardziej kluczowe w kontekscie urbanistycznej kompozycji przestrzennej. Wybor cech
kluczowych zostat dokonany na podstawie wnioskéw plynacych z omoéwionej literatury
przedmiotu oraz na podstawie dostepnosci danych w serwisie OSM. Pierwsza mapa cech

reprezentuje topografie wraz z zabudowa, druga — zielen, a trzecia — uktad komunikacyjny.

Zabudowa i topografia terenu wspdlnie stanowiag najwazniejszy kontekst budujacy kompozycje
przestrzenng. Zabudowa otaczajaca obserwatora tworzy plaszczyzny naprowadzajace
I zatrzymujace wzrok, formuje rytmy, definiuje ktore elementy sktadajg si¢ na tlo, a ktore
wybijaja si¢ na pierwszy plan jako dominanty (Zorawski, 1962; Wejchert, 1984). Topografia
terenu takze formuje naprowadzenia widokowe, bariery przestrzenne, uwidacznia niektore
obiekty, a niektore ukrywa (Ching, 2007; Wejchert, 1984). Elementy topograficzne, takie jak
doliny rzek czy skarpy, moga stanowi¢ jedne z gtdéwnych elementow tozsamosci miasta (Pluta,
2001). Przestrzen cech topografii i zabudowy zostala zakodowana w postaci rastrowego,

o$miobitowego obrazu:

e 0: Tlo.

e 0-127: Topografia terenu centrowana wzgledem warto$ci minimalnej (Rys. 60), skok
0 jedna warto$¢ w przestrzeni cech oznacza skok o 2 m wysokosci rzeczywistej.

e 0-128: Zabudowa terenu, mosty, i wiadukty. Skok o jedng jednostk¢ odpowiada

2 m wysokosci rzeczywiste;j.

Mapy topografii i zabudowy sg sumowane do jednej mapy, w ktorej wartosci pikseli zawieraja

si¢ w zakresie 0 - 255.

144



h
36m+$

-12m

Om

h
8m+$ mm
[T 1] EEEEEN
EEEENEEEE BN EEEEEEEEE B
Om >

Rys. 60. Diagram przedstawiajgcy centrowanie map topograficzny wzgledem wartosci
minimalnej. Przy pobieraniu danych z serwisu Mapbox opracowany skrypt APl rozpoznaje
najmniejszq wartos¢ piksela na obrazie i odejmuje te wartos¢ od wartosci pozostatych
pikseli. Dzieki temu mapa topograficzna przedstawia tylko wysokosci wzgledne

| pozostawia wigcej przestrzeni dla mapy zabudowy. Opracowanie wlasne.

Drugg mapg cech stanowi mapa intensywnosci zieleni. Jak pisze Jan Gehl:

,Drzewa, zielen i kwiaty odgrywajq kluczowg role wsrod elementow przestrzeni
miejskiej. Drzewa (...) definiujg przestrzen miasta i pomagajq zaakcentowacé wazne
miejsca. Duze drzewo na placu informuje: «To jest miejsce», a szpalery na bulwarach
podkreslajq linearny porzqdek, zas zwieszajgce si¢ nad ulicami galezie sugerujg

istnienie zielonej przestrzeni w miescie.” (Gehl, 2014, s. 179-180)

Na rol¢ zieleni w budowaniu kompozycji przestrzennej miejsca zwraca takze Katarzyna Pluta.
Szpalery zieleni moga tworzy¢ $ciany wnetrz urbanistycznych, a trawniki czy klomby
na posadzce urbanistycznej moga dziata¢ jak naprowadzenia (Pluta, 2014). Zielen traktowana
jest jako element stuzacy budowaniu kompozycji urbanistycznej tez przez dokumenty

planistyczne, takie jak Studium Warszawy (Prezydent m.st. Warszawy, 2023). Zieclen
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znajdujacg si¢ w polu percepcji zakodowatem wzgledem jej intensywnos$ci opierajac

si¢ na klasach wystepujacych w OSM:

e 0: Tlo.

e 51: Powierzchnie naturalne bez zieleni (tereny piaszczyste, skaliste, plaze).
e 102: Zielen niska (tereny trawiaste i uprawne).

e 153: Zielen $rednio-niska (krzewy, zaro$la, wrzosowiska, winnice).

e 204: Zielen $rednio-wysoka (rodzinne ogrody dziatkowe, parki).

e 255: Zielen wysoka (lasy).

Trzecia mapa reprezentuje ukiad komunikacyjny. Uklad komunikacyjny w zatozeniu
ma pomoe sieci neuronowej powigza¢ geometryczng kompozycje tworzong przez zabudowe,
topografi¢ 1 zielen z perspektywa uzytkownika przestrzeni — zardwno pieszego,
jak i zmotoryzowanego. W skali duzych miast uktad komunikacyjny, ciagi, ulice wlotowe
I bramy same w sobie stanowig takze istotne elementy kompozycyjne (Pluta, 2001). Ulice
i Sciezki determinujg istnienie osi widokowych (Wejchert, 1984), przecigcie ciggow
komunikacyjnych stanowi podkreslenie kompozycyjne (Ching, 2007; Alexander, i in., 1977)
lub wregcz definiuje punkty miastotworcze (Ratzel, 1882). Uktad komunikacyjny podobnie

jak zielen i zabudowa zostal przedstawiony na mapie w poprzez gradient intensywnosci:

e 0: Tlo.

e 31: Woda (rzeki, jeziora, kanaty).

e 63: Drogi w budowie.

e 95: Chodniki, $ciezki, przejscia.

e 127: Drogi bez klasyfikacji OSM.

e 159: Drogi klasy ,,street” i ,,road” OSM.

e 191: Drogi klasy ,,secondary” i ,.tertiary” OSM.
e 223: Drogi klasy ,,primary” OSM.

e 255: Drogi klasy ,,motorway” OSM.

Elementy uktadu komunikacyjnego znajdujace si¢ pod ziemig zostaty przedstawione kolorem

odpowiadajacej jej klasy 1 linig przerywana.

Tak zdefiniowane trzy monochromatyczne mapy przestrzenne potaczytem w tréjwymiarowa
macierz, ktorg mozna przedstawi¢ takze w postaci obrazu RGB o o$miobitowej glebi koloru

(Rys. 61).
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Rys. 61. Mapa przestrzeni cech wykorzystanej w czesci eksperymentalnej. Mapa sktada
sig Z trzech, natozonych na siebie map dwuwymiarowych przedstawionych na potrzeby
wizualizacji w trzech kolorach podstawowych. Kolorem niebieskim oznaczono mapg
topografii i zabudowy terenu, zielonym — intensywnos¢é zieleni, czerwonym — uktad

komunikacyjny. Opracowanie wlasne.

W rzeczywistej przestrzeni trojwymiarowej taka mapa cech moze by¢ takze przedstawiona jako
pieciowymiarowy model zwokselizowany, w ktorym pierwszy wymiar stanowi diugos¢
geograficzna, drugi — szeroko$¢ geograficzna, trzeci — wysoko§¢ wzgledna topografii

i zabudowy, czwarty — intensywnos¢ zieleni, a pigty — intensywnos$¢ uktadu komunikacyjnego
(Rys. 62).
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Rys. 62. Diagram przedstawiajgcy mozliwosé przedstawienia przestrzeni cech
W macierzowej postaci trojwymiarowej (po lewej) oraz w zwokselizowanej postaci
pieciowymiarowej (po prawej). W obu interpretacjach osie X i Y odpowiadajg

wspotrzednym geograficznym. Opracowanie wiasne.

Zakres pola percepcji

Ze wzgledu na planowane wykorzystanie w eksperymencie gtdéwnym sieci typu GAN, opartej
na nie w petni splotowych sieciach neuronowych, pole percepcji na wejsciu sieci neuronowej
musiato mie¢ state wymiary — zarowno na etapie treningu, jak i inferencji. Konieczne byto wigc
zdefiniowanie jednej skali i obszaru percepcji wykorzystanego w badaniu. Uwzgledniajac
fraktalny charakter kompozycji przestrzennych, nie mozna obiektywnie przyjaé jakiej$ skali
analizy przestrzennej za bardziej trafng, bez uwzglednienia docelowego, interesujacego nas
problemu kompozycyjnego. W badaniu gldéwnym zdecydowatem si¢ na aplikacje¢ narzedzia
do lokalnej skali urbanistycznej, ktora najczesciej pojawiata si¢ w literaturze przedmiotu.
Na potrzeby czesci eksperymentalnej niniejszej pracy za obszar pola percepcji w skali
urbanistycznej przyjatem kwadrat o bokach dhugosci 1 km. Wedlug Gehla obszar ten
odpowiada $rednim rozmiarom wigkszo$ci centrow miejskich takich miast jak Zurych,
Brisbane, Pittsburg czy Kopenhaga. Promien tego obszaru, wynoszacy 450 -500 m,
wyznaczony jest przez zasigg pigciominutowego spaceru. Powyzej tej wartosci miejsce
docelowe wydaje si¢ odlegte (Gehl, 2014). Obszar ten wpisuje si¢ w takze zakres rozpigtosci
obszaré6w zajmowanych przez ,,Spotecznosci 7000” definiowanych przez Christophera
Alexandra. Wedlug Alexandra w grupie 7000 osob pojedynczy cztowiek nadal ma site
oddziatywania na calg spoteczno$¢. Zbiorowiska ludzi powyzej granicy 10000 osoéb zaczynaja

dziata¢ dehumanizujgco, glos pojedynczego cztowieka przestaje by¢ styszalny 1 wazny.
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Za przestrzenne granice obszaru spotecznosci 7000 Alexander przyjmuje od 0,25 do 2 mil
(czyli 0,4 do 3,2km). Gdy uwzglgdnimy rozmiary sasiedztw centrow ekscentrycznych
Alexandra (Rys. 25) wraz z tworzacymi je barierami i $ciezkami naprowadzajacymi, zakres ich

oddziatywania bedzie wynosit okoto 1 km (Alexander, i in., 1977).

Dodatkowo ze wzgledu na ograniczenia sprz¢towe, konieczne byto operowanie na niewielkich
obrazach. Przyjete mapy cech maja wiec wymiary 512 x 512 pikseli%®, co odpowiada obszarowi
0 przyblizonych rozmiarach 1 x 1 km. Zakres taki pozwala na uchwycenie kompozycji
przestrzennych w lokalnych skalach urbanistycznych przy jednoczesnym uchwyceniu sporych
fragmentéw gléwnych osi naprowadzajacych w skalach wigkszych. Pokrycie analizg
wickszych obszaréw jest mozliwe poprzez sekwencyjne przetwarzanie wielu, naktadajacych
si¢ na siebie kafelkow pol percepcji. Mapy tworzone w serwisie Mapbox domys$lnie korzystaja
z odwzorowania Merkatora, w ktorym im bardziej zblizamy si¢ do biegunow, tym bardziej
zwigksza si¢ deformacja powierzchni (PWN, 2024). Dla obszarow zastosowanych w badaniu
(wszystkie znajduja si¢ w strefie umiarkowanej) 1 piksel odpowiada $rednio kwadratowi
0 bokach 2 x 2 m. Wartos¢ ta jest zgodna z takze wertykalnym skokiem jednostek w mapie
topografii i zabudowy, ktéry wynosi rowno 2 m co jednostke. Dwumetrowy limit skoku
jednostek topografii wynika z ograniczenia serwisu Mapbox, ktory w momencie
przygotowywania prototypu nie umozliwial wyswietlania map topograficznych w wyzszej

rozdzielczosci.

Wyboér modelowych punktow glownych, tworzenie zbioru treningowego i testowego

Do wytrenowania sieci neuronowej potrzebny byt mozliwie jak najwiekszy zbior treningowy
oparty na roznych przyktadach punktow glownych w kompozycjach o skali
1 km kwadratowego. Wspotczesne sieci neuronowe operuja na ogromnych zbiorach danych

sktadajacych si¢ nawet z miliardow przyktadéw treningowych (Schuhmann, i in., 2022).

%6 W ramach strojenia hiperparametrow przetestowatem takze algorytmy oparte na polach percepcji 256 x 256 px
oraz 768 x 768 px. W modelu 256 x 256 px przestrzen cech byta zbyt mocno znieksztatcona przez skalowanie,
przez co poszczego6lne cechy staty si¢ nieczytelne. We wstepnych eksperymentach przy treningu zbyt czgsto
nastepowat kolaps sieci skutkujacy generowaniem przez nig jedynie czarnych obrazdw. Sie¢ 768 X 768 px
wykazata obiecujgcg skuteczno$¢ przy wstepnych testach ze wzgledu na pole percepcji rozszerzone do
1,5 x 1,5 km, jednak trening sieci byt zdecydowanie zbyt wolny (nastgpito ponad dwukrotne spowolnienie), przez

co strojenie hiperparametréw na dostgpnym sprzecie okazato sie zbyt dtugotrwale.
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Ze wzgledu na konieczno$¢ recznego wyboru modelowych punktow gtownych i ich rgczne
oznaczenie, opracowanie duzego zbioru treningowego w czasie przeznaczonym na badanie nie
bylo mozliwe. Na potrzeby prototypu przygotowatem niewielki zestaw danych ztozony
Z 75 przyktadow treningowych 1 32 przykladow testowych. Zastosowalem technike
rozszerzenia zbioru danych metodami odbicia lustrzanego, losowego obrotu i kadrowania
obrazow. W ten sposob uzyskatem 3000 przyktadow treningowych 1 160 przyktadow
testowych. Przyktady treningowe zostaly wybrane z przeanalizowanych zrodet dotyczacych
architektoniczno-urbanistycznej kompozycji przestrzennej. Poczatkowa lista ztozona byta
ze 143 przyktadéow. Ich pelna lista zalgczona jest w Aneksie (Zatgcznik 4). Przyklady

obejmowaty:

e 14 przyktadow z Obrazu Miasta Kevina Lyncha (Lynch, 1960).

e 51 przyktadow z Elementow Kompozycji Urbanistycznej Kazimierza Wejcherta
(Wejchert, 1984).

e 27 przyktadéw z O Budowie Formy Architektonicznej Juliusza Zorawskiego (Zérawski,
1962).

e 27 przyktadéw z Architecture Form, Space, and Order Francisa D.K. Chinga (Ching,
2007).

e 15 przyktadow ze Studium Uwarunkowan i Kierunkow Zagospodarowania
Przestrzennego Miasta Lodzi (Prezydent miasta L.odzi, 2018).

e 2 przykltady z archiwalnego studium Lodzi (Prezydent miasta £.odzi, 2010).

e 8 wlasnych przyktadow znanych mi z rodzinnego miasta Lodzi.

Lista zostala nastgpnie zredukowana do 75 pozycji. Usunigtych zostalo 13 dominant
niebedacych punktami gtéwnymi, 9 przykladow juz nieistniejacych lub zdezaktualizowanych
przez zmiany w okolicznej zabudowie oraz 46 przyktadéow punktow formalnie podkreslonych
niebedacych punktami gtownymi, lub punktow gltéwnych manifestujacych si¢ w innych
skalach. Do zbioru testowego wybratem 32 miejsca z krajobrazu Warszawy reprezentujace
zroznicowane  strukturalno-przestrzennie  fragmenty zabudowy obejmujace  tereny
poprzemystowe, wigksze zatozenia kompozycyjne, zabudowe¢ jednorodzinng, zabudowe
mieszkaniowg wysokosciowa, historyczng tkanke §rodmiejska, okolice parkow i lasy miejskie,
tereny wzdluz rzeki, monofunkcyjng zabudowe biurowa, tereny o duzym gradiencie
topograficznym wzdluz skarpy, urbanizowane tereny porolne, tereny z dominantami

przestrzennymi oraz zabudowe otaczajacg forty Twierdzy Warszawa.
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Plac Unii Lubelskiej (fragment zatozenia ujazdowskiego).

Plac Zbawiciela + place okoliczne (fragment zatozenia ujazdowskiego).
Patac w Wilanowie (barokowe zatozenie kompozycyjne).

Plac Narutowicza (radialne zatozenie kompozycyjne).

Okolice muzeum Fryderyka Chopina (zabudowa na skarpie).

Osiedle Zacisze (zabudowa jednorodzinna).

Saska Kepa, ul. Francuska (zabudowa jednorodzinna).

Boernerowo (zabudowa jednorodzinna).

Ursynéw Poéinocny (wysokos$ciowa zabudowa mieszkaniowa).
Ursyndéw Potudniowy, Natolin (wysokos$ciowa zabudowa mieszkaniowa).
Okolice stacji metra Mtociny (tereny poprzemystowe, zabudowa wielorodzinna).
Sady Zoliborskie (historyczna zabudowa $rédmiejska).

Stary Mokotow (historyczna zabudowa $rodmiejska).

Okolice Cerkwi Praskiej (historyczna zabudowa $rodmiejska).

Stara Praga (historyczna zabudowa $rodmiejska) .

Okolice muzeum Powstania Warszawskiego (zréznicowana zabudowa z nowa
zabudowg biurowg).

Okolice Domaniewskiej (monofunkcyjna zabudowa biurowa).

Zaktady FSO (tereny poprzemystowe).

Ul. Modlinska na Biatot¢ce (zabudowa porolna i poprzemystowa).
Lazienki 1 Patac na Wyspie (park).

Pétnocna krawedz Pola Mokotowskiego (park).

Las Bielanski (las miejski).

Bulwary Wislane (teren przy rzece).

Okolice Stadionu Narodowego (dominanta przestrzenna).

Fort VIIA Stuzewiec (fort Twierdzy Warszawa).

Fort Szcze¢sliwice (fort Twierdzy Warszawa).

Fort Chrzanow (fort Twierdzy Warszawa).

Fort Blizne (fort Twierdzy Warszawa).

Fort Wawrzyszew (fort Twierdzy Warszawa).

Fort Bema (fort Twierdzy Warszawa).

Fort Stuzew (fort Twierdzy Warszawa).
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Rys. 63. Przyktady trzech map cech ze zbioru treningowego sieci. Kanat niebieski

przejaskrawiony na potrzeby wizualizacji. Od lewej Stare Miasto w Krakowie, tuk
Triumfalny w Paryzu i Cytadela w Irbilu. Opracowanie wlasne. Mapa cech przygotowana
w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map (OpenStreetMap
contributors, 2023).

Obrazy do zbioru treningowego i testowego zostaty pobrane z serwisu Mapbox przy pomocy
skryptu API napisanego w jezyku Python. Skrypt pobierat dla zadanych wspotrzednych
poszczegbdlne mapy cech i1 laczyt je w jeden obraz RGB. Pobrane obrazy mialy rozmiar
1024 x 1024 px i obejmowaty obszar 2 X 2 km, dzigki czemu mozliwe byto pdzniejsze losowe
kadrowanie kompozycji do docelowego rozmiaru 512 x 512 px i losowy obrot obrazu
(Rys. 64). W celu uniknigcia sytuacji, w ktorych treningowy punkt gldowny znajdowatby si¢ na
same] krawedzi obrazu, kadrowanie zostalo ograniczone przez nieprzekraczalny margines
0 szerokosci 32 px. By nie zaburzy¢ kompozycyjnych relacji pétnoc-potudnie, losowy obrot
obrazdw zostal ograniczony do zakresu katéw od -15° do 15°. Obrazy testowe nie byly losowo

obracane.
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Rys. 64. Proby stworzenia algorytmu rozszerzajgcego zestaw treningowy o przyktady

syntetyczne. Srodowisko Grasshopper. Ostatecznie algorytm nie zostal wykorzystany.

Opracowanie wiasne.

Ze wzgledu na bardzo maty zestaw treningowy, oprocz wykorzystania powyzszych technik
poczatkowo planowatem rozszerzenie zestawu treningowego o przyktady wygenerowane
syntetycznie, podobnie jak w przypadku eksperymentu wstepnego (Dzieduszynski, 2022a).
W tym celu przygotowatlem w S$rodowisku Grasshopper algorytm parametryczny tworzacy
kompozycj¢ przestrzenng udajaca formalnie rzeczywista kompozycje miejska poprzez zadane
zasady kompozycyjne i seri¢ generatoréw pseudolosowych gwarantujacych zrdéznicowane
wyniki (Rys. 64). Wykorzystujac zasady kompozycyjne zdefiniowane przez Zorawskiego
(Zérawski, 1962), algorytm probowal generowaé obrazy jak najlepiej wpisujace
si¢ W przestrzen cech. W momencie opracowywania tego narzgdzia, przestrzen cech miata
troche inng strukturg, w ktorej w kanale zielonym obrazu zamiast zieleni zapisana byla
zabudowa, a kanat niebieski odpowiadal jedynie topografii terenu. Kanat czerwony, tak jak

w docelowej przestrzeni cech, opisywat uktad komunikacyjny (Rys. 65).
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Rys. 65. W gornym rzedzie — przyktady trzech zasad kompozycyjnych podporzqdkowanych

punktom gtéwnym zdefiniowane przez Zoérawskiego (Zérawski, 1962). W srodkowym
rzedzie — osie kompozycyjne i punkty gtowne stanowigce punkty wyjscia dla algorytmu
tworzgcego syntetyczne przyktady treningowe. W dolnym rzedzie — wygenerowane przez
algorytm syntetyczne konteksty przestrzenne. Ostatecznie algorytm nie zostat wykorzystany.

Opracowanie wiasne.

W pierwszej kolejnosci przy pomocy generatorow pseudolosowych algorytm definiowat
srodkowy punkt gléwny 1 podporzadkowane mu gtowne osie naprowadzajace. W drugiej
kolejnosci na podstawie zdefiniowanych osi i1 punktu gléwnego, generowana byta siec
komunikacyjna oraz symulowana zabudowa wpisujaca si¢ w utworzone kwartaly. W ostatnim

kroku generowany byt pseudolosowy gradient topografii terenu. Powstate obrazy niestety byty
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zbyt uproszczone i nie symulowaly w odpowiednio realistyczny sposob rzeczywistych map
kontekstow przestrzennych. Innymi stowy, w przestrzeni cech grupa obrazéw syntetycznych
byla zbyt odlegta od grupy obrazéw treningowych. Wykorzystanie tych obrazéw do treningu
sieci neuronowej prowadziloby do problemu przesunigcia dystrybucji (ang. covariate shift),
w ktorym sie¢ zamiast uczy¢ si¢ o kompozycji miast, uczytaby si¢ o syntetycznych obrazach
stworzonych w Grasshopperze. Dodatkowo, w pierwotnej, niezoptymalizowanej wersji
algorytmu, wygenerowanie pojedynczego przyktadu treningowego zajmowato dwie minuty,
€O znaczgco spowalniato iteracyjne poszukiwanie najlepszych parametrow. Ostatecznie
ze wzgledu na napotkane trudnosci algorytm do syntetycznego rozszerzania zbioru danych
nie zostal wykorzystany i sie¢ neuronowa byla wytrenowana jedynie na rzeczywistych

przyktadach punktow gtéwnych zidentyfikowanych w analizowanej literaturze.

Oznaczanie punktow gléwnych — mapa celu

Omoéwione mapy cech stanowity dla projektowanej sieci neuronowej dane wejsciowe. Danymi
wyjsciowymi byly mapy celu w przestrzeni celu (ang. target space), przedstawiajace
odczytywane przez sie¢ neuronowg punkty gtdéwne. Format map celu zostat ustalony w oparciu
o zrodta literaturowe dotyczace kompozycji przestrzennej i eksperymenty na etapie strojenia

hiperparametrow systemu.

Czy istnieje jaka$ praktyczna granica odrdézniajaca pojedynczy punkt od obszaru? W duzej
mierze jest to kwestia umowna. W Miastach dla ludzi Jan Gehl definiuje trzy wartosci
graniczne wyznaczajace odlegtosci ,,publiczne spoteczne”. W najbardziej intymnej odlegtosci
10 m mamy mozliwos¢ pelnego odbierania drugiego czlowieka wszystkimi zmystami.
Od 10 mdo 25 m nadal mozemy odbiera¢ emocje i ruch drugiej osoby, ale ze zmystow
pozostajg nam do dyspozycji jedynie wzrok i stuch. Odlegtos¢ 100 m to maksymalny dystans
wzrokowego odbioru ruchu innej osoby. Powyzej tej wielkosci postrzegany czlowiek przestaje
by¢ czytelny, odbierany jest wtedy jedynie jako niewyrazna plamka. Odleglo$¢ ta wyznacza
takze maksymalng rozpigto$¢ pojedynczego miejsca, np. placu miejskiego (Gehl, 2014). Mozna
uzna¢, ze w przypadku punktow gtownych stanowigcych jednoczesnie przestrzen publiczng
jego maksymalny promien moze wynosi¢ polowe tego dystansu czyli 50 m. Powyzej tej granicy
cigzko mowic juz w konteks$cie urbanistycznym o pojedynczym punkcie. Nalezaloby raczej
zacza¢ nazywac dang strukture obszarem. W praktyce wymieniane w literaturze punkty gtéwne
o skali urbanistycznej wpisujacej si¢ w obszar percepcji 1 X 1 km rzadko majg az takie rozmiary

(Zalacznik 4). Srednica wigkszosci z nich zawiera si¢ w zakresie od 10 do 50 m. Za $rednice
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punktu gléwnego w przestrzeni celu przyjatem mediang tych wartosci wynoszacg 32 m.
W przestrzeni celu o zakresie 512 x 512 px przektada si¢ to na $rednice punktu wynoszacg
16 pikseli.

Rys. 66. Ewolucja mapy celu dla sieci neuronowej na przyktadzie florenckiej katedry Santa
Maria del Fiore. Od lewej do prawej: mapa cech (kanat niebieski przejaskrawiony
na potrzeby wizualizacji); pierwsza generacja mapy celu z pojedynczym punktem glownym;
druga generacja mapy celu uzupetniona o gradient dookota punktu (gradient
przejaskrawiony na potrzeby wizualizacji) oraz ostateczna mapa celu uzupetniona o osie
kompozycyjne (gradient przejaskrawiony na potrzeby wizualizacji). Opracowanie wlasne.
Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map
(OpenStreetMap contributors, 2023).

Poczatkowo planowatem przedstawi¢ w przestrzeni celu jedynie monochromatyczne punkty
glowne, jednak przy tak sformatowanych danych treningowych testowane sieci nie uczyly
si¢ prawidlowo. Waga czarnego tta wzgledem drobnych punktow okazywata si¢ tak duza,
ze W wiekszoséci przypadkéw nastepowat kolaps?’ sieci do generowania pustych, czarnych
obrazow. W celu zwigckszenia wagi punktow dookota kazdego punktu dodatem warstwe
Z gaussowskim rozmyciem punktu o $rednicy 86 pikseli. Dzigki utworzonemu w ten sposob
gradientowi nie tylko zwigkszylta si¢ waga niepustych pikseli w reprezentacji celu,
ale jednoczesnie funkcja straty sieci neuronowej zostata odwrotnie skorelowana z odlegloscia
wygenerowanego przez sie¢ punktu od punktu docelowego. Nawet gdy wygenerowany przez

sie¢ punkt znajdowal si¢ poza 16-pikselowym obrysem punktu docelowego, sie¢ dostawata

27 Kolaps sieci typu GAN oznacza sytuacje, w ktorej generator przestaje tworzy¢ zréznicowane dane wyjéciowe
i zaczyna generowac bardzo podobne lub identyczne przyktady. Prowadzi to zazwyczaj do znacznej dysproporcji

miedzy stratg generatora i dyskryminatora, co efektywnie zatrzymuje dalszy trening sieci.
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pewna nagrode, o ile punkt znalazl si¢ w obrgbie 86-pikselowego gradientu. Im blizej
docelowego punktu znajdowat si¢ wygenerowany punkt, tym wigkszg nagrod¢ otrzymywata
sie¢. Zmiana ta znaczaco ulatwita sieci znajdowanie docelowej pozycji punktu gléwnego.
Dodatkowg zmiang byto dodanie czerwonego kanatu, przedstawiajacego osie kompozycyjne
majgce wplyw na dany punkt gléwny. Warstwa ta nie tylko zwigkszyta skuteczno$¢ treningu
sieci przez zwigkszenie wagi niepustych pikseli w przestrzeni celu, ale jednocze$nie moze by¢
wykorzystana pomocniczo przy interpretacji wygenerowanych przez sie¢ propozycji punktow

glownych (Rys. 66).

