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Streszczenie 

Niniejsza praca doktorska pt. „Narzędzia projektowania hiperparametrycznego. Analiza 

kontekstów kompozycyjnych przy pomocy sieci neuronowych” bada możliwości i ograniczenia 

wykorzystania sieci neuronowych w architekturze i urbanistyce, koncentrując 

się na zagadnieniach przetwarzania kompozycji przestrzennych oraz automatycznym 

rozpoznawaniu i analizie głównych punktów kompozycyjnych w przestrzeni miejskiej. 

Część teoretyczna rozpoczyna się od rozdziału wstępnego, w którym zdefiniowano problem 

badawczy, metodykę pracy oraz cele i pytania badawcze. Rozdział drugi opisuje aktualny stan 

wiedzy, w tym rozwój architektury parametrycznej oraz jej ewolucję w kierunku architektury 

hiperparametrycznej, wprowadzającej do praktyki architektonicznej głębokie uczenie 

maszynowe. W rozdziale przedstawione są również zastosowania sieci neuronowych 

w różnych skalach projektowych: urbanistycznej, architektonicznej i detalu. W związku 

z wykrytą luką badawczą dotyczącą neuronowego przetwarzania kontekstów kompozycyjnych, 

autor analizuje zagadnienie punktów głównych, opierając się na klasycznych teoriach 

kompozycji przestrzennej. W swojej analizie bierze pod uwagę aspekty geometryczne, procesy 

powstawania tych punktów, ich skalę, a także znaczenie w kontekście społecznym, 

symbolicznym i ekonomicznym. Rozdział kończy się identyfikacją narzędzi opartych 

o głębokie uczenie maszynowe, mogących służyć do analizy kompozycji przestrzennych 

w projektowaniu architektonicznym wspomaganym komputerowo. 

Część eksperymentalna pracy, stanowiąca rozdział trzeci dysertacji, obejmuje dwa 

eksperymenty: wstępny i główny. W podrozdziale opisującym eksperyment wstępny testowane 

są różne podejścia do neuronowego przetwarzania syntetycznych założeń przestrzennych 

opartych na złożonych zasadach kompozycyjnych. Doświadczenia zdobyte przy 

eksperymencie wstępnym prowadzą do opracowania bardziej zaawansowanego algorytmu 

w eksperymencie głównym. Stworzony prototyp, oparty o przeciwstawne, generatywne sieci 

neuronowe, służy do rozpoznawania głównych punktów kompozycyjnych i osi 

naprowadzających w tkance miejskiej.  

W podsumowaniu omówione są wyniki eksperymentów i badań teoretycznych oraz 

ograniczenia wynikające z zastosowanych metod i obecnego stanu wiedzy. Autor rozważa 

potencjalne korzyści płynące z wprowadzenia głębokiego uczenia maszynowego do praktyki 

architektonicznej, ocenia praktyczne możliwości zastosowania tego typu narzędzi i przedstawia 

możliwe kierunki dalszego rozwoju dziedziny. 

 

Słowa kluczowe 

Projektowanie architektoniczne wspomagane komputerowo, punkty główne, kompozycja 

przestrzenna, głębokie uczenie maszynowe, sieci neuronowe, projektowanie 

hiperparametryczne 
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Abstract 

The doctoral dissertation titled “Hyperparametric design tools. Analysis of compositional 

contexts using neural networks,” explores the possibilities and limitations of utilizing neural 

networks in architecture and urban planning. The research focuses on spatial composition 

processing and automatic recognition and analysis of focal compositional points in urban 

spaces. 

The theoretical part begins with an introductory chapter that defines the research problem, 

methodology, as well as research goals and questions. The second chapter describes the current 

state of the art, including the development of parametric architecture and its evolution towards 

hyperparametric architecture, which introduces deep learning into architectural practice. This 

chapter also presents application of neural networks at various design scales: urban, 

architectural and detail. In response to the identified research gap concerning the neural 

processing of compositional contexts, the author examines the issue of main focal points based 

on classical spatial composition theories. The analysis considers the geometric aspects, the 

formation process of these points, their scale, as well as their significance in social, symbolic 

and economic contexts. The chapter concludes with the identification of deep learning-based 

tools that can be used for the analysis of spatial compositions in computer-aided architectural 

design. 

The experimental part, which forms the third chapter of the dissertation, consists of two 

experiments: preliminary and main. In the subchapter describing the preliminary experiment, 

various approaches to neural processing of synthetic, complex spatial compositions are tested. 

The experiences gained from the preliminary experiment lead to the development of a more 

advanced algorithm in the main experiment. The created prototype, based on generative 

adversarial networks, serves to recognize main focal points and guiding axes in urban tissue.  

The conclusion discusses the results of the experiments and theoretical studies, as well as the 

limitations stemming from the applied methods and the current state of the art. The author 

considers the potential benefits of introducing deep machine learning into architectural practice, 

assesses the practical applicability of such tools, and outlines possible directions for further 

development of the field. 

 

Keywords 

Computer-aided architectural design, focal points, spatial composition, deep learning, neural 

networks, hyperparametric design 
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Wykaz wykorzystanych akronimów i tłumaczenia pojęć 

obcojęzycznych 

AGI: ang. Artificial General Intelligence (silna sztuczna inteligencja) 

AI:  ang. Artificial Intelligence (sztuczna inteligencja) 

Anything goes: ang. „Nic świętego” (hasło oddające istotę anarchizmu epistemologicznego 

Paula Feyerabenda, w tłumaczeniu Stefana Wiertlewskiego. Hasło tłumaczone jest czasem 

także jako „wszystko ujdzie”) 

API: ang. Application Programming Interface (interfejs programowania aplikacji) 

Bias: ang. Próg (w kontekście neuronów – próg aktywacji) lub Uprzedzenie (w kontekście sieci 

neuronowych – uprzedzenie względem struktury danych) 

BIM: ang. Building Information Modeling (modelowanie informacji o budynku) 

Black box: ang. Czarna skrzynka (algorytm przetwarzający dane wejściowe na wyjściowe w 

sposób trudny do przewidzenia i interpretacji) 

Bottleneck: ang. Zwężenie w sieci typu autoenkoder 

BPS: ang. Building Performance Simulation (symulacja wydajności budynku) 

Bridging: ang. Mostkowanie. Druk 3D w powietrzu, łączący ze sobą dwa oddalone od siebie 

punkty bez użycia pośrednich podpór. 

CAAD: ang. Computer-Aided Architectural Design (projektowane architektoniczne 

wspomagane komputerowo) 

CAD: ang. Computer-Aided Design (projektowanie wspomagane komputerowo) 

CAM: ang. Computer-Aided Manufacturing (wytwarzanie wspomagane komputerowo) 

CCPI: ang Climate Change Performance Index (indeks monitorujących postępy 

poszczególnych państw w łagodzeniu zmian klimatu) 

City Country Fingers: ang. Palczaste zatoki miejsko-wiejskie (wydłużone pasma gęstej 

zabudowy rozdzielone przez pasma zabudowy wiejskiej zaproponowane w Języku Wzorców 

przez Alexandra) 

CNC: ang. Computerized Numerical Control (komputerowe sterowanie urządzeń 

numerycznych) 
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CNN: ang. Convolutional Neural Network (splotowa sieć neuronowa) 

Convergence: ang. Zbieganie się parametrów sieci neuronowej 

Covariate shift: ang. Przesunięcie dystrybucji między zbiorem treningowym a testowym 

CPU: ang. Central Processing Unit (Procesor) 

DA: ang. Daylight Autonomy (autonomia światła dziennego) 

Data Augmentation: ang. Zautomatyzowane zwiększenie liczby danych treningowych 

Data Mining: ang. Ekstrakcja danych 

Decision Tree: ang. Drzewo decyzyjne 

DDPG: ang. Deep Deterministic Policy Gradient. Jeden z algorytmów sterujących agentem 

w głębokim uczeniu ze wzmacnianiem 

DGP: ang. Daylight Glare Probability (współczynnik prawdopodobieństwa olśnienia światłem 

dziennym) 

DRL: ang. Deep Reinforcement Learning (głębokie uczenie ze wzmacnianiem) 

Feature space: ang. Przestrzeń cech 

Fine tuning: ang. Strojenie wcześniej wytrenowanego modelu do nowego problemu 

FNN: ang. Feedforward Neural Network (jednokierunkowa sieć neuronowa). Czasem 

akronimem tym określane są sieci neuronowo rozmyte (ang. Fuzzy Neural Networks), jednak 

w niniejszej pracy akronim FNN odnosi się jedynie do sieci jednokierunkowych (Tadeusiewicz 

i Szaleniec, 2015) 

GAN: ang. Generative Adversarial Network (generatywna sieć przeciwstawna)  

GAN loss: ang. Funkcja straty GAN (wykorzystywana w sieciach GAN) 

G-code: ang. Geometric code (kod geometryczny). Popularny język instrukcji dla urządzeń 

CNC 

Genius loci: łac. Duch miejsca 

GPU: ang Graphics Processing Unit (procesor graficzny) 

Grasshopper: Graficzny język programowania dostępny w programie Rhino wykorzystywany 

często w projektowaniu parametrycznym 
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Grid search: ang. Przeszukiwanie siatki (metoda strojenia hiperparametrów) 

GRU: ang. Gated Recurrent Unit (uproszczony wariant sieci typu LSTM) 

Hierarchical clustering: ang. Klastrowanie hierarchiczne 

IAAC: ang. Institute for Advanced Architecture of Catalonia (Instytut Architektury 

Zaawansowanej w Katalonii) 

Integration core: ang. Rdzeń integracji 

k-means clustering: ang. Klastrowanie metodą algorytmu centroidów 

kNN: ang. k-Nearest Neighbors (k najbliższych sąsiadów) 

L1 loss: ang. Funkcja straty L1 (wykorzystywana w CNN i GAN) 

Latent Space: ang. Przestrzeń ukryta 

LLM: ang. Large Language Model (duży model językowy) 

LSTM: ang. Long Short-Term Memory (sieć długiej pamięci krótkotrwałej) 

MOQO: ang. Multi-Objective Qualitative Optimization (wielocelowa optymalizacja 

jakościowa) 

MSE: ang. Mean Squared Error (błąd średniokwadratowy) 

Multi-hot: ang. Metoda kodowania przypisująca poszczególnym cechom wartości 0 lub 1 

i zestawiająca je razem w postaci wielowymiarowego wektora 

NLP: ang. Natural Language Processing (przetwarzanie języka naturalnego) 

One-hot encoding: ang. Kodowanie „jeden z n” 

OSM: ang. Open Street Map 

Overfitting: ang. Przetrenowanie parametrów do zbioru treningowego 

Overtuning: ang. Przestrojenie hiperparametrów do zbioru testowego 

PCA: ang. Principal Component Analysis (analiza głównych składowych) 

PPO: ang. Proximal Policy Optimization. Jeden z algorytmów sterujących agentem w 

głębokim uczeniu ze wzmacnianiem 

Prompt: ang. Dane wejściowe, zazwyczaj w postaci tekstowej, na podstawie których model 

generuje dane wyjściowe. Wyróżnia się różne metody promptingu, np. prompting 
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bezprzykładowy (zero-shot prompting), podpowiedź jednokrotną (one-shot prompting) lub 

podpowiedź wielokrotną (few-shot prompting). 

Q-Learning: ang. Jeden z algorytmów sterujących agentem w głębokim uczeniu ze 

wzmacnianiem 

Random search: ang. Przeszukiwanie losowe (metoda strojenia hiperparametrów) 

RF: ang. Random Forest (losowe drzewo decyzyjne) 

SL-Block: ang. Self-Interlocking Block (samounieruchamiające się bloki); bryły, które po 

odpowiednim złożeniu wzajemnie się unieruchamiają umożliwiając budowanie stabilnych 

struktur 

SNARC: ang. Stochastic Neural Analog Reinforcement Calculator; pierwsza sieć neuronowa 

stworzona przez Marvina Minsky’ego 

Sparse model: ang. Model skąpy (w którym wiele parametrów ma wartość zerową) 

SVM: ang. Support Vector Machine (maszyna wektorów nośnych) 

Target space: ang. Przestrzeń celu 

t-SNE: ang. t-Distributed Stochastic Neighbor Embedding; algorytm redukcji wymiarowości, 

służący do wizualizacji danych wielowymiarowych 

Transfer learning: ang. Uczenie transferowe (dostrojenie sieci neuronowej wytrenowanej na 

jednym zadaniu do innego zadania) 

Transformer: ang. Typ sieci neuronowej wykorzystującej mechanizm uwagi 

UAV: ang. Unmanned Aerial Vehicle (bezzałogowy statek powietrzny) 

ViT: ang. Vision Transformer (transformer wizualny), jeden z nowszych typów sieci 

neuronowych stosowanych w przetwarzaniu obrazów  

Weight: ang. Waga (w kontekście sieci neuronowych – waga połączeń między neuronami) 

WiFi: ang. Wireless Fidelity (zestaw standardów bezprzewodowych sieci komputerowych) 

WFC: ang. Wave Function Collapse (kolaps funkcji falowej); samoorganizujący się algorytm 

generatywny opracowany przez Maxa Gumina 
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1. Wstęp 

1.1. Problem badawczy 

Architektura stoi na progu przełomowych zmian. Głębokie uczenie maszynowe, które 

od połowy poprzedniej dekady zrewolucjonizowało już wiele dziedzin, zaczyna teraz znacząco 

wpływać na praktykę architektoniczną. Komputery nie służą już jedynie do przeprowadzania 

obliczeń matematycznych i automatyzacji łatwych do sparametryzowania procesów. Sieci 

neuronowe przenikają do coraz większej liczby obszarów twórczych, takich jak sztuki 

wizualne, literatura czy muzyka, które do tej pory były domeną ludzi.  Współcześni architekci 

używają komputerów i narzędzi cyfrowych na bardzo zaawansowanym poziomie. Nie dziwi 

więc, że według raportu Royal Institute of British Architects, już na początku 2024 roku 

41% brytyjskich biur architektonicznych korzystało w praktyce projektowej z narzędzi 

opartych na głębokim uczeniu maszynowym (RIBA, 2024).  

Ze względu na możliwości nowoczesnych sieci neuronowych, należy się spodziewać, że coraz 

więcej procesów twórczych będzie można zautomatyzować. Sieci neuronowe potrafią 

rozwiązywać złożone problemy nieliniowe, przetwarzać dane multimodalne, dobrze skalują się 

do zadań o dużym stopniu skomplikowania i skutecznie radzą sobie z zadaniami 

generatywnymi. Dodatkowo, możliwość uczenia się na ogromnych zbiorach danych pozwala 

im na uwzględnienie różnorodnych kontekstów przestrzennych i kulturalnych. W procesie 

integracji algorytmów neuronowych z praktyką architektoniczną konieczne jest jednak 

zwrócenie uwagi na kontrolę nad hiperparametrami, czyli zbiorem zmiennych sterujących 

zachowaniem wykorzystanych sieci, oraz na poziom abstrakcji rozwiązywanych problemów. 

Obecnie stosowane algorytmy zazwyczaj nie były tworzone z myślą o projektowaniu 

architektonicznym i są bardzo trudne w sterowaniu. Na dzisiejszym poziomie zaawansowania 

dostępnych technologii nie można powiedzieć sieci neuronowej „zaprojektuj dom” 

lub „zaplanuj miasto” i oczekiwać sensownych rezultatów. Cały proces projektowy składa 

się z dziesiątek bardziej szczegółowych zagadnień projektowych, które lepiej rozwiązywać 

osobno po kolei. 

Jednym z takich kluczowych zagadnień jest kompozycja przestrzenna. Analizy kompozycyjne 

są przeprowadzane we wszystkich skalach projektowych, a także w praktyce planistycznej 

i administracyjnej. Automatyzacja czasochłonnych i powtarzalnych procesów związanych 

z przetwarzaniem kontekstów kompozycyjnych może zwiększyć efektywność pracy, skrócić 



16 

 

czas realizacji projektów i poszerzyć perspektywy inspiracyjne. Konteksty przestrzenne 

są bardzo złożone, a analizy kompozycyjne logicznie rozmyte i trudne do oprogramowania 

metodami klasycznymi. W takiej kategorii problemów zazwyczaj stosowane metody 

automatyzacji (np. oparte na ilościowych analizach GIS) nie są wystarczające. Sieci neuronowe 

jednak radzą sobie z takimi zadaniami bardzo dobrze. W niniejszej pracy przyglądam 

się właśnie temu aspektowi projektowania. Po wstępnym rozpoznaniu ogólnych możliwości 

przetwarzania przez sieci neuronowe złożonych zasad kompozycyjnych, bardziej szczegółowo 

zajmuję się problemem punktów głównych w kompozycji przestrzennej. Wybór tego 

konkretnego zagadnienia pozwala na precyzyjne zademonstrowanie potencjału głębokiego 

uczenia maszynowego w praktyce architektonicznej. 

1.2. Struktura pracy 

Dysertacja podzielona jest na dwie główne części: teoretyczną i eksperymentalną. W części 

teoretycznej zaczynam od rozpoznania obecnego stanu wiedzy dotyczącego projektowania 

architektonicznego wspomaganego komputerowo, identyfikuję pierwsze próby wprowadzenia 

uczenia maszynowego do architektury i badam stopniowe przesunięcie paradygmatu 

od architektury parametrycznej do hiperparametrycznej. Następnie przez kwerendę literatury 

najnowszych zastosowań sieci neuronowych w projektowaniu urbanistycznym, 

architektonicznym i w skali detalu rozpoznaję możliwości współczesnych sieci neuronowych 

i identyfikuję potencjalne luki badawcze. W dalszej części przyglądam się klasycznym teoriom 

kompozycji przestrzennej, identyfikuję elementy kompozycyjne szczególnie nadające 

się do przetwarzania maszynowego i zawężam tematykę do punktów głównych kompozycji 

przestrzennej. 

W części eksperymentalnej przeprowadzam dwa eksperymenty. Na etapie eksperymentu 

wstępnego testuję algorytmy głębokiego uczenia maszynowego różnego typu w przetwarzaniu 

syntetycznie stworzonych kontekstów kompozycyjnych. Najlepiej radząca sobie z problemem 

splotowa sieć neuronowa jest następnie testowana w trzech scenariuszach o zróżnicowanym 

poziomie trudności. W każdym scenariuszu sieć ma za zadanie odczytać zadaną w zbiorze 

treningowym złożoną zasadę kompozycyjną i na jej podstawie wygenerować samodzielnie 

nową kompozycję lub jej fragment. W oparciu o doświadczenia zebrane na przykładach 

syntetycznych w eksperymencie wstępnym, w eksperymencie głównym buduję prototyp 

służący do przetwarzania rzeczywistych kontekstów przestrzennych w tkance miejskiej. 

Na tym etapie opracowuję metodę kodowania kontekstów przestrzennych do postaci nadającej 



17 

 

się do przetwarzania przez generatywne sieci przeciwstawne. Wytrenowana w eksperymencie 

głównym sieć neuronowa, służąca do rozpoznawania głównych punktów kompozycyjnych 

i powiązanych z nimi osi naprowadzających, jest oceniona metodami jakościowymi 

i ilościowymi. 

W podsumowaniu pracy prezentuję wnioski płynące z badań teoretycznych 

i przeprowadzonych eksperymentów, przedstawiam ograniczenia wynikające ze stanu wiedzy 

i wykorzystanych metod, oraz omawiam wpływ architektury hiperparametrycznej, 

wykorzystującej głębokie uczenie maszynowe, na rozwój poddziedziny projektowania 

architektonicznego wspomaganego komputerowo. 

1.3. Metodyka pracy 

Architektura jest dziedziną łączącą naukę, inżynierię i sztukę. Z jednej strony próbuje naukowo 

rozwiązywać pytania o naturę rzeczy, wykorzystuje metody badań socjologicznych 

i środowiskowych, odwołuje się do  ludzkiej biologii i psychologii oraz stara się opisywać siły 

sterujące rozwojem ulic, miast i regionów. Z drugiej strony inżynieryjnie tworzy narzędzia 

i technologie, bada przez projektowanie i eksperymenty, aktywnie wpływa na rzeczywistość. 

Z trzeciej strony z kolei operuje na dziełach sztuki, eksploruje rzeczy nieoczywiste, pyta 

o przekonania, twórczo interpretuje rzeczywistość i zamiast odpowiedzi poszukuje jeszcze 

głębszych pytań. Jakich metod powinno się używać w badaniach architektonicznych? Jakie 

są ich podstawy filozoficzne? W swoim podręczniku Metody i Techniki Badawcze 

w Architekturze Elżbieta Niezabitowska nazywa architekturę dziedziną 

przedparadygmatyczną, w której dopiero tworzą się jej podstawy naukowe. Na tym etapie nie 

ma niekwestionowanych teorii, symboli, metapojęć, wartości i wzorców rozwiązywania 

problemów naukowych (Niezabitowska, 2014). Stan dziedziny stawia badaczy architektury 

w obliczu pewnego anarchizmu metodologicznego, który można podsumować hasłem Paula 

Feyerabenda: „nic świętego” [ang. „anything goes” (Feyerabend, 2001)]. Zależnie od punktu 

widzenia sytuacja ta stanowi pewien problem, ponieważ utrudnia wybór oczywistych metod 

badawczych i uniemożliwia podążanie utartymi i sprawdzonymi szlakami. Z drugiej strony 

jednak, pragmatystycznie otwiera perspektywy na nowe, mieszane ścieżki eksploracji tematów 

badawczych (Creswell, 2013) i umożliwia tworzenie nieoczywistych powiązań 

interdyscyplinarnych.  
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Badania architektoniczne często oparte są na dogmatycznie stawianych tezach, popartych 

anegdotycznym wyborem przykładów potwierdzających głoszoną ideę (Niezabitowska, 2014). 

Zgodnie z założeniami racjonalizmu krytycznego Karla Poppera uważam, że twierdzenia 

naukowe nie mogą być weryfikowane przez ich indukcyjne potwierdzenie, tylko przez 

ich dedukcyjną falsyfikację (Popper, 1977). Niniejsza praca nie ma charakteru naukowo 

empirycznego i opiera się głównie na wnioskowaniu indukcyjnym. Z tego powodu 

przeprowadzone badania zostały oparte nie na hipotezach, a na jakościowych i ilościowych 

pytaniach badawczych odwołujących się do postawionych celów badawczych. Podobnie 

jak sama dziedzina, niniejsza praca ma charakter metodycznie mieszany. W przeprowadzonych 

badaniach wykorzystałem metody badań teoretycznych (analiza stanu wiedzy, zastosowanie 

modelowania matematycznego, algorytmizacja procesów), badań rozwojowych i stosowanych 

(opracowanie koncepcji praktycznego wykorzystania teorii w projektowanym prototypie), 

badań eksperymentalnych (testowanie opracowanych narzędzi w scenariuszach testowych, 

zapisywanie i analiza wyników), badań symulacyjnych (użycie modeli komputerowych 

do przeprowadzania symulacji mających odzwierciedlać rzeczywistość), badań ilościowych 

(statystyczna analiza danych, opracowanie autorskich metryk i ich wykorzystanie w ewaluacji 

stworzonych algorytmów) oraz badań jakościowych (studia przypadków, metoda ekspercka, 

analityczno-syntetyczne przetwarzanie danych). Tematyka doktoratu ma charakter 

interdyscyplinarny. Z jednej strony opiera się na architektonicznych teoriach kompozycji 

przestrzennej i artystycznych konceptach wrażeń estetycznych. Z drugiej, czerpie 

z inżynieryjnych osiągnięć dziedzin głębokiego uczenia maszynowego, analizy danych 

i programowania. W pracy odwołuję się do szeregu teorii architektonicznych. Najważniejszymi 

punktami wyjścia są: teoria formy architektonicznej Juliusza Żórawskiego (Żórawski, 1962), 

teoria struktury przestrzeni urbanistycznej (Lynch, 1960; Wejchert, 1984; Pluta, 2001), język 

wzorców Alexandra (Alexander, i in., 1977), ale także architektura informacyjna (Słyk, 2012), 

czy w szerszym znaczeniu, projektowanie architektoniczne wspomagane komputerowo 

(Mitchell, 1975). 
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1.4. Cele badawcze 

1.4.1. Cele badania stanu wiedzy 

• Ulokowanie głębokiego uczenia maszynowego na tle teorii architektury informacyjnej, 

architektury parametrycznej i projektowania architektonicznego wspomaganego 

komputerowo. 

• Rozpoznanie dotychczasowych zastosowań sieci neuronowych w skali urbanistycznej, 

architektonicznej i w detalu. 

• Rozpoznanie kategorii problemów architektonicznych komplementarnych 

do możliwości głębokiego uczenia maszynowego. 

• Uporządkowanie stanu wiedzy dotyczącego możliwości wykorzystania sieci 

neuronowych w architekturze na podstawie ich historii i zastosowań w dziedzinach 

pokrewnych. 

• Identyfikacja luki badawczej między możliwościami wykorzystania sieci neuronowych, 

a ich rzeczywistym zastosowaniem w badaniach i praktyce architektonicznej. 

1.4.2. Cele dotyczące zidentyfikowanej luki badawczej 

• Ulokowanie problemu neuronowego przetwarzania kontekstów kompozycyjnych na tle 

polskiego prawa, teorii formy architektonicznej, teorii struktury przestrzeni 

urbanistycznej i języka wzorców. 

• Identyfikacja elementów kompozycyjnych możliwych do przetwarzania maszynowego 

i ich wybór na potrzeby demonstracji w części eksperymentalnej. 

• Rozpoznanie problematyki punktów głównych i punktów formalnie podkreślonych i ich 

znaczenia w kompozycji przestrzennej. 

• Rozpoznanie nie-neuronowych, wspomaganych komputerowo metod przetwarzania 

głównych punktów kompozycyjnych. 

1.4.3. Cele eksperymentu wstępnego 

• Wstępna demonstracja możliwości przetwarzania złożonych zasad kompozycyjnych 

przy pomocy sieci neuronowych. 

• Odizolowanie problemu kompozycji przestrzennej od ogólnego problemu 

syntetycznego przetwarzania obrazów i danych wielowymiarowych. 
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• Opracowanie i przetestowanie procedur potrzebnych do przeprowadzenia 

eksperymentu głównego. 

• Jakościowa i ilościowa ocena przeprowadzonej demonstracji. 

1.4.4. Cele eksperymentu głównego 

• Demonstracja zdolności algorytmów głębokiego uczenia maszynowego 

w przetwarzaniu rzeczywistych, urbanistycznych kontekstów przestrzennych. 

• Demonstracja głównych założeń projektowania hiperparametrycznego w praktyce. 

• Opracowanie prototypowego narzędzia służącego ekstrakcji punktów głównych 

z miejskich kompozycji przestrzennych. 

• Jakościowa i ilościowa analiza skuteczności prototypu. 

1.5. Pytania badawcze 

1.5.1. Pytanie główne 

• Jakie są możliwości i ograniczenia wykorzystania algorytmów głębokiego uczenia 

maszynowego do przetwarzania kontekstów kompozycyjnych w architekturze 

i urbanistyce? 

1.5.2. Pytania szczegółowe 

• Jak głębokie uczenie maszynowe wpisuje się w teorie architektury informacyjnej, 

architektury parametrycznej oraz komputerowego wspomagania projektowania 

architektonicznego? 

• Jakie są dotychczasowe zastosowania sieci neuronowych w architekturze i urbanistyce 

w różnych skalach (urbanistycznej, architektonicznej i detalu)? 

• Jakie kategorie problemów architektonicznych mogą być skutecznie rozwiązywane 

przy pomocy głębokiego uczenia maszynowego? 

• Jakie są możliwości i ograniczenia wykorzystania sieci neuronowych w architekturze, 

na podstawie ich historii i zastosowań w dziedzinach pokrewnych? 

• Jakie elementy kompozycyjne mogą być efektywnie przetwarzane przez algorytmy 

głębokiego uczenia maszynowego? 

• Czy jest możliwe stworzenie narzędzia do ekstrakcji punktów głównych z miejskich 

kompozycji przestrzennych przy pomocy sieci neuronowych? 
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• Jakie są możliwości i efektywność opracowanego prototypu? 

• Jakie są perspektywy przyszłego rozwoju narzędzi opartych na sieciach neuronowych 

w kontekście wspomagania projektowania architektonicznego i urbanistycznego? 

2. Stan wiedzy 

 2.1. Od architektury parametrycznej do hiperparametrycznej 

Warsztat architekta od co najmniej 30 lat jest nierozłącznie związany z komputerami. Już 

w połowie lat 70. William J. Mitchell zauważył potencjał wykorzystania nowoczesnych 

narzędzi cyfrowych w projektowaniu i zdefiniował podstawy teoretyczne poddziedziny, którą 

obecnie nazywamy projektowaniem architektonicznym wspomaganym komputerowo 

(ang. CAAD – Computer-Aided Architectural Design) (Mitchell, 1975; Mitchell, 1977). 

W późniejszych latach w ramach CAAD został sformułowany paradygmat architektury 

informacyjnej opisujący zbiór trendów i podstaw filozoficznych związanych z projektowaniem 

w erze informacyjnej (Schmitt, 1999; Saggio, 2013; Słyk, 2012). Zgodnie z jej klasycznym 

znaczeniem architektura informacyjna zwróciła się w kierunku programowania i wykorzystania 

komputerów, z nadzieją na zwiększenie możliwości przechowywania i przetwarzania danych, 

usprawnienie komunikacji i wzmocnienie ludzkich zdolności logicznego myślenia (Schmitt, 

1999). Rolą architekta projektującego dla społeczeństwa informacyjnego było programowanie 

parametrów procesów twórczych na pograniczu architektury, urbanistyki, technik 

informacyjnych, wytwarzania i użytkowania (Słyk, 2012). Architektura informacyjna sięgnęła 

po techniki heurystyczne charakterystyczne dla klasycznego programowania algorytmów 

opartych na wykrytych przez architekta faktach, rozpoznanych wzorcach je łączących 

i hipotezach nadających kierunek działaniom. W takim rozumieniu projektowania procesów 

architekt stawiany był w roli demiurga odpowiedzialnego za definicję poszczególnych 

parametrów rozwiązania napotkanego problemu. Jak sygnalizuje stopniowe przesunięcie 

paradygmatu w dziedzinach informatycznych, takie dedukcyjne podejście 

do parametryzowania złożonych algorytmów zdaje się ustępować miejsca metodom 

indukcyjnym i stochastycznym. W coraz większej sferze problemów programistycznych 

odchodzi się od heurystyki na rzecz głębokiego uczenia maszynowego. Obecnie pokazuje 

się komputerom, jak rozwiązywać problemy, zamiast je programować (Hinton i Ng, 2017). 

Skąd ta zmiana? Historyk architektury Mario Carpo z dużą dozą nieufności do tego, jaki wpływ 

na teorię architektury mają narzędzia oparte o sieci neuronowe, zwraca uwagę na przełom 
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w sposobie myślenia o praktyce architektonicznej i nazywa ten proces „drugim cyfrowym 

zwrotem”: 

„(…) Ten nowy typ nauki, nieodłączny od większości dzisiejszych zastosowań SI1 jest 

w gruncie rzeczy tym, co nazywam drugim cyfrowym zwrotem (…). W naszym 

tradycyjnym sposobie myślenia fakty są  mozolnie zbierane, sortowane, porównywane 

i selekcjonowane, potem generalizowane i formalizowane: kulminacją tego procesu jest 

teoria, często skompresowana do formy matematycznych wzorów przydatnych 

do przewidywania przyszłości w porównywalnych sytuacjach. Komputery tego nie 

robią. (…) Tradycyjni rzemieślnicy, niebędący inżynierami i niekorzystający 

z matematyki, działali metodą prób i błędów: złóż krzesło, a jeśli się rozpadnie, złóż 

kolejne i kolejne, aż któreś w końcu wytrzyma. (…) Z tego powodu z czasem zaczęliśmy 

wierzyć inżynierom bardziej niż rzemieślnikom. Ale dzisiejsze narzędzia komputerowe 

działają jak rzemieślnicy, nie jak inżynierowie. (…) Tworzenie stało się kwestią czucia, 

a nie myślenia: po prostu to zrób [wyróżnienie w oryginale] (…). Porzucenie 

tradycyjnego rozumowania przyczynowego w wielu przypadkach działa nieźle.” 

[tłumaczenie własne] (Carpo, 2017, s. 163). 

Czy jednak rzeczywiście korzystanie z głębokiego uczenia maszynowego jest „porzuceniem 

rozumowania przyczynowego”? Yann LeCun, jeden z ojców współczesnego uczenia 

maszynowego, uważa inaczej. Statystyczny charakter rozwiązań opartych na głębokim uczeniu 

maszynowym nie wyklucza możliwości, że algorytmy podejmujące interakcję ze światem 

rzeczywistym, wewnętrznie korzystają z zaawansowanych modeli mechanistycznych 

wyuczonych na podstawie przeanalizowanych danych. Innymi słowy, o ile próbkowanie 

danych treningowych dla głębokiego uczenia maszynowego jest statystyczne, to same dane 

mogą odzwierciedlać deterministyczne zależności rządzące światem (LeCun i Fridman, 2022).  

Proste narzędzia potrafiące autonomicznie przetwarzać informacje dostępne są już od lat 

50. i 60. dwudziestego wieku, jednak dopiero współczesne głębokie uczenie maszynowe ma 

szanse na precyzyjne i skuteczne przetwarzanie złożonych i chaotycznych zależności 

obserwowanych w rzeczywistości. Kryzys algorytmów opartych na zasadach heurystycznych, 

takich jak systemy eksperckie, wynika w dużej mierze z konieczności zbytniego uproszczenia 

 

1 SI – Sztuczna Inteligencja (ang. AI – Artificial Intelligence) 
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opisywanych problemów i rządzących nimi zmiennych. W przeciwnym wypadku opracowane 

modele byłyby zbyt złożone i niemożliwe do udźwignięcia bez skomplikowanych teorii 

opisujących ogrom możliwych interakcji między licznymi zmiennymi. Przykładem niech będą 

modele „mikroświatów” 2  opracowywanych przez Nicholasa Negroponte w ramach 

Architecture Machine Group. Uproszczone algorytmy mające w założeniu symulować 

odizolowane aspekty rzeczywistości, w praktyce generowały stwierdzenia, które odniesione do 

prawdziwego świata byłyby całkowicie fałszywe (Steenson, 2017). Mimo, że ograniczenia 

klasycznego programowania w architekturze były znane od dziesięcioleci, do niedawna 

brakowało dla niego praktycznych alternatyw. Zaledwie od niewiele ponad dekady 

dysponujemy wystarczającą mocą obliczeniową i dostatecznie niezawodnymi algorytmami, 

by efektywnie pozwolić maszynom samodzielnie uczyć się rozwiązywania praktycznych 

problemów (Krizhevsky, i in., 2012).  

Gdy mówimy o głębokim uczeniu maszynowym, mamy na myśli uczenie maszynowe 

wykorzystujące wielowarstwowe sieci neuronowe. Sieci neuronowe wyróżniają się wśród 

innych technik uczenia maszynowego głównie ze względu na swoją wszechstronność. W 2010 

roku Maithani, Arora i Jain podali listę czterech przesłanek uzasadniających możliwość 

wykorzystania sieci neuronowych w projektowaniu wspomaganym komputerowo: 

• Sieci neuronowe mogą rozwiązywać złożone problemy nieliniowe. 

• Przyjmują multimodalne dane wejściowe. 

• Nie mają uprzedzeń i przewidywań dotyczących dystrybucji danych wejściowych. 

• Mogą przetwarzać jednocześnie wiele danych wejściowych i ich pochodnych 

(Maithani, i in., 2010). 

Jak przy każdej nowości wdrażanej w ramach danej dyscypliny powinniśmy być ostrożni przy 

wprowadzaniu głębokiego uczenia maszynowego w praktykę architektoniczną. Jak pisze 

 

2 Ang. Micro-world. Przykładową demonstracją modelu mikroświata sterującego fizyczną cząstką prawdziwego 

świata był eksperymentalny projekt „SEEK” (nazywany także „Bricks World”). W ramach projektu model 

cyfrowy miał za zadanie symulować potrzeby myszoskoczków zamieszkujących terrarium wypełnione możliwymi 

do przesuwania bloczkami. Bloczki miały być przenoszone przez robotyczne ramię zgodnie z przewidywaniami 

algorytmu w celu dostosowania się do potrzeb gryzoni. Eksperyment zakończył się porażką. Myszoskoczki 

zachowywały się niezgodnie z przewidywaniami komputera, niszczyły bloczki i atakowały się nawzajem 

(Steenson, 2017). 
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Carpo, ważne, byśmy to my sterowali sztuczną inteligencją, a nie sztuczna inteligencja nami 

(Carpo, 2017). Algorytmy uczenia maszynowego są często nieprzewidywalne, trudne 

w interpretacji i ocenie w oderwaniu od wyznaczników wyprowadzonych heurystycznie. 

Skuteczność współczesnych systemów jest bardzo silnie powiązana z jakością danych 

treningowych, a same modele są wrażliwe na niespotkane wcześniej przypadki brzegowe 

i muszą być precyzyjnie dostrajane. Mimo wszystko, sukcesy głębokiego uczenia 

maszynowego w dziedzinach pokrewnych dają podstawy do optymistycznego patrzenia 

na możliwości implementacji podobnych algorytmów w architekturze. Trudno nie ulec 

wrażeniu, że krok w kierunku uczenia maszynowego jest naturalną konsekwencją myślenia 

o architekturze informacyjnej jako o projektowaniu procesów: z programowaniem 

hiperparametrycznym zastępującym projektowanie parametryczne. Molly Wright Steenson 

obrazowo rysuje paralelę między programowaniem algorytmów uczenia maszynowego 

a architekturą: 

„Ci, którzy projektują systemy sztucznej inteligencji nie tworzą 

rzeczowników - obiektów, budynków, przedmiotów – tworzą czasowniki. Planują 

architekturę algorytmów uczenia maszynowego – kroki, które program wykona 

by ukończyć zadanie. Układają na swoje miejsce zbiór warunków początkowych, dzięki 

którym programy programują się same. Zauważycie, że użyłam słów «projektować» 

i «architektura»3. To właśnie robią eksperci uczenia maszynowego. Budują modele 

statystyczne, które ewoluują same i się uczą. Wznoszą ramy algorytmów generatywnych. 

Tworzą architekturę.” [tłumaczenie własne] (Steenson, 2017, s. 224) 

Wydaje się, że podobieństwa między uczeniem maszynowym a architekturą nie sprowadzają 

się jedynie do gier słownych i współwystępowania tych samych pojęć w obu dziedzinach. 

Architektoniczna intuicja przestrzenna przydaje się w zrozumieniu wielowymiarowych 

wektorów i ukrytych hiperprzestrzeni charakterystycznych dla głębokiego uczenia 

maszynowego. Dzięki wyobraźni przestrzennej skomplikowanie wyglądające operacje 

na macierzach można koncepcyjnie zastąpić zestawianiem wielowymiarowych strzałek, 

a pozornie zawiły4 rachunek różniczkowy opisujący propagację wsteczną umożliwiającą sieci 

 

3 W angielskim oryginale – „to architect” w formie czasownikowej. 

4 W rzeczywistości logika ukryta za rachunkiem różniczkowym propagacji wstecznej jest zaskakująco prosta 

i intuicyjna, ale stosowana do jej opisu notacja może skutecznie odstraszyć tych nieobytych z matematyką. 
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neuronowej samodzielne uczenie się, sprowadza się do schodzenia w dół 

po wielowymiarowych, abstrakcyjnych zboczach funkcji kosztu. Będąc architektem o wiele 

łatwiej jest zrozumieć przestrzennie koncept separacji liniowej odrębnych klas lub rzutowania 

wielowymiarowych przestrzeni stanów na powierzchnie dwuwymiarowe przy pomocy 

narzędzi PCA5 czy t-SNE6. Według tezy głoszonej przez Bruno Zevi’ego, na najogólniejszym 

poziomie architektura może być rozumiana jako sztuka kształtowania przestrzeni: 

„[Esencja architektury] nie leży w ograniczeniach materialnych nałożonych na wolność 

przestrzenną, tylko w sposobie, w jaki przestrzeń zorganizowana jest w znaczącą formę 

poprzez proces ograniczenia.” [tłumaczenie własne] (Zevi, 1993, s. 49) 

W projektowaniu hiperparametrycznym architekt nie kształtuje wprawdzie klasycznej, 

trójwymiarowej przestrzeni euklidesowej, a ogranicza abstrakcyjną, wielowymiarową 

przestrzeń charakteryzującą badany problem7 poprzez definicję hiperparametrów sterujących 

zachowaniem sieci neuronowej. Znaczenie formie reprezentowanej w tej przestrzeni nadaje 

algorytm uczenia maszynowego, definiując parametry rozwiązania problemu. W Źródłach 

Architektury Informacyjnej Jan Słyk poszukiwał nietrywialnego wykorzystania geometrii 

nieeuklidesowych w architekturze. W analizowanych przykładach odnalazł jedynie luźne 

inspiracje, które w praktyce nie wpływały na rzeczywistą architekturę będącą wynikiem tych 

inspiracji: 

„Pomimo licznych nawiązań i deklaracji, trudno pozbyć się wrażenia, że współczesna 

architektura korzysta z geometrii nieeuklidesowych w sposób bardzo powierzchowny. 

(…) Möbius House i Muzeum Mercedesa nie powstałyby prawdopodobnie bez swobody 

 

5  PCA – Analiza Głównych Składowych (ang. Principal Component Analysis) – metoda obrotu układu 

współrzędnych danych wielowymiarowych maksymalizująca wariancję tych danych po rzutowaniu na przestrzeń 

o mniejszej liczbie wymiarów (Pearson, 1901). 

6 t-SNE – ang. t-distributed Stochastic Neighbor Embedding. Algorytm wizualizacji wielowymiarowych danych 

w przestrzeni o mniejszej liczbie wymiarów przy próbie zachowania struktury sąsiedztwa danych wejściowych, 

czyli podobieństwa między punktami, podczas przekształcania danych na niższe wymiary. 

7 Technicznie rzecz biorąc hiperprzestrzeń opisująca możliwe stany w głębokim uczeniu maszynowym może 

spełniać definicję wielowymiarowej przestrzeni euklidesowej. Jednak w potocznym, architektonicznym 

znaczeniu, mówiąc o przestrzeni euklidesowej, mamy na myśli otaczającą nas klasyczną przestrzeń 

trójwymiarową. 
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wyobrażeń, jakie stymuluje współczesna matematyka. (…) Jednak niezależnie od nazw 

i wyjaśnień, oba te budynki osadzone są w tradycyjnym, pitagorejsko-kartezjańskim 

kontekście. Dotyczy to zarówno zagadnień projektowych, realizacji, jak i odbioru 

użytkowego. Konstruując przedmioty o średnich (w skali doświadczeń fizyki) 

rozmiarach, podporządkowane prawom ziemskiej grawitacji, działamy w środowisku, 

które świetnie opisuje geometria euklidesowa. (…) Warto jedynie dostrzec, 

że środowisko twórczości rozszerza się. (…) Światy przestrzenne Internetu pozbawione 

są grawitacji. Sterowalne mechanizmy projekcji, hiperłącza i parametryczność ruchu 

istotnie wpływają na percepcję. W tym kontekście, zdobycze współczesnej matematyki 

mogą okazać się czynnikiem wpływającym na twórczość szerzej, niż w sensie estetycznej 

inspiracji.” (Słyk, 2012, s. 58) 

W przypadku głębokiego uczenia maszynowego każda jego architektoniczna aplikacja 

ma u swoich podstaw wielowymiarową kompozycję uporządkowaną w ukrytej 

hiperprzestrzeni stanów. Hiperprzestrzeń ta jest możliwa do wyobrażenia i zwizualizowania 

(Olah, i in., 2017), a co najważniejsze, może przetwarzać konteksty przestrzenne, funkcjonalne 

czy historyczne dotyczące rzeczywistego świata na fizyczną architekturę czy urbanistykę. 

Ze względu na rozwiniętą wyobraźnię przestrzenną i wysokie kwalifikacje cyfrowe, 

współcześni architekci coraz częściej sięgają po narzędzia oparte na głębokim uczeniu 

maszynowym. Architektura wspomagana komputerowo wydaje się stopniowo ewoluować 

od algorytmów heurystycznych opisanych parametrycznie na niskim poziomie abstrakcji 

do algorytmów stochastycznych sterowanych na wysokim poziomie abstrakcji przez 

hiperparametry i odpowiednio sformułowane dane wejściowe (ang. prompt). Przyjrzyjmy 

się więc tym algorytmom, opartym na nich narzędziom i ich architektonicznym 

zastosowaniom. 
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2.2. Sieci neuronowe w literaturze dotyczącej komputerowego wspomagania 

projektowania 

Aby rozpoznać najnowsze zastosowania sieci neuronowych w architekturze i zidentyfikować 

potencjalne luki badawcze, przeanalizowałem 149 publikacji naukowych z ostatnich kilku lat8 

dotyczących implementacji sieci neuronowych w projektowaniu wspomaganym komputerowo. 

Źródła obejmowały przekrój artykułów z czasopism naukowych i publikacji 

pokonferencyjnych do połowy 2021 roku. 

 

Rys. 1. Wizualizacja 37 cech (oś pionowa) wyodrębnionych ze 149 publikacji (oś pozioma) 

dotyczących zastosowania sieci neuronowych w projektowaniu wspomaganym 

komputerowo. Biały kolor oznacza powiązanie danej cechy z publikacją. Wyodrębnione 

cechy pozwoliły na organizację zebranych źródeł i przeprowadzenie ich analizy ilościowej. 

Opracowanie własne. 

W celu ich organizacji źródła zostały zebrane w tabeli umożliwiającej przeprowadzenie analizy 

jakościowej i ilościowej. Na potrzeby analizy jakościowej w tabeli zapisałem główne wnioski 

płynące z proponowanych przez autorów implementacji sieci neuronowych w CAAD. 

Dla celów analizy ilościowej z artykułów wydobyłem 37 cech i zapisałem je metodą kodowania 

 

8 Kwerenda zasadnicza została objęta okresem do połowy 2021 roku, w którym to momencie zamknąłem główną 

część badań literaturowych. W ramach dalszych prac nad doktoratem bibliografia była na bieżąco 

uzupełniana i aktualizowana o najnowsze wyniki badań i dodatkowe źródła, jednak nie zostały one ujęte w 

kwerendzie zasadniczej. 
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„multi-hot”9 (dla 35 cech możliwych do przedstawienia binarnego) i w postaci skalarnych 

wartości znormalizowanych dla pozostałych cech, takich jak rok i wydawnictwo (Rys. 1). 

Cechy binarne opisujące zebrane źródła obejmowały grupy zastosowań sieci neuronowych 

(Załącznik 1), rodzaje implementowanych sieci neuronowych, skalę ich zastosowania 

(Załącznik 2), grupy źródeł danych przetwarzanych przez sieć neuronową, oraz tematykę 

opracowań (Załącznik 3). 

Po zakodowaniu, zebrane cechy reprezentujące analizowane źródła stanowiły chmurę punktów 

w 37-wymiarowej przestrzeni (po jednym wymiarze na wyodrębnioną cechę). Badanie 

ilościowe źródeł polegało na ich analizie statystycznej (Rys. 2) oraz wizualizacji korelacji 

między nimi przy pomocy algorytmu nienadzorowanego uczenia maszynowego t-SNE, 

 

9 Kodowanie multi-hot polega na przypisaniu poszczególnym cechom wartości 0 lub 1 i zestawieniu ich razem w 

postaci wielowymiarowego wektora. Kodowanie to różni się od metody jeden z wielu (ang. one-hot encoding) 

tym, że w multi-hot wartość 1 może być przypisana do wielu cech jednocześnie. 

  

Rys. 2. Stosowanie sieci neuronowych 

w projektowaniu w różnych skalach w publikacjach 

dotyczących komputerowego wspomagania 

projektowania architektonicznego. Opracowanie 

własne. 

Rys. 3. Wizualizacja skal, w których 

stosowane są sieci neuronowe, 

wykonana przy pomocy algorytmu 

t-SNE na podstawie 

37 wyodrębnionych cech badanych 

artykułów. Każdy punkt reprezentuje 

odrębną publikację, kolor punktu 

odpowiada skali zastosowania sieci 

neuronowej. Opracowanie własne. 
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umożliwiającego przedstawienie poszczególnych grup publikacji w bardziej czytelnej formie 

wykresu dwuwymiarowego zachowującego wzajemne podobieństwo między punktami. 

Na wizualizacji t-SNE główne składowe (osie wykresu) są skorelowane ze skalą zastosowań 

i typem wykorzystanych w publikacjach sieci neuronowych Każdy punkt na wykresie 

odpowiada jednej z publikacji przeanalizowanej w kwerendzie zasadniczej (Rys. 3). 

Ze statystycznej analizy przeprowadzonej kwerendy wynika, że w projektowaniu 

architektonicznym wspomaganym komputerowo sieci neuronowe są wykorzystywane 

we wszystkich skalach projektowych: 

• Skali urbanistycznej (39,6% analizowanych publikacji). 

• Skali architektonicznej (49,0% analizowanych publikacji). 

• Skali detalu, w tym wytwarzania wspomaganego komputerowo CAM10 i materiałów 

(25,5%). 

Niewielka część zebranych źródeł dotyczyła także zastosowań bezskalowych 

(2,7% analizowanych publikacji). 

Na najogólniejszym poziomie wszystkie zastosowania sieci neuronowych można sprowadzić 

do zadania opracowania funkcji mapującej dane wejściowe na dane wyjściowe w pewien 

pożądany sposób. Na trochę bardziej szczegółowym poziomie (ale wciąż na tyle ogólnym, 

aby umożliwić efektywne grupowanie) podzieliłem zastosowania sieci neuronowych 

w analizowanych skalach projektowych na pięć głównych kategorii: 

• Ewaluacja i przetwarzanie danych, polegające na przypisaniu danym wejściowym 

pewnej wartości oceniającej lub na bezpośrednim przetworzeniu danych z jednej formy 

na drugą (30,9% analizowanych publikacji). 

• Działalność generatywna, polegająca na tworzeniu rozwiązań projektowych lub sugestii 

projektowych bezpośrednio przez sieć neuronową (22,1% analizowanych publikacji). 

• Klasyfikacja, polegająca na podziale danych wejściowych na kategorie lub 

na ich semantycznej segmentacji (17,4% analizowanych publikacji). 

• Ekstrakcja  i uczytelnianie, polegające na pozyskiwaniu danych użytecznych 

z obszernych, nieustrukturyzowanych baz (ang. data mining), lub na przedstawieniu 

 

10 CAM – ang. Computer-Aided Manufacturing, wytwarzanie wspomagane komputerowo 
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danych nieczytelnych i nienadających się do dalszego przetwarzania w czytelniejszej 

formie pośredniej (15,4% analizowanych publikacji). 

• Optymalizacja, polegająca na poszukiwaniu najlepszych rozwiązań danego procesu 

ze względu na zadane kryteria (8,7%). 

• Przewidywanie przyszłości na podstawie sytuacji obecnej i historycznie 

zarejestrowanych procesów (5,4%). 

W niektórych przypadkach brzegowych zastosowanie sieci neuronowej może wpisywać się 

w kilka kategorii jednocześnie. Przykładowo, czasem trudno jest jednoznacznie rozróżnić, czy 

dana operacja jest przetworzeniem danych (bezpośrednim) czy ich uczytelnieniem 

(pośrednim). Dodatkowo, zależnie od kontekstu i poziomu analizy poszczególne grupy 

zastosowań można rozumieć wieloznacznie. Na przykład patrząc na sieć neuronową 

z perspektywy technicznej, każdy model będzie służył optymalizacji funkcji kosztu względem 

wag i progów połączeń między neuronami. Z tych powodów zdecydowałem się dokonać 

kategoryzacji zastosowań bez precyzyjnego rozgraniczania, skupiając się na zastosowaniach 

rozumianych z perspektywy projektanta (architekta lub urbanisty) i nie traktując przyjętych 

kategorii w sposób rozłączny. 

2.2.1. Skala urbanistyczna – zastosowania sieci neuronowych 

Urbanistyka: ekstrakcja i uczytelnianie danych 

W skali urbanistycznej najpopularniejszym w badanym okresie zastosowaniem sieci 

neuronowych jest ekstrakcja i uczytelnianie danych. Jednym z łatwiej dostępnych źródeł 

danych urbanistycznych są zdjęcia satelitarne, które ze względu na swoją obszerność 

i szczegółowość reprezentują ogromną liczbę potencjalnie użytecznych informacji. Ich ręczna 

ekstrakcja często jest jednak zadaniem bardzo czasochłonnym, lub, zależnie od zakresu, wręcz 

niemożliwym. Przykładowo, przy pomocy sieci neuronowych można automatycznie dzielić 

zdjęcia satelitarne miast na interesujące nas sektory. Zespół badaczy z politechniki 

w Singapurze wykorzystał otwarte, darmowe zdjęcia satelitarne systemu Sentinel 2 jako bazę 

danych umożliwiającą rozpoznawanie poszczególnych stref wykorzystania terenu w okolicach 

amerykańskich lotnisk. Tak podzielone zdjęcia satelitarne mogą być przydatne 

w monitorowaniu zmian w sposobie użytkowania gruntów, strat wywołanych pożarami, 

czy postępów rekultywacji gruntów (Meeran i Joyce, 2020). Próby wykorzystania sieci 

neuronowych do identyfikacji zmian w zabudowie miejskiej są podejmowane już od wczesnych 

lat dwutysięcznych. Liu i Lathrop w 2002 roku zaprogramowali prostą sieć neuronową 
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rozpoznającą nowozurbanizowane tereny na podstawie kilkunastu wybranych cech 

wyodrębnionych ze zdjęć satelitarnych. Nawet prosta, dwuwarstwowa sieć neuronowa 

operująca na ograniczonej liczbie cech osiągała wyższą skuteczność niż wcześniej stosowane 

metody wykrywania różnic w parach zdjęć satelitarnych (Liu i Lathrop Jr, 2002). Idąc krok 

dalej, Shota Iino i in. opracowali neuronowy system detekcji krótkoterminowych zmian 

w tkance miejskiej. System porównuje ze sobą zdjęcia satelitarne uzupełnione o numeryczne 

modele pokrycia terenu (ang. DSM – Digital Surface Model) w interwałach rocznych i ocenia 

prawdopodobieństwo, że na danym fragmencie obszaru użytkowanie gruntów uległo zmianie 

(Iino, i in., 2018). Głębokie uczenie maszynowe aplikowane jest także do uczytelniania zdjęć 

satelitarnych do postaci diagramatycznych schwarzplanów. Naukowcy z uniwersytetu w Osace 

zaproponowali metodę trenowania sieci neuronowych rysujących obrysy zabudowy przy 

pomocy syntetycznych par widok-schwarzplan renderowanych z fotorealistycznych, 

trójwymiarowych modeli miast. Takie rozszerzenie bazy danych treningowych (ang. data 

augmentation) pozwala niskim kosztem zwiększyć skuteczność trenowanych algorytmów 

(Ikeno, i in., 2020). Wychodząc z założenia, że jakość przestrzeni zbudowanej w mieście jest 

skorelowana ze stanem zdrowia mieszkańców, można zestawić zdjęcia satelitarne miast 

z dostępnymi danymi medycznymi, w celu rozpoznania typów tkanki miejskiej powiązanych 

z wybranymi zaburzeniami zdrowotnymi. Sama korelacja cech nie oznacza, że są one 

powiązane przyczynowo-skutkowo, obie mogą być niezależnym objawem 

współwystępujących przyczyn. Korelację tę można jednak wykorzystać do mierzenia cechy 

łatwiejszej do przetworzenia maszynowego (zdjęcia satelitarne przestrzeni miejskiej) w celu 

identyfikacji potencjalnego występowania cechy trudniejszej do zmierzenia (problemy 

zdrowotne mieszkańców). Pewne sukcesy na tym polu wraz z zespołem osiągnął David Newton 

w zakresie przewidywania wskaźnika otyłości na badanym obszarze (Newton, i in., 2020), 

analizowania poszczególnych cech tkanki miejskiej skorelowanych z konkretnymi problemami 

zdrowotnymi (Newton, 2021) czy generowania widoków satelitarnych nieistniejących 

fragmentów miast w celu zwizualizowania, jakie typy krajobrazów miejskich są skorelowane 

z występowaniem zaburzeń nerwowych (Newton, 2020). Sieci neuronowe mogą być także 

użyte do generowania podziałów na grupy typologiczne na podstawie zdjęć satelitarnych. Przy 

pomocy sieci neuronowych typu autoenkoder można przetworzyć wiele przykładów 

interesujących nas obszarów (np. kampusów uniwersyteckich) na skompresowaną formę 

wektorową. Korzystając z takiej reprezentacji zabudowy Peiwen Li i Wenbo Zhu dokonali 

grupowania morfologicznego kampusów opartego na podobieństwie między poszczególnymi 
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wektorami przy pomocy algorytmu centroidów (ang. k-means clustering) i klastrowania 

hierarchicznego [ang. hierarchical clustering (Li i Zhu, 2020)]. 

Pokrewnym do zdjęć satelitarnych źródłem danych są zdjęcia z samolotów i dronów 

bezzałogowych. Głębokie uczenie maszynowe pozwala na ekstrakcję trajektorii ruchu pieszego 

z materiału wideo zarejestrowanego przez dron. Trajektorie poruszania się pieszych mogą być 

później wykorzystane przy projektowaniu i przebudowie ulic i placów miejskich (Wu, 2021). 

Z samych trajektorii (np. uzyskanych bezpośrednio z systemów śledzenia GPS) także 

da się uzyskać dodatkowe dane przydatne w dalszych analizach. Katarzyna Siła-Nowicka i in. 

proponują wykorzystanie sieci neuronowych do przetwarzania trajektorii GPS na wzorce 

aktywności miejskiej dotyczącej konkretnych budynków lub ogólne wzorce ruchu w mieście 

dotyczące poszczególnych trybów transportu (Siła-Nowicka, i in., 2016). Qayyum i in. 

zastosowali sieci neuronowe do ekstrakcji cech z wejściowych zdjęć wykonanych przez drona. 

Ekstrakcja istotnych cech opierała się na redukcji przez sieć wymiarów danych wejściowych 

i zdecydowanie poprawiała skuteczność późniejszej klasyfikacji elementów znajdujących 

się na satelitarnych zdjęciach miast (Qayyum, i in., 2019). Od momentu wprowadzenia przez 

Google usługi Street View, urbaniści zaczęli zwracać uwagę na łatwo dostępne, sferyczne 

zdjęcia przestrzeni publicznych jako na potencjalne źródło informacji miejskich. Dzięki 

sieciom neuronowym zdjęcia sferyczne pozyskane ze Street View mogą posłużyć 

do automatycznej ekstrakcji kolorów elewacji na danym obszarze (Zhang, i in., 2020) lub nawet 

wydobycia genius loci badanej ulicy (łac. duch miejsca). Zaproponowany przez Kyle’a 

Steinfelda system GAN Loci pobiera z serwerów Street View kilkaset zdjęć sferycznych 

znajdujących się w bezpośredniej okolicy badanego punktu i wykorzystuje je do wytrenowania 

przeciwstawnej sieci neuronowej. Sieć następnie generuje nieistniejący, fantastyczny krajobraz 

ilustrujący genius loci danego miejsca (Rys. 4) i zawierający elementy krajobrazowe 

charakterystyczne dla danej okolicy (Steinfeld, 2019). 
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Rys. 4. Nieistniejący, syntetyczny krajobraz wygenerowany przez opracowany przez Kyle’a 

Steinfelda neuronowy algorytm GAN Loci wizualizujący „genius loci” dzielnicy Blijdorp 

w Rotterdamie (Steinfeld, 2019). 

Zdjęcia sferyczne Street View, mimo satysfakcjonującego pokrycia większości dużych miast, 

są aktualizowane bardzo rzadko, co kilka lat, przez co zawarte w nich informacje są zazwyczaj 

nieaktualne. Receptą na ten problem może być zbieranie materiału filmowego poprzez 

umieszczenie kamer wideo na pojazdach służb miejskich, takich jak śmieciarki, służby 

parkingowe czy straż miejską. Zebrane w ten sposób dane są zbyt obszerne do analizy 

manualnej, jednak mogą być przetwarzane przez sieci neuronowe. Analiza taka umożliwia 

przykładowo rozpoznawanie problematycznych obiektów, jak porzucone śmieci 

czy uszkodzone pojazdy, i nanoszenie ich na mapę w celu efektywniejszego zarządzania 

miastem (Sukel, i in., 2020a; Sukel, i in., 2020b). System taki może być także rozszerzony 

o dodatkowe, multimodalne źródła danych, jak raporty mieszkańców, dane geolokalizacyjne 

i historyczne szeregi czasowe w celu dokładniejszego rozpoznawania „mikrowydarzeń” 

w przestrzeni miejskiej (Sukel, i in., 2019). W temacie danych multimodalnych, głębokie sieci 

neuronowe sparowane z dodatkowymi technikami uczenia maszynowego (jak PCE czy t-SNE) 

mogą być wykorzystane do uczytelnienia wielowymiarowych i zróżnicowanych informacji 

pochodzących z wielu źródeł miejskich w formie możliwej do immersyjnego zwizualizowania 

w środowisku wirtualnej rzeczywistości (Kampani i Varoudis, 2020). Wartościowe informacje 

o przestrzeni publicznej da się pozyskać także z języka naturalnego zapisanego w formie 

tekstowej w mediach społecznościowych. Maszynowa analiza wydźwięku emocjonalnego 

wypowiedzi (ang. sentiment analysis) pozwala na zmapowanie emocji mieszkańców 



34 

 

na przestrzeni miejskiej w celu uczytelnienia emocjonalnych kontekstów przestrzennych (Kim 

i Rosenwasser, 2020). 

Urbanistyka: ewaluacja i przetwarzanie danych 

Drugim najpopularniejszym zastosowaniem głębokiego uczenia maszynowego w skali 

miejskiej jest ewaluacja danych wejściowych lub ich bezpośrednie przetworzenie na pożądaną 

formę docelową. W procesach urbanistycznych często przydatne jest przypisanie badanym 

zjawiskom pewnej wartości numerycznej w celu przeprowadzenia ich analizy ilościowej 

zarówno na potrzeby projektowania urbanistycznego, jak i zarządzania miastami. 

Przydatnym źródłem danych umożliwiających ewaluację miejskich ulic jest baza sferycznych 

zdjęć Street View firmy Google. Yazıcıoğlu i Dino zaproponowali metodę semantycznej 

segmentacji zdjęć sferycznych wzdłuż ulicy i późniejszego przetworzenia otrzymanych 

diagramów na przewidywany poziom komfortu termicznego w danym punkcie. Dane 

treningowe dla sieci neuronowych zostały wygenerowane przy pomocy komputerowej 

symulacji nasłonecznienia przeprowadzonej na urbanistycznym modelu 3D (Yazıcıoğlu i Dino, 

2021). Qi i in. opracowali system przetwarzający zdjęcia Street View na liczbowy wynik 

„witalności” danego miejsca. Sieć neuronowa została wytrenowana na podstawie zbioru 

ręcznie ocenianych względem witalności lokalizacji badanych metodą wizji lokalnej. 