Struktura sieci neuronowej

Korzystajac z do$wiadczen plynacych z eksperymentu wstepnego i przeprowadzonego
rozpoznania stosowanych w CAAD algorytmoéw, zdecydowatem si¢ oprze¢ strukturg sieci
neuronowej na sieci typu CNN. Ze wzgledu na wigkszg ztozono$¢ problemu wzgledem
eksperymentu wstepnego, wykorzystatem bardziej ztozony algorytm generatywnych sieci
przeciwstawnych GAN inspirowany siecig pix2pix (Isola, i in., 2017), bedaca jednym
Z najszerzej stosowanych algorytmow typu GAN. Opracowany algorytm sktadat si¢ z dwoch
czesci zbudowanych z prostszych sieci splotowych (Rys. 67). Generatora opartego na sieci
U-Net (Ronneberger, i in., 2015) i dyskryminatora opartego na patchGAN (Li i Wand, 2016).
W czasie treningu obie sieci sktadowe uczyly si¢ jednoczesnie. Generator byl odpowiedzialny
za tworzenie obrazow wyjsciowych w przestrzeni celu na podstawie kontekstow wejsciowych.
Dyskryminator probowal odrdzni¢ obrazy tworzone przez generator od obrazow celu
pochodzacych ze zbioru treningowego. Generator byt nagradzany za oszukanie
dyskryminatora, a dyskryminator za rozréznienie prawdziwych danych treningowych od tych
syntetycznych (funkcja straty GAN loss). Dodatkowo generator byt nagradzany za tworzenie
obrazow, w ktorych wartosci pikseli byly jak najbardziej zblizone do warto$ci pikseli obrazéw

treningowych (funkcja straty L1 loss).
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Rys. 67. Diagram modelu sieci neuronowej typu GAN wykorzystanej w eksperymencie
gltownym. Sie¢ inspirowana jest modelem pix2pix (Isola, i in., 2017). Generator tworzy
mapy celu na podstawie map cech. Dyskryminator porownuje wyjscie generatora
Z treningowq mapq celu i probuje oznaczaé, ktore fragmenty obrazow sq stworzone przez
generator, a ktore pochodzq ze zbioru treningowego. Generator jest nagradzany za obrazy
potrafigce oszukac dyskryminator. Obie sieci uczq sie wspolnie, zwigekszajqc wzajemnie
swojg skutecznosc¢. Przy inferencji wytrenowanego modelu wykorzystywany jest tylko

generator. Opracowanie wlasne.

W celu zdefiniowania najlepszych hiperparametrow algorytmu, wykorzystalem metode
przeszukiwania losowego (ang. random search), zgodnie z ktérg losowo probkowalem zestawy
hiperparametrow z przedzialow najczesciej stosowanych w algorytmach wykorzystujacych

pix2pix rozpoznanych w kwerendzie. Zestawy hiperparametrow byly nastepnie wykorzystane
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do rozpoczecia treningu sieci. W poczatkowej fazie treningu mozliwe byto odrzucenie duzej
czesci zestawodw, poniewaz prowadzity one do nieprawidtowego uczenia si¢ sieci skutkujacego
jej kolapsem, znaczacym spowolnieniem treningu lub wystgpowaniem zbyt silnego
przetrenowania. Najlepsze zestawy hiperparamterow zostaty wykorzystane do pelnego
wytrenowania sieci. Ostateczny algorytm zostal wybrany w oparciu o jako$ciowg oceng
generowanych obrazéw, zardwno na zestawie treningowym, jak i testowym. Ze wzgledu na
ograniczone mozliwosci czasowe 1 moc obliczeniowa, nie skorzystalem z bardziej

systematycznej metody przeszukiwania siatki (ang. grid search).
Najwazniejsze hiperparametry algorytmu obejmowaty:

e Wymiary przestrzeni cech (512 x 512 x 3).

e Wymiary przestrzeni celu (512 x 512 x 3).

e Rozmiary obu sieci, liczbe parametréw w poszczegdlnych warstwach (okoto 53 miliony
trenowalnych parametréw) (Zatacznik 7).

e Liczbe i rodzaj warstw (warstwy splotowe) (Rys. 67).

e Funkcje aktywacji (ReLU, LeakyReLU i tanh).

e Parametr lambda decydujacy o wagach strat GAN loss 1 L1 loss (parametr zmienny
w trakcie treningu: A = 200 przez pierwszg godzing, A =500 przez kolejne
26h 1 = 1000 przez kolejne 21h, A = 2000 w ostatnich 84 godzinach).

e Optymalizator (Adam, LR = 1e — 5, f1 = 0,5).

e Techniki regularyzacyjne (brak dropoutu).

Ostateczna wersja sieci neuronowej zostala wytrenowana w 132 godziny na karcie graficznej
Nvidia GF RTX 2080 Super. Dyskryminator wykorzystany byt jedynie w trakcie treningu.
Po wytrenowaniu sieci, w momencie inferencji (rozpoznawania gléwnych punktow

kompozycyjnych) uzywany jest tylko generator.

Testowanie algorytmu

Wytrenowany algorytm zostal przetestowany na opracowanym zbiorze testowym (Zatgcznik
5). W celu rozszerzenia zbioru testowego wykorzystalem metode losowego przesuwania kadru.
Zbidr testowy zostat rozszerzony do 160 obrazow. Ocena skutecznos$ci zostala oparta na
analizie ilosciowej i jakosciowej. Z popularnych w dziedzinie przetwarzania sygnatlu
ilosciowych metod ewaluacji obrazéw warto wyrdzni¢ btad sredniokwadratowy MSE (ang.

Mean Squared Error), wskaznik podobienstwa strukturalnego SSIM (ang. Structural Similarity
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Index) oraz CW-SSIM (ang. Complex Wavelet Structural Similarity Index) (Wang i Bovik,
2008). Wszystkie te metody pozwalajag na zestawienie ze sobg obrazu celu z obrazem
testowanym w celu wyliczenia warto$ci podobienstwa miedzy oboma obrazami. Wszystkie sg
szeroko stosowane 1 latwe do implementacji ze wzgledu na ich reprezentacj¢ w popularnych
bibliotekach stuzacych do przetwarzania zbioréw danych. MSE i SSIM sg bardzo podatne na
percepcyjnie nieistotne zmiany obrazu, takie jak drobne przesunigcia czy obroty. CW-SSIM

radzi sobie z tymi sytuacjami o wiele lepiej (Rys. 68).

MSE=0, SSIM=1 MSE=306, SSIM=0.928 MSE=309, SSIM=0.987 MSE=309, SSIM=0.576
CW-SSIM=1 CW-SSIM=0.938 CW-SSIM=1.000 CW-SSIM=0.814
@ (b) (© (d

MSE=313, SSIM=0.730 MSE=309, SSIM=0.580 MSE=308, SSIM=0.641 MSE=694, SSIM=0.505
CW-SSIM=0.811 CW-SSIM=0.633 CW-8SIM=0.603 CW-8SIM=0.925
(e) ® (9) (h)

MSE=871, SSIM=0.404 MSE=873, SSIM=0.399 MSE=590, SSIM=0.549 MSE=577, SSIM=0.551
CW-SSIM=0.933 CW-SSIM=0.933 CW-SSIM=0.917 CW-8SIM=0.916
@) @ (k) U

Rys. 68. Porownanie metod ewaluacji podobienstwa obrazow MSE, SSIM i CW-SSIM
przygotowane przez Zhou Wanga i Alana C. Bovika. a) obraz zZrodlowy; b) zwiekszony
kontrast; c) przesunigcie luminancji; d) szum gaussowski; e) szum impulsowy, f) kompresja
JPEG; g) rozmycie; h) oddalenie, i) przesuniecie w prawo, j) przesuniecie w lewo, k) obrot
przeciwny do ruchu wskazowek zegara;, 1) obrot zgodny z ruchem wskazowek zegara (Wang
i Bovik, 2008). W przypadku opracowanego algorytmu zadna z powyzszych metod
ewaluacji nie byta skorelowana z rzeczywistq jakoscig tworzonych przez sie¢ neuronowq

obrazow.
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Mimo tego, ze wzgledu na specyfike zbioru testowego oraz catej przestrzeni celu, zadna z tych
metod nie mogta by¢ wykorzystana w ewaluacji ilo§ciowej wytrenowanej sieci neuronowe;.
Ten sam punkt gtowny mozna wskaza¢ na podstawie wielu roznych zestawoéw linii
naprowadzajacych. W zbiorze treningowym liczba pikseli linii naprowadzajgcych jest
kilkudziesigciokrotnie wigksza od liczby pikseli samych punktow gtownych, co przetozytoby
si¢ na wyliczenie bardzo duzego bledu w sytuacji uwzglednienia alternatywnych linii
naprowadzajacych. Co wigcej, nawet uwzglednienie jedynie kanalu zawierajacego sam punkt
gléwny nie rozwigzuje problemu. Kompozycja urbanistyczna ma charakter palimpsestyczny.
W obrgbie jednego kadru pola percepcji moga naktadaé si¢ rézne kompozycje przestrzenne
podporzadkowane réznym punktom gldwnym. Uwzglednienie alternatywnej kompozycji
bazowej skutkujace wygenerowaniem innego punktu gtownego nie stanowitoby wigc biedu.
Z tego powodu w ramach analizy iloSciowej wziglem pod uwage glownie Kryterium
wygenerowania przynajmniej jednego punktu gtdéwnego. Po spetnieniu warunku ilosciowego
sie¢ byla testowana metoda jakosciowa wzgledem czterech mozliwych przypadkow

rozpoznania punktu gléwnego:

e Czy zaznaczony punkt to dominanta lub punkt orientacyjny o znaczacej skali
i lokalizacji podkreslonej przez kompozycje miejska i/lub topografie terenu?

e Czy zaznaczony punkt jest zakonczeniem zaloZenia osiowego?

e (Czy zaznaczony punkt jest punktem centralnym w kompozycji radialnej?

e (Czy zaznaczony punkt jest jednym z gtéwnych wezléw zalozenia sieciowego?

Jesli przynajmniej jedno z kryteriow bylo speinione, punkt gtowny zostawal uznawany
za prawidtowy. Zanotowane zostaly przypadki, w ktorych pominigcie wygenerowania punktu
gtéwnego nie stanowito btedu ze wzgledu na charakterystyke danej mapy cech. Dodatkowo,
sprawdzana byta sensownos$¢ wygenerowanych linii naprowadzajacych, jednak ich jako$¢ nie
wplywata na ewaluacj¢ dotyczacag punktow glownych. Ewaluacja jakosciowa byla
przeprowadzana metodg analizy eksperckiej na kazdym ze 160 przykladow testowych
(Zatacznik 5). Pomocniczo, statystyki dotyczace liczby oznaczonych przez sie¢ neuronowg
pikseli zostaty wykorzystane do ewaluacji sieci neuronowej w zakresie seryjnego uczytelniania

kompozycji przestrzennych.
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3.2.3. Wyniki eksperymentu gléwnego

Whyniki ilosciowe

W czasie treningu trwajacego 132 godziny sie¢ neuronowa uczyta si¢ rozpoznawac punkty
glowne w zadanych kontekstach przestrzennych zbioru treningowego. Trening zostat
zatrzymany w momencie stabilizacji funkcji straty. Dodatkowe wydtuzanie treningu nie
przynosito wymiernych korzys$ci. Dyskryminator juz w pierwszych godzinach treningu
osiggnal bardzo dobrg skuteczno$¢ w rozpoznawaniu obrazow tworzonych przez generator.
Z tego powodu funkcja straty ,,GAN loss” przez wickszo$¢ treningu pozostata stabilna. Mimo
tego, ze wzgledu na zwigkszajaca si¢ w trakcie treningu wage straty L1 generatora
(zwickszajacy si¢ parametr A), generator stopniowo poprawiat swoja skuteczno$¢ w tworzeniu
obrazdéw wpisujacych si¢ w przestrzen celu. Wykresy przedstawione ponizej przedstawiajg na
osi pionowej wartosci funkcji straty w trakcie treningu. O$ pozioma odpowiada kolejnym

punktom kontrolnym (Rys. 69).

Wytrenowana sie¢ neuronowa zostata przetestowana na zbiorze testowym (Zalacznik 5).
W 25,6% obrazow testowych algorytm nie rozpoznal w mapach cech Zzadnego punktu
gléwnego. W wickszosci tych przypadkéw nierozpoznanie punktu gléwnego stanowito
zdecydowany btad sieci. Szczegdlnie zastanawiajace jest pominigcie w niektorych kadrach pola
percepcji tak oczywistych punktow glownych, jak patac w Wilanowie, patac na wyspie
w Lazienkach Krolewskich czy Stadion Narodowy (Rys. 70). Zjawisko to wystgpowato
W 23,1% obrazow testowych. W niektorych obrazach wejsciowych, tak jak przyktadowo
w przypadku Stadionu Narodowego, lekkie przesunigcie kadru skutkowalo prawidtowym
rozpoznaniem pomini¢tego punktu. W innych jednak, jak w przypadku patacu w Wilanowie,

sie¢ konsekwentnie odmawiata uznania punktu za gldéwny w kilku r6znych kadrach mapy cech.

162



200

Wartosci funkcji straty generatora (dla A = 2000)
w czasie treningu

0,09

Wartosci funkcji straty L1 generatora w czasie
treningu

35

30

25

20

15

10

Wartosci funkcji straty GAN loss dla generatora w
czasie treningu

12

0,8

0,6

0,4

0,2

Wartosci funkeji straty dyskryminatora w czasie
treningu

Rys. 69. Wartosci funkcji straty na zbiorze treningowym dla punktow kontrolnych od

1 do 254. Os horyzontalna odpowiada kolejnym punktom kontrolnym (ze wzgledu na

nierownomierne probkowanie punktow kontrolnych os ta nie stanowi osi czasu). Linia

szara: wartosci funkcji straty usrednione z 4 podzbiorow treningowych. Linia czarna:

Srednia biezgca z 9 kolejnych punktow kontrolnych (dla 4 podzbiorow treningowych). Linia

wlasne.

czerwona: logarytmiczna linia trendu (dla 4 podzbiorow treningowych). Opracowanie

W czgsci zadanych kontekstow przestrzennych nie dato si¢ jednak jednoznacznie wskazac

zadnego punktu gtownego. W tych przypadkach, stanowiacych 2,5% zbioru testowego,

pominigcie wygenerowania punktu nie stanowito btedu. Przyktadami takimi byly mapy cech

przedstawiajace srodek Lasu Bielanskiego, hale dawnych zaktadéw przemystowych FSO

czy pola uprawne w poblizu Fortu Chrzanow (Rys. 71).
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Rys. 70. Przyktady blednych przypadkow, w ktorych nie zostal rozpoznany Zaden punkt
glowny. Na gorze mapy cech, na dole odpowiadajqce im obrazy stworzone przez sie¢
neuronowq. Po lewej patac w Wilanowie. Po Srodku Patac na Wyspie w L.azienkach

Krolewskich. Po prawej Stadion Narodowy. Kanat niebieski map cech przejaskrawiony

na potrzeby wizualizacji. Opracowanie wiasne.

W 74,4% zadanych kontekstow algorytm rozpoznat przynajmniej jeden punkt glowny.
50,0% z nich stanowito dominanty lub punkty orientacyjne o znaczacej skali i1 lokalizacji
podkreslonej przez kompozycje miejska i/lub topografie terenu. 13,8% punktow giéwnych
to zakonczenia zatozen osiowych. 10,6% to punkty centralne w kompozycji radialne;.
Réwnorzedne wezly zalozen sieciowych stanowily 3,8% przypadkéw. Ogoélna skutecznosé
sieci w rozpoznawaniu punktow glownych kompozycji przestrzennej, z uwzglednieniem
przypadkow, w ktorych pominigcie punktu nie stanowito btedu, wyniosta 59,4%. Dodatkowo
sprawdzilem, czy oznaczone przez sie¢ pomocnicze linie naprowadzajace prawidtowo opisuja
zadane kompozycje przestrzenne. Jako ekstraktor linii naprowadzajacych, algorytm osiagnat

skuteczno$¢ na poziomie 75,6%0.
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Rys. 71. Przykiady, w ktorych niewygenerowanie punktu gtownego nie stanowito bledu.
Na gorze mapy cech, na dole odpowiadajgce im obrazy stworzone przez sie¢ neuronowq.
Po lewej — hale poprzemystowe zaktadow FSO. W srodku — fragment Lasu Bielanskiego.

Po prawej — pola uprawne w poblizu Fortu Chrzanéw. Kanat niebieski map cech

przejaskrawiony na potrzeby wizualizacji. Opracowanie wiasne.

Wsparcie projektowo-planistyczne

W celu zademonstrowania mozliwosci seryjnego przetwarzania wigkszych obszarow,
zaaplikowalem wytrenowang sie¢ neuronowg do lewobrzeznego fragmentu zabudowy
srodmiejskiej Warszawy. Obszar ten mial powierzchnie 25 km? i zostal podzielony
na 100 kafelkow odpowiadajacych pojedynczym polom percepcji opracowanego algorytmu
(w przyblizeniu 1 km?). Kolejne kafelki byly roztozone na siatce o rozpietosci 250 m, wiec
kazdy kolejny kafelek naktadat si¢ na potowe powierzchni poprzedniego. 100 wynikowych
obrazoéw wygenerowanych przez sie¢ neuronowg zostalo potaczonych w jeden obraz, ktéry
nalozytem na mapg Warszawy (Rys. 72). Algorytm na zadanym obszarze rozpoznat 64 punkty
glowne. 43 z nich spetialy warunki ewaluacji dla zbioru testowego. 2 punkty powtarzaty
si¢ Z punktami ze zbioru treningowego, wi¢c nie zostaly uwzglednione w wyliczeniu
skuteczno$ci (Zalacznik 6). Na fragmencie $rodmieScia Warszawy sie¢ osiagneta wyzsza
skuteczno$¢ w rozpoznawaniu punktéw gtownych niz na zbiorze testowym. Skuteczno$¢

ta wyniosta 67,2%.
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Rys. 72. Demonstracja seryjnego przetwarzania wigekszych obszarow przy pomocy

opracowanej sieci neuronowej. 64 punkty gtowne i osie kompozycyjne rozpoznane przez
sie¢ neuronowq na obszarze 25 km? lewobrzeznej zabudowy srédmiejskiej Warszawy.
Po lewej — obrazy wygenerowane przez sie¢ natozone na mape przestrzeni cech.
Po prawej — natozone na mape Open Street Map. Czerwone linie to osie kompozycyjne.
Petna lista punktow rozpoznanych przez sie¢ przedstawiona jest w aneksie (Zalgcznik 6).
Opracowanie wilasne. Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox,

2023) 1 Open Street Map (OpenStreetMap contributors, 2023).

Niektore ze wskazanych punktow na pierwszy rzut oka nie wydaja si¢ kompozycyjnie wazne,
jednak po blizszym przyjrzeniu si¢ otaczajacej tkance miejskiej ich rola staje si¢ jasniejsza.
Algorytm wskazat kilka punktdéw z potencjalem projektowym, ktorym powinna
by¢ poswiecona dodatkowa uwaga. Przyktadem takiego punktu jest ostroga regulacyjna Wisty,
znajdujaca si¢ na przedluzeniu ul. Ratuszowej. Znajdujaca si¢ na ostrodze §ciezka piesza
nie tylko stanowi naturalne przedtuzenie i zakonczenie osi ul. Ratuszowej, ale podkreslona jest
od potudniowej strony przez o$ jednej z wiekszych wysp piaszczystych i jednoczes$nie
wyznacza bardzo atrakcyjny punkt widokowy otwierajacy si¢ na Stare Miasto. Wskazana przez
algorytm lokalizacja potaczona jest z rekreacyjnymi sieciami pieszo-rowerowymi Parku
Praskiego 1 warszawskiego ZOO, przez co wydaje si¢ bardzo dobra dla lokalizacji na przyktad
reprezentacyjnego molo na Wisle, mogacego dodatkowo powigza¢ miasto z rzeka (Rys. 73).
Algorytm wskazal takze szereg punktow o wysokiej warto$ci komercyjnej — zlokalizowanych

w reprezentacyjnych obszarach biurowych i turystycznych, podkreslonych wizualnie przez
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ekspozycje widokowe, powigzanych z dominantami wysokosciowymi o duzej kubaturze

I dobrze powigzanych z uktadem komunikacyjnym (Zatgcznik 6).

Rys. 73. Oznaczony czerwong strzatkq punkt wskazany przez sie¢ neuronowq na ostrodze
regulacyjnej Wisty na przedtuzeniu ul. Ratuszowej. Punkt wydaje sie dobrym miejscem na
lokalizacje reprezentacyjnego molo z widokiem na Stare Miasto. Opracowanie wiasne.
Podktad przygotowany w oparciu o serwis Open Street Map (OpenStreetMap contributors,
2023).

Uczytelnianie kompozycji miejskiej

Oprécz wskazywania samych punktow gléownych wytrenowana sie¢ neuronowa podswietla
takze osie naprowadzajace, ktore zostaty wykorzystane do wskazania danego punktu gtéwnego.
Pomaga to w interpretacji proponowanych przez algorytm punktéw gtéwnych. Po natozeniu
na mape¢ miasta oba te zrodta informacji moga by¢ wykorzystane do uczytelniania kompozycji
miejskiej. Przyktad zalozenia ujazdowskiego w Warszawie pokazuje, ze sie¢ prawidtowo
podswietlita wigkszo$¢ gtdéwnych osi budujacych kompozycje zatozenia. Oznaczone zostaty
tez niektore z punktow gltownych, takie jak poludniowa pierzeja placu Trzech Krzyzy,
skrzyzowanie osi przy placu Na Rozdrozu, poéinocne i potudniowe otwarcie placu Konstytucji,
skrzyzowanie Nowowiejskiej z Warynskiego, i plac Unii Lubelskiej. Sie¢ pomineta kilka
waznych punktow, takich jak plac Zbawiciela czy Zamek Ujazdowski. O$ stanistawowska
nie zostata takze zaznaczona w rejonie parku Agrykola i wzdluz Kanatu Piaseczynskiego.
Mimo to, zatozenie ujazdowskie zostalo oznaczone dosy¢ czytelnie w sposdb umozliwiajacy
jego identyfikacje. Sie¢ neuronowa 0 wiele gorzej poradzita sobie z osig saskg. Jako

o$ kompozycyjna pod$wietlony zostal jedynie jej krotki, zachodni fragment. Prawidlowo
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podswictlona zostata tez skosna o$ poprzeczna ul. Przechodniej i Granicznej. Na samej osi
saskiej zostal oznaczony tylko jeden punkt gléwny — Hala Gwardii (Rys. 74). Poza
wymienionymi wigkszymi zalozeniami kompozycyjnymi sie¢ neuronowa zidentyfikowala
I oznaczyla takze pewne mniejsze, warszawskie uktady kompozycyjne. Wsrdd rozpoznanych
przyktadow warto wymieni¢ brame¢ wyznaczong przez wiezowce Forest i Babka Tower
W obrgbie strefy dominant wysokosciowych ronda ,Radostaw”, zatozenie ,,Bramy
Zachodniej”, czy zaglebie biurowe nazywane potocznie przez mieszkancéw warszawskim
,Isengardem” (Zatgcznik 6). Warto tez wymieni¢ niektore przyktady, w ktorych sie¢ nie data
sobie rady z rozpoznaniem bardzo czytelnych kompozycji przestrzennych, jak cho¢by radialne
zatozenie Placu Narutowicza, w ktérym algorytm oznaczyt tylko czesci gtownych osi
naprowadzajacych, a znajdujacy si¢ na przecigciu osi kosciol §w. Jakuba nie zostal oznaczony
jako punkt gléwny. Podobnie nie zostalo rozpoznane znajdujace si¢ w zbiorze testowym

zalozenie wilanowskie.

Rys. 74. Punkty gtowne (biaty) i osie naprowadzajqce (czerwony) odczytane przez sie¢
neuronowq w obszarze zatozenia ujazdowskiego (po lewej) i zatozenia osi saskiej
(po prawej). Kolorem zielonym oznaczone glowne osie kompozycyjne. Sie¢ skutecznie
oznaczyta wigkszos¢ zatozenia ujazdowskiego, jednak os saska zostata prawie catkowicie
pominieta. Opracowanie wlasne. Podkiad przygotowany w oparciu o Open Street Map

(OpenStreetMap contributors, 2023).
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W obecnej formie prototyp nie jest w stanie uchwyci¢ wszystkich zatozen kompozycyjnych.
Bardzo trudno jest przygotowac ilosciowy test umozliwiajacy ujecie tej cechy w postaci jakiej$
obiektywnej metryki, jednak przyktady Wilanowa i nierozpoznanej osi saskiej demonstruja,
ze do interpretacji wynikow wygenerowanych przez sie¢ neuronowg trzeba podchodzié¢

ostroznie.

Oprocz jako$ciowej analizy generowanych przez sie¢ obrazéw, w celu uczytelniania
kompozycji przestrzennej mozliwe jest wykorzystanie statystyk zliczajacych pod$wietlone
przez sie¢ piksele, wpisujace si¢ w kategori¢ punktow gtownych i1 osi naprowadzajacych.
W celu demonstracji tej metody z obszaru przetworzonego seryjnie fragmentu zabudowy
srodmiejskiej Warszawy wyszczeg6lnitem 5 obszarow o rdéznym ,,stopniu skomponowania”

przestrzeni (Rys. 75):

e A: calos¢ testowanego obszaru.

e B: okolice Wisty w rejonie mostu Slasko-Dabrowskiego.
e C: potudniowa granica Woli wzdtuz torow kolejowych.
e D: rejon osi saskiej.

e E: rejon zalozenia ujazdowskiego.
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Rys. 75. Pie¢ obszarow przeanalizowanych statystycznie wzgledem ,, stopnia

skomponowania” przestrzeni. A: catos¢ testowanego obszaru,; B: okolice Wisty w rejonie
mostu Slgsko-Dgbrowskiego; C: poludniowa granica Woli wzdluz toréw kolejowych;
D: rejon osi saskiej; E: rejon zatozenia ujazdowskiego. Opracowanie wiasne. Podklad

przygotowany w oparciu o Open Street Map (OpenStreetMap contributors, 2023).