Tak zebrane dane pozwoliły wytrenować sieć neuronową oceniającą witalność dowolnego 

fragmentu miasta. Co więcej, na podstawie analizy reprezentacji danego zdjęcia w przestrzeni 

ukrytej ostatniej warstwy sieci neuronowej, autorzy byli w stanie zidentyfikować dwanaście 

klas mających największy pozytywny wpływ na ocenę witalności miejsca. Według sieci 

najsilniej na witalność obszaru wpływała obecność na zdjęciach przechodniów, witryn 

sklepowych, chodników oraz, co zaskakujące, placów budowy (Qi, i in., 2020). Podobną 

metodę oceny „preferencyjności” przestrzeni zaproponowali Kinugawa i Takizawa 

z Uniwersytetu w Osace. W tym przypadku zdjęcia sferyczne uzupełnione były o maszynowo 

generowaną mapę głębi obrazu (wspomaganą przez segmentację semantyczną w celu 

dokładniejszego rozpoznawania nieba) i następnie poddano je przetworzeniu na metrykę 

preferencyjności danego miejsca. Dane do treningu zebrano dzięki ankiecie przeprowadzonej 

na studentach architektury oceniających treningowe zdjęcia sferyczne na podstawie 

ich projekcji w rzeczywistości wirtualnej (Kinugawa i Takizawa, 2019). Pokrewny, dawniejszy 

system został zaprezentowany przez Takizawę i Furutę dwa lata wcześniej, jednak zamiast 

rzeczywistych przestrzeni miejskich dotyczył ewaluacji wirtualnych zdjęć sferycznych 
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renderowanych w 3D przez silnik Unity (Takizawa i Furuta, 2017). Możliwość 

przeprowadzania przy pomocy sieci neuronowych ewaluacji niezrealizowanych projektów 

syntetycznych jest szczególnie przydatna przy projektowaniu generatywnym 

i parametrycznym. Przy tej kategorii problemów projektant często musi dokonać wyboru 

najlepszych propozycji z obszernego zbioru możliwych rozwiązań. Sieci neuronowe mogą 

szybko ocenić wygenerowane projekty pod interesującymi projektanta aspektami, 

umożliwiając ich dalszą selekcję. Przykładem takiego zastosowania jest system generujący 

kwartały urbanistyczne opracowany przez Z. Hana, W. Yana i G. Liu. Autorzy zastosowali 

głębokie uczenie ze wzmacnianiem (ang. DRL: Deep Reinforcement Learning), w którym 

sterowany przez sieć neuronową agent generował w danej lokalizacji kubaturowy projekt 

zagospodarowania kwartału i jednocześnie oceniał wygenerowane rozwiązania pod względem 

estetyki i nasłonecznienia. Dzięki przypisanym metrykom możliwa była selekcja najlepszego 

projektu spośród dwóch tysięcy wygenerowanych możliwości (Han, i in., 2020). 

Ewaluacji i przetwarzaniu można poddać także zdjęcia lotnicze i satelitarne. Za przykład może 

posłużyć technika ewaluacji stanu technicznego dróg opisana przez chińskich naukowców 

w 2020 roku. Pan i in. wykorzystali zdjęcia z autonomicznego drona (ang. UAV: Unmanned 

Aerial Vehicle) w celu identyfikacji zarysowań i dziur w drogach oraz oceny stanu uszkodzeń 

powierzchni asfaltowych – od niewielkich uszkodzeń we wczesnym stadium po poważnie 

uszkodzone powierzchnie wymagające interwencji (Pan, i in., 2021). Nie wszystkie 

zastosowania sieci neuronowych są jednak tak pragmatyczne. Zdarzają się aplikacje mniej 

jednoznaczne, o głębszym wydźwięku artystycznym. Claudia Pasquero i Marco Poletto 

z Innsbruck University i ecoLogicStudio opracowali algorytm GAN_Physarum umożliwiający, 

według autorów, transfer inteligentnych cech biologicznych zaczerpniętych z kolonii 

bezkomórkowego śluzowca do tkanki miejskiej lub projektu architektonicznego. 

Zaproponowany proces „urbanistycznej remetabolizacji” jest de facto neuronowym transferem 

stylu (Gatys, i in., 2016) wytrenowanym na próbkach Physarum polycephalum: 

nieposiadającego układu nerwowego śluzowca wykazującego zdolności do rozwiązywania 

zaskakująco złożonych problemów (także obliczeniowych) i zdolnego do samoorganizacji. 

Wygenerowane przez GAN_Physarum abstrakcyjne, wieloskalowe wariacje na temat 

urbanistyki (Rys. 5) i architektury (Rys. 6) skłaniają do refleksji nad podobieństwami między 

przejawami inteligencji ekologicznej a algorytmiczną naturą współczesnych założeń miejskich 

(Pasquero i Poletto, 2020). 
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Rys. 5. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany 

przez Pasquero i Poletto zastosowany do przetworzenia satelitarnych zdjęć tkanki 

urbanistycznej w skali 1 x 1 km (po lewej) i 10 x 10 km (po prawej) (Pasquero i Poletto, 

2020). 

 

Rys. 6. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany 

przez Pasquero i Poletto zastosowany do przetworzenia Centre Pompidou 

sfotografowanego z lotu ptaka (Pasquero i Poletto, 2020). 

W temacie ogólnie rozumianych rozważań ekologicznych, sieci neuronowe mogą 

być przydatne w analizowaniu zależności między morfologią przestrzeni zbudowanej i zieleni 

miejskiej, a aktywnością fizyczną mieszkańców na świeżym powietrzu. Zestawiając ze sobą 
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dwie bazy danych, GIS-owe mapy miejskie systemu Mapbox oraz mapy aktywności fizycznej, 

Strava- Yunjuan Sun, Lei Jiang i Hao Zheng wytrenowali sieć neuronową przekształcającą 

dany na wejściu plan fragmentu miasta na przewidywaną aktywność fizyczną mieszkańców 

na tym obszarze. System taki może służyć do przewidywania wzorców aktywności 

na niezagospodarowanych terenach projektowanych, ale także do analizy korelacji między 

cechami danego obszaru a ich wpływem na zachowanie mieszkańców. Przykładowo, autorzy 

zauważyli, że zazielenione, kameralne aleje osadzone w krajobrazie o wiele silniej skorelowane 

są z bieganiem i spacerowaniem niż z jazdą na rowerze, podczas gdy proste aleje bez częstych 

zakrętów sprzyjają jeździe na rowerze. Przeprowadzając drobne interwencje urbanistyczne 

na badanym obszarze autorzy sprawdzili także ich wpływ na przewidywane zmiany 

we wzorcach aktywności wywołane wprowadzonymi zmianami. Z porównania map ciepła 

sprzed interwencji i po niej, można przykładowo dojść do wniosku, że poszerzenie ulicy 

zwiększy intensywność ruchu rowerowego, a zwiększenie powierzchni zabudowy obniży 

intensywność wszystkich form aktywności fizycznej (Sun, i in., 2020).  

Większość wymienionych powyżej zastosowań sieci neuronowych jako dane wejściowe 

wykorzystywała informacje zapisane w formie pewnego obrazu: zdjęcia, diagramu, mapy 

rastrowej czy wizualizacji 3D. Zasadniczo nie ma jednak ograniczeń co do typu danych 

przetwarzanych przez sieć neuronową, o ile mogą one być zapisane w postaci numerycznej. 

Jedno z wcześniejszych przestrzenno-urbanistycznych zastosowań sieci neuronowych z 1993 

roku dotyczyło przetwarzania danych tabularycznych. Stan Openshaw z uniwersytetu w Leeds 

w latach 90. badał różne możliwości wykorzystania uczenia maszynowego i innowacyjnych 

algorytmów komputerowych w przetwarzaniu danych geograficznych. W trakcie tych 

poszukiwań przyjrzał się także prostym sieciom neuronowym i podjął próbę modelowania przy 

ich pomocy interakcji przestrzennych na przykładzie tabeli opisujących wzorce 

przemieszczania się do pracy i z powrotem mieszkańców miast w północno-wschodniej Anglii. 

Modelowane dane opisywały poszczególne środki transportu i powiązane z nimi koszty 

przemieszczania się. Sieci neuronowe radziły sobie z tym zadaniem na poziomie 

konkurencyjnym do stosowanych wtedy alternatywnych modeli klasycznych i wykazywały 

zdolność do generalizowania wyuczonych zależności na niespotkane w trakcie treningu 

sytuacje (Openshaw, 1993). Innym przykładem ewaluacji zmiennej zależnej od zapisanych 

liczbowo zmiennych niezależnych jest przewidywanie cen nieruchomości na podstawie ręcznie 

wyodrębnionych cech obiektu. Cechy takie mogą obejmować zmienne mikroekonomiczne 

opisujące konkretny budynek (powierzchnia, lokalizacja, rodzaj dachu, liczba sypialni, 
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odległości od usług etc.) oraz zmienne makroekonomiczne opisujące ogólną sytuację 

gospodarczą kraju (PKB, Climate Change Performance Index, stopa bezrobocia etc.). 

Zapewniwszy sieci neuronowej odpowiednią liczbę przykładów treningowych 

można skutecznie przewidywać ceny rynkowe badanej nieruchomości (Lam, i in., 2008; 

Abidoye i Chan, 2017). Przetwarzane w ramach jednego zastosowania dane nie muszą być 

także homogeniczne i mogą pochodzić ze zróżnicowanych źródeł. Li i in. opracowali złożony 

system oceniający indeks „przyjazności ulic miejskich dla ruchu pieszego” (ang. WoUS Index: 

Walkability of Urban Streets Index) na podstawie wektorowych map GISowych pozyskanych 

z Open Street Maps i Google Maps, zdjęć sferycznych Street View (Google, 2023), 

intensywności ruchu samochodowego ocenianego na podstawie wideo z monitoringu i danych 

środowiskowych zbieranych przez dedykowane sensory. W zaproponowanym systemie 

poszczególne źródła danych przetwarzane są przez różne, dedykowane sieci neuronowe 

i dodatkowe algorytmy komputerowe i przeliczane są względem poszczególnych wag na indeks 

przyjazności dla ruchu pieszego (Li, i in., 2020). Xinghua Gao wraz z Pardisem 

Pishdad-Bozorgim wykorzystali konglomerat danych wejściowych składających się z cech 

wydobywanych z modeli BIMowych, dokumentacji projektowych i wykonawczych, danych 

z systemu zarządzania miejscem pracy (IWMS: ang. Integrated Workplace Management 

SysteM) oraz wskaźników wykorzystania mediów do ewaluacji kosztów cyklu życia obiektów 

użyteczności publicznej. Autorzy przetestowali równolegle kilka najpopularniejszych technik 

uczenia maszynowego. W przypadku głębokich sieci neuronowych zwrócili uwagę na ich 

potencjał w zdolnościach przybliżania skomplikowanych funkcji zależnych od wielu 

zróżnicowanych zmiennych (Gao i Pishdad-Bozorgi, 2019) . 

Urbanistyka: klasyfikacja 

Kolejną grupą zastosowań sieci neuronowych w urbanistyce jest klasyfikacja, czyli 

rozpoznawanie w danych wejściowych pewnych klas i ich podział na grupy. Najczęściej 

klasyfikacji poddaje się dane reprezentowane w formie obrazów: fotografii wykonanych 

z perspektywy człowieka, zdjęć z monitoringu, diagramów, zdjęć sferycznych czy fotografii 

lotniczych. Bardzo ciekawym zastosowaniem sieci neuronowych w klasyfikacji jest 

opracowana przez Briana Ho metoda rozpoznawania elementów kompozycji urbanistycznej 

z Obrazu Miasta Kevina Lyncha (Lynch, 1960). W swojej publikacji pt. Making a New City 

Image Ho zaproponował system klasyfikacji fragmentów tkanki miejskiej oparty 

na czarno-białych fotografiach wykonanych z perspektywy człowieka uzupełnionych 
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o diagramatyczny obraz planu otaczającej zabudowy (schwarzplan). Do treningu sieci 

neuronowej autor wykorzystał oryginalne, oznaczone przez Lyncha fotografie pochodzące 

z jego roboczego archiwum. Skuteczność algorytmu została oceniona poprzez kolażowe 

dodawanie kolejnych obiektów na testowanych krajobrazach miejskich – zarówno na 

poddanemu fotomontażowi zdjęciu, jak i na odpowiadającym mu schwarzplanie. W miarę 

dodawania budynków do krajobrazu przedstawiającego „niedzielnicę”, algorytm 

klasyfikacyjny w pewnym momencie zaczyna rozpoznawać obszar jako „dzielnicę” (Ho, 

2020). Podobny system autorstwa Stephena Lawa i in. klasyfikuje wejściowe zdjęcia sferyczne 

Street View względem typu sfotografowanych fasad na cztery kategorie: fasady puste (pełne 

mury, płoty, etc.), aktywne jednostronnie, aktywne dwustronnie oraz zdjęcia bez fasad 

miejskich. Autorzy nie poprzestali jedynie na wytrenowaniu skutecznego algorytmu, ale 

wykorzystali opracowany system do przeprowadzenia dalszych analiz. Sprawdzono między 

innymi korelacje między aktywnością fasad a ręcznie oznaczanym przez ankietowanych 

współczynnikiem „sceniczności krajobrazu”. Według wyników na ograniczonej próbie 

ankietowanych aktywne fasady zdają się sprzyjać „sceniczności” okolicy. Sprawdzono także 

korelacje między aktywnością fasad a cenami poszczególnych nieruchomości. Okazało się, że 

aktywność fasad w bezpośrednim otoczeniu nieruchomości nie jest istotnym czynnikiem 

wpływającym na cenę, jednak aktywność fasad mierzona jako średnia dla całego sąsiedztwa 

jest już czynnikiem silnie skorelowanym z ceną (dzielnice z wyższym wskaźnikiem aktywności 

fasad zazwyczaj mają też wyższe ceny nieruchomości). Przy pomocy wizualizacji  gradientów 

aktywacji poszczególnych warstw sieci odpowiadających za rozróżnianie poszczególnych klas, 

autorom udało się także zwizualizować mapy „uwagi”, którą sieć neuronowa skupia na 

konkretnych obszarach zdjęcia przy podejmowaniu decyzji. Mapy te pozwalają na 

wizualizację poszczególnych rodzajów fasad bezpośrednio na wejściowych zdjęciach 

sferycznych (Law, i in., 2018). Dosyć szeroko stosuje się także klasyfikację obiektów 

widocznych na zdjęciach lotniczych i satelitarnych. Na potrzeby projektowania i zarządzania 

algorytmy takie mogą być przydatne do automatycznego rozpoznawania drzew, budynków, 

dróg czy większych struktur trudniejszych do uchwycenia z perspektywy człowieka (Pourazar, 

i in., 2021). 

Szczególnym rodzajem problemów klasyfikacyjnych jest segmentacja semantyczna 

(ang. semantic segmentation) nazywana także klasyfikacją na poziomie piksela (pixel-level 

classification) (Long, i in., 2015). Segmentacja semantyczna polega na podziale wejściowego 

obrazu (lub innych danych wektorowych) na strefy odpowiadające poszczególnym kategoriom 
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(Rys. 7). Możliwe jest więc przykładowo wyszczególnienie dokładnych obrysów 

poszczególnych obiektów znajdujących się na zdjęciu. Neuronową klasyfikację na poziomie 

piksela wykorzystuje między innymi wspomniany już wcześniej zespół z Osaki, kierowany 

przez Tomohirę Fukudę i Nobuyoshi Yabuki. Fukuda i in. używają segmentacji semantycznej 

do przetwarzania scen miejskich przedstawionych na fotografiach z perspektywy człowieka 

oraz zdjęć sferycznych na potrzeby urbanistycznych wizualizacji w rzeczywistości mieszanej 

(ang. MR: Mixed Reality). Przy pomocy segmentacji neuronowej można generować maski 

oddzielające pierwszy plan zabudowy od jej tła w celu zwizualizowania modelu przesłanianych 

obiektów projektowanych (Nakabayashi, i in., 2021), lub maski oddzielające konkretny 

budynek od otoczenia w celu zautomatyzowanej wizualizacji krajobrazu miejskiego po jego 

wyburzeniu (Kikuchi, i in., 2021; Fukuda, i in., 2017). 

 

Rys. 7. Przykładowe zdjęcia z drona pobrane z bazy danych UAVid stworzonej przez Lyu, 

Vosselmana, Xia i in. służącej do trenowania neuronowych algorytmów semantycznej 

segmentacji. Poszczególne klasy obiektów widoczne na zdjęciu oznaczone są na 

wizualizacjach różnymi kolorami wyznaczającymi ich obrysy (Lyu, i in., 2018). 

Klasyfikacji i segmentacji semantycznej można poddawać także inne niż zdjęcia formaty 

danych. We wczesnych latach dwutysięcznych Kauko, Hooimeijer i Hakfoort wykorzystali 

algorytm oparty na sieci neuronowej typu SOM (ang. Self-Organizing Map) 

do przeprowadzenia klasyfikacji domów na sprzedaż względem „podrynków” rynku 

nieruchomości w Helsinkach. Przez „podrynki” autorzy rozumieli grupy zbliżonych cenowo 

i jakościowo nieruchomości oddzielonych od innych grup gwałtownymi, nieliniowymi 

rozbieżnościami w stosunku ceny do jakości. Opracowany algorytm dokonywał klasyfikacji na 

podstawie dziesięciu wyodrębnionych zmiennych niezależnych opisujących daną 

nieruchomość. Analiza procesu klasyfikacji przeprowadzanej przez sieć neuronową pozwoliła 
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autorom na identyfikację tych zmiennych, które miały kluczowy wpływ na segmentację rynku 

nieruchomości. Kluczowymi zmiennymi dla kontekstu Helsinek okazały się lokalizacja i rodzaj 

nieruchomości. Paradoksalnie sama cena miała na podział rynku o wiele mniejszy wpływ 

(Kauko, i in., 2002). Bardziej współczesnym przykładem wykorzystania danych 

multimodalnych w klasyfikacji jest metoda strefowania miasta według obszarów 

funkcjonalnych, opracowana przez naukowców z uniwersytetu w Wuhan. Zróżnicowane dane 

opisujące badany obszar, obejmujące odległości od centrów handlowych, pochylenie terenu, 

zagęszczenie placówek medycznych, odległości od dróg, etc., zostały przedstawione w formie 

gradientowych map pokrywających badany teren. Wytrenowana na tych danych sieć 

neuronowa potrafiła skutecznie dzielić miasto na strefy funkcjonalne i, co więcej, mogła być 

przydatna przy symulowaniu zmian w strefowaniu wywołanych przez zmiany wprowadzone w 

tkance miejskiej opisywanej przez dane wejściowe (Zhai, i in., 2020). 

Urbanistyka: przewidywanie przyszłości 

Jednym z ciekawszych zastosowań sieci neuronowych są próby przewidywania przyszłości 

w relacji do zjawisk cyklicznych i procesów ciągłych. Na podstawie danych historycznych oraz 

informacji o stanie obecnym, w teorii, możliwe jest formułowanie prognoz o przewidywanych 

zmianach urbanistycznych w różnych przedziałach czasowych. W jednym z wcześniejszych 

omawianych tu zastosowań sieci neuronowych w modelowaniu zjawisk w przestrzeni 

geograficznej, Manfred Fischer i Sucharita Gopal zaproponowali metodę przewidywania 

przyszłego obciążenia sieci telekomunikacyjnej w Austrii opartą na historycznych danych 

dotyczących wykorzystania sieci. Mimo że opracowanie to nie miało charakteru stricte 

urbanistycznego, to na podstawie wyników autorzy już w 1994 roku zauważyli potencjał 

drzemiący w sieciach neuronowych i przewidzieli wpływ jaki wywrze głębokie uczenie 

maszynowe na przetwarzanie złożonych danych przestrzennych: 

„Wyniki analiz na chaotycznych, rzeczywistych danych telekomunikacyjnych 

o ograniczonej długości zapisu wykazały wyższość modeli opartych na sieciach 

neuronowych nad klasycznymi metodami regresji funkcji. (…) Sieci neuronowe 

odegrają ważną rolę w geografii i badaniach regionalnych nie tylko w modelowaniu 

interakcji przestrzennych, lecz także w sferze rozpoznawczych analiz przestrzennych. Co 

do zasady sieci neuronowe dobrze radzą sobie z problemami reprezentowanymi przez 

obszerne zbiory danych wybrakowanych, niedokładnych i opisujących niejednoznaczne 
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zjawiska, które trudno modelować przy pomocy konwencjonalnych technik 

statystycznych.” [tłumaczenie własne] (Fischer i Gopal, 1994, s. 21) 

W 2004 roku Anthony Gar-On Yeh i Li Xia na przykładzie gwałtownie rozrastającego 

się miasta Dongguan w Chinach próbowali przewidywać prawdopodobieństwo rozbudowy 

miasta na testowanych obszarach. Na podstawie siedmiu zmiennych wyodrębnionych ze zdjęć 

satelitarnych i systemów GIS-owych prosta, trójwarstwowa sieć neuronowa wytrenowana 

na przykładach z dwóch momentów w czasie potrafiła według autorów generować wiarygodne 

propozycje przy założeniu, że sieć transportu w mieście nie ulegnie zmianie (Yeh i Xia, 2004). 

Przy zastosowaniu podobnej metodyki i porównywalnych danych wejściowych (cztery cechy 

wyodrębnione na podstawie zdjęć satelitarnych systemu LISS III) w 2010 roku Maithani i in. 

opracowali metodę strefowania miasta względem potencjału rozrostu urbanistycznego. Metoda 

została przetestowana na indyjskim mieście Dehradun w celu prognozowania jego przyszłej 

rozbudowy (Maithani, i in., 2010). 

Obecnie do przewidywania przyszłości przy pomocy głębokiego uczenia maszynowego 

najczęściej wykorzystuje się szeregi czasowe, czyli zbiory obserwacji uporządkowane według 

czasu ich uzyskania (PWN, 2022). Boulila i in. wykorzystali segmentację semantyczną 

miejskich zdjęć satelitarnych do stworzenia obrazów przedstawiających same tereny 

zabudowane ulokowane na czarnym tle. Otrzymane z różnych okresów mapy zostały ustawione 

w szeregi czasowe, na podstawie których wytrenowano sieć neuronową przewidującą 

zagęszczanie się zabudowy w najbliższej przyszłości. Skuteczność rozwiązania przetestowano 

na trzech różnych miastach w Arabii Saudyjskiej. Opracowany system może służyć 

identyfikacji obszarów o dużym ryzyku niekontrolowanego rozrostu zabudowy, co z kolei 

może być przydatne w administracyjnym ograniczaniu rozlewania się tkanki miejskiej (Boulila, 

i in., 2021). Ze względu na swoją okresowość w cyklach dziennych, tygodniowych i rocznych 

ruch samochodowy w miastach wydaje się dobrym kandydatem do modelowania przez sieci 

neuronowe. Przy pomocy głębokiego uczenia maszynowego zatory drogowe w mieście można 

skutecznie przewidywać na podstawie szeregów czasowych kolorystycznych diagramów 

odpowiadających natężeniu ruchu samochodowego w mieście (Ranjan, i in., 2020) lub na 

podstawie szeregów czasowych zbioru trajektorii GPS przedstawionych w postaci wektorowej 

(Guo, i in., 2019). Prognozowanie natężenia ruchu samochodowego może być przydatne dla 

operatorów systemów komunikacyjnych, zarządców i projektantów miast oraz samych 

mieszkańców. Przy pomocy głębokiego uczenia maszynowego można analizować także ruch 
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pieszy. W tym przypadku dużym problemem jest niska dostępność danych pomiarowych 

umożliwiających wytrenowanie algorytmów uczenia maszynowego. Nikol Kirova i Areti 

Markopoulou z IAAC11 proponują uzbrojenie traktów pieszych w technologię „inteligentnych 

chodników” miejskich opartych na materiałach sensorycznych. Chodniki takie mogłyby bardzo 

precyzyjnie mierzyć lokalne natężenie ruchu pieszego. Oprócz prezentacji niewielkiego 

prototypu inteligentnego chodnika autorzy przeprowadzili także komputerową symulację 

wielkoskalowego systemu. Na podstawie symulowanego ruchu pieszego wytrenowano też sieć 

neuronową zdolną klasyfikować bieżące, indywidualne trasy ruchu poszczególnych pieszych i 

przewidywać przepływy ruchu pieszego w niedalekiej przyszłości (Kirova i Markopoulou, 

2020).  

Urbanistyka: generowanie rozwiązań projektowych 

W przypadku neuronowych algorytmów generatywnych głównym problemem jest ujęcie 

zadania projektowego w ramy umożliwiające efektywne wykorzystanie głębokiego uczenia 

maszynowego. Konieczne jest odpowiednie sformułowanie treningowych danych wejściowych 

i wyjściowych tak, by uchwycić istotę funkcji twórczej aproksymowanej przez sieć neuronową. 

Jedną z większych przeszkód jest praktyczna możliwość zapewnienia algorytmowi 

wystarczającej liczby przykładów treningowych. 

Najprostszą metodą wydaje się wykorzystanie zebranych automatycznie kontekstów 

istniejących i próba nauczenia sieci odtwarzania wzorcowych rozwiązań w nowych sytuacjach. 

Przykładem takiego podejścia jest algorytm zaprojektowany przez naukowców z Uniwersytetu 

Jiaotong w Pekinie. System ten służy generowaniu propozycji obrysów zabudowy w zadanym 

kwartale. Zastosowaną do tego celu sieć neuronową wytrenowano na 167 przykładach 

schwarzplanów już zrealizowanych kwartałów znajdujących się w sąsiedztwie obszaru 

projektowego (Pan, i in., 2021). Podobny system, ale rozwinięty o możliwość przetwarzania 

oprócz schwarzplanów także funkcji projektowanej zabudowy, zaproponował Runjia Tian 

z Harvardzkiej Szkoły Designu. Do treningu autor użył istniejących przykładów zabudowy 

w Bostonie i stanie Massachusetts pobranych z otwartych baz danych GIS. Opracowana metoda 

umożliwia przeprowadzenie procesu „transferu miejskości”, czyli generowania propozycji 

zabudowy wzorowanej na stylu jednego kontekstu miejskiego w innym kontekście. Tian 

 

11 IAAC – Institute for Advanced Architecture of Catalonia 
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zaprezentował ten proces generując przykład zabudowy na Manhattanie w stylu zabudowy 

bostońskiej (Tian, 2020). Najistotniejszym problemem powyższych metod jest ograniczona 

kontrola nad cechami wygenerowanych rozwiązań. Przy treningu sieci projektant zmuszony 

jest korzystać z już istniejących i zrealizowanych obiektów, które niekoniecznie mają pożądaną 

charakterystykę. Kontrola nad zasadami projektowymi sprowadza się do selekcji wzorcowych 

rozwiązań służących sieci neuronowej za inspirację. Sformalizowanym przykładem takiej 

kontroli nad projektem jest metoda selekcji danych treningowych wykorzystana przez 

naukowców z uniwersytetu w Kantonie. Przy problemie generowania diagramów 

funkcjonalnych i obrysów zabudowy kampusów uniwersyteckich i szkół podstawowych 

selekcja przykładów istniejących oparta była na filtrach zbudowanych z czterech (w przypadku 

kampusów) lub siedmiu (w przypadku szkół podstawowych) warunków, ograniczających 

liczbę wzorców treningowych tylko do tych, które spełniały pożądane cechy projektowe 

i zrealizowane były w podobnych kontekstach. Przykładowo, brane były pod uwagę jedynie 

szkoły podstawowe z wyodrębnionym placem zabaw, znajdujące się w konkretnej strefie 

klimatycznej, zbudowane na płaskim terenie, etc… Według autorów ograniczenie liczby 

przykładów treningowych tylko do tych spełniających założone warunki pozwoliło 

na osiągnięcie lepszych i bardziej precyzyjnych rezultatów (Liu, i in., 2020). 

Alternatywą do korzystania przy treningu z założeń istniejących jest generowanie przykładów 

treningowych przy pomocy algorytmów heurystycznych lub trenowanie sieci w symulacji 

metodą głębokiego uczenia ze wzmacnianiem. System stworzony przez Nirvika Sahę, Johna 

Haymakera i Dennisa Sheldena opublikowany w formie wtyczki do środowiska Grasshopper, 

wykorzystuje głębokie uczenie maszynowe do sterowania algorytmem generującym podziały 

przestrzenne w wielu skalach (ang. SAP – Space Allocation Problem). Zamiast uczyć 

się na zadanych przykładach, system stara się generować strefowanie przestrzeni 

maksymalizujące poziom spełnienia matematycznie sformułowanych wymagań projektowych 

(Saha, i in., 2020). W podobny sposób działa algorytm autorstwa Yanana Songa i Philipa F. 

Yuana generujący formę zabudowy kwartału. W tym przypadku głębokie uczenie maszynowe 

modyfikuje formę zabudowy w środowisku symulacyjnym oceniającym efektywność modelu 

względem podmuchów wiatru wywołanych przez geometrię kwartału (Song i Yuan, 2021). 

W przypadku, gdy nie jest możliwa selekcja wystarczającej liczby przykładów treningowych 

na podstawie rozwiązań istniejących, ani nie da się wytrenować sieci na podstawie symulacji, 

rozwiązaniem może być ręczne lub półautomatyczne przygotowanie danych treningowych 
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odzwierciedlających pożądaną funkcję projektową. De Yu z Kolegium Uniwersyteckiego 

w Londynie opracował system generujący proponowane ramy funkcjonalne kwartałów 

urbanistycznych podporządkowanych idei ogrodnictwa miejskiego. Do wytrenowania sieci 

neuronowej będącej osią procesu, Yu wykorzystał ręcznie przygotowane, reprezentatywne 

przykłady trójwymiarowych podziałów funkcjonalnych pasujących do konkretnych 

kontekstów przedstawionych w formie rzutów i przekrojów (Yu, 2020). Podejście takie 

zapewnia pełną kontrolę nad przykładami treningowymi, jednak wymaga dużego nakładu 

pracy. 

Urbanistyka: optymalizacja 

W zidentyfikowanych źródłach bezpośrednia optymalizacja jest najrzadszym z zastosowań 

sieci neuronowych w urbanistyce. Należy jednak zastrzec, że, jak wspomniano na początku 

tego rozdziału, praktycznie każdy proces treningu sieci neuronowych to w technicznym 

znaczeniu proces optymalizacyjny, którego celem jest minimalizacja funkcji kosztu. Podobnie, 

przy zastosowaniu głębokiego uczenia ze wzmacnianiem, bezpośrednim celem algorytmu jest 

maksymalizacja wyniku obliczanego na podstawie interakcji sterowanego przez sieć 

neuronową agenta ze środowiskiem symulacyjnym. W tym podrozdziale nie chodzi jednak 

o wewnętrzną, pośrednią optymalizację parametrów sieci neuronowych, tylko o wykorzystanie 

algorytmów głębokiego uczenia maszynowego w docelowej optymalizacji procesów 

lub zjawisk urbanistycznych. W tym znaczeniu optymalizacji można poddać projekt 

zagospodarowania kwartału, starając się metodą głębokiego uczenia ze wzmacnianiem 

maksymalizować estetykę i nasłonecznienie. Metodę taką zaproponowali w swojej pracy Han, 

Yan i Liu (Han, i in., 2020). Innym przykładem jest opracowana przez naukowców 

z uniwersytetu w Alicante w Hiszpanii neuronowa metoda relaksacji i uproszczenia siatki 

przestrzennej, maksymalizującej odległości między węzłami przy jednoczesnym zachowaniu 

założonych ograniczeń projektowych i obrysu obszaru. W projektowaniu urbanistycznym 

system taki może być wykorzystany w planowaniu wolnostojącej zabudowy jednorodzinnej 

w sposób zachowujący jednorodność gęstości zabudowy na całym obszarze. Przy węzłowych 

założeniach już istniejących, nałożenie na nie zoptymalizowanej siatki o określonej liczbie 

węzłów pozwala na przeprowadzenie różnorodnych działań urbanistycznych równomiernie 

obsługujących wszystkie węzły siatki pierwotnej. Przykładowo, możliwe jest pokrycie 

dzielnicy bezprzewodową siecią nadajników telekomunikacyjnych zapewniającą jednorodny 

zasięg wszystkim mieszkańcom (Oliver, i in., 2011). 
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2.2.2. Skala architektoniczna – zastosowania sieci neuronowych 

Architektura: generowanie rozwiązań projektowych 

W skali architektonicznej sieci neuronowe najczęściej wykorzystywane są jako algorytmy 

generatywne. Potencjał sieci neuronowych do radzenia sobie z zadaniami twórczymi został 

zauważony przez architektów w okolicach 2015 roku, gdy opracowany przez Google algorytm 

DeepDream uświadomił światu, że sieci neuronowe stosowane w klasyfikacji obrazów tworzą 

złożone, wewnętrzne „wyobrażenia” na temat wyuczonych klas. Wyobrażenia te można 

zwizualizować poprzez iteracyjne wzmacnianie na danym obrazie cech, które zwiększają 

pewność przewidywania wybranej warstwy sieci (Mordvintsev, i in., 2015).  

Zabieg ten pozwala nie tylko na uczytelnienie samego procesu klasyfikacji, ale także na 

generowanie nowych, fantastycznych obrazów „wyśnionych” przez sieć neuronową 

na podstawie wykorzystanego zestawu treningowego i zadanego obrazu startowego (Rys. 8).  

Niewiele później generatywne zdolności sieci neuronowych zostały ujarzmione w pokrewnych 

do DeepDream algorytmach neuronowego transferu stylu, pozwalających na kontrolowane 

i precyzyjne przetwarzanie stylu jednego obrazu tak, by przypominał stylistycznie inny obraz 

 

Rys. 8. Fantastyczne krajobrazy „wyśnione” przez opracowany przez Google algorytm 

DeepDream, zaaplikowany do sieci neuronowej służącej klasyfikacji obrazów. Krajobrazy 

zostały wygenerowane na podstawie czystego szumu poprzez iteracyjne wzmacnianie 

na obrazie wejściowym cech zwiększających siłę aktywacji wybranych neuronów i warstw 

sieci neuronowej (Mordvintsev, i in., 2015). 
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(Gatys, i in., 2016). Już w 2016 roku badacze z Keio University w Japonii przeprowadzili 

wstępną eksplorację architektonicznych zastosowań DeepDream i transferu stylu. DeepDream 

został wykorzystany do generowania nowej warstwy detali architektonicznych nałożonych na 

zadany obraz wejściowy, przedstawiający dom jednorodzinny (Rys. 9) oraz do generowania 

własnych założeń architektonicznych od zera na podstawie szumu i obrazów treningowych 

przedstawiających „miejsca” 12 . Neuronowy transfer stylu został przetestowany 

w przetwarzaniu wizualizacji architektonicznej oraz w wizualizacji zmiany materiałów 

konstrukcyjnych i wykończeniowych wykorzystanych przy danym obiekcie 

architektonicznym. Efekty tych początkowych prób były obiecujące, jednak dało się w nich 

zauważyć brak kontroli nad generowanymi rozwiązaniami, które niewiele odbiegały 

od bazowych wizualizacji DeepDream i neuronowego transferu stylu zaprezentowanych przez 

Google oraz Gatysa, Eckera i Bethge (Silvestre, i in., 2016). 

 

Rys. 9. Sekwencja generowania warstwy nowych detali architektonicznych na zadanym 

zdjęciu domu jednorodzinnego. Metoda zaproponowana przez Silvestra, Ikedę 

i Guenę z Keio University, oparta na opracowanym przez Google algorytmie DeepDream 

(Silvestre, i in., 2016). 

Obecnie architekci coraz lepiej radzą sobie z kontrolowaniem transferu stylu i algorytmów typu 

DeepDream w przetwarzaniu zdjęć i wizualizacji architektonicznych oraz znajdują dla nich 

zastosowania wykraczające poza ich podstawowe funkcje. Matias del Campo, Alexandra 

Carlson i Sandra Manninger zebrali własny zbiór danych treningowych dla sieci neuronowej 

przetwarzanej przez algorytm DeepDream. Stworzony zestaw danych „Architecture Parts 

Dataset” składał się z wielu przykładów konkretnych elementów architektonicznych, takich 

jak fontanny, ławki, łuki, itp. W założeniu, sieć wytrenowana na takich danych treningowych 

i przetworzona przez DeepDream powinna lepiej radzić sobie z generowaniem wyobrażeń 

 

12 MIT Places Database (Zhou, i in., 2014). 
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nowych rozwiązań architektonicznych. Opracowany system potrafił, przykładowo, na zadanym 

w formie wizualizacji kontekście architektonicznym proponować lokalizację i formę fontann, 

skalniaków czy innych detali (del Campo, i in., 2020). Korzystając z transferu stylu jako punktu 

wyjścia do procesu projektowego, Güvenç Özel i Benjamin Ennemoser osiągnęli imponujące 

wizualnie efekty w przekształcaniu istniejących obiektów architektonicznych na fantastyczne 

wariacje na ich temat (Rys. 10). Autorzy opracowali metodę proceduralnego tworzenia modeli 

3D o wysokiej szczegółowości z wygenerowanych przez sieć neuronową obrazów  

dwuwymiarowych. Dzięki fotogrametrycznej rekonstrukcji otoczenia oryginalnych budynków 

możliwe jest także kompozytowe osadzenie wygenerowanych modeli w istniejących 

kontekstach, umożliwiające rendering szczegółowych wizualizacji (Özel i Ennemoser, 2019).  
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Rys. 10. Wizualizacje stworzone przez Güvença Özela i Benjamina Ennemosera na 

podstawie neuronowego transferu stylu. Wygenerowane przez sieć neuronową 

dwuwymiarowe obrazy zostały przekształcone proceduralnie w modele trójwymiarowe 

i osadzone kompozytowo w oryginalnych kontekstach (Özel i Ennemoser, 2019). 
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Przy zastosowaniach generatywnych sieci neuronowe mogą korzystać także z danych 

wejściowych innych niż zdjęcia perspektywiczne. Dosyć często podejmowane są próby 

generowania architektury na podstawie rzutów i przekrojów przedstawionych w formie 

obrazów rastrowych. Kontynuując swoje eksperymenty z transferem stylu i testując możliwości 

generatywnych sieci przeciwstawnych [ang. GAN – Generative Adversarial Network 

(Goodfellow, i in., 2014)] del Campo, Carlson i Manninger wykorzystali głębokie uczenie 

maszynowe do tworzenia nowych rzutów architektonicznych. Zaczynając od transferu stylu, 

autorzy zademonstrowali możliwość przetworzenia rzutów w stylu barokowym na rzuty w stylu 

modernistycznym, co poskutkowało wygenerowaniem abstrakcyjnych planów łączących cechy 

obu stylów. Przetwarzając rzuty dalej, przy pomocy sieci przeciwstawnych, wygenerowano 

obrazy na tyle oryginalne, że rozróżnienie przestrzeni od elementów ją ograniczających 

przestało być możliwe, a same rzuty przestały być rozpoznawalne jako rysunki architektoniczne 

(Rys. 11). Wygenerowane reprezentacje zostały nazwane przez autorów „architekturą ery 

postludzkiej” (del Campo, i in., 2019).  

 

Rys. 11. Defamiliaryzacja rzutu architektonicznego będąca skutkiem prac Matiasa del 

Campo, Sandry Carlson i Alexandry Manninger. Po lewej rezultat transferu stylu między 

rzutem modernistycznym a barokowym (del Campo, i in., 2019), w centrum z lewej rezultat 

transferu stylu między rzutem barokowym a modernistycznym (del Campo, i in., 2020), 

po prawej abstrakcyjne „rzuty” stworzone przy pomocy generatywnych sieci 

przeciwstawnych (del Campo, i in., 2019). 

W swoich pracach del Campo i in. wychodzili z założenia, że sieci neuronowe zdolne są 

odczytywać w planach architektonicznych elementy symboliczno-strukturalne (takie jak okna, 

ściany, pustki wnętrz etc.) oraz stylistyczne (jak grubość ścian, krzywizny, symetrię etc.) i 

następnie potrafią przetwarzać te elementy w celu generowania nowej, oryginalnej 

architektury. Teza ta została poparta poprzez stworzenie przy pomocy sieci przeciwstawnych 

„architektury modernistycznej w stylu architektury barokowej”, w której symetria, masywność 



51 

 

i bujność założeń barokowych ścierają się symbiotycznie z asymetrią, otwartością 

i racjonalnością rzutów modernistycznych (del Campo, i in., 2020).  

Do generowania rzutów architektonicznych przy użyciu sieci neuronowych podszedł także 

David Newton, wspomniany wcześniej w kontekście urbanistycznych analiz korelacji między 

zdrowiem mieszkańców miast a morfologią tkanki miejskiej (Newton, i in., 2020; Newton, 

2021; Newton, 2020). Zauważył on, że architekci często nie dysponują odpowiednio dużym 

archiwum wzorcowych projektów, które mogłyby zostać wykorzystane przy treningu sieci 

neuronowych. Zazwyczaj stworzenie dużego zestawu rzutów treningowych, mogących być 

wykorzystanymi przy generowaniu konkretnego projektu, jest bardzo czasochłonne 

i kosztowne. Newton przetestował więc kilka metod zwiększenia ograniczonej liczby danych 

treningowych (ang. Data Augmentation) poprzez losowe obracanie rzutów o niewielki kąt lub 

nakładanie na nie losowego szumu o niewielkim natężeniu. Najlepsze efekty przyniosło 

nakładanie na rzuty treningowe szumu (Newton, 2019). Wydaje się, że jeszcze oprócz 

syntetycznego zwiększenia liczby obrazów treningowych warto byłoby w takim przypadku 

skorzystać dodatkowo z uczenia transferowego (ang. Transfer Learning), czyli wytrenować 

algorytm na obszernym zbiorze zróżnicowanych rzutów architektonicznych i później 

kontynuować trening tylko na rzutach wzorcowych dla konkretnego projektu, w celu 

dostrojenia sieci do zadanego problemu (ang. Fine-Tuning). W czasach popularności metod 

BIM-owskich obszernym źródłem danych treningowych dla głębokiego uczenia maszynowego 

mogą być wielobranżowe modele BIM. Zespół z japońskiej korporacji Takenaka sprawdził 

możliwości automatycznego generowania instalacji przeciwpożarowych na podstawie 

zadanych rysunków architektonicznych. Rzuty służące treningowi sieci i generowaniu 

instalacji zostały wyeksportowane w formie rastrowych obrazów z BIM-owskiego modelu 

branży architektonicznej. Archiwum historycznych projektów instalacyjnych, do którego miała 

dostęp korporacja, było wystarczająco obszerne do wytrenowania skutecznej sieci neuronowej 

zdolnej do sensownego generowania instalacji przeciwpożarowych, pokrywających wszystkie 

niezbędne do obsłużenia obszary budynku (Sato, i in., 2020). Przenosząc się z płaszczyzny 

poziomej do płaszczyzny pionowej, Mohammad, Boerkrem i Ellinger zajęli się problemem 

generowania elewacji budynków. Przeciwstawna sieć neuronowa została przez nich 

wykorzystana do eksploracji przestrzeni projektowej w poszukiwaniu możliwych 

do zrealizowania fasad hybrydowych, łączących w sobie cechy dwóch różnych typów elewacji. 

W pierwszym kroku przy pomocy algorytmów genetycznych parametrycznie wymodelowano 

dwa zestawy elewacji o różniących się między sobą charakterystykach. W jednej grupie 
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znajdowały się elewacje ciągłe, uformowane z wielokrzywiznowych płaszczyzn, w drugiej, 

elewacje z silnie akcentowanymi podziałami, uformowane z prostopadłościennych modułów. 

Sieć neuronowa została wytrenowana na obu zbiorach jednocześnie i w efekcie nauczyła się 

generować hybrydowe elewacje łączące cechy obu grup jednocześnie (Mohammad, i in., 2019). 

Większość popularnych algorytmów głębokiego uczenia maszynowego, implementowanych 

w ogólnodostępnych bibliotekach programistycznych, domyślnie służy przetwarzaniu obrazów 

dwuwymiarowych. Z tego powodu wiele z ich architektonicznych zastosowań także operuje na 

rysunkach i innych reprezentacjach dwuwymiarowych. Chuan Liu i in. zaproponowali prostą 

metodę przeniesienia twórczych algorytmów opartych na transferze stylu w trzeci wymiar, 

poprzez generowanie kratownicowej struktury nośnej budynku wysokościowego osobno dla 

kolejnych kondygnacji na podstawie ich obrysów. Stworzone w ten sposób kratownice zostały 

połączone z kratownicami przyległych kondygnacji przy pomocy parametrycznie 

generowanych skośnych słupów (Liu, i in., 2020). Głównym problemem takiego prostego 

rozwiązania był jednak brak logicznej sekwencyjności wygenerowanych kondygnacji i relacji 

między poszczególnymi piętrami. Z tego powodu słupy łączące kondygnacje były generowane 

losowo, a to dało dosyć chaotyczne rezultaty. 

Sieci neuronowe są jednak bardzo elastyczne co do formatu danych wejściowych. Nic nie stoi 

na przeszkodzie, by zamiast danych przedstawionych w formie obrazów, przetwarzać projekty 

architektoniczne zapisane przy pomocy innych form reprezentacji danych. Szczególnie 

obiecujące są numerycznie reprezentowane projekty parametryczne. Przykładowo, projekt 

parametryczny wygenerowany w środowisku Dynamo lub Grasshopper może 

być reprezentowany przez sekwencyjny szereg operacji przetwarzających strumień danych 

początkowych w celu wygenerowania formy docelowej projektu. Tak reprezentowany projekt 

parametryczny jest zbliżony swoją formą do struktury zdania lub algorytmu (np. „weź punkt 

A, potraktuj go jako środek koła o promieniu r, wytłocz koło prostopadle do jego płaszczyzny 

na odległość h tworząc walec...”). Varvara Toulkeridou zauważyła podobieństwo 

tak reprezentowanego projektu do zdania i postanowiła wykorzystać sieci neuronowe 

stosowane zazwyczaj do przetwarzania języka naturalnego (ang. NLP: Natural Language 

Processing) do eksploracji morfologicznej projektu parametrycznego. Sieć neuronowa została 

wykorzystana do sugerowania alternatywnych dróg przepływów danych przez różnorodne, 

dostępne w środowisku operacje. Przykładowo – zadając sieci początek diagramu opisującego 

przekształcenia geometryczne projektu, można wygenerować jego kontynuację w celu 

sprawdzenia możliwych do uzyskania efektów końcowych. Opracowany przez Toulkeridou 
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system był w stanie tworzyć poprawne syntaktycznie i semantycznie projekty parametryczne, 

skutkujące wygenerowaniem nowych geometrii (Toulkeridou, 2019). Alternatywną metodą 

parametryzacji projektu architektonicznego jest przedstawienie go w formie grafowej, w której 

program funkcjonalny budynku reprezentowany jest przez węzły oznaczające poszczególne 

funkcje i krawędzie łączące funkcje ze sobą. Taka formalizacja projektu z jednej strony pozwala 

na złożone przedstawienie programu funkcjonalnego przekładającego się na formę obiektu, 

a z drugiej strony jest bardzo prosta do wymodelowania matematycznego przy pomocy teorii 

grafów. W głębokim uczeniu maszynowym do przetwarzania takich danych używa 

się grafowych sieci neuronowych oraz sieci Kohonena (ang. SOM: Self-Organizing Map). 

W 2018 roku Imdat As, Siddharth Pal i Prithwish Basu skorzystali z bazy projektów domów 

jednorodzinnych platformy Arcbazar i dokonali wyboru modeli dostępnych w formacie 

BIM-owskim. Modele zostały automatycznie przekształcone do formy grafów funkcjonalnych 

z przypisanymi powierzchniami pomieszczeń. Projektom nadano także manualnie oszacowane, 

liczbowe wartości „komfortu życia” i „komfortu spania”. Oprócz wykorzystania sieci do 

generowania nowych programów funkcjonalnych, autorom udało się także zidentyfikować 

podgrafy funkcjonalne pozytywnie skorelowane z metrykami komfortu. Przykładowo, według 

wytrenowanej sieci neuronowej na komfort spania pozytywnie wpływa układ składający 

się z kilku osobnych sypialni połączonych z łatwo dostępnymi schowkami, garderobami i 

łazienką. Proponowane przez sieć diagramy mogą łatwo być przetworzone przez algorytm 

parametryczny na trójwymiarowy, kubaturowy model koncepcyjny (Rys. 12) (As, i in., 2018).  

 

Podobny system został równolegle opracowany przez Eisenstadta, Langenhana i Althoffa. 

W tym przypadku także wykorzystano grafową reprezentację układów funkcjonalnych 

i wytrenowano algorytm głębokiego uczenia maszynowego w celu generowania nowych 

układów na potrzeby koncepcyjnej fazy projektowej. Model zaproponowany przez Eisenstadta 

i in. jest jednak bardziej zaawansowany ze względu na o wiele większy zestaw danych 

treningowych (1000 razy większy) i zdolność algorytmu do przewidywania także możliwych 

zmian w układzie funkcjonalnym wprowadzanych przez mieszkańców w trakcie użytkowania 

obiektu (Eisenstadt, i in., 2019). Przestrzenny model architektoniczny można przedstawić 

też w postaci chmury punktów. Jose Algeciras-Rodriguez, korzystając z takiej reprezentacji, 

zaproponował metodę tektonicznej eksploracji modeli trójwymiarowych poprzez 

przetwarzanie modeli wejściowych przy pomocy sieci Kohonena. Metoda ta pozwala 
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na generowanie hybrydowych form łączących cechy danych modeli referencyjnych. 

Zademonstrowane przez autora wyniki interpolacji między modelem Wenus z Milo a Nike 

z Samotraki są dosyć zaszumione i widać w nich pewien brak kontroli nad algorytmem, ale sam 

proces wydaje się interesujący i potencjalnie użyteczny (Algeciras-Rodriguez, 2018). 

 

Gdy brakuje istniejących zestawów danych, umożliwiających reprezentowanie pożądanej 

funkcji generatywnej w postaci zestawu treningowego, można skorzystać z półautomatycznych 

metod generowania przykładów lub sformułować problem przy pomocy symulacji głębokiego 

uczenia ze wzmacnianiem. Metody półautomatyczne pozwalają na zwiększenie kontroli 

nad stosowanymi algorytmami parametrycznymi. Liu, Liao i Srivastava wygenerowali przy 

pomocy nieneuronowego algorytmu zbiór zróżnicowanych brył zbudowanych 

z wymodelowanych przez autorów elementów modularnych. Wygenerowane bryły zostały 

później oznaczone ręcznie względem czterech cech: monumentalności, delikatności, solidności 

i dynamiczności. Na podstawie stworzonego, oznaczonego zestawu modeli wytrenowano sieć 

przeciwstawną generującą nowe parametry dla algorytmu wykorzystanego do stworzenia 

zestawu początkowego. Sieć definiowała parametry w ten sposób, by wynikowe bryły spełniały 

wymagane cechy (Rys. 13). Przy takim podejściu konieczne jest ręczne oznaczenie 

 

Rys. 12. Demonstracja skuteczności systemu opracowanego przez Asa i in. Po lewej 

wygenerowany przez sieć neuronową graf programu funkcjonalnego domu 

jednorodzinnego, po prawej automatycznie wygenerowany na podstawie grafu 

parametryczny, koncepcyjny model kubaturowy (As, i in., 2018). 
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niewielkiego zbioru wygenerowanych, przypadkowych modeli, ale w zamian zyskuje 

się kontrolę nad dalszymi rezultatami generowanymi przez algorytm (Liu, i in., 2019). 

 

Rys. 13. Bryły wygenerowane przez system opracowany przez Liu, Liao i Srivastavę. 

Przeciwstawna sieć neuronowa generowała takie parametry dla algorytmu 

parametrycznego, by wynikowe bryły w jak największym stopniu spełniały wymagane 

cechy. Po lewej u góry – bryła z wysokim wynikiem „monumentalności”, po prawej 

u góry –  „solidności”, po lewej u dołu – „delikatności” i po prawej 

u dołu  – „dynamiczności” (Liu, i in., 2019). 

Podejścia wykorzystujące głębokie uczenie ze wzmacnianiem są bardzo zróżnicowane pod 

względem stosowanych metod, inspiracji i poziomu abstrakcji. Największą zaletą uczenia sieci 

neuronowych poprzez symulacje interakcji agent – środowisko jest duża kontrola projektanta 

nad całością procesu generatywnego. Alessandro Mintrone i Elessio Erioli z uniwersytetu 

w Bolonii opracowali hybrydowy system generujący zwokselizowane, architektoniczne układy 

przestrzenne. System oparty był na głębokim uczeniu ze wzmacnianiem i algorytmie „Wave 

Function Collapse” autorstwa Maxa Gumina (Gumin, 2016). WFC jest algorytmem 

generatywnym do układów przestrzennych tworzącym złożone, nieoczywiste kompozycje 

przestrzenne w dwóch lub trzech wymiarach na podstawie przykładowych, możliwych 

do wykorzystania fragmentów. W pracy Mintrone’a i Erioli WFC decyduje o lokalizacji 
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i sposobie łączenia trójwymiarowych modułów, a DRL generuje wypełnienie modułu w sposób 

najbardziej pasujący do kontekstu określonego przez optymalizację wskaźników gęstości 

globalnej i lokalnej, orientacji, łączności konstrukcyjnej i przestrzennej oraz ciągłości 

płaszczyzn. Skuteczność systemu zademonstrowano generując wielopoziomowy, stabilny 

konstrukcyjnie obiekt architektoniczny o interesujących, wzajemnie połączonych 

przestrzeniach wewnętrznych (Mintrone i Erioli, 2021). Bastian Wibranek i in. wykorzystali 

głębokie uczenie ze wzmacnianiem do tworzenia kompozycji przestrzennych złożonych 

z „bloków SL” [ang. SL-Block (Shih, 2016)]. Bloki SL to struktury, które można łączyć ze sobą 

w różne formy tak, że bloki wzajemnie się unieruchamiają. Dzięki temu wynikowa forma jest 

statyczna. Forma docelowa jest pod pełną kontrolą projektanta. Poprzez optymalizację procesu 

hierarchicznego i sekwencyjnego układania bloków względem podobieństwa do formy 

docelowej, możliwe jest wytrenowanie sterowanego przez sieć neuronową agenta tworzącego 

złożone formy architektoniczne stabilne nie tylko po wybudowaniu, ale i w trakcie montażu 

(Wibranek, i in., 2021). Możliwe jest także podejście do problemu od drugiej strony, w której 

to forma docelowa jest wynikiem procesu twórczego algorytmu, a elementy składowe 

są projektowane metodami klasycznymi przez architekta. Hosmer, Tigas, Reeves i He 

zaproponowali ramową metodę generowania megastruktur mieszkaniowych złożonych 

z zaprojektowanych klasycznie, modularnych jednostek mieszkalnych składających 

się z jeszcze mniejszych bloków konstrukcyjnych opartych o siatkę przestrzenną rozpiętą 

na modułach 3,5 x 3,5 x 3,5 m. Sieć neuronowa steruje algorytmem, próbując balansować 

między maksymalizacją metryk celów globalnych (jak minimalizacja kosztów materiałowych 

lub maksymalizacja współdzielonych przestrzeni wspólnych), a lokalnych (prywatność, 

otwartość na przestrzenie zewnętrzne), mieszcząc się jednocześnie w ograniczeniach 

projektowych, takich jak granice działki, założone wskaźniki zabudowy i konteksty zewnętrzne 

(Hosmer, i in., 2020). Najbardziej pragmatycznym z omawianych przykładów wykorzystania 

głębokiego uczenia ze wzmacnianiem w projektowaniu generatywnym jest „Akademia 

Agentów Przestrzennych” autorstwa Pedra Velosa i Ramesha Krishnamurtiego, służąca 

do projektowania w formie diagramów funkcjonalnych domów jednorodzinnych. „Akademia”  

stanowi symulację wieloagentową, w której każde pomieszczenie reprezentowane jest przez 

sieć neuronową. Pomieszczenia „walczą” ze sobą i jednocześnie „współpracują” w celu 

wygenerowania projektu domu jednorodzinnego maksymalizującego funkcję przystosowania, 

będącą wynikową metryk formy, powierzchni i wzajemnego układu funkcjonalnego 

pomieszczeń (Veloso i Krishnamurti, 2020). 
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Architektura: ewaluacja i przetwarzanie danych 

Drugim najpopularniejszym zastosowaniem sieci neuronowych w skali architektonicznej jest 

ewaluacja i przetwarzanie danych. W najogólniejszym znaczeniu chodzi tu o bezpośrednie 

przetworzenie danych jednego rodzaju na inną formę lub na przetworzenie ich na pojedynczą 

metrykę w celu oceny pewnego aspektu reprezentowanego przez dane. Zakres możliwych 

zastosowań jest bardzo szeroki i obejmuje zarówno pragmatyczne algorytmy służące 

rozwiązywaniu jednostkowych problemów, jak i ambitne, złożone systemy przetwarzające 

wiele kontekstów jednocześnie. Ciekawym przykładem praktycznego przetwarzania danych 

przy pomocy sieci neuronowej jest system HorizonNet autorstwa Chenga Suna i in. HorizonNet 

umożliwia przetworzenie panoramicznego zdjęcia, przedstawiającego wnętrze pomieszczenia, 

na jego oteksturowany model 3D. Sieć neuronowa odczytuje na zdjęciach panoramicznych 

krawędzie między sufitem, ścianami i podłogą i na tej podstawie generuje jednowymiarową 

reprezentację układu ścian. Reprezentacja taka jest wystarczająca do zrekonstruowania modelu 

trójwymiarowego całego pomieszczenia. Dzięki odpowiednio dużej grupie w zbiorze 

treningowym przykładów podchwytliwych sieć nauczyła się także prawidłowo generować 

niewidoczne, ukryte za załomami fragmenty pomieszczeń (Sun, i in., 2019). Przykładem 

bardziej złożonego systemu jest wieloskalowy projekt koncepcyjny „Emoting City” autorstwa 

Sayjela Vijaya Patela i in. W założeniu tym sieci neuronowe mają służyć przetwarzaniu emocji 

użytkowników przestrzeni zbudowanej na aktywną, fizyczną odpowiedź elementów 

architektonicznych. Pomysł został zademonstrowany na niewielkiej instalacji, w której 

zachowanie użytkownika przetwarzano przy pomocy sieci splotowych na ruch i oświetlenie 

zautomatyzowanych, ruchomych luster reagujących na emocje osoby korzystającej z instalacji. 

W pełnoskalowej implementacji „Emoting City” interfejsem sterowania byłoby samo 

zachowanie człowieka odczytane przez sensory i przetwarzane przez sieci neuronowe. 

Elementami aktywnymi, dostosowującymi przestrzeń do człowieka, mogłyby być roboty, 

ruchome powierzchnie lustrzane i przestrzenie autoplastyczne, potrafiące zmieniać swoją 

formę w odpowiedzi na odebrane bodźce sensoryczne (Patel, i in., 2020). 

Zdolności sieci neuronowych do aproksymowania różnorodnych funkcji wykorzystywane 

są do przybliżania wyników kosztownych pod względem obliczeniowym symulacji 

komputerowych. Sieci neuronowe łatwo można wytrenować na rzeczywistych danych 

pomiarowych lub na precyzyjnych wynikach bardziej skomplikowanych symulacji. 

Wytrenowana sieć może generować wyniki zbliżone do rzeczywistych bez konieczności 

dokonywania kosztownych pomiarów lub przeprowadzania czasochłonnych symulacji 
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wymagających dużych zasobów obliczeniowych. W latach 90., gdy symulacje energetyczne 

budynków nie były jeszcze szeroko stosowane, sieci neuronowe były jedynymi dostępnymi 

algorytmami potrafiącymi przeprowadzać trafne symulacje pewnych złożonych procesów. 

W 1994 roku William Stevenson wytrenował na danych pomiarowych sieć neuronową 

przetwarzającą wejściowe szeregi czasowe opisujące nasłonecznienie budynku i temperaturę 

na zużycie energii elektrycznej oraz zużycie ciepłej i zimnej wody. Dzięki takiej sieci możliwe 

jest przewidywanie wydajności energetycznej budynku względem warunków zewnętrznych. 

Biorąc pod uwagę prostotę wykorzystanej sieci, osiągnięte wyniki były zaskakująco dokładne. 

Najgorzej sieć radziła sobie z przewidywaniem zużycia energii elektrycznej, ponieważ przez 

brak dostępu do informacji o dniu tygodnia pomiaru sieć nie była w stanie uchwycić 

weekendowych zmian w zapotrzebowaniu na energię elektryczną (Stevenson, 1994b). Ioannis 

Chatzikonstantinou i Sevil Sariyildiz przeprowadzili bardzo skrupulatne badanie zdolności 

różnych algorytmów uczenia maszynowego do przybliżania dwóch metryk komfortu 

wizualnego w przestrzeniach biurowych: autonomii13 światła dziennego DA (ang. Daylight 

Autonomy) i współczynnika prawdopodobieństwa olśnienia światłem dziennym DGP 

(ang. Daylight Glare Probability). Przetestowane algorytmy obejmowały jednokierunkowe 

sieci neuronowe FNN (ang. Feedforward Neural Network), maszyny wektorów nośnych SVM 

(ang. Support Vector Machine) oraz losowe lasy decyzyjne RF (ang. Random Forest). Dane do 

treningu sieci neuronowej i metod alternatywnych wygenerowano przy pomocy symulacji 

komputerowej. W przewidywaniu autonomii światła dziennego najlepiej radziła sobie maszyna 

wektorów nośnych, ale już przy bardziej skomplikowanej metryce 

prawdopodobieństwa wystąpienia olśnienia, najlepsze wyniki osiągnęła sieć neuronowa 

(Chatzikonstantinou i Sariyildiz, 2016). Asl, Das, Tsai, Molloy i Hauck stworzyli hybrydowy 

system „Energy Model Machine”, wykorzystujący sieć neuronową i drzewo decyzyjne (ang. 

Decision Tree) do ewaluacji wydajności energetycznej budynków. Model został wytrenowany 

na danych wygenerowanych symulacyjnie. System umożliwia przyspieszenie procesu 

projektowania iteratywnego dzięki ominięciu konieczności przeprowadzania pełnych symulacji 

przy każdym wygenerowanym układzie przestrzennym. Na zademonstrowanym przez autorów 

przykładzie parametrycznego projektu budynku biurowego implementacja algorytmu 

 

13 W tym kontekście „autonomia” oznacza procent czasu, w którym poziom oświetlenia przekracza wartość 

docelową (Heschong, i in., 2012). 
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pozwoliła na dokładniejszą eksplorację przestrzeni projektowej. Możliwa była szybka 

ewaluacja energetyczna aż siedmiu tysięcy wariantów (Asl, i in., 2017). Podobny algorytm 

zaproponowali Singh, Schneider-Marin, Harter, Lang i Geyer. Stworzyli oni system 

pozwalający na ewaluację wydajności środowiskowej budynku we wczesnej fazie 

projektowania poprzez probabilistyczne szacowanie kosztów energii zużytej w całym cyklu 

życia obiektu. Podobnie jak przy propozycji Asla i in., główną korzyścią płynącą z 

zastosowania algorytmu jest usprawnienie procesu projektowego (Singh, i in., 2020). Walter 

Mazuroski i in. wykorzystali sieci neuronowe do przybliżania wyników szeregu symulacji typu 

BPS (ang. Building Performance Simulations), w tym przepływu powietrza we wnętrzach, 

trójwymiarowego transferu ciepła oraz symulacje systemów instalacyjnych (ogrzewanie, 

wentylacja i klimatyzacja) (Mazuroski, i in., 2018). Podchodząc do problemu 

fragmentarycznie, Adam Sebestyen i Jakub Tyc skupili się na wydajności środowiskowej 

samych elewacji i wytrenowali sieć neuronową przewidującą, na podstawie zadanej geometrii, 

spodziewane zacienienie wytworzone przez projektowaną elewację i intensywność 

promieniowania słonecznego we wnętrzach (Sebestyen i Tyc, 2020). Ze względu na swoją 

uniwersalność, sieci neuronowe mogą być także stosowane przy przybliżaniu wyników bardziej 

skomplikowanych symulacji, ułatwiających podejmowanie decyzji projektowych. Sherif 

Tarabishy, Stamatios Psarras, Marcin Kosicki i Martha Tsigkari opracowali neuronowy system 

upraszczający złożone, czasochłonne symulacje służące ocenie łączności przestrzennej i 

wizualnej w projektowanej przestrzeni. Stworzony algorytm może przetworzyć dowolny rzut 

architektoniczny na mapy intensywności połączeń między pomieszczeniami oraz na diagramy 

łączności wizualnej. Analizy takie są szczególnie użyteczne przy projektowaniu miejsc pracy 

w przestrzeniach biurowych. System działa wystarczająco sprawnie, by oceniać rzuty tworzone 

przez architekta w czasie rzeczywistym (Tarabishy, i in., 2020). 

Ciekawe zastosowanie dla sieci neuronowych znaleźli także Nicholas, Chen, Borpujari, Bartoc 

i Refsgaard ze Szkoły Architektury Duńskiej Akademii Królewskiej. Stworzyli oni 

sekwencyjny system złożony z kilku działających w tandemie sieci neuronowych, służących 

ewaluacji skutków modernizacji elewacji i dachów domów jednorodzinnych. Najpierw, przy 

pomocy transferu stylu, generowana jest wizualizacja pokrycia budynku nowymi, izolacyjnymi 

panelami wykończeniowymi. Potem, na podstawie wygenerowanych elewacji, inna sieć 

neuronowa przeprowadza gradientowe symulacje energetyczne biorące pod uwagę strefę 

klimatyczną, w której znajduje się dany budynek. Kolejna sieć neuronowa przetwarza zebrane 

w ten sposób informacje w celu obliczenia wskaźników skalarnych przeprowadzonej 
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modernizacji: przewidywanego kosztu zakupu i instalacji paneli oraz zyski z ograniczenia 

emisji CO2 do atmosfery wynikające ze zmniejszenia zapotrzebowania energetycznego 

budynku. W artykule opisującym opracowany system autorzy zwracają uwagę na korzyści 

wynikające z możliwości eksploracji przestrzeni ukrytej (ang. Latent Space) sieci neuronowej. 

W czasie treningu sieć neuronowa tworzy wewnętrzne reprezentacje wyuczonej dystrybucji 

danych treningowych w postaci hiperprzestrzeni, w których wymiarami są możliwe wartości 

aktywacji neuronów w jednej z warstw sieci14. Wszystkie możliwe do wygenerowania przez 

sieć dane wyjściowe są reprezentowane jako punkty lub wektory próbkowane z przestrzeni 

ukrytej. Nicholas i in. wykorzystali reprezentację w przestrzeni ukrytej do próbkowania z niej 

wizualizacji o różnym stopniu pokrycia elewacji i dachu zmodernizowanymi panelami. 

Po przeprowadzeniu redukcji wymiarów z przestrzeni wielowymiarowej na czterowymiarową 

przy pomocy analizy głównych składowych PCA (obrócenie układu współrzędnych 

i rzutowanie na przestrzeń mniej wymiarową), autorzy zidentyfikowali dwie główne osie 

składowe przestrzeni ukrytej: jedną odpowiadającą za liczbę paneli na ścianach, 

drugą – za liczbę paneli na dachu. Zidentyfikowane osie były wykorzystane do liniowej 

kontroli nad stopniem pokrycia budynków nowymi panelami (Nicholas, i in., 2021). 

Z tandemowych sieci neuronowych przetwarzających sekwencyjnie dane wejściowe 

skorzystali także Hamid Mehmood i Nitin K. Tripathi w opracowanym w 2011 roku systemie 

lokalizacyjnym działającym we wnętrzach budynków na podstawie siły sygnału Wi-Fi. 

Stworzony system potrafił w przybliżeniu oceniać położenie w budynku w trzech osiach 

z dokładnością średnią wynoszącą 1,9m, co zapewniało lepszą precyzję lokalizacji 

we wnętrzach niż system GPS (Mehmood i Tripathi, 2013). 

Przetwarzanie danych wejściowych do ich reprezentacji w przestrzeni ukrytej jest bardzo 

potężnym narzędziem umożliwiającym nie tylko kontrolę nad samą siecią neuronową, lecz 

także przeprowadzanie operacji geometrycznych i przestrzennych, których nie dałoby 

się przeprowadzić bezpośrednio na przestrzeni cech danych wejściowych. Jaime de Miguel i in. 

zaproponowali metodę eksploracji przestrzeni projektowej opartej na reprezentacji 

w przestrzeni ukrytej. Zaczynając od dwóch początkowych, uproszczonych modeli 

architektonicznych reprezentowanych w formie mapy połączeń w zwokselizowanej przestrzeni 

 

14 W klasycznych, w pełni połączonych sieciach jednokierunkowych, każdej warstwie sieci odpowiada osobna 

przestrzeń ukryta o liczbie wymiarów odpowiadającej liczbie neuronów. 
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trójwymiarowej, wygenerowano zbiór 3000 modeli będących pochodnymi modeli 

podstawowych poddanych pewnym przekształceniom (ang. Data Augmentation). Modele 

te zostały wykorzystane do wytrenowania sieci typu autoenkoder, która stworzyła w przestrzeni 

ukrytej dwuwymiarową reprezentację dystrybucji modeli treningowych. Próbkując punkty 

z tej przestrzeni, można generować nowe modele, znajdujące się na dwuwymiarowym 

spektrum między modelami początkowymi (de Miguel, i in., 2019). Zaproponowana metoda 

poszukiwania formy byłaby niemożliwa do zrealizowania bez głębokiego uczenia 

maszynowego. Podobny algorytm został opracowany przez Adama Sebestyena, Johannę Rock 

i Ursa Leonharda Hirschberga. W tym przypadku także wytrenowano autoenkoder na zbiorze 

15000 prostych, wygenerowanych automatycznie brył geometrycznych. Pierwsza połowa 

modeli oparta była na poddanej przekształceniom kuli, druga na przekształconym sześcianie. 

Na wejściu sieci neuronowej modele reprezentowane były w formie zwokselizowanej. Autorzy 

nie tylko zademonstrowali możliwość płynnego przechodzenia między różnymi bryłami, lecz 

także zaprezentowali możliwość przeprowadzania semantycznych operacji arytmetycznych 

na geometriach poprzez dodawanie i odejmowanie wektorów reprezentacji w przestrzeni 

ukrytej (Rys. 14) Wyniki tych operacji dowodzą, że wytrenowana reprezentacja ukryta rozpięta 

jest na składowych o dosyć wysokim poziomie abstrakcji (Sebestyen, i in., 2021). 

 

Rys. 14. Możliwość przeprowadzania semantycznych operacji arytmetycznych na wektorach 

w przestrzeni ukrytej zademonstrowana przez Sebestyena i in. Ściśnięty sześcian minus 

sześcian plus kula = ściśnięta kula (Sebestyen, i in., 2021). 

Alternatywne podejście do eksploracji przestrzeni projektów trójwymiarowych brył 

architektonicznych zaproponowali Hang Zhang i Ye Huang z uniwersytetu w Pensylwanii. 

Zamiast korzystać z reprezentacji ukrytej zakodowanej przez autoenkoder, autorzy stworzyli 

własną metodę wykorzystującą przeciwstawne sieci generatywne. W metodzie tej model 

trójwymiarowy krojony jest najpierw na serię uszeregowanych przekrojów, na których trenuje 
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się sieć przeciwstawną. Generowane przez sieć przekroje mogą być z powrotem przekształcone 

w model trójwymiarowy. Dzięki zastosowanej metodzie mapowania 3D-2D-3D możliwe jest 

przetwarzanie geometrii trójwymiarowych przy pomocy klasycznych sieci przeciwstawnych 

operujących na obrazach dwuwymiarowych. Opracowany algorytm także pozwala 

na przeprowadzenie eksploracji formalnej. Możliwa jest przykładowo interpolacja między 

budynkami w dwóch różnych stylach architektonicznych skutkująca wygenerowaniem nowej 

formy, jak bryły znajdującej się między stylem opery w Sydney a stylem katedry Notre Dame 

w Paryżu (Zhang i Huang, 2020). Bardzo przyszłościowym kierunkiem badań wydaje 

się podejście zaproponowane przez Hanga Zhanga z Uniwersytetu Pensylwanii. Autor 

opracował własny system przetwarzania tekstu naturalnego opisującego szczegółowo projekt 

architektoniczny na macierze reprezentujące układ funkcjonalny obiektu. Macierze 

są następnie przetwarzane przez grafową, splotową sieć neuronową na diagramatyczne, 

grafowe przedstawienie układu funkcjonalnego pomieszczeń i połączeń między nimi. 

Na tej podstawie parametrycznie generowany jest model budynku. Pomysł oparcia systemu 

na tekstowej reprezentacji architektury wydaje się bardzo trafiony ze względu na potencjał 

wykorzystania w ramach dalszych prac najskuteczniejszych i najpotężniejszych modeli 

głębokiego uczenia maszynowego, służących przetwarzaniu języka naturalnego (Zhang, 2020). 

Podobne nadzieje względem możliwości implementacji pochodnych najnowszych algorytmów 

NLP (ang. Natural Language Processing) budzi system „BIMToVec” autorstwa Mahankaliego, 

Johnsona i Andersona służący do przetwarzania modeli BIMowskich do zakodowanej 

semantycznie formy wektorowej (Mahankali, i in., 2018). Jeszcze inny system oparty na 

grafowej sieci splotowej opracowali del Campo, Carlson i Manninger. W pierwszym kroku 

wytrenowano sieć neuronową do klasyfikacji prostych, niskopoligonowych, ręcznie 

tworzonych modeli  przedstawiających kolumny i domy jednorodzinne. Modele oznaczono 

dodatkowo wartościami oceniającymi ich styl, estetykę i funkcjonalność. Wytrenowany 

algorytm z jednej strony może bezpośrednio oceniać klasę i zmienne wartościujące model, 

ale z drugiej strony, propagowany wstecz może służyć eksploracji przestrzeni projektowej 

i generowaniu nowych modeli spełniających zadane wymagania. Niestety, interpretacja 

osiągniętych przez del Campo i in. dosyć abstrakcyjnych wyników jest trudna ze względu na 

zastosowane przez autorów agresywne przekształcenia służące zwiększeniu liczby danych 

treningowych, które utrudniają rozpoznanie poszczególnych klas już w zbiorze treningowym 

(del Campo, i in., 2020).  
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Przetwarzaniem danych jest także wizualizacja projektów architektonicznych. Sieci neuronowe 

mogą być wykorzystane do tworzenia fotorealistycznych lub stylizowanych wizualizacji na 

podstawie prostych, linearnych szkiców. Podstawowe możliwości wykorzystania transferu 

stylu w wizualizacji architektonicznej zaprezentowali Yick Hin Edvin Chan i A. Benjamin 

Spaeth z Universytetu Cardiff. Autorzy zdecydowali się wytrenować system na ręcznie 

rysowanych, perspektywicznych szkicach budynków wolnostojących zestawionych 

z odpowiadającymi im fotografiami. Przez ręczne rysowanie przykładów treningowych sieć 

została wytrenowana jedynie na 84 obrazach, przez co wykazywała objawy 

przetrenowania (ang. overfitting) i miała problem z generalizacją na niespotkane w treningu 

przykłady (Chan i Spaeth, 2020). O wiele bardziej funkcjonalny, analogiczny system został 

stworzony przez Kyle’a Steinfelda z Uniwersytetu Kalifornii w Berkeley. Napotkane przez 

Chana i Spaetha problemy zostały rozwiązane poprzez wyspecjalizowanie algorytmu 

i zautomatyzowanie generowania przykładów treningowych. Algorytm został 

wyspecjalizowany jedynie do widoków aksonometrycznych o stałym nachyleniu kamery 

i jednorodnym oświetleniu, co znacząco ujednoliciło przykłady treningowe i uprościło problem 

aplikacji transferu stylu. Pary treningowe zostały wygenerowane automatycznie poprzez 

komputerowe renderowanie wizualizacji zbioru modeli trójwymiarowych w formie 

fotorealistycznej (z teksturowaniem i cieniowaniem) oraz w formie linearnej stylizowanej 

na rysunek odręczny. Podejście zautomatyzowane pozwoliło na wygenerowanie znacznie 

większego zbioru treningowego, co umożliwiło modelowi nauczenie się radzenia sobie 

z o wiele bardziej zróżnicowanymi geometriami i teksturami. Opracowany algorytm został 

zaimplementowany w postaci wtyczki do programu Photoshop i wykorzystany w trakcie zajęć 

projektowych ze studentami architektury (Rys. 15). Wytrenowane przez sieć neuronową 

aksonometryczne wizualizacje posłużyły studentom jako punkty wyjścia do dalszych prac 

projektowych (Steinfeld, 2020). 
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Rys. 15. System Sketch2Pix opracowany przez Kyle’a Steinfelda służący do przetwarzania 

linearnych szkiców aksonometrycznych na ich fotorealistyczne wizualizacje. Po lewej 

przykłady prostych modułów zwizualizowanych przez algorytm, po prawej dwa przykłady 

kolaży stworzonych przez studentów architektury korzystających z algorytmu Sketch2Pix 

w trakcie zajęć projektowych (Steinfeld, 2020). 

Architektura: klasyfikacja 

W większości dziedzin klasyfikacja, detekcja i segmentacja semantyczna są jednymi 

z popularniejszych zastosowań dla głębokiego uczenia maszynowego. Klasyfikacja jest 

stosowana także w problemach projektowych w skali architektonicznej. Najczęściej 

do klasyfikacji wykorzystywane są projekty architektoniczne przedstawione w formie 

rastrowych rzutów i przekrojów. Jednym z prostszych zastosowań jest sam problem 

rozpoznawania, czy dany rysunek architektoniczny przedstawia rzut czy przekrój. Algorytm 

zdolny do klasyfikacji typów rysunków technicznych mógłby być przydatny przy cyfryzacji 

papierowych archiwów architektonicznych. Zautomatyzowane sortowanie materiałów 

mogłoby zwiększyć efektywność procesu cyfryzacji dużych zbiorów rysunków. W 2019 roku 

Jennifer Mei Yee Ng i in. opracowali właśnie taki system wykorzystujący sieć neuronową 

do rozróżniania rzutów od przekrojów (Ng, i in., 2019). O krok dalej poszli Can Uzun i Meryem 

Birgül Çolakoğlu z Politechniki w Istambule, wykorzystując głębokie uczenie maszynowe 

nie tylko do klasyfikacji rzutów i przekrojów, ale i do ich detekcji, czyli dokładnej lokalizacji 
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na arkuszu i rozpoznawania ich obrysów. Detekcja pozwala na odpowiednie przycięcie 

arkusza, tak by rysunek przedstawiał jedynie rzut czy przekrój, bez elementów dodatkowych 

jak tabele czy opisy (Çolakoğlu i Uzun, 2019). Rzuty i przekroje można poddać także 

segmentacji semantycznej, czyli grupowaniu fragmentów obrazu wejściowego względem 

wybranych klas. Jednoznaczna segmentacja poszczególnych elementów rysunków 

architektonicznych, jak ściany, drzwi, okna i klatki schodowe, może być przydatna 

przykładowo przy automatycznej konwersji klasycznych, dwuwymiarowych rysunków 

CAD-owskich na modele trójwymiarowe lub BIM-owskie. System służący rozpoznawaniu 

elementów składowych rzutów architektonicznych przy pomocy segmentacji semantycznej 

został opracowany przez naukowców z Uniwersytetu Keio w Japonii (Xiao, i in., 2020). Na 

wyższym poziomie abstrakcji projektowej rzuty mogą być także dzielone względem funkcji 

poszczególnych pomieszczeń w budynku. Algorytmy takie zaproponowali między innymi 

Zheng i Huang (Zheng i Huang, 2018) oraz Brown i in. (Brown, i in., 2020). Oprócz 

rozpoznawania już zdefiniowanych w planie funkcji pomieszczeń algorytmy tego typu mogą 

służyć do sugerowania najlepszych funkcji przy projektach adaptacyjnych, a także pomóc przy 

badaniu cech rzutów skorelowanych z poszczególnymi funkcjami poprzez analizowanie 

aktywacji poszczególnych warstw sieci neuronowej (Brown, i in., 2020). Zespół z Politechniki 

Warszawskiej, którego byłem członkiem, wykorzystał klasyfikacyjne zdolności sieci 

neuronowych do ulepszenia zdolności generatywnych nieneuronowego algorytmu PatchMatch. 

W projekcie tym algorytm PatchMatch służący do bezszwowego uzupełniania brakujących 

fragmentów obrazów został przez nas wykorzystany do generowania zagospodarowania 

działki, projektów elewacji i detali plomby architektonicznej na podstawie otaczającej 

zabudowy (Rys. 16). Wygenerowane rezultaty były następnie klasyfikowane przez zestaw 

pięciu różnych sieci neuronowych. Pewność klasyfikacji danego elementu posłużyła do selekcji 

najlepszych przykładów wygenerowanych przez algorytm. Wyselekcjonowane przez sieci 

neuronowe rozwiązania zostały skompilowane do postaci projektu architektonicznego plomby 

architektonicznej (Dzieduszyński, i in., 2020). 
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Rys. 16. Projekt plomby architektonicznej wygenerowany przez algorytm PatchMatch 

wspomagany przez zespół pięciu klasyfikacyjnych sieci neuronowych dokonujących selekcji 

najlepszych elementów projektowych (Dzieduszyński, i in., 2020). 

Klasyfikacji w skali architektonicznej można dokonywać także na danych wejściowych innego 

rodzaju. Zespół z German Research Center for Artificial Intelligence Uniwersytetu 

w Monachium przeprowadził szczegółowe badanie mające na celu sprawdzenie, które formy 

tensorowej, semantycznej, grafowej reprezentacji funkcjonalnych diagramów 

architektonicznych najlepiej sprawdzają się w problemach klasyfikacyjnych i które 

reprezentacje sprzyjają nabywaniu przez sieć neuronową zdolności do generalizowania. 

Przetestowano reprezentacje projektu w formie mapy wielowarstwowej (ang. multilayer map), 

w formie tekstu i w formie wektora w kodzie „jeden z n” (ang. one-hot vector). W testowanym 

problemie klasyfikacyjnym sieć neuronowa musiała klasyfikować poszczególne strefy 

funkcjonalne w mieszkaniach. Przy badanym zastosowaniu zdecydowanym zwycięzcą wśród 

badanych formatów okazało się kodowanie „jeden z n” (Eisenstadt, i in., 2021).  

W dobie dostępności i popularności skanowania laserowego i fotogrametrii coraz częściej 

w projektowaniu wykorzystywane są chmury punktów. Stojanovic i in. wykorzystali splotowe 

sieci neuronowe do segmentacji semantycznej chmur punktów (np. rozpoznawanie obiektów 

we wnętrzach architektonicznych lub do ich „wzbogacania semantycznego” (ang. semantic 

enrichment) poprzez powiązanie poszczególnych punktów z odpowiadającymi im danymi, 

pochodzącymi z sensorów dokonujących pomiarów w badanej przestrzeni [np. pomiary 
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temperatury (Stojanovic, i in., 2019)]. Semantycznie pogrupowane chmury punktów mogą być 

w łatwiejszy sposób przetworzone na modele trójwymiarowe, służące do dalszych działań 

projektowych lub konserwatorskich (Croce, i in., 2021). W architektonicznej klasyfikacji 

typologicznej bardzo przydatne są także reprezentacje przestrzeni przedstawione w formie 

szeregu diagramów typu isovist15. Isovisty w przybliżeniu modelują percepcję przestrzeni przez 

znajdującego się w niej człowieka i mogą być skutecznie wykorzystane w klasyfikacji przez 

sieć neuronową przestrzeni wewnętrznej oraz zewnętrznej (Sedlmeier i Feld, 2018). Metoda 

ta pozwala na statystyczne próbkowanie percepcji przestrzeni w całym budynku i w jego 

otoczeniu, pozwalając na podejmowanie decyzji projektowych na podstawie danych 

statystycznych opisujących kompozycję przestrzenną projektu (Peng, i in., 2017). Użytecznym 

zbiorem danych mogą być także informacje zebrane przez sensory znajdujące się w telefonach 

komórkowych. Judit Tamas i Zsolt Toth przyjrzeli się problemowi nawigacji we wnętrzach 

architektonicznych i przetestowali różne algorytmy uczenia maszynowego w przewidywaniu 

klasy pomieszczenia na podstawie hybrydowych, multimodalnych danych sensorycznych 

zebranych przez system ILONA (Indoor Localisation and Navigation). Z testowanych 

algorytmów w klasyfikacji pomieszczeń najlepiej radziły sobie sieci neuronowe, 

„k najbliższych sąsiadów” (kNN, ang. k-Nearest Neighbors) oraz naiwne klasyfikatory 

bayesowskie (Tamas i Toth, 2018). 

Klasyfikacji i segmentacji semantycznej można dokonywać także na fotografiach. Przykładem 

takiego zastosowania jest algorytm autorstwa Islama Zohiera, Ahmeda El Anably’ego 

i Ahmeda S. Madaniego służący do oznaczania na zdjęciach minaretów, odróżniania 

ich od wież innego typu i segmentacji semantycznej względem stylu architektonicznego 

(Zohier, i in., 2020). W celu uzyskania zbioru danych treningowych dla sieci neuronowej 

dokonującej segmentacji semantycznej obiektów architektonicznych można wykorzystać 

obecnie dostępne narzędzia, służące do fotorealistycznego renderingu wizualizacji 

architektonicznych. Mohammad Alawadhi i Wei Yan zaproponowali ciekawe podejście 

do renderingu par treningowych z architektonicznych modeli BIM-owskich. Dzięki klasom 

 

15  Diagramy isovist są dwuwymiarową lub trójwymiarową reprezentacją obwiedni przestrzeni dostępnej bez 

przeszkód z badanego punktu. Isovisty dwuwymiarowe stanowią wielokąt wyznaczony przez końce promieni 

wysyłanych z badanego punku we wszystkich kierunkach, a kończących się na ograniczających przestrzeń 

przeszkodach (Tandy, 1967). 
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elementów architektonicznych wbudowanych w model BIM możliwy jest automatyczny 

rendering fotorealistycznej, perspektywicznej wizualizacji oraz odpowiadających jej masek 

semantycznych grupujących poszczególne kategorie na dodatkowych obrazach. 

Zautomatyzowane generowanie fotorealistycznych danych treningowych pozwala 

na efektywne wytrenowanie sieci neuronowej potrafiącej radzić sobie z problemem 

segmentacji semantycznej także na prawdziwych zdjęciach przedstawiających obiekty 

architektoniczne (Alawadhi i Yan, 2020). 

Architektura: ekstrakcja i uczytelnianie danych 

W kategorii uczytelniania i ekstrakcji danych architektonicznych sieci neuronowe pozwalają 

na domknięcie pętli sprzężenia zwrotnego w projektowaniu poprzez ekstrakcję informacji 

o rzeczywistym sposobie wykorzystywania przestrzeni zbudowanej przez użytkowników 

i przedstawienie ich projektantowi w uczytelnionej, możliwej do interpretacji formie. Jens 

Jørgensen i in. wykorzystali splotowe sieci neuronowe do zbierania informacji o „sytuacjach 

behawioralnych” zachodzących w przestrzeni i rejestrowanych na surowym materiale wideo 

z monitoringu. Sytuację behawioralną w rozumieniu autorów stanowić może przykładowo 

jednoczesna detekcja w danym obszarze człowieka i krzesła oznaczająca ich wzajemną 

interakcję, czyli czynność siedzenia. Zebrane zachowania organizowane są przez algorytm 

w formie grafu integrującego użytkowników, obiekty, wyposażenie przestrzeni i ich wzajemne 

interakcje. System taki, dzięki implementacji neuronowego rozpoznawania obiektów 

bezpośrednio w module kamery, umożliwia zbieranie i przetwarzanie danych w sposób w pełni 

anonimowy (Jørgensen, i in., 2020). W projektowaniu parametrycznym przydatna może 

być także ekstrakcja parametrów istotnych z obszernej grupy parametrów pierwotnych. 

Algorytm autorstwa Johna Hardinga pozwala na analizę parametrów numerycznych 

definiujących model trójwymiarowy pod względem ich rzeczywistego wpływu na geometrię 

lub inne cechy modelu. Redukcja liczby wymiarów definiujących model (np. do formy 

powierzchni dwuwymiarowej, Rys. 17) pozwala na efektywniejszą eksplorację możliwych 

rozwiązań przy jednoczesnym zwiększeniu czytelności wpływu zmian wprowadzonych 

w parametrach na zmiany zachodzące w modelu (Harding, 2016). 
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Rys. 17. Proces treningu algorytmu służącego do redukcji liczby wymiarów definiujących 

projekt parametryczny stworzony przez Johna Hardinga. Na ilustracji przedstawiono 

proces redukcji parametrów z pięciu do dwóch, możliwych do zwizualizowania w postaci 

dwuwymiarowej płaszczyzny (Harding, 2016). 

Sieci neuronowe pozwalają też na wydajniejsze przetwarzanie obszernych baz danych 

architektonicznych. System DANIEL opracowany przez Sharmę i in. służy do automatycznego 

przeszukiwania repozytoriów CAD-owskich rzutów architektonicznych w celu odnalezienia 

przykładów projektów, których układ przestrzenny i funkcjonalny jest zbliżony do zadanego 

rzutu. Możliwe zastosowania takiego systemu wydają się szerokie. Przykładowo, projekty 

znalezione przez DANIEL mogą służyć za inspirację do dalszych prac projektowych lub mogą 

być potencjalnymi pokrewnymi ofertami dla klientów na rynku nieruchomości. System może 

także być przydatny przy zarządzaniu obszernymi zbiorami projektów katalogowych, 

wyszukiwaniu historycznych projektów w dużych biurach architektonicznych, wykrywaniu 

plagiatów czy w rozstrzyganiu konkursów projektowych (Sharma, i in., 2017). 

Architektura: optymalizacja 

Ostatnią kategorią zastosowania sieci neuronowych w skali architektonicznej jest 

optymalizacja procesów. Danymi do treningu sieci neuronowych służących optymalizacji 

architektonicznej zazwyczaj są dane będące wynikami symulacji komputerowych, symulacji 

środowisk uczenia ze wzmacnianiem lub dane wygenerowane syntetycznie w sposób 

zautomatyzowany. Już w 1996 roku Jefrey Ignatius Kindangen wykorzystał prostą, 

jednokierunkową sieć neuronową do optymalizacji naturalnej wentylacji w projektowanym 

budynku na podstawie danych symulacyjnych. Algorytm potrafił na uproszczonym modelu 

pomieszczenia modyfikować rozmiar i położenie okien w celu zapewnienia układu 

gwarantującego odpowiednie przewietrzanie pomieszczenia przy zadanym kącie natarcia 

wiatru (Kindangen, 1996). Sieci neuronowe mogą być wykorzystywane pomocniczo jako 

algorytmy optymalizacyjne w bardziej złożonych systemach generatywnych. Sevil Yazici 
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zastosował sieć neuronową do optymalizacji wydajności strukturalnej generowanego 

parametrycznie projektu dwupłaszczyznowych przekryć względem mierzonego symulacyjnie 

odkształcenia struktury poprzez dobór materiałów o odpowiednich właściwościach w różnych 

regionach struktury (Yazici, 2020). Jingyi Li i Hong Chen wytrenowali sieć neuronową w celu 

optymalizacji zmiennych projektowych w budynku biurowym względem jego wydajności 

energetycznej. Błędy przewidywanych przez algorytm wartości symulacji energetycznych 

w najgorszych przypadkach nie przekraczały 15%, a oparta na głębokim uczeniu maszynowym 

optymalizacja pozwoliła na znalezienie rozwiązań projektowych oferujących aż do 37,5% 

oszczędności energetycznych względem bazowego projektu zaproponowanego przez architekta 

(Li i Chen, 2021). Tyson Hosmer i Panagiotis Tigas w pracach nad zautomatyzowanymi, 

robotycznymi modułami konstrukcyjnymi w ustroju tensegrity16 wykorzystali sieci neuronowe 

jako algorytmy optymalizujące w symulacjach głębokiego uczenia ze wzmacnianiem. 

Algorytm sterujący ruchem i naprężeniem poszczególnych modułów tensegrity pozwala na 

tworzenie ustrojów zdolnych do samoorganizacji, dynamicznego i statycznego utrzymywania 

równowagi oraz rekonfiguracji przestrzennej. System wytrenowany jest w symulacji 

komputerowej, jednak skutecznie może być aplikowany także w fizycznym ustroju tensegrity. 

Dzięki zastosowaniu symulacji wieloagentowej liczne moduły mogą współpracować ze sobą, 

by osiągnąć zadany cel. Geometria jest optymalizowana przez sieć neuronową względem 

zadanej pozycji i parametrów strukturalnych ustroju (Hosmer i Tigas, 2019). Dzięki 

zdolnościom sieci neuronowych do przybliżania złożonych, nieliniowych funkcji, są one 

dobrymi kandydatami do rozwiązywania problemów optymalizacji wielokryterialnej, w której 

konieczna jest maksymalizacja kilku celów jednocześnie. W 2018 roku David Newton 

zaproponował system służący wielocelowej, jakościowej optymalizacji projektów 

architektonicznych (MOQO, ang. Multi-Objective Qualitative Optimization). W algorytmie 

tym poszczególne cele jakościowe (jak horyzontalność, modularność czy strzelistość obiektu) 

konwertowane były na podstawie badania ankietowego do postaci wartości numerycznej. 

Na podstawie tych danych wytrenowano sieć neuronową przypisującą zadanym, 

zwokselizowanym modelom architektonicznym wynik dla każdego z celów jakościowych. 

 

16 Tensegrity – (ang. tension + integrity; naprężenie + integralność) ustrój konstrukcyjny, w którym elementy 

przenoszące ściskanie są ze sobą połączone pośrednio poprzez cięgna przenoszące rozciąganie. Ustrój został 

opisany teoretycznie  i opatentowany na początku lat 60. przez Buckminstera Fullera (Fuller, 1961; Fuller, 1962) 

i równolegle stosowany w instalacjach przestrzennych przez Kennetha Snelsona (Heartney, 2013). 
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Wynik ten służył następnie za metrykę dla potrzeb dalszej optymalizacji modelu (Newton, 

2018). 

2.2.3. Detal, materiały i komputerowe wspomaganie wytwarzania (CAM) – zastosowania 

sieci neuronowych 

Detal, materiały, CAM: ewaluacja i przetwarzanie danych 

Głębokie uczenie maszynowe stosowane jest także w problemach dotyczących skali detalu 

architektonicznego, materiałów oraz wytwarzania wspomaganego komputerowo. 

Przy ewaluacji i przetwarzaniu danych sieci neuronowe mogą operować na zmiennych 

liczbowych przedstawionych w formie tabularycznej, ręcznie oznaczanych modelach 

parametrycznych, szeregach czasowych, danych symulacyjnych czy fotografiach. Zespół pod 

kierownictwem Any Silvy z Politechniki w Lizbonie od 2011 roku bada możliwości 

wykorzystania maszynowych metod stochastycznych i sieci neuronowych w modelowaniu 

przewidywanej żywotności materiałów elewacyjnych. W zaproponowanym podejściu dane 

wejściowe stanowi zbiór numerycznych zmiennych charakteryzujących stan materiałów 

elewacyjnych. W przypadku paneli kamiennych, zastosowanych do wykończenia elewacji, 

zmienne te opisują cechy materiałowe, jak typ wykończenia, wiek, rodzaj kamienia, wielkość 

paneli, a także cechy środowiskowe, jak ekspozycję i odległość od morza. Na podstawie tych 

danych algorytm ocenia przewidywane poziomy degradacji elewacji w skali od zera do stu lat 

(Silva, i in., 2011). Zespół opracował zbliżony system służący przewidywaniu żywotności 

powierzchni malowanych. Podobnie jak w przypadku elewacji kamiennych, cechy wejściowe 

dla sieci neuronowej opisywały wiek, orientację oraz dystans od morza, ale dodatkowo także 

wielkość i wysokość budynku, kolor i typ farby, odległość od źródeł zanieczyszczeń, 

ekspozycję na wilgoć, funkcję budynku i teksturę powierzchni. W przypadku powierzchni 

malowanych algorytm jest w stanie trafnie oceniać żywotność wykończenia na jedenaście lat 

w przód (Dias, i in., 2013). 

Współcześnie bardzo aktualnym tematem są aktywne i inteligentne materiały architektoniczne. 

Głębokie uczenie maszynowe pozwala na zwiększenie kontroli nad wytwarzaniem materiałów 

tego typu i nad ich zachowaniem w trakcie eksploatacji. Daniil Koshelyuk i in. z IAAC 

w Barcelonie wykorzystali sieć neuronową do interpretacji zmian oporności prądu 

elektrycznego przepływającego przez membranę grafenową w celu przewidywania kąta ugięcia 

odkształconej powierzchni. Stworzony system pozwala na precyzyjne przybliżanie 
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prawdopodobnej formy geometrycznej aktywnego materiału poddanego działaniu sił 

zewnętrznych, umożliwiając efektywniejszy nadzór nad poddanym deformacji elementem 

(Koshelyuk, i in., 2019). Dan Luo, Jingsong Wang i Weiguo Xu stworzyli linearny elastomer 

o niejednorodnych przekrojach wzdłuż osi głównej. W zależności od wykorzystanej sekwencji 

przekrojów elastomer poddany obciążeniu przyjmuje różne formy geometryczne. Korzystając 

z ramienia robotycznego i danych symulacyjnych, autorzy elastomeru wytrenowali sieć 

neuronową przetwarzającą sekwencję przekrojów wzdłuż osi materiału na przewidywaną pod 

obciążeniem geometrię. Algorytm działa także w drugą stronę, umożliwiając przetworzenie 

zadanej geometrii docelowej na konieczną do uformowania sekwencję przekrojów materiału 

(Luo, i in., 2018). Gabriella Rossi i Paul Nicholas zastosowali sieci neuronowe do zwiększenia 

sztywności giętych, elewacyjnych paneli blaszanych. W ramach proponowanego procesu 

w pierwszej kolejności docelowa geometria panelu kodowana jest w formie obrazu, w którym 

poszczególne kanały opisują krzywiznę docelowego panelu i punkty mocowania do elewacji. 

Następnie na podstawie tych obrazów sieć neuronowa przewiduje naprężenie w panelu 

wywołane przez parcie wiatru i generuje ścieżki dla wydruku 3D wzmacniającego najbardziej 

obciążone regiony panelu (Rys. 18). Wzmocnienia mogą być także implementowane w postaci 

podłużnych żeber wytłaczanych przez tandem dwóch ramion robotycznych (po jednym 

na każdą stronę panelu) (Rossi i Nicholas, 2020). 

 

Rys. 18. Wspomagane przez sieć neuronową metody fabrykacji giętych, blaszanych paneli 

elewacyjnych opracowane przez Gabriellę Rossi i Paula Nicholasa. Po lewej – druk 3D 

wzmocnień wygenerowanych przez sieć neuronową w odpowiedzi na przewidywane 

obciążenia wywołane parciem wiatru. Po prawej – wytwarzanie podobnych wzmocnień 

w formie wytłoczonych w blasze podłużnych żeber (Rossi i Nicholas, 2020). 
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Ten sam zespół wytrenował sieć neuronową służącą do generowania instrukcji dla numerycznie 

sterowanego koła angielskiego w celu wytwarzania dwukrzywiznowych paneli blaszanych 

o zadanej geometrii. Sieć została wytrenowana na ręcznie przygotowanych parach docelowych 

geometrii i odpowiadających im ścieżek gięcia. Do tej pory koło angielskie zazwyczaj było 

traktowane jako narzędzie ręczne, przy pomocy którego ciężko jest osiągnąć powtarzalne, 

precyzyjne rezultaty. Sieci neuronowe pozwalają na dokładne przetwarzanie kształtu panelu 

na właściwe instrukcje dla koła angielskiego. Zaproponowana zautomatyzowana metoda jest 

jedną z tańszych opcji formowania elewacji wielokrzywiznowych (Rossi i Nicholas, 2018). 

Część z członków zespołu zajmującego się wspomaganym przez głębokie uczenie maszynowe 

gięciem metalu zwróciła się w kierunku mniej sztywnych materiałów i przyjrzała 

się możliwościom wykorzystania sieci neuronowych w projektowaniu tkanych cyfrowo 

dzianin, służących za membrany osłaniające wnętrza przed słońcem. Stworzony przez Paula 

Nicholasa, Martina Tamke i in. prototyp przetwarza zadane warunki zacienienia na pliki 

produkcyjne dla maszyny dziewiarskiej. System umożliwia architektom bardziej intuicyjne 

projektowanie detalu membrany zacieniającej poprzez definiowanie oczekiwanego efektu 

świetlnego w projektowanej przestrzeni bez konieczności zagłębiania się w szczegóły 

techniczne sztuki dziewiarskiej (Thomsen, i in., 2019). Sieci neuronowe mogą również 

przetwarzać projekty dzianych membran w celu osiągnięcia złożonych form geometrycznych. 

Poprzez modyfikację w pliku produkcyjnym poszczególnych typów ściegów w różnych 

rejonach płaszczyzny sieci neuronowe mogą kontrolować kształt, jaki osiągnie membrana 

po rozciągnięciu (Sinke, i in., 2021). Dechen Chen i in. przetestowali kilka różnych rodzajów 

sieci neuronowych w przewidywaniu geometrii wydruku 3D niepodpartego mostka (ang. 

bridging) w zależności od przekazanych drukarce 3D instrukcji w formie szeregów czasowych 

G-code. System został wytrenowany przy pomocy prostego algorytmu widzenia maszynowego, 

interpretującego geometrię krzywej, będącej efektem wydruku 3D drukarki sterowanej przez 

konkretną sekwencję instrukcji. W zadaniu przewidywania geometrii mostka na podstawie 

instrukcji najlepiej radziła sobie sieć typu LSTM (ang. Long Short-Term Memory, sieć 

z mechanizmem długiej pamięci krótkotrwałej). W zadaniu odwrotnym, polegającym 

na przewidywaniu koniecznych instrukcji na podstawie zadanej krzywej lepiej radziła sobie 

sieć jednokierunkowa (Chen, i in., 2019). Pradeep Devadass i in. użyli sieci neuronowych 

do mapowania relacji między parametrami wejściowego projektu mostu łukowego 

na instrukcje służące do wytworzenia drewnianych elementów składowych z uwzględnieniem 

ograniczeń procesu fabrykacji. Wygenerowane przez sieć polecenia sterują ramieniem 
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robotycznym przycinającym odpowiednio drewniane moduły na pile taśmowej. Sama 

geometria mostu optymalizowana jest przez osobny algorytm genetyczny (Devadass, i in., 

2019). 

Podobnie jak w skali architektonicznej, w skali detalu i w wytwarzaniu wspomaganym 

komputerowo sieci neuronowe także są wykorzystywane do przybliżania wyników 

kosztownych czasowo i obliczeniowo symulacji komputerowych. Effima Giannapoulou i in. 

dzięki głębokiemu uczeniu maszynowemu opracowali cyfrową metodę projektowania 

cienkościennych, rozgałęzionych ustrojów powłokowych. Sieć neuronowa wytrenowana 

na parametrach wejściowych modeli parametrycznych została wykorzystana do przewidywania 

cech strukturalnych generowanego modelu. Algorytm działa o wiele szybciej niż pełna 

symulacja, jest wystarczająco precyzyjny do eksploracji przestrzeni projektowej na wczesnych 

etapach prac i potrafi skutecznie przetwarzać niespotkane w trakcie treningu wartości 

parametrów wejściowych (Giannopoulou, i in., 2019). W najmniejszej z analizowanych skal 

Runjia Tian, Yujie Wang i Onur Yüce Gün zaproponowali wykorzystanie sieci typu LSTM, 

zwykle stosowanych do przetwarzania języka naturalnego, do wspomagania generowania 

ergonomicznych podeszew w obuwiu na podstawie szeregów czasowych opisujących rozkład 

ciśnienia pod stopą w trakcie biegu i odpowiadające mu deformacje powierzchni podeszwy. 

Zastosowanie to wykracza w prawdzie poza zakres CAAD, jednak przykład ten bardzo dobrze 

pokazuje nieszablonowe możliwości przetwarzania danych projektowych przy pomocy 

głębokiego uczenia maszynowego. Sieć neuronowa została wykorzystana do konwersji 

wielowymiarowych danych wejściowych opisujących obciążenia podeszwy do formy sygnału 

jednowymiarowego. Na tej podstawie osobny algorytm generatywny definiował ażurową, 

elastyczną strukturę podeszwy, by w jak najbardziej ergonomiczny sposób przenosić siły 

dynamiczne w trakcie biegu. Podobna metodyka może być stosowana także w problemach 

projektowych innego typu, w którym podstawą do podejmowania decyzji projektowych 

są pochodzące z pomiarów szeregi czasowe (Tian i Gün, 2020). Ciekawą demonstrację 

zdolności sieci neuronowych do złożonego przetwarzania kontekstów projektowych na 

przykładzie detalu zaproponowali Jacek Markusiewicz i Ander Gortazar Balerdi. W czasie 

warsztatów projektowych ze studentami autorzy opracowali algorytm głębokiego uczenia 

maszynowego rozpoznającego, czy dany projekt parametryczny krzesła jest projektem 

oryginalnym, czy plagiatem krzesła DCW Cahrlesa i Raya Eamesa z lat 

40. dwudziestego wieku. Stworzenie algorytmu zostało zainspirowane przez krzesło Loti, 

bardzo zbliżone do krzesła DCW, popularne w Kraju Basków w latach 50. i 60. W celu 



75 

 

uchwycenia rozmytej granicy między plagiatem a projektem oryginalnym zorganizowano 

parametryczne warsztaty projektowe. Wygenerowane modele zostały przy pomocy ankiety 

ocenione pod kątem „stopnia naśladownictwa”. Na podstawie zebranych danych wytrenowano 

sieć neuronową potrafiącą decydować, czy dane krzesło jest plagiatem, czy nie (Markusiewicz 

i Balerdi, 2020). 

Detal, materiały, CAM: algorytmy generatywne 

Rozwiązania głębokiego uczenia maszynowego są implementowane w różnorodnych 

algorytmach generatywnych. Wśród przykładów w mniejszych skalach Jose Luis Garcia 

del Castillo y López zademonstrował system sterowania ramieniem robotycznym, służącym 

do cyfrowej fabrykacji, zdolnym odczytywać intencje człowieka w celu dokończenia 

rozpoczętego przez niego procesu. W zaprezentowanej implementacji sieć neuronowa 

rozpoznawała fragment szkicu narysowanego przez człowieka i proponowała jego 

uzupełnienie. Jeśli użytkownik zaakceptował propozycję algorytmu, ramię robotyczne 

kończyło flamastrem rozpoczęty szkic (del Castillo y López, 2019). Kacper Radziszewski i Jan 

Cudzik wytrenowali sieć neuronową na przykładach kapiteli kolumn korynckich 

przedstawionych w postaci zrasteryzowanych map głębi. Wytrenowana sieć potrafiła 

generować nowe, oryginalne przykłady kapiteli inspirowanych przez kapitele korynckie 

(Cudzik i Radziszewski, 2018). Mostafa W. Alani i Bilal R. Al-Kaseem zebrali zestaw 

przykładów heksagonalnych rozet charakterystycznych dla architektury islamskiej z okresu od 

dziewiątego do piętnastego wieku. Zebrane dane posłużyły przeciwstawnej sieci neuronowej 

za zbiór treningowy. Algorytm został wykorzystany przez autorów do wygenerowania 

projektów współczesnych rozet opartych na przykładach historycznych (Alani i Al-Kaseem, 

2021). 

W trochę większej skali Zandavali i Garcia skorzystali z sieci przeciwstawnych przy 

rozwiązywaniu problemu generowania wzorów służących do pisania instrukcji dla ramienia 

robotycznego odpowiedzialnego za układanie cegieł. Opracowana metoda brała pod uwagę 

kolejność układania cegieł oraz siły oddziałujące na strukturę w trakcie budowy, dzięki czemu 

możliwe było kształtowanie także delikatnych nadwieszeń (Zandavali i Garcia, 2019). Yetkin 

i Sorguç użyli głębokiego uczenia maszynowego do eksploracji przestrzeni projektowej 

możliwych do wygenerowania struktur kratownicowych. Sieć neuronowa została wytrenowana 

do tworzenia propozycji kratownic na podstawie zadanych wymagań dotyczących 

przemieszczenia pod obciążeniem i pożądanej masy konstrukcji (Yetkin i Sorguç, 2019). Zheng 
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i in. stworzyli algorytm do generowania kielichowych, żebrowych konstrukcji stropowych 

możliwych do fabrykacji przy pomocy druku 3D. Forma otrzymanych projektów stropów jest 

efektem neuronowej optymalizacji sił wynikających z ciężaru struktury (Zheng, i in., 2020). 

Detal, materiały, CAM: optymalizacja 

Niektóre z zastosowań wymienionych w poprzednich sekcjach mogłoby być traktowanych 

pośrednio jako zadania optymalizacyjne, jednak warto wspomnieć osobno o aplikacjach sieci 

neuronowych, w których optymalizacja procesów jest bezpośrednim celem końcowym 

wykorzystania głębokiego uczenia maszynowego. W badaniach Gabreielli Rossi i Paula 

Nicholasa nad algorytmami sterującymi dla robotów wyposażonych w sensory haptyczne, 

użyto sieci neuronowych do optymalizacji generowania ścieżek, w sposób umożliwiający 

robotowi reagowanie na przeszkody obecne w jego bezpośrednim otoczeniu. Celem 

optymalizacji było proponowanie takich instrukcji, które jednocześnie zapewniają 

najpłynniejszy ruch i minimalizują ryzyko kolizji z przeszkodami. Sieć neuronowa była więc 

zastosowana do optymalizacji wielocelowej. Sterowany na podobnej zasadzie robot 

uniwersalny może być wdrażany w procesach wytwarzania wspomaganego komputerowo 

w chaotycznych środowiskach, w których system musi dostosowywać się np. do ludzi 

znajdujących się w przestrzeni roboczej i powinien odpowiednio reagować na sytuacje 

nieprzewidywalne (Rossi i Nicholas, 2019). Podobną rolę odgrywają sieci neuronowe 

w proponowanym przez Zhihao Fanga i in. ramowym projekcie wieloagentowego systemu 

służącego budowie struktur ceglanych przez rój latających dronów. W proponowanym systemie 

głębokie uczenie maszynowe również odpowiada za optymalizację wielocelową trajektorii lotu 

dronów, tak by minimalizować ryzyko kolizji i maksymalizować trajektorie zbliżające drony 

do ich indywidualnych celów (Fang, i in., 2020). 

Detal, materiały, CAM: klasyfikacja 

W projektowaniu architektonicznym wspomaganym komputerowo w skali detalu sieci 

neuronowe nie są często wykorzystywane w klasyfikacji. W projekcie „Lace Wall” autorstwa 

Martina Tamke, Mateusza Zwierzyckiego, Andersa Holdena Deleurana i Yuliya’i Šinke 

Baranovskaya’ey sieć neuronowa została wykorzystana jako część składowa bardziej 

złożonego systemu przestrzennego (Rys. 19). Głębokie uczenie maszynowe posłużyło 

do eksploracji przestrzeni projektowej poprzez klasyfikację i grupowanie możliwych 

do uzyskania form instalacji względem obciążeń poszczególnych modułów w rozpatrywanych 

sytuacjach. W „Lace Wall” sieć neuronowa była odpowiedzialna za identyfikację modułów 
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poddanych działaniom warunków brzegowych, w których ze względu na deformacje konieczne 

było przeprowadzenie dalszej optymalizacji. Sklasyfikowane przez sieć neuronową moduły 

przetwarzane były ponownie przez algorytm genetyczny, aż do osiągnięcia optymalnego 

rozwiązania mieszczącego się w zadanych zakresach (Tamke, i in., 2017).  

Detal, materiały, CAM: przewidywanie przyszłości 

W trakcie badań literaturowych trafiłem na jedno zastosowanie w skali detalu urbanistycznego, 

w którym sieci neuronowe zostały wykorzystywane do krótkoterminowego przewidywania 

przyszłości. Jiaxu Wu i in. opracowali metodę przewidywania przyszłych trajektorii ruchu 

poszczególnych pieszych w przestrzeni miejskiej na podstawie monitoringu wideo. Możliwość 

dynamicznej ekstrapolacji ruchu pieszego w czasie rzeczywistym może być przydatna przy 

projektowaniu szczegółowych rozwiązań z zakresu Smart City i ulic aktywnych dynamicznie 

reagujących na zachowanie poszczególnych użytkowników w celu zwiększenia 

bezpieczeństwa lub komfortu korzystania z przestrzeni miejskiej (Wu, i in., 2019). W skali 

długoterminowej do przewidywania przyszłości można zaliczyć także omówiony wcześniej w 

kategorii ewaluacji i przetwarzania danych algorytm przewidujący żywotność materiałów 

 

Rys. 19. Instalacja przestrzenna „Lace Wall” autorstwa Tamke, Zwierzyckiego i in. W 

„Lace Wall” sieci neuronowe zostały wykorzystane do klasyfikacji modułów, które ze 

względu na zbyt duże deformacje w skali mikro uniemożliwiały stworzenie docelowej formy 

w skali makro (Tamke, i in., 2017).  
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wykończeniowych fasad (Dias, i in., 2013). W publikacji tej autorzy przewidywali stopień 

zużycia elewacji na podstawie szeregu czynników obejmujących lokalizację, typ wykończenia, 

wiek czy dystans od morza. 

2.3. Luka badawcza – neuronowe przetwarzanie kontekstów 

kompozycyjnych, przesłanki 

Jednym z zaskakujących wniosków płynących z kwerendy jest bardzo mała liczba publikacji 

dotyczących kompozycji przestrzennej. Analizy kompozycyjne przeprowadzane są praktycznie 

we wszystkich skalach projektowo-planistycznych. We wszystkich tych skalach dysponujemy 

też wieloma danymi typu big-data, zawierającymi w sobie wartościowe informacje 

o kompozycji przestrzennej. Zaliczają się do nich między innymi bazy projektów 

architektonicznych (bazy projektów archiwalnych17, projekty składane w urzędach, projekty 

konkursowe, bazy BIM-owskie), cyfrowe reprezentacje przestrzeni miast (bazy GIS, mapy, 

modele Digital Surface Model, zdjęcia satelitarne, geolokalizowane media społecznościowe, 

sensory smart-city), czy nawet zdigitalizowane dzieła sztuki (reprodukcje cyfrowe, skany 

fotogrametryczne, skany laserowe). Konteksty kompozycyjne często są rozległe, złożone, 

logicznie rozmyte i trudne do oprogramowania metodami klasycznymi. Analizy przestrzenne 

wymagają dużo czasu i trzeba je w pewnym stopniu przeprowadzać zarówno przy 

projektowaniu architektonicznym, planowaniu urbanistycznym i przy zadaniach 

administracyjnych. Badacze poszukują ostatnio możliwości automatyzacji części analiz 

przestrzennych. Anna Jachimowicz z Politechniki Warszawskiej zauważa, że ze względu na 

ciągły charakter planowania przestrzennego analizy nie powinny być przeprowadzane 

jednorazowo. Automatyzacja procesów analitycznych oferuje możliwość wielokrotnego 

przetwarzania zmieniających się uwarunkowań, co pozwala zaoszczędzić czas i zasoby biur 

projektowych oraz ułatwia uchwycenie procesów ciągłych, dla których pojedynczy przekrój 

danych w jednej chwili jest niewystarczający (Jachimowicz, 2022; Jachimowicz, 2023). Sieci 

neuronowe pozwalają na automatyzację części procesów, które dotychczas były wykonywane 

przez ludzi, umożliwiając przetworzenie dużych zbiorów danych w krótkim czasie.  

 

17  Szczególnie ciekawą polską bazą projektów archiwalnych jest cyfrowa kolekcja Muzeum Architektury 

we Wrocławiu. Obejmuje ona kilka tysięcy zdigitalizowanych rysunków projektowych z okresu 

międzywojennego i powojennego w formie rastrowej (Muzeum Architektury we Wrocławiu, 2019). 
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Coraz częściej mówi się o zastępowaniu analiz eksperckich przez narzędzia cyfrowe. 

Czy jednak tak skomplikowany temat, jak kompozycja przestrzenna, może być uchwycony 

przez sieć neuronową? Sieci neuronowe już od lat biegle radzą sobie z klasyfikacją obrazu 

[np. AlexNet (Krizhevsky, i in., 2012)], jego syntetyzowaniem [Dall-E (Ramesh, i in., 2021), 

Dall-E 2 (Ramesh, i in., 2022)] czy uzupełnianiem brakujących fragmentów [ImageGPT (Chen, 

i in., 2020), Stable Diffusion (Rombach, i in., 2022)]. Zadania te wymagają praktycznego 

operowania zasadami kompozycyjnymi i pewnego „rozumienia” kompozycji przestrzennej 

jako całości. Mikołaj Małkiński i Jacek Mańdziuk przeprowadzili w 2022 roku badanie 

przeglądowe, w którym bardzo szeroko przeanalizowali skuteczność różnych algorytmów 

uczenia maszynowego (w tym sieci neuronowych) w abstrakcyjnym rozumowaniu wizualnym 

polegającym na rozwiązywaniu testów matryc Ravena18. Wiele z badanych sieci neuronowych 

osiągało wyniki zbliżone do tych osiąganych przez człowieka, a niektóre były od ludzi 

zdecydowanie lepsze (Małkiński i Mańdziuk, 2022). Skuteczność sieci neuronowych w tego 

typu testach jest silną przesłanką za postawieniem przypuszczenia, że współczesne sieci 

neuronowe są wystarczająco potężne, by móc wykorzystać je do rozwiązywania rzeczywistych 

problemów kompozycyjnych. Nawet jeśli sieci neuronowe nie będą w stanie zastąpić eksperta 

mogą być wykorzystane jako narzędzia wspomagające podejmowanie decyzji lub posłużyć 

w procesie projektowym jako inspiracja. 

Ze 149 przeanalizowanych w kwerendzie prób wykorzystania sieci neuronowych 

w projektowaniu wspomaganym komputerowo 27 z nich dotyczyło morfologii i typologii 

miast, a jedynie 13 pośrednio odnosiło się do kompozycji przestrzennej (Rys. 20). 

W rozwiązaniach tych kompozycja przestrzenna traktowana  była zazwyczaj jako element 

składowy większych problemów, a zagadnienia kompozycyjne nie były analizowane 

w oddzieleniu od innych zmiennych. Wyjątkiem jest praca Briana Ho opisana w publikacji 

Making a New City Image, ale zakres rozważań kompozycyjnych przeprowadzonych przez 

autora był niestety dosyć ubogi i sprowadził się jedynie do klasyfikacji „dzielnic” 

i „nie-dzielnic” w miastach na podstawie kolaży fotograficznych i odpowiadających 

im schwarzplanów (Ho, 2020).  

 

18 Test matryc Ravena – ang. Raven’s Progressive Matrices, test inteligencji opracowany przez Johna C. Ravena 

w 1939 roku, polegający na przewidywaniu kompozycji wizualnej poprawnie wpisującej się w zadaną macierz 

kompozycji nadających kontekst (Raven, 2000). 
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Rys. 20. Artykuły pośrednio dotyczące morfologii urbanistycznej, kompozycji przestrzennej 

oraz artykuły przeglądowe w publikacjach dotyczących komputerowego wspomagania 

projektowania architektonicznego przy wykorzystaniu sieci neuronowych. Opracowanie 

własne. 

Podsumowując, przeprowadzona kwerenda ujawnia, że pomimo potencjału sieci neuronowych 

w rozwiązywaniu problemów pokrewnych do kompozycji przestrzennej, istnieje zaskakująco 

mała liczba publikacji skupiających się bezpośrednio na tym zagadnieniu. Chociaż technologia 

głębokiego uczenia maszynowego zdaje się wystarczająco rozwinięta, by wspierać 

automatyzację analiz kompozycyjnych w różnych skalach projektowych i procesach 

urbanistycznych, temat ten pozostaje niedostatecznie eksplorowany w literaturze. Wyniki 

kwerendy sugerują potrzebę dalszych badań i rozwoju narzędzi cyfrowych w tej dziedzinie. 

2.4. Punkty główne kompozycji przestrzennej 

2.4.1. Elementy kompozycyjne i ich przetwarzanie maszynowe 

Cyfrowe narzędzia służące rozpoznawaniu i przetwarzaniu kontekstów kompozycyjnych mogą 

być przydatne wszędzie tam, gdzie konieczne jest podejmowanie decyzji poprzez przesłanki 

wynikające z uwarunkowań kompozycyjnych. W myśl Ustawy o planowaniu 

i zagospodarowaniu przestrzennym uwarunkowania kompozycyjno-estetyczne bezpośrednio 

przekładają się na jakość przestrzeni, jej harmonię i są jednym z wyznaczników osiągnięcia 

ładu przestrzennego (Sejm RP, 2003). Ekstraktory zasad kompozycyjnych mogłyby ułatwić 

urzędom pracę przy sporządzaniu planów ogólnych gmin, planów rewitalizacji, tworzeniu 

miejscowych planów zagospodarowania przestrzennego, podejmowaniu decyzji o warunkach 



81 

 

zabudowy i formułowaniu dokumentów strategicznych. Uwarunkowania kompozycyjne mogą 

przekładać się na podział funkcjonalny miasta, a w szczególności na lokalizację ważnych 

funkcji publicznych. W skali urbanistycznej pracownie projektowe mogłyby wykorzystywać 

sieci neuronowe przy projektowaniu układów urbanistycznych wpisujących się w okoliczną 

zabudowę. Dzięki neuronowym ekstraktorom zasad kompozycyjnych deweloperom łatwiej 

byłoby identyfikować kompozycyjnie podkreślone lokalizacje nowych inwestycji, co przekłada 

się na ich atrakcyjność i wartość. Biura architektoniczne także zyskałyby możliwość 

zautomatyzowanego odczytywania uwarunkowań przestrzennych projektowanej inwestycji. 

Dobrym punktem wyjścia do przeanalizowania możliwości aplikacji sieci neuronowych 

w problematyce kompozycji przestrzennej jest przyjrzenie się klasycznym elementom 

kompozycyjnym, opracowanym przez teoretyków oraz praktyków formy i kompozycji 

architektoniczno-urbanistycznej. Juliusz Żórawski w pracy O Budowie Formy 

Architektonicznej wyróżnia następujące elementy i aspekty kompozycji przekładające się na jej 

charakter, estetykę oraz na spoistość formalną: 

• Części proste, z których składa się kompozycja. Odczytywane jako osobne elementy 

większych całości (s. 18). 

• Grupy elementów, które same stanowią kompozycję punktów składowych, ale same 

stają się punktami w kompozycji bardziej złożonej (s. 28). 

• Punkty główne oraz punkty ważne umieszczone w miejscach formalnie podkreślonych, 

przez co wybijają się spomiędzy innych punktów (s. 48, 118). 

• Dominanty, czyli przyciągające uwagę formy silne (s. 28). 

• Liczbę elementów, które daje się percepcyjnie od siebie odróżnić i policzyć w liczbie 

od jednego do pięciu, a które powyżej tej liczby stanowią niepoliczalną grupę „wielu” 

(s. 27). 

• Położenie elementu, który może być osadzony w kompozycji spoiście lub rzucony 

bardziej swobodnie (s. 90). 

• Osiowość i powiązaną z nią symetrię osiową (s. 36, 79). 

• Kąty ustanowione przez osie, które, jeśli są ortogonalne, sprzyjają spoistości formy 

(s. 79). 

• Rytm, który musi mieć więcej niż 3 lub 4 elementy składowe (w zależności od 

otaczającego kontekstu), ponieważ inaczej odczytywany jest jedynie jako pewien układ 

osiowy (s. 62, 74, 110). 
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• Pole działania formalnego oznaczające obszar oddziaływania elementu w kompozycji 

(s. 103, 117). 

• Wytyczną generalną, czyli główną zasadę kompozycyjną decydującą między innymi  

o swobodności lub spoistości układu (s. 120). 

Oprócz powyższych Żórawski wyróżnia także powiązane z nimi rodzaje form przestrzennych: 

• Formy oraz otoczenie stanowiące dla nich tło. Tło także może się składać z form, jednak 

w zestawieniu z formą silniejszą o mocnym konturze zostają one percepcyjnie 

zepchnięte do roli tła (s. 66). 

• Formy spoiste (uporządkowane, czytelne, harmonijne) oraz formy swobodne (bezładne, 

z nieczytelną wytyczną generalną, organiczne) (s. 23). 

• Silniejsze formy matki i podporządkowane im formy składowe (s. 30). 

• Formy zależne od części i formy od nich niezależne (s. 31). 

• Ograniczone formy skończone i otwarte formy nieskończone (Żórawski, 1962, s. 101). 

W książce Architecture Form, Space, & Order Francis D.K. Ching trochę szerzej niż Żórawski 

wyróżnia więcej podstawowych elementów kompozycyjnych i podaje rodzaje złożonych z nich 

kompozycji. Ching proponuje następujący podział typologiczny kompozycji przestrzennych: 

• Kompozycje oparte na siatkach regularnych (s. 66, 230). 

• Kompozycje oparte na siatkach nieregularnych (s. 72). 

• Kompozycje centralne (s. 198). 

• Kompozycje radialne (s. 216). 

• Kompozycje liniowe (s. 206). 

• Kompozycje klastrowe (s. 222). 

• Kompozycje hierarchiczne, w których jedne elementy są ważniejsze od innych (s. 212). 

W obrębie tych typów kompozycyjnych Ching wyróżnia następujące elementy oraz zasady 

ich porządkowania: 

• Punkty i centra, czyli percepcyjnie nierozdzielane elementy podstawowe odczytywane 

jako obiekty bezwymiarowe (s. 4, 216). 

• Płaszczyzny odczytywane jako podstawowe elementy dwuwymiarowe (s. 14). 

• Objętości odczytywane jako podstawowe elementy trójwymiarowe (s. 14). 

• Dominanty podkreślone przez własną formę lub umiejscowienie (s. 206). 
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• Data (l. poj. Datum), czyli elementy odniesienia zbierające i organizujące kompozycję 

w całość podobnie do pięciolinii w zapisie nutowym (s. 366). 

• Grupy elementów tworzące większe całości. Już dwa punkty zaczynają wyznaczać 

między sobą pochodną oś (s. 6). 

• Linie, osie i naprowadzenia, czyli elementy podstawowe o jednym z wymiarów 

zdecydowanie większym od pozostałych lub grupy elementów ułożonych liniowo 

(s. 8, 62, 206, 242, 340). 

• Symetrie osiowe lub punktowe (s. 222, 348). 

• Rytmy proste, niejednostajne lub progresywnie zmienne (s. 382). 

• Podobieństwa części odczytywane jako pokrewieństwo fragmentów kompozycji 

(s. 222). 

• Klastry obejmujące wiele wyróżniających się z otoczenia elementów podstawowych 

tworzących percepcyjnie czytelną całość (s. 68). 

• Skale oznaczające rozmiary elementów lub wizualne postrzeganie ich rozmiarów 

zależne od położenia obserwatora (s. 293, 330, 333). 

• Proporcje będące wzajemnymi relacjami między rozmiarami elementów (s. 29). 

• Hierarchie według rozmiarów, form czy lokalizacji (s. 358). 

• Transformacje, oznaczające przetworzenie kompozycji lub ich części zachowujące 

pierwotne znaczenie (s. 402).. 

• Krawędzie, czyli liniowe granice formy (s. 82). 

• Narożniki będące załamaniami krawędzi i punktowymi ograniczeniami formy (s. 82). 

• Pełnie, czyli trójwymiarowe objętości ograniczające pustą przestrzeń (s. 96). 

• Pustki, czyli przestrzenie między elementami pełnymi (s. 96). 

• Pętle oznaczające ciągłe obrysy biegnące przez kompozycję lub dookoła niej (s. 222). 

• Ścieżki stanowiące sekwencyjny, linearny plan poruszania się użytkownika 

w przestrzeni (s. 264). 

• Zakończenia osi, ścieżki lub rytmu (s. 278). 

• Wejścia i otwarcia wyznaczające początek nowej ścieżki (Ching, 2007, s. 250, 283). 