Dla wyszczeg6lnionych obszaréw zostaly zliczone liczby pikseli osi naprowadzajacych
i punktéw glownych. Caty obszar miat $rednio 5,81% powierzchni oznaczonej jako osie
naprowadzajace oraz 0,26% oznaczonej jako punkty gléwne. Obszary stabiej skomponowane
w obu kategoriach otrzymaly nizsze wyniki, podczas gdy obszary lepiej skomponowane
otrzymaty wyniki wyzsze (Rys. 76). W kolejnosci ,,stopnia skomponowania” wyniki

wygladaja nastepujaco:
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e Wista i okolice: osie: 2,11%; punkty gtéwne: 0,12%.
e Tory na potudniu Woli: osie: 4,68%; punkty gtowne: 0,22%.
e Srednia caly obszar: osie: 5,81%; punkty gltdwne: 0,26%.
e Of saska: osie: 7,12%; punkty gtéwne: 0,23%.
e Zalozenie ujazdowskie: osie: 7,66%; punkty gtdéwne: 0,35%.
Metryki te umozliwiajg automatyczne poréwnywanie ze sobg wybranych obszaréow. Co wigcej,

warto$ci te sg niezalezne od powierzchni, wigc mozliwe jest zestawianie ze sobg obszarow

0 roznych rozmiarach.
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Wista i okolice Tory na Srednia caty Os saska Zatozenie
potudniu Woli obszar ujazdowskie
B Liczba pikseli osi kompozycyjnych M Liczba pikseli punktow gtownych

Rys. 76. Liczba pikseli osi kompozycyjnych (czerwony) i liczba pikseli punktow gtéwnych
(czarny) rozpoznanych przez sie¢ dla wyszczegdlnionych obszaréw jako procent liczby

pikseli calych obszarow. Opracowanie wlasne.

3.2.4. Whioski z eksperymentu gldéwnego

Opracowany w eksperymencie gtownym algorytm stanowil rozwinigcie prac rozpoczetych
w ramach eksperymentu wstgpnego. Przygotowany prototyp zademonstrowal mozliwo$¢
wykorzystania gtebokiego uczenia maszynowego do przetwarzania realnych, miejskich
kontekstow przestrzennych. Ze wzgledu na niszowos¢ problemu konieczne byto opracowanie
autorskich metod ewaluacji jako$ciowej i iloSciowej algorytmu. Stworzony ekstraktor

glownych punktéw kompozycyjnych w przeprowadzonych testach osiagnat skutecznos¢ rzedu
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59,4-67,2%. Mimo ze pole percepcji narz¢dzia jest ograniczone do obszaru o powierzchni
okolo 1 km?, dzieki wykorzystaniu przetwarzania seryjnego mozliwe jest przeprowadzanie
analiz przestrzennych na obszarach wigkszych. Dla seryjnie przetworzonych obszaréw
mozliwe jest automatyczne wyliczenie danych  statystycznych  pozwalajacych
na porownywanie ze sobg ich kompozycji przestrzennych. Opracowany prototyp pozwala
na zautomatyzowane uczytelnianie kompozycji tkanki miejskiej i moze by¢ wykorzystany jako
wsparcie w praktyce projektowej, planistycznej i administracyjnej. Moze by¢ takze przydatny
dla podmiotdw i instytucji zainteresowanych komercyjng wartoScig reprezentacyjnych miejsc

podkreslonych kompozycyijnie.

Przygotowane narzedzie wpisuje si¢ w paradygmat projektowania hiperparametrycznego,
w ktorym projektant i algorytm oparty na gtgbokim uczeniu maszynowym wspdlnie odczytuja
konteksty przestrzenne. Interfejs narzedzia ma wysoki poziom abstrakcji, w ktorym operator
wskazuje jedynie koordynaty interesujacego go obszaru. Nie jest konieczne samodzielne,
dedukcyjnie oprogramowywanie parametrow punktow glownych i osi naprowadzajacych,
poniewaz te zostaty zdefiniowane indukcyjnie przez sie¢ neuronowa na podstawie przyktadoéw
treningowych. Opracowane narzgdzie umozliwia automatyzacj¢ procesu przetwarzania
architektoniczno-urbanistycznych kompozycji przestrzennych, ktory do tej pory mogt by¢

przeprowadzany jedynie metoda analizy eksperckie;j.

Whyniki pokazujg takze, ze w obecnej wersji opracowany prototyp ma pewne wady, a jego
obstuga wymaga krytycznego myS$lenia. W zaleznoSci od scenariusza testowego
od 32,8% do 40,6% oznaczonych punktéw nie stanowito punktu gtéwnego ani rOwnorzgdnego
punktu formalnie podkreslonego. W niektorych przypadkach oznaczone punkty byly trudne
w interpretacji. Decyzja sieci neuronowej nie jest oparta na zasadach wypracowanych
dedukcyjnie, przez co nie mozna fatwo wskaza¢, jakie przestanki kryly si¢ za wskazaniem
danego punktu. Zastanawiajace jest takze pominigcie przez algorytm pewnych oczywistych
uktadow kompozycyjnych, takich jak o$ saska, zatozenie wilanowskie czy plac Narutowicza.
W obecnej formie algorytm zdecydowanie nie moze by¢ traktowany jako narzedzie zastepujace
projektanta czy eksperta. Moze za to stuzy¢ jako narzedzie zwigkszajace mozliwosci,

przyspieszajace i ulatwiajace prace oraz jako inspiracja do dziatan twoérczych.

Wigkszo$¢ problemow opracowanego narzedzia wynika z ograniczen technicznych
i czasowych przeprowadzonego eksperymentu. Jak na standardy komercyjnych narzedzi

opartych na glebokim uczeniu maszynowym, wykorzystana sie¢ neuronowa byta niewielka,
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wytrenowana zostala na komercyjnym laptopie przy pomocy bardzo matego zbioru
treningowego, a czas dostepny na strojenie hiperparametrow byt krotki. Mimo to, osiagnigte
rezultaty sa obiecujace i1 stanowig zachete do prowadzenia dalszych prac rozwojowych.
W pierwszej kolejnosci zdecydowanie warto byloby przy pomocy zespotu ekspertow
przygotowa¢ o wiele obszerniejszy zbior treningowy i wytrenowaé bardziej ztozong siec
na dedykowanym do tego sprzgcie lub przy pomocy rozwigzan chmurowych. W celu
rozszerzenia zbioru treningowego mozna byloby takze rozwingé¢ rozpoczete juz prace nad
generatorem syntetycznych kompozycji przestrzennych podporzagdkowanym punktom
gléwnym. W trakcie prac przeprowadzanych nad eksperymentem na popularnosci zyskaty
nowsze modele sieci neuronowych oparte na transformerach. Wydaja si¢ one o wiele
potezniejsze niz wykorzystana w eksperymencie generatywna sie¢ przeciwstawna.
Przetestowanie najnowszych dostepnych algorytméw glebokiego uczenia maszynowego
umozliwiloby identyfikacj¢ najbardziej skutecznych rozwiazan. Selekcja taka mogtaby
bazowa¢ na opracowanych na potrzeby niniejszej pracy metrykach stuzacych do ewaluacji
przygotowanego prototypu. Skutecznos¢ sieci neuronowej prawdopodobnie poprawitoby takze
rozszerzenie zakresu kontekstow przestrzennych reprezentowanych w przestrzeni cech.
Ze wzgledu na ograniczenia sprzgtowe w obecnej formie rozdzielczo$¢ danych wejsciowych
jest niewielka, a konteksty ograniczajg si¢ do cech geometrycznych uktadu komunikacyjnego,
zabudowy, topografii terenu i intensywnosci zieleni. Mapy cech mogltyby by¢ rozszerzone
0 dodatkowe konteksty, w tym uklad funkcjonalny, zdjecia satelitarne, dane demograficzne,

statystyczne i inne otwarte dane przestrzenne skorelowane z kompozycja przestrzenna.
4. Podsumowanie

4.1. Whnioski ogolne

Algorytmy glebokiego uczenia maszynowego sa z powodzeniem stosowane w analizie
I przetwarzaniu danych, generowaniu rozwigzan projektowych, klasyfikacji i uczytelnianiu
danych, optymalizacji procesow, a nawet w przewidywaniu przyszlosci na podstawie trendow
historycznych. Szeroki katalog dostepnych narzedzi pozwala na skuteczne rozwigzywanie
wielu kategorii problemow architektonicznych obejmujacych przyblizanie warto$ci metryk
I wynikow symulacji, optymalizacj¢ parametrow, translacj¢ danych z jednej formy na druga
czy przetwarzanie obrazow i innych wielowymiarowych danych przestrzennych. Sieci

neuronowe dobrze radza sobie takze jako algorytmy generatywne uczace si¢ na zadanych
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przyktadach, algorytmy sterujgce agentami w scenariuszach wymagajacych wykorzystania
uczenia ze wzmacnianiem lub jako algorytmy stuzace przetwarzaniu danych sekwencyjnych,

takich jak tekst naturalny czy ciagi czasowe.

Osiagni¢te w eksperymentach wstepnym i gldéwnym wyniki sugerujg, ze sieci neuronowe
sg zdolne do uczenia si¢ zasad kompozycyjnych i do stosowania ich w praktyce. Zwlaszcza
przetestowane splotowe sieci neuronowe maja duzy potencjat do przetwarzania kontekstow
przestrzennych. Algorytmy oparte na glebokim uczeniu maszynowym moga wspiera¢
architektow 1 urbanistéw w analizie kompozycji przestrzennych, zmniejszajac ryzyko
przeoczenia istotnych kontekstow. Narzedzia zblizone do opracowanego prototypu moga
skutecznie uczytelnia¢ tkanke miejska oraz wspomagac¢ podejmowanie decyzji projektowych
I planistycznych. Wyniki badania pokazuja, Ze sieci neuronowe nie sg obecnie w stanie zastapié
architektow, ale moga znacznie wspomagac i przyspiesza¢ procesy projektowe i planistyczne
w architekturze i urbanistyce. Przedstawiony prototyp stanowi duzy krok w kierunku
automatyzacji analiz kompozycji przestrzennych i otwiera nowe mozliwosci badawcze

I praktyczne w tej dziedzinie.

4.2. Ograniczenia metody

Wyniki pokazuja, ze sieci neuronowe moga by¢ uzyteczne w automatycznym przetwarzaniu
danych przestrzennych, ale ich skuteczno$¢ zalezy od wielu czynnikdéw, w tym jakosci 1 ilosci
danych treningowych, rozmiaru i rodzaju wykorzystanej sieci i wyboru zastosowanych
hiperparametrow. Ze wzgledu na stochastyczny charakter glebokiego uczenia maszynowego
i ograniczone mozliwosci sterowania hiperparametrycznego, obstuga sieci neuronowych
zazwyczaj jest problematyczna. Algorytmy tego typu czgsto wydaja si¢ by¢ ,,czarnymi
skrzynkami” (ang. black box), w ktorych trudno jest przewidzie¢, jaka decyzja zostanie podjeta,
przez co wyniki sg trudne do interpretacji. Duze wyzwanie stanowig takze problemy zwigzane
Z przesunigciem dystrybucji danych migdzy zbiorem treningowym, a docelowymi danymi

przetwarzanymi na etapie wdrozenia sieci w praktyce.

Napotkane na etapie prototypowania trudno$ci wyznaczaja jednak kierunek pod przyszie
badania, mogace obejmowacé rozszerzenie zbioréw treningowych i1 zastosowanie bardziej
ztozonych sieci neuronowych, testowanie nowszych modeli opartych na transformerach,
czy integracja dodatkowych kontekstéw o wysokiej rozdzielczosci obejmujacych uktad

funkcjonalny, zdjecia satelitarne czy dane demograficzne. Konieczne wydaje
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si¢ tez opracowanie nowszych metryk pozwalajacych na skuteczniejszg interpretacj¢ i oceng

otrzymywanych wynikow.

4.3. Projektowanie hiperparametryczne — dyskusja

Wiele wydziatow architektury na uczelniach na calym $§wiecie ma w programach swoich
studiow elementy zaawansowane] obslugi komputeréw, programowania i architektury
parametrycznej. Warto wymieni¢ miedzy innymi ASK WAPW, ETH Zurih, MIT Media Lab,
czy IAAC. Architekci sa obecnie biegli w obstudze narzedzi cyfrowych, a glebokie uczenie
maszynowe staje si¢ coraz bardziej dostepne takze dla ludzi bez doswiadczenia
programistycznego. Na wysokim poziomie abstrakcji mamy dostgp do chatbotow LLM
I intuicyjnych interfejsoéw online modeli generatywnych. Troche wigksza kontrole oferuja
platformy typu Dynamo lub Grasshopper [np. z wtyczka Pug dodajaca szereg blokow,
pozwalajacych na programowanie algorytmow uczenia maszynowego (Apellaniz, 2023)].
Dzigki rozwigzaniom typu Google Colab i Jupyter Notebook mozemy programowaé nawet
ztozone sieci neuronowe w prostym interfejsie przegladarki internetowej. Najwicksza kontrolg
oferuja biblioteki programistyczne, takie jak Tensorflow/Keras, PyTorch czy SciKitLearn.
Wszystkie te kategorie rozwigzan sg coraz czesciej stosowane w architekturze, co mozna
zauwazy¢ miedzy innymi w rosngcej liczbie publikacji dotyczacych wykorzystania gtebokiego

uczenia maszynowego w CAAD.

JesteSmy obecnie $wiadkami automatyzacji coraz bardziej zlozonych procesow, ktore
do tej pory uwazane byty za stricte ludzka domeng. Ten przeskok na wyzszy poziom abstrakcji
procesu projektowego wydaje sie kontynuacja trwajacego juz kilkadziesiat lat trendu. Najpierw
rysunek odrgczny przeksztalcit si¢ w rysunek komputerowy. Rysunek CAD wyewoluowat
W projektowanie parametryczne. Z kolei ono zostaje obecnie stopniowo zastgpowane przez
projektowanie hiperparametryczne, w ktorym architekci definiujg hiperparametry systemu
uczenia maszynowego, a parametry rozwigzan problemow definiowane sg juz posrednio przez
samouczacy si¢ algorytm (Rys. 77). Kontrola nad hiperparametrami moze mie¢ réznorakie
formy. Od sterowania istniejgcymi modelami i dostarczania im pojedynczych kontekstow
wejsciowych (promptow), przez dostrajanie dostgpnych, wytrenowanych juz modeli
do indywidualnych potrzeb, az po tworzenie wlasnych sieci neuronowych i wtasnych zbiorow

danych treningowych.
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Rys. 77. Diagram ilustrujgcy roznice miedzy projektowaniem parametrycznym

a projektowaniem hiperparametrycznym. W projektowaniu parametrycznym to architekt
na podstawie odczytanego samodzielnie kontekstu decyduje o wartosciach poszczegolnych

parametrow. Projektowanie hiperparametryczne charakteryzuje sie wyzszym poziomem
abstrakcji. Architekt zainspirowany kontekstem definiuje hiperparametry modelu opartego
na glebokim uczeniu maszynowym i dokonuje jego promptowania. Dodatkowo model takze
ma mozliwos¢ samodzielnego odczytywania kontekstow. Koncowe parametry definiowane
sq przez sie¢ neuronowq na etapie inferencji. Wyniki inferencji mogq stuzy¢ architektowi

Jjako inspiracja w przyszlych iteracjach. Opracowanie wlasne.

Wykorzystanie projektowania hiperparametrycznego opartego na sieciach neuronowych moze
by¢ szczegdlnie korzystne w niektdrych typach problemoéw architektonicznych. Giebokie
uczenie maszynowe mozna aplikowac tam, gdzie problem jest logicznie rozmyty i1 klasyczne
metody ilosciowe (np. oparte o dane importowane z systemoOw GIS) nie sg mozliwe
do wykorzystania. W sytuacjach takich modele neuronowe mogg indukcyjnie nauczyé
si¢ podejmowania decyzji maksymalizujacych oczekiwane korzysci. Sieci neuronowe dobrze
radzg sobie w przetwarzaniu ztozonych kontekstow, szczegdlnie tam, gdzie istnieje potrzeba
rownoleglego lub sekwencyjnego przetworzenia wielu danych w krotkim czasie. Ze wzgledu
na zrodta danych glebokie uczenie maszynowe warto wykorzystywac tam, gdzie dostgpnych
jest duzo danych typu big-data zgromadzonych w réznego rodzaju repozytoriach (np. bazach
danych statystycznych, GIS, BIM). Obecnie istnieje wiele otwartych zbioréw danych
nadajacych si¢ do wykorzystania w CAAD. Wybdr ciekawszych baz danych
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architektoniczno-urbanistycznych, na ktére natkngtem si¢ w trakcie przeprowadzonych badan,
znajduje si¢ w ancksie (Zatacznik 8). Dane mozna zbiera¢ takze samodzielnie. Glgbokie
uczenie maszynowe moze wspomagaé przetwarzanie danych sensorycznych (np. z systemow
smart city 1 IOT), ankietowych (np. bedacych wynikami procesoOw partycypacyjnych)
czy symulacyjnych (przykladowo z symulacji energetycznych budynkow). Gdy zbiory
treningowe budowane sa od zera, najlepiej tworzy¢ je w sposob jak najbardziej
zautomatyzowany, poniewaz wspotczesne modele wymagaja bardzo duzych zbiorow
treningowych. Trening sieci mozna oprzec¢ takze o systemy symulacyjne DRL, w ktorych dane
do treningu pochodzg z interakcji modelu ze $rodowiskiem symulacyjnym. Tam, gdzie
nie da si¢ zebra¢ wystarczajaco duzo danych do wytrenowania wiasnej sieci, mozna probowac
dostroi¢ istniejace, wytrenowane juz systemy do docelowego, niewielkiego zbioru
treningowego. Mozna w takich przypadkach wykorzysta¢ takze technik¢ promptowania metoda
wielokrotnej podpowiedzi (ang. few-shot prompting), polegajaca na pokazaniu systemowi
jedynie kilku przyktadow danych wejsciowych i wyjsciowych. Few-shot prompting jest
zazwyczaj stosowany w przypadku uniwersalnych asystentow opartych na duzych modelach

jezykowych.

4.4. Okno na przyszlosé¢

Patrzac na gwattowny rozwoj narz¢dzi bazujacych na sieciach neuronowych w projektowaniu
architektonicznym wspomaganym komputerowo, mozemy zada¢ sobie pytanie: jaka jest
przysztos¢ glebokiego uczenia maszynowego wykorzystywanego w architekturze? Odpowiedz
na to pytanie niestety nie jest mozliwa, jednak na podstawie stanu obecnego i trendow
historycznych mozemy wysnu¢ pewne oczekiwania. Rozwdj technologii czgsto
przyrownywany jest do sigmoidy (Handy, 1994). Gdy nowa technologia staje si¢ dostepna,
najpierw wchodzi w faze¢ powolnego wzrostu, w ktorej pierwsi uzytkownicy z trudem
wypracowuja pierwotne metody jej wykorzystania. W pewnym momencie, gdy technologia
staje si¢ tania, ogélnodostgpna i prosta w uzytkowaniu, rozwdj przechodzi w faz¢ wzrostu
wyktadniczego, w ktorym liczba uzytkownikow technologii rosnie lawinowo. Pojawiajg si¢
nowe metody implementacji, narzedzia, ludzie maja coraz wigcej pomystow na ich kreatywne
wykorzystanie. Dzieje si¢ tak az do momentu dojscia do granicy tego, co jest mozliwe
do osiagnigcia przy istniejgcej technologii. Innowacja spowalnia, liczba uzytkownikoéw
si¢ stabilizuje, a w koncu zaczyna stopniowo spadac¢. Czas powstawania niniejszej pracy (lata

2019-2024) zdecydowanie obejmuje moment, w ktéorym wykorzystanie NN w CAAD
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przeskoczylo w faze wzrostu wykladniczego. Problem w tym, Zze nie jesteSmy w stanie
rozpozna¢, w ktorym miejscu krzywej si¢ obecnie znajdujemy (Rys. 78). Czy jestesmy juz
blisko poziomu nasycenia technologii, czy rozwdj dopiero ruszyt i czeka nas jeszcze wiele
niespodzianek? Na dodatkowa mozliwo$¢ zwraca w swojej ksigzce The Singularity Is Near Ray
Kurzweil. Bioragc pod uwage fakt, ze biezgcy postep oparty jest na systemach samouczacych
si¢, nie mozemy wykluczy¢ perspektywy, w ktorej rozwdj systemow Al wecale
si¢ nie ustabilizuje, a bedzie ciggle przyspieszal i zacznie dazy¢ do nieskonczonosci (Kurzweil,
2005). Mozliwos¢ ta wydaje sie¢ dosy¢ mato prawdopodobna, jednak skoro nawet w juz
istniejgcych systemach LLM niektorzy doszukuja si¢ pierwszych sygnatow istnienia silnej
sztucznej inteligencji AGI (ang. Artificial General Intelligence), nie mozemy jej catkowicie

zignorowac (Bubeck, i in., 2023).
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Rys. 78. Mozliwe krzywe prognozujgce rozwoj wykorzystania gtebokiego uczenia
maszynowego w projektowaniu architektonicznym wspomaganym komputerowo. Krzywa
A pokazuje mozliwosé, ze wigkszos¢ innowacji z wykorzystaniem NN w CAAD zostata juz

odkryta i zblizamy sie do mozliwosci technologicznych dalszego rozwoju technologii.
Krzywa B dopuszcza mozliwosé, ze rozwdj dopiero sie zaczgl i pojawi sig jeszcze wiele
nNowWych narzedzi. Krzywa C opisuje sytuacje, w ktorej rozwoj systemow Al doprowadzi
do pojawienia si¢ samouczqcej si¢ AGI, prowadzqcej do wyktadniczego rozwoju
| transformacji catej ludzkosci. Opracowanie wlasne na podstawie ksigzek The Empty

Raincoat (Handy, 1994) oraz The Singularity is Near (Kurzweil, 2005).
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Przeprowadzone w niniejszej pracy badanie stanu wiedzy sugeruje, ze popularno$¢ prostych
implementacji sieci neuronowych stuzacych jako narzgdzia pomocnicze w rozwigzywaniu
szerokiego spektrum problemoéw architektonicznych stopniowo rosnie. Obecnie poza ogolnie
uzywanymi LLM 1 modelami dyfuzyjnymi, wykorzystywane w architekturze sieci neuronowe
sg dosy¢ niewielkie. Wydaje si¢ jednak, ze ze wzgledu na duzy potencjat ekonomiczny
dyscypliny, dedykowane architekturze sieci neuronowe prawdopodobnie beda stawaty
sie coraz wigksze?. Jak pokazuje ewolucja duzych modeli glebokiego uczenia maszynowego,
takich jak GPT 1-2-3-4... lub Dall-E 1-2-3..., im wickszy jest model, tym wigksze
sg jego zdolnosci generalizacyjne, a wi¢gc mozna go wykorzystat do wickszej liczby

zastosowan (Rys. 79).
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Rys. 79. Wizualizacja przygotowana przez Google, ilustrujgca wzrost zdolnosci duzych
modeli jezykowych wraz ze wzrostem ich wielkosci na przyktadzie modelu PALM. Im
wieksza jest sie¢ neuronowa tym wigksze stajq sie jej kompetencje i tym bardziej zbliza

sie do poziomu AGI (Narang S i Chowdhery, 2022).

Przysztos¢ wydaje si¢ naleze¢ do duzych modeli, ktore stopniowo bedg zbliza¢ si¢ do poziomu
silnej sztucznej inteligencji AGI. Prawdopodobnie modele takie nie beda poczatkowo
bezposrednio przeznaczone do zadan architektonicznych. Architektura bedzie stanowita
zadanie dodatkowe, ktore z biegiem czasu 1 wzrostem zainteresowania branzy bedzie coraz
bardziej rozwijane. Pierwsze sygnaly takiego rozwoju rzeczy widzimy juz obecnie, gdy ogdlne

modele jezykowe, takie jak GPT4, sa aplikowane do coraz bardziej niszowych problemow.

28 Przyktadowo w 2017 roku firma konsultingowa McKinsey & Company oszacowata $wiatowg warto$¢ roczng
sektora konstrukcji na 10 bilionow dolaréw amerykanskich z potencjalem wzrostu o dodatkowe 1,6 biliona
(McKinsey Global Institute, 2017); wedlug raportu IEA z 2019 roku sektor budowlany odpowiada
za 36% $wiatowego zapotrzebowania na energie koncows i 36% $wiatowej emisji CO2 (Global ABC International

Energy Agency, 2019).
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W obliczu dynamicznie rozwijajacego si¢ paradygmatu projektowania hiperparametrycznego
oraz rosngcego znaczenia sieci neuronowych w projektowaniu wspomaganym komputerowo,
przyszto$¢ architektury i urbanistyki jawi si¢ wyjatkowo ciekawie. Perspektywy automatyzacji
ztozonych proceséw (takich jak przetwarzania kontekstow kompozycyjnych) otwiera nowe
mozliwosci usprawnienia 1 zwickszenia wartosci pracy architektow 1 urbanistow.
Na razie wydaje si¢, ze narzedzia te nie zastapig ludzkiej kreatywnosci, mozliwosci Krytycznej
oceny wynikow 1 integracji zlozonych procesow, ale moga stanowi¢ istotne wsparcie
przyspieszajace procesy projektowe i minimalizujgce ryzyko popeinienie bledow. Wraz
Z dalszym rozwojem technologii 1 wigkszym dost¢pem do danych i metod ich przetwarzania,
mozemy oczekiwaé, ze architektura stanie si¢ jeszcze bardziej interdyscyplinarna i bedzie coraz
intensywniej korzysta¢ z osiggni¢¢ dziedziny glebokiego uczenia maszynoweg0. Rozpoznane
W niniejszej pracy trendy rozwoju paradygmatu projektowania hiperparametrycznego
i przedstawiony prototyp podkreslaja ogromny potencjal architektury jako dziedziny

praktycznej, badawczej i artystycznej, oraz wskazuja na jej ogromny potencjat rozwojowy.
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Spis ilustracji

Rys. 1. Wizualizacja 37 cech (0$ pionowa) wyodrebnionych ze 149 publikacji (0§ pozioma)

Rys.

Rys.

Rys

Rys

Rys

Rys.

Rys.

dotyczacych zastosowania sieci neuronowych w projektowaniu wspomaganym
komputerowo. Biaty kolor oznacza powigzanie danej cechy z publikacjg. Wyodrgbnione
cechy pozwolity na organizacje zebranych zrodet i przeprowadzenie ich analizy

ilosciowej. Opracowanie wlasne.

. Stosowanie sieci neuronowych w projektowaniu w réznych skalach w publikacjach

dotyczacych komputerowego wspomagania projektowania architektonicznego.

Opracowanie wlasne.

. Wizualizacja skal, w ktorych stosowane sg sieci neuronowe wykonana przy pomocy

algorytmu t-SNE na podstawie 37 wyodrebnionych cech badanych artykutow. Kazdy
punkt reprezentuje odrgbng publikacje, kolor punktu odpowiada skali zastosowania

sieci neuronowej. Opracowanie wlasne.

. 4. Nieistniejacy, syntetyczny krajobraz wygenerowany przez opracowany przez Kyle’a

Steinfelda neuronowy algorytm GAN Loci wizualizujacy ,,genius loci” dzielnicy

Blijdorp w Rotterdamie (Steinfeld, 2019).

. 5. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany przez

Pasquero i1 Poletto zastosowany do przetworzenia satelitarnych zdje¢ tkanki
urbanistycznej w skali 1 x 1 km (po lewej) i 10 x 10 km (po prawej) (Pasquero i Poletto,
2020).