W Elementach Kompozycji Urbanistycznej Kazimierz Wejchert zwraca uwagę głównie 

na kompozycję tkanki miejskiej i wyróżnia: 

• Elementy krystalizujące, wokół których narasta reszta kompozycji (s. 52). 
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• Ulice i drogi, czyli liniowe elementy przeznaczone do ruchu użytkowników przestrzeni 

(s. 56). 

• Rejony wyróżniające się pod jakimś względem od innych obszarów (s. 59). 

• Linie i pasma graniczne będące wyraźnymi ograniczeniami przestrzeni lub stanowiące 

przerwy między poszczególnymi rejonami (s. 64). 

• Dominanty układu przestrzennego, czyli elementy o dużym znaczeniu (s. 67). 

• Wybitne elementy krajobrazu będące swoistą wizytówką danej przestrzeni (s. 71). 

• Punkty węzłowe, w których stykają się elementy przestrzenne o różnych strukturach 

(s. 71). 

• Znaki szczególne unikalne dla konkretnej przestrzeni i wyróżniające ją (Wejchert, 1984, 

s. 74, 90). 

W odróżnieniu od Wejcherta, Kevin Lynch pisze o mentalnych, dwuwymiarowych mapach 

przestrzeni miejskiej. W The Image of the City opisuje następujące elementy kompozycyjne: 

• Drogi, czyli linie, wzdłuż których przemieszcza się użytkownik przestrzeni (s. 49). 

• Węzły, czyli miejsca przecinania się elementów liniowych (s. 72). 

• Charakterystyczne elementy krajobrazu, czyli punkty orientacyjne, na podstawie 

których użytkownicy określają swoje położenie (s. 78). 

• Rejony, czyli elementy powierzchniowe (s. 66). 

• Krawędzie rozumiane jako linie rozgraniczające obszary oraz bariery i nieciągłości 

przestrzeni (Lynch, 1960, s. 62). 

Wymienione powyżej elementy kompozycyjne, zasady ich porządkowania oraz typy 

kompozycji przestrzennych wydają się możliwe do przedstawienia maszynowego. Modele sieci 

neuronowych wykazujące przestrzenne uprzedzenie dotyczące struktury danych (Mitchell, 

2017), takich jak sieci CNN, mogą dobrze radzić sobie z przetwarzaniem elementów 

kompozycyjnych (Dzieduszyński, 2022b) charakteryzowanych przez ich relacje geometryczne 

(punkty główne, osie kompozycyjne, osie symetrii, rejony, klastry, rozmiary, proporcje, etc.). 

Modele sekwencyjne takie jak RNN, LSTM czy transformery można wykorzystać 

do przetwarzania elementów uporządkowanych sekwencyjnie w pewne logiczne ciągi (ścieżki, 

drogi, rytmy, hierarchie lub transformacje układu na osi czasu). 
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2.4.2. Punkty główne w teorii kompozycji przestrzennej 

Jednym z ważniejszych elementów kompozycyjnych, na które zwracają uwagę teoretycy, 

są punkty główne i punkty formalnie podkreślone. Ich waga wynika z psychosomatycznych 

uwarunkowań człowieka, który przyciągany jest przez podkreślone kompozycyjnie, 

dominujące formy. Zjawisko to trafnie podsumowuje w swojej pracy o kształtowaniu panoram 

miejskich Karolina Sobczyńska: 

„[W] (…) obserwatorze przestrzeni miasta, powstają wrażenia ogólne pochodzące 

od całości obrazu, ale też następuje rejestracja cząstkowa niektórych elementów, 

po których przesuwa się jego wzrok. Dominujące doznanie powstaje w momencie, kiedy 

wzrok człowieka zatrzymuje się na formie architektonicznej, która w jakiś sposób 

wyróżnia się od pozostałych form lub formie, która stanowi główny punkt kompozycji 

przestrzennej. (…) Tendencją człowieka obserwującego jakąś formę czy kompozycję 

z pewnej odległości jest poszukiwanie punktu głównego, dominanty układu.” 

(Sobczyńska, 2021, s. 64) 

Według Żórawskiego punkty główne to ważne punkty kompozycji przestrzennej umieszczone 

w miejscach formalnie podkreślonych. Wybijają się one na pierwszy plan spomiędzy innych 

punktów i są potencjalnym miejscem dla umieszczenia dominanty. Oprócz punktów głównych 

są także punkty ważne, które także są formalnie podkreślone, jednak nie zawsze stanowią 

dla kompozycji pojedynczy punkt główny. W punkcie formalnie podkreślonym niekoniecznie 

musi znajdować się jakiś obiekt architektoniczny. Punkt główny może być pustką, przejściem, 

potencjałem dla pojawienia się czegoś lub kogoś. Żórawski odróżnia także od punktów 

głównych jądra kompozycji, których ważność nie wynika z kompozycji formalnej, 

a jest uwarunkowana przez ich znaczenie funkcjonalne. Przykładowo jądrem kompozycji 

w piramidzie jest ukryta komora grobowa, a podkreślony formalnie jest jej szczyt. Zespół jądra 

nie musi być formalnie podkreślony przez punkt główny, ale gdy tak się dzieje, sprzyja 

to spoistości formy (Żórawski, 1962). 

Ching także pośrednio nawiązuje do idei punktów głównych, jednak nie nazywa ich wprost. 

Mówi o dominantach ze względu na umiejscowienie, wyznaczonych przykładowo przez 

zakończenie założenia osiowego czy centralność punktu. Drugorzędnymi punktami formalnie 

podkreślonymi są także różne akcenty wizualne. Formalnie podkreślone bywają narożniki, 

jednak nie każdy narożnik ma wystarczającą wagę, by od razu uzyskać rangę punktu głównego. 
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Ching zwraca uwagę także na punkty wyznaczone przez węzły założeń sieciowych 

oraz zakończenia i rozpoczęcia ważnych dla użytkowników przestrzeni ścieżek (Ching, 2007). 

Wejchert mówi o dwóch kategoriach elementów kompozycyjnych, wpisujących się w kategorię 

głównych punktów formalnie podkreślonych. Pierwszymi są dominanty układu przestrzennego 

wyróżniające się w skali architektonicznej ze względu na swoje umiejscowienie w kompozycji 

miejskiej, unikalność oraz topografię terenu (np. jako punkty najwyższe). Dominanty mogą 

także być podkreślone przez naprowadzenia widokowe, otwarcia szczelinowe, otwarcia wąskie 

lub kierunkowe. Druga kategoria to znaki szczególne, czyli punkty w mieście o nieco mniejszej 

wadze, które, mimo że nie są dominantami, zapisują się w mapie mentalnej użytkowników 

miast ze względu na swoją unikalność (mogą to być przykładowo atrakcyjne rzeźby czy 

elewacje). Wejchert w kontekście komunikacyjnym wyróżnia także punkty węzłowe 

umożliwiające zmianę trybu transportu, które mają bardzo ważną pozycję w mapach 

mentalnych użytkowników miast, jednak niekoniecznie muszą stanowić formalnie podkreślone 

punkty główne (Wejchert, 1984). Kevin Lynch zwraca uwagę na punkty orientacyjne (ang. 

landmarks), które mogą mieć różne skale, ale niezależnie od rozmiarów 

są dobrze zapamiętywalne ze względu na znaczącą lokalizację w kompozycji przestrzennej. 

Punkty orientacyjne często są podkreślone przez ich wysokość i widoczność, przez co stanowią 

formy wyróżniające się z tła (Lynch, 1960). 

Podsumowując, w kontekście przestrzeni miejskiej punkty główne to ważne geometrycznie 

punkty znajdujące się w miejscach formalnie podkreślonych. Podporządkowują one sobie 

całość okolicznej kompozycji przestrzennej. W pojedynczym założeniu może występować 

jeden punkt główny, kilka równorzędnych i najważniejszych punktów formalnie podkreślonych 

lub kompozycja może być takich punktów pozbawiona. W takim przypadku wszystkie 

elementy kompozycyjne znajdujące się w polu percepcji są równie ważne (Maryńczuk, 2012). 

Punkty główne mogą mieć zarówno charakter pozytywowy (znacząca forma wyróżniająca się 

z tła) lub negatywowy (pustka będąca potencjałem do pojawienia się czegoś). Punkt taki może 

więc stanowić dominantę przestrzenną, ale także być placem miejskim – miejscem dla 

aktywności publicznych. Jego umiejscowienie może być podkreślone przez kompozycję 

miejską oraz topografię terenu. Przykładowo, podkreślenie takie może mieć formę przecięcia 

czy zakończenia osi, lub założenia radialnego, kierującego uwagę na punkt centralny. 

Ze względu na swoją lokalizację, widoczność i znaczącą skalę punkty główne mogą pełnić 

funkcję punktów orientacyjnych. 
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2.4.3. Punkty główne spontaniczne i projektowane 

Punkty główne zazwyczaj krystalizują się w przestrzeni miejskiej spontanicznie na skutek 

nawarstwienia wielu, rozłożonych w czasie decyzji projektowych, planów i zdarzeń 

przypadkowych. Co więcej, poszczególne zespoły kompozycyjne zdefiniowane na różnych 

układach punktów formalnie podkreślonych wzajemnie się na siebie nakładają i nawarstwiają 

(Mironowicz i Ossowicz, 1997). Kompozycja przestrzenna jest fenomenem rozpiętym 

w czasie. Katarzyna Pluta zwraca uwagę, że „[r]ola kompozycji w kształtowaniu miasta polega 

na ochronie jego kulturowego oblicza z zastosowaniem historycznej kontynuacji” (Pluta, 2014, 

s. 79). Projektanci inspirowani zastaną topografią, układem komunikacyjnym, symbolicznym 

znaczeniem lokalizacji, czy wcześniejszą zabudową mogą intuicyjnie podkreślać kolejnymi 

interwencjami rangę danego miejsca zwiększając stopniowo jego wagę w kompozycji 

przestrzennej. Jak pisze w Języku wzorców Christopher Alexander o wzorcach formujących 

się w skali urbanistycznej: 

„Te wzorce nigdy nie mogą być «zaprojektowane» czy «zbudowane» za jednym 

zamachem – wzrastają one po kawałku, są projektowane w sposób, w którym każde 

pojedyncze działanie zawsze pomaga w tworzeniu lub generowaniu wzorców 

globalnych(…)” [tłumaczenie własne] (Alexander, i in., 1977, s. XIX). 

Spontaniczne wydarzenia formujące jedne punkty główne mogą doprowadzać jednocześnie 

do zatarcia pozycji innych punktów. Przykładem organicznie ewoluującego punktu głównego 

może być opisany przez Kevina Lyncha gmach State House w Bostonie. Miejsce to początkowo 

było podkreślone przez topografię terenu jako załamanie krawędzi wzgórza Beacon Hill. 

Dodatkowo jedna z głównych dróg bostońskich (obecnie Beacon Street), skręcając nagle wraz 

z układem terenu, wyznaczyła swoją osią domagający się zaakcentowania punkt. Ekspozycja 

widokowa przełożyła się na decyzję o zlokalizowaniu tam w 1798 roku zaprojektowanego 

przez Charlesa Bulfincha gmachu miejskiego. Powiązanie miejsca z ważną funkcją jeszcze 

bardziej zwiększyło jego rangę, przez co gmach był wielokrotnie rozbudowywany, a w 1874 

roku jego szczyt zaakcentowano złotą kopułą. W 1960 roku, gdy Lynch prowadził swoje 

badania, złota kopuła wybijająca się na tle nieba, widoczna z każdego punktu Parku Boston 

Common i znajdująca się na zakończeniu kilku osi komunikacyjnych, zdecydowanie stanowiła 

punkt główny całego założenia urbanistycznego Beacon Hill (Lynch, 1960). W kolejnych 

latach jednak, z każdym ukończonym bostońskim wieżowcem, ranga State House stopniowo 

malała. Obecnie ginąca wśród betonowych i szklanych prostopadłościanów złota kopuła 
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stanowi punkt formalnie podkreślony jedynie w lokalnej skali narożnika parku Boston 

Common (Rys. 21). 

O ile opisywane przez Alexandra wzorce społeczno-przestrzenne potrzebują czasu, 

by się w pełni uformować, to czysto formalnie rozumiane punkty główne mogą jednak także 

być tworzone przez celowe, pojedyncze decyzje projektowe. Świadomie projektując otwarcia 

widokowe i formując linie naprowadzające, architekt czy urbanista może tworzyć całościowe 

kompozycje rozpięte na planowanych punktach głównych. Przykładem może być ujazdowskie 

założenie placów gwiaździstych z lat 70. osiemnastego wieku, w którym centra placów 

stanowią równorzędne względem siebie węzły założenia sieciowego (Szwankowski, 1970). 

Osie wyznaczone wśród podwarszawskich pól (Zannoni, 1772; Aubert i Tardieu, 1788) stały 

się szkieletem pod jedno z najbardziej rozpoznawalnych warszawskich założeń 

urbanistycznych (Rys. 22).  

2.4.4. Punkty główne a skala kompozycji 

Założenie ujazdowskie dobrze ilustruje kolejną cechę punktów głównych (i ogólnie 

kompozycji przestrzennych), mianowicie ich charakter fraktalny. W zależności od przyjętej 

skali analizowanej przestrzeni będziemy zwracać uwagę na punkty główne o różnych polach 

oddziaływania formalnego. W skali całej warszawskiej dzielnicy Śródmieście plac Zbawiciela 

stanowi jedynie jeden z kilku formalnie podkreślonych punktów węzłowych całego założenia 

  

Rys. 21. Złota kopuła State House w Bostonie 

ginąca na tle nowszych wieżowców, m.in. One 

Beacon Street z roku 1972 (fot. Google Maps, 

2023) 

Rys. 22. Widok na plac Zbawiciela 

będący punktem głównym założenia 

gwiaździstego (fot. Google Maps, 2023) 
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ujazdowskiego. Jeśli zbliżymy się do trójkąta wyznaczonego przez osie ulic Waryńskiego, 

Koszykowej i al. Armii Ludowej, to plac Zbawiciela przyjmie charakter pojedynczego punktu 

głównego jako centrum założenia gwiaździstego. Gdy zbliżymy się jeszcze bardziej do samego 

placu, nasza uwaga padnie już bezpośrednio na kościół Najświętszego Zbawiciela jako 

dominanty przestrzennej lub na sam centralny punkt placu wyznaczony przez przecięcie osi 

widokowych (jeśli kościół Zbawiciela nie pojawi się akurat w polu naszej percepcji)19. Punkty 

główne nie występują w pojedynczej, właściwej sobie skali. Uwidaczniają się względnie 

płynnie w zależności od przyjętego w danej chwili zakresu pola postrzegania i mogą 

funkcjonować w skali zarówno urbanistycznej, architektonicznej, jak i detalu. W skali 

wielkomiejskiej punkty główne będą budowane przez elementy takie jak: bramy, ciągi 

komunikacyjne, ulice wlotowe do miasta, stałe elementy przestrzenne planu miasta, założenia 

przestrzenne w dużej skali, układ komunikacyjny oraz główne elementy tożsamości miasta 

takie jak doliny rzeczne i skarpy (Pluta, 2001). W mniejszej skali pojedynczego placu punkty 

główne będą wyznaczane przez detal ścian, podłogi i stropu wnętrza urbanistycznego. Detale 

te uczytelniają i harmonizują kompozycję przestrzenną. Największe znaczenie mają detale 

podłogi urbanistycznej, takie jak: naprowadzające tafle wody, rysunki na posadzce, mała 

architektura, zróżnicowania materiałowe, poręcze, pochylnie i murki. W drugiej kolejności 

wpływ mają ściany wnętrza przez samą tektonikę pierzei, ale też szpalery zieleni, pergole, 

skarpy, elementy rytmiczne, bramy czy tablice reklamowe. W skali tej najmniejszą wagę ma 

płaszczyzna stropu dysponująca zadaszeniami, łącznikami architektonicznymi czy liniami 

energetycznymi (Pluta, 2014). 

2.4.5. Znaczenia punktów głównych 

Znaczenie funkcjonalne i społeczne 

Punkty główne nie są jedynie stricte geometrycznym fenomenem zależnym od fizycznego 

zagospodarowania miasta. Elementy te zawsze będą miały swoje znaczenia także w wymiarach 

funkcjonalnym, społecznym, symbolicznym i ekonomicznym. Ze względu na ich wagę 

w kompozycji przestrzennej punkty główne naturalnie zyskują także na atrakcyjności w sferze 

 

19  Napięcie między tymi dwoma kandydatami na punkt główny kompozycji uzyskało swoją symboliczną 

kulminację w momencie zlokalizowania w centrum placu Zbawiciela słynnej tęczy projektu artystki Julity Wójcik. 

Łuk tęczy jeszcze bardziej zaakcentował przecięcie osi ulic i odciągnął uwagę od kościoła Zbawiciela. 
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funkcjonalnej. Radialne przecięcie kilku osi multimodalnego transportu wyznacza punkt 

dla węzła przesiadkowego. Dominanta wysokościowa ze względu na swoje gabaryty pozwala 

na lokalizację w swoim wnętrzu atrakcyjnych funkcji o dużej intensywności. Naprowadzenia 

i ekspozycje widokowe zwiększają rangę miejsca w mapach mentalnych użytkowników 

przestrzeni, zwiększając wartość ekonomiczną miejsca i przekładając się na potrzebę 

lokowania funkcji społecznie ważnych. Niemiecki geograf i etnograf Friedrich Ratzel w swojej 

Antropogeografii postawił wręcz tezę, że żadne miasto nie może powstać bez istnienia 

pierwotnego punktu głównego wyznaczonego przez centralność, skrzyżowanie szlaków 

komunikacyjnych i dostępność topograficzną (Ratzel, 1882). Osada zlokalizowana w takim 

miejscu działa jako punkt ściągający kontakty, zarówno z otaczających terenów wiejskich, 

jak i z sąsiednich miast. Punkty główne mogą działać jak generatory rozwoju organizujące 

strukturę całych miast (Mironowicz, 2013).  

W Języku Wzorców Christopher Alexander, wychodząc od społecznych założeń formowania 

się miast, mówi o dwóch skalach centrów w tkance urbanistycznej. W skali obszarów 

zamieszkanych przez 300 tysięcy mieszkańców identyfikuje intensywne centra miejskie będące 

jądrami dla całych regionów miejskich. Przy proponowanym przez Alexandra układzie 

palczastych zatok miejsko-wiejskich 20 , centra takie mają tendencję do formowania 

się na przecięciu osi stykających się ze sobą podłużnych zatok miejskich (Alexander, i in., 

1977, s. 59). W bardziej lokalnej skali obszarów zamieszkałych przez 7 tysięcy mieszkańców 

Alexander pisze o centrach wspólnotowych, wynikających ze struktury sąsiedzkiej miasta. 

Centra te są uwarunkowane przez dzienne migracje mieszkańców, presję ekonomiczną i układ 

morfologiczny klastrów sąsiedzkich. Tom Brennan w latach 40. zauważył na przykładzie 

angielskiego miasta Wolverhampton, że zlewiska funkcjonalne centrów lokalnych nie mają 

formy zbliżonej do okręgów, a bardziej do półokręgów, w których handlowe centra lokalne 

powiązane z węzłami komunikacyjnymi przesunięte są w kierunku głównego centrum całego 

miasta (Brennan, 1948). Wynika to z determinującej dzienne migracje ludności siły 

przyciągania centrum głównego oddziałującego na obszarze całego miasta (Rys. 23).  

 

20 Ang. City Country Fingers oznaczające wydłużone pasma gęstej zabudowy miejskiej o szerokości do jednej 

mili, rozdzielone przez bardziej naturalne pasma zabudowy wiejskiej o szerokości minimum jednej mili 

(Alexander, i in., 1977, s. 25) 
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Rys. 23. Zlewiska centrów 

lokalnych Brennana. Centra 

lokalne przesunięte 

są w kierunku głównego 

centrum miasta [na 

podstawie (Brennan, 1948)] 

Rys. 24. Centra 

ekscentryczne Alexandra. 

Znajdujące się na granicach 

między obszarami 

społeczności [na podstawie 

(Alexander, i in., 1977)] 

Rys. 25. Zbliżenie 

na centrum ekscentryczne 

Alexandra. Naprowadzają 

na nie ścieżki i bariery 

wyznaczające obszar 

społeczności. Opracowanie 

własne 

Alexander rozwija myśl Brennana i proponuje struktury „centrów ekscentrycznych” 

zlokalizowanych na granicy pomiędzy sąsiadującymi ze sobą społecznościami. Centrum takie 

obsługuje głównie społeczność znajdującą się w większym oddaleniu od centrum głównego 

miasta (Rys. 24). Ekscentryczne centra powinny krystalizować się w okolicy bramy łączącej 

sąsiednie społeczności. Lokalizacja taka generuje naprowadzenia geometryczne – z jednej 

strony przez ścieżki, ulice i przejścia zbiegające się w rejonie bramy, z drugiej przez bariery 

wyznaczające granice odrębnych społeczności, Bariery naprowadzające na centrum mogą mieć 

formę pierzei zabudowy, szpalerów zieleni, barier topograficznych, cieków wodnych czy linii 

kolejowych (Rys. 25). Centra ekscentryczne charakteryzują się największą w sąsiedztwie 

gęstość zabudowy (z gradientem intensywności malejącym w miarę oddalania się od centrum 

głównego miasta). W obrębie centrów ekscentrycznych znajdują się ważne przestrzenie 

publiczne, takie jak ulice i place handlowe uzupełnione o węzły komunikacyjne. Centra te 

powstają wzdłuż barier i głównej osi naprowadzającej na bramę w granicy otaczającej obszar 

zamieszkania danej społeczności. Przez to centra takie zyskują formę podkowy z lekkim 

wybrzuszeniem na jej osi symetrii (Alexander, i in., 1977, s. 90, 151). 
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Znaczenie symboliczne 

Podkreślona formalnie lokalizacja punktów głównych przekłada się na ich dużą rangę 

symboliczną. Punkty główne zapisują się w mapach mentalnych użytkowników przestrzeni. 

W przypadku dominant wysokościowych i obiektów wykorzystujących topografię terenu 

fizycznie górują one nad resztą krajobrazu i są widoczne z wielu lokalizacji. Średniowieczne 

zamki zakładano na wzgórzach nie tylko ze względów obronnych. Miały one przypominać 

o swojej obecności, symbolizować władzę, autorytet i wzbudzać w mieszkańcach podgrodzia 

poczucie bezpieczeństwa. Symbole z definicji obejmują jednocześnie wiele znaczeń. Widoczne 

na dziesiątki kilometrów zamki obronne z jednej strony obiecywały zysk i wyznaczały kierunek 

dla zmierzających do miasta kupców, a z drugiej budziły strach i odstraszały potencjalnych 

najeźdźców. Przez wieki podporządkowywania sobie okolicznej kompozycji przestrzennej 

punkty główne stają się elementami dziedzictwa historycznego i kulturowego. Znajdujące 

się w podkreślonych kompozycyjnie punktach ważne funkcje administracyjne, religijne, 

edukacyjne czy społeczne oddziałują na całe pokolenia stopniowo wpisując się coraz mocniej 

w tożsamość mieszkańców dzielnic czy miast. Obiekty takie jak Zamek na Wawelu, Wieża 

Eiffla, Akropol czy pomnik Waszyngtona oddziałują w kulturze tak szeroko, że funkcjonują 

jako ikony dla całych narodów. 

Nastawieni przyszłościowo projektanci, świadomi tych relacji, także przy współczesnych 

realizacjach mogą kształtować symbolikę projektowanych miejsc. Krystyna 

Guranowska-Gruszecka zwraca uwagę na przykłady względnie nowych warszawskich 

dominant wysokościowych funkcjonujących jako punktowe podkreślenia rangi węzłów 

miejskości. Warto wspomnieć między innymi o Błękitnym Wieżowcu podkreślającym wagę 

placu Bankowego i sprzęgającym jego całe założenie kompozycyjne w całość. Innymi 

wysokościowcami pełniącym podobną rolę są Intraco, wyznaczający granicę 

Śródmieścia Północnego czy Plac Unii wyznaczający granicę Śródmieścia Południowego 

(Guranowska-Gruszecka, 2018). 

Znaczenie ekonomiczne 

Nasycone symbolicznie, dobrze skomunikowane punkty główne często powiązane 

są z aktywnymi i atrakcyjnymi ekonomicznie przestrzeniami publicznymi. Większa 

intensywność zabudowy wiąże się z dużym zagęszczeniem różnego rodzaju funkcji 

stymulujących interakcje między nimi. Mieszanka wzajemnie wspierających się obiektów 

usługowych, handlowych, kulturalnych, rekreacyjnych, edukacyjnych i administracyjnych 
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tworzy stymulującą rozwój miejsca sieć lokalnych powiązań. Christopher Alexander ściśle 

łączy ideę ekscentrycznych centrów sąsiedzkich z ich funkcjami komercyjnymi proponując 

lokalizację w ich obrębie ulic i promenad handlowych oraz węzłów aktywności lokalnej 

(Alexander, i in., 1977). Jan Gehl także zwraca uwagę na fenomen zagęszczenia sieci 

aktywności miejskich oraz interakcji międzyludzkich w obrębie intensywnych, dostępnych 

i dobrze zintegrowanych funkcjonalnie przestrzeniach publicznych (Gehl, 1971). Kompozycja 

urbanistyczna jest w dużej mierze procesem komercyjnym. Sławomir Gzell pisze: 

„Powiada się, że urbanistyka preferuje sytuację w której strumień pieniędzy 

z niesprecyzowanego źródła pomagał będzie w tworzeniu pięknych krajobrazów 

dla samej miłości do urody otaczającego nas świata. Tak nie jest. Każdy urbanista wie 

(choćby z wykładanej na uczelniach) historii urbanistyki, że teoria „wartości rzeczy 

pięknej” (…) obowiązuje od dawna – trzeba tylko to zrozumieć. Dziś też urbanistyka 

powiada, że nie ma kontradyktoryjności między tym, co komercyjne a tym, 

co zakomponowane, albo inaczej: kontradyktoryjność ta może nie występować 

i nie powinna.” (Gzell, 2013, s. 236) 

Ceny nieruchomości charakteryzują się bardzo dużym zróżnicowaniem i są pochodną wielu 

czynników, jednak ze względu na prestiżową lokalizację można spodziewać się, że wartość 

działek znajdujących się w obrębie lub pobliżu kompozycyjnego punktu głównego może 

być wyższa niż działek okolicznych. Harmonia kompozycji bezpośrednio przekłada się na 

estetykę przestrzeni, a walory estetyczne są jednym z kryteriów decydujących o cenie 

nieruchomości (Śleszyński, i in., 2018). W przypadku punktów głównych wyznaczonych przez 

przecięcie osi, w których jedna z nich stanowi krawędź urbanistyczną (jak w proponowanych 

przez Alexandra centrach ekscentrycznych) wartość ekonomiczna terenu jest dodatkowo 

zwiększona przez pozytywny wpływ krawędzi kompozycyjnych na ceny nieruchomości. 

Lokalizacje znajdujące się w przestrzeniach stykowych charakteryzują się większymi walorami 

krajobrazowymi w stosunku do przestrzeni wewnętrznych obszarów (Paszkowski, 2007). 

Mocnym przykładem tego efektu jest krajobrazowy wpływ krawędzi tworzonej przez skarpę 

warszawską na wyższe ceny nieruchomości znajdujących się w jej obrębie (Śleszyński, i in., 

2018; Achmatowicz-Otok i Jarosz, 1996). Kompozycyjne punkty główne o ponadlokalnej skali 

oddziaływania, stanowiące jednocześnie ikony dziedzictwa kulturowego mogą zwiększać 

potencjał turystyczny danego miejsca, a nawet całego miasta. Ze względu na znaczenie 
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ekonomiczne punktów głównych, ich rozpoznawanie, wzmacnianie i tworzenie powinno leżeć 

w sferze zainteresowań deweloperów budujących nasze miasta.  

2.4.6. Rola punktów głównych w planowaniu przestrzennym 

Analizy kompozycyjne oraz rozpoznawanie i wyznaczanie punktów głównych zajmują ważną 

rolę w planowaniu przestrzennym. W publikacji Przestrzenie publiczne miast europejskich: 

Projektowanie urbanistyczne prof. Katarzyna Pluta pisze: 

„(…)Kompozycja urbanistyczna stanowi główne kryterium urody każdego miasta, jest 

to czynnik, który decyduje o jakości przestrzeni (…). Początkiem wszelkich prac 

związanych z poprawą krajobrazu miasta, wykorzystujących teorie kompozycji 

urbanistycznej, powinna być analiza morfologii stanu istniejącego. Dotyczy 

to zwłaszcza stanu istniejącego.” (Pluta, 2014, s. 79-81) 

Ustawa o planowaniu i zagospodarowaniu przestrzennym jest podstawowym aktem prawnym 

regulującym planowanie przestrzenne w Polsce. W artykule 2. zaznacza, że uwarunkowania 

kompozycyjno-estetyczne są jednymi z kluczowych wyznaczników osiągnięcia ładu 

przestrzennego (Sejm RP, 2003). Istniejące i projektowane osie naprowadzeń widokowych 

wskazujących na lokalne punkty główne są ważnymi aspektami świadczącymi o jakości 

przestrzeni miejskiej. Ich uwzględnianie jest jednym z ważniejszych obowiązków 

spoczywających na urbanistach próbujących osiągnąć ład przestrzenny. Cytując Jana Gehla: 

„Patrzenie na życie miasta – oto jedna z najważniejszych i najpopularniejszych jego 

atrakcji. (…) Urbanista powinien jednak poświęcać uwagę także widokowi na inne 

atrakcje: wodę, drzewa, kwiaty, fontanny czy architekturę, bo tylko wtedy możemy 

mówić o pełniejszej dbałości o dobrą jakość miasta. (…) Ponieważ niezakłócony widok 

na miejskie atrakcje jest tak istotny, to pole widzenia i wyznaczające je linie muszą być 

traktowane równie poważnie jak same widoki.” (Gehl, 2014, s. 148) 

W Życiu między budynkami Gehl definiuje przestrzeń projektową planowania przestrzennego 

rozpinając ją na pięciu wymiarach reprezentujących możliwe do podjęcia działania 

planistyczne. Każdy z tych wymiarów opisywany jest przez dwa przeciwne sobie kierunki: 

• Rozpraszanie i gromadzenie. 

• Segregowanie i integrowanie. 

• Odpychanie i zapraszanie. 

• Zamykanie i otwieranie. 
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• Zmniejszanie i zwiększanie (Gehl, 1971). 

Punkty główne są elementami kompozycji maksymalizującymi te procesy. Mają potencjał 

do gromadzenia ludzi i integracji funkcji ze względu na naprowadzające na punkt osie i 

otwarcia widokowe. Mogą charakteryzować się zwiększoną w stosunku do otoczenia 

intensywnością – z jednej strony aktywności mieszkańców, a z drugiej – zlokalizowanej 

w obrębie punktu zabudowy.  

Wprowadzone do polskiej teorii planistycznej przez Zbigniewa Zuziaka „węzły miasta” 

oznaczające intensywne, wielowarstwowe, metropolitalne struktury przestrzenno-funkcjonalne 

często tworzą się w pobliżu lub bezpośrednio w obrębie urbanistycznych punktów głównych 

(Guranowska-Gruszecka i Łaskarzewska, 2018). Krystyna Guranowska-Gruszecka 

i Małgorzata Łaskarzewska piszą o węzłach miasta następująco: 

„Węzły miasta mogą dotyczyć różnych zagadnień: głównie przestrzennych 

i funkcjonalnych tworzy je zabudowa kształtowana jako identyfikacja miasta 

wyróżniająca się dominacją przestrzenną np. poprzez wysokość lub intensywność, 

o wyróżniającej się funkcji – np. nowe centra usługowe, administracyjne, koncentracje 

miejsc pracy, centra kultury a także koncentracje funkcji 

rekreacyjnych. Istotą tych miejsc powinna być dbałość o tożsamość kulturową.” 

(Guranowska-Gruszecka i Łaskarzewska, 2018, s. 10) 

Trochę innym terminem są definiowane osobno „węzły miejskości”. O ile węzły miasta można 

wyróżnić głownie w skali całej metropolii to węzły miejskości mogą przyjmować różne skale, 

a głównym ich wyznacznikiem jest zwiększony poziom aktywności miejskiej w ich obrębie: 

„Węzły miejskości (WM) – to wielowarstwowe formy zagospodarowania 

przestrzennego odpowiadające koncentracjom funkcji, czyli aktywnościom, związanym 

z miejskością. Przykładami węzłów miejskości są: centra miast, centra dzielnicowe 

i osiedlowe, a także inne koncentracje funkcjonalno-przestrzenne, np. miejsca 

czy obszary wokół przystanków transportu zbiorowego, gdzie intensywność zabudowy 

rośnie odpowiednio do dostępności komunikacyjnej centralnego miejsca danego 

skupiska i gdzie wykształcił się lub pojawia się pewien typ przestrzeni urbanistycznej, 

który można uznać jako przestrzeń publiczną. W przypadku układów miejskich mających 

silny związek z gospodarką opartą na wiedzy (…), istotną rolę odgrywają węzły 



96 

 

miejskości odpowiadające kampusom uniwersyteckim, parkom nauki, parkom 

technologicznym itp.” (Guranowska-Gruszecka i Łaskarzewska, 2018, s. 11) 

Punkty formalnie podkreślone często podawane są jako przykłady miejsc sprzyjających 

formowaniu się węzłów miejskości. Anna Jeziorska podaje jako przykład wspomniany już 

wcześniej Plac Zbawiciela w Warszawie będący kompozycyjnym centrum założenia 

gwieździstego (Jeziorska, 2018). Do podobnych wniosków doszli urbaniści z Oddziału 

Warszawskiego SARP w Studium Koncepcyjnym dotyczącym centrów lokalnych w Warszawie 

z 2015 roku. W badaniu ankietowym mającym pomóc w identyfikacji centrów lokalnych 

zauważono, że warto, by centrum takie wyróżniało się jakimś punktem charakterystycznym 

nadającym mu niepowtarzalny charakter. Jako przykład Krzysztof Herman w jednym 

z aneksów podaje park im. Zasława Malickiego w Warszawie, w którym punktem ogniskowym 

całego zespołu parkowo-mieszkaniowego jest centralny staw (Herman, 2015). Wiele 

proponowanych w studium centrów lokalnych powiązanych jest ze znaczącymi węzłami 

komunikacyjnymi, przecięciami osi naprowadzających, dominantami przestrzennymi 

i miejscami intensyfikacji aktywności miejskiej (SARP, Oddział Warszawski, 2015). 

Punkty główne i punkty kompozycyjnie podkreślone uwzględniane są w procesie planowania 

przestrzennego. Dobrym przykładem była trzydziesta piąta wersja, paryskiego planu 

urbanistycznego PLU (fr. Plan Local d’Urbanisme de Paris). Plan ten chronił istniejące 

założenia kompozycyjne i ekspozycje widokowe (Rys. 26, Rys. 27). Nowsze wersje 

PLU podporządkowują wszelkie interwencje projektowe obowiązującej logice kompozycyjnej 

(Le Conseil de Paris, 2023). W PLU znajdują się zapisy identyfikujące i chroniące 

najważniejsze dla kompozycji urbanistycznej punkty orientacyjne oraz obiekty współtworzące 

elementy ciągłe naprowadzające na te punkty (Le Conseil de Paris, 2023). 
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Rys. 26. Strefy ochronne z wyraźnie oznaczonymi 

punktami głównymi pochodzące z trzydziestej piątej 

wersji paryskiego planu urbanistycznego PLU dla 

obszaru Pól Elizejskich (Le Conseil de Paris, 2015). 

Rys. 27. Legenda do rysunku stref 

ochronnych z trzydziestej piątej 

wersji PLU (Le Conseil de Paris, 

2015). 

Rozważania na temat punktów głównych znaleźć można także w opracowaniach 

planistycznych polskich miast. Za przykłady można podać dokumenty planistyczne Warszawy 

i Łodzi. W obecnie obowiązującym Studium Uwarunkowań i Kierunków Zagospodarowania 

Przestrzennego Warszawy z 2006 roku (ze zmianami z 2021 roku) wskazane centra dzielnicowe 

i lokalne także są ściśle powiązane z kompozycją przestrzenną: 

„Dla tworzenia elementów identyfikacji przestrzennej w strukturze przestrzennej miasta 

(…) istotne jest zaakcentowanie centrów dzielnicowych i lokalnych jako dominant 

(wyróżników) urbanistycznych o wysokich walorach architektonicznych. (…) 

[Wymagane jest] kształtowanie zabudowy centrów w sposób tworzący spójną 

kompozycję przestrzenną, podkreślającą rangę miejsca, między innymi poprzez 

wprowadzanie wysokiego standardu rozwiązań architektonicznych, technicznych 

i materiałowych.” (Prezydent m.st. Warszawy, 2006 ze zmianami, s. 106) 

Projekt nowego Studium Warszawy z 2023 roku rozwija tę myśl i wyznacza trzy hierarchie 

centrów urbanistycznych. W największej skali zdefiniowanych jest pięć „bram 

wielkomiejskich” pełniących funkcję centrów ponaddzielnicowych. Powiązane są one 

z multimodalnymi węzłami komunikacyjnymi (także komunikacji dalekobieżnej), koncentrują 

one funkcje usługowe, miejsca pracy i charakteryzują się wysoką intensywnością zabudowy. 

Ranga bram wielkomiejskich powinna być podkreślona przez dominanty wysokościowe 
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sprzęgające kompozycję przestrzenną. Kolejną kategorię stanowią centra dzielnicowe 

funkcjonujące w skali pojedynczych dzielnic21 . One także mają potencjał do wiązania się 

z kompozycją przestrzenną w celu podkreślenia ich tożsamości, wzmocnienia indywidualnych 

cech i budowania ich rozpoznawalności. W najmniejszej skali studium definiuje centra lokalne 

obsługujące obszary wyznaczone przez zasięg pieszego spaceru. Studium dopuszcza 

lokalizację dominant wysokościowych i miejscowych podwyższeń zabudowy względem 

otoczenia w celu podkreślenia kompozycji urbanistycznej centrów lokalnych, dzielnicowych 

i bram wielkomiejskich. Dominanty takie powinny być powiązane z osiami kompozycyjnymi 

i widokowymi oraz z panoramami i sylwetami miasta. Studium rekomenduje, by kompozycja 

urbanistyczna była budowana także przy wykorzystaniu niskiej, średniej i wysokiej zieleni 

miejskiej (Prezydent m.st. Warszawy, 2023). 

Studium Łodzi z 2018 roku wskazuje obiekty wyróżniające się w krajobrazie miasta ze względu 

na znaczenie kompozycyjne, kubaturę, formę, wysokość lub walory architektoniczne. Punkty 

te stanowią ważny element analiz krajobrazowych, polegających między innymi 

na sprawdzaniu ich widoczności z osi widokowych i z punktów widokowych. W części 

kierunkowej studium zalecono zagospodarowywanie terenów sąsiednich wyróżniających się 

obiektów, zapewniające ich odpowiednią ekspozycję i relacje widokowe. Nowe obiekty 

projektowane jako wyróżniające się w krajobrazie powinny być lokalizowane 

z uwzględnieniem powiązanych z nimi ciągów widokowych (Prezydent miasta Łodzi, 2018). 

Archiwalne studium Łodzi z 2010 roku uwzględnia dwa punkty główne. Pierwszy z nich, czyli 

tzw. „Łódzki Manhattan” z centralnym węzłem komunikacyjnym, wyznaczony jest przez 

przecięcie dwóch głównych osi krystalizujących plan Łodzi (osi historycznej północ-południe 

i osi współczesnej wschód-zachód). Drugi punkt to Atlas Arena, będąca dominantą 

w zamknięciu kompozycyjnym wewnętrznej osi krystalizującej wschód-zachód (Prezydent 

miasta Łodzi, 2010).  

2.4.7. Automatyczne rozpoznawanie punktów głównych 

O ile projektowanie punktów głównych w kompozycjach przestrzennych leży głównie w sferze 

zainteresowań architektów, urbanistów, planistów, artystów i projektantów interfejsów 

 

21  Nazwa „centrum dzielnicowe” jest trochę niefortunna, ponieważ sugeruje pojedynczy punkt 

administracyjno-usługowy obsługujący daną dzielnicę. W rzeczywistości autorzy studium wyznaczyli 

w większości dzielnic po kilka centrów dzielnicowych. 
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graficznych, to, ze względu na ich rozległe znaczenia opisane powyżej, rozpoznawanie 

punktów głównych jest przydatne także w innych branżach. Ekstrakcja punktów formalnie 

podkreślonych może być przydatna nie tylko w praktyce projektowej, lecz także w pracy 

jednostek samorządu terytorialnego, administracji, deweloperów, inwestorów, rzeczoznawców 

majątkowych, aktywistów oraz może być wykorzystywana przez samych mieszkańców 

zainteresowanych jakością urbanistyczną ich miast. 

Wraz ze stopniowym wchodzeniem otaczających nas miast do sfery wirtualnej i pojawianiem 

się ich cyfrowych reprezentacji, możliwości automatyzacji analiz przestrzennych stają się coraz 

większe. Pojawiają się coraz to nowsze narzędzia GIS-owskie, operujące na różnorodnych 

danych źródłowych, a istniejące bazy danych stają się coraz obszerniejsze i dokładniejsze. 

Kompozycja przestrzenna jest jednak dziedziną mocno subiektywną, w literaturze brak jest 

wspólnego języka i konstrukcji teoretycznej pozwalającej na techniczną analizę elementów 

kompozycyjnych (Mironowicz, 2013). Co więcej, zautomatyzowane rozpoznawanie punktów 

głównych w kompozycjach przestrzennych jest dosyć niszowym problemem i nie jest szeroko 

dyskutowane w literaturze. Za inspirację i podstawę metodyczną mogą jednak posłużyć 

narzędzia stosowane do rozwiązywania problemów pokrewnych. 

Wskazywanie pewnych istotnych punktów jest dosyć szeroko stosowane jako narzędzie 

wspomagające i uczytelniające cyfrowe interfejsy graficzne. Przykładem może być program 

AutoCad, który już w wersji 2.0 z 1984 roku wprowadził opcję „OSNAP” (ang. Object Snap) 

pozwalającą na automatyczne przyciąganie kursora do pewnych punktów referencyjnych takich 

jak centrum okręgu, środek lub zakończenie odcinka albo miejsce przecięcia linii (Hurley, 

2008). Funkcja „OSNAP” jest na tyle intuicyjna, że 30 lat później w najnowszych wersjach 

programu działa ona niemal identycznie jak w wersji 2.0. Rozpoznawanie tych punktów oparte 

jest na bardzo prostych zasadach matematycznych i nie uwzględnia bardziej złożonych zasad 

kompozycyjnych, chociaż biorąc pod uwagę możliwości obliczeniowe współczesnego sprzętu 

komputerowego, zdecydowanie mogłaby uwzględniać także punkty istotne na wyższych 

poziomach abstrakcji kompozycyjnej.  

Innym przykładem automatycznego rozpoznawania pewnych istotnych punktów 

są współczesne sterowniki aparatów fotograficznych w telefonach komórkowych, które 

potrafią automatycznie rozpoznawać ważne elementy znajdujące się w kadrze (jak np. twarze) 

i ustawiać na nich ostrość. Niektóre z nich dostarczają także użytkownikom informacji o tym, 

jak ustawić aparat w przestrzeni, aby kompozycja na zdjęciu była  jak najlepiej wykadrowana. 
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Jednym z takich systemów jest program Camera51 z 2014 roku (Rehm, 2014). Algorytm 

w programie Camera51 opracowany został przez Ofriego Masada i Ariela Shamira z firmy 

ArtInCam Ltd (Rys. 28). Program wykorzystuje nieneuronowe metody rozpoznawania obrazu 

do ekstrakcji ze zdjęcia podstawowych, dwuwymiarowych elementów kompozycyjnych 

w postaci jednolitych obszarów i ich geometrycznych centrów, klastrów zgrupowanych ze sobą 

obszarów, głównych elementów liniowych i osiowych, punktów świetlnych oraz ludzkich 

sylwetek i twarzy. Następnie dla rozpoznanych elementów obliczane są funkcje reprezentujące 

najbardziej zbliżone możliwe zasady kompozycyjne, obejmujące: 

• Zasadę trójpodziału kadru (podział kadru na 3 równe części horyzontalne i wertykalne. 

Elementy liniowe powinny pokrywać się z liniami definiującymi podział, a obiekty 

punktowe i obszarowe powinny pokrywać się z punktami przecięcia linii podziału). 

• Zasadę przekątnych (linie skośne powinny pokrywać się z przekątnymi kadru). 

• Zasadę przestrzeni (wykorzystanie tła kompozycji do podkreślenia elementu 

pozytywowego). 

• Zasadę kompozycji centralnej (elementy punktowe i obszarowe powinny znajdować 

się w centrum kadru). 

• Zasadę kompozycji symetrycznej (z osią symetrii umieszczoną w centrum kadru). 

• Zasadę złotego podziału (podział kadru na części odpowiadające złotemu podziałowi). 

Funkcje te są następnie sumowane dla rozpoznanych elementów kompozycyjnych 

i na tej podstawie generowane jest maksimum funkcji pochodnej złożonej z wybranej sumy 

zasad kompozycyjnych. Punkt ten reprezentuje położenie centrum nowego kadru. Użytkownik 

otrzymuje na ekranie aparatu intuicyjną instrukcję jak przesunąć aparat, by poprawić 

kadrowanie kompozycji (Masad i Shamir, 2017). 
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Rys. 28. Zrzut ekranu z trybu deweloperskiego programu Camera51, pokazujący 

rozpoznane przez aplikacje elementy kompozycyjne. Ikona w centrum ekranu pokazuje, 

w jaki sposób przesunąć aparat, by polepszyć kompozycję kadru (Masad i Shamir, 2017). 

Punkty główne ogólnie można traktować jako swego rodzaju maksima w wielowymiarowej 

przestrzeni cech kompozycyjnych. W ich obrębie dochodzi do przecięcia osi, nałożenia 

na siebie pól ekspozycji widokowych, intensyfikacji aktywności miejskich, zagęszczenia 

znaczeń symbolicznych, a często też punkty główne znajdują się na szczytach wzniesień 

lub stanowią dominantę przestrzenną. Problem w tym, że sam gradient „kompozycyjnej 

ważności punktu” zależny jest od wielu nakładających się na siebie czynników, które ciężko 

jednoznacznie zidentyfikować i opisać numerycznie. Można próbować w takich przypadkach 

poszukiwać łatwo mierzalnych wskaźników skorelowanych z występowaniem punktów 

głównych. W kontekście urbanistycznym w analizach przestrzennych często stosowana jest 

tak zwana metoda „transectowa”, nazywana także metodą profili urbanistycznych. Metoda 

ta opiera się na podziale morfologicznym miasta na strefy przy pomocy wybranych 

wskaźników urbanistycznych (Duany i Talen, 2002). Głównym wskaźnikiem składowym 

zazwyczaj jest gęstość zabudowy. Za przykład takiego systemu można podać „SmartCode”, 

opracowany przez firmę DPZ CoDesign, który stanowi modelowy szablon do projektowania 

urbanistycznego. W SmartCode wyszczególniono zbiór stref uszeregowanych od terenów 

naturalnych przez strefę wiejską, podmiejską, miejską, śródmiejską aż po rdzeń urbanistyczny 

(Duany Plater-Zyberk & Company, 2003). Zakładając za Christopherem Alexandrem, 
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że lokalne i globalne punkty centralne w miastach skorelowane są z maksimami intensywności 

tkanki miejskiej, gradienty profili „transectowych” można wykorzystać do wskazywania 

potencjalnych punktów głównych w dużych skalach urbanistycznych. Sam proces 

rozpoznawania stref „transectowych” może być przeprowadzany automatycznie na podstawie 

wskaźników GIS-owskich (Jachimowicz, 2023). 

W projektowaniu architektonicznym wspomaganym komputerowo często do odczytywania 

podobnych, ukrytych gradientów i odnajdywania ich maksimów wykorzystuje się uczenie 

maszynowe i sieci neuronowe. Oprócz zastosowań omówionych szczegółowo w kwerendzie 

zastosowania głębokiego uczenia maszynowego w CAAD za przykład można podać 

opracowany przez badaczy z IAAC system „Context Decoder”, służący do określania jakości 

miejsc w przestrzeni publicznej na podstawie ośmiu wskaźników, obejmujących między 

innymi gęstość zaludnienia i zabudowy, mapę komfortu termicznego, indeks powiązań 

z różnymi trybami transportu czy popularność danego miejsca wśród mieszkańców. System ten 

został przetestowany na przykładzie Neapolu i potrafił trafnie oceniać atrakcyjność 

poszczególnych stref (Marsillo, i in., 2022). Sieci neuronowe dobrze nadają 

się do odczytywania tego typu kontekstów, można więc oczekiwać, że dobrze poradzą sobie 

także w przetwarzaniu problemów kompozycyjnych. Jeśli pobierzemy z Internetu niewielką 

sieć neuronową typu ViT (Dosovitskiy, i in., 2021), wytrenowaną do rozpoznawania obiektów 

znajdujących się na zadanych zdjęciach i pokażemy jej przykłady prostych kompozycji 

przestrzennych, zauważymy, że sieć taka będzie przykładała wagę do punktów formalnie 

podkreślonych (Rys. 29). Dzieje się tak pomimo faktu, że sieć ta nie została wytrenowania 

stricte do czytania kompozycji przestrzennych. Próbuje ona tylko rozpoznać, czy dany obraz 

przedstawia kota, drzewo czy łańcuch. 
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Rys. 29. Wizualizacja wybranych głowic uwagi sieci neuronowej przetwarzającej proste 

kompozycje przestrzenne naszkicowane przez Juliusza Żórawskiego (Żórawski, 1962). 

Kolorem czerwonym oznaczone są miejsca w obrazie, które dana głowica uwagi uznała 

za istotne. Wykorzystana sieć to Vision Transformer (Dosovitskiy, i in., 2021) wytrenowany 

przez Rossa Wightmana (Wightman, 2019) do rozpoznawania klas ze zbioru obrazów 

ImageNet (Russakovsky, i in., 2015). Sieć nie próbuje odczytywać kontekstów 

kompozycyjnych, tylko stara się rozpoznać, co znajduje się na obrazie (w tym przypadku 

wszystkie szkice Żórawskiego zostały rozpoznane jako zdjęcia łańcuchów). Sieć zwraca 

uwagę na różne fragmenty obrazu, jednak dużą wagę przykłada także do punktów formalnie 

podkreślonych. Opracowanie własne. 

Najbardziej zbliżoną do rozpoznawania punktów głównych metodę proponuje Bill Hillier, 

w książce Space is the machine. Twórca teorii składni przestrzeni opisuje rdzenie integracji 

(ang. Integration cores). Hillier definiuje integrację jako miarę przestrzeni będącą odwrotnością 

sumy liczby osobnych przestrzeni, jakie musi przejść obserwator poruszający się między 

wszystkimi tymi przestrzeniami po kolei. Punkty, w których dochodzi do maksymalizacji tej 

miary, to rdzenie integracji (Hillier, 2007). W publikacji zaprezentowane są dwie metody ich 

wyznaczania. Pierwsza to dwuwymiarowa analiza nakładających się elementów wypukłych 

przeprowadzana przy pomocy komputerowej symulacji ruchu użytkownika przestrzeni w skali 

lokalnej. Druga to analiza jednowymiarowych elementów liniowych, polegająca na integracji 
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w skali globalnej wszystkich elementów liniowych równoległych do krawędzi kwartałów 

zabudowy. Obie metody przynoszą podobne rezultaty (Rys. 30). 

 

Rys. 30. Dwie metody wyznaczania rdzeni integracji zaproponowane przez Billa Hilliera. 

U góry – metoda analizy nakładających się elementów wypukłych, u dołu – metoda analizy 

jednowymiarowych elementów liniowych. Metody zostały zaprezentowane na dwóch 

modelach tkanki miejskiej, jednej z czytelnym punktem głównym, drugiej bez takiego 

punktu. Obie metody dają zbliżone rezultaty (Hillier, 2007). 

Podsumowując, automatyczne rozpoznawanie punktów głównych w kompozycjach 

przestrzennych, z uwagi na ich funkcjonalne, społeczne, symboliczne i ekonomiczne znaczenie, 

może znaleźć szerokie zastosowanie na wielu polach. Punkty te są istotnie nie tylko 

dla urbanistów i architektów, lecz także dla jednostek administracyjnych, deweloperów, 

rzeczoznawców oraz mieszkańców miast. Choć istnieją narzędzia do automatycznego 

wskazywania pewnych kluczowych punktów, problematyka automatyzacji rozpoznawania 

punktów głównych w kompozycjach przestrzennych nie była do tej pory eksplorowana. Biorąc 

pod uwagę złożoność układów przestrzennych i wielowymiarowość opisujących je cech, sieci 

neuronowe wydają się obiecującym narzędziem, które może sprostać temu zadaniu. 
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2.5. Uwarunkowania do wykorzystania sieci neuronowych w CAAD 

2.5.1. Sieci neuronowe – narzędzie wielu dyscyplin 

W celu pełniejszego zrozumienia potencjału sieci neuronowych mogących posłużyć 

do rozwiązania problemu rozpoznawania kompozycyjnych punktów głównych, należy 

przyjrzeć się ich strukturze, historii i zasadom działania. Na samym początku warto dokonać 

rozróżnienia między uczeniem maszynowym, głębokim uczeniem maszynowym i sieciami 

neuronowymi a sztuczną inteligencją. Wszystkie te pojęcia stosowane są w literaturze dosyć 

nieprecyzyjnie, autorzy często decydują się na korzystanie z działających na wyobraźnię pojęć 

w celu przykucia uwagi, ale niekoniecznie zgodnie z rzeczywistą tematyką publikacji. Głębokie 

sieci neuronowe (nazywane w tej pracy synonimicznie z głębokim uczeniem maszynowym) 

są podkategorią uczenia maszynowego. Wielu autorów każde zastosowanie uczenia 

maszynowego nazywa „sztuczną inteligencją” (AI od ang. Artificial Intelligence). AI jest 

terminem nierozerwalnie budzącym skojarzenia z jej przedstawieniami w fantastyce naukowej. 

Mówiąc „sztuczna inteligencja” widzimy oczyma wyobraźni komputer HAL9000 z Odysei 

Kosmicznej Kubricka (2001: A Space Odyssey, 1968), Skynet z Terminatora (The Terminator, 

1984) czy zabójcze maszyny z Matrixa (The Matrix, 1999). Określenie, czym rzeczywiście jest 

sztuczna inteligencja, nie jest celem niniejszej dysertacji, jednak z utylitarnego punktu widzenia 

uważam, że nadużywanie tego terminu może prowadzić do niekorzystnych skutków. Już 

w latach 50. twórca jednej z pierwszych sieci neuronowych Frank Rosenblatt próbował 

podniecać opinię publiczną zestawiając swój wynalazek z popularnymi wyobrażeniami science 

fiction. Jak pisał w 1958 roku New York Times: 

„Marynarka Wojenna pokazała dzisiaj embrion elektronicznego komputera, który 

zgodnie z przewidywaniami będzie w stanie chodzić, mówić, widzieć, pisać, 

samodzielnie się reprodukować i będzie świadomy swojej egzystencji. (…) Dr Frank 

Rosenblatt, projektant Perceptronu przeprowadził demonstrację. Powiedział, 

że maszyna będzie pierwszym urządzeniem myślącym jak ludzki mózg. (…) 

[P]owiedział, że Perceptrony mogą być wysyłane ku planetom jako mechaniczni 

odkrywcy kosmosu. (…) Późniejsze Perceptrony będą potrafiły rozpoznawać ludzi 

i wołać ich po imieniu, oraz będą natychmiastowo tłumaczyć mowę z jednego języka 

na mowę lub tekst w innym języku.” [tłumaczenie własne] (New York Times, The, 1958, 

s. 9) 
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Sieci neuronowe są w gruncie rzeczy prostymi w założeniach, łatwymi w implementacji 

algorytmami uczącymi się statystycznie przetwarzać dane wejściowe na dane wyjściowe. Takie 

pragmatyczne podejście do sieci neuronowych zdecydowanie ujmuje im trochę uroku, 

ale myślenie o nich w kategorii „sztucznej inteligencji” wydaje się zbyt romantyczne, 

nacechowane emocjonalnie i może onieśmielać ich potencjalnych użytkowników. 

Przed przejściem do dalszej części wywodu warto pokrótce, na intuicyjnym poziomie, 

przedstawić podstawy działania sieci neuronowych i ich historię. Mimo, że w ramach naszej 

dziedziny głębokie uczenie maszynowe wydaje się techniką nowatorską, w swoich założeniach 

sieci neuronowe nie są niczym nowym. Ich podstawy teoretyczne były opracowane w latach 

50. dwudziestego wieku, a w praktyce były stosowane w ramach CAAD już od lat 

90. dwudziestego wieku (Openshaw, 1993; Stevenson, 1994a; Stevenson, 1994b; Black, 1995; 

Kindangen, 1996). 

Pierwszą siecią neuronową był opracowany w latach 50. dwudziestego wieku SNARC Marvina 

Minsky’ego (ang. Stochastic Neural Analog Reinforcement Calculator). Główne inspiracje 

teoretyczne dla Minsky’ego (Minsky i Sykes, 2017) stanowiły: teoria matematycznego opisu 

biologicznych sieci neuronowych Warrena McCullocha i Waltera Pittsa z lat 40. dwudziestego 

wieku (McCulloch i Pitts, 1943), książka o matematycznej biofizyce Nicolasa Rashevsky’ego 

z lat 30. (Rashevsky, 1938) oraz jeszcze starsza próba opisu psychologii jako ścisłej dziedziny 

naukowej opracowana w 1895 roku przez Sigmunta Freuda (Freud, 1950/1895)22. Sieć ta była 

urządzeniem mechaniczno-elektrycznym potrafiącym uczyć się na zasadzie uczenia 

ze wzmacnianiem. SNARC został przetestowany na problemie nawigacji w labiryncie. 

Za każdym razem gdy podejmował prawidłową decyzję, zostawał nagradzany przez operatora. 

SNARC był modelem stochastycznym, w którym połączenia między neuronami były 

 

22 W Projekcie Naukowej Psychologii Freud nie tylko zaproponował swoją dosyć ezoteryczną i niepodpartą 

eksperymentalnie teorię sieci neuronowych (McCarley, 1998), ale przedstawił między innymi także pomysł zasad 

„przyjemności” i „nieprzyjemności” sterujących systemami biologicznymi. Według Freuda systemy takie 

wyposażone są w sprzężenie zwrotne, pozwalające na wzmacnianie zachowań skutkujących otrzymaniem 

bodźców przyjemnych i osłabianie zachowań skutkujących otrzymaniem bodźców nieprzyjemnych. Idea ta 

stanowi podstawę pod współcześnie rozumiany trening sieci neuronowych, w którym połączenia między 

neuronami przynoszące sieci korzyść ulegają wzmocnieniu, podczas gdy połączenia niekorzystne ulegają 

osłabieniu (Freud, 1950/1895). Freudowi nie udało się za życia opublikować „Projektu” w formie publikacji 

naukowej. Została ona wydana dopiero w latach 50. dwudziestego wieku. 
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probabilistyczne. Szansa, że sygnał z poprzedniego neuronu aktywuje neuron kolejny, zależała 

od elektronicznie ustawionego prawdopodobieństwa. Im częściej dany neuron aktywował się 

przy jednoczesnym otrzymaniu przez sieć nagrody, tym bardziej zwiększało 

się prawdopodobieństwo aktywacji neuronu (Minsky i Sykes, 2011). 

 

Rys. 31. Szkic Sigmunta Freuda z 1885 roku, będący prawdopodobnie pierwszym 

koncepcyjnym modelem sieci neuronowej. Rysunek przedstawia przepływ energii od bodźca 

𝑄’𝜂 przez neuron 𝑎 do neuronu 𝑏 (Freud, 1950/1895). Teoria Freuda była dosyć 

niejasna, niepoparta empirycznie i ostatecznie okazała się błędna (McCarley, 1998), jednak 

stała się jedną z wielu inspiracji dla twórców pierwszych funkcjonalnych sieci 

neuronowych z lat 50. dwudziestego wieku (Minsky i Sykes, 2017). 

We współczesnych sieciach neuronowych połączenia między neuronami działają trochę 

inaczej. Poszczególne sygnały wejściowe do neuronu są najpierw skalowane przez wagę siły 

połączenia, a potem są ze sobą sumowane. Jeśli suma osiągnie pewną graniczną wartość, 

neuron ulega aktywacji. Pierwszą siecią wykorzystującą tę współczesną zasadę był perceptron 

Rosenblatta opracowany już kilka lat po SNARCu. Początkowo perceptron został opisany 

teoretycznie jako model biologicznego mózgu (Rosenblatt, 1958), potem został zbudowany 

w formie fizycznego urządzenia (Rosenblatt, 1961). Perceptron był w praktyce 

jednowarstwową siecią neuronową, zdolną dokonywać prostej klasyfikacji na podstawie 

bodźców optycznych. W sieciach neuronowych informacje potrzebne do rozwiązania danego 

problemu są zapisywane w sile połączeń między danymi wejściowymi, neuronami mogącymi 

ulec aktywacji i danymi wyjściowymi (Rys. 32). 
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Rys. 32. Diagram perceptronu elementarnego z jednym neuronem dokonującym klasyfikacji 

binarnej. Dane wejściowe zespolone są stałym połączeniem z jednostkami asocjacyjnymi 

„A”. Połączenia między jednostkami „A” a jednostką responsywną „R” są skalowane 

względem wag, w których zapisana jest „zdolność” perceptronu do rozwiązania danego 

problemu. Jednostka „R”, którą dzisiaj nazwalibyśmy neuronem, liczy średnią ważoną 

sygnałów wejściowych i przepuszcza ją przez schodkową funkcję aktywacji. Efektem jest 

dana wyjściowa: klasa przyjmująca wartość -1 lub 1. Ilustracja przygotowana 

na podstawie (Rosenblatt, 1961). 

W przypadku perceptronów wagi połączeń mogły być ustalane ręcznie przez operatora 

na podstawie eksperymentów lub automatycznie przez jeden z możliwych 

algorytmów zmieniających wagi połączeń w przypadku błędnej klasyfikacji danych 

treningowych (Hay, i in., 1960; Widrow i Hoff, 1960). W praktyce, algorytmy treningowe były 

bardzo powolne (czas potrzebny na wytrenowanie perceptronu wzrastał wykładniczo wraz 

ze wzrostem poziomu trudności problemu) (Olazaran, 1996) i pozwalały na trenowanie jedynie 

perceptronów jednowarstwowych (Hawkins, 1961). Stanowiło to poważny problem. Główną 

wadą jednowarstwowego perceptronu Rosenblatta była zdolność do przeprowadzania jedynie 

liniowej separacji uczonych klas. Innymi słowy, jednowarstwowa sieć neuronowa nie jest 

w stanie rozwiązać problemu alternatywy wykluczającej (XOR), co bardzo ogranicza 

jej możliwości (Minsky i Papert, 1969). Konieczne są minimum dwie warstwy, by móc 

reprezentować alternatywę wykluczającą, a co za tym idzie – mieć aparat do operowania pełną 

logiką matematyczną (Rys. 33).  



109 

 

 

Rys. 33. Porównanie rozwiązania problemu alternatywy wykluczającej przez 

jednowarstwową i dwuwarstwową sieć neuronową. Klas XOR nie da się oddzielić przy 

pomocy jednej prostej. Jednowarstwowa sieć neuronowa nieprawidłowo klasyfikuje wyjście 

y dla x1=-1 i x2=-1. Dwuwarstwowa sieć neuronowa rozwiązuje problem bez trudu. 

Zamiast aktywacji schodkowej zastosowano jej różniczkowalne przybliżenie: funkcję 

sigmoidalną. Ilustracja oparta na wynikach symulacji przeprowadzonej w przeglądarkowej 

implementacji jednokierunkowej sieci neuronowej ConvNetJS (Karpathy, 2014). 