. 6. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany przez

Pasquero i Poletto zastosowany do przetworzenia Centre Pompidou sfotografowanego

z lotu ptaka (Pasquero i Poletto, 2020).

. Przyktadowe zdje¢cia z drona pobrane z bazy danych UAVid stworzonej przez Lyu,

Vosselmana, Xia 1 in. stuzacej do trenowania neuronowych algorytmoéw semantycznej
segmentacji. Poszczeg6lne klasy obiektow widoczne na zdjeciu oznaczone sg na

wizualizacjach roznymi kolorami wyznaczajacymi ich obrysy (Lyu, i in., 2018).

. Fantastyczne krajobrazy ,,wy$nione” przez opracowany przez Google algorytm

DeepDream, zaaplikowany do sieci neuronowej stuzacej klasyfikacji obrazéw.
Krajobrazy zostaty wygenerowane na podstawie czystego szumu poprzez iteracyjne
wzmacnianie na obrazie wejsciowym cech zwiekszajacych site aktywacji wybranych

neuronow i warstw sieci neuronowej (Mordvintsev, 1 in., 2015).
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Rys. 9. Sekwencja generowania warstwy nowych detali architektonicznych na zadanym zdjeciu
domu jednorodzinnego. Metoda zaproponowana przez Silvestra, Ikedg i Guene¢ z Keio
University, oparta na opracowanym przez Google algorytmie DeepDream (Silvestre, i
in., 2016).

Rys. 10. Wizualizacje stworzone przez Giivenga Ozela i Benjamina Ennemosera na podstawie
neuronowego transferu stylu. Wygenerowane przez sie¢ neuronowa dwuwymiarowe
obrazy zostaly przeksztalcone proceduralnie w modele trojwymiarowe i 0sadzone
kompozytowo w oryginalnych kontekstach (Ozel i Ennemoser, 2019).

Rys. 11. Defamiliaryzacja rzutu architektonicznego bedaca skutkiem prac Matiasa del Campo,
Sandry Carlson i Alexandry Manninger. Po lewej rezultat transferu stylu mi¢dzy rzutem
modernistycznym a barokowym (del Campo, i in., 2019), w centrum z lewej rezultat
transferu stylu migdzy rzutem barokowym a modernistycznym (del Campo, 1 in., 2020),
po prawej abstrakcyjne ,rzuty” stworzone przy pomocy generatywnych sieci
przeciwstawnych (del Campo, i in., 2019).

Rys. 12. Demonstracja skutecznos$ci systemu opracowanego przez Asa i in. Po lewej
wygenerowany przez sie¢ neuronowg graf programu funkcjonalnego domu
jednorodzinnego, po prawej automatycznie wygenerowany na podstawie grafu
parametryczny, koncepcyjny model kubaturowy (As, i in., 2018).

Rys. 13. Bryly wygenerowane przez system opracowany przez Liu, Liao i1 Srivastave.
Przeciwstawna sie¢ neuronowa generowata takie parametry dla algorytmu
parametrycznego, by wynikowe bryly w jak najwiekszym stopniu spelniaty wymagane
cechy. Po lewej u gory — bryta z wysokim wynikiem ,,monumentalno$ci”, po prawej
u gory — »solidnosci”, po lewej u dolu — ,delikatnosci” 1 po prawej
U dotu —,,dynamicznosci” (Liu, i in., 2019).

Rys. 14. Mozliwos¢ przeprowadzania semantycznych operacji arytmetycznych na wektorach w
przestrzeni ukrytej zademonstrowana przez Sebestyena i in. Sci$niety szescian minus
szescian plus kula = $cis$nigta kula (Sebestyen, 1 in., 2021).

Rys. 15. System Sketch2Pix opracowany przez Kyle’a Steinfelda sluzacy do przetwarzania
linearnych szkicow aksonometrycznych na ich fotorealistyczne wizualizacje. Po lewej
przyktady prostych modutow zwizualizowanych przez algorytm, po prawej dwa
przyklady kolazy stworzonych przez studentow architektury korzystajacych z
algorytmu Sketch2Pix w trakcie zaje¢ projektowych (Steinfeld, 2020).
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Rys.

Rys.

Rys.

Rys.

Rys.

Rys.

Rys.

Rys.

Rys.

Rys.

16. Projekt plomby architektonicznej wygenerowany przez algorytm PatchMatch
wspomagany przez zespot pieciu klasyfikacyjnych sieci neuronowych dokonujacych
selekcji najlepszych elementow projektowych (Dzieduszynski, i in., 2020).

17. Proces treningu algorytmu stuzacego do redukcji liczby wymiaréw definiujgcych
projekt parametryczny stworzony przez Johna Hardinga. Na ilustracji przedstawiono
proces redukcji parametrow z pieciu do dwodch, mozliwych do zwizualizowania w
postaci dwuwymiarowej ptaszczyzny (Harding, 2016).

18. Wspomagane przez sie¢ neuronowg metody fabrykacji gigtych, blaszanych paneli
elewacyjnych opracowane przez Gabrielle Rossi i Paula Nicholasa. Po lewej — druk 3D
wzmocnien wygenerowanych przez sie¢ neuronowa w odpowiedzi na przewidywane
obcigzenia wywotane parciem wiatru. Po prawej — wytwarzanie podobnych wzmocnien
w formie wyttoczonych w blasze podtuznych zeber (Rossi i Nicholas, 2020).

19. Instalacja przestrzenna ,.Lace Wall” autorstwa Tamke, Zwierzyckiego i in. W ,,Lace
Wall” sieci neuronowe zostaly wykorzystane do klasyfikacji modulow, ktore ze
wzgledu na zbyt duze deformacje w skali mikro uniemozliwialy stworzenie docelowej
formy w skali makro (Tamke, i in., 2017).

20. Artykuty posrednio dotyczace morfologii urbanistycznej, kompozycji przestrzennej
oraz artykuly przegladowe w publikacjach dotyczacych komputerowego wspomagania
projektowania architektonicznego przy wykorzystaniu sieci  neuronowych.
Opracowanie wlasne.

21. Ztota koputa State House w Bostonie gingca na tle nowszych wiezowcdéw, m.in. One
Beacon Street z roku 1972 (fot. Google Maps, 2023)

22. Widok na plac Zbawiciela bedacy punktem gtownym zalozenia gwiazdzistego (fot.
Google Maps, 2023)

23. Zlewiska centrow lokalnych Brennana. Centra lokalne przesunigte sa w kierunku
gltownego centrum miasta [na podstawie (Brennan, 1948)]

24. Centra ekscentryczne Alexandra. Znajdujace si¢ na granicach miedzy obszarami
spotecznos$ci [na podstawie (Alexander, i in., 1977)]

25. Zblizenie na centrum ekscentryczne Alexandra. Naprowadzaja na nie $ciezki i bariery
wyznaczajace obszar spoteczno$ci. Opracowanie wlasne

26. Strefy ochronne z wyraznie oznaczonymi punktami gléwnymi pochodzace z trzydziestej
piatej wersji paryskiego planu urbanistycznego PLU dla obszaru P6l Elizejskich (Le
Conseil de Paris, 2015).
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Rys. 27. Legenda do rysunku stref ochronnych z trzydziestej piatej wersji PLU (Le Conseil de
Paris, 2015).

Rys. 28. Zrzut ekranu z trybu deweloperskiego programu Camera51, pokazujacy rozpoznane
przez aplikacje elementy kompozycyjne. Ikona w centrum ekranu pokazuje, w jaki
sposOb przesung¢ aparat, by polepszy¢ kompozycje kadru (Masad 1 Shamir, 2017).

Rys. 29. Wizualizacja wybranych glowic uwagi sieci neuronowej przetwarzajacej proste
kompozycje przestrzenne naszkicowane przez Juliusza Zoérawskiego (Zoérawski, 1962).
Kolorem czerwonym oznaczone sg miejsca w obrazie, ktore dana gtowica uwagi uznata
za istotne. Wykorzystana sie¢ to Vision Transformer (Dosovitskiy, i in., 2021)
wytrenowany przez Rossa Wightmana (Wightman, 2019) do rozpoznawania klas ze
zbioru obrazoéw ImageNet (Russakovsky, 1 in., 2015). Sie¢ nie prébuje odczytywac
kontekstow kompozycyjnych, tylko stara si¢ rozpoznaé, co znajduje si¢ na obrazie (w
tym przypadku wszystkie szkice Zorawskiego zostaly rozpoznane jako zdjecia
fancuchéw). Sie¢ zwraca uwage na rozne fragmenty obrazu, jednak duza wage
przyktada takze do punktow formalnie podkreslonych. Opracowanie wlasne.

Rys. 30. Dwie metody wyznaczania rdzeni integracji zaproponowane przez Billa Hilliera. U gory
— metoda analizy naktadajacych si¢ elementow wypuktych, u dotu — metoda analizy
jednowymiarowych elementow liniowych. Metody zostaty zaprezentowane na dwoch
modelach tkanki miejskiej, jednej z czytelnym punktem gtownym, drugiej bez takiego
punktu. Obie metody daja zblizone rezultaty (Hillier, 2007).

Rys. 31. Szkic Sigmunta Freuda z 1885 roku, bedacy prawdopodobnie pierwszym koncepcyjnym
modelem sieci neuronowe;j. Rysunek przedstawia przeptyw energii od bodzca Q'n przez
neuron a do neuronu b (Freud, 1950/1895). Teoria Freuda byta dosy¢ niejasna,
niepoparta empirycznie i ostatecznie okazata si¢ blgdna (McCarley, 1998), jednak stala
si¢ jedng z wielu inspiracji dla tworcow pierwszych funkcjonalnych sieci neuronowych
z lat 50. dwudziestego wieku (Minsky i Sykes, 2017).

Rys. 32. Diagram perceptronu elementarnego z jednym neuronem dokonujgcym klasyfikacji
binarnej. Dane wejsciowe zespolone sq stalym polgczeniem z jednostkami
asocjacyjnymi ,,A”. Polgczenia miedzy jednostkami ,, A" a jednostkq responsywng ,,R”
sq skalowane wzgledem wag, w ktorych zapisana jest ,,zdolnos¢” perceptronu do
rozwigzania danego problemu. Jednostka ,,R”, ktorq dzisiaj nazwalibysmy neuronem,

liczy srednig wazong sygnatow wejsciowych i przepuszcza jq przez schodkowq funkcje
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Rys. 33.

Rys. 34

Rys. 35.

Rys. 36.

Rys. 37.

Rys. 38.

Rys. 39.

Rys. 40.

aktywacji. Efektem jest dana wyjsciowa: klasa przyjmujgca wartos¢é -1 lub 1. llustracja
przygotowana na podstawie (Rosenblatt, 1961).

Poréwnanie rozwigzania problemu alternatywy wykluczajacej przez jednowarstwowa i
dwuwarstwowg sie¢ neuronowg. Klas XOR nie da si¢ oddzieli¢ przy pomocy jednej
prostej. Jednowarstwowa sie¢ neuronowa nieprawidtowo klasyfikuje wyjscie y dla x1=-
1 i X2=-1. Dwuwarstwowa sie¢ neuronowa rozwigzuje problem bez trudu. Zamiast
aktywacji schodkowej zastosowano jej roézniczkowalne przyblizenie: funkcje
sigmoidalng. Ilustracja oparta na wynikach symulacji przeprowadzonej w
przegladarkowej implementacji jednokierunkowej sieci neuronowej ConvNetJS
(Karpathy, 2014).

. Sie¢ neuronowa przeksztatcajaca wektor wejsciowy X na wektor wyjsciowy Y.

Przyktadowo: mozemy wytrenowanej sieci pokazac¢ zdjecie kota i na wyj$ciu otrzymac
prawidtowo zidentyfikowang etykiete ,,KOT!”. Opracowanie witasne.

Diagram propagacji w przod na poziomie pojedynczego neuronu. Sygnaty wejSciowe
xn sumowane sg zgodnie z ich wagami w'n, do sumy dodawana jest warto$¢ progu b’.
Wynik przepuszczany jest przez nieliniowa, rozniczkowalng funkcje aktywacji.
Warto$¢ funkcji stanowi sygnal dla neuronéw w kolejnej warstwie. Opracowanie
wilasne na podstawie (Hinton, i in., 1986).

Diagram propagacji wstecznej na poziomie pojedynczego neuronu. Parametry w''n oraz
b"' sy aktualizowane proporcjonalnie do szybkosci uczenia a i pochodnej czgstkowej
funkcji kosztu J wzgledem danego parametru. Globalnie, z kazdym cyklem propagacji
wstecznej, funkcja kosztu schodzi w kierunku lokalnego minimum. Opracowanie
wlasne na podstawie (Hinton, i in., 1986).

Rodzaje sieci neuronowych w publikacjach dotyczacych komputerowego wspomagania
projektowania architektonicznego. Opracowanie wlasne.

Wizualizacja rodzajow sieci neuronowych w publikacjach CAAD wykonana przy
pomocy algorytmu t-SNE na podstawie 37 wyodrebnionych cech badanych artykutow.
Kazdy punkt reprezentuje odrgbng publikacj¢. Opracowanie wilasne.

Diagram klasycznej, jednokierunkowej sieci w petni potaczonej (po lewej) oraz siec
typu autoenkoder (po prawej). Wykorzystywane w praktyce sieci zazwyczaj maja
wiecej neurondw oraz warstw. Opracowanie wilasne.

Diagram warstwy splotowej w splotowej sieci neuronowej. Dane wej$ciowe skanowane

sg sekwencyjnie przez filtry splotowe obliczajace wartosci funkcji splotu na podstawie
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Rys. 41.

Rys. 42.

Rys. 43.

odczytanych sygnalow. Dane na wyjsSciu majg form¢ wielowymiarowych tablic, po
jednej tablicy na jeden filtr splotowy. Trenowalne parametry znajduja si¢ w filtrach
splotowych. Opracowanie wiasne.

Diagram ilustrujacy petle dziatania agenta DRL w $srodowisku symulacyjnym. Dzialanie
agenta zostaje nagrodzone przez funkcj¢ straty i skutkuje zmiang jego stanu.
Opracowanie wlasne.

Diagram ilustrujgcy sposob dziatania sieci RNN typu LSTM. W nastepujacych po sobie
krokach sie¢ otrzymuje wejsciowe dane z sekwencji wejSciowej X 1 przetwarza je na
sekwencje wyjsciowa Y. Dodatkowo sie¢ otrzymuje na wejsciu stany ukryte sieci
Z poprzedniego kroku. W modelu LSTM sie¢ otrzymuje takze mechanizm pamigci,
pozwalajacy jej nauczy¢ sie mozliwosci zapisywania pewnych istotnych danych
w komorkach pamieci, ktorych stan sie¢ moze odczyta¢ w kolejnych krokach iteracji.
Opracowanie wlasne.

Wstepne testy skutecznosci (%) FNN oraz CNN w przetwarzaniu wielowymiarowych
zadan przestrzennych (po lewej) oraz przyktady rozwigzan wygenerowanych przez oba
typy sieci (po prawej). Oba typy sieci mialy za zadanie wygenerowanie trzech wysp
spetniajacych seri¢ zasad kompozycyjnych reprezentowanych w zbiorze treningowym.
CNN osigga skutecznos¢ o 4 -14% lepsza niz FNN o poréwnywalnej liczbie
parametrow (Dzieduszynski, 2022b).

Rys. 44. Proste zasady kompozycyjne skladajace si¢ na ztozona zasade kompozycyjna

wykorzystang w eksperymencie wstepnym (Dzieduszynski, 2022a).

Rys. 45. Dozwolone osie kompozycyjne dla zbioru treningowego i zbioru testowego

0 dystrybucji treningowej (Dzieduszynski, 2022a).

Rys. 46. Dozwolone osie kompozycyjne dla zbioru walidacyjnego i zbioru testowego

Rys. 47.

Rys. 48.

(Dzieduszynski, 2022a).
Trzy scenariusze testowane w prototypie wstepnym polegajace na generowaniu catosci
kompozycji, jej fragmentu oraz pojedynczego piksela (Dzieduszynski, 2022a).
Przyktad przeprowadzonej optymalizacji hiperparametru znormalizowanej wartosci
progu aktywacji pikseli wyjsciowych. Optymalizacja przeprowadzona zostata metoda
grid search w zakresie od 0,35 do 0,65 na zbiorach walidacyjnych dla scenariusza I i |1
wzgledem skuteczno$ci sieci na badanych zasadach kompozycyjnych. Optymalna
warto$¢ wyniosta 0,5 dla scenariusza I (po lewej) 1 0,4 dla scenariusza II (po prawej)

(Dzieduszynski, 2022a).
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Rys. 49. Diagram sieci neuronowej wykorzystanej w scenariuszu | (Dzieduszynski, 2022a).

Rys. 50. Wykres przedstawiajacy ewolucje skuteczno$ci sieci w scenariuszu [ w miarg treningu.
By zapobiec przetrenowaniu sieci, trening zostat zatrzymany w epoce trzeciej (technika
regularyzacyjna early stopping) (Dzieduszynski, 2022a).

Rys. 51. Wybor przyktadow pozytywnych rozwigzanych prawidtowo i negatywnych, w ktorych
sie¢ miata problemy (Dzieduszynski, 2022a).

Rys. 52. Diagram sieci neuronowej wykorzystanej w scenariuszu Il (Dzieduszynski, 2022a).

Rys. 53. Wykres przedstawiajacy ewolucje skutecznosci sieci w scenariuszu Il w miare¢ treningu.
By zapobiec przetrenowaniu sieci, trening zostal zatrzymany w epoce 75
(Dzieduszynski, 2022a).

Rys. 54. Wybor przyktadow pozytywnych, z ktérymi sie¢ scenariusza Il radzila sobie bardzo
dobrze 1 negatywnych, w ktorych sie¢ miata problemy (Dzieduszynski, 2022a).

Rys. 55. Diagram sieci neuronowej wykorzystanej w scenariuszu I1I (Dzieduszynski, 2022a).

Rys. 56. Wykres przedstawiajacy ewolucje skutecznos$ci sieci w scenariuszu I w miarg treningu.
W tym przypadku doprowadzono trening do konca, early stopping nie byl konieczny
(Dzieduszynski, 2022a).

Rys. 57. Diagram przedstawiajacy wyniki dziatania sieci w scenariuszu. Kazdy z pikseli
w kompozycji byt sekwencyjnie zakrywany i generowany przez sie¢ osobno. W gérnym
rzedzie — kompozycje wejsciowe, w srodkowym — mapa aktywacji dla kazdego z 64
pikseli, w dolnym — decyzje podjete przez sie¢ dla kazdego piksela (czerwony kolor
oznacza decyzj¢ o narysowaniu biatego piksela, niebieski kolor oznacza decyzje o
wygenerowaniu czarnego piksela). Wybor przyktadow pozytywnych 1 negatywnych
(Dzieduszynski, 2022a).

Rys. 58. Wyniki sieci dla r¢cznie rysowanych przyktadow brzegowych. Kazdy z pikseli
w kompozycji byt sekwencyjnie zakrywany 1 generowany przez sie¢ osobno. W gérnym
rzgdzie — kompozycje wejsciowe, w srodkowym — mapa aktywacji dla kazdego z 64
pikseli, w dolnym — decyzje podjete przez sie¢ dla kazdego piksela (czerwony kolor
oznacza decyzj¢ o narysowaniu biatego piksela, niebieski kolor oznacza decyzje o
wygenerowaniu czarnego piksela) (Dzieduszynski, 2022a).

Rys. 59. Przyklady biatotgckich struktur urbanistycznych zaproponowanych przez sie¢
neuronowa wytrenowana na szwarcplanach zabudowy Srodmiescia Warszawy.
Zabudowa proponowana przez sie¢ znajduje si¢ w czerwonych ramkach. Nawet przy

niewielkiej rozdzielczo$ci wynikajacej z ograniczen strukturalnych sieci i bardzo
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Rys.

Rys.

Rys

Rys.

Rys.

Rys

ograniczonych kontekstach reprezentowanych w przetwarzanych danych, sie¢ wydaje
si¢ respektowaé gestos¢ 1 osiowos¢ zabudowy, skale obrysow budynkéw i1 koniecznos$é

kontynuacji pierzei (Dzieduszynski, 2022a).

60. Diagram przedstawiajacy centrowanie map topograficzny wzgledem warto$ci

61.

minimalnej. Przy pobieraniu danych z serwisu Mapbox opracowany skrypt API
rozpoznaje najmniejszg warto$¢ piksela na obrazie i odejmuje t¢ warto$¢ od wartosci
pozostalych pikseli. Dzigki temu mapa topograficzna przedstawia tylko wysokosci
wzgledne 1 pozostawia wigcej przestrzeni dla mapy zabudowy. Opracowanie wlasne.

Mapa przestrzeni cech wykorzystanej w cz¢sci eksperymentalnej. Mapa sktada si¢ z
trzech, natozonych na siebie map dwuwymiarowych przedstawionych na potrzeby
wizualizacji w trzech kolorach podstawowych. Kolorem niebieskim oznaczono mape
topografii i zabudowy terenu, zielonym — intensywnos¢ zieleni, czerwonym — uktad

komunikacyjny. Opracowanie wlasne.

. 62. Diagram przedstawiajacy mozliwo$¢ przedstawienia przestrzeni cech w macierzowej

postaci tréjwymiarowej (po lewej) oraz w zwokselizowanej postaci pigciowymiarowej
(po prawej). W obu interpretacjach osie X 1 Y odpowiadaja wspotrzednym

geograficznym. Opracowanie wiasne.

63. Przyklady trzech map cech ze zbioru treningowego sieci. Kanal niebieski

przejaskrawiony na potrzeby wizualizacji. Od lewej Stare Miasto w Krakowie, Luk
Triumfalny w Paryzu i1 Cytadela w Irbilu. Opracowanie wtasne. Mapa cech
przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map
(OpenStreetMap contributors, 2023).

64. Proby stworzenia algorytmu rozszerzajacego zestaw treningowy o przyklady

syntetyczne. Srodowisko Grasshopper. Ostatecznie algorytm nie zostal wykorzystany.

Opracowanie wlasne.

. 65. W gbérnym rzedzie — przyktady trzech zasad kompozycyjnych podporzadkowanych

punktom gtéwnym zdefiniowane przez Zorawskiego (Zoérawski, 1962). W $rodkowym
rzedzie — osie kompozycyjne i punkty gtdéwne stanowigce punkty wyjscia dla algorytmu
tworzacego syntetyczne przyklady treningowe. W dolnym rzedzie — wygenerowane
przez algorytm syntetyczne konteksty przestrzenne. Ostatecznie algorytm nie zostal

wykorzystany. Opracowanie wiasne.

Rys. 66. Ewolucja mapy celu dla sieci neuronowej na przyktadzie florenckiej katedry Santa

Maria del Fiore. Od lewej do prawej: mapa cech (kanat niebieski przejaskrawiony
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na potrzeby wizualizacji); pierwsza generacja mapy celu z pojedynczym punktem
gléwnym; druga generacja mapy celu uzupekniona o gradient dookota punktu (gradient
przejaskrawiony na potrzeby wizualizacji) oraz ostateczna mapa celu uzupetniona o osie
kompozycyjne (gradient przejaskrawiony na potrzeby wizualizacji). Opracowanie
wlasne. Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open

Street Map (OpenStreetMap contributors, 2023).

Rys. 67. Diagram modelu sieci neuronowej typu GAN wykorzystanej w eksperymencie

glownym. Sie¢ inspirowana jest modelem pix2pix (Isola, i in., 2017). Generator tworzy
mapy celu na podstawie map cech. Dyskryminator poréwnuje wyjscie generatora
Z treningowa mapg celu i probuje oznaczad¢, ktore fragmenty obrazéw sa stworzone
przez generator, a ktore pochodza ze zbioru treningowego. Generator jest nagradzany
za obrazy potrafigce oszuka¢ dyskryminator. Obie sieci uczg si¢ wspdlnie, zwigkszajac
wzajemnie  swoja  skuteczno$¢. Przy inferencji  wytrenowanego modelu

wykorzystywany jest tylko generator. Opracowanie wlasne.

Rys. 68. Poréwnanie metod ewaluacji podobienstwa obrazow MSE, SSIM i CW-SSIM

Rys. 69.

przygotowane przez Zhou Wanga i Alana C. Bovika. a) obraz zrédtowy; b) zwigkszony
kontrast; c) przesuniecie luminancji; d) szum gaussowski; €) szum impulsowy; f)
kompresja JPEG; g) rozmycie; h) oddalenie; i) przesunigcie w prawo; j) przesuni¢cie w
lewo; k) obrot przeciwny do ruchu wskazéwek zegara; 1) obrot zgodny z ruchem
wskazowek zegara (Wang i1 Bovik, 2008). W przypadku opracowanego algorytmu
zadna z powyzszych metod ewaluacji nie byta skorelowana z rzeczywista jakoscia
tworzonych przez sie¢ neuronowg obrazow.

Warto$ci funkcji straty na zbiorze treningowym dla punktow kontrolnych od 1 do 254.
O$ horyzontalna odpowiada kolejnym punktom kontrolnym (ze wzglgdu na
nierownomierne probkowanie punktow kontrolnych o$ ta nie stanowi osi czasu). Linia
szara: wartosci funkcji straty usrednione z 4 podzbioréw treningowych. Linia czarna:
srednia biezaca z 9 kolejnych punktow kontrolnych (dla 4 podzbiorow treningowych).
Linia czerwona: logarytmiczna linia trendu (dla 4 podzbioréw treningowych).

Opracowanie wlasne.

Rys. 70. Przyktady btednych przypadkow, w ktdrych nie zostat rozpoznany zaden punkt gtowny.

Na gorze mapy cech, na dole odpowiadajagce im obrazy stworzone przez siec

neuronowy. Po lewej patac w Wilanowie. Po $rodku Patac na Wyspie w Lazienkach
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Rys. 71

Rys. 72.

Rys. 73.

Krolewskich. Po prawej Stadion Narodowy. Kanat niebieski map cech przejaskrawiony

na potrzeby wizualizacji. Opracowanie wtasne.

. Przyklady, w ktorych niewygenerowanie punktu gléwnego nie stanowilo btedu.

Na gorze mapy cech, na dole odpowiadajagce im obrazy stworzone przez sieé
neuronowg. Po lewej — hale poprzemystowe zaktadéw FSO. W $rodku — fragment Lasu
Bielanskiego. Po prawej — pola uprawne w poblizu Fortu Chrzanow. Kanat niebieski
map cech przejaskrawiony na potrzeby wizualizacji. Opracowanie wlasne.
Demonstracja seryjnego przetwarzania wigkszych obszarow przy pomocy opracowanej
sieci neuronowej. 64 punkty gltowne i osie kompozycyjne rozpoznane przez siec
neuronowa na obszarze 25 km? lewobrzeznej zabudowy $rodmiejskiej Warszawy.
Po lewej — obrazy wygenerowane przez sie¢ nalozone na mape¢ przestrzeni cech.
Po prawej — natozone na mapg Open Street Map. Czerwone linie to osie kompozycyjne.
Petna lista punktow rozpoznanych przez sie¢ przedstawiona jest w aneksie (Zatgcznik
6). Opracowanie wilasne. Mapa cech przygotowana w oparciu o serwis Mapbox
(Mapbox, 2023) i Open Street Map (OpenStreetMap contributors, 2023).