Problemy perceptronów jednowarstwowych, trudności z trenowaniem perceptronów 

wielowarstwowych, ograniczona moc obliczeniowa  i zbyt optymistyczne obietnice głoszone 

przez Rosenblatta doprowadziły w latach 70. do głębokiego zawodu środowiska wczesnego 

uczenia maszynowego sieciami neuronowymi i zwrócenia się w kierunku poszukiwania 

symbolicznej sztucznej inteligencji opartej na ściśle zdefiniowanej logice i zasadach 

heurystycznych (Olazaran, 1996). Tak zwana „pierwsza zima sztucznej inteligencji”, podczas 

której mało kto zajmował się sieciami neuronowymi, trwała aż do połowy lat 80., kiedy to 

Goeffrey Hinton spopularyzował metodę, umożliwiającą efektywne trenowanie 

wielowarstwowych sieci neuronowych – propagację wsteczną. W swoim artykule, Learning 

representations by back-propagating errors opublikowanym w Nature, Hinton zdefiniował 
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podstawy teoretyczne współczesnych, głębokich sieci neuronowych potrafiących samodzielnie 

uczyć się na podstawie danych treningowych (Hinton, i in., 1986). 

 

Rys. 34. Sieć neuronowa przekształcająca wektor wejściowy X na wektor wyjściowy Y. 

Przykładowo: możemy wytrenowanej sieci pokazać zdjęcie kota i na wyjściu otrzymać 

prawidłowo zidentyfikowaną etykietę „KOT!”. Opracowanie własne. 

Podstawą działania sieci neuronowej jest przetworzenie wielowymiarowego wektora 

wejściowego X na wielowymiarowy wektor wyjściowy Y. O przetwarzanych wektorach 

możemy myśleć jako o uporządkowanych ciągach danych liczbowych, albo o strzałkach 

lub punktach rozpiętych w wielowymiarowej, abstrakcyjnej przestrzeni. W praktyce wektor 

wejściowy może reprezentować prawie dowolny typ danych – zdjęcie kota (zapisane w formie 

ciągu wartości jasności pikseli), model GIS-owski miasta czy zwokselizowaną bryłę 

architektoniczną. Wektor wyjściowy może być interesującą nas klasą obiektu, przybliżeniem 

funkcji matematycznej czy innym, prawie dowolnym efektem przekształcenia obiektu 

wejściowego (Rys. 34). 

Sieć neuronowa podejmuje decyzje na etapie „propagacji w przód”. W fazie tej informacje 

przekazane sieci na wejściu przepływają przez kolejne neurony zorganizowane w warstwach. 

Im więcej warstw ma sieć, tym jest głębsza. W klasycznej, jednokierunkowej sieci neuronowej 

pojedynczy neuron w danej warstwie połączony jest ze wszystkimi neuronami w warstwie 

poprzedniej i wszystkimi neuronami w warstwie kolejnej. Neurony w ramach jednej warstwy 
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nie są ze sobą wzajemnie połączone. Każde połączenie ma przypisaną konkretną wagę (ang. 

weight). W ramach neuronu najpierw liczona jest suma ważona sygnałów płynących 

do neuronu z poprzedniej warstwy, potem do sumy dodawany jest próg (ang. bias) i wynik 

przepuszczany jest przez nieliniową, różniczkowalną funkcję aktywacji (Rys. 35). 

 

Rys. 35. Diagram propagacji w przód na poziomie pojedynczego neuronu. Sygnały 

wejściowe 𝑥𝑛 sumowane są zgodnie z ich wagami 𝑤′𝑛, do sumy dodawana jest wartość 

progu b’. Wynik przepuszczany jest przez nieliniową, różniczkowalną funkcję aktywacji. 

Wartość funkcji stanowi sygnał dla neuronów w kolejnej warstwie. Opracowanie własne 

na podstawie (Hinton, i in., 1986). 

Sieć neuronowa uczy się na etapie „propagacji wstecznej”, w którym progi neuronów 

i połączenia między konkretnymi neuronami są odpowiednio wzmacniane lub osłabiane w celu 

optymalizacji rozwiązania zadania. Parametry (wagi i progi) aktualizowane są proporcjonalnie 

do pochodnej cząstkowej funkcji kosztu 23  (metryka tego, jak źle sieć radzi sobie 

w rozwiązywaniu danego problemu) względem danego parametru. Dzięki temu, że funkcja 

aktywacji każdego neuronu jest różniczkowalna, można obliczyć pochodną względem każdego 

parametru. Z każdym krokiem propagacji wstecznej w czasie treningu funkcja kosztu maleje, 

 

23 Warto w tym miejscu dokonać rozróżnienia między funkcją kosztu (ang. cost function) i funkcją straty (ang. loss 

function). Funkcja straty oznacza błąd sieci przy przewidywaniu konkretnego przykładu treningowego, funkcja 

kosztu oznacza uśredniony błąd sieci na całym zestawie przykładów treningowych. Potocznie oba te pojęcia 

są używane zamiennie. 
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a sieć radzi sobie coraz lepiej aż do osiągnięcia minimum lokalnego. Mówimy wtedy, 

że parametry się zbiegają (ang. convergence) (Rys. 36).  

 

Rys. 36. Diagram propagacji wstecznej na poziomie pojedynczego neuronu. Parametry 

𝑤′′𝑛 oraz 𝑏′′ są aktualizowane proporcjonalnie do szybkości uczenia 𝛼 i pochodnej 

cząstkowej funkcji kosztu J względem danego parametru. Globalnie, z każdym cyklem 

propagacji wstecznej, funkcja kosztu schodzi w kierunku lokalnego minimum. Im więcej 

parametrów trenowalnych ma sieć tym więcej wymiarów przestrzennych jest dostępnych 

na „obejście” minimum lokalnego (minimum lokalne może okazać się w nowym wymiarze 

hiperprzestrzenią siodłową). Zwiększa się tym samym szansa osiągnięcia minimum 

globalnego. Opracowanie własne na podstawie (Hinton, i in., 1986). 

Dzięki temu, że w głębokiej sieci neuronowej znajdują się tysiące, miliony lub miliardy 

neuronów ułożonych w wielu warstwach, złożona sieć jest w stanie nauczyć się nawet bardzo 

skomplikowanych konceptów. Na podstawie danych treningowych sieć buduje wewnętrzną 

reprezentację mapowania danych wejściowych na dane wyjściowe. Wyuczony przez sieć 

koncept zapisany jest w wartościach parametrów wag i progów sieci. Zestawienie wielu 

nieliniowych aktywacji poszczególnych neuronów w kolejnych warstwach pozwala sieci 

na rozwiązywanie funkcji nieliniowych. Gdyby neurony korzystały z aktywacji liniowych, 

niezależnie od ilości neuronów i warstw ukrytych cała sieć neuronowa uprościłaby 

się do prostej funkcji liniowej (Ng, 2017). Wprowadzenie nieliniowych aktywacji do sieci 

neuronowych było oryginalnie inspirowane działaniem biologicznych neuronów w układach 

nerwowych ludzi i zwierząt. Opracowując swój perceptron, Rosenblatt myślał o nim przede 

wszystkim jako o modelu ludzkiego mózgu: 
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„Perceptron jest po pierwsze i przede wszystkim modelem mózgu, a nie wynalazkiem 

służącym do rozpoznawania wzorców (…). Nie jest to w żadnej mierze model 

«kompletny» i jesteśmy w pełni świadomi uproszczeń, jakie zastosowaliśmy względem 

systemów biologicznych, ale jest to przynajmniej model, który można poddać analizie.” 

[tłumaczenie własne] (Rosenblatt, 1961, s. VIII) 

Według bardzo uproszczonych modeli, biologiczny neuron w stanie niepobudzonym może 

zostać pobudzony przez odpowiednio silny bodziec, przekazując impuls nerwowy dalej 

poprzez synapsy do kolejnych neuronów. Aktywacja taka może być w przybliżeniu 

wymodelowana matematycznie jako funkcja schodkowa (jak w perceptronie) 

lub, po wygładzeniu, jako funkcja sigmoidalna, która była najpopularniejszą funkcją aktywacji 

neuronów w sieciach neuronowych do mniej więcej 2010 roku24 (Nair i Hinton, 2010). Obecnie 

najczęściej korzysta się z funkcji aktywacji ReLU, która w praktyce przyspiesza proces uczenia 

sieci neuronowej, pozwala na przesyłanie w głąb sieci informacji o intensywności sygnału 

i sprzyja przyjmowaniu przez parametry wartości zerowej25. Mimo biologicznych inspiracji, 

syntetyczne sieci neuronowe są w rzeczywistości dosyć dalekie od ich biologicznych 

odpowiedników. Jak wskazują współczesne badania, do wymodelowania pełnej 

funkcjonalności pojedynczego neuronu konieczne jest wytrenowanie całej sieci neuronowej, 

składającej się z tysiąca neuronów syntetycznych uszeregowanych w minimum pięć warstw 

(Beniaguev, i in., 2021). 

Po publikacji Hintona w Nature współczesne sieci neuronowe powoli były rozwijane, jednak 

przez kolejne ćwierć wieku było o nich dosyć cicho ze względu na słabe możliwości 

obliczeniowe komputerów i nieefektywność stosowanych algorytmów. W połowie 

 

24 Oprócz podobieństwa do funkcji aktywacji neuronu biologicznego, funkcja sigmoidalna ma bardzo dużą zaletę 

z obliczeniowego punktu widzenia. Pochodna funkcji sigmoidalnej 𝜎(𝑧) wynosi 𝜎(𝑧)(1 − 𝜎(𝑧)). Przy obliczaniu 

pochodnej podczas propagacji wstecznej możemy skorzystać z funkcji 𝜎(𝑧), która była już obliczona na etapie 

propagacji w przód. Znacząco przyspiesza to proces uczenia sieci neuronowej względem funkcji o bardziej 

skomplikowanych do obliczenia pochodnych. 

25 Ang. sparse model (czy „model skąpy”) to taka sieć neuronowa, w której wiele parametrów ma wartość równą 

zero. Model taki jest lżejszy obliczeniowo, czytelniejszy w interpretacji i łatwiejszy do zapisania na dysku ze 

względu na możliwość kompresji powtarzających się wielokrotnie zer. W przypadku aktywacji sigmoidalnej 

parametry mogą zbliżać się asymptotycznie do zera jednak nigdy go nie osiągają, przez co zawsze mają przypisaną 

jakąś wartość ułamkową. 
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lat 90. zaczęły pojawiać się pierwsze próby implementacji sieci neuronowych w projektowaniu 

architektoniczno-urbanistycznym. Stosowane algorytmy ograniczały się do prostych, 

kilkuwarstwowych sieci złożonych z kilkunastu do kilkudziesięciu neuronów. Szczegółowo 

zastosowania te zostały omówione w podrozdziale 2.2., ale skrótowo, podejmowane próby 

obejmowały między innymi modelowanie naturalnej wentylacji wewnątrz budynków 

w zależności od kierunku wiatru (Kindangen, 1996), modelowanie interakcji przestrzennej 

na przykładzie wzorców migracji (Black, 1995) lub przemieszczanie się mieszkańców miast 

do pracy z uwzględnieniem kosztów podróży (Openshaw, 1993). W tej ograniczonej grupie 

problemów proste sieci neuronowe generowały satysfakcjonujące i precyzyjne rezultaty, 

szczególnie w porównaniu z konkurencyjnymi metodami opartymi na regresji liniowej 

czy metodach intuicyjnych. Głównym problemem, na który zwracali uwagę autorzy, były 

limitacje obliczeniowe sprzętu komputerowego, ograniczające możliwość stosowania 

większych sieci. 

Kolejny przełom w popularności sieci neuronowych nastąpił w 2012 roku, kiedy splotowa sieć 

neuronowa AlexNet drużyny SuperVision pokonała wszystkie alternatywne metody uczenia 

maszynowego i metody heurystyczne w konkursie ImageNet Large Scale Visual Recognition 

Challenge, polegającym na rozpoznawaniu i klasyfikacji zdjęć przedstawiających różnego 

rodzaju obiekty i zwierzęta (Russakovsky, i in., 2015). Moment ten rozpoczął trwającą do dziś 

„rewolucję głębokiego uczenia maszynowego”. Kluczowymi cechami sieci AlexNet były jej 

stosunkowo duże rozmiary (650 tysięcy neuronów i 60 milionów parametrów zorganizowanych 

w 8 warstwach) i nowoczesna metoda implementacji, wykorzystująca procesor graficzny GPU 

zamiast tradycyjnego procesora CPU, co umożliwiło trening tak dużego modelu w ciągu 

jedynie pięciu-sześciu dni. W 2012 roku było to sporym osiągnięciem (Krizhevsky, i in., 2012). 

Demonstracja możliwości głębokiego uczenia maszynowego w syntetycznym przetwarzaniu 

obrazu przez AlexNet zainspirowała znaczący wzrost popularności sieci neuronowych 

w architekturze. Dla architektów obraz jest podstawowym medium prezentacji projektu, więc 

w naturalny sposób sieci neuronowe pobudziły wyobraźnię dużej części środowiska CAAD. 

2.5.2. Rodzaje sieci neuronowych wykorzystywanych w CAAD 

W ostatnich latach pojawiło się wiele rodzajów sieci neuronowych służących rozwiązywaniu 

problemów różnego typu. Maithani, Arora i Jain widzą możliwość wykorzystania głębokiego 

uczenia maszynowego tam, gdzie mamy do czynienia ze złożonymi problemami nieliniowymi, 

opisanymi przez dane multimodalne, tam, gdzie musimy przetwarzać jednocześnie duże ilości 
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danych wejściowych i tam, gdzie zależy nam na obiektywnym przetwarzaniu nieobarczonym 

przyjętymi a priori założeniami (Maithani, i in., 2010). Oprócz tych czterech podstawowych 

czynników, na podstawie rozpoznanych w podrozdziale 2.2. zastosowań, można także zwrócić 

uwagę na dodatkowe zalety sieci neuronowych: 

• Bardzo dobrze skalują się do zróżnicowanej liczby danych wejściowych i poziomu 

trudności przetwarzanych problemów. 

• Na współczesnym sprzęcie komputerowym działają względnie szybko, mogą 

być trenowane i uruchamiane na biurowych i domowych komputerach, na serwerach 

w chmurze, a nawet na nowoczesnych smartfonach. 

• Są proste w implementacji dzięki szerokiej ofercie istniejących środowisk uczenia 

maszynowego i dużej dostępności kompatybilnego sprzętu. 

• Mogą czerpać korzyści z obszernych baz danych dostępnych przez Internet 

czy zebranych przez systemy Smart-City. 

 
 

Rys. 37. Rodzaje sieci neuronowych w publikacjach 

dotyczących komputerowego wspomagania 

projektowania architektonicznego. Opracowanie 

własne. 

Rys. 38. Wizualizacja rodzajów 

sieci neuronowych w publikacjach 

CAAD wykonana przy pomocy 

algorytmu t-SNE na podstawie 37 

wyodrębnionych cech badanych 

artykułów. Każdy punkt 

reprezentuje odrębną publikację. 

Opracowanie własne. 
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Warto przyjrzeć się najpopularniejszym rodzajom sieci neuronowych wykorzystywanych 

w projektowaniu architektonicznym wspomaganym komputerowo w celu poznania podstaw 

ich działania i rozpoznania możliwości ich zastosowania z punktu widzenia projektanta 

chcącego rozszerzyć swój warsztat o narzędzia oparte na głębokim uczeniu maszynowym. 

W tym celu ponownie przeanalizowałem wyniki kwerendy zastosowań głębokiego uczenia 

maszynowego w CAAD omówione w sekcji 2.2. Tym razem jednak podzieliłem zebrane 

publikacje względem typu zastosowanej sieci neuronowej (Rys. 37, Rys. 38). 

Jednokierunkowe sieci neuronowe (FNN) 

Najprostszym i najstarszym typem sieci neuronowych są sieci FNN, czyli jednokierunkowe 

sieci neuronowe o warstwach w pełni połączonych (ang. Fully-Connected Feedforward Neural 

Network), co znaczy, że każdy neuron jednej warstwy jest połączony z każdym neuronem 

warstwy kolejnej i każdym neuronem warstwy poprzedniej. W FNN sygnał przepływa w sieci 

jednokierunkowo od warstwy wejściowej przez warstwy ukryte po warstwę wyjściową. Sieci 

jednokierunkowe różnią się od siebie liczbą warstw oraz liczbą znajdujących się w nich 

neuronów. 

Sieci jednokierunkowe mają szeroki zakres zastosowań tam, gdzie bezpośrednio można 

dokonać mapowania pewnego wektora wejściowego na odpowiadający mu wektor wyjściowy. 

W przeanalizowanych w sekcji 2.2. publikacjach FNN często wykorzystywane 

są do przybliżania wyników złożonych symulacji komputerowych w celu oszczędności czasu 

i zmniejszenia zapotrzebowania na moc obliczeniową. Przykładowo, przy pomocy FNN można 

przewidywać wyniki symulacji wydajności środowiskowej i energetycznej elewacji (Sebestyen 

i Tyc, 2020) lub całych budynków (Stevenson, 1994b; Asl, i in., 2017; Singh, i in., 2020). 

Przybliżać można także metryki normalnie dostępne jedynie metodami pomiarowymi w już 

wybudowanym obiekcie, w fizycznym prototypie lub modelu. FNN wykorzystywane 

są w przybliżaniu wartości metryk komfortu wizualnego stanowisk pracy w przestrzeniach 

biurowych (Chatzikonstantinou i Sariyildiz, 2016) czy w przewidywaniu kosztów 

i konsekwencji środowiskowych projektowanej modernizacji obiektu (Nicholas, i in., 2021). 

Na podstawie parametrów opisujących projekt lub budynek istniejący oraz jego lokalizację 

można także przewidywać cenę nieruchomości (Lam, i in., 2008; Abidoye i Chan, 2017), koszty 

cyklu życia budynku (Gao i Pishdad-Bozorgi, 2019) czy żywotność jego elewacji (Silva, i in., 

2011; Dias, i in., 2013). FNN dobrze radzą sobie też w prostych problemach klasyfikacyjnych 

danych wejściowych przedstawionych w postaci numerycznej. Można przy ich pomocy 
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klasyfikować typologicznie przestrzenie we wnętrzach budynków (Sedlmeier i Feld, 2018) lub 

rozpoznawać pomieszczenia i pozycję we wnętrzu na podstawie zbioru danych nawigacyjnych 

(Mehmood i Tripathi, 2013; Tamas i Toth, 2018). Jednokierunkowe sieci neuronowe mogą 

służyć optymalizacji parametrów projektu względem interesującej projektanta metryki, jak 

wydajności energetycznej obiektu (Li i Chen, 2021) lub wydajności wentylacji naturalnej 

wewnątrz budynku (Kindangen, 1996). FNN mogą także przetwarzać sensoryczne dane 

pomiarowe pomagając w ich interpretacji. Przykładowo, możliwe jest rozpoznawanie liczby 

użytkowników przestrzeni publicznej na podstawie sensorów znajdujących się w chodnikach 

(Kirova i Markopoulou, 2020), przetwarzanie surowych trajektorii GPS na wzorce aktywności 

w przestrzeni miejskiej (Siła-Nowicka, i in., 2016), identyfikowanie terenów 

nowozurbanizowanych poprzez pomiary satelitarne (Liu i Lathrop Jr, 2002) czy rozpoznawanie 

ugięcia elastycznych materiałów budowlanych na podstawie mierzonej oporności prądu w 

odkształconej membranie (Koshelyuk, i in., 2019). Jednokierunkowe sieci neuronowe 

sprawdzają się także jako samodzielne, proste algorytmy generatywne, przetwarzające 

parametry wejściowe na geometrię (Cudzik i Radziszewski, 2018; Yetkin i Sorguç, 2019; 

Zheng, i in., 2020). 

Szczególnym typem jednokierunkowej sieci w pełni połączonej są autoenkodery 

(ang. Autoencoders), w których kolejne warstwy sieci mają stopniowo coraz mniej neuronów, 

aż do zwężenia w połowie głębokości sieci (ang. Bottleneck). Po zwężeniu warstwy stopniowo 

się rozszerzają aż do osiągnięcia rozmiarów warstwy wejściowej. Sieć taką można wyobrazić 

sobie jako klepsydrę, w której pierwszą połowę nazywamy enkoderem, drugą – dekoderem 

(Rys. 39). Autoenkoder uczy się kompresować dane wejściowe do jej mniej wymiarowej 

reprezentacji w przestrzeni ukrytej (ang. Latent Space) definiowanej przez parametry 

najwęższej warstwy w centrum sieci. Dekoder uczy się odtwarzać dane wejściowe na podstawie 

ich skompresowanej reprezentacji w przestrzeni ukrytej. Struktura taka może być szczególnie 

przydatna w eksploracji przestrzeni projektowej modeli parametrycznych. Na reprezentacjach 

projektów w przestrzeni ukrytej można przeprowadzać operacje semantyczne 

[np. odejmować reprezentację wektorową jednej geometrii od reprezentacji innej geometrii 

(Sebestyen, i in., 2021)], a eksploracja ciągłej przestrzeni ukrytej pozwala na odnajdywanie 

nowych form przestrzennych stworzonych w oparciu o interpolację między formami zadanymi 

(de Miguel, i in., 2019). Możliwe wariacje parametrów projektu mapowane są na przestrzeń 

o stosunkowo niewielkiej liczbie wymiarów. Dzięki znacznej redukcji liczby wymiarów 

względem warstwy wejściowej, analiza wzorców aktywacji neuronów w przestrzeni ukrytej 
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może być także pomocna w identyfikacji i interpretacji najważniejszych parametrów 

przetwarzanego problemu. Wykorzystanie autoenkoderów w ten sposób może być szczególnie 

korzystne w sytuacjach, w których alternatywne metody redukcji wymiarów,  takie jak PCA 

(Pearson, 1901) czy t-SNE (Hinton i van der Mateen, 2008) nie są wystarczające. 

 

Rys. 39. Diagram klasycznej, jednokierunkowej sieci w pełni połączonej (po lewej) oraz 

sieć typu autoenkoder (po prawej). Wykorzystywane w praktyce sieci zazwyczaj mają więcej 

neuronów oraz warstw. Opracowanie własne. 

Splotowe sieci neuronowe (CNN) 

Kolejnym, często wykorzystywanym w kontekstach architektoniczno-urbanistycznych typem 

sieci neuronowych są CNN, czyli splotowe sieci neuronowe (ang. Convolutional Neural 

Networks). W sieciach splotowych zamiast warstw w pełni połączonych stosowanych w FNN 

wykorzystuje się warstwy splotowe złożone z filtrów splotowych połączonych jednocześnie 

tylko do części aktywacji warstwy poprzedzającej. Filtry splotowe pokrywają całość 

przestrzeni wejściowej przesuwając się po niej sekwencyjnie. Dzięki temu rozwiązaniu jeden 

wytrenowany filtr może rozpoznawać wiele podobnych cech w różnych rejonach przestrzeni 

wejściowej (Rys. 40). Splotowe sieci neuronowe zostały stworzone z myślą o syntetycznym 

przetwarzaniu obrazów, rozpoznawaniu w nich wzorów i ich klasyfikacji (Fukushima, 1980; 

LeCun, i in., 1989; Krizhevsky, i in., 2012). Dzięki sekwencyjnemu skanowaniu danych 

wejściowych przez filtry sieci typu CNN wykazują przestrzenne uprzedzenie dotyczące 



119 

 

struktury danych [ang. Spatial Inductive Bias (Mitchell, 2017)]. Oznacza to, że sieci splotowe 

szczególnie dobrze radzą sobie z danymi powiązanymi przestrzennie (takimi jak obrazy, 

chmury punktów czy wielowymiarowe diagramy). Wydaje się, że dzięki temu bardzo dobrze 

nadają się do przetwarzania architektoniczno-urbanistycznych kontekstów przestrzennych 

(Dzieduszyński, 2022b). W splotowych sieciach neuronowych oprócz warstw splotowych 

wykorzystywane są także warstwy innego typu, np. warstwy w pełni połączone. Sieci, 

w których występują jedynie warstwy splotowe, nazywamy sieciami w pełni splotowymi (FCN, 

ang. Fully-Convolutional Network). Jedną z zalet takich modeli jest niezależność struktury 

sieci i liczby trenowalnych parametrów od wymiarów danych wejściowych. Przykładowo, 

FCN mogą być wykorzystywane do przetwarzania obrazów wejściowych o różnych 

rozmiarach i proporcjach.  

Ze względu na duży wybór gotowych rozwiązań do przetwarzania obrazów, w CAAD sieci 

splotowe najczęściej stosowane są do przetwarzania danych przedstawionych 

w formie graficznej, takich jak: zdjęcia panoramiczne ulic i wnętrz (Zhang, i in., 2020; 

Yazıcıoğlu i Dino, 2021; Qi, i in., 2020; Kinugawa i Takizawa, 2019; Law, i in., 2018; Fukuda, 

i in., 2017; Sun, i in., 2019), zdjęcia satelitarne i lotnicze (Meeran i Joyce, 2020; Iino, i in., 

2018; Ikeno, i in., 2020; Newton, i in., 2020; Newton, 2021; Li i Zhu, 2020; Qayyum, i in., 

2019; Pan, i in., 2021), obrazy z kamer monitoringu (Sukel, i in., 2019; Sukel, i in., 2020a; 

Nakabayashi, i in., 2021; Jørgensen, i in., 2020), rzuty, przekroje i inne rysunki architektoniczne 

(Liu, i in., 2020; Ng, i in., 2019; Çolakoğlu i Uzun, 2019; Xiao, i in., 2020; Brown, i in., 2020; 

Sharma, i in., 2017) czy stworzone cyfrowo wizualizacje modeli trójwymiarowych (Takizawa 

i Furuta, 2017). Niektórzy wykraczają jednak poza łatwo dostępne modele służące analizie 

obrazów i wykorzystują CNN do przetwarzania danych architektonicznych reprezentowanych 

w inny sposób. Przykładowo sieci splotowe dobrze radzą sobie z projektami 

przedstawionymi w formie grafów reprezentujących układ funkcjonalny lub przestrzenny 

obiektu (Eisenstadt, i in., 2019; As, i in., 2018; Zhang, 2020), sparametryzowanymi 

modelami przedstawionymi w postaci grafów (del Campo, i in., 2020), chmurami punktów 

(Stojanovic, i in., 2019; Sinke, i in., 2021), czy reprezentacjami isovist (Peng, i in., 2017). 

Mimo rosnącej obecnie popularności nowszych typów sieci neuronowych, takich 

jak transformery wizualne czy modele dyfuzyjne, proste sieci splotowe nadal stosowane 

są bardzo często (Rhee, i in., 2023) i po odpowiednim skalowaniu pozwalają osiągnąć 

wyniki porównywalne z tymi oferowanymi przez nowsze, bardziej skomplikowane algorytmy 
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(Liu, i in., 2022). Wśród najpopularniejszych modeli splotowych sieci 

neuronowych stosowanych w CAAD warto wyróżnić: AlexNet (Krizhevsky, i in., 2012), VGG 

(Zisserman i Simonyan, 2015), ResNet (He, i in., 2016), U-Net czy ConvNeXt (Liu, i in., 2022; 

David i Leitao, 2022).  

 

Rys. 40. Diagram warstwy splotowej w splotowej sieci neuronowej. Dane wejściowe 

skanowane są sekwencyjnie przez filtry splotowe obliczające wartości funkcji splotu 

na podstawie odczytanych sygnałów. Dane na wyjściu mają formę wielowymiarowych 

tablic, po jednej tablicy na jeden filtr splotowy. Trenowalne parametry znajdują 

się w filtrach splotowych. Opracowanie własne. 

Generatywne sieci przeciwstawne (GAN) 

Podobnie jak architekci, badacze i inżynierowie działający w dziedzinie uczenia maszynowego 

często wykorzystują dostępne im prostsze moduły w celu składania z nich większych całości, 

oferujących szersze możliwości niż same elementy składowe. Jednym z przykładów takich 

kompleksowych rozwiązań są GANy, czyli generatywne sieci przeciwstawne (ang. Generative 

Adversarial Networks) (Goodfellow, i in., 2014). GANy są algorytmami złożonymi z dwóch 

konkurujących ze sobą sieci neuronowych. Pierwsza z nich to generator odpowiedzialny 

za tworzenie danych jak najlepiej wpisujących się w dystrybucję zbioru treningowego, druga 

z nich to dyskryminator próbujący odróżnić oryginalne dane treningowe od tych stworzonych 
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przez generator. W trakcie treningu obie sieci uczą się wspólnie. W miarę jak dyskryminator 

coraz trafniej odróżnia dane syntetyczne od prawdziwych, generator tworzy dane coraz bardziej 

podobne do danych treningowych. Gdy GAN jest już wytrenowany, do przetwarzania danych 

zazwyczaj używa się tylko generatora. Jako generatory w GANach najczęściej 

wykorzystywane są sieci CNN (np. U-Net) (Isola, i in., 2017). 

W CAAD GANy używane są zazwyczaj tam, gdzie na podstawie pewnych warunków 

wejściowych chcemy wygenerować realistycznie wyglądające dane (np. obrazy), trafnie 

wpisujące się w dystrybucję treningową. Przykładowo, GANy można wykorzystać 

do wizualizacji projektów poprzez naniesienie na zdjęcia elewacji projektowanych elementów 

(Nicholas, i in., 2021) czy też usuwanie i maskowanie na zdjęciach elementów, które w planach 

mają być rozebrane lub wyburzone (Kikuchi, i in., 2021). GANy stosowane są do odczytywania 

ukrytych informacji z kontekstów przestrzennych (przy założeniu, że interesujące nas 

informacje są skorelowane z prezentowanymi danymi wejściowymi). Badacze podejmowali 

próby przewidywania aktywności fizycznej na projektowanych terenach na podstawie map 

GIS (Sun, i in., 2020), odczytywania funkcji pomieszczeń z rzutów architektonicznych (Zheng 

i Huang, 2018), czy nawet odczytywania genius loci określonej okolicy ze zbioru 

panoramicznych zdjęć Street View (Steinfeld, 2019). GANy można też wykorzystać 

do proponowania docelowych rozwiązań projektowych, takich jak: systemy instalacyjne 

wpisujące się w zadany rzut architektoniczny (Sato, i in., 2020), koncepcyjne rozkłady 

funkcjonalne (Eisenstadt, i in., 2019; As, i in., 2018), podziały funkcjonalne projektowanych 

kwartałów (Tian, 2020) czy rozwiązania detali (Alani i Al-Kaseem, 2021; Zandavali i Garcia, 

2019; Thomsen, i in., 2019). 

Najpopularniejszymi modelami GANów stosowanych w CAAD są Pix2Pi2x (Isola, i in., 2017), 

StyleGAN (Karras, i in., 2021) i StyleGAN2 (Karras, i in., 2020). 

Głębokie uczenie ze wzmacnianiem (DRL) 

Głębokie uczenie ze wzmacnianiem DRL (ang. Deep Reinforcement Learning) stanowi wariant 

uczenia ze wzmacnianiem, w którym agent sterowany przez sieć neuronową, lub grupa takich 

agentów, podejmują akcje w środowisku symulacyjnym. Sterująca agentem sieć neuronowa 

uczy się podejmować decyzje zapewniające jak najwyższą nagrodę (Rys. 41). Ostatnimi czasy 

największe sukcesy w dziedzinie DRL osiągał zespół Google Deepmind. Opracowany przez 

nich system AlphaGo osiągnął mistrzowski poziom w grze planszowej Go (Silver, i in., 2016), 

AlphaStar potrafił biegle grać w grę komputerową Starcraft 2 (Vinyals, i in., 2019), 
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a AlphaFold perfekcyjnie przewidywał trójwymiarowe struktury skomplikowanych białek 

na podstawie sekwencji ich aminokwasów (Jumper, i in., 2021). 

W problemach architektonicznych DRL dobrze radzi sobie tam, gdzie w środowisku 

symulacyjnym można wymodelować zachowanie rzeczywistych fenomenów projektowych, 

wykonawczych czy eksploatacyjnych. W aplikacjach tego typu wytrenowani symulacyjnie 

agenci sterowani przez sieci neuronowe reprezentować mogą dynamicznie sterowane 

ustroje konstrukcyjne (Hosmer i Tigas, 2019), charakterystykę środowiskową obiektu 

budowlanego (Song i Yuan, 2021), poszczególne pomieszczenia w budynkach mieszkalnych 

(Veloso i Krishnamurti, 2020) czy autonomiczne drony odpowiedzialne za cyfrową fabrykację 

obiektów budowlanych (Fang, i in., 2020). Środowiska wykorzystywane w DRL mogą być 

także bardziej abstrakcyjne i niekoniecznie muszą reprezentować środowisko fizyczne. 

Głębokie uczenie ze wzmacnianiem może być wykorzystywane jako podstawa algorytmów 

generatywnych poszukujących najlepszych rozwiązań w przestrzeni projektowej (Han, i in., 

2020). W takich symulacjach agenci starają się optymalizować podejmowanie decyzji 

projektowych (Mintrone i Erioli, 2021), wybierając przykładowo najlepsze do sytuacji moduły 

architektoniczne zaprojektowane innymi metodami (Hosmer, i in., 2020). 

 

Rys. 41. Diagram ilustrujący pętlę działania agenta DRL w środowisku symulacyjnym. 

Działanie agenta zostaje nagrodzone przez funkcję straty i skutkuje zmianą jego stanu. 

Opracowanie własne. 
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Algorytmy DRL wykorzystywane w CAAD zazwyczaj nie korzystają z gotowych, 

ogólnodostępnych rozwiązań. Większość z nich projektowana jest bezpośrednio 

do rozwiązywanego problemu. Do tworzenia środowisk symulacyjnych najczęściej stosowane 

są platformy Rhino Grasshopper, Unity 3D lub Python TensorFlow. Agenci zazwyczaj opierają 

się na technikach Q-Learning (Watkins i Dayan, 1992), DDPG [ang. Deep Deterministic Policy 

Gradient (Lillicrap, i in., 2015)] lub PPO [ang. Proximal Policy Optimization (Schulman, i in., 

2017)]. 

Rekurencyjne sieci neuronowe (RNN) i sieci długiej pamięci krótkotrwałej (LSTM) 

Współcześnie jedne z największych i najbardziej imponujących sukcesów w dziedzinie 

głębokiego uczenia maszynowego osiągane są na polu przetwarzania języka naturalnego NLP 

(ang. Natural Language Processing). Jednymi z pierwszych modeli sieci neuronowych 

potrafiących skutecznie przetwarzać ciągi długiego tekstu były rekurencyjne sieci neuronowe 

RNN (ang. Recurrent Neural Networks) i ich wariant, czyli sieci długiej pamięci krótkotrwałej 

LSTM (ang. Long Short-Term Memory Networks). Sieci te operują na danych sekwencyjnych 

takich jak tekst, dźwięk, uporządkowane ciągi czy szeregi czasowe. W klasycznych RNN sieć 

otrzymuje sekwencję danych wejściowych podzielonych na pojedyncze pakiety. Oprócz nich 

sieć dostaje także wartości stanów ukrytych obliczonych przez tę samą sieć w poprzednich 

krokach. Dzięki temu połączeniu rekurencyjnemu sieci łatwiej jest nauczyć się sekwencyjnych 

zależności w analizowanych danych (np. zasad gramatycznych występujących w ciągu 

tekstowym. Proste RNN bywają jednak dosyć niestabilne ze względu na problem 

z eksplodowaniem lub zanikaniem sygnałów wraz z kolejnymi krokami w dłuższych 

sekwencjach danych wejściowych (Tadeusiewicz i Szaleniec, 2015). Jednym z rozwiązań tego 

problemu jest wyposażenie sieci w mechanizm pamięci krótkotrwałej. Pamięć taka pozwala 

sieci LSTM na zapisywanie najważniejszych informacji do wykorzystania w przyszłych 

krokach (Rys. 42). Dzięki pamięci sieci typu LSTM o wiele lepiej radzą sobie z przetwarzaniem 

dłuższych ciągów danych (Hochreiter i Schmidhuber, 1997). 
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Rys. 42. Diagram ilustrujący sposób działania sieci RNN typu LSTM. W następujących 

po sobie krokach sieć otrzymuje wejściowe dane z sekwencji wejściowej X i przetwarza 

je na sekwencję wyjściową Y. Dodatkowo sieć otrzymuje na wejściu stany ukryte sieci 

z poprzedniego kroku. W modelu LSTM sieć otrzymuje także mechanizm pamięci, 

pozwalający jej nauczyć się możliwości zapisywania pewnych istotnych danych 

w komórkach pamięci, których stan sieć może odczytać w kolejnych krokach iteracji. 

Opracowanie własne. 

Obecnie istnieją nowsze i bardziej skuteczne modele do przetwarzania danych sekwencyjnych 

(omówione w kolejnym punkcie), jednak w projektowaniu architektonicznym wspomaganym 

komputerowo RNN i LSTM nadal są czasem wykorzystywane. LSTM dobrze uczą 

się szeregów czasowych, więc potrafią względnie trafnie przewidywać przyszłe stany procesów 

ciągłych. Wykorzystuje się je między innymi do przewidywania zatorów komunikacyjnych 

na ulicach miast (Guo, i in., 2019), rozpoznawania przyszłych trajektorii użytkowników 

przestrzeni miejskiej (Wu, i in., 2019) czy identyfikacji potencjalnych obszarów objętych 

rozrostem tkanki urbanistycznej (Boulila, i in., 2021). Sieci rekurencyjne nadają 

się do sterowania ciągłymi procesami fabrykacji robotycznej reprezentowanej przez szereg 

czasowy instrukcji narzędzi CAM (Luo, i in., 2018; Chen, i in., 2019; del Castillo y López, 

2019). Mogą także robić to, do czego były pierwotnie zaprojektowane, czyli przetwarzać tekst 

naturalny. Przykładowo, mogą być składowymi systemów klasyfikacji zgłoszeń problemów 

urbanistycznych wysyłanych przez mieszkańców w formularzach kontaktowych administracji 

miast (Sukel, i in., 2020a). W niektórych przypadkach dane wejściowe trudno jest przetwarzać 

w ich pierwotnej formie. Niekiedy warto przetworzyć je wtedy do formy sekwencyjnej. 
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Przykładowo, w celu odczytania z dwuwymiarowych zdjęć panoramicznych wnętrz mieszkań 

informacji o położeniu krawędzi ścian obraz wejściowy można przedstawić jako ciąg kolumn 

jego pikseli składowych. Możliwe jest wtedy wykorzystanie zdolności LSTM 

do rozpoznawania zależności sekwencyjnych do rozpoznawania narożników 

w pomieszczeniach. Przy takim przedstawieniu danych LSTM łatwo uczy się przykładowo, 

że pomieszczenia są zazwyczaj prostopadłościanami, więc odległość między narożnikami 

pierwszym a drugim często bywa zbliżona do odległości między narożnikiem trzecim 

a czwartym. System taki potrafi znajdywać narożniki nawet wtedy, gdy są one częściowo 

przesłonięte przez wyposażenie wnętrza (Sun, i in., 2019). Innym przykładem takiego podejścia 

jest potraktowanie projektu parametrycznego obiektu jako pewnego rodzaju „zdania” 

złożonego z sekwencyjnie ułożonych bloków instrukcji możliwego do analizy przy pomocy 

LSTM. Sieć pozwala wtedy na eksplorację przestrzeni projektowej poprzez sugerowanie 

alternatywnych dróg przepływu danych w modelu parametrycznym (Toulkeridou, 2019). 

Podobnie jak w przypadku DRL, proste sieci RNN i LSTM zazwyczaj przygotowywane 

są od zera na potrzeby konkretnego problemu. Dostrajanie wcześniej wytrenowanych modeli 

nie jest często stosowane. Z najpopularniejszych typów prostych sieci rekurencyjnych warto 

wymienić dwukierunkowe RNN i LSTM (ang. Bidirectional RNNs/LSTMs), skanujące 

sekwencję wejściową w obu kierunkach, oraz sieci GRU (ang. Gated Recurrent Unit 

Networks), będące uproszczonym wariantem sieci LSTM (Cho, i in., 2014). 

Inne sieci neuronowe, transformery, modele dyfuzyjne 

Chcąc ustalić, w którym momencie rozpoczęła się trwająca obecnie rewolucja głębokiego 

uczenia maszynowego można wskazać przynajmniej kilka dat: 

• 1951: stworzenie przez Marvina Minsky’ego SNARCa, czyli pierwszej funkcjonalnej 

sieci neuronowej (Minsky i Sykes, 2011). 

• 1986: publikacja Rumelharta, Hintona i Williamsa w Nature popularyzująca propagację 

wsteczną umożliwiającą projektowanie samouczących się sieci neuronowych (Hinton, 

i in., 1986). 

• 2012: sieć AlexNet Alexa Krizhevskiego wprowadzająca splotowe sieci neuronowe 

do głównego nurtu badań (Krizhevsky, i in., 2012). 

Najnowszym pretendentem jest rok 2017, czyli moment publikacji artykułu Attention Is All You 

Need, w którym zaprezentowano nowy typ sieci neuronowej – transformer (Vaswani, i in., 
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2017). To właśnie na transformerach oparta jest większość dużych modeli językowych LLM 

(ang. Large Language Model) zdobywających szturmem kolejne miliony użytkowników 

na całym świecie (Hu, 2023). Transformery są sieciami neuronowymi wyposażonymi 

w mechanizm uwagi, dzięki któremu na każdym etapie generowania danych wyjściowych sieć 

może zwracać uwagę na kontekst znajdujący się w różnych miejscach sekwencji wejściowej 

oraz we fragmentach sekwencji wygenerowanych przez model w poprzednich krokach 

(Vaswani, i in., 2017). Transformery najczęściej wykorzystywane są w NLP, ale są one także 

stosowane do przetwarzania obrazów przedstawionych w postaci sekwencyjnej. Sieci takie 

nazywamy transformerami wizualnymi ViT (ang. Vision Transformer) (Dosovitskiy, i in., 

2021; Radford, i in., 2021). W CAAD transformery często wykorzystuje się do tzw. analizy 

sentymentu (ang. sentiment analysis) polegającej na ocenie, czy dany tekst jest nacechowany 

pozytywnie czy negatywnie. Wyniki analizy sentymentu tekstów pochodzących przykładowo 

z mediów społecznościowych powiązanych z ich danymi geolokacyjnymi pozwalają 

na przeprowadzanie analiz urbanistycznych (Aman, i in., 2022). Dodatkowo, ze względu 

na ich zdolności generalizacyjne, duże modele językowe takie jak GPT4 (OpenAI, 2023), 

Llama 2 (Meta AI, 2023) czy Gemini (Google, Gemini Team, 2023) zaczynają 

być wykorzystywane w biurach projektowych jako syntetyczni asystenci wspierający 

architektów w oprogramowywaniu rozwiązań, poszukiwaniu inspiracji i przetwarzaniu danych. 

Dostępność LLM w postaci tanich lub darmowych API i interfejsów czatowych zwiększa liczbę 

ich potencjalnych użytkowników o projektantów bez odpowiedniego przygotowania 

informatycznego i o biura projektowe niedysponujące odpowiednio dużą mocą obliczeniową, 

pozwalającą na korzystanie z własnych modeli głębokiego uczenia maszynowego offline.  

Oprócz transformerów dużą popularnością cieszą się obecnie generatywne modele dyfuzyjne 

służące do tworzenia z szumu obrazów i innych typów danych (np. wideo lub audio). 

Algorytmy dyfuzyjne stopniowo usuwają szum progresywnie, generując coraz lepiej 

zdefiniowane dane wyjściowe. Modele dyfuzyjne często oparte są na transformerach 

wizualnych, ale mogą wykorzystywać także prostsze sieci, jak np. CNN (Ho,, i in., 2020). 

Podobnie jak w przypadku LLM, duże modele dyfuzyjne takie jak Dall-E 2 (Ramesh, i in., 

2022), Stable Diffusion (Rombach, i in., 2022) czy Disco Diffusion (Alembics, 2021) dostępne 

są w postaci prostych w użytkowaniu interfejsów online, dzięki czemu weszły już do wielu biur 

projektowych jako narzędzia służące poszukiwaniu rozwiązań i wizualizacji projektów (RIBA, 

2024). 
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3. Część eksperymentalna 

3.1. Eksperyment wstępny 

3.1.1. Cele szczegółowe eksperymentu wstępnego 

Wnioski płynące z kwerendy stanu wiedzy sugerują, że prawidłowo zaprojektowane, 

odpowiednio duże sieci neuronowe powinny dobrze radzić sobie w przetwarzaniu 

przestrzennych kontekstów kompozycyjnych. Co więcej, wydaje się, że przynajmniej w części 

zaprezentowanych zastosowań głębokiego uczenia maszynowego w CAAD i dziedzinach 

pokrewnych konteksty kompozycyjne są w jakimś stopniu uwzględniane przez stosowane 

algorytmy. Względy kompozycyjne nie zostały jednak do tej pory przebadane w oderwaniu 

od innych aspektów neuronowego przetwarzania danych. Do momentu przeprowadzenia 

eksperymentu wstępnego nie było także jasne, do jakiego stopnia złożone, rozmyte logicznie 

zasady kompozycyjne, stosowane zazwyczaj przez ludzi, mogą być odczytywane, 

przetwarzane i aplikowane w praktyce przez maszyny. Eksperyment wstępny miał stanowić 

weryfikację koncepcji, operującą na abstrakcyjnych i mierzalnych zasadach kompozycyjnych, 

przed opracowaniem docelowego narzędzia wykorzystującego głębokie uczenie maszynowe 

do ekstrakcji rzeczywistych elementów kompozycyjnych w przestrzeni 

architektoniczno-urbanistycznej. W celu odizolowania problemu kompozycji przestrzennej 

od innych zmiennych, przygotowałem eksperyment w sposób, który umożliwił jakościową 

i ilościową analizę skuteczności zastosowania prostych sieci neuronowych w przetwarzaniu 

kontekstów kompozycyjnych. W poniższym podrozdziale znajduje się sumaryczne 

podsumowanie przebiegu eksperymentu. W szczegółach został on opisany w International 

Journal of Architectural Computing (Dzieduszyński, 2022a).  

3.1.2. Metodyka eksperymentu wstępnego 

Ze względu na uprzedzenie dotyczące struktury danych (ang. spatial inductive bias) dające 

splotowym sieciom neuronowym przewagę nad sieciami jednokierunkowymi w przetwarzaniu 

danych przestrzennych (Mitchell, 2017) oraz w związku z wynikami testów wstępnych 

porównujących ze sobą sieci typu FNN i CNN (Rys. 43), zdecydowałem się na wykorzystanie 

w prototypie sieci typu CNN. 
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Rys. 43. Wstępne testy skuteczności (%) FNN oraz CNN w przetwarzaniu 

wielowymiarowych zadań przestrzennych (po lewej) oraz przykłady rozwiązań 

wygenerowanych przez oba typy sieci (po prawej). Oba typy sieci miały za zadanie 

wygenerowanie trzech wysp spełniających serię zasad kompozycyjnych reprezentowanych 

w zbiorze treningowym. CNN osiąga skuteczność o 4 - 14% lepszą niż FNN 

o porównywalnej liczbie parametrów (Dzieduszyński, 2022b). 

Wybrana sieć neuronowa miała za zadanie nauczenie się złożonej zasady kompozycyjnej 

na podstawie zadanych przykładów treningowych. Następnie sieć była testowana pod 

względem jej umiejętności do odczytywania nowych, niespotkanych w trakcie treningu 

kontekstów kompozycyjnych i do projektowania nowych kompozycji wpisujących 

się w konteksty i respektujących wytrenowaną, złożoną zasadę kompozycyjną. Wykorzystana 

w badaniu złożona zasada kompozycyjna składała się z następujących, trzech prostych zasad 

składowych: 

• Na monochromatycznym obrazie znajdują się trzy białe wyspy na czarnym tle. 

• Wyspy różnią się między sobą rozmiarem. 

• Wyspy ułożone są osiowo w kolejności od najmniejszej do największej (Rys. 44) 

(Dzieduszyński, 2022a). 
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Rys. 44. Proste zasady kompozycyjne składające się na złożoną zasadę kompozycyjną 

wykorzystaną w eksperymencie wstępnym (Dzieduszyński, 2022a). 

Spełnienie każdego z tych warunków można jednoznacznie ocenić przy pomocy 

parametrycznych algorytmów ilościowych. Algorytmy ilościowe testujące poszczególne 

zasady kompozycyjne zostały przeze mnie opracowane w środowisku Python. Przy 

wystarczającej liczbie przykładów testowych skuteczność sieci neuronowej można ocenić 

statystycznie względem każdego ze zdefiniowanych warunków kompozycyjnych. W celu 

wytrenowania i przetestowania sieci neuronowej stworzyłem bazę danych podzielonych 

na cztery podzbiory: 

• Zbiór treningowy – złożony z obrazów reprezentujących badaną, złożoną zasadę 

kompozycyjną. Zbiór ten służył sieci do ustawienia parametrów minimalizujących 

funkcję straty. 

• Zbiór walidacyjny – służący do zaprojektowania hiperparametrów sieci osiągającej 

najlepsze wyniki, przy jednoczesnym ograniczeniu ryzyka przestrojenia 

hiperparemetrów do zbioru testowego (ang. over-tuning), czyli sytuacji, w której 

dobrane hiperparametry sieci zapewniają szczególnie dobry wynik dla konkretnego 

zbioru danych. 

• Zbiór testowy – wykorzystywany do finalnej oceny skuteczności sieci neuronowej 

osiągającej najlepsze wyniki na zbiorze walidacyjnym. Zbiór testowy składał 

się z innych przykładów niż zbiór treningowy i walidacyjny. Przykłady były także 

próbkowane z innej dystrybucji niż przykłady treningowe (Rys. 45, Rys. 46). Dzięki 

temu rozwiązaniu nie było możliwości, by obrazy ze zbiorów testowych pokrywały 

się z obrazami ze zbiorów treningowych. 

• W celach diagnostycznych stworzyłem także zbiór testowy próbkowany z dystrybucji 

treningowej, służący do rozpoznania, czy wprowadzone różnice w dystrybucji 
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nie wpływają zbyt poważnie na osiągnięte przez sieć wyniki (ang. covariate shift) 

(Dzieduszyński, 2022a). 

  

Rys. 45. Dozwolone osie kompozycyjne 

dla zbioru treningowego i zbioru testowego 

o dystrybucji treningowej (Dzieduszyński, 

2022a). 

Rys. 46. Dozwolone osie kompozycyjne 

dla zbioru walidacyjnego i zbioru testowego 

(Dzieduszyński, 2022a). 

Sieci typu CNN zostały poddane próbom w trzech zadaniach o zróżnicowanym poziomie 

trudności (Rys. 47). Każdy scenariusz operował na osobnej bazie danych (ze względu 

na różnice w rozmiarach obrazów i trybów zakrywania kompozycji): 

• I. Generowanie całości kompozycji (zakrytych fragmentów o różnych rozmiarach 

wraz z odtworzeniem zadanych kontekstów) na obrazach wielkości 16 x 16 pikseli. 

• II. Generowanie zakrytych fragmentów o wielkości 11 x 11 pikseli uzupełniających 

kompozycję wielkości 16 x 16 pikseli. 

• III. Generowanie pojedynczych, zakrytych pikseli kompozycji wielkości 8 x 8 pikseli 

(Dzieduszyński, 2022a). 

 

Rys. 47. Trzy scenariusze testowane w prototypie wstępnym polegające na generowaniu 

całości kompozycji, jej fragmentu oraz pojedynczego piksela (Dzieduszyński, 2022a). 
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Zastosowane sieci neuronowe zostały zaprojektowane hiperparametrycznie w środowisku 

Tensorflow 2. Ich struktura była luźno inspirowana siecią AlexNet (Krizhevsky, i in., 2012). 

Liczba neuronów, warstw i pozostałe hiperparametry zostały dopasowane do scenariusza, 

formatu danych wejściowych i wyjściowych oraz zoptymalizowane względem maksymalnej 

skuteczności na zbiorze walidacyjnym metodą poszukiwania losowego (ang. random search). 

Wartość progu aktywacji pikseli wyjściowych została ustalona metodą poszukiwania 

sieciowego (ang. grid search) dla zakresu 0,3 - 0,65 (Rys. 48). Definiowane hiperparametry 

obejmowały: 

• Liczbę neuronów w sieci i w poszczególnych warstwach. 

• Liczba i rodzaj warstw (warstwy splotowe i warstwy w pełni połączone). 

• Techniki regularyzacyjne (dropout w zakresie 0 - 10% neuronów w warstwach w pełni 

połączonych oraz early stopping). 

• Funkcje aktywacji neuronów w poszczególnych warstwach (ReLU i sigmoida). 

• Funkcję straty (strata Hubera w scenariuszu I i II, binarna entropia krzyżowa (ang. 

binary cross-entropy) w scenariuszu III). 

• Algorytm optymalizujący (Adam). 

• Szybkość uczenia się (0.001). 

• Wielkość partii treningowych (ang. batch size, 256 - 4096). 

• Czas treningu. 

• Wartość progu aktywacji pikseli wyjściowych [0,4 oraz 0,5 (Dzieduszyński, 2022a)]. 

 

Na wejściu sieci neuronowe otrzymywały monochromatyczny obraz z zakrytym fragmentem 

kompozycji i musiały przewidzieć uzupełnienie zakrytego fragmentu pasujące do zasad 

kompozycyjnych reprezentowanych przez przykłady w zbiorze treningowym. Kompozycje 

wykorzystane do stworzenia zbiorów treningowych, walidacyjnych i testowych zostały 

zsyntetyzowane przy pomocy osobnego, autorskiego narzędzia parametrycznego 

zaprogramowanego w języku Python i niewykorzystującego uczenia maszynowego. Zbiory 

treningowe składały się z 7000 zróżnicowanych obrazów, a zbiory testowe, walidacyjne 

i walidacyjne o dystrybucji treningowej – z 700 każdy. Czas treningu liczony w epokach różnił 

się w zależności od przyjętych wielkości partii treningowych w poszczególnych epokach, 

ale każdą z sieci trenowano przez porównywalny czas, wynoszący około dwa dni na karcie 

graficznej Nvidia GTX960M. 
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Rys. 48. Przykład przeprowadzonej optymalizacji hiperparametru znormalizowanej 

wartości progu aktywacji pikseli wyjściowych. Optymalizacja przeprowadzona została 

metodą grid search w zakresie od 0,35 do 0,65 na zbiorach walidacyjnych dla scenariusza 

I i II względem skuteczności sieci na badanych zasadach kompozycyjnych. Optymalna 

wartość wyniosła 0,5 dla scenariusza I (po lewej) i 0,4 dla scenariusza II (po prawej) 

(Dzieduszyński, 2022a). 

3.1.3. Wyniki eksperymentu wstępnego 

Generowanie całości kompozycji, scenariusz I 

W najtrudniejszym scenariuszu pierwszym, w którym sieć neuronowa musiała radzić sobie 

ze zmiennym rozmiarem i proporcjami okna zakrywającego kompozycję i musiała 

jednocześnie odtworzyć konteksty kompozycyjne, sieć poradziła sobie najsłabiej [Rys. 49 

(Dzieduszyński, 2022a)]. W tym przypadku na zbiorze testowym sieć osiągnęła wynik 51,9% 

dla jednej zasady kompozycyjnej, 42,9% dla dwóch zasad kompozycyjnych jednocześnie 

i 22,7% dla wszystkich trzech zasad [Rys. 50 (Dzieduszyński, 2022a)]. Sieć w miarę dobrze 

radziła sobie z przypadkami, w których w zadanych kontekstach było widać zalążek wszystkich 

trzech wysp i w których zakryty obszar nie był duży. Najczęstsze błędy wynikały ze zbyt małej 

pewności przewidywań sieci skutkującej zbyt słabymi aktywacjami niegenerującymi pikseli, 

mimo widocznej w aktywacjach struktury trzech wysp. W innych przypadkach sieć nie radziła 

sobie z samym zadaniem odtworzenia niezasłoniętych fragmentów kompozycji (co nie było 

zmienną badaną w eksperymencie), przez co obraz wyjściowy nie pasował do obrazu 
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wejściowego. Sieć nie potrafiła także generować prawidłowych kompozycji, gdy zadane 

konteksty były zbyt ubogie (Rys. 51). 

 

Rys. 49. Diagram sieci neuronowej wykorzystanej w scenariuszu I (Dzieduszyński, 2022a). 

 

 

Rys. 50. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu I w miarę 

treningu. By zapobiec przetrenowaniu sieci, trening został zatrzymany w epoce trzeciej 

(technika regularyzacyjna early stopping) (Dzieduszyński, 2022a). 
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Generowanie fragmentu kompozycji, scenariusz II 

W drugim scenariuszu sieć nie musiała już uczyć się odtwarzania całości kompozycji włącznie 

z jej odkrytymi fragmentami. Sieć musiała jedynie generować zakryty fragment kompozycji 

o wymiarach 11 x 11 pikseli (Rys. 52). Stały rozmiar generowanego fragmentu kompozycji 

wynikał z faktu wykorzystania nie w pełni splotowej sieci neuronowej (Long, i in., 2015) 

i konieczności dopasowania wymiarowości wyjścia sieci neuronowej do stałej struktury sieci 

(ang. dimensionality mismatch). Uniknięcie błędów wynikających z nieprawidłowego 

odtworzenia kompozycji uczytelniło otrzymane wyniki. Co więcej, nawet pomimo 

statystycznego zwiększenia obszaru generowanej kompozycji względem scenariusza 

pierwszego (121 pikseli w scenariuszu II i średnio 81 pikseli w scenariuszu I), nieznacznie 

poprawiła się skuteczność sieci. Sieć na zbiorze testowym osiągnęła wynik 52,9% dla 

pojedynczej zasady kompozycyjnej, 41,6% dla podwójnej zasady i 22,8% dla pełnej zasady 

potrójnej [Rys. 53 (Dzieduszyński, 2022a)]. W większości przypadków zasada liczby 

składowych elementów kompozycji była zachowana. W przypadkach, w których zadany 

 

Rys. 51. Wybór przykładów pozytywnych rozwiązanych prawidłowo i negatywnych, 

w których sieć miała problemy (Dzieduszyński, 2022a). 
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kontekst okazywał się w scenariuszu I zbyt ubogi, sieć scenariusza II radziła sobie o wiele lepiej 

(Rys. 54). 

 

Rys. 52. Diagram sieci neuronowej wykorzystanej w scenariuszu II (Dzieduszyński, 2022a). 

 

 

Rys. 53. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu II w miarę 

treningu. By zapobiec przetrenowaniu sieci, trening został zatrzymany w epoce 75 

(Dzieduszyński, 2022a). 

 



136 

 

 

Rys. 54. Wybór przykładów pozytywnych, z którymi sieć scenariusza II radziła sobie bardzo 

dobrze i negatywnych, w których sieć miała problemy (Dzieduszyński, 2022a). 

Generowanie pojedynczych pikseli, scenariusz III 

W trzecim scenariuszu przetestowałem skuteczność sieci w podejmowaniu najbardziej 

podstawowych decyzji kompozycyjnych, polegających na generowaniu pojedynczych 

brakujących pikseli w kompozycji przestrzennej (Rys. 55). Dzięki zmniejszeniu rozmiaru 

przetwarzanych obrazów do kwadratów wielkości 8 x 8 pikseli, już pojedynczy, 

źle wygenerowany piksel, mógł złamać zasadę osiowości. Jeden piksel mógł w wielu 

przypadkach łamać także zasadę liczby elementów (poprzez wygenerowanie nowej, 

jednopikselowej wyspy lub poprzez połączenie istniejących wysp ze sobą) oraz zasadę 

kolejności wysp (jeden piksel mógł doprowadzić do zrównania wielkości wysp). 
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Rys. 55. Diagram sieci neuronowej wykorzystanej w scenariuszu III (Dzieduszyński, 

2022a). 

 

Rys. 56. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu III w miarę 

treningu. W tym przypadku doprowadzono trening do końca, early stopping nie był 

konieczny (Dzieduszyński, 2022a). 

W scenariuszu trzecim sieć radziła sobie prawie perfekcyjnie w przetwarzaniu całości złożonej 

zasady kompozycyjnej (Rys. 56). W zbiorze testowym kompozycja prawidłowo składała 

się z trzech wysp w 97,9%, z trzech wysp ułożonych osiowo w 96,7%, a z trzech wysp 

ułożonych osiowo i uszeregowanych od największej do najmniejszej w 95,1% (Dzieduszyński, 

2022a). W prawie każdym przypadku sieć prawidłowo uzupełniała brakujący piksel 

kompozycji. Analiza wzorców aktywacji pozwala zauważyć, że sieć bardzo konsekwentnie 

unika generowania pikseli w miejscach, w których wygenerowanie piksela skutkowałoby 
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zespoleniem dwóch wysp ze sobą. Sieć także bardzo silnie unikała generowania nie-osiowych 

pikseli w pustce otaczającej wyspy. Ciągłość cienkich wysp o szerokości jednego piksela 

też była zachowywana w większości przypadków. Kilka błędów popełnionych przez 

sieć dotyczyło okazjonalnego łączenia wysp ze sobą i przełamywania ciągłości cienkich wysp 

(Rys. 57). 

 

 

Rys. 57. Diagram przedstawiający wyniki działania sieci w scenariuszu. Każdy z pikseli 

w kompozycji był sekwencyjnie zakrywany i generowany przez sieć osobno. W górnym 

rzędzie – kompozycje wejściowe, w środkowym – mapa aktywacji dla każdego z 64 pikseli, 

w dolnym – decyzje podjęte przez sieć dla każdego piksela (czerwony kolor oznacza decyzję 

o narysowaniu białego piksela, niebieski kolor oznacza decyzję o wygenerowaniu czarnego 

piksela). Wybór przykładów pozytywnych i negatywnych (Dzieduszyński, 2022a). 

W celu dodatkowego przetestowania sieci, ręcznie narysowałem kilka nietypowych 

kompozycji przestrzennych niewpisujących się w dystrybucję zbioru treningowego, 

ale spełniających wszystkie warunki kompozycyjne (Rys. 58). Przypadki te testowały 

występowanie wysp o wielkości pojedynczego piksela oraz występowanie wysp różniących 

się rozmiarem jedynie o jeden piksel. Ostatnim przypadkiem była kompozycja złożona z wysp 
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o maksymalnej możliwej wielkości (podzielonych jedynie cienkimi pasmami o szerokości 

jednego piksela). Również na tych przykładach brzegowych sieć osiągnęła bardzo wysoką 

skuteczność wynoszącą 98,8%.  

 

Rys. 58. Wyniki sieci dla ręcznie rysowanych przykładów brzegowych. Każdy z pikseli 

w kompozycji był sekwencyjnie zakrywany i generowany przez sieć osobno. W górnym 

rzędzie – kompozycje wejściowe, w środkowym – mapa aktywacji dla każdego z 64 pikseli, 

w dolnym – decyzje podjęte przez sieć dla każdego piksela (czerwony kolor oznacza decyzję 

o narysowaniu białego piksela, niebieski kolor oznacza decyzję o wygenerowaniu czarnego 

piksela) (Dzieduszyński, 2022a). 

 

3.1.4. Wnioski z eksperymentu wstępnego 

Prototyp wstępny został oceniony zarówno jakościowo, jak i ilościowo. Opracowany system 

wykazał bardzo wysoką skuteczność sięgającą 95,1 - 97,9% w przetwarzaniu złożonych zasad 
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kompozycyjnych przy podejmowaniu prostych decyzji przestrzennych w scenariuszu III. 