Oznaczony czerwong strzatka punkt wskazany przez sie¢ neuronowg na ostrodze
regulacyjnej Wisty na przedtuzeniu ul. Ratuszowej. Punkt wydaje si¢ dobrym miejscem
na lokalizacj¢ reprezentacyjnego molo z widokiem na Stare Miasto. Opracowanie
wlasne. Podktad przygotowany w oparciu o serwis Open Street Map (OpenStreetMap
contributors, 2023).

Rys. 74. Punkty gtowne (bialy) i osie naprowadzajace (czerwony) odczytane przez sie¢

Rys. 75.

neuronow3 w obszarze zatozenia ujazdowskiego (po lewej) 1 zalozenia osi saskiej
(po prawej). Kolorem zielonym oznaczone gtowne osie kompozycyjne. Sie¢ skutecznie
oznaczyla wigkszo$¢ zatozenia ujazdowskiego, jednak o$ saska zostata prawie
catkowicie pomini¢ta. Opracowanie wiasne. Podklad przygotowany w oparciu o Open
Street Map (OpenStreetMap contributors, 2023).

Pig¢ obszaréw przeanalizowanych statystycznie wzgledem ,,stopnia skomponowania”
przestrzeni. A: cato$¢ testowanego obszaru; B: okolice Wisty w rejonie mostu Slasko-
Dabrowskiego; C: poludniowa granica Woli wzdtuz toréw kolejowych; D: rejon osi
saskiej; E: rejon zalozenia ujazdowskiego. Opracowanie wilasne. Podktad przygotowany

w oparciu 0 Open Street Map (OpenStreetMap contributors, 2023).
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Rys. 76. Liczba pikseli osi kompozycyjnych (czerwony) i liczba pikseli punktow gtownych

(czarny) rozpoznanych przez sie¢ dla wyszczegolnionych obszardw jako procent liczby

pikseli catych obszaréw. Opracowanie wiasne.

Rys. 77. Diagram ilustrujgcy réznice miedzy projektowaniem parametrycznym a projektowaniem

Rys. 78.

Rys. 79.

hiperparametrycznym. W projektowaniu parametrycznym to architekt na podstawie
odczytanego samodzielnie kontekstu decyduje o wartosciach poszczegolnych
parametrow. Projektowanie hiperparametryczne charakteryzuje si¢ wyzszym poziomem
abstrakcji. Architekt zainspirowany kontekstem definiuje hiperparametry modelu
opartego na gfebokim uczeniu maszynowym i dokonuje jego promptowania. Dodatkowo
model takze ma mozliwos¢ samodzielnego odczytywania kontekstow. Koncowe
parametry definiowane sq przez sie¢ neuronowq na etapie inferencji. Wyniki inferencji
mogq stuzy¢ architektowi jako inspiracja w przysztych iteracjach. Opracowanie wiasne.
Mozliwe krzywe prognozujqce rozwdj wykorzystania glebokiego uczenia maszynowego
w projektowaniu architektonicznym wspomaganym komputerowo. Krzywa A pokazuje
mozliwosc¢, ze wigkszos¢ innowacji z wykorzystaniem NN w CAAD zostata juz odkryta i
zblizamy sie do mozliwosci technologicznych dalszego rozwoju technologii. Krzywa B
dopuszcza mozliwosé, ze rozwoj dopiero sig zaczql i pojawi sig jeszcze wiele nowych
narzedzi. Krzywa C opisuje sytuacje, w ktorej rozwoj systemow Al doprowadzi
do pojawienia si¢ samouczqcej si¢ AGI, prowadzqcej do wyktadniczego rozwoju
| transformacji calej ludzkosci. Opracowanie wlasne na podstawie ksigzek The Empty
Raincoat (Handy, 1994) oraz The Singularity is Near (Kurzweil, 2005).

Wizualizacja przygotowana przez Google, ilustrujgca wzrost zdolnosci duzych modeli
Jjezykowych wraz ze wzrostem ich wielkosci na przyktadzie modelu PALM. Im wigksza
Jjest sie¢ neuronowa tym wigksze stajq sig jej kompetencje i tym bardziej zbliza si¢ do

poziomu AGI (Narang S i Chowdhery, 2022).
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Aneks

Zalacznik 1. Tabela zrodel kwerendy glownej wykorzystania sieci

neuronowych w CAAD (do 2021 roku). Zastosowania.

Kodowana technikg multi-hot:

Publikacja Zastosowanie
Tytul Autorzy Rok Czaso- Zrédlo danych Eks- Ewalu- Klasy- Prze- Opty- Genero-

pismo/ trakcjai | acjai fikacja widy- mali- wanie

Konfe- uczy- |prze-twa- wanie zacja

rencja telnia-nie | rzanie przysz-

da-nych losci
PROCENT: 100% 15,4% 30,9% 17,4% 5,4% 8,7% 22,1%
SUMA: 149 23 46 26 8 13 33

Modelling spatial Openshaw, S 1993|GSISSMaP | Tabele opisujace wzorce podrozy do 0 1 0 0 0 0
interaction using a neural pracy w miastach amerykanskich i
net powigzane z nimi koszty
Using Artificial Neural Stevenson, W J 1994 | ASHRAE Szeregi czasowe danych pomiarowych 0 1 0 0 0 0
Nets to Predict Building dotyczacych wydajnosci energetycznej
Energy Parameters budynku
Artificial Neural Networks |Fischer, M M; 1994|WSG Dane historyczne o wykorzystaniu sieci 0 0 0 1 0 0
A New Approach to Gopal, S telekomunikacyjnej
Modelling Interregional
Telecommunication Flows
Artificial neural networks |Kindangen, J | 1996 | BRal Symulacja 0 0 0 0 1 0
and naturally ventilated
buildings
Urban change detection Liu, X; Lathrop 2002 | 1JoRS Zdjgcia satelitarne 1 0 0 0 0 0
based on artificial neural ~ |Jr, RG
network
Capturing Housing Market |Kauko, T; 2002|HS 10 zmiennych opisuacych 0 0 1 0 0 0
Segmentation An Hooimeijer, P; nieruchomos$é
Alternative Approach based |Hakfoort, J
on Neural Network
Modelling
Integration of neural Yeh, A G; Xia, 2004|GSIS Historyczne dane GIS 0 0 0 1 0 0
networks and cellular L
automata for urban
planning
An Artificial Neural Lam, K C; Yu, 2008|JoPR Zmienne opisujace historycznie 0 1 0 0 0 0
Network and Entropy CY;Lam KY sprzedane budynki (liczba sypialni,
Model for Residential lokalizacja, widok na morze, typ
Property Price Forecasting budynku etc)
in Hong Kong
An artificial neural network |Maithani, S; 2010(GlI Zbior map i zdje¢ satelitarnych 0 0 0 1 0 0
based approach for urban | Arora, M K; przetwarzanych przez systemy GIS
growth zonation in Jain, RK
Dehradun city, India
Service life prediction Silva, A; Dias, J 2011|BRal Zbior danych opisujacych elewacj¢ z 0 1 0 0 0 0
models for exterior stone  |L; Gaspar, P L; paneli kamiennych
cladding de Brito, J
A neural network model to |Oliver, JL; 2011|1JoCM Plan w formie sieci/grafu 0 0 0 0 1 0
develop actions in urban Tortosa, L;
complex systems Vicent, J F
represented by 2D meshes
Brains machines and Arbib, M A 2012|1BI Przegladowe/Inne 0 0 0 0 0 0
buildings towards a
neuromorphic architecture




Optimizing artificial neural |Mehmood, H; 2013(1JoDE Sygnat WiFi (RSSI z poszczegdlnych
network-based indoor Tripathi, N K Access Pointow)
positioning system using
genetic algorithm
Neural networks applied to |Dias, J L; Silva, 2014 |BRal Zbior danych opisujacych zewngtrzng
service life prediction of A; Chai, C; powierzchni¢ malowang
exterior painted surfaces Gaspar, P L, de
Brito, J
Approximation of Chatzikonstanti 2015|ASR Symulacja
simulation-derived visual nou, I;
com...a comparative study |Sariyildiz, S
in machine learning
Analysis of human mobility | Sita-Nowicka, 2016|1J0GIS Trajektorie GPS
patterns from GPS K; Vandrol, J;
trajectories and contextual |Oshan, T; Long,
information JA; Demsar, U;
Fotheringham,
S
Artificial Imagination of Silvestre, J; 2016 | Computer Kamera
Architecture with Deep Ikeda, Y; Science
Convolutional Neural Guena, F
Network
Dimensionality Reduction [Harding, J 2016 | AIAG Projekty parametryczne
for Parametric Design
Exploration
Energy Model Machine Asl, M R; Das, 2017|ECAADE Symulacja
EMM Instant Building S; Tsai, B;
Energy Prediction using Molloy, I;
Machine Learning Hauck, A
Modeling property values |Abidoye, R B; 2017|JoPR Zmienne opisujace historycznie
in Nigeria using artificial |Chan, AP C sprzedane budynki (liczba sypialni,
neural network lokalizacja, widok na morze, typ
budynku etc)
Lace Wall Extending Tamke, M; 2017|FABRICAT |Ztozony projekt parametryczny
design intuition through Zwierzycki, M; E
machine learning Deleuran, A H;
Baranovskaya,
YS
3D Spatial Analysis Takizawa, A, 2017|ECAADE Zdjgcia panoramiczne (z symulacji
Method with First-Person  Furuta, A modelu 3D) i opinie ludzi o
Viewpoint by Deep “preferencji” przestrzeni
Convolutional Neural
Network with
Omnidirectional RGB and
Depth Images
DANIEL A Deep Sharma, D; 2017|1CoDAaR Plany architektoniczne
Architecture for Automatic |Gupta, N;
Analysis and Retrieval of  |Chattopadhyay,
Building Floor Plans C; Mehta, S
Optical Integrity of Fukuda, T; 2017|ECAADE Zdjgcia panoramiczne
Diminished Reality Using  |Kuwamuro, Y;
Deep Learning Yabuki, N
Machines’ Perception of Peng, W; 2017|MIT Isovist z punktow wewnatrz i na
Space Employing 3D Zhang, F; zewnatrz budynku (pawilony
Isovist Methods and a Nagakura, T parterowe)
Convolutional Neural
Network in Architectural
Space Classification
Computing brains learning |Williamson, B 2017|1CaS Przegladowe/Inne
algorithms and
neurocomputation in the
smart city
Machine learning for Tamke, M; 2018|JAC Przegladowe/Inne
architectural design Nicholas, P;

Practices and infrastructure

Zwierzycki M




Learning Machine Learning |Khean, N; 2018|ECAADE  |Przegladowe/Inne
as an Architect How to Fabbri, A;
Haeusler, M H
The introspection of Deep  [Khean, N; Kim, 2018|CAADRIA  |Przegladowe/Inne
Neural Networks - Towards [L; Martinez, J;
Illuminating the black box |Doherty, B;
Fabbri, A;
Gardner, N;
Haeusler, H
Learning indoor space Sedlmeier, A; 2018|JoLBS Isovist z punktoéw we wnetrzach
perception Feld, S
Classification based Tamas, J; Toth, 2018|JoLBS Dane hybrydowe nawigacyjne nagrane
symbolic indoor positioning|Z przy pomocy systemu ILONA (Indoor
over the Miskolc 11S data Localisation and Navigation);
set multimodalne z réznych sensorow w
telefonie komorkowym
Applied Automatic Luo, D; Wang, 2018|ECAADE Wartosci przekrojow probki elastomeru
Machine Learning Process |J; Xu, W wyginanej przez rami¢ robotyczne, lub
for Material Computation zadana forma geometryczna
Artificial Intelligence Cudzik, J; 2018|ECAADE Depthmapy Kapiteli kolumn korynckich
Aided Architectural Design |Radziszewski,
K
Artificial intelligence in As, I; Pal, S; 2018(IJAC Rozktad funkcjonalny w formie grafu
architecture Generating Basu, P
conceptual design via deep
learning
Street Frontage Net Urban |Law, S; 2018|1JoGIS Zdjgcia panoramiczne
image classification using [Seresinhe, C I;
deep convolutional neural |Shen, Y;
networks Gutierrez-Roig,
M
Multi Objective Qualitative [Newton, D 2018|ECAADE Symulacja (wygenerowane
Optimization MOQO in automatycznie modele wokselowe
Architectural Design reprezentujgce poszczegolne cechy, jak
rymiczno$¢, heterogeniczno$¢,
horyrzontalno$ etc)
CNN based generation of  |lino, S; Ito, R; 2018(1JolaDF Zdjgcia satelitarne
high accuracy urban Doi, K;
distribution maps utilising |Imaizumi, T;
SAR satellite imagery for |Hikosaka, S
short term change
monitoring
Modelling A Complex Rossi, G; 2018|ECAADE Regcznie generowane pary geometrii i
Fabrication System New Nicholas, P instrukcji
design tools for doubly
curved metal surfaces
fabricated using the English
Wheel
Understanding and Zheng, H; 2018|LPaA Plany architektoniczne
Visualizing Generative Huang, W
Adversarial Networks in
Architectural Drawings
An artificial intelligence- | Mazuroski, W; 2018|JoBPS Symulacje (BPS: airflow, 3D heat
based method to efficiently |Berger, J; exchange, HVAC systems simulation)
bring CFD to building Oliveira, RC L
simulation F; Mendes, N
Design in THE Age of Leach, N 2018 |LAF Przegladowe/Inne
Atrtificial Intelligence
Stochastic Hybrids From | Algeciras- 2018|ECAADE Modele w formie chmury punktow
references to design options |Rodriguez, J (wierzchotki poligonow)
through Self Organizing
Maps methodology
Deep learning in design Mahankali, R; 2018|JAC Modele BIM
workflows The elusive Johnson, B R;

design pixel

Anderson, AT




Deep Form Finding Using
Variational Autoencoders
for deep form finding of
structural typologies

de Miguel, J;
Villafane, M E;
Piskorec, L;
Sancho-
Caparrini, F

2019

ECAADE

Symulacja

A framework of developing
machine learning models
for facility life cycle cost
analysis

Gao, X;
Pishdad-
Bozorgi, P

2019

BRal

Modele BIM, dokumentacja
projektowa, IWMS (integrated
workplace management system), Dane
o0 zuzyciu mediow

Deep Reinforcement
Learning for Autonomous
Robotic Tensegrity ART

Hosmer, T;
Tigas, P

2019

ACADIA

Symulacja

Alive A Multi Layered
Flexible and Elastic Shape
Aware Graphene Based
Interface

Koshelyuk, D;
Talaei, A;
Garivani, S;
Markopoulou,
A; Chronis, A;
Leon, D A;
Krenmuller, R

2019

ACADIA

‘Wartosci oporu elektrycznego (na
wejsciu) i geometria odksztatcenia na
wyjsciu

Stripe Segmentation for
Branching Shell Structures
A Data Set Development as
a Learning Process for
Fabrication Efficiency and
Structural Performance

Giannopoulou,
E; Baquero, P;
Warang, A;
Orciuoli, A;
Estevez, AT

2019

ECAADE

Projekty parametryczne (parametry na
wyjsciu, cechy modelu na wyjsciu
zamiast czasochtonnego generowania
modeli parametrycznych)

Re perceive 3D printing
with Atrtificial Intelligence

Chen, D; Luo,
D; Xu, W; Luo,
C; Shen, L;
Yan, X; Wang,
T

2019

ECAADE

Szeregi czasowe (gcode) i rezultat w
postaci krzywej wydrukowanej przez
drukarke 3d

Design Space Exploration
of Initial Structural Design
Alternatives via Artificial

Neural Networks

Yetkin, O;
Sorgug, A G

2019

ECAADE

Zbior projektow parametrycznych
kratownic na wejsciu i wyniki
symulacji przemieszczenia i masy
struktury na wyjsciu

Haptic Learning Towards
Neural Network based
adaptive Cobot Path
Planning for unstructured
spaces

Rossi, G;
Nicholas, P

2019

ECAADE

Symulacja (trening sieci) + feedback
haptyczny z rzeczywistego ramienia
(finetuning)

Multimodal Classification
of Urban Micro Events

Sukel, M;
Rudinac, S;
Worring, M

2019

ACMIC

Kamera/zgloszenia
tekstowe/koordynaty + Przegladowe




Interdisciplinary Al A Ozel, G; 2019|ACADIA Kamera (zdjgcia budynkow)

Machine Learning System |Ennemoser, B

for Streamlining External

Aesthetic and Cultural

Influences in Architecture

Imaginary Plans The del Campo, M; 2019|ACADIA Plany architektoniczne

potential of 2D to 2D Style |Carlson, A;

transfer in planning Manninger, S

processes

Generation of Floor Plan  |Eisenstadt, V; 2019|ECAADE  |Rozklad funkcjonalny w formie grafu

Variations with Langenhan, C;

Convolutional Neural Althoff, K D

Networks and Case-based

Reasoning

HorizonNet Learning Room |Sun, C; Hsiao, 2019|CVF Zdjecia panoramiczne (wnetrza)

Layout with 1D CW, Sun, M;

Representation and Pano Chen,HT

Stretch Data Augmentation

Architectural Drawing Colakoglu, M 2019|ECAADE Plany i przekroje

Recognition A case study  |B; Uzun, C

for training the learning

algorithm with architectural

plan and section drawing

images

Optimising Image Ng,JMY; 2019|CAADRIA |Plany i przekroje

Classification Khean, N;

Implementation of Madden, D;

Convolutional Neural Fabbri, A;

Network Algorithms to Gardner, N;

Distinguish Between Plans Haeusler, M H;

and Sections Zavoleas, Y

Semantic Enrichment of Stojanovic, V; 2019(ECAADE Chmura punktow

Indoor Point Clouds An Trapp, M;

Overview of Progress Richter, R;

towards Digital Twinning |Hagedorn, B;
Dollner, J

Deep Learning Model for  |Kinugawa, H; 2019|ECAADE Zdjgcia panoramiczne

Predicting Preference of Takizawa, A

Space by Estimating the

Depth Information of Space

using Omnidirectional

Images

Designing deep CNN Qayyum, A; 2019|EJoRS Zdjgcia z drona

models based on sparse Malik, A; Saad,

coding for aerial imagery a |N M; Mazher,

deep features reduction M

approach

Deep Generative Learning |Newton, D 2019|ECAADE Plany architektoniczne

for the Generation and

Analysis of Architectural

Plans with Small Datasets

Hybrid Elevations Using Mohammad, A; 2019|ACADIA Parametrycznie wygenerowane

GAN Networks Beorkrem, C; elewacje, ale przetwarzane ptaskie
Ellinger, J rysunki elewaciji (czerwony)

An Anonymous Liu, H; Liao, L; 2019(ACADIA Recznie kategoryzowane, losowo

Composition Design Srivastava, A generowane projekty parametryczne

Optimization Through wzgledem "monumentalnosci"

Machine Learning "delikatnosci" "dynamicznosci" etc.

Algorithm

GAN Loci Imaging Place |Steinfeld, K 2019|ACADIA Zdjgcia panoramiczne (street view)

using Generative

Adversarial Networks

Predicting and steering Thomsen, M; 2019|ECAADE Docelowe zdjgcia zacienienia przez

performance in Nicholas, P; dziang membrang, na wyjsciu pliki do

architectural materials Tamke, M; cyfrowej maszyny dziewiarskiej
Gatz, S; Sinke,
Y

Automated Brick Pattern | Zandavali, B A; 2019|ECAADE Symulacja (wygenerowane

Generator for Robotic Garcia, MJ automatycznie obrysy i odpowiadajace

Assembly using Machine
Learning and Images

im uloZenie cegiet)




Steps towards Al Toulkeridou, V 2019|ECAADE  |Projekty parametryczne przedstawiony
augmented parametric jako szereg czasowy lub sekwencyjny
modeling systems for diagram blokow operacji dynamo
supporting design
exploration
Robot Ex Machina A del Castillo y 2019|ACADIA Recznie rysowane fragmenty szkicow i
Framework for Real Time |Lopez, JL G ich uzupetnienia
Robot Programming and
Control
Pedestrian trajectory Wu, J; Woo, H; 2019(AR Film z kamery
prediction using BiRNN Tamura, Y;
encoder-decoder framework [Moro, A;
Massaroli, S;
Yamashita, A;
Asama, H
Quo vadis Al in Mrosla, L; von 2019|ECAADE  |Przegladowe/Inne
Architecture Survey of the |Both, P
current possibilities of Al in
the architectural practice
Trend Topics and Changing | Guzelci, O Z; 2019|ECAADE Przegladowe/Inne
Concepts of Computational |Alacam, S;
Design in the Last 16 Years |Guzelci, H
Application of Al in Urban [Nematollahi, M 2019|CVaA Przegladowe/Inne
Design A; Shahbazi, S;
Nabian, N
Do Robots Dream of Leach, N 2019|ACADIA Przegladowe/Inne
Digital Sheep
Machine Learning from the (Zwierzycki, M 2019|AIAAF Przegladowe/Inne
Past
Smart spaces, information |Lynch, C R; del 2019|AotAAOG  |Przegladowe/Inne
processing and the question |Casino Jr., V' J
of intelligence
Robotic Constraints Devadass, P; 2019(ACADIA Symulacja
Informed Design Process  [Heimig, T;
Stumm, S;
Kerber, E;
Brell-Cokcan, S
Space ALocation Saha, N; 2020|ACADIA Symulacja
Techniques SAT Haymaker, J;
Computable Design Shelden, D
Problems and Integrated
Framework of Solvers
Spatial Assembly with Self (Hosmer, T; 2020|ACADIA Symulacja
Play Reinforcement Tigas, P;
Learning Reeves, D; He,
z
A Performance Based Han, Z; Yan, 2020|CDRF Symulacja
Urban Block Generative W; Liu, G
Design Using Deep
Reinforcement Learning
and Computer Vision
Applying Deep Learning  [Singh, M M; 2020(ECAADE  |Symulacja
and Databases for Energy- |Schneider-
efficient Architectural Marin, P;
Design Harter, H; Lang,
W; Geyer, P
Machine Learning Methods |Sebestyen, A; 2020|ECAADE Symulacja
in Energy Simulations for  [Tyc, J
Architects and Designers
A machine-learning model |Yazici, S 2020|ECAADE Symulacja (structural performance,
driven by geometry, odksztatcenia, wlasciwo$ci materialow)
material and structural
performance data in
architectural design process
Optimization and Li, J; Chen, H 2020|CDRF Symulacja

Prediction of Design
Variables Driven by
Building Energy
Performance A Case Study
of Office Building in
Wuhan

VI




Perceptive Machine Kampani, A; 2020|ECAADE Konglomerat danych miejskich
Visuospatial Configurations | Varoudis, T
Through Machine Intuition
Pedestrian Flow Monitoring |Kirova, N; 2020|ACADIA Sensory w ptytach chodnikowych
and Prediction through Markopoulou, (trening na podstawie symulacji)
smart material sensing A
surfaces
LOTI Using Machine Markusiewicz, 2020|ECAADE  |Recznie oznaczone przez studentow
Learning to sumulate J; Balerdi, AG modele parametryczne krzeset
subjective opinions in (studenci oznaczali, czy dane krzesto
design jest plagiatem czy nie)
Generating and Optimizing |Zheng, H; 2020|ACADIA Symulacja
a Funicular Arch Floor Wang, X; Qi, Z;
Structure Sun, S;
Akbarzadeh, M
Towards Hallucinating del Campo, M; 2020|JAC Kamera (sie¢ opata o google deep
Machines Designing with  [Carlson, A; dream wytrenowana na imagenet)
Computational Vision Manninger, S
How Machines Learn to del Campo, M; 2020|ACADIA Plany budynkéw barokowych i
Plan A Critical Carlson, A; wspolczesnych
Interrogation of Machine  [Manninger, S
Vision Techniques in
Architecture
Pipes of Al Machine Liu, C; Shen, J; 2020|CDRF Obrys kondygnacji
Learning Assisted 3D Ren, Y; Zheng,
Modeling Design H
Automatic Generation of Sato, G; 2020(ECAADE Modele BIM (przerabiane na rastrowe
the Schematic Mechanical |lIshizawa, T; plany architektoniczne)
System Drawing by Iseda, H;
Generative Adversarial Kitahara, H
Network
An Academy of Spatial Veloso, P; 2020|ECAADE Symulacja
Agents Generating spatial |Krishnamurti, R
configurations with deep
reinforcement learning
Deep Learning surrogate [ Tarabishy, S; 2020{JAC Symulacja
models for spatial and Psarras, S;
visual connectivity Kosicki, M;
Tsigkari, M
3D Graph Convolutional del Campo, M; 2020|ACADIA Reczny dataset "Sensibility" (parg
Neural Networks in Carlson, A; tysigcy modeli OBJ przedstawiajacych
Architecture Design Manninger, S poszczegdlne klasy arhitektoniczne:
domy i kolumny), modelowane recznie,
data augmentation by rozszerzy¢
dataset
The Emoting City Patel, S V; 2020|ECAADE Kamera
Designing feeling and Tchakerian, R;
artificial empathy in Morais, R L;
mediated environments Zhang, J;
Cropper, S

Vil




Occupancy-informed Jorgensen, J; 2020|ECAADE Kamera w przestrzeni zbudowanej
Introducing a method or Tamke, M;
flexible behavioural Poulsgaard, K S
mapping in architecture
using machine vision
A Large Scale Zhang, J; 2020|CDRF Zdjgcia panoramiczne (street view)
Measurement and Fukuda, T;
Quantitative Analysis Yabuki, N
Method of Facade COlor in
the Urban Street Using
Deep Learning
HierarchyNet Hierarchical |Taoufig, S; 2020|Remote Kamera (zdjecia z perspektywy
CNN Based Urban Building [Nagy, B; Sensing czlowieka)
Classification Benedek, C
Drawing Recognition Brown, L; Yip, 2020|ECAADE Plany architektoniczne
Integrating Machine M; Gardner, N;
Learning Systems into Haeusler, M H;
Architectural Design Khean, N;
Workflows Zavoleas, Y;
Ramos, C
Automatic Recognition and | Xiao, Y; Chen, 2020|CAADRIA |Plany architektoniczne
Segmentation of S; Ikeda, Y;
Architectural Elements Hotta, K
An Al Lens on Historic Zohier, I; El 2020|ACADIA Kamera
Cairo A Deep Learning Antably, A;
Application for Minaret Madani, A S
Classification
Automatic Generation of Ikeno, K; 2020(ECAADE Zdjgcia satelitarne (+ generowane w
Horizontal Building Mask  Fukuda, T; VR z modelu 3D maski do treningu
Images by Using a 3D Yabuki, N czyli symulacja)
Model with Aerial
Photographs for Deep
Learning
Machine Learning for Meeran, A; 2020|ACADIA Zdjgcia satelitarne
Comparative Urban Joyce, SC
Planning at Scale An
Aviation Case Study
Anxious Landscapes Newton, D 2020|ACADIA Zdjgcia satelitarne, dane medyczne
Correlating the Built (wywiad o zaburzeniach nerwowych na
Environment with Mental badanym obszarze)
Health through Deep
Learning
Deep Learning Methods for [Newton, D; 2020|ECAADE Zdjgcia satelitarne
Urban Analysis and Health |Piatkowski, D;
Estimation of Obesity Marshall, W;
Tendle, A
Clustering and Li, P; Zhu, W 2020{ACADIA Zdjgcia satelitarne