Im trudniejsze stawało się zadanie, tym słabsze wyniki były osiągane przez sieć neuronową, 

jednak nadal zawierały się we względnie wysokim zakresie 22,7 - 52,9% w zależności 

od złożoności mierzonych zasad. Bardzo wysoka wydajność w scenariuszu trzecim sugeruje, 

że sieć na podstawie zbioru treningowego potrafi prawidłowo nauczyć się zadanych zasad 

kompozycyjnych, jednak w scenariuszach I i II otrzymany wynik obniżyło dodanie zadania 

na etapie przetwarzania i aplikacji zasad kompozycyjnych, polegające na konieczności 

odtwarzania niezakrytych fragmentów kompozycji lub przetwarzania większej liczby 

sygnałów. Być może dodatkowym czynnikiem ograniczającym skuteczność w scenariuszach 

I i II był stosunkowo niewielki rozmiar wykorzystanej sieci neuronowej i zbioru treningowego. 

7000 przykładów treningowych to w kontekście głębokiego uczenia maszynowego bardzo 

mało i taka objętość zbioru treningowego prowadzi do bardzo szybkiego przetrenowania sieci. 

Innym problemem zidentyfikowanym w badaniu były zbyt agresywne różnice wprowadzone 

do dystrybucji między zbiorami treningowym i walidacyjnym, a zbiorem testowym. Różnice 

te miały docelowo zademonstrować zdolność sieci do generalizowania na niewidziane 

w treningu rodzaje kompozycji, jednak doprowadziły do znacznego obniżenia wyników 

na zbiorze testowym. Możliwe, że sieć „uznała” różnice w dystrybucji za pewne dodatkowe 

zasady kompozycyjne. Problem ten w dziedzinie głębokiego uczenia maszynowego nazywa 

się problemem przesunięcia dystrybucji (ang. covariate shift). Wydajność sieci mierzona 

na zestawie walidacyjnym (składającym się również z przykładów niewidzianych przez sieć 

na etapie treningu, jednak trzymających się tego samego zakresu możliwych osi 

kompozycyjnych), osiągnęła w scenariuszu I 40 - 58%, w scenariuszu II 46 - 65%, 

a w scenariuszu III 96 - 98,5%. 

Ze względu na złożoność rzeczywistego procesu projektowania 

architektoniczno-urbanistycznego wydaje się, że bezpośrednie zastosowanie narzędzia 

na podobnym poziomie zaawansowania co opracowany prototyp wstępny mogłoby przynieść 

ograniczone rezultaty. By sprawdzić jednak, do jakiego stopnia podobne narzędzie radziłoby 

sobie w rozpoznawaniu prawdziwych kontekstów przestrzennych, wytrenowałem nieznacznie 

powiększoną sieć ze scenariusza II na diagramatycznych schematach zabudowy 

warszawskiego Śródmieścia (tzw. szwarcplany). Następnie aplikowałem tak wytrenowaną sieć 

neuronową do uzupełniania brakującej zabudowy na terenie bardziej peryferyjnej dzielnicy 

Białołęka. Sytuacja ta w założeniu miała symulować „przeszczepienie” zasad kompozycyjnych 
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z warszawskiego śródmieścia na Białołękę przy jednoczesnym uzupełnianiu i respektowaniu 

zastanych na Białołęce kontekstów (Rys. 59). Co ciekawe, nawet niewielka sieć neuronowa, 

wytrenowana na bardzo ograniczonych, dwuwymiarowych kontekstach przestrzennych 

potrafiła odczytywać i wykorzystywać pewne urbanistyczne zasady kompozycyjne. Sieć 

wydawała się respektować zasady takie jak gęstość zabudowy, osiowość zabudowy, ogólną 

skalę obrysów budynków i konieczność kontynuacji pierzei. 

 

Rys. 59. Przykłady białołęckich struktur urbanistycznych zaproponowanych przez sieć 

neuronową wytrenowaną na szwarcplanach zabudowy Śródmieścia Warszawy. Zabudowa 

proponowana przez sieć znajduje się w czerwonych ramkach. Nawet przy niewielkiej 

rozdzielczości wynikającej z ograniczeń strukturalnych sieci i bardzo ograniczonych 

kontekstach reprezentowanych w przetwarzanych danych, sieć wydaje się respektować 

gęstość i osiowość zabudowy, skalę obrysów budynków i konieczność kontynuacji pierzei 

(Dzieduszyński, 2022a). 

 

3.2. Eksperyment główny 

3.2.1. Cele szczegółowe eksperymentu głównego 

Po zademonstrowaniu zdolności algorytmów głębokiego uczenia maszynowego 

do przetwarzania abstrakcyjnych kontekstów przestrzennych, kolejnym krokiem była próba 

aplikacji bardziej zaawansowanych sieci neuronowych do analizowania realnych 
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i obszerniejszych kontekstów przestrzennych w rzeczywistych miastach. Głównym celem 

eksperymentu głównego było stworzenie prototypowego ekstraktora punktów głównych 

i punktów formalnie podkreślonych w kompozycjach urbanistycznych. Projektowane 

narzędzie miało umożliwiać seryjne i powtarzalne przeprowadzanie czasochłonnych analiz 

kompozycyjnych. Ekstraktor taki stanowiłby wsparcie w praktyce projektowej architektów 

i urbanistów poprzez zmniejszenie ryzyka przeoczenia istotnych kontekstów i popełnienia 

błędu projektowego. W praktyce planistycznej i administracyjnej ekstrakcja punktów głównych 

potencjalnie mogłaby służyć do uczytelniania pozornie chaotycznych układów przestrzennych 

poprzez wskazywanie miejsc, którym powinna być poświęcona szczególna uwaga 

(np. ze względu na konieczność ich ochrony czy ze względu na ich potencjał rozwojowy 

i krystalizacyjny). Prototypowany algorytm mógłby być także wykorzystywany przez wszelkie 

instytucje zainteresowane ekonomicznym znaczeniem punktów głównych.  

Przetwarzanie kontekstów kompozycyjnych jest jednym z ważniejszych elementów procesu 

projektowego. Eksperyment główny stanowił szansę na zademonstrowanie w praktyce 

koncepcji projektowania hiperparametrycznego, będącego ewolucją paradygmatu 

projektowania parametrycznego. Demonstracja wymagała wykorzystania algorytmów uczenia 

maszynowego do przetwarzania złożonych, realnych kompozycji przestrzennych 

w rzeczywistych miastach. Proces przygotowania prototypu można było oprzeć na głównych 

założeniach architektury hiperparametrycznej: 

• Podejście do problemu projektowego na wyższym poziomie abstrakcji, niż 

w projektowaniu parametrycznym poprzez definiowanie hiperparametrów sieci 

neuronowej. 

• Wspólne odczytywanie kontekstów projektowych, zarówno przez projektanta, jak 

i algorytm głębokiego uczenia maszynowego. 

• Uzupełnienie narzędzi opartych na dedukcji także o narzędzia wykorzystujące 

rozumowanie indukcyjne. 

• Automatyzacja procesów, które do tej pory mogły być przeprowadzane jedynie przez 

człowieka. 

Celem była także jakościowa i ilościowa ocena skuteczności opracowanego prototypu 

i sprawdzenie, czy zwiększenie złożoności problemu względem eksperymentu wstępnego 

doprowadzi do osiągnięcia granic możliwości stosowanych sieci neuronowych.  
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3.2.2. Metodyka eksperymentu głównego 

Kodowanie kontekstów przestrzennych – mapa cech 

Projektowane narzędzie w założeniu odczytywać ma geometryczne uwarunkowania 

przestrzenne i na ich podstawie ustalać lokalizację ewentualnych głównych punktów 

kompozycyjnych. Uwarunkowania przestrzenne musiały być przedstawione w sposób 

spełniający następujące założenia: 

• Dane powinny reprezentować kluczowe, geometryczne cechy przestrzenne opisujące 

w możliwie pełny sposób kompozycję przestrzenną w skali urbanistycznej. 

• Dane powinny być aktualne i na bieżąco aktualizowane, by odzwierciedlać obecny stan 

przestrzeni. 

• Poszczególne cechy powinny być jak najbardziej od siebie niezależne (jedna cecha 

nie powinna bezpośrednio wynikać z innej). 

• Powinno być możliwe pobranie danych opisujących dowolne miejsce na Ziemi 

(lub możliwie największego zakresu możliwych miejsc) z zachowaniem zgodności 

danych między poszczególnymi miejscami. 

• Dane nie powinny naruszać prywatności osób i innych interesariuszy. 

• Dane powinny mieć wystarczająco dużą rozdzielczość umożliwiającą odczytywanie 

z nich kontekstów kompozycyjnych w skali urbanistycznej. 

• Dane powinny mieć wystarczająco niską rozdzielczość umożliwiającą ich efektywne 

przetwarzanie maszynowe na dostępnym sprzęcie. 

• Dane powinny być łatwo dostępne, darmowe i na otwartej licencji. 

• Dane powinny być możliwe do pobrania przez Internet przy pomocy API. 

• Dane powinny być przedstawione w formacie umożliwiającym ich przetworzenie przy 

pomocy dostępnych algorytmów uczenia maszynowego. 

Do projektowania map cech wybrałem narzędzie Mapbox Studio (Mapbox, 2023), pozwalające 

na tworzenie własnych, rastrowych map opartych na Open Street Map (OpenStreetMap 

contributors, 2023). Szablony stworzone w Mapbox Studio można opublikować i następnie 

odczytywać przy pomocy zapytań API dla dowolnych współrzędnych geograficznych w dużym 

zakresie skal i rozdzielczości. Oś horyzontalna map rastrowych odpowiada długości 

geograficznej, a oś wertykalna szerokości geograficznej. W serwisie Mapbox Studio 

przygotowałem 3 osobne szablony reprezentujące trzy osobne przestrzenie cech uznane 
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za najbardziej kluczowe w kontekście urbanistycznej kompozycji przestrzennej. Wybór cech 

kluczowych został dokonany na podstawie wniosków płynących z omówionej literatury 

przedmiotu oraz na podstawie dostępności danych w serwisie OSM. Pierwsza mapa cech 

reprezentuje topografię wraz z zabudową, druga – zieleń, a trzecia – układ komunikacyjny. 

Zabudowa i topografia terenu wspólnie stanowią najważniejszy kontekst budujący kompozycję 

przestrzenną. Zabudowa otaczająca obserwatora tworzy płaszczyzny naprowadzające 

i zatrzymujące wzrok, formuje rytmy, definiuje które elementy składają się na tło, a które 

wybijają się na pierwszy plan jako dominanty (Żórawski, 1962; Wejchert, 1984). Topografia 

terenu także formuje naprowadzenia widokowe, bariery przestrzenne, uwidacznia niektóre 

obiekty, a niektóre ukrywa (Ching, 2007; Wejchert, 1984). Elementy topograficzne, takie jak 

doliny rzek czy skarpy, mogą stanowić jedne z głównych elementów tożsamości miasta (Pluta, 

2001). Przestrzeń cech topografii i zabudowy została zakodowana w postaci rastrowego, 

ośmiobitowego obrazu: 

• 0: Tło. 

• 0 - 127: Topografia terenu centrowana względem wartości minimalnej (Rys. 60), skok 

o jedną wartość w przestrzeni cech oznacza skok o 2 m wysokości rzeczywistej. 

• 0 - 128: Zabudowa terenu, mosty, i wiadukty. Skok o jedną jednostkę odpowiada 

2 m wysokości rzeczywistej. 

Mapy topografii i zabudowy są sumowane do jednej mapy, w której wartości pikseli zawierają 

się w zakresie 0 - 255. 
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Rys. 60. Diagram przedstawiający centrowanie map topograficzny względem wartości 

minimalnej. Przy pobieraniu danych z serwisu Mapbox opracowany skrypt API rozpoznaje 

najmniejszą wartość piksela na obrazie i odejmuje tę wartość od wartości pozostałych 

pikseli. Dzięki temu mapa topograficzna przedstawia tylko wysokości względne 

i pozostawia więcej przestrzeni dla mapy zabudowy. Opracowanie własne. 

Drugą mapę cech stanowi mapa intensywności zieleni. Jak pisze Jan Gehl: 

„Drzewa, zieleń i kwiaty odgrywają kluczową rolę wśród elementów przestrzeni  

miejskiej. Drzewa (…) definiują przestrzeń miasta i pomagają zaakcentować ważne 

miejsca. Duże drzewo na placu informuje: «To jest miejsce», a szpalery na bulwarach 

podkreślają linearny porządek, zaś zwieszające się nad ulicami gałęzie sugerują 

istnienie zielonej przestrzeni w mieście.” (Gehl, 2014, s. 179-180) 

Na rolę zieleni w budowaniu kompozycji przestrzennej miejsca zwraca także Katarzyna Pluta. 

Szpalery zieleni mogą tworzyć ściany wnętrz urbanistycznych, a trawniki czy klomby 

na posadzce urbanistycznej mogą działać jak naprowadzenia (Pluta, 2014). Zieleń traktowana 

jest jako element służący budowaniu kompozycji urbanistycznej też przez dokumenty 

planistyczne, takie jak Studium Warszawy (Prezydent m.st. Warszawy, 2023). Zieleń 
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znajdującą się w polu percepcji zakodowałem względem jej intensywności opierając 

się na klasach występujących w OSM: 

• 0: Tło. 

• 51: Powierzchnie naturalne bez zieleni (tereny piaszczyste, skaliste, plaże). 

• 102: Zieleń niska (tereny trawiaste i uprawne). 

• 153: Zieleń średnio-niska (krzewy, zarośla, wrzosowiska, winnice). 

• 204: Zieleń średnio-wysoka (rodzinne ogrody działkowe, parki). 

• 255: Zieleń wysoka (lasy). 

Trzecia mapa reprezentuje układ komunikacyjny. Układ komunikacyjny w założeniu 

ma pomóc sieci neuronowej powiązać geometryczną kompozycję tworzoną przez zabudowę, 

topografię i zieleń z perspektywą użytkownika przestrzeni – zarówno pieszego, 

jak i zmotoryzowanego. W skali dużych miast układ komunikacyjny, ciągi, ulice wlotowe 

i bramy same w sobie stanowią także istotne elementy kompozycyjne (Pluta, 2001). Ulice 

i ścieżki determinują istnienie osi widokowych (Wejchert, 1984), przecięcie ciągów 

komunikacyjnych stanowi podkreślenie kompozycyjne (Ching, 2007; Alexander, i in., 1977) 

lub wręcz definiuje punkty miastotwórcze (Ratzel, 1882). Układ komunikacyjny podobnie 

jak zieleń i zabudowa został przedstawiony na mapie w poprzez gradient intensywności: 

• 0: Tło. 

• 31: Woda (rzeki, jeziora, kanały). 

• 63: Drogi w budowie. 

• 95: Chodniki, ścieżki, przejścia. 

• 127: Drogi bez klasyfikacji OSM. 

• 159: Drogi klasy „street” i „road” OSM. 

• 191: Drogi klasy „secondary” i „tertiary” OSM. 

• 223: Drogi klasy „primary” OSM. 

• 255: Drogi klasy „motorway” OSM. 

Elementy układu komunikacyjnego znajdujące się pod ziemią zostały przedstawione kolorem 

odpowiadającej jej klasy i linią przerywaną. 

Tak zdefiniowane trzy monochromatyczne mapy przestrzenne połączyłem w trójwymiarową 

macierz, którą można przedstawić także w postaci obrazu RGB o ośmiobitowej głębi koloru 

(Rys. 61).  
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Rys. 61. Mapa przestrzeni cech wykorzystanej w części eksperymentalnej. Mapa składa 

się z trzech, nałożonych na siebie map dwuwymiarowych przedstawionych na potrzeby 

wizualizacji w trzech kolorach podstawowych. Kolorem niebieskim oznaczono mapę 

topografii i zabudowy terenu, zielonym – intensywność zieleni, czerwonym – układ 

komunikacyjny. Opracowanie własne. 

W rzeczywistej przestrzeni trójwymiarowej taka mapa cech może być także przedstawiona jako 

pięciowymiarowy model zwokselizowany, w którym pierwszy wymiar stanowi długość 

geograficzna, drugi – szerokość geograficzna, trzeci – wysokość względna topografii 

i zabudowy, czwarty – intensywność zieleni, a piąty – intensywność układu komunikacyjnego 

(Rys. 62). 
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Rys. 62. Diagram przedstawiający możliwość przedstawienia przestrzeni cech 

w macierzowej postaci trójwymiarowej (po lewej) oraz w zwokselizowanej postaci 

pięciowymiarowej (po prawej). W obu interpretacjach osie X i Y odpowiadają 

współrzędnym geograficznym. Opracowanie własne. 

Zakres pola percepcji 

Ze względu na planowane wykorzystanie w eksperymencie głównym sieci typu GAN, opartej 

na nie w pełni splotowych sieciach neuronowych, pole percepcji na wejściu sieci neuronowej 

musiało mieć stałe wymiary – zarówno na etapie treningu, jak i inferencji. Konieczne było więc 

zdefiniowanie jednej skali i obszaru percepcji wykorzystanego w badaniu. Uwzględniając 

fraktalny charakter kompozycji przestrzennych, nie można obiektywnie przyjąć jakiejś skali 

analizy przestrzennej za bardziej trafną, bez uwzględnienia docelowego, interesującego nas 

problemu kompozycyjnego. W badaniu głównym zdecydowałem się na aplikację narzędzia 

do lokalnej skali urbanistycznej, która najczęściej pojawiała się w literaturze przedmiotu. 

Na potrzeby części eksperymentalnej niniejszej pracy za obszar pola percepcji w skali 

urbanistycznej przyjąłem kwadrat o bokach długości 1 km. Według Gehla obszar ten 

odpowiada średnim rozmiarom większości centrów miejskich takich miast jak Zurych, 

Brisbane, Pittsburg czy Kopenhaga. Promień tego obszaru, wynoszący 450 - 500 m, 

wyznaczony jest przez zasięg pięciominutowego spaceru. Powyżej tej wartości miejsce 

docelowe wydaje się odległe (Gehl, 2014). Obszar ten wpisuje się w także zakres rozpiętości 

obszarów zajmowanych przez „Społeczności 7000” definiowanych przez Christophera 

Alexandra. Według Alexandra w grupie 7000 osób pojedynczy człowiek nadal ma siłę 

oddziaływania na całą społeczność. Zbiorowiska ludzi powyżej granicy 10000 osób zaczynają 

działać dehumanizująco, głos pojedynczego człowieka przestaje być słyszalny i ważny. 
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Za przestrzenne granice obszaru społeczności 7000 Alexander przyjmuje od 0,25 do 2 mil 

(czyli 0,4 do 3,2 km). Gdy uwzględnimy rozmiary sąsiedztw centrów ekscentrycznych 

Alexandra (Rys. 25) wraz z tworzącymi je barierami i ścieżkami naprowadzającymi, zakres ich 

oddziaływania będzie wynosił około 1 km (Alexander, i in., 1977).  

Dodatkowo ze względu na ograniczenia sprzętowe, konieczne było operowanie na niewielkich 

obrazach. Przyjęte mapy cech mają więc wymiary 512 x 512 pikseli26, co odpowiada obszarowi 

o przybliżonych rozmiarach 1 x 1 km. Zakres taki pozwala na uchwycenie kompozycji 

przestrzennych w lokalnych skalach urbanistycznych przy jednoczesnym uchwyceniu sporych 

fragmentów głównych osi naprowadzających w skalach większych. Pokrycie analizą 

większych obszarów jest możliwe poprzez sekwencyjne przetwarzanie wielu, nakładających 

się na siebie kafelków pól percepcji. Mapy tworzone w serwisie Mapbox domyślnie korzystają 

z odwzorowania Merkatora, w którym im bardziej zbliżamy się do biegunów, tym bardziej 

zwiększa się deformacja powierzchni (PWN, 2024). Dla obszarów zastosowanych w badaniu 

(wszystkie znajdują się w strefie umiarkowanej) 1 piksel odpowiada średnio kwadratowi 

o bokach 2 x 2 m. Wartość ta jest zgodna z także wertykalnym skokiem jednostek w mapie 

topografii i zabudowy, który wynosi równo 2 m co jednostkę. Dwumetrowy limit skoku 

jednostek topografii wynika z ograniczenia serwisu Mapbox, który w momencie 

przygotowywania prototypu nie umożliwiał wyświetlania map topograficznych w wyższej 

rozdzielczości.  

Wybór modelowych punktów głównych, tworzenie zbioru treningowego i testowego 

Do wytrenowania sieci neuronowej potrzebny był możliwie jak największy zbiór treningowy 

oparty na różnych przykładach punktów głównych w kompozycjach o skali 

1 km kwadratowego. Współczesne sieci neuronowe operują na ogromnych zbiorach danych 

składających się nawet z miliardów przykładów treningowych (Schuhmann, i in., 2022). 

 

26 W ramach strojenia hiperparametrów przetestowałem także algorytmy oparte na polach percepcji 256 x 256 px 

oraz 768 x 768 px. W modelu 256 x 256 px przestrzeń cech była zbyt mocno zniekształcona przez skalowanie, 

przez co poszczególne cechy stały się nieczytelne. We wstępnych eksperymentach przy treningu zbyt często 

następował kolaps sieci skutkujący generowaniem przez nią jedynie czarnych obrazów. Sieć 768 x 768 px 

wykazała obiecującą skuteczność przy wstępnych testach ze względu na pole percepcji rozszerzone do 

1,5 x 1,5 km, jednak trening sieci był zdecydowanie zbyt wolny (nastąpiło ponad dwukrotne spowolnienie), przez 

co strojenie hiperparametrów  na dostępnym sprzęcie okazało się zbyt długotrwałe. 
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Ze względu na konieczność ręcznego wyboru modelowych punktów głównych i ich ręczne 

oznaczenie, opracowanie dużego zbioru treningowego w czasie przeznaczonym na badanie nie 

było możliwe. Na potrzeby prototypu przygotowałem niewielki zestaw danych złożony 

z 75 przykładów treningowych i 32 przykładów testowych. Zastosowałem technikę 

rozszerzenia zbioru danych metodami odbicia lustrzanego, losowego obrotu i kadrowania 

obrazów. W ten sposób uzyskałem 3000 przykładów treningowych i 160 przykładów 

testowych. Przykłady treningowe zostały wybrane z przeanalizowanych źródeł dotyczących 

architektoniczno-urbanistycznej kompozycji przestrzennej. Początkowa lista złożona była 

ze 143 przykładów. Ich pełna lista załączona jest w Aneksie (Załącznik 4). Przykłady 

obejmowały: 

• 14 przykładów z Obrazu Miasta Kevina Lyncha (Lynch, 1960). 

• 51 przykładów z Elementów Kompozycji Urbanistycznej Kazimierza Wejcherta 

(Wejchert, 1984). 

• 27 przykładów z O Budowie Formy Architektonicznej Juliusza Żórawskiego (Żórawski, 

1962). 

• 27 przykładów z Architecture Form, Space, and Order Francisa D.K. Chinga (Ching, 

2007). 

• 15 przykładów ze Studium Uwarunkowań i Kierunków Zagospodarowania 

Przestrzennego Miasta Łodzi (Prezydent miasta Łodzi, 2018). 

• 2 przykłady z archiwalnego studium Łodzi (Prezydent miasta Łodzi, 2010). 

• 8 własnych przykładów znanych mi z rodzinnego miasta Łodzi. 

Lista została następnie zredukowana do 75 pozycji. Usuniętych zostało 13 dominant 

niebędących punktami głównymi, 9 przykładów już nieistniejących lub zdezaktualizowanych 

przez zmiany w okolicznej zabudowie oraz 46 przykładów punktów formalnie podkreślonych 

niebędących punktami głównymi, lub punktów głównych manifestujących się w innych 

skalach. Do zbioru testowego wybrałem 32 miejsca z krajobrazu Warszawy reprezentujące 

zróżnicowane strukturalno-przestrzennie fragmenty zabudowy obejmujące tereny 

poprzemysłowe, większe założenia kompozycyjne, zabudowę jednorodzinną, zabudowę 

mieszkaniową wysokościową, historyczną tkankę śródmiejską, okolice parków i lasy miejskie, 

tereny wzdłuż rzeki, monofunkcyjną zabudowę biurową, tereny o dużym gradiencie 

topograficznym wzdłuż skarpy, urbanizowane tereny porolne, tereny z dominantami 

przestrzennymi oraz zabudowę otaczającą forty Twierdzy Warszawa. 
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• Plac Unii Lubelskiej (fragment założenia ujazdowskiego). 

• Plac Zbawiciela + place okoliczne (fragment założenia ujazdowskiego). 

• Pałac w Wilanowie (barokowe założenie kompozycyjne). 

• Plac Narutowicza (radialne założenie kompozycyjne). 

• Okolice muzeum Fryderyka Chopina (zabudowa na skarpie). 

• Osiedle Zacisze (zabudowa jednorodzinna). 

• Saska Kępa, ul. Francuska (zabudowa jednorodzinna). 

• Boernerowo (zabudowa jednorodzinna). 

• Ursynów Północny (wysokościowa zabudowa mieszkaniowa). 

• Ursynów Południowy, Natolin (wysokościowa zabudowa mieszkaniowa). 

• Okolice stacji metra Młociny (tereny poprzemysłowe, zabudowa wielorodzinna). 

• Sady Żoliborskie (historyczna zabudowa śródmiejska). 

• Stary Mokotów (historyczna zabudowa śródmiejska). 

• Okolice Cerkwi Praskiej (historyczna zabudowa śródmiejska). 

• Stara Praga (historyczna zabudowa śródmiejska) . 

• Okolice muzeum Powstania Warszawskiego (zróżnicowana zabudowa z nową 

zabudową biurową). 

• Okolice Domaniewskiej (monofunkcyjna zabudowa biurowa). 

• Zakłady FSO (tereny poprzemysłowe). 

• Ul. Modlińska na Białołęce (zabudowa porolna i poprzemysłowa). 

• Łazienki i Pałac na Wyspie (park). 

• Północna krawędź Pola Mokotowskiego (park). 

• Las Bielański (las miejski). 

• Bulwary Wiślane (teren przy rzece). 

• Okolice Stadionu Narodowego (dominanta przestrzenna). 

• Fort VIIA Służewiec (fort Twierdzy Warszawa). 

• Fort Szczęśliwice (fort Twierdzy Warszawa). 

• Fort Chrzanów (fort Twierdzy Warszawa). 

• Fort Blizne (fort Twierdzy Warszawa). 

• Fort Wawrzyszew (fort Twierdzy Warszawa). 

• Fort Bema (fort Twierdzy Warszawa). 

• Fort Służew (fort Twierdzy Warszawa). 
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Rys. 63. Przykłady trzech map cech ze zbioru treningowego sieci. Kanał niebieski 

przejaskrawiony na potrzeby wizualizacji. Od lewej Stare Miasto w Krakowie, Łuk 

Triumfalny w Paryżu i Cytadela w Irbilu. Opracowanie własne. Mapa cech przygotowana 

w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map (OpenStreetMap 

contributors, 2023). 

Obrazy do zbioru treningowego i testowego zostały pobrane z serwisu Mapbox przy pomocy 

skryptu API napisanego w języku Python. Skrypt pobierał dla zadanych współrzędnych 

poszczególne mapy cech i łączył je w jeden obraz RGB. Pobrane obrazy miały rozmiar 

1024 x 1024 px i obejmowały obszar 2 x 2 km, dzięki czemu możliwe było późniejsze losowe 

kadrowanie kompozycji do docelowego rozmiaru 512 x 512 px i losowy obrót obrazu 

(Rys. 64). W celu uniknięcia sytuacji, w których treningowy punkt główny znajdowałby się na 

samej krawędzi obrazu, kadrowanie zostało ograniczone przez nieprzekraczalny margines 

o szerokości 32 px. By nie zaburzyć kompozycyjnych relacji północ-południe, losowy obrót 

obrazów został ograniczony do zakresu kątów od -15° do 15°. Obrazy testowe nie były losowo 

obracane. 
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Rys. 64. Próby stworzenia algorytmu rozszerzającego zestaw treningowy o przykłady 

syntetyczne. Środowisko Grasshopper. Ostatecznie algorytm nie został wykorzystany. 

Opracowanie własne. 

Ze względu na bardzo mały zestaw treningowy, oprócz wykorzystania powyższych technik 

początkowo planowałem rozszerzenie zestawu treningowego o przykłady wygenerowane 

syntetycznie, podobnie jak w przypadku eksperymentu wstępnego (Dzieduszyński, 2022a). 

W tym celu przygotowałem w środowisku Grasshopper algorytm parametryczny tworzący 

kompozycję przestrzenną udającą formalnie rzeczywistą kompozycję miejską poprzez zadane 

zasady kompozycyjne i serię generatorów pseudolosowych gwarantujących zróżnicowane 

wyniki (Rys. 64). Wykorzystując zasady kompozycyjne zdefiniowane przez Żórawskiego 

(Żórawski, 1962), algorytm próbował generować obrazy jak najlepiej wpisujące 

się w przestrzeń cech. W momencie opracowywania tego narzędzia, przestrzeń cech miała 

trochę inną strukturę, w której w kanale zielonym obrazu zamiast zieleni zapisana była 

zabudowa, a kanał niebieski odpowiadał jedynie topografii terenu. Kanał czerwony, tak jak 

w docelowej przestrzeni cech, opisywał układ komunikacyjny (Rys. 65).  



154 

 

 

Rys. 65. W górnym rzędzie – przykłady trzech zasad kompozycyjnych podporządkowanych 

punktom głównym zdefiniowane przez Żórawskiego (Żórawski, 1962). W środkowym 

rzędzie – osie kompozycyjne i punkty główne stanowiące punkty wyjścia dla algorytmu 

tworzącego syntetyczne przykłady treningowe. W dolnym rzędzie – wygenerowane przez 

algorytm syntetyczne konteksty przestrzenne. Ostatecznie algorytm nie został wykorzystany. 

Opracowanie własne. 

W pierwszej kolejności przy pomocy generatorów pseudolosowych algorytm definiował 

środkowy punkt główny i podporządkowane mu główne osie naprowadzające. W drugiej 

kolejności na podstawie zdefiniowanych osi i punktu głównego, generowana była sieć 

komunikacyjna oraz symulowana zabudowa wpisująca się w utworzone kwartały. W ostatnim 

kroku generowany był pseudolosowy gradient topografii terenu. Powstałe obrazy niestety były 
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zbyt uproszczone i nie symulowały w odpowiednio realistyczny sposób rzeczywistych map 

kontekstów przestrzennych. Innymi słowy, w przestrzeni cech grupa obrazów syntetycznych 

była zbyt odległa od grupy obrazów treningowych. Wykorzystanie tych obrazów do treningu 

sieci neuronowej prowadziłoby do problemu przesunięcia dystrybucji (ang. covariate shift), 

w którym sieć zamiast uczyć się o kompozycji miast, uczyłaby się o syntetycznych obrazach 

stworzonych w Grasshopperze. Dodatkowo, w pierwotnej, niezoptymalizowanej wersji 

algorytmu, wygenerowanie pojedynczego przykładu treningowego zajmowało dwie minuty, 

co znacząco spowalniało iteracyjne poszukiwanie najlepszych parametrów. Ostatecznie 

ze względu na napotkane trudności algorytm do syntetycznego rozszerzania zbioru danych 

nie został wykorzystany i sieć neuronowa była wytrenowana jedynie na rzeczywistych 

przykładach punktów głównych zidentyfikowanych w analizowanej literaturze. 

Oznaczanie punktów głównych – mapa celu 

Omówione mapy cech stanowiły dla projektowanej sieci neuronowej dane wejściowe. Danymi 

wyjściowymi były mapy celu w przestrzeni celu (ang. target space), przedstawiające 

odczytywane przez sieć neuronową punkty główne. Format map celu został ustalony w oparciu 

o źródła literaturowe dotyczące kompozycji przestrzennej i eksperymenty na etapie strojenia 

hiperparametrów systemu. 

Czy istnieje jakaś praktyczna granica odróżniająca pojedynczy punkt od obszaru? W dużej 

mierze jest to kwestia umowna. W Miastach dla ludzi Jan Gehl definiuje trzy wartości 

graniczne wyznaczające odległości „publiczne społeczne”. W najbardziej intymnej odległości 

10 m mamy możliwość pełnego odbierania drugiego człowieka wszystkimi zmysłami. 

Od 10 m do 25 m nadal możemy odbierać emocje i ruch drugiej osoby, ale ze zmysłów 

pozostają nam do dyspozycji jedynie wzrok i słuch. Odległość 100 m to maksymalny dystans 

wzrokowego odbioru ruchu innej osoby. Powyżej tej wielkości postrzegany człowiek przestaje 

być czytelny, odbierany jest wtedy jedynie jako niewyraźna plamka. Odległość ta wyznacza 

także maksymalną rozpiętość pojedynczego miejsca, np. placu miejskiego (Gehl, 2014). Można 

uznać, że w przypadku punktów głównych stanowiących jednocześnie przestrzeń publiczną 

jego maksymalny promień może wynosić połowę tego dystansu czyli 50 m. Powyżej tej granicy 

ciężko mówić już w kontekście urbanistycznym o pojedynczym punkcie. Należałoby raczej 

zacząć nazywać daną strukturę obszarem. W praktyce wymieniane w literaturze punkty główne 

o skali urbanistycznej wpisującej się w obszar percepcji 1 x 1 km rzadko mają aż takie rozmiary 

(Załącznik 4). Średnica większości z nich zawiera się w zakresie od 10 do 50 m. Za średnicę 
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punktu głównego w przestrzeni celu przyjąłem medianę tych wartości wynoszącą 32 m. 

W przestrzeni celu o zakresie 512 x 512 px przekłada się to na średnicę punktu wynoszącą 

16 pikseli. 

Początkowo planowałem przedstawić w przestrzeni celu jedynie monochromatyczne punkty 

główne, jednak przy tak sformatowanych danych treningowych testowane sieci nie uczyły 

się prawidłowo. Waga czarnego tła względem drobnych punktów okazywała się tak duża, 

że w większości przypadków następował kolaps 27  sieci do generowania pustych, czarnych 

obrazów. W celu zwiększenia wagi punktów dookoła każdego punktu dodałem warstwę 

z gaussowskim rozmyciem punktu o średnicy 86 pikseli. Dzięki utworzonemu w ten sposób 

gradientowi nie tylko zwiększyła się waga niepustych pikseli w reprezentacji celu, 

ale jednocześnie funkcja straty sieci neuronowej została odwrotnie skorelowana z odległością 

wygenerowanego przez sieć punktu od punktu docelowego. Nawet gdy wygenerowany przez 

sieć punkt znajdował się poza 16-pikselowym obrysem punktu docelowego, sieć dostawała 

 

27 Kolaps sieci typu GAN oznacza sytuację, w której generator przestaje tworzyć zróżnicowane dane wyjściowe 

i zaczyna generować bardzo podobne lub identyczne przykłady. Prowadzi to zazwyczaj do znacznej dysproporcji 

między stratą generatora i dyskryminatora, co efektywnie zatrzymuje dalszy trening sieci. 

 

Rys. 66. Ewolucja mapy celu dla sieci neuronowej na przykładzie florenckiej katedry Santa 

Maria del Fiore. Od lewej do prawej: mapa cech (kanał niebieski przejaskrawiony 

na potrzeby wizualizacji); pierwsza generacja mapy celu z pojedynczym punktem głównym; 

druga generacja mapy celu uzupełniona o gradient dookoła punktu (gradient 

przejaskrawiony na potrzeby wizualizacji) oraz ostateczna mapa celu uzupełniona o osie 

kompozycyjne (gradient przejaskrawiony na potrzeby wizualizacji). Opracowanie własne. 

Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map 

(OpenStreetMap contributors, 2023). 
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pewną nagrodę, o ile punkt znalazł się w obrębie 86-pikselowego gradientu. Im bliżej 

docelowego punktu znajdował się wygenerowany punkt, tym większą nagrodę otrzymywała 

sieć. Zmiana ta znacząco ułatwiła sieci znajdowanie docelowej pozycji punktu głównego. 

Dodatkową zmianą było dodanie czerwonego kanału, przedstawiającego osie kompozycyjne 

mające wpływ na dany punkt główny. Warstwa ta nie tylko zwiększyła skuteczność treningu 

sieci przez zwiększenie wagi niepustych pikseli w przestrzeni celu, ale jednocześnie może być 

wykorzystana pomocniczo przy interpretacji wygenerowanych przez sieć propozycji punktów 

głównych (Rys. 66).  

Struktura sieci neuronowej 

Korzystając z doświadczeń płynących z eksperymentu wstępnego i przeprowadzonego 

rozpoznania stosowanych w CAAD algorytmów, zdecydowałem się oprzeć strukturę sieci 

neuronowej na sieci typu CNN. Ze względu na większą złożoność problemu względem 

eksperymentu wstępnego, wykorzystałem bardziej złożony algorytm generatywnych sieci 

przeciwstawnych GAN inspirowany siecią pix2pix (Isola, i in., 2017), będącą jednym 

z najszerzej stosowanych algorytmów typu GAN. Opracowany algorytm składał się z dwóch 

części zbudowanych z prostszych sieci splotowych (Rys. 67). Generatora opartego na sieci 

U-Net (Ronneberger, i in., 2015) i dyskryminatora opartego na patchGAN (Li i Wand, 2016). 

W czasie treningu obie sieci składowe uczyły się jednocześnie. Generator był odpowiedzialny 

za tworzenie obrazów wyjściowych w przestrzeni celu na podstawie kontekstów wejściowych. 

Dyskryminator próbował odróżnić obrazy tworzone przez generator od obrazów celu 

pochodzących ze zbioru treningowego. Generator był nagradzany za oszukanie 

dyskryminatora, a dyskryminator za rozróżnienie prawdziwych danych treningowych od tych 

syntetycznych (funkcja straty GAN loss). Dodatkowo generator był nagradzany za tworzenie 

obrazów, w których wartości pikseli były jak najbardziej zbliżone do wartości pikseli obrazów 

treningowych (funkcja straty L1 loss). 
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Rys. 67. Diagram modelu sieci neuronowej typu GAN wykorzystanej w eksperymencie 

głównym. Sieć inspirowana jest modelem pix2pix (Isola, i in., 2017). Generator tworzy 

mapy celu na podstawie map cech. Dyskryminator porównuje wyjście generatora 

z treningową mapą celu i próbuje oznaczać, które fragmenty obrazów są stworzone przez 

generator, a które pochodzą ze zbioru treningowego. Generator jest nagradzany za obrazy 

potrafiące oszukać dyskryminator. Obie sieci uczą się wspólnie, zwiększając wzajemnie 

swoją skuteczność. Przy inferencji wytrenowanego modelu wykorzystywany jest tylko 

generator. Opracowanie własne. 

W celu zdefiniowania najlepszych hiperparametrów algorytmu, wykorzystałem metodę 

przeszukiwania losowego (ang. random search), zgodnie z którą losowo próbkowałem zestawy 

hiperparametrów z przedziałów najczęściej stosowanych w algorytmach wykorzystujących 

pix2pix rozpoznanych w kwerendzie. Zestawy hiperparametrów były następnie wykorzystane 
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do rozpoczęcia treningu sieci. W początkowej fazie treningu możliwe było odrzucenie dużej 

części zestawów, ponieważ prowadziły one do nieprawidłowego uczenia się sieci skutkującego 

jej kolapsem, znaczącym spowolnieniem treningu lub występowaniem zbyt silnego 

przetrenowania. Najlepsze zestawy hiperparamterów zostały wykorzystane do pełnego 

wytrenowania sieci. Ostateczny algorytm został wybrany w oparciu o jakościową ocenę 

generowanych obrazów, zarówno na zestawie treningowym, jak i testowym. Ze względu na 

ograniczone możliwości czasowe i moc obliczeniową, nie skorzystałem z bardziej 

systematycznej metody przeszukiwania siatki (ang. grid search).  

Najważniejsze hiperparametry algorytmu obejmowały: 

• Wymiary przestrzeni cech (512 x 512 x 3). 

• Wymiary przestrzeni celu (512 x 512 x 3). 

• Rozmiary obu sieci, liczbę parametrów w poszczególnych warstwach (około 53 miliony 

trenowalnych parametrów) (Załącznik 7). 

• Liczbę i rodzaj warstw (warstwy splotowe) (Rys. 67). 

• Funkcje aktywacji (ReLU, LeakyReLU i tanh). 

• Parametr lambda decydujący o wagach strat GAN loss i L1 loss (parametr zmienny 

w trakcie treningu: 𝜆 = 200  przez pierwszą godzinę, 𝜆 = 500  przez kolejne  

26h 𝜆 = 1000 przez kolejne 21h, 𝜆 = 2000  w ostatnich 84 godzinach). 

• Optymalizator (Adam, 𝐿𝑅 = 1𝑒 − 5, 𝛽1 = 0,5). 

• Techniki regularyzacyjne (brak dropoutu). 

Ostateczna wersja sieci neuronowej została wytrenowana w 132 godziny na karcie graficznej 

Nvidia GF RTX 2080 Super. Dyskryminator wykorzystany był jedynie w trakcie treningu. 

Po wytrenowaniu sieci, w momencie inferencji (rozpoznawania głównych punktów 

kompozycyjnych) używany jest tylko generator. 

Testowanie algorytmu 

Wytrenowany algorytm został przetestowany na opracowanym  zbiorze testowym (Załącznik 

5). W celu rozszerzenia zbioru testowego wykorzystałem metodę losowego przesuwania kadru. 

Zbiór testowy został rozszerzony do 160 obrazów. Ocena skuteczności została oparta na 

analizie ilościowej i jakościowej. Z popularnych w dziedzinie przetwarzania sygnału 

ilościowych metod ewaluacji obrazów warto wyróżnić błąd średniokwadratowy MSE (ang. 

Mean Squared Error), wskaźnik podobieństwa strukturalnego SSIM (ang. Structural Similarity 
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Index) oraz  CW-SSIM (ang. Complex Wavelet Structural Similarity Index) (Wang i Bovik, 

2008). Wszystkie te metody pozwalają na zestawienie ze sobą obrazu celu z obrazem 

testowanym w celu wyliczenia wartości podobieństwa między oboma obrazami. Wszystkie są 

szeroko stosowane i łatwe do implementacji ze względu na ich reprezentację w popularnych 

bibliotekach służących do przetwarzania zbiorów danych. MSE i SSIM są bardzo podatne na 

percepcyjnie nieistotne zmiany obrazu, takie jak drobne przesunięcia czy obroty. CW-SSIM 

radzi sobie z tymi sytuacjami o wiele lepiej (Rys. 68).  

 

Rys. 68. Porównanie metod ewaluacji podobieństwa obrazów MSE, SSIM i CW-SSIM 

przygotowane przez Zhou Wanga i Alana C. Bovika. a) obraz źródłowy; b) zwiększony 

kontrast; c) przesunięcie luminancji; d) szum gaussowski; e) szum impulsowy; f) kompresja 

JPEG; g) rozmycie; h) oddalenie; i) przesunięcie w prawo; j) przesunięcie w lewo; k) obrót 

przeciwny do ruchu wskazówek zegara; l) obrót zgodny z ruchem wskazówek zegara (Wang 

i Bovik, 2008). W przypadku opracowanego algorytmu żadna z powyższych metod 

ewaluacji nie była skorelowana z rzeczywistą jakością tworzonych przez sieć neuronową 

obrazów. 
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Mimo tego, ze względu na specyfikę zbioru testowego oraz całej przestrzeni celu, żadna z tych 

metod nie mogła być wykorzystana w ewaluacji ilościowej wytrenowanej sieci neuronowej. 

Ten sam punkt główny można wskazać na podstawie wielu różnych zestawów linii 

naprowadzających. W zbiorze treningowym liczba pikseli linii naprowadzających jest 

kilkudziesięciokrotnie większa od liczby pikseli samych punktów głównych, co przełożyłoby 

się na wyliczenie bardzo dużego błędu w sytuacji uwzględnienia alternatywnych linii 

naprowadzających. Co więcej, nawet uwzględnienie jedynie kanału zawierającego sam punkt 

główny nie rozwiązuje problemu. Kompozycja urbanistyczna ma charakter palimpsestyczny. 

W obrębie jednego kadru pola percepcji mogą nakładać się różne kompozycje przestrzenne 

podporządkowane różnym punktom głównym. Uwzględnienie alternatywnej kompozycji 

bazowej skutkujące wygenerowaniem innego punktu głównego nie stanowiłoby więc błędu. 

Z tego powodu w ramach analizy ilościowej wziąłem pod uwagę głównie kryterium 

wygenerowania przynajmniej jednego punktu głównego. Po spełnieniu warunku ilościowego 

sieć była testowana metodą jakościową względem czterech możliwych przypadków 

rozpoznania punktu głównego: 

• Czy zaznaczony punkt to dominanta lub punkt orientacyjny o znaczącej skali 

i lokalizacji podkreślonej przez kompozycję miejską i/lub topografię terenu? 

• Czy zaznaczony punkt jest zakończeniem założenia osiowego? 

• Czy zaznaczony punkt jest punktem centralnym w kompozycji radialnej? 

• Czy zaznaczony punkt jest jednym z głównych węzłów założenia sieciowego? 

Jeśli przynajmniej jedno z kryteriów było spełnione, punkt główny zostawał uznawany 

za prawidłowy. Zanotowane zostały przypadki, w których pominięcie wygenerowania punktu 

głównego nie stanowiło błędu ze względu na charakterystykę danej mapy cech. Dodatkowo, 

sprawdzana była sensowność wygenerowanych linii naprowadzających, jednak ich jakość nie 

wpływała na ewaluację dotyczącą punktów głównych. Ewaluacja jakościowa była 

przeprowadzana metodą analizy eksperckiej na każdym ze 160 przykładów testowych 

(Załącznik 5). Pomocniczo, statystyki dotyczące liczby oznaczonych przez sieć neuronową 

pikseli zostały wykorzystane do ewaluacji sieci neuronowej w zakresie seryjnego uczytelniania 

kompozycji przestrzennych. 
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3.2.3. Wyniki eksperymentu głównego 

Wyniki ilościowe 

W czasie treningu trwającego 132 godziny sieć neuronowa uczyła się rozpoznawać punkty 

główne w zadanych kontekstach przestrzennych zbioru treningowego. Trening został 

zatrzymany w momencie stabilizacji funkcji straty. Dodatkowe wydłużanie treningu nie 

przynosiło wymiernych korzyści. Dyskryminator już w pierwszych godzinach treningu 

osiągnął bardzo dobrą skuteczność w rozpoznawaniu obrazów tworzonych przez generator. 

Z tego powodu funkcja straty „GAN loss” przez większość treningu pozostała stabilna. Mimo 

tego, ze względu na zwiększającą się w trakcie treningu wagę straty L1 generatora 

(zwiększający się parametr λ), generator stopniowo poprawiał swoją skuteczność w tworzeniu 

obrazów wpisujących się w przestrzeń celu. Wykresy przedstawione poniżej przedstawiają na 

osi pionowej wartości funkcji straty w trakcie treningu. Oś pozioma odpowiada kolejnym 

punktom kontrolnym (Rys. 69). 

Wytrenowana sieć neuronowa została przetestowana na zbiorze testowym (Załącznik 5). 

W 25,6% obrazów testowych algorytm nie rozpoznał w mapach cech żadnego punktu 

głównego. W większości tych przypadków nierozpoznanie punktu głównego stanowiło 

zdecydowany błąd sieci. Szczególnie zastanawiające jest pominięcie w niektórych kadrach pola 

percepcji tak oczywistych punktów głównych, jak pałac w Wilanowie, pałac na wyspie 

w Łazienkach Królewskich czy Stadion Narodowy (Rys. 70). Zjawisko to występowało 

w 23,1% obrazów testowych. W niektórych obrazach wejściowych, tak jak przykładowo 

w przypadku Stadionu Narodowego, lekkie przesunięcie kadru skutkowało prawidłowym 

rozpoznaniem pominiętego punktu. W innych jednak, jak w przypadku pałacu w Wilanowie, 

sieć konsekwentnie odmawiała uznania punktu za główny w kilku różnych kadrach mapy cech. 
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Rys. 69. Wartości funkcji straty na zbiorze treningowym dla punktów kontrolnych od 

1 do 254. Oś horyzontalna odpowiada kolejnym punktom kontrolnym (ze względu na 

nierównomierne próbkowanie punktów kontrolnych oś ta nie stanowi osi czasu). Linia 

szara: wartości funkcji straty uśrednione z 4 podzbiorów treningowych. Linia czarna: 

średnia bieżąca z 9 kolejnych punktów kontrolnych (dla 4 podzbiorów treningowych). Linia 

czerwona: logarytmiczna linia trendu (dla 4 podzbiorów treningowych). Opracowanie 

własne. 

W części zadanych kontekstów przestrzennych nie dało się jednak jednoznacznie wskazać 

żadnego punktu głównego. W tych przypadkach, stanowiących 2,5% zbioru testowego, 

pominięcie wygenerowania punktu nie stanowiło błędu. Przykładami takimi były mapy cech 

przedstawiające środek Lasu Bielańskiego, hale dawnych zakładów przemysłowych FSO 

czy pola uprawne w pobliżu Fortu Chrzanów (Rys. 71). 
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Rys. 70. Przykłady błędnych przypadków, w których nie został rozpoznany żaden punkt 

główny. Na górze mapy cech, na dole odpowiadające im obrazy stworzone przez sieć 

neuronową. Po lewej pałac w Wilanowie. Po środku Pałac na Wyspie w Łazienkach 

Królewskich. Po prawej Stadion Narodowy. Kanał niebieski map cech przejaskrawiony 

na potrzeby wizualizacji. Opracowanie własne. 

W 74,4% zadanych kontekstów algorytm rozpoznał przynajmniej jeden punkt główny. 

50,0% z nich stanowiło dominanty lub punkty orientacyjne o znaczącej skali i lokalizacji 

podkreślonej przez kompozycję miejską i/lub topografię terenu. 13,8% punktów głównych 

to zakończenia założeń osiowych. 10,6% to punkty centralne w kompozycji radialnej. 

Równorzędne węzły założeń sieciowych stanowiły 3,8% przypadków. Ogólna skuteczność 

sieci w rozpoznawaniu punktów głównych kompozycji przestrzennej, z uwzględnieniem 

przypadków, w których pominięcie punktu nie stanowiło błędu, wyniosła 59,4%. Dodatkowo 

sprawdziłem, czy oznaczone przez sieć pomocnicze linie naprowadzające prawidłowo opisują 

zadane kompozycje przestrzenne. Jako ekstraktor linii naprowadzających, algorytm osiągnął 

skuteczność na poziomie 75,6%. 
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Rys. 71. Przykłady, w których niewygenerowanie punktu głównego nie stanowiło błędu. 

Na górze mapy cech, na dole odpowiadające im obrazy stworzone przez sieć neuronową. 

Po lewej – hale poprzemysłowe zakładów FSO. W środku – fragment Lasu Bielańskiego. 

Po prawej – pola uprawne w pobliżu Fortu Chrzanów. Kanał niebieski map cech 

przejaskrawiony na potrzeby wizualizacji. Opracowanie własne. 

Wsparcie projektowo-planistyczne 

W celu zademonstrowania możliwości seryjnego przetwarzania większych obszarów, 

zaaplikowałem wytrenowaną sieć neuronową do lewobrzeżnego fragmentu zabudowy 

śródmiejskiej Warszawy. Obszar ten miał powierzchnię 25 km2 i został podzielony 

na 100 kafelków odpowiadających pojedynczym polom percepcji opracowanego algorytmu 

(w przybliżeniu 1 km2). Kolejne kafelki były rozłożone na siatce o rozpiętości 250 m, więc 

każdy kolejny kafelek nakładał się na połowę powierzchni poprzedniego. 100 wynikowych 

obrazów wygenerowanych przez sieć neuronową zostało połączonych w jeden obraz, który 

nałożyłem na mapę Warszawy (Rys. 72). Algorytm na zadanym obszarze rozpoznał 64 punkty 

główne. 43 z nich spełniały warunki ewaluacji dla zbioru testowego. 2 punkty powtarzały 

się z punktami ze zbioru treningowego, więc nie zostały uwzględnione w wyliczeniu 

skuteczności (Załącznik 6). Na fragmencie śródmieścia Warszawy sieć osiągnęła wyższą 

skuteczność w rozpoznawaniu punktów głównych niż na zbiorze testowym. Skuteczność 

ta wyniosła 67,2%.  
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Rys. 72. Demonstracja seryjnego przetwarzania większych obszarów przy pomocy 

opracowanej sieci neuronowej. 64 punkty główne i osie kompozycyjne rozpoznane przez 

sieć neuronową na obszarze 25 km2 lewobrzeżnej zabudowy śródmiejskiej Warszawy. 

Po lewej – obrazy wygenerowane przez sieć nałożone na mapę przestrzeni cech. 

Po prawej – nałożone na mapę Open Street Map. Czerwone linie to osie kompozycyjne. 

Pełna lista punktów rozpoznanych przez sieć przedstawiona jest w aneksie (Załącznik 6). 

Opracowanie własne. Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox, 

2023) i Open Street Map (OpenStreetMap contributors, 2023). 

Niektóre ze wskazanych punktów na pierwszy rzut oka nie wydają się kompozycyjnie ważne, 

jednak po bliższym przyjrzeniu się otaczającej tkance miejskiej ich rola staje się jaśniejsza. 

Algorytm wskazał kilka punktów z potencjałem projektowym, którym powinna 

być poświęcona dodatkowa uwaga. Przykładem takiego punktu jest ostroga regulacyjna Wisły, 

znajdująca się na przedłużeniu ul. Ratuszowej. Znajdująca się na ostrodze ścieżka piesza 

nie tylko stanowi naturalne przedłużenie i zakończenie osi ul. Ratuszowej, ale podkreślona jest 

od południowej strony przez oś jednej z większych wysp piaszczystych i  jednocześnie 

wyznacza bardzo atrakcyjny punkt widokowy otwierający się na Stare Miasto. Wskazana przez 

algorytm lokalizacja połączona jest z rekreacyjnymi sieciami pieszo-rowerowymi Parku 

Praskiego i warszawskiego ZOO, przez co wydaje się bardzo dobra dla lokalizacji na przykład 

reprezentacyjnego molo na Wiśle, mogącego dodatkowo powiązać miasto z rzeką (Rys. 73). 

Algorytm wskazał także szereg punktów o wysokiej wartości komercyjnej – zlokalizowanych 

w reprezentacyjnych obszarach biurowych i turystycznych, podkreślonych wizualnie przez 
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ekspozycje widokowe, powiązanych z dominantami wysokościowymi o dużej kubaturze 

i dobrze powiązanych z układem komunikacyjnym (Załącznik 6). 

 

Rys. 73. Oznaczony czerwoną strzałką punkt wskazany przez sieć neuronową na ostrodze 

regulacyjnej Wisły na przedłużeniu ul. Ratuszowej. Punkt wydaje się dobrym miejscem na 

lokalizację reprezentacyjnego molo z widokiem na Stare Miasto. Opracowanie własne. 

Podkład przygotowany w oparciu o serwis Open Street Map (OpenStreetMap contributors, 

2023). 

Uczytelnianie kompozycji miejskiej 

Oprócz wskazywania samych punktów głównych wytrenowana sieć neuronowa podświetla 

także osie naprowadzające, które zostały wykorzystane do wskazania danego punktu głównego. 

Pomaga to w interpretacji proponowanych przez algorytm punktów głównych. Po nałożeniu 

na mapę miasta oba te źródła informacji mogą być wykorzystane do uczytelniania kompozycji 

miejskiej. Przykład założenia ujazdowskiego w Warszawie pokazuje, że sieć prawidłowo 

podświetliła większość głównych osi budujących kompozycję założenia. Oznaczone zostały 

też niektóre z punktów głównych, takie jak południowa pierzeja placu Trzech Krzyży, 

skrzyżowanie osi przy placu Na Rozdrożu, północne i południowe otwarcie placu Konstytucji, 

skrzyżowanie Nowowiejskiej z Waryńskiego, i plac Unii Lubelskiej. Sieć pominęła kilka 

ważnych punktów, takich jak plac Zbawiciela czy Zamek Ujazdowski. Oś stanisławowska 

nie została także zaznaczona w rejonie parku Agrykola i wzdłuż Kanału Piaseczyńskiego. 

Mimo to, założenie ujazdowskie zostało oznaczone dosyć czytelnie w sposób umożliwiający 

jego identyfikację. Sieć neuronowa o wiele gorzej poradziła sobie z osią saską. Jako 

oś kompozycyjna podświetlony został jedynie jej krótki, zachodni fragment. Prawidłowo 
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podświetlona została też skośna oś poprzeczna ul. Przechodniej i Granicznej. Na samej osi 

saskiej został oznaczony tylko jeden punkt główny – Hala Gwardii (Rys. 74). Poza 

wymienionymi większymi założeniami kompozycyjnymi sieć neuronowa zidentyfikowała 

i oznaczyła także pewne mniejsze, warszawskie układy kompozycyjne. Wśród rozpoznanych 

przykładów warto wymienić bramę wyznaczoną przez wieżowce Forest i Babka Tower 

w obrębie strefy dominant wysokościowych ronda „Radosław”, założenie „Bramy 

Zachodniej”, czy zagłębie biurowe nazywane potocznie przez mieszkańców warszawskim 

„Isengardem” (Załącznik 6). Warto też wymienić niektóre przykłady, w których sieć nie dała 

sobie rady z rozpoznaniem bardzo czytelnych kompozycji przestrzennych, jak choćby radialne 

założenie Placu Narutowicza, w którym algorytm oznaczył tylko części głównych osi 

naprowadzających, a znajdujący się na przecięciu osi kościół św. Jakuba nie został oznaczony 

jako punkt główny. Podobnie nie zostało rozpoznane znajdujące się w zbiorze testowym 

założenie wilanowskie.  

 

Rys. 74. Punkty główne (biały) i osie naprowadzające (czerwony) odczytane przez sieć 

neuronową w obszarze założenia ujazdowskiego (po lewej) i założenia osi saskiej 

(po prawej). Kolorem zielonym oznaczone główne osie kompozycyjne. Sieć skutecznie 

oznaczyła większość założenia ujazdowskiego, jednak oś saska została prawie całkowicie 

pominięta. Opracowanie własne. Podkład przygotowany w oparciu o Open Street Map 

(OpenStreetMap contributors, 2023). 
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W obecnej formie prototyp nie jest w stanie uchwycić wszystkich założeń kompozycyjnych. 

Bardzo trudno jest przygotować ilościowy test umożliwiający ujęcie tej cechy w postaci jakiejś 

obiektywnej metryki, jednak przykłady Wilanowa i nierozpoznanej osi saskiej demonstrują, 

że do interpretacji wyników wygenerowanych przez sieć neuronową trzeba podchodzić 

ostrożnie. 

Oprócz jakościowej analizy generowanych przez sieć obrazów, w celu uczytelniania 

kompozycji przestrzennej możliwe jest wykorzystanie statystyk zliczających podświetlone 

przez sieć piksele, wpisujące się w kategorię punktów głównych i osi naprowadzających. 

W celu demonstracji tej metody z obszaru przetworzonego seryjnie fragmentu zabudowy 

śródmiejskiej Warszawy wyszczególniłem 5 obszarów o różnym „stopniu skomponowania” 

przestrzeni (Rys. 75): 

• A: całość testowanego obszaru. 

• B: okolice Wisły w rejonie mostu Śląsko-Dąbrowskiego. 

• C: południowa granica Woli wzdłuż torów kolejowych. 

• D: rejon osi saskiej. 

• E: rejon założenia ujazdowskiego. 



170 

 

 

Rys. 75. Pięć obszarów przeanalizowanych statystycznie względem „stopnia 

skomponowania” przestrzeni. A: całość testowanego obszaru; B: okolice Wisły w rejonie 

mostu Śląsko-Dąbrowskiego; C: południowa granica Woli wzdłuż torów kolejowych; 

D: rejon osi saskiej; E: rejon założenia ujazdowskiego. Opracowanie własne. Podkład 

przygotowany w oparciu o Open Street Map (OpenStreetMap contributors, 2023). 

Dla wyszczególnionych obszarów zostały zliczone liczby pikseli osi naprowadzających 

i punktów głównych. Cały obszar miał średnio 5,81% powierzchni oznaczonej jako osie 

naprowadzające oraz 0,26% oznaczonej jako punkty główne. Obszary słabiej skomponowane 

w obu kategoriach otrzymały niższe wyniki, podczas gdy obszary lepiej skomponowane 

otrzymały wyniki wyższe (Rys. 76).  W kolejności „stopnia skomponowania” wyniki 

wyglądają następująco: 
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• Wisła i okolice:  osie: 2,11%;  punkty główne: 0,12%. 

• Tory na południu Woli: osie: 4,68%;  punkty główne: 0,22%. 

• Średnia cały obszar:  osie: 5,81%;  punkty główne: 0,26%. 

• Oś saska:   osie: 7,12%;  punkty główne: 0,23%. 

• Założenie ujazdowskie: osie: 7,66%; punkty główne: 0,35%. 

Metryki te umożliwiają automatyczne porównywanie ze sobą wybranych obszarów. Co więcej, 

wartości te są niezależne od powierzchni, więc możliwe jest zestawianie ze sobą obszarów 

o różnych rozmiarach. 

 

Rys. 76. Liczba pikseli osi kompozycyjnych (czerwony) i liczba pikseli punktów głównych 

(czarny) rozpoznanych przez sieć dla wyszczególnionych obszarów jako procent liczby 

pikseli całych obszarów. Opracowanie własne. 

3.2.4. Wnioski z eksperymentu głównego 

Opracowany w eksperymencie głównym algorytm stanowił rozwinięcie prac rozpoczętych 

w ramach eksperymentu wstępnego. Przygotowany prototyp zademonstrował możliwość 

wykorzystania głębokiego uczenia maszynowego do przetwarzania realnych, miejskich 

kontekstów przestrzennych. Ze względu na niszowość problemu konieczne było opracowanie 

autorskich metod ewaluacji jakościowej i ilościowej algorytmu. Stworzony ekstraktor 

głównych punktów kompozycyjnych w przeprowadzonych testach osiągnął skuteczność rzędu 
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59,4-67,2%. Mimo że pole percepcji narzędzia jest ograniczone do obszaru o powierzchni 

około 1 km2, dzięki wykorzystaniu przetwarzania seryjnego możliwe jest przeprowadzanie 

analiz przestrzennych na obszarach większych. Dla seryjnie przetworzonych obszarów 

możliwe jest automatyczne wyliczenie danych statystycznych pozwalających 

na porównywanie ze sobą ich kompozycji przestrzennych. Opracowany prototyp pozwala 

na zautomatyzowane uczytelnianie kompozycji tkanki miejskiej i może być wykorzystany jako 

wsparcie w praktyce projektowej, planistycznej i administracyjnej.  Może być także przydatny 

dla podmiotów i instytucji zainteresowanych komercyjną wartością reprezentacyjnych miejsc 

podkreślonych kompozycyjnie. 

Przygotowane narzędzie wpisuje się w paradygmat projektowania hiperparametrycznego, 

w którym projektant i algorytm oparty na głębokim uczeniu maszynowym wspólnie odczytują 

konteksty przestrzenne. Interfejs narzędzia ma wysoki poziom abstrakcji, w którym operator 

wskazuje jedynie koordynaty interesującego go obszaru. Nie jest konieczne samodzielne, 

dedukcyjnie oprogramowywanie parametrów punktów głównych i osi naprowadzających, 

ponieważ te zostały zdefiniowane indukcyjnie przez sieć neuronową na podstawie przykładów 

treningowych. Opracowane narzędzie umożliwia automatyzację procesu przetwarzania 

architektoniczno-urbanistycznych kompozycji przestrzennych, który do tej pory mógł być 

przeprowadzany jedynie metodą analizy eksperckiej.  

Wyniki pokazują także, że w obecnej wersji opracowany prototyp ma pewne wady, a jego 

obsługa wymaga krytycznego myślenia. W zależności od scenariusza testowego 

od 32,8% do 40,6% oznaczonych punktów nie stanowiło punktu głównego ani równorzędnego 

punktu formalnie podkreślonego. W niektórych przypadkach oznaczone punkty były trudne 

w interpretacji. Decyzja sieci neuronowej nie jest oparta na zasadach wypracowanych 

dedukcyjnie, przez co nie można łatwo wskazać, jakie przesłanki kryły się za wskazaniem 

danego punktu. Zastanawiające jest także pominięcie przez algorytm pewnych oczywistych 

układów kompozycyjnych, takich jak oś saska, założenie wilanowskie czy plac Narutowicza. 