Morphological Analysis of
Campus Context

VIl




Urban Detection Kit A Sukel, M; 2020|ICMR Kamera (wideo przymocowane do
System for Collection and |Rudinac, S; pojazdow stuzb miejskich)
Analysis of Street Level Worring, M
Imagery
Detecting Urban Issues Sukel, M; 2020|ACMIC Kamera (wideo przymocowane do
With the Object Detection |Rudinac, S; pojazdéw stuzb miejskich)
Kit Worring, M
A big data evaluation of Li, Y; Yabuki, 2020|ECAADE Konglomerat danych, GIS (open street
urban street walkability N; Fukuda, T; maps + google maps), google street
using deep learning and Zhang, J view, wideo z kamer, dane o halasie i
environmental sensors o$wietleniu
An investigation of the Qi, Y; Drolma, 2020|Geo-spatial | Zdjgcia panoramiczne (street view)
visual features of urban S C; Zhang, X; Infomation
street vitality using a Liang, J; Jiang, Science
convolutional neural H; Xu, J; Ni, T
network
Monitoring Asphalt Pan, Y; Chen, 2020|CJoRS Zdjgcia z drona
Pavement Aging and X; Sun, Q;
Damage Conditions from  |Zhang, X
Low Altitude UAV
Imagery Based on a CNN
Approach
Making a New City Image |Ho, B 2020|ACADIA Schwarzplan + kamera (zdjgcia z
perspektywy cztowicka)

Simulating urban land use |Zhai, Y; Yao, 2020|1JoGIS Zbioér zmiennych GIS opisujacych
change by integrating a Y; Guan, Q; przestrzennie miasto (w formie map
convolutional neural Liang X; Li, X; gradientowych)
network with vector-based |Pan, Y; Yue, H;
cellular automata Yuan, Z; Zhou,

J
City Wide Traffic Ranjan, N; 2020|IEEE Access |Szereg czasowy map ulic
Congestion Prediction Bhandari, S; pokolorowanych wzgledem
Based On CNN LSTM and |Zhao, H P; zakorkowania (z google maps)
Transpose CNN Kim, H; Khan,

P
GPS Based citywide traffic |Guo, J; Liu, Y; 2020| TATS Szereg czasowy trajektorii GPS
congestion forecasting Yang, Q K;
using CNN-RNN and C3D |Wang, Y
hybrid model
Suggestive Site Planning  |Tian, R 2020|CDRF Dane GISowe przetworzone na obrazy
with Conditional GAN and (segmentacja funkcjonalna) do treningu
Urban GIS Data
Text To Form 3D Zhang, H 2020|ACADIA Tekst naturalny opisujacy budynek
Prediction by Linguistic
Descriptions
Towards a Distributed Fang, Z; Wu, Y; 2020|ACADIA Symulacja DRL
Robotically Assisted Hassonjee, A;
Construction Framework | Bidgoli, A;

Using Reinforcement
Learning

Cardoso-Llach,
D




Machine Learning for Sinke, Y; Gatz, 2020|CDRF Chmury punktow: Skany 3D probek

Fabrication of Graded S; Tamke, M; poddanych obcigzeniom (wejécie), na

Knitted Membranes Thomsen, MR wyjsciu "pixel-based knit fabrication
files" dla maszyny dziewiarskiej

Exploration of Campus Liu, Y; Luo, Y; 2020|CDRF Recznie oznaczane diagramy podziatu

Layout Based on Deng, Q; Zhou, funkcjonalnego kampusow

Generative Adversarial X uniwersyteckich

Network Discussing the

Significance of Small

Amount Sample Learning

for Architecture

A Preliminary Study on the |Pan, Y; Qian, J; 2020|CDRF Schwarzplany istniejacych osiedli

Formation of the General  |Hu, Y

Layouts on the Northern

Neighborhood Community

Based on GauGAN

Diversity Output Generator

Architectural Visualisation |Chan, Y H E; 2020|ECAADE  |Pary recznie rysowanych szkicow

with Conditional Spaeth, A B budynkow i odpowiadajacych

Generative Adversarial perspektyw architektonicznych (zdjg¢ i

Networks What machines renderow)

read in architectural

sketches

Drawn Together Machine  [Steinfeld, K 2020|ACADIA Recznie trenowane pary szkic i

Augmented Sketching in wizualizacja aksonometryczna w

the Design Studio formie uproszczonego diagarmu

DeepGreen Coupling Pasquero, C; 2020|ACADIA Plany i mapy oraz fotografie probek

Biological and Artificial Poletto, M $luzowca

Intelligence in Urban

Design

Machine Learning Aided  |Zhang, H; 2020|CDRF Sekwencje kolejnych przekrojow przez

2D 3D Architectural Form |Huang, Y budynek

Finding at High Resolution

BIM Hyperreality Data Alawadhi, M; 2020|ACADIA Modele BIM i powigzane z nimi

Synthesis Using BIMand | Yan, W wizualizacje (trening); potem

Hyperrealistic Rendering rozpoznawanie elementow budynku na

for Deep Learning zdjeciach (aplikacja)

A Machine Learning Sun, Y; Jiang, 2020|ACADIA Mapy GISowe i heatmapy aktywnosci

Method of Predicting L; Zheng, H fizycznej

Behavior Vitality Using

Open Source Data

Reprogramming Urban Yu,D 2020|ECAADE Do treningu - plany i przekroje z

Block by Machine r¢eznie naniesionymi funkcjami, do

Creativity How to use inferencji same plany i przekroje

neural networks as

generative tools to design

space

Encoded Images Rossi, G; 2020|ACADIA Wartoéci opisujace geometri¢

Representational Protocols |Nicholas, P enkodowane w formie obrazow (do

for Integrating CGANs in przetwarzania przez GAN)

Iterative Computational

Design Processes

Data Driven Midsole Tian, R: Wang, 2020|ACADIA Szeregi czasowe, Dane dotyczace

Performance Oriented T; Gin,OY rozkladu obcigzen na podeszwie stopy

Midsole Design Using podczas chodzenia i biegania (dataset

Computational Multi ARAMIS)

Objective Optimization

On Al Adoption Issues in  |Zwierzycki, M 2020|ECAADE Przegladowe/Inne

Architectural Design

Identifying the issues based

on an extensive literature

review

Steering into the Skid Kimm, G; 2020{ACADIA Przegladowe/Inne

Arbitraging Human and Burry, M

Artificial Intelligences to




Augment the Design
Process

Urban Emotion The Kim, E; 2020|ECAADE Media spolecznosciowe
interrogation of social Rosenwasser, D
media and its implications
within urban context
Reinforcement Learning for | Wibranek, B; 2021|ECAADE  |Symulacja
Sequential Assembly of SL |Liu, Y; Funk,
Blocks N; Belousov, B;
Peters, J;
Tessmann, O
Training Spaces Fostering  |Mintrone, A; 2021|ECAADE  |Symulacja
machine sensibility for Erioli, A
spatial assemblages through
wave function colapse and
reinforcement learning
Towards Abductive Sebestyen, A; 2021|ECAADE  |Symulacja
Reasoning Based Rock, J;
Computational Design Hirschberg, U L
Tools Using Machine
Learning as a way to
explore the combined
design spaces of multiple
parametric models
A Chained Machine Nicholas, P; 2021|ECAADE Konglomerat danych: zdjecia fasad,
Learning Approach to Chen, Y; symulacje energetycznej budynkéw (na
Motivate Retro Cladding of |Borpujari, N; rzutach) i numeryczne (koszt
Residential Buildings Bartov, N; ekonomiczny i warto$¢ pochtonigtego
Refsgaard, A przez panele CO2)
Approach to Auto Wu, S 2021|ECAADE Filmy z drona
Recognition of Human
Trajectory in Squares using
Machine Learning-Based
Methods
A Research On Building Song, Y; Yuan, 2021|ECAADE Symulacja
Cluster Morphology PF
Formation Based On Wind
Environmental Performance
And Deep Reinforcement
Learning
Automatic Diminished Kikuchi, T; 2021|ECAADE Kamera (telefon)
Reality Based Virtual Fukuda, T;
Demolition Method using | Yabuki, N
Semantic Segmentation and
Generative Adversarial
Network for Landscape
Assessment
Mixed Reality Landscape |Nakabayashi, 2021|ECAADE Kamera (telefon/CCTV)
Visualization Method with |M; Fukuda, T;
Automatic Discrimination  [Yabuki, N.
Process for Dynamic
Occlusion Handling Using
Instance Segmentation
Comparative Evaluation of |Eisenstadt, V; 2021|ECAADE Tensorowe reprezentacje semantyczne
Tensor based Data Arora, H; projektow architektonicznych
Representations for Deep  |Ziegler, C;
Leatning Methods in Bielski, J;
Architecture Langenhan, C;
Althoff, K D;
Dengel, A
Visualizing Deep Learning |Newton, D 2021|ECAADE Zdjgcia satelitarne i dane o zdrowiu

Models for Urban Health
Analysis

Xl




From Streetscape to Data | Yazicioglu, G; 2021|ECAADE Zdjgcia panoramiczne street view + 0 1 0 0 0 0
Semantic segmentation for |Dino, i G symulacje nastonecznienia w ladybug
the prediction of outdoor do treningu

thermal comfort

A deep 2d 3d Feature Level |Pourazar, H; 2021|Geocarto Zdjecia z drona, rozne spektra $wiatta 0 0 1 0 0 0
fusion for classification of |Samadzadegan, International |widzialnego i podczerwonego
UAV multispectral imagery |F; Javan, F D
in urban areas

A novel CNN LSTM based |Boulila, W; 2021 |Ecological  |Szereg czasowy zdjg¢ satelitarnych 0 0 0 1 0 0
approach to predict urban  |Ghandorh, H; Informatics
expansion Khan, M A;

Ahmed, F;

Ahmad, J
Fill In The Blanks Deep Alani, M W; 2021|ASCAAD  |Przekroje przez rozety 0 0 0 0 0 1
Convolutional Generative |Al-Kaseem, B
Adversarial Network to R

Investigate the Virtual
Design Space of Historical
Islamic Patterns

Limits to Applied ML in Joyce, SC; 2021|ECAADE  |Przegladowe/Inne 0 0 0 0 0 0
Planning and Architecture |Nazim, |
Understanding and defining
extents and capabilities

Zalacznik 2. Tabela zrodel kwerendy gléwnej wykorzystania sieci
neuronowych w CAAD (do 2021 roku). Rodzaj sieci neuronowej, skala
zastosowania.

Kodowana technikg multi-hot:

Publikacja Rodzaj sieci neuronowej Skala zastosowania
Tytut FNNi[ CNN RNN LSTM GAN TRANS- INNE DRL | WPOMA- | DETAL, | ARCHI- | URBA- BEZ-
VAE FORMER NN, np. GAJACO | MATER- | TEK- NISTY- | SKA-
ORAZ NLP SOM DODAT- IALY, TURA KA LOWE
KOWE CAM
ML
PROCENT:|32,9%| 41,6% 4,7% 6,0% 20,1% 2,7% 3,4% 6,0% 14,8% 25,5% 49,0% 39,6% 2,7%
SUMA:| 49 62 7 9 30 4 5 9 22 38 73 59 4
Modelling spatial interaction 1 0 0 0 0 0 0 0 0 0 0 1 0

using a neural net

Using Artificial Neural Nets 1 0 0 0 0 0 0 0 0 0 1 0 0
to Predict Building Energy

Parameters

Artificial Neural Networks A 1 0 0 0 0 0 0 0 0 0 0 1 0

New Approach to Modelling
Interregional
Telecommunication Flows

Atrtificial neural networks and 1 0 0 0 0 0 0 0 0 0 1 0 0
naturally ventilated buildings

Urban change detection based 1 0 0 0 0 0 0 0 1 0 0 1 0
on artificial neural network
Capturing Housing Market 0 0 0 0 0 0 1 0 0 0 0 1 0

Segmentation An Alternative
Approach based on Neural
Network Modelling

Xl



Integration of neural networks
and cellular automata for
urban planning

An Artificial Neural Network
and Entropy Model for
Residential Property Price
Forecasting in Hong Kong

An artificial neural network
based approach for urban
growth zonation in Dehradun
city, India

Service life prediction models
for exterior stone cladding

A neural network model to
develop actions in urban
complex systems represented
by 2D meshes

Brains machines and buildings
towards a neuromorphic
architecture

Optimizing artificial neural
network-based indoor
positioning system using
genetic algorithm

Neural networks applied to
service life prediction of
exterior painted surfaces

Approximation of simulation-
derived visual com...a
comparative study in machine
learning

Analysis of human mobility
patterns from GPS trajectories
and contextual information

Artificial Imagination of
Architecture with Deep
Convolutional Neural
Network

Dimensionality Reduction for
Parametric Design
Exploration

Energy Model Machine EMM
Instant Building Energy
Prediction using Machine
Learning

Modeling property values in
Nigeria using artificial neural
network

Lace Wall Extending design
intuition through machine
learning

X1




3D Spatial Analysis Method
with First-Person Viewpoint
by Deep Convolutional Neural
Network with Omnidirectional
RGB and Depth Images

DANIEL A Deep Architecture
for Automatic Analysis and
Retrieval of Building Floor
Plans

Optical Integrity of
Diminished Reality Using
Deep Learning

Machines’ Perception of
Space Employing 3D Isovist
Methods and a Convolutional
Neural Network in
Architectural Space
Classification

Computing brains learning
algorithms and
neurocomputation in the smart
city

Machine learning for
architectural design Practices
and infrastructure

Learning Machine Learning as
an Architect How to

The introspection of Deep
Neural Networks - Towards
Illuminating the black box

Learning indoor space
perception

Classification based symbolic
indoor positioning over the
Miskolc 11S data set

Applied Automatic Machine
Learning Process for Material
Computation

Artificial Intelligence Aided
Architectural Design

Artificial intelligence in
architecture Generating
conceptual design via deep
learning

Street Frontage Net Urban
image classification using
deep convolutional neural
networks

Multi Objective Qualitative
Optimization MOQO in
Architectural Design

CNN based generation of high
accuracy urban distribution
maps utilising SAR satellite
imagery for short term change
monitoring

Modelling A Complex
Fabrication System New
design tools for doubly curved
metal surfaces fabricated
using the English Wheel

Understanding and
Visualizing Generative
Adversarial Networks in
Architectural Drawings

XV




An artificial intelligence-
based method to efficiently
bring CFD to building
simulation

Design in THE Age of
Artificial Intelligence

Stochastic Hybrids From
references to design options
through Self Organizing Maps
methodology

Deep learning in design
workflows The elusive design
pixel

Deep Form Finding Using
Variational Autoencoders for
deep form finding of structural
typologies

A framework of developing
machine learning models for
facility life cycle cost analysis

Deep Reinforcement Learning
for Autonomous Robotic
Tensegrity ART

Alive A Multi Layered
Flexible and Elastic Shape
Aware Graphene Based
Interface

Stripe Segmentation for
Branching Shell Structures A
Data Set Development as a
Learning Process for
Fabrication Efficiency and
Structural Performance

Re perceive 3D printing with
Atrtificial Intelligence

Design Space Exploration of
Initial Structural Design
Alternatives via Artificial
Neural Networks

XV




Haptic Learning Towards
Neural Network based
adaptive Cobot Path Planning
for unstructured spaces

Multimodal Classification of
Urban Micro Events

Interdisciplinary Al A
Machine Learning System for
Streamlining External
Aesthetic and Cultural
Influences in Architecture

Imaginary Plans The potential
of 2D to 2D Style transfer in
planning processes

Generation of Floor Plan
Variations with Convolutional
Neural Networks and Case-
based Reasoning

HorizonNet Learning Room
Layout with 1D
Representation and Pano
Stretch Data Augmentation

Architectural Drawing
Recognition A case study for
training the learning algorithm
with architectural plan and
section drawing images

Optimising Image
Classification Implementation
of Convolutional Neural
Network Algorithms to
Distinguish Between Plans
and Sections

Semantic Enrichment of
Indoor Point Clouds An
Overview of Progress towards
Digital Twinning

Deep Learning Model for
Predicting Preference of
Space by Estimating the
Depth Information of Space
using Omnidirectional Images

Designing deep CNN models
based on sparse coding for
aerial imagery a deep features
reduction approach

Deep Generative Learning for
the Generation and Analysis
of Architectural Plans with
Small Datasets

Hybrid Elevations Using
GAN Networks

An Anonymous Composition
Design Optimization Through
Machine Learning Algorithm

XVI




GAN Loci Imaging Place
using Generative Adversarial
Networks

Predicting and steering
performance in architectural
materials

Automated Brick Pattern
Generator for Robotic
Assembly using Machine
Learning and Images

Steps towards Al augmented
parametric modeling systems
for supporting design
exploration

Robot Ex Machina A
Framework for Real Time
Robot Programming and
Control

Pedestrian trajectory
prediction using BiRNN
encoder-decoder framework

Quo vadis Al in Architecture
Survey of the current
possibilities of Al in the
architectural practice

Trend Topics and Changing
Concepts of Computational
Design in the Last 16 Years

Application of Al in Urban
Design

Do Robots Dream of Digital
Sheep

Machine Learning from the
Past

Smart spaces, information
processing and the question of
intelligence

Robotic Constraints Informed
Design Process

Space ALocation Techniques
SAT Computable Design
Problems and Integrated
Framework of Solvers

Spatial Assembly with Self
Play Reinforcement Learning

A Performance Based Urban
Block Generative Design
Using Deep Reinforcement
Learning and Computer
Vision

Applying Deep Learning and
Databases for Energy-efficient
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Zalacznik 3. Tabela zrédel kwerendy gléwnej wykorzystania sieci

neuronowych w CAAD (do 2021 roku). Tematyka, zrodia danych.

Kodowana technikg multi-hot:

Tematyka Zrédla danych
Tytul Morfo- Kom- [ Wartosci | Pro-jekt | Tekst BIM ([GISipo-| Dane | Recznie | Kla- | Szereg |Zdjecia | Symu- | Ka- | Kamera | Przeg-
logia | pozycja | tabula- | para- chodne | mul- ozna- | syczne | Cza- | sateli- | lacja | mera | panora- (ladowe/
(wspom- | ryczne, met- timo- czane planyi | sowy | tarnei miczna / Inne
niana liczbo- | ryczny dalne dane prze- lot- sfe-
posred- we, kroje nicze ryczna
nio) chmury
punktow

PROCENT:| 18,1% 8,7% 11,4% | 6,7% | 13% | 2,7% 4,0% | 3,4% 6,0% 81% | 4,0% | 94% | 181% | 94% | 54% | 10,1%

SUMA: 27 13 17 10 2 4 6 5 9 12 6 14 27 14 8 15
Modelling spatial 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
interaction using a
neural net
Using Avrtificial 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

Neural Nets to
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Atrtificial Neural 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Networks A New
Approach to
Modelling
Interregional
Telecommunication
Flows

Avrtificial neural 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
networks and
naturally ventilated
buildings

Urban change 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
detection based on
artificial neural
network
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Zalacznik 4: Lista punktow glownych wykorzystanych do treningu sieci

neuronowej eksperymentu gldwnego oraz lista odrzuconych kandydatow.

Punkty gléwne ze wzgledu na lokalizacje (zbior treningowy)

Zrodlo Strona Punkt Przestanki Lokalizacja
Kevin Lynch, The |82 Koputa Santa Maria del Lokalizacja, skala, widocznos¢|43.7731244688946,
Image of the City Fiore z wielu katow 11.256950187977283
(Lynch, 1960)
Kazimierz Wejchert, |67 Ratusz, Sztokholm Lokalizacja, rola znaczeniowa, [59.32727009950819,
Elementy widoczno$¢, wysokos¢ wiezy [18.056018797869122
Kompozycji

pozyd 68 Cytadela w Irbilu, Irbil, Irak |Lokalizacja, skala 36.191210933629534,

44.00913794809795
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Urbanistycznej
(Wejchert, 1984)

68 Katedra Wniebowziecia Lokalizacja, skala (na osi ul. [37.78423183174164,
Naj$wietszej Maryi Panny |O'Farrell St) -122.42539032733146
w San Francisco
68 Zamek Krolewski, Lokalizacja, skala, symbol 52.24774010305404,
Warszawa 21.014167214068163
68 Wawel, Krakow Lokalizacja, skala, symbol, na {50.05474086414226,
wzgorzu 19.935143547684117
68 Zamek Krolewski, Checiny |Lokalizacja, symbol, na 50.797412649263485,
wzgorzu 20.460262023104846
75 Wieza Eiffla, Paryz Lokalizacja, skala, widoczno$¢|48.85823672734345,
2.2945431835473373
98 Ratusz, Sandomierz Lokalizacja, pigkno, 50.67934830667463,
organizacja przestrzeni 21.74930596113819
103 Bazylika Dominikanéw, Punkt charakterystyczny we |50.05933397190924,
Grodzka, Krakow wnetrzu urbanistycznym 19.93906864905628
103 Bazylika Franciszkanow,  |[Punkt charakterystyczny we |50.05922783625676,
Grodzka, Krakoéw wnetrzu urbanistycznym 19.936508429930548
103 Kosciot $w. Piotra i Pawta, |Punkt charakterystyczny we [50.056938531502624,
Grodzka, Krakow wnetrzu urbanistycznym 19.939123449264546
103 Kosciot $w. Andrzeja Punkt charakterystyczny we |50.05659879699593,
Grodzka, Krakéw wnetrzu urbanistycznym 19.938399930555306
103 Kosciot §w. Wojciecha, Punkt charakterystyczny we  |50.060909489198764,
Grodzka Krakow wnetrzu urbanistycznym 19.937716083709404
103 Zielona Brama, Dtuga, Punkt charakterystyczny we |54.3479487542666,
Gdansk wnetrzu urbanistycznym 18.655738303579398
103 Ratusz Glownego Miasta, |Punkt charakterystyczny we  [54.348795012676355,
Dtuga, Gdansk wnetrzu urbanistycznym 18.652638529291472
103 Ztota Brama, Dtuga, Punkt charakterystyczny we |54.349682029318124,
Gdansk wnetrzu urbanistycznym 18.648035798140057
135 Gmach Admiralicji, Lokalizacja, naprowadzenie  [59.937533472231046,
Petersburg, Rosja przez linie naprowadzajace,  [30.3086325034946
skala
135 Sobor sw. Izaaka, Lokalizacja, naprowadzenie  [59.93401374108756,
Petersburg, Rosja przez linie naprowadzajace 30.306188910575546
135 Pomnik Mikotaja I, Lokalizacja, naprowadzenie  [59.93209141704214,
Petersburg, Rosja przez linie naprowadzajace 30.30837462958869
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144 Rynek w Cieszynie, Lokalizacja, fontanna w 49.748754047391294,
centrum zaakcentowane centrum placu, w osi ul. 18.633395404533033
fontanna, Cieszyn Szersznika i Matejki
147 Muzeum Narodowe, Plac  [Punkt charakterystyczny we |50.0788960556454,
Wactawa, Praga, Czechy  |wnetrzu urbanistycznym 14.430894625736745
148 Kosciot sw. Kazimierza Lokalizacja, skala, kontrast ~ [52.253195278330104,
Krolewicza, Rynek Nowego 21.008799004338233
Miasta, Warszawa
153 Kolumna Vendome, Plac  |Lokalizacja, centrum placu,  |48.867469943263195,
Vendome, Paryz wysokos$¢, naprowadzenie 2.329442923887159
przez otwarcie waskie, wezet
zalozenia sieciowego
155 Luk Triumfalny, Plac De  |Lokalizacja, centrum placu, |48.873768393508314,
Gaulle'a, Paryz naprowadzenie przez otwarcia |2.2950556398040525
kierunkowe, wezel zatozenia
sieciowego
155 Palace Albanija, Plac Lokalizacja, otwarcie 44.815087864814686,
Terazije, Belgrad, Serbia  |agresywne, zamknigcie 20.460130818534253
wngetrza urbanistycznego
165 Bazylika Kolegiacka, Lokalizacja, poczatek wnetrza |52.70750597693507,
Puttusk podtuznego 21.088530872765254
165 Zamek, Pultusk Lokalizacja, poczatek wnetrza |52.70380812487929,
podtuznego 21.094723871177564
165 Ratusz, Puttusk Lokalizacja, centrum wnetrza |52.705844098292765,
podtuznego 21.09126635843592
168 Patac Kultury i Nauki w Lokalizacja, skala, 52.231759984653166,
Warszawie naprowadzenia, otwarcia, 21.006210337564905
sprzgganie szeregu wnetrz
50 Koputa Bazyliki $w. Piotra, |Lokalizacja w zespole 41.902166506491284,
Plac $w. Piotra, Watykan  [formalnym Bazyliki 12.453380378958762
Watykanskiej
Juliusz Zérawski, O |50, 130 Dziedziniec Krolewski, Lokalizacja w zespole 48.804324297071865,
Budowie Formy Patac Wersalski, Wersal, formalnym Patacu 2.1221411080918013
Architektonicznej Francja Wersalskiego, wezel zatozenia
(Zérawski, 1962) sieciowego
50, 130 Skrzyzowanie osi, Patac Lokalizacja w zespole 48.80796942185697,

Wersalski, Wersal, Francja

formalnym Patacu

2.1083895183337797
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Wersalskiego, wezel zatozenia

sieciowego
50, 130 Centrum Parku Lokalizacja w zespole 48.810016208806275,
Wersalskiego, Patac formalnym Patacu 2.1000599070438986
Wersalski, Wersal, Francja |Wersalskiego, wezet zalozenia
sieciowego
50, 130 Centrum polany w Parku Lokalizacja w zespole 48.81442471663893,
Wersalskim, Patac formalnym Patacu 2.0839451265006317
Wersalski, Wersal, Francja |Wersalskiego, wezet zatozenia
sieciowego
52 Kosciét Farny, Kazimierz ~ |Lokalizacja w zespole 51.322711426689,
Dolny formalnym Rynku w 21.948628889726415
Kazimierzu Dolnym,
Topografia
52 Klasztor Franciszkanski, Lokalizacja w zespole 51.32087405325941,
Kazimierz Dolny formalnym Rynku w 21.945140773563352
Kazimierzu Dolnym,
Topografia
52 Campanila, Plac $§w. Marka, |Lokalizacja w zespole 45.434025912165076,
Wenecja formalnym Placu $w. Marka |12.339092995552168
52 Bazylika §w. Marka, Plac  [Lokalizacja w zespole 45.43451609824373,
$w. Marka, Wenecja formalnym Placu $w. Marka |12.339733475527506
95 Sukiennice, Rynek, Krakow |Lokalizacja, centrum, 50.061647834367996,
naprowadzenia 19.937315107395793
95 Bazylika Mariacka, Rynek, |Lokalizacja 50.061675708795484,
Krakow 19.938982492824767
95 Wieza Ratuszowa, Rynek, |Lokalizacja 50.06147146955907,
Krakow 19.936420718989517
118 Rondo Pdl Elizejskich, Lokalizacja w zespole 48.86898261130083,
Paryz formalnym Luwru 2.3101378906524426
118 Front KoS$ciota de la Lokalizacja w zespole 48.8693998261807,
Madeleine, Paryz formalnym Luwru 2.3240308641214726
118 Luwr, Paryz Lokalizacja w zespole 48.86058053577298,
formalnym Luwru 2.3376416605527313
118 Luk Carrousel, Plac Lokalizacja w zespole 48.861716817964265,
Carrousel, Luwr, Paryz formalnym Luwru 2.332933597576387
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VI Centrum placu, Palmanova, |Dominanta ze wzgledu na 45.90537119979507,
Wiochy umiejscowienie, punkt 13.309922227650372
centralny zatozenia radialnego
Francis D. K. Ching, |5 Wieza klasztorna, Mont- Lokalizacja, widoczno$¢, 48.63604104667767,
Architecture Form, Saint-Michel, Normandia, |topografia, wysokos¢, -1.5114044222987941
Space, and Order Francja strzelistos¢
(Ching, 2007) - : —— ”
7 Lincoln Memorial, The Lokalizacja, widoczno$¢ 38.88930740144755,
Mall, Waszyngton, USA -77.05015872612371
7 Washington Monument, Lokalizacja, widoczno$¢ 38.88946469983048,
The Mall, Waszyngton, -77.03525028423452
USA
7 Kapitol, The Mall, Lokalizacja, widocznosé 38.889809176942585, -
Waszyngton, USA 77.00912382948968
128 Wieza ratusza, Piazza del ~ |Lokalizacja, naprowadzenia |43.31831653018856,
Campo, Siena, Wiochy ulic, strzelisto$¢ 11.332146530598532
129 Taj Mahal, Agra, Indie Lokalizacja, skala, punkt 27.17497404617232,
centralny 78.04201862461521
270 Patac Karlsruhe, Karlsruhe, |Lokalizacja, centrum zalozenia|49.01396719257856,
Niemcy radialnego 8.40441705573585
276 Plac przed Opera Garnier, |Lokalizacja, punkt formalnie |48.87068797788575,
Paryz, Francja podkreslony 2.3323230481763524
276 Plac Trocadero, Paryz, Lokalizacja, punkt formalnie [48.86287321044156,
Francja podkreslony 2.2873146954558727
276 Bassins du Chaps de Mars, |Lokalizacja, punkt formalnie |48.856102414304054,
Pola Marsowe, Paryz, podkreslony 2.29790349028674
Francja
276 Esplanade Jacques Chaban- |Lokalizacja, punkt formalnie [48.84728273681396,
Delmas, Paryz, Francja podkreslony 2.31163527992454
276 Fontanna w Ogrodzie Lokalizacja, punkt formalnie [48.84692429920298,
Luksemburskim, Paryz, podkreslony 2.3372009493797767
Francja
277 Biaty Dom, Waszyngton, |Lokalizacja, punkt formalnie [38.89753731966178,
USA podkreslony -77.03651592253495
277 Lincoln Park, Waszyngton, [Lokalizacja, punkt formalnie |38.88978118235831,
USA podkreslony -76.98984532402181
277 Wiezienie DC, Waszyngton, |Lokalizacja, punkt formalnie |38.883949370306745, -
USA podkreslony 76.97670938952504
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Zal. Nr 5,
Krajobraz

Pomnik gen. Tadeusza

Kosciuszki, Plac Wolno$ci

Obiekt o znaczeniu
kompozycyjnym,
wyrdzniajacy si¢ ze wzgledu
na kubature (forme), wysokos¢
lub walory architektoniczne
widoczny w panoramach z
wielu punktow widokowych;
Skrzyzowanie osi

widokowych

51.776789126483266,
19.454710476677143

Studium
Uwarunkowan i
Kierunkow
Zagospodarowania
Przestrzennego
Miasta Lodzi, 2018
(Prezydent miasta
todzi, 2018)

Zal. Nr 5,
Krajobraz

Kosciot Wniebowzigcia

Naj$wiegtszej Maryi Panny.

Plac Koscielny

Obiekt o znaczeniu
kompozycyjnym,
wyrdzniajacy si¢ ze wzgledu
na kubatur¢ (form¢), wysokos¢
lub walory architektoniczne
widoczny w panoramach z
wielu punktow widokowych;
Skrzyzowanie osi

widokowych

51.78317720219291,
19.45396901345193

Zat. Nr 5,
Krajobraz

Pomnik Pamigci Ofiar

Pomordowanych w

Wigzieniu na Radogoszczu,

Plac Pamigci Narodowej

Miejsce o widoku
harmonijnym i pozytywnym
odbiorze, obiekt o znaczeniu
kompozycyjnym,
wyrozniajacy si¢ ze wzgledu
na kubature (formg), wysokosé
lub walory architektoniczne
widoczny w panoramach z
wielu punktow widokowych;
Skrzyzowanie osi

widokowych

51.80892197389786,
19.438688189912302

Zal. Nr 5,
Krajobraz

Wieza ko$ciota karmelitow

bosych, Czere$niowa

Obiekt o znaczeniu
kompozycyjnym,
wyrozniajacy si¢ ze wzgledu
na kubature (forme), wysokos¢
lub walory architektoniczne

widoczny z osi widokowej

51.8081468942271,
19.435090138135216

Zal. Nr 5,

Krajobraz

Skrzyzowanie Strykowskie;j,

Wojska Polskiego i Palki

Miejsce o widoku
harmonijnym z pojedynczymi
elementami zaburzajacymi
przestrzen, wezet
komunikacyjny, skrzyzowanie

osi, otwarcie widokowe

51.79236495888682,
19.4886882414949
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Zal. Nr 5,
Krajobraz

Skrzyzowanie w

Nowosolnej

Skrzyzowanie osi na ciggu
widokowym, wezel zalozenia

radialnego

51.793859651737456,
19.589673898312135

Zal. Nr 5,
Krajobraz

Teatr Wielki, Plac
Dabrowskiego

Obiekt o znaczeniu
kompozycyjnym,
wyrdzniajacy si¢ ze wzgledu
na kubature (forme), wysokos¢
lub walory architektoniczne
widoczny w panoramach z
wielu punktéw widokowych;
Obiekt tworzacy glowny
motyw sylwety miasta w

panoramach

51.77345590237322,
19.469707668705905

Zal. Nr 5,
Krajobraz

Kosciot pw. §w. Teresy i
$w. Jana Bosko, Rondo

Solidarnosci

Obiekt o znaczeniu
kompozycyjnym,
wyrozniajacy si¢ ze wzgledu
na kubature (formg), wysokosé
lub walory architektoniczne
widoczny w panoramach z
wielu punktow widokowych;
Obiekt tworzacy glowny
motyw sylwety miasta w
panoramach. Wezet zatozenia
radialnego, otwarcie
widokowe

51.778226642584436,
19.48090472253959

Zat. Nr 5,

Krajobraz

Brama Miasta, Nowe

Centrum todzi

Obiekt o znaczeniu
kompozycyjnym,
wyrozniajacy si¢ ze wzgledu
na kubature (form¢), wysokos¢
lub walory architektoniczne
widoczny w panoramach z
wielu punktow widokowych;
Obiekt tworzacy glowny
motyw sylwety miasta w
panoramach

51.769007953435796,
19.46544822746343

Zal. Nr 5,

Krajobraz

Kosciot Ewangelicki, rog

Piotrkowskiej i Czerwonej

Obiekt o znaczeniu
kompozycyjnym,
wyrdzniajacy si¢ ze wzgledu
na kubature (form¢), wysokos¢
lub walory architektoniczne

widoczny z osi widokowej

51.748947985165664,
19.460288994047186
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Zal. Nr 5, Archikatedra ¥.6dzka, Plac |Obiekt o znaczeniu 51.7465481573585,
Krajobraz Katedralny kompozycyjnym, 19.460811155352847
wyrdzniajacy si¢ ze wzgledu
na kubature (forme), wysokos¢
lub walory architektoniczne
widoczny z osi widokowej
Zat. Nr 5, Wieza Kosciota Sw. Anny |Obiekt o znaczeniu 51.748760787608354,
Krajobraz kompozycyjnym, 19.48999854320184
wyrdzniajacy si¢ ze wzgledu
na kubature (forme), wysokos¢
lub walory architektoniczne
widoczny z osi widokowej
Zat. Nr 5, Koscidt sw. Wojciecha, Obiekt o0 znaczeniu 51.71313383560449,
Krajobraz Stawy Jana kompozycyjnym, 19.488822820042742
wyrozniajacy si¢ ze wzgledu
na kubatur¢ (form¢), wysokos¢
lub walory architektoniczne
widoczny z osi widokowej
Zat. Nr 5, Kosciot sw. Faustyny Obiekt o znaczeniu 51.74092418911683,
Krajobraz Kowalskiej kompozycyjnym, 19.463921520268148
wyrozniajacy si¢ ze wzgledu
na kubatur¢ (form¢), wysokos¢
lub walory architektoniczne
widoczny z osi widokowej
Zat. Nr 5, Blok mieszkalny, £.odzki Obiekt 0 znaczeniu 51.75841861236623,
Krajobraz Manhattan kompozycyjnym, 19.460056342266615
wyrozniajacy si¢ ze wzgledu
na wysokos¢; szczyt sylwetki
L.6dzkiego Manhattanu
Zal. Nr 13, Atlas Arena Dominanta w zamkni¢ciu 51.75720301768292,
Kryst. Uktadu kompozycyjnym wewnetrznej (19.42501006859015
Przestrz. osi wspotczesnej wschod-
zachod
Studium Zat. Nr 13, |Obecna ,,Stajnia Wezet komunikacyjny na 51.7592302084747,
Uwarunkowan i Krystal. Jednorozcow”, Lodzki przecigciu glownych osi 19.457067986333477
Kierunkow Uktadu Manhattan krystalizujacych plan Lodzi:
Zagospodarowania |Przestrz. 0si historycznej p6inoc-

Przestrzennego
Miasta t.odzi, 2010

potudnie i osi wspotczesnej

wschod-zachod
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(Prezydent miasta  |n/d Skrzyzowanie Alei Unii Wezet zalozenia radialnego, |51.767347105376324,
Lodzi, 2010) Lubelskiej i otwarcie widokowe 19.421319217825985
Konstantynowskiej
Opracowanie wilasne [n/d Kosciot §w. Katarzyny, Dominanta, zamknigcie osi 51.85606809474244,
Zgierz widokowych, topografia 19.403719915059764
terenu
n/d Skwer Orzeszkowej Wezet zatozenia radialnego, w |51.80364490021924,
osi Parku Adama Mickiewicza [19.448517570556696
i Lisciastej, styk parku z
zabudowa jednorodzinng
n/d Most Arturéwek OS$ stawow na Bzurze, wezet |51.822739317054115,
widokowy i komunikacyjny w (19.474116941045487
kompleksie Arturowka
n/d Plac Stoneczny, Radogoszcz |Punkt centralny krystalizujacy |51.82057670889436,
zabudowe osiedla na 19.443397750387696
Radogoszczu
n/d Kosciot Najswietszego Dominanta w osi Balladyny  [51.81902796232642,
Sakramentu 19.440944165924964
n/d Kopiec w Parku Ocalatych |Dominanta wysoko$ciowa, 51.785467417188364,
wezel zalozenia parkowego  [19.474582897679383
n/d Pomnik Sprawiedliwych Wezel zatozenia parkowego  |51.78534687726929,
Wsrod Narodow Swiata, 19.470659781812284

Park Ocalatych

Odrzuceni kandydaci do zbioru treningowego. Przyklady nieaktualne, nieistniejace, dominanty i punkty formalnie

podkreslone jednak niebedace punktami gléwnymi oraz punkty gléwne w nieodpowiedniej skali kompozycji.

Zrédlo Strona Punkt Przestanki Lokalizacja
Kevin Lynch, The |79 Wiatrowskaz z konikiem Symbol 42.36004681293719,
Image of the City polnym, Faneuil Hall, -71.05608434517856
(Lynch, 1960) Boston
79 Ztota koputa State House, |Lokalizacja na wzgdrzu 42.358174439996965, -
Boston 71.06365005993443
79 Los Angeles City hall, LA |Wysoko$¢, forma 34.05373945159497,
-118.24270006057436
79 Christian Science Building, |Kontrast z otoczeniem 42.344905314532014, -
Boston 71.0844238818036
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79 Jersey City Medical Center, |Skala, obecnie nieaktualne 40.71631288597379,
przez skale, Boston -74.05050889797708
79 Old Hall of Records, Los Skala okien, orientacja, detal, |34.05415760852688,
Angeles Civic Center, LA |wyburzony -118.24420217242267
80 Old Hancock Building, Widoczno$é z wielu katow,  |42.34980365499649,
Boston wysokos$¢, obecnie nieaktualne [-71.07325103052949
ze wzgledu na budowe
Hancock Tower w latach 70.
Nastepca Old Hancock, tez 42.34922887724831,
widocznos¢, warto dodad, -71.07507774050572
wybudowany w latach 70. po
wydaniu Image Of The City
80 Richfield Oil Building, Los |Widoczno$¢ z wielu katow,  |34.05109536320206,
Angeles wysokos¢, wyburzony -118.25719648167308
80 Little Gray Lady, Mata skala, cofnigcie od ulicy, |34.0490326485702,
Tth/Flower st. Corner, Los |wiek, materiat (drewno), -118.25878798165265
Angeles wyburzony
81 Telephone Building, Lokalizacja, pomaga podja¢  [42.36139626824704,
Bowdoin Square, decyzj¢ o kontynuowaniu -71.06158677052751
Cambridge Street, Boston  |podr6zy wzdtuz ulicy
81 Baptist Temple Symphony [Funkcja, negatywny konktrast (34.04943500856028,
Hall, Los Angeles migdzy wzniosta funkcja a -118.25234030903788
stabg forma, wyburzone
81 Custom House Tower, Wysokos¢, widocznos¢ z 42.359058602722364, -
Boston wielu katow, nieaktualne, 71.05356664523302
obrosniete wyzszymi
budynkami
Kazimierz Wejchert, |60 Wieze WTC, Nowy York |Skala, widoczno$¢ z wielu 40.7115161000248,
Elementy katoéw, zniszczone -74.01318311777727
Kompozycji — :
pozyd] 66 Gmach ONZ, Nowy York _|Lokalizacja i rola znaczeniowa|40.750107455187965, -
Urbanistycznej
73.96772474728935
(Wejchert, 1984)
68 Alcazar de Toledo, Toledo, |Skala, wyrdzniajaca si¢ forma |39.85791251490771,
Hiszpania -4.0205081766324655
68 Katedra NSMP, Toledo, Skala, wyrdzniajaca si¢ forma |39.85709799709746,
Hiszpania -4.023574920356383
68 Seminario Conciliar de San |Skala, wyrdzniajaca si¢ forma |39.85390849764476,
Ildefonso de Toledo -4.023989478439541
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68 Skarpa staromiejska, Lublin |Lokalizacja, skala, symbol, na {51.247891054987896,
wzgorzu 22.567945795202885
68 Hradczany, Praga, Czechy |Lokalizacja, skala, symbol, na [50.09060879569342,
wzgbrzu 14.400508825432444
73 Rondo gen. J. Zietka, Lokalizacja, sasiedztwo 50.2643570826509,
Katowice waznych obiektow 19.023559714586202
75 Centrum Pompidou, Paryz |Lokalizacja, skala, kontrast ~ |48.86047151124023,
2.352460724671782
79 Pomnik Deportowanych,  |Ukfad przestrzenny, punkt 48.85163525581611,
Paryz podkreslony 2.3526449696610374
97 City Hall, Toronto, Kanada |Lokalizacja, forma, pickno 43.65349088264935,
-79.38397248015865
103 Posag Neptuna, Diuga, Punkt charakterystyczny we  |54.348545404820186,
Gdansk wnetrzu urbanistycznym 18.653241216625045
103 Dwor Artusa, Diuga, Punkt charakterystyczny we |54.3486921629679,
Gdansk wnetrzu urbanistycznym 18.65334985881403
136 Teatr Wybrzeze, Targ Lokalizacja, ptaszczyzna 54.35118601294387,
Weglowy, Gdansk zamykajaca, naprowadzenie  |18.64862343364292
przez linie naprowadzajace
137 Wiezyczka Kosciota Lokalizacja, zamknigcie 52.24828499096968,
Paulinow, Stare Miasto, zaulka, linie naprowadzajace |21.01269745708259
Warszawa
138 Matostranska Wieza Lokalizacja, linie 50.08731418478959,
Mostowa, Praga, Czechy naprowadzajace tworzg cokot (14.406866444643768
dla dominanty
149 Kosciot Mariacki, Stare Skala 54.34980556485089,
Miasto, Gdansk 18.653253868933913
149 Biata Wieza, Rynek, Hradec | Wysokos¢, strzelisto$¢ 50.20900783271558,
Kralove, Czechy 15.83081466108146
149 Katedra Swietego Ducha,  [Wysokos¢, strzelisto$é 50.20876401060737,
Rynek, Hradec Kralove, 15.831181091543646
Czechy
149 Ratusz, Rynek, Hradec Wysoko$é¢, strzelistosé 50.2092911301241,
Kralowe, Czechy 15.831425996987806
155 Chilehaus, Hamburg, Lokalizacja, otwarcia 53.54830776019474,
Niemcy (+liczne otwarcia |agresywne, zamknigcie wnetrz |10.003000335414914

urbanistycznych
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agresywne tego typu w

catym Hamburgu)
165 Katedra w Sienie, Siena, Skala, wyrdzniajaca si¢ forma, |43.31780149601075,
Wtochy sprzeganie szeregu wnetrz 11.329034108204878
urbanistycznych
Juliusz Zérawski, O (50 Obelisk w centrum, Plac $w.|Lokalizacja w zespole 41.90223811543213,
Budowie Formy Piotra, Watykan formalnym Bazyliki 12.457262932471398
Architektonicznej Watykanskiej
76 ki, 1962 : a——
(Z6rawski ) 50 Fontanna, Ognisko Lokalizacja w zespole 41.90277489658461,
potnocne elipsy, Plac §w.  |formalnym Bazyliki 12.45723569424325
Piotra, Watykan Watykanskiej
50 Fontanna, Ognisko Lokalizacja w zespole 41.90170130750023,
potudniowe elipsy, Plac $w. |[formalnym Bazyliki 12.457278008723337
Piotra, Watykan Watykanskiej
50 Posag Marka Aureliusza,  [Lokalizacja w zespole 41.893323183044274,
Plac Kapitolinski, Rzym formalnym Placu 12.482934735894471
Kapitolinskiego
50 Wieza zegarowa Patacu Lokalizacja w zespole 41.89301876417793,
Senatorow, Plac formalnym Placu 12.483561305130888
Kapitolinski, Rzym Kapitolinskiego
52 Patad Dozow, Plac §w. Lokalizacja w zespole 45.43384799274172,
Marka, Wenecja formalnym Placu $w. Marka |12.339997088644589
52 Kolumna $§w. Marka, Plac  |Lokalizacja w zespole 45.4333540584212,
$w. Marka, Wenecja formalnym Placu sw. Marka [12.33991578944312
52 Kolumna San Todaro, Plac |Lokalizacja w zespole 45.433285220072136,
$w. Marka, Wenecja formalnym Placu sw. Marka [12.33965995328723
133 Pomnik Gattamelaty Lokalizacja na Piazza del 45.40157301647186,
Donatella, Piazza del Santo, [{Santo 11.87998528794386
Padwa, Wtochy
133 Fasada Bazyliki $w. Lokalizacja na Piazza del 45.40133877761612,
Antoniego, Piazza del Santo 11.88033432873618
Santo, Padwa, Wlochy
Francis D. K. Ching, |5 Posag Marka Aureliusza,  |Lokalizacja, rysunek posadzki {41.893323183044274,
Acrchitecture Form, Plac Kapitolinski, Rzym 12.482934735894471
Space, and Order : : — — —
20 Obelisk, Piazza della Trinita|Lokalizacja, widoczno$¢, 41.90616294978277,
Ching, 2007 . .
( g ) dei Monti, Rzym, Wiochy |topografia, naprowadzenie 12.483210466966078

przez schody hiszpanskie
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20 Kosciot Trinita dei Monti, |Lokalizacja, widoczno$¢, 41.90623092251156,
Rzym, Wiochy topografia, naprowadzenie 12.48341910603524
przez schody hiszpanskie
31 Obelisk, Piazza Ducale, Lokalizacja 44.99931830761596,
Sabbioneta, Wiochy 10.489976172243857
31 Wieza ratusza, Piazza Lokalizacja, wysokos¢, 44,999354711748424,
Ducale, Sabbioneta, Wtochy |strzelisto§¢ 10.490290654131071
128 Punkt wystapien, Piazza del [Naprowadzenia rysunku na  |43.318267770612586,
Campo, Siena, Wiochy posadzce 11.331817478341481
128 Obelisk w centrum, Plac $§w. |Lokalizacja w zespole 41.90223811543213,
Piotra, Watykan formalnym bazyliki 12.457262932471398
Watykanskiej
128 Fontanna, ognisko pétnocne |Lokalizacja w zespole 41.90277489658461,
elipsy, Plac $w. Piotra, formalnym bazyliki 12.45723569424325
Watykan Watykanskiej
128 Fontanna, ognisko Lokalizacja w zespole 41.90170130750023,
potudniowe elipsy, Plac $w. |[formalnym bazyliki 12.457278008723337
Piotra, Watykan Watykanskiej
276 Obserwatorium Paryskie, Lokalizacja, punkt formalnie [48.83641607356397,
Paryz, Francja podkreslony 2.3365973292578155

Zalacznik 5. Tabela ewaluacji wytrenowanego algorytmu na zbiorze
testowym

Kodowana technikg multi-hot:

‘Wartosci procentowe: 74,4% 50,0% 13,8% 10,6% 3,8% 75,6% 56,9% 2,5% Skuteczno$é
calkowita: 59,4%
Nazwy Koord. L.p. Czy Czy dominanta Czy Czy gléwny | Czy jeden z Czy linie Czy Czy pominigcie Oznaczone
robocze rozpoznany lub punkt zakoncz. punkt glownych naprowadz. | przynajmniej | punktu mialo | punkty gléwne
jakikolwiek | orientacyjny o | zalozenia |centralny w wezlow s jedno z sens?
punkt znaczacej skali | osiowego? | kompozycji zalozenia zaznaczone | kryteriow dot.
gléwny? o lokalizacji radialnej? | sieciowego? | sensownie? punktow
podkreslonej gléwnych
przez spelnione?
kompozycje
miejska i/lub
topografie
terenu?
Plac Unii 52.21357, 1 1 1 1 1 1 1 Plac Unii,
Lubelskiej 21.02163 Biurowiec Plac
Unii, Riviera
2 1 1 1 Biurowiec Plac Unii
3 1 1 1 1 1 1 Plac Unii,
Biurowiec Plac
Unii, Riviera
4 1 1 1 1 1 Plac Unii, Estakada
przy Placu Na
Rozdrozu
(pominiecie
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samego Placu na
Rozdrozu)

1 1 1 Plac Unii,
Biurowiec Plac Unii

Prudential

Muzeum 52.23659, 6 1 1
Fryderyka 21.02291
Chopina 7
1 1 Wiezowiec
domykajacy o ul.
Kopernika

10
1 Estakada przy

Plac 52.21985, 11 1 1 1
Placu Na Rozdrozu
(pominiecie

Zbawiciela | 21.01800
samego Placu na

(+ place
okoliczne)
Rozdrozu)

1 1 Otwarcie na Plac
Konstytucji

12 1 1
1 1 1 Dwa gtéwne

otwarcia na Plac
Konstytucji

13

1 1 Dwa gtéwne
otwarcia na Plac
Konstytucji

14 1

1 Estakada przy
Placu Na Rozdrozu
(pominiecie
samego Placu na
Rozdrozu)

15 1

Osiedle 52.28421, 16 1 1 1 Placyk przed
Zacisze 21.06992 Domem Kultury
Zacisze

1 Placyk przed
Domem Kultury
Zacisze

1 Placyk przed
Domem Kultury
Zacisze, Skwer z

placem zabaw przy

mostku pieszym
nad Kanatem

Brédnowskim

Duze skrzyzowanie
Mtodziericzej z
Radzymiriskg

1 1 1 Placyk przed
Domem Kultury
Zacisze

20

Ursynow 52.15936, 21 1 1 1 1 Wyjscie z ciggu
Potnocny 21.02794 pieszego ul.
Dzwonniczej na
Aleje Komisji
Edukacji
Narodowej, duze
Skrzyzowanie
Romera z
Putawska

1 1 Duze Skrzyzowanie
Romera z
Putawska

1 1 Wiezowiec
mieszkalny w osi
Parku
Koztowskiego

23 1 1

1 1 1 Wyjscie z ciggu
pieszego ul.
Dzwonniczej na
Aleje Komisji
Edukacji
Narodowej

24

25
Duze skrzyzowanie

Ptaskowickiej z

26 1
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Ursynow
Pid., Natolin

52.14015,
21.05629

Alejg Komisji
Edukacji
Narodowej

27

Duze skrzyzowanie
Ptaskowickiej z
Dereniowa/Stryjen
skich

28

Wiezowiec
mieszkalno-
ustugowy Galeria
Ursynéw

29

Wiezowiec
mieszkalno-
ustugowy Galeria
Ursynéw

30

Wiezowiec
mieszkalno-
ustugowy Galeria
Ursynéw

Saska Kepa,
ul. Francuska

52.23326,
21.05492

31

Dwa wiezowce
mieszkalne w
osiach ulic
radialnych na
Saskiej Kepie

32

Wejscie do
Stadionu
Narodowego od
strony Ronda
Waszyngtona

33

Rondo
Waszyngtona

34

35

Rondo
Waszyngtona

Cerkiew
Praska

52.25481,
21.03322

36

Skrzyzowanie Alei
Solidarnosci z
Targowg przy

Dworcu Wileriskim

37

Skrzyzowanie Alei
Solidarnosci z
Targowg przy

Dworcu Wileriskim

38

Skrzyzowanie Alei
Solidarnosci z
Targowa przy

Dworcu Wileriskim

39

Skrzyzowanie Alei
Solidarnosci z
Targowa przy

Dworcu
Wileniskim,
Przejscie piesze
miedzy budynkami
w osi dtugiego
budynku
Jagielloriska 44

40

Skrzyzowanie Alei
Solidarnosci z
Targowa przy

Dworcu Wileriskim

Stara Praga

52.25214,
21.03764

41

Dworzec Wilerski

42

Skrzyzowanie
Zamoyskiego z
Sokota

43

Centrum Placu
Weteranéw 1863
roku w osi Katedry

$w. Michata

44

Skrzyzowanie Alei
Solidarnosci z
Targowq przy

Dworcu Wileriskim

45

Skrzyzowanie Alei
Solidarnosci z
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Targowq przy
Dworcu Wileriskim

Zaktady FSO

52.28464,
21.01087

46

47

48

49

Punkt na
Jagielloriskiej
naprzeciwko

przychodni

Luxmed

50

Focus

52.21757,
21.00811

51

Wejscie do Focusa

52

53

Wejscie do Focusa

54

Riviera

55

Riviera, Zebra
Tower

Nowodwory

52.33233,
20.94701

56

Blok mieszkalny
Premium Point
zamykajacy os ul.
Cwiklinskiej

57

Stadion
Biatoteckiego
Osrodka Sportu

58

Narozny blok
mieszkalny przy
Ksigzkowej 9F w
osi wewnetrznej
drogi osiedlowej

59

Narozny blok
mieszkalny przy
Ksigzkowej 9F w
osi wewnetrznej
drogi osiedlowej

60

Domaniewsk
a

52.18348,
21.00218

61

Skrzyzowanie
Domaniewskiej z
Wotoska: wezet

komunikacyjny

»Mordor”