W obecnej formie algorytm zdecydowanie nie może być traktowany jako narzędzie zastępujące 

projektanta czy eksperta. Może za to służyć jako narzędzie zwiększające możliwości, 

przyspieszające i ułatwiające pracę oraz jako inspiracja do działań twórczych. 

Większość problemów opracowanego narzędzia wynika z ograniczeń technicznych 

i czasowych przeprowadzonego eksperymentu. Jak na standardy komercyjnych narzędzi 

opartych na głębokim uczeniu maszynowym, wykorzystana sieć neuronowa była niewielka, 
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wytrenowana została na komercyjnym laptopie przy pomocy bardzo małego zbioru 

treningowego, a czas dostępny na strojenie hiperparametrów był krótki. Mimo to, osiągnięte 

rezultaty są obiecujące i stanowią zachętę do prowadzenia dalszych prac rozwojowych. 

W pierwszej kolejności zdecydowanie warto byłoby przy pomocy zespołu ekspertów 

przygotować o wiele obszerniejszy zbiór treningowy i wytrenować bardziej złożoną sieć 

na dedykowanym do tego sprzęcie lub przy pomocy rozwiązań chmurowych. W celu 

rozszerzenia zbioru treningowego można byłoby także rozwinąć rozpoczęte już prace nad 

generatorem syntetycznych kompozycji przestrzennych podporządkowanym punktom 

głównym. W trakcie prac przeprowadzanych nad eksperymentem na popularności zyskały 

nowsze modele sieci neuronowych oparte na transformerach. Wydają się one o wiele 

potężniejsze niż wykorzystana w eksperymencie generatywna sieć przeciwstawna. 

Przetestowanie najnowszych dostępnych algorytmów głębokiego uczenia maszynowego 

umożliwiłoby identyfikację najbardziej skutecznych rozwiązań. Selekcja taka mogłaby 

bazować na opracowanych na potrzeby niniejszej pracy metrykach służących do ewaluacji 

przygotowanego prototypu. Skuteczność sieci neuronowej prawdopodobnie poprawiłoby także 

rozszerzenie zakresu kontekstów przestrzennych reprezentowanych w przestrzeni cech. 

Ze względu na ograniczenia sprzętowe w obecnej formie rozdzielczość danych wejściowych 

jest niewielka, a konteksty ograniczają się do cech geometrycznych układu komunikacyjnego, 

zabudowy, topografii terenu i intensywności zieleni. Mapy cech mogłyby być rozszerzone 

o dodatkowe konteksty, w tym układ funkcjonalny, zdjęcia satelitarne, dane demograficzne, 

statystyczne i inne otwarte dane przestrzenne skorelowane z kompozycją przestrzenną. 

4. Podsumowanie 

4.1. Wnioski ogólne 

Algorytmy głębokiego uczenia maszynowego są z powodzeniem stosowane w analizie 

i przetwarzaniu danych, generowaniu rozwiązań projektowych, klasyfikacji i uczytelnianiu 

danych, optymalizacji procesów, a nawet w przewidywaniu przyszłości na podstawie trendów 

historycznych. Szeroki katalog dostępnych narzędzi pozwala na skuteczne rozwiązywanie 

wielu kategorii problemów architektonicznych obejmujących przybliżanie wartości metryk 

i wyników symulacji, optymalizację parametrów, translację danych z jednej formy na drugą  

czy przetwarzanie obrazów i innych wielowymiarowych danych przestrzennych. Sieci 

neuronowe dobrze radzą sobie także jako algorytmy generatywne uczące się na zadanych 
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przykładach, algorytmy sterujące agentami w scenariuszach wymagających wykorzystania 

uczenia ze wzmacnianiem lub jako algorytmy służące przetwarzaniu danych sekwencyjnych, 

takich jak tekst naturalny czy ciągi czasowe. 

Osiągnięte w eksperymentach wstępnym i głównym wyniki sugerują, że sieci neuronowe 

są zdolne do uczenia się zasad kompozycyjnych i do stosowania ich w praktyce. Zwłaszcza 

przetestowane splotowe sieci neuronowe mają duży potencjał do przetwarzania kontekstów 

przestrzennych. Algorytmy oparte na głębokim uczeniu maszynowym mogą wspierać 

architektów i urbanistów w analizie kompozycji przestrzennych, zmniejszając ryzyko 

przeoczenia istotnych kontekstów. Narzędzia zbliżone do opracowanego prototypu mogą 

skutecznie uczytelniać tkankę miejską oraz wspomagać podejmowanie decyzji projektowych 

i planistycznych. Wyniki badania pokazują, że sieci neuronowe nie są obecnie w stanie zastąpić 

architektów, ale mogą znacznie wspomagać i przyspieszać procesy projektowe i planistyczne 

w architekturze i urbanistyce. Przedstawiony prototyp stanowi duży krok w kierunku 

automatyzacji analiz kompozycji przestrzennych i otwiera nowe możliwości badawcze 

i praktyczne w tej dziedzinie. 

4.2. Ograniczenia metody 

Wyniki pokazują, że sieci neuronowe mogą być użyteczne w automatycznym przetwarzaniu 

danych przestrzennych, ale ich skuteczność zależy od wielu czynników, w tym jakości i ilości 

danych treningowych, rozmiaru i rodzaju wykorzystanej sieci i wyboru zastosowanych 

hiperparametrów. Ze względu na stochastyczny charakter głębokiego uczenia maszynowego 

i ograniczone możliwości sterowania hiperparametrycznego, obsługa sieci neuronowych 

zazwyczaj jest problematyczna. Algorytmy tego typu często wydają się być „czarnymi 

skrzynkami” (ang. black box), w których trudno jest przewidzieć, jaka decyzja zostanie podjęta, 

przez co wyniki są trudne do interpretacji. Duże wyzwanie stanowią także problemy związane 

z przesunięciem dystrybucji danych między zbiorem treningowym, a docelowymi danymi 

przetwarzanymi na etapie wdrożenia sieci w praktyce.  

Napotkane na etapie prototypowania trudności wyznaczają jednak kierunek pod przyszłe 

badania, mogące obejmować rozszerzenie zbiorów treningowych i zastosowanie bardziej 

złożonych sieci neuronowych, testowanie nowszych modeli opartych na transformerach, 

czy integracja dodatkowych kontekstów o wysokiej rozdzielczości obejmujących układ 

funkcjonalny, zdjęcia satelitarne czy dane demograficzne. Konieczne wydaje 
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się też opracowanie nowszych metryk pozwalających na skuteczniejszą interpretację i ocenę 

otrzymywanych wyników. 

4.3. Projektowanie hiperparametryczne – dyskusja 

Wiele wydziałów architektury na uczelniach na całym świecie ma w programach swoich 

studiów elementy zaawansowanej obsługi komputerów, programowania i architektury 

parametrycznej. Warto wymienić między innymi ASK WAPW, ETH Zurih, MIT Media Lab, 

czy IAAC. Architekci są obecnie biegli w obsłudze narzędzi cyfrowych, a głębokie uczenie 

maszynowe staje się coraz bardziej dostępne także dla ludzi bez doświadczenia 

programistycznego. Na wysokim poziomie abstrakcji mamy dostęp do chatbotów LLM 

i intuicyjnych interfejsów online modeli generatywnych. Trochę większą kontrolę oferują 

platformy typu Dynamo lub Grasshopper [np. z wtyczką Pug dodającą szereg bloków, 

pozwalających na programowanie algorytmów uczenia maszynowego (Apellániz, 2023)]. 

Dzięki rozwiązaniom typu Google Colab i Jupyter Notebook możemy programować nawet 

złożone sieci neuronowe w prostym interfejsie przeglądarki internetowej. Największą kontrolę 

oferują biblioteki programistyczne, takie jak Tensorflow/Keras, PyTorch czy SciKitLearn. 

Wszystkie te kategorie rozwiązań są coraz częściej stosowane w architekturze, co można 

zauważyć między innymi w rosnącej liczbie publikacji dotyczących wykorzystania głębokiego 

uczenia maszynowego w CAAD. 

Jesteśmy obecnie świadkami automatyzacji coraz bardziej złożonych procesów, które 

do tej pory uważane były za stricte ludzką domenę. Ten przeskok na wyższy poziom abstrakcji 

procesu projektowego wydaje się kontynuacją trwającego już kilkadziesiąt lat trendu. Najpierw 

rysunek odręczny przekształcił się w rysunek komputerowy. Rysunek CAD wyewoluował 

w projektowanie parametryczne. Z kolei ono zostaje obecnie stopniowo zastępowane przez 

projektowanie hiperparametryczne, w którym architekci definiują hiperparametry systemu 

uczenia maszynowego, a parametry rozwiązań problemów definiowane są już pośrednio przez 

samouczący się algorytm (Rys. 77). Kontrola nad hiperparametrami może mieć różnorakie 

formy. Od sterowania istniejącymi modelami i dostarczania im pojedynczych kontekstów 

wejściowych (promptów), przez dostrajanie dostępnych, wytrenowanych już modeli 

do indywidualnych potrzeb, aż po tworzenie własnych sieci neuronowych i własnych zbiorów 

danych treningowych.  
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Wykorzystanie projektowania hiperparametrycznego opartego na sieciach neuronowych może 

być szczególnie korzystne w niektórych typach problemów architektonicznych. Głębokie 

uczenie maszynowe można aplikować tam, gdzie problem jest logicznie rozmyty i klasyczne 

metody ilościowe (np. oparte o dane importowane z systemów GIS) nie są możliwe 

do wykorzystania. W sytuacjach takich modele neuronowe mogą indukcyjnie nauczyć 

się podejmowania decyzji maksymalizujących oczekiwane korzyści. Sieci neuronowe dobrze 

radzą sobie w przetwarzaniu złożonych kontekstów, szczególnie tam, gdzie istnieje potrzeba 

równoległego lub sekwencyjnego przetworzenia wielu danych w krótkim czasie. Ze względu 

na źródła danych głębokie uczenie maszynowe warto wykorzystywać tam, gdzie dostępnych 

jest dużo danych typu big-data zgromadzonych w różnego rodzaju repozytoriach (np. bazach 

danych statystycznych, GIS, BIM). Obecnie istnieje wiele otwartych zbiorów danych 

nadających się do wykorzystania w CAAD. Wybór ciekawszych baz danych 

 

Rys. 77. Diagram ilustrujący różnice między projektowaniem parametrycznym 

a projektowaniem hiperparametrycznym. W projektowaniu parametrycznym to architekt  

na podstawie odczytanego samodzielnie kontekstu decyduje o wartościach poszczególnych 

parametrów. Projektowanie hiperparametryczne charakteryzuje się wyższym poziomem 

abstrakcji. Architekt zainspirowany kontekstem definiuje hiperparametry modelu opartego 

na głębokim uczeniu maszynowym i dokonuje jego promptowania. Dodatkowo model także 

ma możliwość samodzielnego odczytywania kontekstów. Końcowe parametry definiowane 

są przez sieć neuronową na etapie inferencji. Wyniki inferencji mogą służyć architektowi 

jako inspiracja w przyszłych iteracjach. Opracowanie własne. 
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architektoniczno-urbanistycznych, na które natknąłem się w trakcie przeprowadzonych badań, 

znajduje się w aneksie (Załącznik 8). Dane można zbierać także samodzielnie. Głębokie 

uczenie maszynowe może wspomagać przetwarzanie danych sensorycznych (np. z systemów 

smart city i IOT), ankietowych (np. będących wynikami procesów partycypacyjnych) 

czy symulacyjnych (przykładowo z symulacji energetycznych budynków). Gdy zbiory 

treningowe budowane są od zera, najlepiej tworzyć je w sposób jak najbardziej 

zautomatyzowany, ponieważ współczesne modele wymagają bardzo dużych zbiorów 

treningowych. Trening sieci można oprzeć także o systemy symulacyjne DRL, w których dane 

do treningu pochodzą z interakcji modelu ze środowiskiem symulacyjnym. Tam, gdzie 

nie da się zebrać wystarczająco dużo danych do wytrenowania własnej sieci, można próbować 

dostroić istniejące, wytrenowane już systemy do docelowego, niewielkiego zbioru 

treningowego. Można w takich przypadkach wykorzystać także technikę promptowania metodą 

wielokrotnej podpowiedzi (ang. few-shot prompting), polegającą na pokazaniu systemowi 

jedynie kilku przykładów danych wejściowych i wyjściowych. Few-shot prompting jest 

zazwyczaj stosowany w przypadku uniwersalnych asystentów opartych na dużych modelach 

językowych. 

4.4. Okno na przyszłość 

Patrząc na gwałtowny rozwój narzędzi bazujących na sieciach neuronowych w projektowaniu 

architektonicznym wspomaganym komputerowo, możemy zadać sobie pytanie: jaka jest 

przyszłość głębokiego uczenia maszynowego wykorzystywanego w architekturze? Odpowiedź 

na to pytanie niestety nie jest możliwa, jednak na podstawie stanu obecnego i trendów 

historycznych możemy wysnuć pewne oczekiwania. Rozwój technologii często 

przyrównywany jest do sigmoidy (Handy, 1994). Gdy nowa technologia staje się dostępna, 

najpierw wchodzi w fazę powolnego wzrostu, w której pierwsi użytkownicy z trudem 

wypracowują pierwotne metody jej wykorzystania. W pewnym momencie, gdy technologia 

staje się tania, ogólnodostępna i prosta w użytkowaniu, rozwój przechodzi w fazę wzrostu 

wykładniczego, w którym liczba użytkowników technologii rośnie lawinowo. Pojawiają się 

nowe metody implementacji, narzędzia, ludzie mają coraz więcej pomysłów na ich kreatywne 

wykorzystanie. Dzieje się tak aż do momentu dojścia do granicy tego, co jest możliwe 

do osiągnięcia przy istniejącej technologii. Innowacja spowalnia, liczba użytkowników 

się stabilizuje, a w końcu zaczyna stopniowo spadać. Czas powstawania niniejszej pracy (lata 

2019-2024) zdecydowanie obejmuje moment, w którym wykorzystanie NN w CAAD 
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przeskoczyło w fazę wzrostu wykładniczego. Problem w tym, że nie jesteśmy w stanie 

rozpoznać, w którym miejscu krzywej się obecnie znajdujemy (Rys. 78). Czy jesteśmy już 

blisko poziomu nasycenia technologii, czy rozwój dopiero ruszył i czeka nas jeszcze wiele 

niespodzianek? Na dodatkową możliwość zwraca w swojej książce The Singularity Is Near Ray 

Kurzweil. Biorąc pod uwagę fakt, że bieżący postęp oparty jest na systemach samouczących 

się, nie możemy wykluczyć perspektywy, w której rozwój systemów AI wcale 

się nie ustabilizuje, a będzie ciągle przyspieszał i zacznie dążyć do nieskończoności (Kurzweil, 

2005). Możliwość ta wydaje się dosyć mało prawdopodobna, jednak skoro nawet w już 

istniejących systemach LLM niektórzy doszukują się pierwszych sygnałów istnienia silnej 

sztucznej inteligencji AGI (ang. Artificial General Intelligence), nie możemy jej całkowicie 

zignorować (Bubeck, i in., 2023). 

                              

 

Rys. 78. Możliwe krzywe prognozujące rozwój wykorzystania głębokiego uczenia 

maszynowego w projektowaniu architektonicznym wspomaganym komputerowo. Krzywa 

A pokazuje możliwość, że większość innowacji z wykorzystaniem NN w CAAD została już 

odkryta i zbliżamy się do możliwości technologicznych dalszego rozwoju technologii. 

Krzywa B dopuszcza możliwość, że rozwój dopiero się zaczął i pojawi się jeszcze wiele 

nowych narzędzi. Krzywa C opisuje sytuację, w której rozwój systemów AI doprowadzi 

do pojawienia się samouczącej się AGI, prowadzącej do wykładniczego rozwoju 

i transformacji całej ludzkości. Opracowanie własne na podstawie książek The Empty 

Raincoat (Handy, 1994) oraz The Singularity is Near (Kurzweil, 2005). 
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Przeprowadzone w niniejszej pracy badanie stanu wiedzy sugeruje, że popularność prostych 

implementacji sieci neuronowych służących jako narzędzia pomocnicze w rozwiązywaniu 

szerokiego spektrum problemów architektonicznych stopniowo rośnie. Obecnie poza ogólnie 

używanymi LLM i modelami dyfuzyjnymi, wykorzystywane w architekturze sieci neuronowe 

są dosyć niewielkie. Wydaje się jednak, że ze względu na duży potencjał ekonomiczny 

dyscypliny, dedykowane architekturze sieci neuronowe prawdopodobnie będą stawały 

się coraz większe28. Jak pokazuje ewolucja dużych modeli głębokiego uczenia maszynowego, 

takich jak GPT 1-2-3-4… lub Dall-E 1-2-3…, im większy jest model, tym większe 

są jego zdolności generalizacyjne, a więc można go wykorzystać do większej liczby 

zastosowań (Rys. 79). 

 

 

Rys. 79. Wizualizacja przygotowana przez Google, ilustrująca wzrost zdolności dużych 

modeli językowych wraz ze wzrostem ich wielkości na przykładzie modelu PALM. Im 

większa jest sieć neuronowa tym większe stają się jej kompetencje i tym bardziej zbliża 

się do poziomu AGI (Narang S i Chowdhery, 2022). 

Przyszłość wydaje się należeć do dużych modeli, które stopniowo będą zbliżać się do poziomu 

silnej sztucznej inteligencji AGI. Prawdopodobnie modele takie nie będą początkowo 

bezpośrednio przeznaczone do zadań architektonicznych. Architektura będzie stanowiła 

zadanie dodatkowe, które z biegiem czasu i wzrostem zainteresowania branży będzie coraz 

bardziej rozwijane. Pierwsze sygnały takiego rozwoju rzeczy widzimy już obecnie, gdy ogólne 

modele językowe, takie jak GPT4, są aplikowane do coraz bardziej niszowych problemów. 

 

28 Przykładowo w 2017 roku firma konsultingowa McKinsey & Company oszacowała światową wartość roczną 

sektora konstrukcji na 10 bilionów dolarów amerykańskich z potencjałem wzrostu o dodatkowe 1,6 biliona 

(McKinsey Global Institute, 2017); według raportu IEA z 2019 roku sektor budowlany odpowiada 

za 36% światowego zapotrzebowania na energię końcową i 36% światowej emisji CO2 (GlobalABC International 

Energy Agency, 2019). 
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W obliczu dynamicznie rozwijającego się paradygmatu projektowania hiperparametrycznego 

oraz rosnącego znaczenia sieci neuronowych w projektowaniu wspomaganym komputerowo, 

przyszłość architektury i urbanistyki jawi się wyjątkowo ciekawie. Perspektywy automatyzacji 

złożonych procesów (takich jak przetwarzania kontekstów kompozycyjnych) otwiera nowe 

możliwości usprawnienia i zwiększenia wartości pracy architektów i urbanistów. 

Na razie wydaje się, że narzędzia te nie zastąpią ludzkiej kreatywności, możliwości krytycznej 

oceny wyników i integracji złożonych procesów, ale mogą stanowić istotne wsparcie 

przyspieszające procesy projektowe i minimalizujące ryzyko popełnienie błędów. Wraz 

z dalszym rozwojem technologii i większym dostępem do danych i metod ich przetwarzania, 

możemy oczekiwać, że architektura stanie się jeszcze bardziej interdyscyplinarna i będzie coraz 

intensywniej korzystać z osiągnięć dziedziny głębokiego uczenia maszynowego. Rozpoznane 

w niniejszej pracy trendy rozwoju paradygmatu projektowania hiperparametrycznego 

i przedstawiony prototyp podkreślają ogromny potencjał architektury jako dziedziny 

praktycznej, badawczej i artystycznej, oraz wskazują na jej ogromny potencjał rozwojowy. 
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Spis ilustracji 

Rys. 1. Wizualizacja 37 cech (oś pionowa) wyodrębnionych ze 149 publikacji (oś pozioma) 

dotyczących zastosowania sieci neuronowych w projektowaniu wspomaganym 

komputerowo. Biały kolor oznacza powiązanie danej cechy z publikacją. Wyodrębnione 

cechy pozwoliły na organizację zebranych źródeł i przeprowadzenie ich analizy 

ilościowej. Opracowanie własne. 

Rys. 2. Stosowanie sieci neuronowych w projektowaniu w różnych skalach w publikacjach 

dotyczących komputerowego wspomagania projektowania architektonicznego. 

Opracowanie własne. 

Rys. 3. Wizualizacja skal, w których stosowane są sieci neuronowe wykonana przy pomocy 

algorytmu t-SNE na podstawie 37 wyodrębnionych cech badanych artykułów. Każdy 

punkt reprezentuje odrębną publikację, kolor punktu odpowiada skali zastosowania 

sieci neuronowej. Opracowanie własne. 

Rys. 4. Nieistniejący, syntetyczny krajobraz wygenerowany przez opracowany przez Kyle’a 

Steinfelda neuronowy algorytm GAN Loci wizualizujący „genius loci” dzielnicy 

Blijdorp w Rotterdamie (Steinfeld, 2019). 

Rys. 5. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany przez 

Pasquero i Poletto zastosowany do przetworzenia satelitarnych zdjęć tkanki 

urbanistycznej w skali 1 x 1 km (po lewej) i 10 x 10 km (po prawej) (Pasquero i Poletto, 

2020). 

Rys. 6. Algorytm GAN_Physarum (oparty na neuronowym transferze stylu) opracowany przez 

Pasquero i Poletto zastosowany do przetworzenia Centre Pompidou sfotografowanego 

z lotu ptaka (Pasquero i Poletto, 2020). 

Rys. 7. Przykładowe zdjęcia z drona pobrane z bazy danych UAVid stworzonej przez Lyu, 

Vosselmana, Xia i in. służącej do trenowania neuronowych algorytmów semantycznej 

segmentacji. Poszczególne klasy obiektów widoczne na zdjęciu oznaczone są na 

wizualizacjach różnymi kolorami wyznaczającymi ich obrysy (Lyu, i in., 2018). 

Rys. 8. Fantastyczne krajobrazy „wyśnione” przez opracowany przez Google algorytm 

DeepDream, zaaplikowany do sieci neuronowej służącej klasyfikacji obrazów. 

Krajobrazy zostały wygenerowane na podstawie czystego szumu poprzez iteracyjne 

wzmacnianie na obrazie wejściowym cech zwiększających siłę aktywacji wybranych 

neuronów i warstw sieci neuronowej (Mordvintsev, i in., 2015). 
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Rys. 9. Sekwencja generowania warstwy nowych detali architektonicznych na zadanym zdjęciu 

domu jednorodzinnego. Metoda zaproponowana przez Silvestra, Ikedę i Guenę z Keio 

University, oparta na opracowanym przez Google algorytmie DeepDream (Silvestre, i 

in., 2016). 

Rys. 10. Wizualizacje stworzone przez Güvença Özela i Benjamina Ennemosera na podstawie 

neuronowego transferu stylu. Wygenerowane przez sieć neuronową dwuwymiarowe 

obrazy zostały przekształcone proceduralnie w modele trójwymiarowe i osadzone 

kompozytowo w oryginalnych kontekstach (Özel i Ennemoser, 2019). 

Rys. 11. Defamiliaryzacja rzutu architektonicznego będąca skutkiem prac Matiasa del Campo, 

Sandry Carlson i Alexandry Manninger. Po lewej rezultat transferu stylu między rzutem 

modernistycznym a barokowym (del Campo, i in., 2019), w centrum z lewej rezultat 

transferu stylu między rzutem barokowym a modernistycznym (del Campo, i in., 2020), 

po prawej abstrakcyjne „rzuty” stworzone przy pomocy generatywnych sieci 

przeciwstawnych (del Campo, i in., 2019). 

Rys. 12. Demonstracja skuteczności systemu opracowanego przez Asa i in. Po lewej 

wygenerowany przez sieć neuronową graf programu funkcjonalnego domu 

jednorodzinnego, po prawej automatycznie wygenerowany na podstawie grafu 

parametryczny, koncepcyjny model kubaturowy (As, i in., 2018). 

Rys. 13. Bryły wygenerowane przez system opracowany przez Liu, Liao i Srivastavę. 

Przeciwstawna sieć neuronowa generowała takie parametry dla algorytmu 

parametrycznego, by wynikowe bryły w jak największym stopniu spełniały wymagane 

cechy. Po lewej u góry – bryła z wysokim wynikiem „monumentalności”, po prawej 

u góry –  „solidności”, po lewej u dołu – „delikatności” i po prawej 

u dołu  – „dynamiczności” (Liu, i in., 2019). 

Rys. 14. Możliwość przeprowadzania semantycznych operacji arytmetycznych na wektorach w 

przestrzeni ukrytej zademonstrowana przez Sebestyena i in. Ściśnięty sześcian minus 

sześcian plus kula = ściśnięta kula (Sebestyen, i in., 2021). 

Rys. 15. System Sketch2Pix opracowany przez Kyle’a Steinfelda służący do przetwarzania 

linearnych szkiców aksonometrycznych na ich fotorealistyczne wizualizacje. Po lewej 

przykłady prostych modułów zwizualizowanych przez algorytm, po prawej dwa 

przykłady kolaży stworzonych przez studentów architektury korzystających z 

algorytmu Sketch2Pix w trakcie zajęć projektowych (Steinfeld, 2020). 
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Rys. 16. Projekt plomby architektonicznej wygenerowany przez algorytm PatchMatch 

wspomagany przez zespół pięciu klasyfikacyjnych sieci neuronowych dokonujących 

selekcji najlepszych elementów projektowych (Dzieduszyński, i in., 2020). 

Rys. 17. Proces treningu algorytmu służącego do redukcji liczby wymiarów definiujących 

projekt parametryczny stworzony przez Johna Hardinga. Na ilustracji przedstawiono 

proces redukcji parametrów z pięciu do dwóch, możliwych do zwizualizowania w 

postaci dwuwymiarowej płaszczyzny (Harding, 2016). 

Rys. 18. Wspomagane przez sieć neuronową metody fabrykacji giętych, blaszanych paneli 

elewacyjnych opracowane przez Gabriellę Rossi i Paula Nicholasa. Po lewej – druk 3D 

wzmocnień wygenerowanych przez sieć neuronową w odpowiedzi na przewidywane 

obciążenia wywołane parciem wiatru. Po prawej – wytwarzanie podobnych wzmocnień 

w formie wytłoczonych w blasze podłużnych żeber (Rossi i Nicholas, 2020). 

Rys. 19. Instalacja przestrzenna „Lace Wall” autorstwa Tamke, Zwierzyckiego i in. W „Lace 

Wall” sieci neuronowe zostały wykorzystane do klasyfikacji modułów, które ze 

względu na zbyt duże deformacje w skali mikro uniemożliwiały stworzenie docelowej 

formy w skali makro (Tamke, i in., 2017). 

Rys. 20. Artykuły pośrednio dotyczące morfologii urbanistycznej, kompozycji przestrzennej 

oraz artykuły przeglądowe w publikacjach dotyczących komputerowego wspomagania 

projektowania architektonicznego przy wykorzystaniu sieci neuronowych. 

Opracowanie własne. 

Rys. 21. Złota kopuła State House w Bostonie ginąca na tle nowszych wieżowców, m.in. One 

Beacon Street z roku 1972 (fot. Google Maps, 2023) 

Rys. 22. Widok na plac Zbawiciela będący punktem głównym założenia gwiaździstego (fot. 

Google Maps, 2023) 

Rys. 23. Zlewiska centrów lokalnych Brennana. Centra lokalne przesunięte są w kierunku 

głównego centrum miasta [na podstawie (Brennan, 1948)] 

Rys. 24. Centra ekscentryczne Alexandra. Znajdujące się na granicach między obszarami 

społeczności [na podstawie (Alexander, i in., 1977)] 

Rys. 25. Zbliżenie na centrum ekscentryczne Alexandra. Naprowadzają na nie ścieżki i bariery 

wyznaczające obszar społeczności. Opracowanie własne 

Rys. 26. Strefy ochronne z wyraźnie oznaczonymi punktami głównymi pochodzące z trzydziestej 

piątej wersji paryskiego planu urbanistycznego PLU dla obszaru Pól Elizejskich (Le 

Conseil de Paris, 2015). 
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Rys. 27. Legenda do rysunku stref ochronnych z trzydziestej piątej wersji PLU (Le Conseil de 

Paris, 2015). 

Rys. 28. Zrzut ekranu z trybu deweloperskiego programu Camera51, pokazujący rozpoznane 

przez aplikacje elementy kompozycyjne. Ikona w centrum ekranu pokazuje, w jaki 

sposób przesunąć aparat, by polepszyć kompozycję kadru (Masad i Shamir, 2017). 

Rys. 29. Wizualizacja wybranych głowic uwagi sieci neuronowej przetwarzającej proste 

kompozycje przestrzenne naszkicowane przez Juliusza Żórawskiego (Żórawski, 1962). 

Kolorem czerwonym oznaczone są miejsca w obrazie, które dana głowica uwagi uznała 

za istotne. Wykorzystana sieć to Vision Transformer (Dosovitskiy, i in., 2021) 

wytrenowany przez Rossa Wightmana (Wightman, 2019) do rozpoznawania klas ze 

zbioru obrazów ImageNet (Russakovsky, i in., 2015). Sieć nie próbuje odczytywać 

kontekstów kompozycyjnych, tylko stara się rozpoznać, co znajduje się na obrazie (w 

tym przypadku wszystkie szkice Żórawskiego zostały rozpoznane jako zdjęcia 

łańcuchów). Sieć zwraca uwagę na różne fragmenty obrazu, jednak dużą wagę 

przykłada także do punktów formalnie podkreślonych. Opracowanie własne. 

Rys. 30. Dwie metody wyznaczania rdzeni integracji zaproponowane przez Billa Hilliera. U góry 

– metoda analizy nakładających się elementów wypukłych, u dołu – metoda analizy 

jednowymiarowych elementów liniowych. Metody zostały zaprezentowane na dwóch 

modelach tkanki miejskiej, jednej z czytelnym punktem głównym, drugiej bez takiego 

punktu. Obie metody dają zbliżone rezultaty (Hillier, 2007). 

Rys. 31. Szkic Sigmunta Freuda z 1885 roku, będący prawdopodobnie pierwszym koncepcyjnym 

modelem sieci neuronowej. Rysunek przedstawia przepływ energii od bodźca 𝑄’𝜂 przez 

neuron 𝑎  do neuronu 𝑏  (Freud, 1950/1895). Teoria Freuda była dosyć niejasna, 

niepoparta empirycznie i ostatecznie okazała się błędna (McCarley, 1998), jednak stała 

się jedną z wielu inspiracji dla twórców pierwszych funkcjonalnych sieci neuronowych 

z lat 50. dwudziestego wieku (Minsky i Sykes, 2017). 

Rys. 32. Diagram perceptronu elementarnego z jednym neuronem dokonującym klasyfikacji 

binarnej. Dane wejściowe zespolone są stałym połączeniem z jednostkami 

asocjacyjnymi „A”. Połączenia między jednostkami „A” a jednostką responsywną „R” 

są skalowane względem wag, w których zapisana jest „zdolność” perceptronu do 

rozwiązania danego problemu. Jednostka „R”, którą dzisiaj nazwalibyśmy neuronem, 

liczy średnią ważoną sygnałów wejściowych i przepuszcza ją przez schodkową funkcję 
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aktywacji. Efektem jest dana wyjściowa: klasa przyjmująca wartość -1 lub 1. Ilustracja 

przygotowana na podstawie (Rosenblatt, 1961). 

Rys. 33. Porównanie rozwiązania problemu alternatywy wykluczającej przez jednowarstwową i 

dwuwarstwową sieć neuronową. Klas XOR nie da się oddzielić przy pomocy jednej 

prostej. Jednowarstwowa sieć neuronowa nieprawidłowo klasyfikuje wyjście y dla x1=-

1 i x2=-1. Dwuwarstwowa sieć neuronowa rozwiązuje problem bez trudu. Zamiast 

aktywacji schodkowej zastosowano jej różniczkowalne przybliżenie: funkcję 

sigmoidalną. Ilustracja oparta na wynikach symulacji przeprowadzonej w 

przeglądarkowej implementacji jednokierunkowej sieci neuronowej ConvNetJS 

(Karpathy, 2014). 

Rys. 34. Sieć neuronowa przekształcająca wektor wejściowy X na wektor wyjściowy Y. 

Przykładowo: możemy wytrenowanej sieci pokazać zdjęcie kota i na wyjściu otrzymać 

prawidłowo zidentyfikowaną etykietę „KOT!”. Opracowanie własne. 

Rys. 35. Diagram propagacji w przód na poziomie pojedynczego neuronu. Sygnały wejściowe 

𝑥𝑛 sumowane są zgodnie z ich wagami 𝑤′𝑛, do sumy dodawana jest wartość progu b’. 

Wynik przepuszczany jest przez nieliniową, różniczkowalną funkcję aktywacji. 

Wartość funkcji stanowi sygnał dla neuronów w kolejnej warstwie. Opracowanie 

własne na podstawie (Hinton, i in., 1986). 

Rys. 36. Diagram propagacji wstecznej na poziomie pojedynczego neuronu. Parametry 𝑤′′𝑛 oraz 

𝑏′′ są aktualizowane proporcjonalnie do szybkości uczenia 𝛼 i pochodnej cząstkowej 

funkcji kosztu J względem danego parametru. Globalnie, z każdym cyklem propagacji 

wstecznej, funkcja kosztu schodzi w kierunku lokalnego minimum. Opracowanie 

własne na podstawie (Hinton, i in., 1986). 

Rys. 37. Rodzaje sieci neuronowych w publikacjach dotyczących komputerowego wspomagania 

projektowania architektonicznego. Opracowanie własne. 

Rys. 38. Wizualizacja rodzajów sieci neuronowych w publikacjach CAAD wykonana przy 

pomocy algorytmu t-SNE na podstawie 37 wyodrębnionych cech badanych artykułów. 

Każdy punkt reprezentuje odrębną publikację. Opracowanie własne. 

Rys. 39. Diagram klasycznej, jednokierunkowej sieci w pełni połączonej (po lewej) oraz sieć 

typu autoenkoder (po prawej). Wykorzystywane w praktyce sieci zazwyczaj mają 

więcej neuronów oraz warstw. Opracowanie własne. 

Rys. 40. Diagram warstwy splotowej w splotowej sieci neuronowej. Dane wejściowe skanowane 

są sekwencyjnie przez filtry splotowe obliczające wartości funkcji splotu na podstawie 
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odczytanych sygnałów. Dane na wyjściu mają formę wielowymiarowych tablic, po 

jednej tablicy na jeden filtr splotowy. Trenowalne parametry znajdują się w filtrach 

splotowych. Opracowanie własne. 

Rys. 41. Diagram ilustrujący pętlę działania agenta DRL w środowisku symulacyjnym. Działanie 

agenta zostaje nagrodzone przez funkcję straty i skutkuje zmianą jego stanu. 

Opracowanie własne. 

Rys. 42. Diagram ilustrujący sposób działania sieci RNN typu LSTM. W następujących po sobie 

krokach sieć otrzymuje wejściowe dane z sekwencji wejściowej X i przetwarza je na 

sekwencję wyjściową Y. Dodatkowo sieć otrzymuje na wejściu stany ukryte sieci 

z poprzedniego kroku. W modelu LSTM sieć otrzymuje także mechanizm pamięci, 

pozwalający jej nauczyć się możliwości zapisywania pewnych istotnych danych 

w komórkach pamięci, których stan sieć może odczytać w kolejnych krokach iteracji. 

Opracowanie własne. 

Rys. 43. Wstępne testy skuteczności (%) FNN oraz CNN w przetwarzaniu wielowymiarowych 

zadań przestrzennych (po lewej) oraz przykłady rozwiązań wygenerowanych przez oba 

typy sieci (po prawej). Oba typy sieci miały za zadanie wygenerowanie trzech wysp 

spełniających serię zasad kompozycyjnych reprezentowanych w zbiorze treningowym. 

CNN osiąga skuteczność o 4 - 14% lepszą niż FNN o porównywalnej liczbie 

parametrów (Dzieduszyński, 2022b). 

Rys. 44. Proste zasady kompozycyjne składające się na złożoną zasadę kompozycyjną 

wykorzystaną w eksperymencie wstępnym (Dzieduszyński, 2022a). 

Rys. 45. Dozwolone osie kompozycyjne dla zbioru treningowego i zbioru testowego 

o dystrybucji treningowej (Dzieduszyński, 2022a). 

Rys. 46. Dozwolone osie kompozycyjne dla zbioru walidacyjnego i zbioru testowego 

(Dzieduszyński, 2022a). 

Rys. 47. Trzy scenariusze testowane w prototypie wstępnym polegające na generowaniu całości 

kompozycji, jej fragmentu oraz pojedynczego piksela (Dzieduszyński, 2022a). 

Rys. 48. Przykład przeprowadzonej optymalizacji hiperparametru znormalizowanej wartości 

progu aktywacji pikseli wyjściowych. Optymalizacja przeprowadzona została metodą 

grid search w zakresie od 0,35 do 0,65 na zbiorach walidacyjnych dla scenariusza I i II 

względem skuteczności sieci na badanych zasadach kompozycyjnych. Optymalna 

wartość wyniosła 0,5 dla scenariusza I (po lewej) i 0,4 dla scenariusza II (po prawej) 

(Dzieduszyński, 2022a). 
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Rys. 49. Diagram sieci neuronowej wykorzystanej w scenariuszu I (Dzieduszyński, 2022a). 

Rys. 50. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu I w miarę treningu. 

By zapobiec przetrenowaniu sieci, trening został zatrzymany w epoce trzeciej (technika 

regularyzacyjna early stopping) (Dzieduszyński, 2022a). 

Rys. 51. Wybór przykładów pozytywnych rozwiązanych prawidłowo i negatywnych, w których 

sieć miała problemy (Dzieduszyński, 2022a). 

Rys. 52. Diagram sieci neuronowej wykorzystanej w scenariuszu II (Dzieduszyński, 2022a). 

Rys. 53. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu II w miarę treningu. 

By zapobiec przetrenowaniu sieci, trening został zatrzymany w epoce 75 

(Dzieduszyński, 2022a). 

Rys. 54. Wybór przykładów pozytywnych, z którymi sieć scenariusza II radziła sobie bardzo 

dobrze i negatywnych, w których sieć miała problemy (Dzieduszyński, 2022a). 

Rys. 55. Diagram sieci neuronowej wykorzystanej w scenariuszu III (Dzieduszyński, 2022a). 

Rys. 56. Wykres przedstawiający ewolucję skuteczności sieci w scenariuszu III w miarę treningu. 

W tym przypadku doprowadzono trening do końca, early stopping nie był konieczny 

(Dzieduszyński, 2022a). 

Rys. 57. Diagram przedstawiający wyniki działania sieci w scenariuszu. Każdy z pikseli 

w kompozycji był sekwencyjnie zakrywany i generowany przez sieć osobno. W górnym 

rzędzie – kompozycje wejściowe, w środkowym – mapa aktywacji dla każdego z 64 

pikseli, w dolnym – decyzje podjęte przez sieć dla każdego piksela (czerwony kolor 

oznacza decyzję o narysowaniu białego piksela, niebieski kolor oznacza decyzję o 

wygenerowaniu czarnego piksela). Wybór przykładów pozytywnych i negatywnych 

(Dzieduszyński, 2022a). 

Rys. 58. Wyniki sieci dla ręcznie rysowanych przykładów brzegowych. Każdy z pikseli 

w kompozycji był sekwencyjnie zakrywany i generowany przez sieć osobno. W górnym 

rzędzie – kompozycje wejściowe, w środkowym – mapa aktywacji dla każdego z 64 

pikseli, w dolnym – decyzje podjęte przez sieć dla każdego piksela (czerwony kolor 

oznacza decyzję o narysowaniu białego piksela, niebieski kolor oznacza decyzję o 

wygenerowaniu czarnego piksela) (Dzieduszyński, 2022a). 

Rys. 59. Przykłady białołęckich struktur urbanistycznych zaproponowanych przez sieć 

neuronową wytrenowaną na szwarcplanach zabudowy Śródmieścia Warszawy. 

Zabudowa proponowana przez sieć znajduje się w czerwonych ramkach. Nawet przy 

niewielkiej rozdzielczości wynikającej z ograniczeń strukturalnych sieci i bardzo 
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ograniczonych kontekstach reprezentowanych w przetwarzanych danych, sieć wydaje 

się respektować gęstość i osiowość zabudowy, skalę obrysów budynków i konieczność 

kontynuacji pierzei (Dzieduszyński, 2022a). 

Rys. 60. Diagram przedstawiający centrowanie map topograficzny względem wartości 

minimalnej. Przy pobieraniu danych z serwisu Mapbox opracowany skrypt API 

rozpoznaje najmniejszą wartość piksela na obrazie i odejmuje tę wartość od wartości 

pozostałych pikseli. Dzięki temu mapa topograficzna przedstawia tylko wysokości 

względne i pozostawia więcej przestrzeni dla mapy zabudowy. Opracowanie własne. 

Rys. 61. Mapa przestrzeni cech wykorzystanej w części eksperymentalnej. Mapa składa się z 

trzech, nałożonych na siebie map dwuwymiarowych przedstawionych na potrzeby 

wizualizacji w trzech kolorach podstawowych. Kolorem niebieskim oznaczono mapę 

topografii i zabudowy terenu, zielonym – intensywność zieleni, czerwonym – układ 

komunikacyjny. Opracowanie własne. 

Rys. 62. Diagram przedstawiający możliwość przedstawienia przestrzeni cech w macierzowej 

postaci trójwymiarowej (po lewej) oraz w zwokselizowanej postaci pięciowymiarowej 

(po prawej). W obu interpretacjach osie X i Y odpowiadają współrzędnym 

geograficznym. Opracowanie własne. 

Rys. 63. Przykłady trzech map cech ze zbioru treningowego sieci. Kanał niebieski 

przejaskrawiony na potrzeby wizualizacji. Od lewej Stare Miasto w Krakowie, Łuk 

Triumfalny w Paryżu i Cytadela w Irbilu. Opracowanie własne. Mapa cech 

przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open Street Map 

(OpenStreetMap contributors, 2023). 

Rys. 64. Próby stworzenia algorytmu rozszerzającego zestaw treningowy o przykłady 

syntetyczne. Środowisko Grasshopper. Ostatecznie algorytm nie został wykorzystany. 

Opracowanie własne. 

Rys. 65. W górnym rzędzie – przykłady trzech zasad kompozycyjnych podporządkowanych 

punktom głównym zdefiniowane przez Żórawskiego (Żórawski, 1962). W środkowym 

rzędzie – osie kompozycyjne i punkty główne stanowiące punkty wyjścia dla algorytmu 

tworzącego syntetyczne przykłady treningowe. W dolnym rzędzie – wygenerowane 

przez algorytm syntetyczne konteksty przestrzenne. Ostatecznie algorytm nie został 

wykorzystany. Opracowanie własne. 

Rys. 66. Ewolucja mapy celu dla sieci neuronowej na przykładzie florenckiej katedry Santa 

Maria del Fiore. Od lewej do prawej: mapa cech (kanał niebieski przejaskrawiony 
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na potrzeby wizualizacji); pierwsza generacja mapy celu z pojedynczym punktem 

głównym; druga generacja mapy celu uzupełniona o gradient dookoła punktu (gradient 

przejaskrawiony na potrzeby wizualizacji) oraz ostateczna mapa celu uzupełniona o osie 

kompozycyjne (gradient przejaskrawiony na potrzeby wizualizacji). Opracowanie 

własne. Mapa cech przygotowana w oparciu o serwis Mapbox (Mapbox, 2023) i Open 

Street Map (OpenStreetMap contributors, 2023). 

Rys. 67. Diagram modelu sieci neuronowej typu GAN wykorzystanej w eksperymencie 

głównym. Sieć inspirowana jest modelem pix2pix (Isola, i in., 2017). Generator tworzy 

mapy celu na podstawie map cech. Dyskryminator porównuje wyjście generatora 

z treningową mapą celu i próbuje oznaczać, które fragmenty obrazów są stworzone 

przez generator, a które pochodzą ze zbioru treningowego. Generator jest nagradzany 

za obrazy potrafiące oszukać dyskryminator. Obie sieci uczą się wspólnie, zwiększając 

wzajemnie swoją skuteczność. Przy inferencji wytrenowanego modelu 

wykorzystywany jest tylko generator. Opracowanie własne. 

Rys. 68. Porównanie metod ewaluacji podobieństwa obrazów MSE, SSIM i CW-SSIM 

przygotowane przez Zhou Wanga i Alana C. Bovika. a) obraz źródłowy; b) zwiększony 

kontrast; c) przesunięcie luminancji; d) szum gaussowski; e) szum impulsowy; f) 

kompresja JPEG; g) rozmycie; h) oddalenie; i) przesunięcie w prawo; j) przesunięcie w 

lewo; k) obrót przeciwny do ruchu wskazówek zegara; l) obrót zgodny z ruchem 

wskazówek zegara (Wang i Bovik, 2008). W przypadku opracowanego algorytmu 

żadna z powyższych metod ewaluacji nie była skorelowana z rzeczywistą jakością 

tworzonych przez sieć neuronową obrazów. 

Rys. 69. Wartości funkcji straty na zbiorze treningowym dla punktów kontrolnych od 1 do 254. 

Oś horyzontalna odpowiada kolejnym punktom kontrolnym (ze względu na 

nierównomierne próbkowanie punktów kontrolnych oś ta nie stanowi osi czasu). Linia 

szara: wartości funkcji straty uśrednione z 4 podzbiorów treningowych. Linia czarna: 

średnia bieżąca z 9 kolejnych punktów kontrolnych (dla 4 podzbiorów treningowych). 

Linia czerwona: logarytmiczna linia trendu (dla 4 podzbiorów treningowych). 

Opracowanie własne. 

Rys. 70. Przykłady błędnych przypadków, w których nie został rozpoznany żaden punkt główny. 

Na górze mapy cech, na dole odpowiadające im obrazy stworzone przez sieć 

neuronową. Po lewej pałac w Wilanowie. Po środku Pałac na Wyspie w Łazienkach 
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Królewskich. Po prawej Stadion Narodowy. Kanał niebieski map cech przejaskrawiony 

na potrzeby wizualizacji. Opracowanie własne. 

Rys. 71. Przykłady, w których niewygenerowanie punktu głównego nie stanowiło błędu. 

Na górze mapy cech, na dole odpowiadające im obrazy stworzone przez sieć 

neuronową. Po lewej – hale poprzemysłowe zakładów FSO. W środku – fragment Lasu 

Bielańskiego. Po prawej – pola uprawne w pobliżu Fortu Chrzanów. Kanał niebieski 

map cech przejaskrawiony na potrzeby wizualizacji. Opracowanie własne. 

Rys. 72. Demonstracja seryjnego przetwarzania większych obszarów przy pomocy opracowanej 

sieci neuronowej. 64 punkty główne i osie kompozycyjne rozpoznane przez sieć 

neuronową na obszarze 25 km2 lewobrzeżnej zabudowy śródmiejskiej Warszawy. 

Po lewej – obrazy wygenerowane przez sieć nałożone na mapę przestrzeni cech. 

Po prawej – nałożone na mapę Open Street Map. Czerwone linie to osie kompozycyjne. 

Pełna lista punktów rozpoznanych przez sieć przedstawiona jest w aneksie (Załącznik 

6). Opracowanie własne. Mapa cech przygotowana w oparciu o serwis Mapbox 

(Mapbox, 2023) i Open Street Map (OpenStreetMap contributors, 2023). 

Rys. 73. Oznaczony czerwoną strzałką punkt wskazany przez sieć neuronową na ostrodze 

regulacyjnej Wisły na przedłużeniu ul. Ratuszowej. Punkt wydaje się dobrym miejscem 

na lokalizację reprezentacyjnego molo z widokiem na Stare Miasto. Opracowanie 

własne. Podkład przygotowany w oparciu o serwis Open Street Map (OpenStreetMap 

contributors, 2023). 

Rys. 74. Punkty główne (biały) i osie naprowadzające (czerwony) odczytane przez sieć 

neuronową w obszarze założenia ujazdowskiego (po lewej) i założenia osi saskiej 

(po prawej). Kolorem zielonym oznaczone główne osie kompozycyjne. Sieć skutecznie 

oznaczyła większość założenia ujazdowskiego, jednak oś saska została prawie 

całkowicie pominięta. Opracowanie własne. Podkład przygotowany w oparciu o Open 

Street Map (OpenStreetMap contributors, 2023). 

Rys. 75. Pięć obszarów przeanalizowanych statystycznie względem „stopnia skomponowania” 

przestrzeni. A: całość testowanego obszaru; B: okolice Wisły w rejonie mostu Śląsko-

Dąbrowskiego; C: południowa granica Woli wzdłuż torów kolejowych; D: rejon osi 

saskiej; E: rejon założenia ujazdowskiego. Opracowanie własne. Podkład przygotowany 

w oparciu o Open Street Map (OpenStreetMap contributors, 2023). 
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Rys. 76. Liczba pikseli osi kompozycyjnych (czerwony) i liczba pikseli punktów głównych 

(czarny) rozpoznanych przez sieć dla wyszczególnionych obszarów jako procent liczby 

pikseli całych obszarów. Opracowanie własne. 

Rys. 77. Diagram ilustrujący różnice między projektowaniem parametrycznym a projektowaniem 

hiperparametrycznym. W projektowaniu parametrycznym to architekt  na podstawie 

odczytanego samodzielnie kontekstu decyduje o wartościach poszczególnych 

parametrów. Projektowanie hiperparametryczne charakteryzuje się wyższym poziomem 

abstrakcji. Architekt zainspirowany kontekstem definiuje hiperparametry modelu 

opartego na głębokim uczeniu maszynowym i dokonuje jego promptowania. Dodatkowo 

model także ma możliwość samodzielnego odczytywania kontekstów. Końcowe 

parametry definiowane są przez sieć neuronową na etapie inferencji. Wyniki inferencji 

mogą służyć architektowi jako inspiracja w przyszłych iteracjach. Opracowanie własne. 

Rys. 78. Możliwe krzywe prognozujące rozwój wykorzystania głębokiego uczenia maszynowego 

w projektowaniu architektonicznym wspomaganym komputerowo. Krzywa A pokazuje 

możliwość, że większość innowacji z wykorzystaniem NN w CAAD została już odkryta i 

zbliżamy się do możliwości technologicznych dalszego rozwoju technologii. Krzywa B 

dopuszcza możliwość, że rozwój dopiero się zaczął i pojawi się jeszcze wiele nowych 

narzędzi. Krzywa C opisuje sytuację, w której rozwój systemów AI doprowadzi 

do pojawienia się samouczącej się AGI, prowadzącej do wykładniczego rozwoju 

i transformacji całej ludzkości. Opracowanie własne na podstawie książek The Empty 

Raincoat (Handy, 1994) oraz The Singularity is Near (Kurzweil, 2005). 

Rys. 79. Wizualizacja przygotowana przez Google, ilustrująca wzrost zdolności dużych modeli 

językowych wraz ze wzrostem ich wielkości na przykładzie modelu PALM. Im większa 

jest sieć neuronowa tym większe stają się jej kompetencje i tym bardziej zbliża się do 

poziomu AGI (Narang S i Chowdhery, 2022). 
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Aneks 

Załącznik 1. Tabela źródeł kwerendy głównej wykorzystania sieci 

neuronowych w CAAD (do 2021 roku). Zastosowania. 

Kodowana techniką multi-hot: 

Publikacja Zastosowanie 

Tytuł Autorzy Rok Czaso-

pismo/ 

Konfe-

rencja 

Źródło danych Eks- 

trakcja i 

uczy-

telnia-nie 

Ewalu-

acja i 

prze-twa-

rzanie 

da-nych 

Klasy-

fikacja 

Prze-

widy-

wanie 

przysz-

łości 

Opty-

mali-

zacja 

Genero-

wanie 

PROCENT: 100% 15,4% 30,9% 17,4% 5,4% 8,7% 22,1% 

SUMA: 149 23 46 26 8 13 33 

Modelling spatial 

interaction using a neural 

net 

Openshaw, S 1993 GSISSMaP Tabele opisujące wzorce podróży do 

pracy w miastach amerykańskich i 

powiązane z nimi koszty 

0 1 0 0 0 0 

Using Artificial Neural 

Nets to Predict Building 

Energy Parameters 

Stevenson, W J 1994 ASHRAE Szeregi czasowe danych pomiarowych 

dotyczących wydajności energetycznej 

budynku 

0 1 0 0 0 0 

Artificial Neural Networks 

A New Approach to 

Modelling Interregional 

Telecommunication Flows 

Fischer, M M; 

Gopal, S 

1994 WSG Dane historyczne o wykorzystaniu sieci 

telekomunikacyjnej 

0 0 0 1 0 0 

Artificial neural networks 

and naturally ventilated 

buildings 

Kindangen, J I 1996 BRaI Symulacja 0 0 0 0 1 0 

Urban change detection 

based on artificial neural 

network 

Liu, X; Lathrop 

Jr, R G 

2002 IJoRS Zdjęcia satelitarne 1 0 0 0 0 0 

Capturing Housing Market 

Segmentation An 

Alternative Approach based 

on Neural Network 

Modelling 

Kauko, T; 

Hooimeijer, P; 

Hakfoort, J 

2002 HS 10 zmiennych opisuących 

nieruchomość 

0 0 1 0 0 0 

Integration of neural 

networks and cellular 

automata for urban 

planning 

Yeh, A G; Xia, 

L 

2004 GSIS Historyczne dane GIS 0 0 0 1 0 0 

An Artificial Neural 

Network and Entropy 

Model for Residential 

Property Price Forecasting 

in Hong Kong 

Lam, K C; Yu, 

C Y; Lam, K Y 

2008 JoPR Zmienne opisujące historycznie 

sprzedane budynki (liczba sypialni, 

lokalizacja, widok na morze, typ 

budynku etc) 

0 1 0 0 0 0 

An artificial neural network 

based approach for urban 

growth zonation in 

Dehradun city, India 

Maithani, S; 

Arora, M K; 

Jain, R K 

2010 GI Zbiór map i zdjęć satelitarnych 

przetwarzanych przez systemy GIS 

0 0 0 1 0 0 

Service life prediction 

models for exterior stone 

cladding 

Silva, A; Dias, J 

L; Gaspar, P L; 

de Brito, J 

2011 BRaI Zbiór danych opisujących elewację z 

paneli kamiennych 

0 1 0 0 0 0 

A neural network model to 

develop actions in urban 

complex systems 

represented by 2D meshes 

Oliver, J L; 

Tortosa, L; 

Vicent, J F 

2011 IJoCM Plan w formie sieci/grafu 0 0 0 0 1 0 

Brains machines and 

buildings towards a 

neuromorphic architecture 

Arbib, M A 2012 IBI Przeglądowe/Inne 0 0 0 0 0 0 
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Optimizing artificial neural 

network-based indoor 

positioning system using 

genetic algorithm 

Mehmood, H; 

Tripathi, N K 

2013 IJoDE Sygnał WiFi (RSSI z poszczególnych 

Access Pointów) 

0 1 0 0 0 0 

Neural networks applied to 

service life prediction of 

exterior painted surfaces 

Dias, J L; Silva, 

A; Chai, C; 

Gaspar, P L, de 

Brito, J 

2014 BRaI Zbiór danych opisujących zewnętrzną 

powierzchnię malowaną 

0 1 0 0 0 0 

Approximation of 

simulation-derived visual 

com…a comparative study 

in machine learning 

Chatzikonstanti

nou, I; 

Sariyildiz, S 

2015 ASR Symulacja 0 1 0 0 0 0 

Analysis of human mobility 

patterns from GPS 

trajectories and contextual 

information 

Siła-Nowicka, 

K; Vandrol, J; 

Oshan, T; Long, 

J A; Demsar, U; 

Fotheringham, 

S 

2016 IJoGIS Trajektorie GPS 1 1 0 0 0 0 

Artificial Imagination of 

Architecture with Deep 

Convolutional Neural 

Network 

Silvestre, J; 

Ikeda, Y; 

Guena, F 

2016 Computer 

Science 

Kamera 0 1 0 0 0 1 

Dimensionality Reduction 

for Parametric Design 

Exploration 

Harding, J 2016 AiAG Projekty parametryczne 1 0 0 0 0 0 

Energy Model Machine 

EMM Instant Building 

Energy Prediction using 

Machine Learning 

Asl, M R; Das, 

S; Tsai, B; 

Molloy, I; 

Hauck, A 

2017 ECAADE Symulacja 0 1 0 0 0 0 

Modeling property values 

in Nigeria using artificial 

neural network 

Abidoye, R B; 

Chan, A P C 

2017 JoPR Zmienne opisujące historycznie 

sprzedane budynki (liczba sypialni, 

lokalizacja, widok na morze, typ 

budynku etc) 

0 1 0 0 0 0 

 Lace Wall Extending 

design intuition through 

machine learning 

Tamke, M; 

Zwierzycki, M; 

Deleuran, A H; 

Baranovskaya, 

Y S 

2017 FABRICAT

E 

Złożony projekt parametryczny 0 0 1 0 0 0 

3D Spatial Analysis 

Method with First-Person 

Viewpoint by Deep 

Convolutional Neural 

Network with 

Omnidirectional RGB and 

Depth Images 

Takizawa, A; 

Furuta, A 

2017 ECAADE Zdjęcia panoramiczne (z symulacji 

modelu 3D) i opinie ludzi o 

"preferencji" przestrzeni 

0 1 0 0 0 0 

DANIEL A Deep 

Architecture for Automatic 

Analysis and Retrieval of 

Building Floor Plans 

Sharma, D; 

Gupta, N; 

Chattopadhyay, 

C; Mehta, S 

2017 ICoDAaR Plany architektoniczne 1 0 0 0 0 0 

Optical Integrity of 

Diminished Reality Using 

Deep Learning 

Fukuda, T; 

Kuwamuro, Y; 

Yabuki, N 

2017 ECAADE Zdjęcia panoramiczne 0 0 1 0 0 0 

Machines’ Perception of 

Space Employing 3D 

Isovist Methods and a 

Convolutional Neural 

Network in Architectural 

Space Classification 

Peng, W; 

Zhang, F; 

Nagakura, T 

2017 MIT Isovist z punktów wewnątrz i na 

zewnątrz budynku (pawilony 

parterowe) 

0 0 1 0 0 0 

Computing brains learning 

algorithms and 

neurocomputation in the 

smart city 

Williamson, B 2017 ICaS Przeglądowe/Inne 0 0 0 0 0 0 

Machine learning for 

architectural design 

Practices and infrastructure 

Tamke, M; 

Nicholas, P; 

Zwierzycki M 

2018 IJAC Przeglądowe/Inne 0 0 0 0 0 0 



III 

 

Learning Machine Learning 

as an Architect How to 

Khean, N; 

Fabbri, A; 

Haeusler, M H 

2018 ECAADE Przeglądowe/Inne 0 0 0 0 0 0 

The introspection of Deep 

Neural Networks - Towards 

Illuminating the black box 

Khean, N; Kim, 

L; Martinez, J; 

Doherty, B; 

Fabbri, A; 

Gardner, N; 

Haeusler, H 

2018 CAADRIA Przeglądowe/Inne 0 0 0 0 0 0 

Learning indoor space 

perception 

Sedlmeier, A; 

Feld, S 

2018 JoLBS Isovist z punktów we wnętrzach 0 0 1 0 0 0 

Classification based 

symbolic indoor positioning 

over the Miskolc IIS data 

set 

Tamas, J; Toth, 

Z 

2018 JoLBS Dane  hybrydowe nawigacyjne nagrane 

przy pomocy systemu ILONA (Indoor 

Localisation and Navigation); 

multimodalne z różnych sensorów w 

telefonie komórkowym 

0 0 1 0 0 0 

Applied Automatic 

Machine Learning Process 

for Material Computation 

Luo, D; Wang, 

J; Xu, W 

2018 ECAADE Wartości przekrojów próbki elastomeru 

wyginanej przez ramię robotyczne, lub 

zadana forma geometryczna 

0 1 0 0 0 0 

Artificial Intelligence 

Aided Architectural Design 

Cudzik, J; 

Radziszewski, 

K 

2018 ECAADE Depthmapy kapiteli kolumn korynckich 0 0 0 0 0 1 

Artificial intelligence in 

architecture Generating 

conceptual design via deep 

learning 

As, I; Pal, S; 

Basu, P 

2018 IJAC Rozkład funkcjonalny w formie grafu 0 0 0 0 0 1 

Street Frontage Net Urban 

image classification using 

deep convolutional neural 

networks 

Law, S; 

Seresinhe, C I; 

Shen, Y; 

Gutierrez-Roig, 

M 

2018 IJoGIS Zdjęcia panoramiczne 0 0 1 0 0 0 

Multi Objective Qualitative 

Optimization MOQO in 

Architectural Design 

Newton, D 2018 ECAADE Symulacja (wygenerowane 

automatycznie modele wokselowe 

reprezentujące poszczególne cechy, jak 

rymiczność, heterogeniczność, 

horyrzontalnoś etc) 

0 0 0 0 1 0 

CNN based generation of 

high accuracy urban 

distribution maps utilising 

SAR satellite imagery for 

short term change 

monitoring 

Iino, S; Ito, R; 

Doi, K; 

Imaizumi, T; 

Hikosaka, S 

2018 IJoIaDF Zdjęcia satelitarne 1 0 0 0 0 0 

Modelling A Complex 

Fabrication System New 

design tools for doubly 

curved metal surfaces 

fabricated using the English 

Wheel 

Rossi, G; 

Nicholas, P 

2018 ECAADE Ręcznie generowane pary geometrii i 

instrukcji 

0 1 0 0 0 0 

Understanding and 

Visualizing Generative 

Adversarial Networks in 

Architectural Drawings 

Zheng, H; 

Huang, W 

2018 LPaA Plany architektoniczne 0 0 1 0 0 0 

An artificial intelligence-

based method to efficiently 

bring CFD to building 

simulation 

Mazuroski, W; 

Berger, J; 

Oliveira, R C L 

F; Mendes, N 

2018 JoBPS Symulacje (BPS: airflow, 3D heat 

exchange, HVAC systems simulation) 

0 0 0 0 0 0 

Design in THE Age of 

Artificial Intelligence 

Leach, N 2018 LAF Przeglądowe/Inne 0 0 0 0 0 0 

Stochastic Hybrids From 

references to design options 

through Self Organizing 

Maps methodology 

Algeciras-

Rodriguez, J 

2018 ECAADE Modele w formie chmury punktów 

(wierzchołki poligonów) 

0 0 0 0 0 1 

Deep learning in design 

workflows The elusive 

design pixel 

Mahankali, R; 

Johnson, B R; 

Anderson, A T 

2018 IJAC Modele BIM 0 0 0 0 0 0 



IV 

 

Deep Form Finding Using 

Variational Autoencoders 

for deep form finding of 

structural typologies 

de Miguel, J; 

Villafane, M E; 

Piskorec, L; 

Sancho-

Caparrini, F 

2019 ECAADE Symulacja 0 1 0 0 0 0 

A framework of developing 

machine learning models 

for facility life cycle cost 

analysis 

Gao, X; 

Pishdad-

Bozorgi, P 

2019 BRaI Modele BIM, dokumentacja 

projektowa, IWMS (integrated 

workplace management system), Dane 

o zużyciu mediów 

0 1 0 0 0 0 

Deep Reinforcement 

Learning for Autonomous 

Robotic Tensegrity ART 

Hosmer, T; 

Tigas, P 

2019 ACADIA Symulacja 0 0 0 0 1 0 

Alive A Multi Layered 

Flexible and Elastic Shape 

Aware Graphene Based 

Interface 

Koshelyuk, D; 

Talaei, A; 

Garivani, S; 

Markopoulou, 

A; Chronis, A; 

Leon, D A; 

Krenmuller, R 

2019 ACADIA Wartości oporu elektrycznego (na 

wejściu) i geometria odkształcenia na 

wyjściu 

0 1 0 0 0 0 

Stripe Segmentation for 

Branching Shell Structures 

A Data Set Development as 

a Learning Process for 

Fabrication Efficiency and 

Structural Performance 

Giannopoulou, 

E; Baquero, P; 

Warang, A; 

Orciuoli, A; 

Estevez, A T 

2019 ECAADE Projekty parametryczne (parametry na 

wyjściu, cechy modelu na wyjściu 

zamiast czasochłonnego generowania 

modeli parametrycznych) 

0 1 0 0 0 0 

Re perceive 3D printing 

with Artificial Intelligence 

Chen, D; Luo, 

D; Xu, W; Luo, 

C; Shen, L; 

Yan, X; Wang, 

T 

2019 ECAADE Szeregi czasowe (gcode) i rezultat w 

postaci krzywej wydrukowanej przez 

drukarkę 3d 

0 1 0 0 0 0 

Design Space Exploration 

of Initial Structural Design 

Alternatives via Artificial 

Neural Networks 

Yetkin, O; 

Sorguç, A G 

2019 ECAADE Zbiór projektów parametrycznych 

kratownic na wejściu i wyniki 

symulacji przemieszczenia i masy 

struktury na wyjściu 

0 0 0 0 1 1 

Haptic Learning Towards 

Neural Network based 

adaptive Cobot Path 

Planning for unstructured 

spaces 

Rossi, G; 

Nicholas, P 

2019 ECAADE Symulacja (trening sieci) + feedback 

haptyczny z rzeczywistego ramienia 

(finetuning) 

0 0 0 0 1 0 

Multimodal Classification 

of Urban Micro Events 

Sukel, M; 

Rudinac, S; 

Worring, M 

2019 ACMIC Kamera/zgłoszenia 

tekstowe/koordynaty + Przeglądowe 

1 0 0 0 0 0 



V 

 

Interdisciplinary AI A 

Machine Learning System 

for Streamlining External 

Aesthetic and Cultural 

Influences in Architecture 

Özel, G; 

Ennemoser, B  

2019 ACADIA Kamera (zdjęcia budynków) 0 1 0 0 0 1 

Imaginary Plans The 

potential of 2D to 2D Style 

transfer in planning 

processes 

del Campo, M; 

Carlson, A; 

Manninger, S 

2019 ACADIA Plany architektoniczne 0 0 0 0 0 1 

Generation of Floor Plan 

Variations with 

Convolutional Neural 

Networks and Case-based 

Reasoning 

Eisenstadt, V; 

Langenhan, C; 

Althoff, K D 

2019 ECAADE Rozkład funkcjonalny w formie grafu 0 0 0 0 0 1 

HorizonNet Learning Room 

Layout with 1D 

Representation and Pano 

Stretch Data Augmentation 

Sun, C; Hsiao, 

C W, Sun, M; 

Chen, H T 

2019 CVF Zdjęcia panoramiczne (wnętrza) 1 1 0 0 0 0 

Architectural Drawing 

Recognition A case study 

for training the learning 

algorithm with architectural 

plan and section drawing 

images 

Çolakoğlu, M 

B; Uzun, C 

2019 ECAADE Plany i przekroje 0 0 1 0 0 0 

Optimising Image 

Classification 

Implementation of 

Convolutional Neural 

Network Algorithms to 

Distinguish Between Plans 

and Sections 

Ng, J M Y; 

Khean, N; 

Madden, D; 

Fabbri, A; 

Gardner, N; 

Haeusler, M H; 

Zavoleas, Y 

2019 CAADRIA Plany i przekroje 0 0 1 0 0 0 

Semantic Enrichment of 

Indoor Point Clouds An 

Overview of Progress 

towards Digital Twinning 

Stojanovic, V; 

Trapp, M; 

Richter, R; 

Hagedorn, B; 

Dollner, J 

2019 ECAADE Chmura punktów 0 0 1 0 0 0 

Deep Learning Model for 

Predicting Preference of 

Space by Estimating the 

Depth Information of Space 

using Omnidirectional 

Images 

Kinugawa, H; 

Takizawa, A 

2019 ECAADE Zdjęcia panoramiczne 0 1 0 0 0 0 

Designing deep CNN 

models based on sparse 

coding for aerial imagery a 

deep features reduction 

approach 

Qayyum, A; 

Malik, A; Saad, 

N M; Mazher, 

M 

2019 EJoRS Zdjęcia z drona 1 0 0 0 0 0 

Deep Generative Learning 

for the Generation and 

Analysis of Architectural 

Plans with Small Datasets 

Newton, D 2019 ECAADE Plany architektoniczne 0 0 0 0 0 1 

Hybrid Elevations Using 

GAN Networks 

Mohammad, A; 

Beorkrem, C; 

Ellinger, J 

2019 ACADIA Parametrycznie wygenerowane 

elewacje, ale przetwarzane płaskie 

rysunki elewacji (czerwony) 

0 0 0 0 0 1 

An Anonymous 

Composition Design 

Optimization Through 

Machine Learning 

Algorithm 

Liu, H; Liao, L; 

Srivastava, A 

2019 ACADIA Ręcznie kategoryzowane, losowo 

generowane projekty parametryczne 

względem "monumentalności" 

"delikatności" "dynamiczności" etc. 