62

Skrzyzowanie
Wotoskiej z
Marynarska/Wilan
owska

63

Skrzyzowanie
Domaniewskiej z
Wotoska: wezet

komunikacyjny

»Mordor"

64

Skrzyzowanie
Domaniewskiej z
Wotoska: wezet

komunikacyjny

»Mordor",
skrzyzowanie

Woronicza z

Wotoska

65

Skrzyzowanie
Domaniewskiej z
Wotoska: wezet

komunikacyjny

»Mordor"

Sady
Zoliborskie

52.26723,
20.97172

66

Skrzyzowanie
Krasinskiego z
Popietuszki

67

Skrzyzowanie
Stowackiego z
Popietuszki

68

Ktadka pieszo-
rowerowa nad
aleja Armii
Krajowej




69 Skrzyzowanie
Krasiriskiego z
Popietuszki
70 1 Skrzyzowanie
Stowackiego z
Popietuszki
Plac 52.21910, 71 Wiezowiec Ochota
Narutowicza | 20.98368 Residence
72 Wiezowiec Atlas
Tower
73 Skrzyzowanie
Grdjeckiej z
Wawelska/Kopirisk
q
74 Wiezowiec Ochota
Residence
75 Skrzyzowanie
Grdjeckiej z
Wawelska/Kopirisk
q
Las 52.29324, 76
Bielanski 20.95605
77
78
79
80 Skrzyzowanie
Marymonckiej/De
wajtis i
Marymonckiej:
wijazd do Lasu
Bielariskiego
Patac w 52.16509, 81 Pawilon
Wilanowie 21.08919 Potockiego 20/22
82 Skrzyzowanie Alei
Wilanowskiej z
Przyczotkowska
83 Skrzyzowanie Alei
Wilanowskiej z
Przyczotkowska
84 Skrzyzowanie Alei
Wilanowskiej z
Przyczétkowska,
petla autobusowa
Wilanéw
85
Centrum 52.24220, 86
Nauki 21.02883
Kopernik, 87 Motel One
Bulwary Warszawa Chopin
Wislane
88 Elektrownia
Powisle, blok
mieszkalny przy
Leszczyniskiej
89
90
Muzeum 52.23224, 91 Warsaw Spire,
Powstania 20.98138 Warsaw Trade
Warsz. Tower
92 Warsaw Spire,
Warsaw Trade
Tower
93
94
95 Warsaw Spire
Stary 52.20354, 96 Skrzyzowanie
Mokotow 21.01006 Madalinskiego z
Aleja
Niepodlegtosci
97 Skrzyzowanie

Madalinskiego z
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Aleja
Niepodlegtosci

98

Skrzyzowanie
Madalinskiego z
Aleja
Niepodlegtosci

99

Wiezowiec
mieszkalny
Giordana Bruna 34

100

Patac na
Wyspie
(Lazienki)

52.21476,
21.03587

101

Centrum Stawu
tazienkowskiego w
osi Podchorazéwki
(przed Patacem na

Wyspie)

102

Centrum Stawu
tazienkowskiego w
osi Podchorazowki
(przed Patacem na

Wyspie)

103

Blok mieszkalny
Podchorazych 39a

104

105

Centrum Stawu
tazienkowskiego w
osi Podchorazowki
(przed Patacem na

Wyspie)

Biatolgka

52.30455,
20.97790

106

Blok mieszkalny na
wzniesieniu
zamykajacy placyk
osiedlowy w osi ul.
Leszczynowej

107

Blok mieszkalny na
wzniesieniu
zamykajacy placyk
osiedlowy na w osi
ul. Leszczynowej

108

109

Blok mieszkalny na
wzniesieniu
zamykajacy placyk
osiedlowy w osi ul.
Leszczynowej, blok
mieszkalny
naprzeciwko
Szkoty
Podstawowej nr
118

110

Blok mieszkalny na
wzniesieniu
zamykajacy placyk
osiedlowy w osi ul.
Leszczynowej, blok
mieszkalny
naprzeciwko
Szkoty
Podstawowej nr
118

Stadion
Narodowy

52.23942,
21.04580

111

112

Centrum Stadionu
Narodowego

113

114

Centrum Stadionu
Narodowego

115

Wejscie do
Stadionu
Narodowego od
strony Ronda
Waszyngtona

Boernerowo

52.26295,
20.90216

116

117

118

Maty parking
samochoddéw
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osobowych miedzy
Boernerowem a
Lotniskiem
Bemowo

119

120

Bielany w
okolicy stacji
metra
Mitociny

52.29032,
20.93509

121

Skrzyzowanie

Kasprowicza z

Sokratesa/Przy
Agorze

122

Skrzyzowanie
Kasprowicza z Al.
gen. Marii Witek:

Wezet Mtociny

123

Blok mieszkalny
Wrzeciono 17

124

Skrzyzowanie
Kasprowicza z
Sokratesa/Przy
Agorze, blok
mieszkalny
Wrzeciono 42

125

Skrzyzowanie

Kasprowicza z

Sokratesa/Przy
Agorze

Fort VIIA
Stuzewiec

52.17242,
21.01565

126

Skrzyzowanie Al.
Lotnikéw z
Modzelewskiego,
drobne zatozenie
radialne
Niegocirska-Al.
Lotnikéw

127

Centrum stawu na
Potoku
Stuzewieckim

128

129

Skrzyzowanie Al.
Lotnikéw z
Modzelewskiego,
wiezowiec
mieszkalny
Irysowa 29 w osi ul
Niedzwiedziej

130

Skrzyzowanie Al.
Lotnikéw z
Modzelewskiego,
Gmach Wydziatu
Zarzadzania UW

Fort
Szczgsliwice

52.20671,
20.94989

131

Skrzyzowanie Al.
Jerozolimskich z ul.
Smigtowca

132

133

134

Narozny blok
mieszkalny
Wiodarzewska 83

135

Fort
Chrzanow

52.22021,
20.89245

136

Skrzyzowanie
Lazurowej,
Sterniczej,

Kopalnianej i

Steligowskiej w osi
Fortu Chrzandw,
wezet
komunikacyjny

137

Dojscie do matego

stawu na parkingu

za halg handlowa
Selgros

138

139
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140

Skrzyzowanie
Lazurowej,
Sterniczej,

Kopalnianej i

Steligowskiej w osi
Fortu Chrzandw,
wezet
komunikacyjny

Fort Blizne

52.24688,
20.89487

141

Estakada
lazurowej nad
Alejg Obroricow
Grodna

142

Estakada
lazurowej nad
Alejg Obroricow
Grodna

143

Estakada
lazurowej nad
Alejg Obroricow
Grodna

144

Estakada
lazurowej nad
Alejg Obroricow
Grodna

145

Akademik
Wojskowy nr 3

Fort
Wawrzyszew

52.27749,
20.90736

146

147

Punkt na fosie
Fortu Wawrzyszew
w osi fortu

148

149

150

Wiezowiec
biurowy
Wdlczyriska 133
domykajacy o$
Wolczyriskiej

Fort Bema

52.25661,
20.93882

151

Blok mieszkalny
Obroricow
Tobruku 23

152

Naroznik
Cmentarza
Wojskowego

153

Blok mieszkalny
Obroricéow
Tobruku 23

154

155

Fort Stuzew

52.16655,
21.04087

156

Dom studencki
IKAR SGGW

157

Dom studencki
IKAR SGGW

158

Dom studencki
Feniks SGGW

159

Blok mieszkalny
Noskowskiego 8
domykajacy o$
Noskowskiego,
widoczny z
otwarcia
widokowego
wzdtuz
Nowoursynowskiej

160

Dom studencki
IKAR SGGW

LIV




Zalacznik 6: Lista punktow glownych wykrytych przez sie¢ neuronowg we

fragmencie Warszawy

W celu demonstracji mozliwosci seryjnego przetwarzania wigkszych obszarow sie¢ neuronowa
wytrenowana w eksperymencie gldwnym zostala aplikowana do fragmentu obszaru zabudowy
srédmiejskiej Warszawy o wymiarach 5x5km. Obszar zostal przetworzony przez sie¢ w 100
zachodzacych na si¢ na siebie kafelkach (kazdy pokrywajacy okoto 1km kwadratowy). Na

potrzeby wizualizacji natozono takze 7 kafelkow ze zbioru testowego (Rys. 72).

Na badanym obszarze sie¢ rozpoznata 64 punkty gtowne. Kursywg oznaczono 2 przyktady
znajdujace si¢ takze w zbiorze treningowym. Pogrubieniem oznaczono 43 przyktady, w
ktérych decyzja sieci neuronowej wydaje si¢ trafna. Zwyklym tekstem oznaczono 19

przyktadow niejednoznacznych. Od pétnocy w kierunku potudniowym:

e Skrzyzowanie ul. Tatarskiej z Powazkowska. Zamknigcie osi ul. Tatarskiej, zaklad
kamieniarski bez dominanty przestrzennej.

e Babka Tower przy rondzie Radostawa. Dominanta wysokosciowa przy
podkreslonym kompozycyjnie przecigciu osi komunikacyjnych. Brama wyznaczona
wraz z wiezg kompleksu Forest (symetria srodkowa wzgledem ronda).

e Wieza kompleksu biurowego Forest przy Rondzie Radostawa. Dominanta
wysoko$ciowa przy podkres§lonym kompozycyjnie przecigciu osi komunikacyjnych.
Brama wyznaczona wraz z Babka Tower (symetria srodkowa wzglgdem ronda).

e Wiezowiec Intraco. Dominanta wysokos$ciowa na zamknigciu kilku osi widokowych.
Brama Péinocna wyznaczona wraz z North Gate.

e Zamknigcie ul. Kozlej przy ul. Franciszkanskiej. Naprzeciwko Kozlej 5. Otwarcie
widokowe na zielong ul. Fondaminskiego i tyt Ko$ciota §w. Franciszka Serafickiego.

o Kosciol Franciszka Serafickiego. Podkreslona kompozycyjnie elewacja przy skosnie
wycofanej pierzei. Zaakcentowany naroznik.

e Ostroga regulacyjna na przedtuzeniu ul. Ratuszowej. Zamknigcie osi nad Wistg bez
dominanty przestrzennej. Sciezka piesza. Ekspozycja na tle Wisty i naprowadzenie
przez o$ wyspy piaskowe;.

o Zamek Krolewski. Naprowadzenia widokowe, podkreslona elewacja, lokalna dominanta
wysokosciowa wiezy, lokalizacja na wzgorzu.

e Skrzyzowanie Al. Jana Pawla i ul. Anielewicza. Przecigcie duzych osi widokowych.
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Parking naprzeciwko centrum handlowego KIlif. Na podkreslonym widokowo
zatamaniu osi Okopowej pomiedzy Klif Tower a kompleksem Okopowa 56.
Skrzyzowanie ul. Radziwie z Obozowa. Otwarcie widokowe, skrzyzowanie wickszej
osi widokowej z kilkoma mniejszymi. Zakonczenie rytmicznego uktadu Wola Tower,
brama zapraszajaca na ul. Radziwie. Naroznik placu wyznaczonego przez MPO
Obozowa 43.

Anielewicza 30. Skrzyzowanie osi skosnego rytmu czterech punktowcow
mieszkaniowych z osig ul. Anielewicza.

Blekitny wiezowiec. Dominanta wysokosciowa, zamknigcie kilku osi widokowych.
Sprzezenie Placu Bankowego w osi jego poéinocno-wschodniej pierzei.

Teatr Wielki. Dominanta przestrzenna w osi Placu Teatralnego. Zamknigcie kilku osi
widokowych. Na przedluzeniu zielonej pierzei Ogrodu Saskiego.

Skrzyzowanie Al. Jana Pawla II i Al. Solidarnosci. Przecigcie dwoch duzych osi
widokowych oznaczone podwyzszeniem zabudowy w naroznikach.

Al Solidarnosci 127. Naprzeciwko Sadu Okregowego w Warszawie.

Elektrownia Powisle. Lokalizacja na szczycie niskiego wzgorza (o wiele czytelniejsza
w przestrzeni cech niz w rzeczywistosci). Na zamknigciu kilku drobnych osi
widokowych (m.in. osiedla Nowe Powisle).

Cze$¢ ul. Leszczynskiej miedzy numerami la i 4. Na przecieciu przedtuzenia osi
ul. Elektrycznej z osig ul. Leszczynskiej.

Hala Gwardii. Zakonczenie osi Saskiej, przecigcie z osig ul. Zimnej i osig $ciezki
pieszej w Parku Mirowskim (od ul. Grzybowskiej).

Skrzyzowanie Gorczewskiej i Plockiej. Przecigcie dwoch duzych osi widokowych.
Podkreslone dodatkowo przez skosnie usytuowany budynek Plocka 41. Skosne
elewacje wzdhuz skrzyzowania wyznaczajg pierzeje pigciokatnego placu.

Warsaw Trade Tower. Dominanta wysokosciowa na zamknieciu wielu duzych osi
widokowych, dodatkowo podkreslona przez tuk ul. Okopowej. Wraz z Warsaw Spire
I Warsaw Unit wyznaczaja warszawski ,,Isengard”.

Wiezowiec Cosmopolitan. Dominanta wysoko$ciowa w narozniku trojkatnego placu
Grzybowskiego. Zamknigcie osi ul. Emilii Plater i Prozne;.

Prudential. Dominanta wysokos$ciowa, sprzezenie placu Powstancow Warszawy.
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Chopin Motel One. Naroznik kwartatu na szczycie skarpy przy ktadce pieszej Muzeum
Fryderyka Chopina.

Tamka 49. Dominanta wysoko$ciowa na zamknigciu osi ul. Karasia-Kopernika.
Centrum placu wyznaczonego przez ul. Kopernika, Kopczynskiego, Tamke i wiezowiec
Tamka 40. Obecnie rondo.

Skrzyzowanie Wolskiej i Plockiej. Przeciecie duzych osi widokowych. Brama
ul. Ptockiej wyznaczona przez szczyt wysokosciowej zabudowy mieszkaniowej
Skierniewickiej 21 i Ptockiej 17. Stacja metra Ptocka.

Warsaw Spire. Dominanta wysoko$ciowa widoczna z wielu otwaré widokowych.
Wraz z Warsaw Trade Tower i Warsaw Unit wyznaczajg warszawski ,,Isengard”.
Mlotek przy Smolnej 9. Dominanta wysokoSciowa na skarpie. Zamknigcie osi
ul. Smolnej i ul Czerwonego Krzyza.

Dworzec Warszawa Powisle. Przecigcie osi kolejowej z Alejami Jerozolimskimi.
Zakonczenie mostu Poniatowskiego.

Skrzyzowanie Zelaznej i Prostej. Przeciecie duzych osi widokowej. Srodek osi
poprzecznej skweru Nelsona Mandeli. Zaakcentowany wiezowcem Mennica Legacy
Tower.

Patac Kultury i Nauki. Dominanta przestrzenna, przeciecie osi widokowych. Centrum
placu wyznaczonego przez ul. Marszatkowska, Swictokrzyska, Emilii Plater
I Aleje Jerozolimskie.

Zlota 44. Dominanta wysokosciowa na zamknigciu kilku otwaré widokowych
podkreslona przez geometri¢ kompleksu handlowo-biurowego Ztote Tarasy.

Varso Tower. Dominanta wysokos$ciowa, najwyzszy obecnie budynek w Warszawie.
Widocznos¢ z wielu otwaré widokowych.

Rondo Charlesa de Gaulle’a. Przecigcie waznych osi  widokowych.
0% trapezoidalnego placu wyznaczonego przez poszerzenie ul. Nowy Swiat.
Co ciekawe, punkt wskazany przez sie¢ doktadnie pokrywa si¢ z lokalizacja stynnej
Palmy Joanny Rajkowskiej (Rajkowska, 2002); sama palma nie znajdowata si¢ w mapie
cech widzianych przez sie¢ neuronowa.

Warsaw Unit. Dominanta wysoko$ciowa przy Rondzie Daszynskiego. Widoczna
z wielu otwar¢ widokowych. Wraz z Warsaw Spire i Warsaw Trade Tower wyznacza

warszawski ,,Isengard”.
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Adgar Renaissance Tower. Dominanta wysoko$ciowa. Zamknigcie kilku mniejszych
osi widokowych. Naprowadzenie przez brame ul. Lomnickiego.

Novotel Warszawa Centrum. Dominanta wysokos$ciowa podkreslona przez rondo
Romana Dmowskiego bedace przecieciem waznych osi widokowych. Pierwszy,
narozny wiezowiec od strony potudniowo-wschodniej wyrdzniajacy sie¢ na tle
otaczajacych go nizszych kwartatow.

Pomnik Wincentego Witosa na Placu Trzech Krzyzy. Zakonczenie osi ul. Nowy
Swiat i ul. Bolestawa Prusa. Podkreslony kompozycyijnie uskok w Placu Trzech Krzyzy
utworzony przez wycofang elewacje Osrodka Rozwoju Edukacji w Warszawie.

Hotel Marriott. Dominanta wysoko$ciowa. Swoisty uktad podwdjny z Oxford Tower
podkreslony przez identyczne proporcje.

Roma Office Center. Dominanta wysokos$ciowa ukryta za zabudowa ul. Nowogrodzkiej
i Poznanskie;.

Biurowiec Warsaw Vibe. Biurowiec w narozniku Towarowej i Kolejowe;j.

Oxford Tower. Dominanta wysokosciowa. Swoisty uklad podwdjny z Hotelem
Marriott podkreslony przez identyczne proporcje.

Atlas Tower. Dominanta wysokosciowa podkreslona przez rondo na placu Zawiszy.
Pierwszy wiezowiec od strony potudniowo-zachodniej. Wyeksponowany widokowo
przez ptaszczyzne Warszawskich Filtrow.

Skrzyzowanie ul. Dalekiej 1 Grojeckiej, pierzeja zachodnia.

Skrzyzowanie ul. Dalekiej 1 Grojeckiej, pierzeja wschodnia.

Pélnocne otwarcie Placu Konstytucji. Skrzyzowanie osi widokowych ul.
Marszatkowskiej, Koszykowej i Pigknej. Brama utworzona przez pierzeje placu
Konstytucji.

Centrum poludniowej cze¢sci Placu Konstytucji. Punkt centralny pomiedzy
potudniowymi osiami ul. Marszatkowskiej 1 Warynskiego. Naprowadzenie przez o$
pohocnej czesci ul. Marszatkowskiej i Sniadeckich.

Ochota Residence. Dominanta wysokos$ciowa podkreslona przez ostry naroznik i
naprowadzenie widokowe ul. Kaliskiej.

Eurocentrum Alfa. Najwyzszy z wiezowcow bramy zachodniej Warszawy. Obecnie
pierwszy od strony potludniowej w rytmicznym uktadzie 10 bryl biurowcow o

zblizonych do siebie proporcjach.
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Grojecka 19/25. Budynek mieszkalny o charakterystycznej bryle na planie litery X.
Lokalna dominanta wysoko$ciowa na skrzyzowaniu ul. Niemcewicza i1 Grojeckie;.
Skrzyzowanie Al. Jerozolimskich i ul. Sokolowskiego ,,Grzymaly”.
Charakterystyczne zalamanie i jednoczesne poszerzenie Al. Jerozolimskich kierujace
uwage na $ciang wiezowcow bramy zachodniej. Przecigcie waznych osi widokowych.
Biurowiec West Station Il. Zaakcentowany przez otwarcie widokowe Sokotowskiego
,Grzymaly” i obecng przerwg w zabudowie bramy zachodniej migdzy West Station II
a Erocentrum Alfa.

Skrzyzowanie ul. Sokotowskiego ,,Grzymaty”, Barskiej i Szczesliwickiej. Przeciecie
osi widokowych. Podkreslenie przez skosng elewacje budynku mieszkalnego
Szczesliwicka 8 stanowigca plaszczyzne zaginajaca o§ widokowa ul. Barskie;.
Wejscie do przejscia podziemnego miedzy Parkiem Zachodnim a Dworcem
Zachodnim. Naprowadzenie przez osie Sciezek Parku Zachodniego. Gtowne dojscie
piesze na Dworzec Zachodni. Skrzyzowanie z osig Al. Jerozolimskich.

Skrzyzowanie ul. Nowowiejskiej 1 Warynskiego. Przecigcie osi widokowych.
Skrzyzowanie mi¢dzy Placem Politechniki i Placem Zbawiciela.

Skrzyzowanie Al. Ujazdowskich, Al. Armii Ludowej, ul. Koszykowej i Al. Szucha.
Skrzyzowanie wielu waznych osi widokowych przy Placu Na Rozdrozu. Podkreslone
przez zetkniecie zabudowy z zielong pierzeja Lazienek, Ogrodu Botanicznego i Parku
Ujazdowskiego.

Focus. Lokalna dominanta przestrzenna podkreslona przez S$ciezki Pola
Mokotowskiego.

Przejscia podziemne skrzyzowania Al. Niepodleglosci i Al. Armii Ludowej.
Wielopoziomowe skrzyzowanie waznych osi widokowych z podziemnymi przejsciami
faczacymi poszczegdlne poziomy 1 narozniki skrzyzowania.

Pomnik Lotnika. Skrzyzowanie ul. Wawelskiej, Uniwersyteckiej i Raszynskie;j.
Charakterystyczne zalamanie ul. Raszynskiej. Plac z rondem zaakcentowany przez ostre
narozniki ul. Wawelskiej i Uniwersyteckiej oraz ul. Uniwersyteckiej i Raszynskie;j.
Skrzyzowanie ul. Grojeckiej, Kopinskiej i Wawelskiej. Przecigcie osi widokowych.
Akademik Riviera. Dominanta przestrzenna na skrzyzowaniu Al. Armii Ludowe;j i ul.
Warynskiego. Ekspozycja widokowa z Pola Mokotowskiego. Naprowadzenie przez o$

ul. Oleandrow i $ciezki Pola Mokotowskiego.
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e Wiezowiec Plac Unii. Dominanta wysoko$ciowa sprzegajaca Plac Unii Lubelskiej.
Naprowadzenie widokowe ul. Putawskiej. Otwarcie widokowe od strony skrzyzowania
Batorego i Warynskiego.

e Plac Unii Lubelskiej. Jeden z placow gwiazdzistych zatozenia ujazdowskiego.

Przecigcie kilku osi widokowych. Silny punkt centralny.

Zalacznik 7: Tabela rozmiarow warstw sieci eksperymentu gléwnego i liczba

trenowalnych parametrow

Calkowita liczba parametréw: 52 851 908

Generator: 50 215 299

Dyskryminator: 2 636 609

Generator, lista warstw

Liczba filtréw i progéow 1d 2d 3d Parametry
64 4 4 3 3136
128 4 4 64 131200
256 4 4 128 524544
512 4 4 256 2097664
512 4 4 512 4194816
512 4 4 512 4194816
512 4 4 512 4194816
512 4 4 512 4194816
512 4 4 512 4194816
512 4 4 1024 8389120
512 4 4 1024 8389120
512 4 4 512 4194816
256 4 4 1024 4194560
128 4 4 512 1048704
64 4 4 256 262208
3 4 4 128 6147
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Dyskryminator, lista warstw

Liczba filtrow i progéw 1d 2d 3d Parametry
64 4 4 6 6208

256 4 4 128 524544
512 4 4 256 2097664

1 4 4 512 8193

Zalacznik 8. Wybor ciekawszych baz danych, ktére mozna wykorzysta¢ w

trenowaniu architektonicznych sieci neuronowych.

Wybor na podstawie przeprowadzonej kwerendy stanu wiedzy.

Nazwa Zrédlo Opis

Cyfrowa Kolekcja |https://ma.wroc.pl/pl/kolekcja/ Zdigitalizowane przyktady

Muzeum tysigcy dziet

Architektury we architektonicznych

Wroctawiu podzielonych na
architekture

mie¢dzywojenng i

wspotczesna
SpaceNet https://spacenet.ai/datasets/ Publiczna baza danych
Challenge zawierajaca 67 tysiecy
Datasets kilometrow kwadratowych

oznaczonych zdjeé
satelitarnych (m.in. mapy
rozwoju urbanistycznego

W czasie)

Sentinel 2 https://dataspace.copernicus.eu/analyse/apis Otwarte dane satelitarne
Europejskiej Agencji
Kosmicznej systemu
Copernicus z dostgpnymi
serwisami API w jezyku

Python.
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Numeryczny
model pokrycia

terenu Geoportal

https://www.geoportal.gov.pl/en/dane/numeryczny-model-

pokrycia-terenu

Dane dostgpne przez
geoportal, reprezentacja
powierzchni terenu wraz z
obiektami wystajacymi
ponad powierzchnie
(budynki, drzewa,

infrastruktura...)

MexCulture142

https://github.com/montoyaobeso/mexculture142

Zbidr 284 budynkoéw
meksykanskiego
dziedzictwa kulturowego

podzielonych na 142 klasy

Acrchitectural Style
Classification

Dataset

https://sites.google.com/site/zhexuutssjtu/projects/arch

https://www.kaggle.com/datasets/wwymak/architecture-dataset

Zbidr 5000 zdje¢ obiektow
architektonicznych
podzielonych na 25 klas
wzgledem stylu
architektonicznego

UAVid Semantic
Segmentation

Dataset

https://uavid.nl/

Zbiodr filmow lotniczych
nakr¢conych w miescie
przez autonomiczne drony.
Filmy posegmentowane

semantycznie na 8 klas.

Mapster

http://igrek.amzp.pl/

Zabior archiwalnych
materialow
kartograficznych w

r6znych formatach

Arcbazar

arcbazar.com/

Zbiodr cyfrowych,
konkursowych projektow
architektonicznych w
formacie BIM/CAD.
Wigkszo$¢ projektow
platna.

Laion-400

https://laion.ai/laion-400-open-dataset/

400 milionéw par obraz-
opis (wiele przyktadow
architektonicznych

i urbanistycznych)
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Laion-5B https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi- |5 milardow par obraz-opis
modal-datasets/ (wiele przyktadow
architektonicznych

i urbanistycznych)

ROBIN Dataset  |https://github.com/gesstalt/ROBIN Zbior 510 rzutow
architektonicznych

mieszkan podzielonych

wzgledem liczby
pomieszczen
Harmonized https://hls.gsfc.nasa.gov/hls-data/ Zbior danych satelitarnych
Landsat and NASA i USGS

Sentinel-2

Open Buildings  |https://www.kaggle.com/datasets/paultimothymooney/open- Wielkoskalowy zbior
Dataset buildings obrysow 512 milionéw
budynkow na zdjeciach
satelitarnych Afryki

Modern https://www.kaggle.com/datasets/tompaulat/modernarchitecture | Zbior 100 tysigcy zdjec
Acrchitecture obiektow
architektonicznych
oznaczonych wzglgdem
typu budynku i
przedstawionego

fragmentu

UrbanSound8K  |https://www.kaggle.com/datasets/chrisfilo/urbansound8k Zbior 8732 oznaczonych

nagran odgtoséw miejskich

Urban https://www.kaggle.com/datasets/aletom/urban-segmentation- |Zbior zdjec satelitarnych
Segmentation - isprs poddanych semantycznej
ISPRS segmentacji dla 3 miast:

Poczdam, Toronto i

Vaihingen

Dodatkowe materialty cyfrowe zwigzane z niniejszg rozprawg doktorskg znajduja

si¢ W repozytorium: https://github.com/TomaszDzieduszynski
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