0 0 0 0 0 1 

GAN Loci Imaging Place 

using Generative 

Adversarial Networks 

Steinfeld, K 2019 ACADIA Zdjęcia panoramiczne (street view) 1 0 0 0 0 0 

Predicting and steering 

performance in 

architectural materials 

Thomsen, M; 

Nicholas, P; 

Tamke, M; 

Gatz, S; Sinke, 

Y 

2019 ECAADE Docelowe zdjęcia zacienienia przez 

dzianą membranę, na wyjściu pliki do 

cyfrowej maszyny dziewiarskiej 

0 1 0 0 0 0 

Automated Brick Pattern 

Generator for Robotic 

Assembly using Machine 

Learning and Images 

Zandavali, B A; 

Garcia, M J 

2019 ECAADE Symulacja (wygenerowane 

automatycznie obrysy i odpowiadające 

im ułożenie cegieł) 

0 0 0 0 0 1 



VI 

 

Steps towards AI 

augmented parametric 

modeling systems for 

supporting design 

exploration 

Toulkeridou, V 2019 ECAADE Projekty parametryczne przedstawiony 

jako szereg czasowy lub sekwencyjny 

diagram bloków operacji dynamo 

0 0 0 0 0 1 

Robot Ex Machina A 

Framework for Real Time 

Robot Programming and 

Control 

del Castillo y 

López, J L G 

2019 ACADIA Ręcznie rysowane fragmenty szkiców i 

ich uzupełnienia 

0 0 0 0 0 1 

Pedestrian trajectory 

prediction using BiRNN 

encoder-decoder framework 

Wu, J; Woo, H; 

Tamura, Y; 

Moro, A; 

Massaroli, S; 

Yamashita, A; 

Asama, H 

2019 AR Film z kamery 0 0 0 1 0 0 

Quo vadis AI in 

Architecture Survey of the 

current possibilities of AI in 

the architectural practice 

Mrosla, L; von 

Both, P 

2019 ECAADE Przeglądowe/Inne 0 0 0 0 0 0 

Trend Topics and Changing 

Concepts of Computational 

Design in the Last 16 Years 

Guzelci, O Z; 

Alacam, S; 

Guzelci, H 

2019 ECAADE Przeglądowe/Inne 0 0 0 0 0 0 

Application of AI in Urban 

Design 

Nematollahi, M 

A; Shahbazi, S; 

Nabian, N 

2019 CVaA Przeglądowe/Inne 0 0 0 0 0 0 

Do Robots Dream of 

Digital Sheep 

Leach, N 2019 ACADIA Przeglądowe/Inne 0 0 0 0 0 0 

Machine Learning from the 

Past 

Zwierzycki, M 2019 AIAAF Przeglądowe/Inne 0 0 0 0 0 0 

Smart spaces, information 

processing and the question 

of intelligence 

Lynch, C R; del 

Casino Jr., V J 

2019 AotAAoG Przeglądowe/Inne 0 0 0 0 0 0 

Robotic Constraints 

Informed Design Process 

Devadass, P; 

Heimig, T; 

Stumm, S; 

Kerber, E; 

Brell-Cokcan, S 

2019 ACADIA Symulacja 0 1 0 0 0 0 

Space ALocation 

Techniques SAT 

Computable Design 

Problems and Integrated 

Framework of Solvers 

Saha, N; 

Haymaker, J; 

Shelden, D 

2020 ACADIA Symulacja 0 0 0 0 0 1 

Spatial Assembly with Self 

Play Reinforcement 

Learning 

Hosmer, T; 

Tigas, P; 

Reeves, D; He, 

Z 

2020 ACADIA Symulacja 0 0 0 0 0 1 

A Performance Based 

Urban Block Generative 

Design Using Deep 

Reinforcement Learning 

and Computer Vision 

Han, Z; Yan, 

W; Liu, G 

2020 CDRF Symulacja 0 1 0 0 1 1 

Applying Deep Learning 

and Databases for Energy-

efficient Architectural 

Design 

Singh, M M; 

Schneider-

Marin, P; 

Harter, H; Lang, 

W; Geyer, P 

2020 ECAADE Symulacja 0 1 0 0 0 0 

Machine Learning Methods 

in Energy Simulations for 

Architects and Designers 

Sebestyen, A; 

Tyc, J 

2020 ECAADE Symulacja 0 1 0 0 0 0 

A machine-learning model 

driven by geometry, 

material and structural 

performance data in 

architectural design process 

Yazici, S 2020 ECAADE Symulacja (structural performance, 

odkształcenia, właściwości materiałów) 

0 0 0 0 1 0 

Optimization and 

Prediction of Design 

Variables Driven by 

Building Energy 

Performance A Case Study 

of Office Building in 

Wuhan 

Li, J; Chen, H 2020 CDRF Symulacja 0 0 0 0 1 0 



VII 

 

Perceptive Machine 

Visuospatial Configurations 

Through Machine Intuition 

Kampani, A; 

Varoudis, T 

2020 ECAADE Konglomerat danych miejskich 1 0 0 0 0 0 

Pedestrian Flow Monitoring 

and Prediction through 

smart material sensing 

surfaces 

Kirova, N; 

Markopoulou, 

A 

2020 ACADIA Sensory w płytach chodnikowych 

(trening na podstawie symulacji) 

0 0 0 1 0 0 

LOTI Using Machine 

Learning to sumulate 

subjective opinions in 

design 

Markusiewicz, 

J; Balerdi, A G 

2020 ECAADE Ręcznie oznaczone przez studentów 

modele parametryczne krzeseł 

(studenci oznaczali, czy dane krzesło 

jest plagiatem czy nie) 

0 1 0 0 0 0 

Generating and Optimizing 

a Funicular Arch Floor 

Structure 

Zheng, H; 

Wang, X; Qi, Z; 

Sun, S; 

Akbarzadeh, M 

2020 ACADIA Symulacja 0 0 0 0 1 1 

Towards Hallucinating 

Machines Designing with 

Computational Vision 

del Campo, M; 

Carlson, A; 

Manninger, S 

2020 IJAC Kamera (sieć opata o google deep 

dream wytrenowana na imagenet) 

0 0 0 0 0 1 

How Machines Learn to 

Plan A Critical 

Interrogation of Machine 

Vision Techniques in 

Architecture 

del Campo, M; 

Carlson, A; 

Manninger, S 

2020 ACADIA Plany budynków barokowych i 

współczesnych 

0 0 0 0 0 1 

Pipes of AI Machine 

Learning Assisted 3D 

Modeling Design 

Liu, C; Shen, J; 

Ren, Y; Zheng, 

H 

2020 CDRF Obrys kondygnacji 0 0 0 0 0 1 

Automatic Generation of 

the Schematic Mechanical 

System Drawing by 

Generative Adversarial 

Network 

Sato, G; 

Ishizawa, T; 

Iseda, H; 

Kitahara, H 

2020 ECAADE Modele BIM (przerabiane na rastrowe 

plany architektoniczne) 

0 0 0 0 0 1 

An Academy of Spatial 

Agents Generating spatial 

configurations with deep 

reinforcement learning 

Veloso, P; 

Krishnamurti, R 

2020 ECAADE Symulacja 0 0 0 0 0 1 

Deep Learning surrogate 

models for spatial and 

visual connectivity 

Tarabishy, S; 

Psarras, S; 

Kosicki, M; 

Tsigkari, M 

2020 IJAC Symulacja 0 1 0 0 0 0 

3D Graph Convolutional 

Neural Networks in 

Architecture Design 

del Campo, M; 

Carlson, A; 

Manninger, S 

2020 ACADIA Ręczny dataset "Sensibility" (parę 

tysięcy modeli OBJ przedstawiających 

poszczególne klasy arhitektoniczne: 

domy i kolumny), modelowane ręcznie, 

data augmentation by rozszerzyć 

dataset 

0 1 1 0 0 0 

The Emoting City 

Designing feeling and 

artificial empathy in 

mediated environments 

Patel, S V; 

Tchakerian, R; 

Morais, R L; 

Zhang, J; 

Cropper, S 

2020 ECAADE Kamera 0 1 0 0 0 0 



VIII 

 

Occupancy-informed 

Introducing a method or 

flexible behavioural 

mapping in architecture 

using machine vision 

Jørgensen, J; 

Tamke, M; 

Poulsgaard, K S 

2020 ECAADE Kamera w przestrzeni zbudowanej 1 0 0 0 0 0 

A Large Scale 

Measurement and 

Quantitative Analysis 

Method of Facade COlor in 

the Urban Street Using 

Deep Learning 

Zhang, J; 

Fukuda, T; 

Yabuki, N 

2020 CDRF Zdjęcia panoramiczne (street view) 1 0 0 0 0 0 

HierarchyNet Hierarchical 

CNN Based Urban Building 

Classification 

Taoufiq, S; 

Nagy, B; 

Benedek, C 

2020 Remote 

Sensing 

Kamera (zdjęcia z perspektywy 

człowieka) 

0 0 1 0 0 0 

Drawing Recognition 

Integrating Machine 

Learning Systems into 

Architectural Design 

Workflows 

Brown, L; Yip, 

M; Gardner, N; 

Haeusler, M H; 

Khean, N; 

Zavoleas, Y; 

Ramos, C 

2020 ECAADE Plany architektoniczne 0 0 1 0 0 0 

Automatic Recognition and 

Segmentation of 

Architectural Elements 

Xiao, Y; Chen, 

S; Ikeda, Y; 

Hotta, K 

2020 CAADRIA Plany architektoniczne 0 0 1 0 0 0 

An AI Lens on Historic 

Cairo A Deep Learning 

Application for Minaret 

Classification 

Zohier, I; El 

Antably, A; 

Madani, A S 

2020 ACADIA Kamera 0 0 1 0 0 0 

Automatic Generation of 

Horizontal Building Mask 

Images by Using a 3D 

Model with Aerial 

Photographs for Deep 

Learning 

Ikeno, K; 

Fukuda, T; 

Yabuki, N 

2020 ECAADE Zdjęcia satelitarne (+ generowane w 

VR z modelu 3D maski do treningu 

czyli symulacja) 

1 0 1 0 0 0 

Machine Learning for 

Comparative Urban 

Planning at Scale An 

Aviation Case Study 

Meeran, A; 

Joyce, S C 

2020 ACADIA Zdjęcia satelitarne 1 0 1 0 0 0 

Anxious Landscapes 

Correlating the Built 

Environment with Mental 

Health through Deep 

Learning 

Newton, D 2020 ACADIA Zdjęcia satelitarne, dane medyczne 

(wywiad o zaburzeniach nerwowych na 

badanym obszarze) 

1 0 0 0 0 1 

Deep Learning Methods for 

Urban Analysis and Health 

Estimation of Obesity 

Newton, D; 

Piatkowski, D; 

Marshall, W; 

Tendle, A 

2020 ECAADE Zdjęcia satelitarne 1 0 0 0 0 0 

Clustering and 

Morphological Analysis of 

Campus Context 

Li, P; Zhu, W 2020 ACADIA Zdjęcia satelitarne 1 0 0 0 0 0 



IX 

 

Urban Detection Kit A 

System for Collection and 

Analysis of Street Level 

Imagery 

Sukel, M; 

Rudinac, S; 

Worring, M 

2020 ICMR Kamera (wideo przymocowane do 

pojazdów służb miejskich) 

1 0 0 0 0 0 

Detecting Urban Issues 

With the Object Detection 

Kit 

Sukel, M; 

Rudinac, S; 

Worring, M 

2020 ACMIC Kamera (wideo przymocowane do 

pojazdów służb miejskich) 

1 0 0 0 0 0 

A big data evaluation of 

urban street walkability 

using deep learning and 

environmental sensors 

Li, Y; Yabuki, 

N; Fukuda, T; 

Zhang, J 

2020 ECAADE Konglomerat danych, GIS (open street 

maps + google maps), google street 

view, wideo z kamer, dane o hałasie i 

oświetleniu 

0 1 1 0 0 0 

An investigation of the 

visual features of urban 

street vitality using a 

convolutional neural 

network 

Qi, Y; Drolma, 

S C; Zhang, X; 

Liang, J; Jiang, 

H; Xu, J; Ni, T 

2020 Geo-spatial 

Infomation 

Science 

Zdjęcia panoramiczne (street view) 0 1 0 0 0 0 

Monitoring Asphalt 

Pavement Aging and 

Damage Conditions from 

Low Altitude UAV 

Imagery Based on a CNN 

Approach 

Pan, Y; Chen, 

X; Sun, Q; 

Zhang, X 

2020 CJoRS Zdjęcia z drona 0 1 0 0 0 0 

Making a New City Image Ho, B 2020 ACADIA Schwarzplan + kamera (zdjęcia z 

perspektywy człowieka) 

0 0 1 0 0 0 

Simulating urban land use 

change by integrating a 

convolutional neural 

network with vector-based 

cellular automata 

Zhai, Y; Yao, 

Y; Guan, Q; 

Liang X; Li, X; 

Pan, Y; Yue, H; 

Yuan, Z; Zhou, 

J 

2020 IJoGIS Zbiór zmiennych GIS opisujących 

przestrzennie miasto (w formie map 

gradientowych) 

0 0 1 0 0 0 

City Wide Traffic 

Congestion Prediction 

Based On CNN LSTM and 

Transpose CNN 

Ranjan, N; 

Bhandari, S; 

Zhao, H P; 

Kim, H; Khan, 

P 

2020 IEEE Access Szereg czasowy map ulic 

pokolorowanych względem 

zakorkowania (z google maps) 

0 0 0 1 0 0 

GPS Based citywide traffic 

congestion forecasting 

using CNN-RNN and C3D 

hybrid model 

Guo, J; Liu, Y; 

Yang, Q K; 

Wang, Y 

2020 TATS Szereg czasowy trajektorii GPS 0 0 0 1 0 0 

Suggestive Site Planning 

with Conditional GAN and 

Urban GIS Data 

Tian, R 2020 CDRF Dane GISowe przetworzone na obrazy 

(segmentacja funkcjonalna) do treningu 

0 0 0 0 0 1 

Text To Form 3D 

Prediction by Linguistic 

Descriptions 

Zhang, H 2020 ACADIA Tekst naturalny opisujący budynek 0 1 0 0 0 1 

Towards a Distributed 

Robotically Assisted 

Construction Framework 

Using Reinforcement 

Learning 

Fang, Z; Wu, Y; 

Hassonjee, A; 

Bidgoli, A; 

Cardoso-Llach, 

D 

2020 ACADIA Symulacja DRL 0 0 0 0 1 0 



X 

 

Machine Learning for 

Fabrication of Graded 

Knitted Membranes 

Sinke, Y; Gatz, 

S; Tamke, M; 

Thomsen, M R 

2020 CDRF Chmury punktów: Skany 3D próbek 

poddanych obciązeniom (wejście), na 

wyjściu "pixel-based knit fabrication 

files" dla maszyny dziewiarskiej 

0 1 0 0 1 0 

Exploration of Campus 

Layout Based on 

Generative Adversarial 

Network Discussing the 

Significance of Small 

Amount Sample Learning 

for Architecture 

Liu, Y; Luo, Y; 

Deng, Q; Zhou, 

X 

2020 CDRF Ręcznie oznaczane diagramy podziału 

funkcjonalnego kampusów 

uniwersyteckich 

0 0 0 0 0 1 

A Preliminary Study on the 

Formation of the General 

Layouts on the Northern 

Neighborhood Community 

Based on GauGAN 

Diversity Output Generator 

Pan, Y; Qian, J; 

Hu, Y 

2020 CDRF Schwarzplany istniejących osiedli 0 0 0 0 0 1 

Architectural Visualisation 

with Conditional 

Generative Adversarial 

Networks What machines 

read in architectural 

sketches 

Chan, Y H E; 

Spaeth, A B 

2020 ECAADE Pary ręcznie rysowanych szkiców 

budynków i odpowiadających 

perspektyw architektonicznych (zdjęć i 

renderów) 

0 1 0 0 0 0 

Drawn Together Machine 

Augmented Sketching in 

the Design Studio 

Steinfeld, K 2020 ACADIA Ręcznie trenowane pary szkic i 

wizualizacja aksonometryczna w 

formie uproszczonego diagarmu 

0 1 0 0 0 0 

DeepGreen Coupling 

Biological and Artificial 

Intelligence in Urban 

Design 

Pasquero, C; 

Poletto, M 

2020 ACADIA Plany i mapy oraz fotografie próbek 

śluzowca 

0 1 0 0 0 0 

Machine Learning Aided 

2D 3D Architectural Form 

Finding at High Resolution 

Zhang, H; 

Huang, Y 

2020 CDRF Sekwencje kolejnych przekrojów przez 

budynek 

0 1 0 0 0 0 

BIM Hyperreality Data 

Synthesis Using BIM and 

Hyperrealistic Rendering 

for Deep Learning 

Alawadhi, M; 

Yan, W 

2020 ACADIA Modele BIM i powiązane z nimi 

wizualizacje (trening); potem 

rozpoznawanie elementów budynku na 

zdjęciach (aplikacja) 

0 0 1 0 0 0 

A Machine Learning 

Method of Predicting 

Behavior Vitality Using 

Open Source Data 

Sun, Y; Jiang, 

L; Zheng, H 

2020 ACADIA Mapy GISowe i heatmapy aktywności 

fizycznej 

0 1 0 0 0 0 

Reprogramming Urban 

Block by Machine 

Creativity How to use 

neural networks as 

generative tools to design 

space 

Yu, D 2020 ECAADE Do treningu - plany i przekroje z 

ręcznie naniesionymi funkcjami, do 

inferencji same plany i przekroje 

0 0 0 0 0 1 

Encoded Images 

Representational Protocols 

for Integrating cGANs in 

Iterative Computational 

Design Processes 

Rossi, G; 

Nicholas, P 

2020 ACADIA Wartości opisujące geometrię 

enkodowane w formie obrazów (do 

przetwarzania przez GAN) 

0 1 0 0 0 0 

Data Driven Midsole 

Performance Oriented 

Midsole Design Using 

Computational Multi 

Objective Optimization 

Tian, R: Wang, 

T; Gün, O Y 

2020 ACADIA Szeregi czasowe, Dane dotyczące 

rozkładu obciążeń na podeszwie stopy 

podczas chodzenia i biegania (dataset 

ARAMIS) 

0 1 0 0 0 0 

On AI Adoption Issues in 

Architectural Design 

Identifying the issues based 

on an extensive literature 

review 

Zwierzycki, M 2020 ECAADE Przeglądowe/Inne 0 0 0 0 0 0 

Steering into the Skid 

Arbitraging Human and 

Artificial Intelligences to 

Kimm, G; 

Burry, M 

2020 ACADIA Przeglądowe/Inne 0 0 0 0 0 0 



XI 

 

Augment the Design 

Process 

Urban Emotion The 

interrogation of social 

media and its implications 

within urban context 

Kim, E; 

Rosenwasser, D 

2020 ECAADE Media społecznościowe 1 0 0 0 0 0 

Reinforcement Learning for 

Sequential Assembly of SL 

Blocks 

Wibranek, B; 

Liu, Y; Funk, 

N; Belousov, B; 

Peters, J; 

Tessmann, O 

2021 ECAADE Symulacja 0 0 0 0 1 1 

Training Spaces Fostering 

machine sensibility for 

spatial assemblages through 

wave function colapse and 

reinforcement learning 

Mintrone, A; 

Erioli, A 

2021 ECAADE Symulacja 0 0 0 0 0 1 

Towards Abductive 

Reasoning Based 

Computational Design 

Tools Using Machine 

Learning as a way to 

explore the combined 

design spaces of multiple 

parametric models 

Sebestyen, A; 

Rock, J; 

Hirschberg, U L 

2021 ECAADE Symulacja 0 1 0 0 0 0 

A Chained Machine 

Learning Approach to 

Motivate Retro Cladding of 

Residential Buildings 

Nicholas, P; 

Chen, Y; 

Borpujari, N; 

Bartov, N; 

Refsgaard, A 

2021 ECAADE Konglomerat danych: zdjęcia fasad, 

symulacje energetycznej budynków (na 

rzutach) i numeryczne  (koszt 

ekonomiczny i wartość pochłoniętego 

przez panele CO2) 

1 1 0 0 0 0 

Approach to Auto 

Recognition of Human 

Trajectory in Squares using 

Machine Learning-Based 

Methods 

Wu, S 2021 ECAADE Filmy z drona 1 0 0 0 0 0 

A Research On Building 

Cluster Morphology 

Formation Based On Wind 

Environmental Performance 

And Deep Reinforcement 

Learning 

Song, Y; Yuan, 

P F 

2021 ECAADE Symulacja 0 0 0 0 0 1 

Automatic Diminished 

Reality Based Virtual 

Demolition Method using 

Semantic Segmentation and 

Generative Adversarial 

Network for Landscape 

Assessment 

Kikuchi, T; 

Fukuda, T; 

Yabuki, N 

2021 ECAADE Kamera (telefon) 0 0 1 0 0 0 

Mixed Reality Landscape 

Visualization Method with 

Automatic Discrimination 

Process for Dynamic 

Occlusion Handling Using 

Instance Segmentation 

Nakabayashi, 

M; Fukuda, T; 

Yabuki, N. 

2021 ECAADE Kamera (telefon/CCTV) 0 0 1 0 0 0 

Comparative Evaluation of 

Tensor based Data 

Representations for Deep 

Leatning Methods in 

Architecture 

Eisenstadt, V; 

Arora, H; 

Ziegler, C; 

Bielski, J; 

Langenhan, C; 

Althoff, K D; 

Dengel, A 

2021 ECAADE Tensorowe reprezentacje semantyczne 

projektów architektonicznych 

0 0 1 0 0 0 

Visualizing Deep Learning 

Models for Urban Health 

Analysis 

Newton, D 2021 ECAADE Zdjęcia satelitarne i dane o zdrowiu 1 0 0 0 0 0 



XII 

 

From Streetscape to Data 

Semantic segmentation for 

the prediction of outdoor 

thermal comfort 

Yazıcıoğlu, G; 

Dino, İ G 

2021 ECAADE Zdjęcia panoramiczne street view + 

symulacje nasłonecznienia w ladybug 

do treningu 

0 1 0 0 0 0 

A deep 2d 3d Feature Level 

fusion for classification of 

UAV multispectral imagery 

in urban areas 

Pourazar, H; 

Samadzadegan, 

F; Javan, F D 

2021 Geocarto 

International 

Zdjęcia z drona, różne spektra światła 

widzialnego i podczerwonego 

0 0 1 0 0 0 

A novel CNN LSTM based 

approach to predict urban 

expansion 

Boulila, W; 

Ghandorh, H; 

Khan, M A; 

Ahmed, F; 

Ahmad, J 

2021 Ecological 

Informatics 

Szereg czasowy zdjęć satelitarnych 0 0 0 1 0 0 

Fill In The Blanks Deep 

Convolutional Generative 

Adversarial Network to 

Investigate the Virtual 

Design Space of Historical 

Islamic Patterns 

Alani, M W; 

Al-Kaseem, B 

R 

2021 ASCAAD Przekroje przez rozety 0 0 0 0 0 1 

Limits to Applied ML in 

Planning and Architecture 

Understanding and defining 

extents and capabilities 

Joyce, S C; 

Nazim, I 

2021 ECAADE Przeglądowe/Inne 0 0 0 0 0 0 

 

Załącznik 2. Tabela źródeł kwerendy głównej wykorzystania sieci 

neuronowych w CAAD (do 2021 roku). Rodzaj sieci neuronowej, skala 

zastosowania. 

Kodowana techniką multi-hot: 

Publikacja Rodzaj sieci neuronowej Skala zastosowania 

Tytuł FNN i 

VAE 

CNN RNN LSTM GAN TRANS-

FORMER 

ORAZ NLP 

INNE 

NN, np. 

SOM 

DRL WPOMA-

GAJĄCO 

DODAT-

KOWE 

ML 

DETAL, 

MATER-

IAŁY, 

CAM 

ARCHI-

TEK-

TURA 

URBA-

NISTY-

KA 

BEZ-

SKA-

LOWE 

PROCENT: 32,9% 41,6% 4,7% 6,0% 20,1% 2,7% 3,4% 6,0% 14,8% 25,5% 49,0% 39,6% 2,7% 

SUMA: 49 62 7 9 30 4 5 9 22 38 73 59 4 

Modelling spatial interaction 

using a neural net 

1 0 0 0 0 0 0 0 0 0 0 1 0 

Using Artificial Neural Nets 

to Predict Building Energy 

Parameters 

1 0 0 0 0 0 0 0 0 0 1 0 0 

Artificial Neural Networks A 

New Approach to Modelling 

Interregional 

Telecommunication Flows 

1 0 0 0 0 0 0 0 0 0 0 1 0 

Artificial neural networks and 

naturally ventilated buildings 

1 0 0 0 0 0 0 0 0 0 1 0 0 

Urban change detection based 

on artificial neural network 

1 0 0 0 0 0 0 0 1 0 0 1 0 

Capturing Housing Market 

Segmentation An Alternative 

Approach based on Neural 

Network Modelling 

0 0 0 0 0 0 1 0 0 0 0 1 0 



XIII 

 

Integration of neural networks 

and cellular automata for 

urban planning 

1 0 0 0 0 0 0 0 1 0 0 1 0 

An Artificial Neural Network 

and Entropy Model for 

Residential Property Price 

Forecasting in Hong Kong 

1 0 0 0 0 0 0 0 1 0 0 1 0 

An artificial neural network 

based approach for urban 

growth zonation in Dehradun 

city, India 

1 0 0 0 0 0 0 0 0 0 0 1 0 

Service life prediction models 

for exterior stone cladding 

1 0 0 0 0 0 0 0 1 1 0 0 0 

A neural network model to 

develop actions in urban 

complex systems represented 

by 2D meshes 

0 0 0 0 0 0 1 0 0 0 0 1 0 

Brains machines and buildings 

towards a neuromorphic 

architecture 

1 0 0 0 0 0 0 0 0 1 1 0 0 

Optimizing artificial neural 

network-based indoor 

positioning system using 

genetic algorithm 

1 0 0 0 0 0 0 0 0 0 1 0 0 

Neural networks applied to 

service life prediction of 

exterior painted surfaces 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Approximation of simulation-

derived visual com…a 

comparative study in machine 

learning 

1 0 0 0 0 0 0 0 1 0 1 0 0 

Analysis of human mobility 

patterns from GPS trajectories 

and contextual information 

1 0 0 0 0 0 0 0 0 0 0 1 0 

Artificial Imagination of 

Architecture with Deep 

Convolutional Neural 

Network 

0 1 0 0 1 0 0 0 0 0 1 0 0 

Dimensionality Reduction for 

Parametric Design 

Exploration 

0 0 0 0 0 0 1 0 1 0 1 0 0 

Energy Model Machine EMM 

Instant Building Energy 

Prediction using Machine 

Learning 

1 0 0 0 0 0 0 0 1 0 1 0 0 

Modeling property values in 

Nigeria using artificial neural 

network 

1 0 0 0 0 0 0 0 0 0 0 1 0 

 Lace Wall Extending design 

intuition through machine 

learning 

1 0 0 0 0 0 0 0 0 1 0 0 0 



XIV 

 

3D Spatial Analysis Method 

with First-Person Viewpoint 

by Deep Convolutional Neural 

Network with Omnidirectional 

RGB and Depth Images 

0 1 0 0 0 0 0 0 0 0 1 1 0 

DANIEL A Deep Architecture 

for Automatic Analysis and 

Retrieval of Building Floor 

Plans 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Optical Integrity of 

Diminished Reality Using 

Deep Learning 

0 1 0 0 0 0 0 0 0 0 1 1 0 

Machines’ Perception of 

Space Employing 3D Isovist 

Methods and a Convolutional 

Neural Network in 

Architectural Space 

Classification 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Computing brains learning 

algorithms and 

neurocomputation in the smart 

city 

0 0 0 0 0 0 0 0 0 0 0 1 0 

Machine learning for 

architectural design Practices 

and infrastructure 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Learning Machine Learning as 

an Architect How to 

1 0 0 0 0 0 0 0 0 0 0 0 1 

The introspection of Deep 

Neural Networks - Towards 

Illuminating the black box 

1 0 0 0 0 0 0 0 0 0 0 0 1 

Learning indoor space 

perception 

1 0 0 0 0 0 0 0 1 0 1 0 0 

Classification based symbolic 

indoor positioning over the 

Miskolc IIS data set 

1 0 0 0 0 0 0 0 1 0 1 0 0 

Applied Automatic Machine 

Learning Process for Material 

Computation 

1 0 1 1 0 0 0 0 0 1 0 0 0 

Artificial Intelligence Aided 

Architectural Design 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Artificial intelligence in 

architecture Generating 

conceptual design via deep 

learning 

0 1 0 0 1 0 0 0 0 0 1 0 0 

Street Frontage Net Urban 

image classification using 

deep convolutional neural 

networks 

0 1 0 0 0 0 0 0 0 0 1 1 0 

Multi Objective Qualitative 

Optimization MOQO in 

Architectural Design 

0 1 0 0 0 0 0 0 0 0 1 0 0 

CNN based generation of high 

accuracy urban distribution 

maps utilising SAR satellite 

imagery for short term change 

monitoring 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Modelling A Complex 

Fabrication System New 

design tools for doubly curved 

metal surfaces fabricated 

using the English Wheel 

0 1 0 0 0 0 0 0 0 1 0 0 0 

Understanding and 

Visualizing Generative 

Adversarial Networks in 

Architectural Drawings 

0 0 0 0 1 0 0 0 0 0 1 0 0 



XV 

 

An artificial intelligence-

based method to efficiently 

bring CFD to building 

simulation 

0 0 1 0 0 0 0 0 0 0 1 0 0 

Design in THE Age of 

Artificial Intelligence 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Stochastic Hybrids From 

references to design options 

through Self Organizing Maps 

methodology 

0 0 0 0 0 0 1 0 1 1 1 0 0 

Deep learning in design 

workflows The elusive design 

pixel 

0 0 0 0 0 1 0 0 0 0 1 0 0 

Deep Form Finding Using 

Variational Autoencoders for 

deep form finding of structural 

typologies 

1 0 0 0 0 0 0 0 0 0 1 0 0 

A framework of developing 

machine learning models for 

facility life cycle cost analysis 

1 0 0 0 0 0 0 0 1 0 1 1 0 

Deep Reinforcement Learning 

for Autonomous Robotic 

Tensegrity ART 

1 0 0 0 0 0 0 1 0 1 1 0 0 

Alive A Multi Layered 

Flexible and Elastic Shape 

Aware Graphene Based 

Interface 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Stripe Segmentation for 

Branching Shell Structures A 

Data Set Development as a 

Learning Process for 

Fabrication Efficiency and 

Structural Performance 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Re perceive 3D printing with 

Artificial Intelligence 

1 1 0 1 0 0 0 0 1 1 0 0 0 

Design Space Exploration of 

Initial Structural Design 

Alternatives via Artificial 

Neural Networks 

1 0 0 0 0 0 0 0 0 1 0 0 0 



XVI 

 

Haptic Learning Towards 

Neural Network based 

adaptive Cobot Path Planning 

for unstructured spaces 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Multimodal Classification of 

Urban Micro Events 

0 1 0 1 0 0 0 0 1 0 0 1 0 

Interdisciplinary AI A 

Machine Learning System for 

Streamlining External 

Aesthetic and Cultural 

Influences in Architecture 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Imaginary Plans The potential 

of 2D to 2D Style transfer in 

planning processes 

0 1 0 0 1 0 0 0 0 0 1 0 0 

Generation of Floor Plan 

Variations with Convolutional 

Neural Networks and Case-

based Reasoning 

0 1 0 0 1 0 0 0 0 0 1 0 0 

HorizonNet Learning Room 

Layout with 1D 

Representation and Pano 

Stretch Data Augmentation 

0 1 1 1 0 0 0 0 0 0 1 0 0 

Architectural Drawing 

Recognition A case study for 

training the learning algorithm 

with architectural plan and 

section drawing images 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Optimising Image 

Classification Implementation 

of Convolutional Neural 

Network Algorithms to 

Distinguish Between Plans 

and Sections 

0 1 0 0 0 0 0 0 0 1 1 0 0 

Semantic Enrichment of 

Indoor Point Clouds An 

Overview of Progress towards 

Digital Twinning 

0 1 0 0 0 0 0 0 1 0 1 0 0 

Deep Learning Model for 

Predicting Preference of 

Space by Estimating the 

Depth Information of Space 

using Omnidirectional Images 

0 1 0 0 1 0 0 0 0 0 0 1 0 

Designing deep CNN models 

based on sparse coding for 

aerial imagery a deep features 

reduction approach 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Deep Generative Learning for 

the Generation and Analysis 

of Architectural Plans with 

Small Datasets 

0 0 0 0 1 0 0 0 0 0 1 0 0 

Hybrid Elevations Using 

GAN Networks 

0 0 0 0 1 0 0 0 0 0 1 0 0 

An Anonymous Composition 

Design Optimization Through 

Machine Learning Algorithm 

0 0 0 0 1 0 0 0 0 0 1 0 0 



XVII 

 

GAN Loci Imaging Place 

using Generative Adversarial 

Networks 

0 0 0 0 1 0 0 0 0 0 0 1 0 

Predicting and steering 

performance in architectural 

materials 

0 0 0 0 1 0 0 0 0 1 0 0 0 

Automated Brick Pattern 

Generator for Robotic 

Assembly using Machine 

Learning and Images 

0 0 0 0 1 0 0 0 0 1 0 0 0 

Steps towards AI augmented 

parametric modeling systems 

for supporting design 

exploration 

0 0 1 1 0 1 0 0 0 0 1 1 0 

Robot Ex Machina A 

Framework for Real Time 

Robot Programming and 

Control 

0 0 1 0 0 0 0 0 0 1 0 0 0 

Pedestrian trajectory 

prediction using BiRNN 

encoder-decoder framework 

0 0 1 0 0 0 0 0 0 1 0 0 0 

Quo vadis AI in Architecture 

Survey of the current 

possibilities of AI in the 

architectural practice 

0 0 0 0 0 0 0 0 0 1 1 1 1 

Trend Topics and Changing 

Concepts of Computational 

Design in the Last 16 Years 

0 0 0 0 0 0 0 0 0 1 1 1 1 

Application of AI in Urban 

Design 

0 0 0 0 0 0 0 0 0 0 0 1 0 

Do Robots Dream of Digital 

Sheep 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Machine Learning from the 

Past 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Smart spaces, information 

processing and the question of 

intelligence 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Robotic Constraints Informed 

Design Process 

0 0 0 0 0 0 1 0 1 1 0 0 0 

Space ALocation Techniques 

SAT Computable Design 

Problems and Integrated 

Framework of Solvers 

1 0 0 0 0 0 0 1 0 0 1 1 0 

Spatial Assembly with Self 

Play Reinforcement Learning 

1 0 0 0 0 0 0 1 0 0 1 0 0 

A Performance Based Urban 

Block Generative Design 

Using Deep Reinforcement 

Learning and Computer 

Vision 

1 0 0 0 0 0 0 1 0 0 1 1 0 

Applying Deep Learning and 

Databases for Energy-efficient 

Architectural Design 

1 0 0 0 0 0 0 0 0 0 1 0 0 

Machine Learning Methods in 

Energy Simulations for 

Architects and Designers 

1 0 0 0 0 0 0 0 0 1 1 0 0 



XVIII 

 

A machine-learning model 

driven by geometry, material 

and structural performance 

data in architectural design 

process 

1 0 0 0 0 0 0 0 1 1 1 0 0 

Optimization and Prediction 

of Design Variables Driven by 

Building Energy Performance 

A Case Study of Office 

Building in Wuhan 

1 0 0 0 0 0 0 0 0 0 1 0 0 

Perceptive Machine 

Visuospatial Configurations 

Through Machine Intuition 

1 0 0 0 0 0 0 0 1 0 0 1 0 

Pedestrian Flow Monitoring 

and Prediction through smart 

material sensing surfaces 

1 0 0 0 0 0 0 0 0 1 0 1 0 

LOTI Using Machine 

Learning to sumulate 

subjective opinions in design 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Generating and Optimizing a 

Funicular Arch Floor 

Structure 

1 0 0 0 0 0 0 0 0 1 0 0 0 

Towards Hallucinating 

Machines Designing with 

Computational Vision 

0 1 0 0 0 0 0 0 0 1 1 0 0 

How Machines Learn to Plan 

A Critical Interrogation of 

Machine Vision Techniques in 

Architecture 

0 1 0 0 1 0 0 0 0 0 1 0 0 

Pipes of AI Machine Learning 

Assisted 3D Modeling Design 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Automatic Generation of the 

Schematic Mechanical System 

Drawing by Generative 

Adversarial Network 

0 1 0 0 1 0 0 0 0 0 1 0 0 

An Academy of Spatial 

Agents Generating spatial 

configurations with deep 

reinforcement learning 

0 1 0 0 0 0 0 1 0 0 1 0 0 

Deep Learning surrogate 

models for spatial and visual 

connectivity 

0 1 0 0 1 0 0 0 0 0 1 0 0 



XIX 

 

3D Graph Convolutional 

Neural Networks in 

Architecture Design 

0 1 0 0 0 0 0 0 0 0 1 0 0 

The Emoting City Designing 

feeling and artificial empathy 

in mediated environments 

0 1 0 0 0 0 0 0 0 1 1 1 0 

Occupancy-informed 

Introducing a method or 

flexible behavioural mapping 

in architecture using machine 

vision 

0 1 0 0 0 0 0 0 0 0 1 0 0 

A Large Scale Measurement 

and Quantitative Analysis 

Method of Facade COlor in 

the Urban Street Using Deep 

Learning 

0 1 0 0 0 0 0 0 0 0 1 1 0 

HierarchyNet Hierarchical 

CNN Based Urban Building 

Classification 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Drawing Recognition 

Integrating Machine Learning 

Systems into Architectural 

Design Workflows 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Automatic Recognition and 

Segmentation of Architectural 

Elements 

0 1 0 0 0 0 0 0 0 0 1 0 0 

An AI Lens on Historic Cairo 

A Deep Learning Application 

for Minaret Classification 

0 1 0 0 0 0 0 0 0 0 1 0 0 

Automatic Generation of 

Horizontal Building Mask 

Images by Using a 3D Model 

with Aerial Photographs for 

Deep Learning 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Machine Learning for 

Comparative Urban Planning 

at Scale An Aviation Case 

Study 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Anxious Landscapes 

Correlating the Built 

Environment with Mental 

Health through Deep Learning 

0 1 0 0 1 0 0 0 0 0 0 1 0 



XX 

 

Deep Learning Methods for 

Urban Analysis and Health 

Estimation of Obesity 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Clustering and Morphological 

Analysis of Campus Context 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Urban Detection Kit A System 

for Collection and Analysis of 

Street Level Imagery 

0 1 0 0 0 0 0 0 1 0 0 1 0 

Detecting Urban Issues With 

the Object Detection Kit 

0 1 0 0 0 0 0 0 1 0 0 1 0 

A big data evaluation of urban 

street walkability using deep 

learning and environmental 

sensors 

0 1 0 0 0 0 0 0 0 0 0 1 0 

An investigation of the visual 

features of urban street vitality 

using a convolutional neural 

network 

0 1 0 0 0 0 0 0 0 0 0 1 0 

Monitoring Asphalt Pavement 

Aging and Damage 

Conditions from Low Altitude 

UAV Imagery Based on a 

CNN Approach 

0 1 0 0 0 0 0 0 1 1 0 1 0 

Making a New City Image 0 1 0 0 0 0 0 0 0 0 0 1 0 

Simulating urban land use 

change by integrating a 

convolutional neural network 

with vector-based cellular 

automata 

0 1 0 0 0 0 0 0 1 0 0 1 0 

City Wide Traffic Congestion 

Prediction Based On CNN 

LSTM and Transpose CNN 

0 1 0 1 0 0 0 0 0 0 0 1 0 

GPS Based citywide traffic 

congestion forecasting using 

CNN-RNN and C3D hybrid 

model 

0 1 1 1 0 0 0 0 0 0 0 1 0 

Suggestive Site Planning with 

Conditional GAN and Urban 

GIS Data 

0 1 0 0 1 0 0 0 0 0 0 1 0 



XXI 

 

Text To Form 3D Prediction 

by Linguistic Descriptions 

0 1 0 0 0 1 0 0 0 0 1 0 0 

Towards a Distributed 

Robotically Assisted 

Construction Framework 

Using Reinforcement 

Learning 

0 1 0 0 0 0 0 1 0 1 0 0 0 

Machine Learning for 

Fabrication of Graded Knitted 

Membranes 

0 1 0 0 0 0 0 0 0 1 0 0 0 

Exploration of Campus 

Layout Based on Generative 

Adversarial Network 

Discussing the Significance of 

Small Amount Sample 

Learning for Architecture 

0 0 0 0 1 0 0 0 0 0 1 1 0 

A Preliminary Study on the 

Formation of the General 

Layouts on the Northern 

Neighborhood Community 

Based on GauGAN Diversity 

Output Generator 

0 0 0 0 1 0 0 0 0 0 1 1 0 

Architectural Visualisation 

with Conditional Generative 

Adversarial Networks What 

machines read in architectural 

sketches 

0 0 0 0 1 0 0 0 0 0 1 0 0 

Drawn Together Machine 

Augmented Sketching in the 

Design Studio 

0 0 0 0 1 0 0 0 0 0 1 0 0 

DeepGreen Coupling 

Biological and Artificial 

Intelligence in Urban Design 

0 0 0 0 1 0 0 0 0 0 1 1 0 

Machine Learning Aided 2D 

3D Architectural Form 

Finding at High Resolution 

0 0 0 0 1 0 0 0 0 0 1 0 0 

BIM Hyperreality Data 

Synthesis Using BIM and 

Hyperrealistic Rendering for 

Deep Learning 

0 0 0 0 1 0 0 0 0 0 1 0 0 

A Machine Learning Method 

of Predicting Behavior 

Vitality Using Open Source 

Data 

0 0 0 0 1 0 0 0 0 0 0 1 0 

Reprogramming Urban Block 

by Machine Creativity How to 

use neural networks as 

generative tools to design 

space 

0 0 0 0 1 0 0 0 0 0 0 1 0 

Encoded Images 

Representational Protocols for 

Integrating cGANs in Iterative 

Computational Design 

Processes 

0 0 0 0 1 0 0 0 0 1 0 0 0 



XXII 

 

Data Driven Midsole 

Performance Oriented 

Midsole Design Using 

Computational Multi 

Objective Optimization 

0 0 0 1 0 0 0 0 0 1 0 0 0 

On AI Adoption Issues in 

Architectural Design 

Identifying the issues based on 

an extensive literature review 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Steering into the Skid 

Arbitraging Human and 

Artificial Intelligences to 

Augment the Design Process 

0 0 0 0 0 0 0 0 0 0 0 0 0 

Urban Emotion The 

interrogation of social media 

and its implications within 

urban context 

0 0 0 0 0 1 0 0 0 0 0 1 0 

Reinforcement Learning for 

Sequential Assembly of SL 

Blocks 

1 0 0 0 0 0 0 1 0 0 1 0 0 

Training Spaces Fostering 

machine sensibility for spatial 

assemblages through wave 

function colapse and 

reinforcement learning 

1 0 0 0 0 0 0 1 0 0 1 0 0 

Towards Abductive 

Reasoning Based 

Computational Design Tools 

Using Machine Learning as a 

way to explore the combined 

design spaces of multiple 

parametric models 

1 0 0 0 0 0 0 0 0 0 1 0 0 

A Chained Machine Learning 

Approach to Motivate Retro 

Cladding of Residential 

Buildings 

1 0 0 0 1 0 0 0 0 1 1 0 0 

Approach to Auto 

Recognition of Human 

Trajectory in Squares using 

Machine Learning-Based 

Methods 

1 1 0 0 0 0 0 0 1 0 0 1 0 

A Research On Building 

Cluster Morphology 

Formation Based On Wind 

Environmental Performance 

And Deep Reinforcement 

Learning 

1 0 0 0 0 0 0 1 0 0 0 1 0 

Automatic Diminished Reality 

Based Virtual Demolition 

Method using Semantic 

Segmentation and Generative 

Adversarial Network for 

Landscape Assessment 

0 1 0 0 1 0 0 0 0 0 1 1 0 

Mixed Reality Landscape 

Visualization Method with 

Automatic Discrimination 

Process for Dynamic 

Occlusion Handling Using 

Instance Segmentation 

0 1 0 0 0 0 0 0 0 0 1 1 0 

Comparative Evaluation of 

Tensor based Data 

Representations for Deep 

Leatning Methods in 

Architecture 

0 1 0 0 0 0 0 0 0 0 1 0 0 



XXIII 

 

Visualizing Deep Learning 

Models for Urban Health 

Analysis 

0 1 0 0 0 0 0 0 0 0 0 1 0 

From Streetscape to Data 

Semantic segmentation for the 

prediction of outdoor thermal 

comfort 

0 1 0 0 0 0 0 0 0 0 0 1 0 

A deep 2d 3d Feature Level 

fusion for classification of 

UAV multispectral imagery in 

urban areas 

0 1 0 0 0 0 0 0 0 0 0 1 0 

A novel CNN LSTM based 

approach to predict urban 

expansion 

0 1 0 1 0 0 0 0 0 0 0 1 0 

Fill In The Blanks Deep 

Convolutional Generative 

Adversarial Network to 

Investigate the Virtual Design 

Space of Historical Islamic 

Patterns 

0 1 0 0 1 0 0 0 0 1 0 0 0 

Limits to Applied ML in 

Planning and Architecture 

Understanding and defining 

extents and capabilities 

0 0 0 0 0 0 0 0 0 1 0 0 0 
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Assessment 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
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Mixed Reality 

Landscape 

Visualization 

Method with 

Automatic 

Discrimination 

Process for 

Dynamic Occlusion 

Handling Using 

Instance 

Segmentation 

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

Comparative 

Evaluation of 

Tensor based Data 

Representations for 

Deep Leatning 

Methods in 

Architecture 

0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

Visualizing Deep 

Learning Models 

for Urban Health 

Analysis 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

From Streetscape to 

Data Semantic 

segmentation for 

the prediction of 

outdoor thermal 

comfort 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

A deep 2d 3d 

Feature Level 

fusion for 

classification of 

UAV multispectral 

imagery in urban 

areas 

1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

A novel CNN 

LSTM based 

approach to predict 

urban expansion 

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

Fill In The Blanks 

Deep 

Convolutional 

Generative 

Adversarial 

Network to 

Investigate the 

Virtual Design 

Space of Historical 

Islamic Patterns 

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

Limits to Applied 

ML in Planning and 

Architecture 

Understanding and 

defining extents 

and capabilities 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

 

Załącznik 4: Lista punktów głównych wykorzystanych do treningu sieci 

neuronowej eksperymentu głównego oraz lista odrzuconych kandydatów. 

Punkty główne ze względu na lokalizację (zbiór treningowy) 

Źródło Strona Punkt Przesłanki Lokalizacja 

Kevin Lynch, The 

Image of the City 

(Lynch, 1960) 

82 Kopuła Santa Maria del 

Fiore 

Lokalizacja, skala, widoczność 

z wielu kątów 

43.7731244688946, 

11.256950187977283 

Kazimierz Wejchert, 

Elementy 

Kompozycji 

67 Ratusz, Sztokholm Lokalizacja, rola znaczeniowa, 

widoczność, wysokość wieży 

59.32727009950819, 

18.056018797869122 

68 Cytadela w Irbilu, Irbil, Irak Lokalizacja, skala 36.191210933629534, 

44.00913794809795 
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Urbanistycznej 

(Wejchert, 1984) 

68 Katedra Wniebowzięcia 

Najświętszej Maryi Panny 

w San Francisco 

Lokalizacja, skala (na osi ul. 

O'Farrell St) 

37.78423183174164,  

-122.42539032733146 

68 Zamek Królewski, 

Warszawa 

Lokalizacja, skala, symbol 52.24774010305404, 

21.014167214068163 

68 Wawel, Kraków Lokalizacja, skala, symbol, na 

wzgórzu 

50.05474086414226, 

19.935143547684117 

68 Zamek Królewski, Chęciny Lokalizacja, symbol, na 

wzgórzu 

50.797412649263485, 

20.460262023104846 

75 Wieża Eiffla, Paryż Lokalizacja, skala, widoczność 48.85823672734345, 

2.2945431835473373 

98 Ratusz, Sandomierz Lokalizacja, piękno, 

organizacja przestrzeni 

50.67934830667463, 

21.74930596113819 

103 Bazylika Dominikanów, 

Grodzka, Kraków 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.05933397190924, 

19.93906864905628 

103 Bazylika Franciszkanów, 

Grodzka, Kraków 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.05922783625676, 

19.936508429930548 

103 Kościół św. Piotra i Pawła, 

Grodzka, Kraków 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.056938531502624, 

19.939123449264546 

103 Kościół św. Andrzeja 

Grodzka, Kraków 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.05659879699593, 

19.938399930555306 

103 Kościół św. Wojciecha, 

Grodzka Kraków 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.060909489198764, 

19.937716083709404 

103 Zielona Brama, Długa, 

Gdańsk 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

54.3479487542666, 

18.655738303579398 

103 Ratusz Głównego Miasta, 

Długa, Gdańsk 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

54.348795012676355, 

18.652638529291472 

103 Złota Brama, Długa, 

Gdańsk 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

54.349682029318124, 

18.648035798140057 

135 Gmach Admiralicji, 

Petersburg, Rosja 

Lokalizacja, naprowadzenie 

przez linie naprowadzające, 

skala 

59.937533472231046, 

30.3086325034946 

135 Sobór św. Izaaka, 

Petersburg, Rosja 

Lokalizacja, naprowadzenie 

przez linie naprowadzające 

59.93401374108756, 

30.306188910575546 

135 Pomnik Mikołaja I, 

Petersburg, Rosja 

Lokalizacja, naprowadzenie 

przez linie naprowadzające 

59.93209141704214, 

30.30837462958869 
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144 Rynek w Cieszynie, 

centrum zaakcentowane 

fontanną, Cieszyn 

Lokalizacja, fontanna w 

centrum placu, w osi ul. 

Szersznika i Matejki 

49.748754047391294, 

18.633395404533033 

147 Muzeum Narodowe, Plac 

Wacława, Praga, Czechy 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

50.0788960556454, 

14.430894625736745 

148 Kościół św. Kazimierza 

Królewicza, Rynek Nowego 

Miasta, Warszawa 

Lokalizacja, skala, kontrast 52.253195278330104, 

21.008799004338233 

153 Kolumna Vendome, Plac 

Vendome, Paryż 

Lokalizacja, centrum placu, 

wysokość, naprowadzenie 

przez otwarcie wąskie, węzeł 

założenia sieciowego 

48.867469943263195, 

2.329442923887159 

155 Łuk Triumfalny, Plac De 

Gaulle'a, Paryż 

Lokalizacja, centrum placu, 

naprowadzenie przez otwarcia 

kierunkowe, węzeł założenia 

sieciowego 

48.873768393508314, 

2.2950556398040525 

155 Palace Albanija, Plac 

Terazije, Belgrad, Serbia 

Lokalizacja, otwarcie 

agresywne, zamknięcie 

wnętrza urbanistycznego 

44.815087864814686, 

20.460130818534253 

165 Bazylika Kolegiacka, 

Pułtusk 

Lokalizacja, początek wnętrza 

podłużnego 

52.70750597693507, 

21.088530872765254 

165 Zamek, Pułtusk Lokalizacja, początek wnętrza 

podłużnego 

52.70380812487929, 

21.094723871177564 

165 Ratusz, Pułtusk Lokalizacja, centrum wnętrza 

podłużnego 

52.705844098292765, 

21.09126635843592 

168 Pałac Kultury i Nauki w 

Warszawie 

Lokalizacja, skala, 

naprowadzenia, otwarcia, 

sprzęganie szeregu wnętrz 

52.231759984653166, 

21.006210337564905 

50 Kopuła Bazyliki św. Piotra, 

Plac św. Piotra, Watykan 

Lokalizacja w zespole 

formalnym Bazyliki 

Watykańskiej 

41.902166506491284, 

12.453380378958762 

Juliusz Żórawski, O 

Budowie Formy 

Architektonicznej 

(Żórawski, 1962) 

50, 130 Dziedziniec Królewski, 

Pałac Wersalski, Wersal, 

Francja 

Lokalizacja w zespole 

formalnym Pałacu 

Wersalskiego, węzeł założenia 

sieciowego 

48.804324297071865, 

2.1221411080918013 

50, 130 Skrzyżowanie osi, Pałac 

Wersalski, Wersal, Francja 

Lokalizacja w zespole 

formalnym Pałacu 

48.80796942185697, 

2.1083895183337797 
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Wersalskiego, węzeł założenia 

sieciowego 

50, 130 Centrum Parku 

Wersalskiego, Pałac 

Wersalski, Wersal, Francja 

Lokalizacja w zespole 

formalnym Pałacu 

Wersalskiego, węzeł założenia 

sieciowego 

48.810016208806275, 

2.1000599070438986 

50, 130 Centrum polany w Parku 

Wersalskim, Pałac 

Wersalski, Wersal, Francja 

Lokalizacja w zespole 

formalnym Pałacu 

Wersalskiego, węzeł założenia 

sieciowego 

48.81442471663893, 

2.0839451265006317 

52 Kościół Farny, Kazimierz 

Dolny 

Lokalizacja w zespole 

formalnym Rynku w 

Kazimierzu Dolnym, 

Topografia 

51.322711426689, 

21.948628889726415 

52 Klasztor Franciszkański, 

Kazimierz Dolny 

Lokalizacja w zespole 

formalnym Rynku w 

Kazimierzu Dolnym, 

Topografia 

51.32087405325941, 

21.945140773563352 

52 Campanila, Plac św. Marka, 

Wenecja 

Lokalizacja w zespole 

formalnym Placu św. Marka 

45.434025912165076, 

12.339092995552168 

52 Bazylika św. Marka, Plac 

św. Marka, Wenecja 

Lokalizacja w zespole 

formalnym Placu św. Marka 

45.43451609824373, 

12.339733475527506 

95 Sukiennice, Rynek, Kraków Lokalizacja, centrum, 

naprowadzenia 

50.061647834367996, 

19.937315107395793 

95 Bazylika Mariacka, Rynek, 

Kraków 

Lokalizacja 50.061675708795484, 

19.938982492824767 

95 Wieża Ratuszowa, Rynek, 

Kraków 

Lokalizacja 50.06147146955907, 

19.936420718989517 

118 Rondo Pól Elizejskich, 

Paryż 

Lokalizacja w zespole 

formalnym Luwru 

48.86898261130083, 

2.3101378906524426 

118 Front Kościoła de la 

Madeleine, Paryż 

Lokalizacja w zespole 

formalnym Luwru 

48.8693998261807, 

2.3240308641214726 

118 Luwr, Paryż Lokalizacja w zespole 

formalnym Luwru 

48.86058053577298, 

2.3376416605527313 

118 Łuk Carrousel, Plac 

Carrousel, Luwr, Paryż 

Lokalizacja w zespole 

formalnym Luwru 

48.861716817964265, 

2.332933597576387 
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VI Centrum placu, Palmanova, 

Włochy 

Dominanta ze względu na 

umiejscowienie, punkt 

centralny założenia radialnego 

45.90537119979507, 

13.309922227650372 

Francis D. K. Ching, 

Architecture Form, 

Space, and Order 

(Ching, 2007) 

5 Wieża klasztorna, Mont-

Saint-Michel, Normandia, 

Francja 

Lokalizacja, widoczność, 

topografia, wysokość, 

strzelistość 

48.63604104667767,  

-1.5114044222987941 

7 Lincoln Memorial, The 

Mall, Waszyngton, USA 

Lokalizacja, widoczność 38.88930740144755,  

-77.05015872612371 

7 Washington Monument, 

The Mall, Waszyngton, 

USA 

Lokalizacja, widoczność 38.88946469983048,  

-77.03525028423452 

7 Kapitol, The Mall, 

Waszyngton, USA 

Lokalizacja, widoczność 38.889809176942585, -

77.00912382948968 

128 Wieża ratusza, Piazza del 

Campo, Siena, Włochy 

Lokalizacja, naprowadzenia 

ulic, strzelistość 

43.31831653018856, 

11.332146530598532 

129 Taj Mahal, Agra, Indie Lokalizacja, skala, punkt 

centralny 

27.17497404617232, 

78.04201862461521 

270 Pałac Karlsruhe, Karlsruhe, 

Niemcy 

Lokalizacja, centrum założenia 

radialnego 

49.01396719257856, 

8.40441705573585 

276 Plac przed Operą Garnier, 

Paryż, Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.87068797788575, 

2.3323230481763524 

276 Plac Trocadero, Paryż, 

Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.86287321044156, 

2.2873146954558727 

276 Bassins du Chaps de Mars, 

Pola Marsowe, Paryż, 

Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.856102414304054, 

2.29790349028674 

276 Esplanade Jacques Chaban-

Delmas, Paryż, Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.84728273681396, 

2.31163527992454 

276 Fontanna w Ogrodzie 

Luksemburskim, Paryż, 

Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.84692429920298, 

2.3372009493797767 

277 Biały Dom, Waszyngton, 

USA 

Lokalizacja, punkt formalnie 

podkreślony 

38.89753731966178,  

-77.03651592253495 

277 Lincoln Park, Waszyngton, 

USA 

Lokalizacja, punkt formalnie 

podkreślony 

38.88978118235831,  

-76.98984532402181 

277 Więzienie DC, Waszyngton, 

USA 

Lokalizacja, punkt formalnie 

podkreślony 

38.883949370306745, -

76.97670938952504 
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Zał. Nr 5, 

Krajobraz 

Pomnik gen. Tadeusza 

Kościuszki, Plac Wolności 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Skrzyżowanie osi 

widokowych 

51.776789126483266, 

19.454710476677143 

Studium 

Uwarunkowań i 

Kierunków 

Zagospodarowania 

Przestrzennego 

Miasta Łodzi, 2018 

(Prezydent miasta 

Łodzi, 2018) 

Zał. Nr 5, 

Krajobraz 

Kościół Wniebowzięcia 

Najświętszej Maryi Panny. 

Plac Kościelny 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Skrzyżowanie osi 

widokowych 

51.78317720219291, 

19.45396901345193 

Zał. Nr 5, 

Krajobraz 

Pomnik Pamięci Ofiar 

Pomordowanych w 

Więzieniu na Radogoszczu, 

Plac Pamięci Narodowej 

Miejsce o widoku 

harmonijnym i pozytywnym 

odbiorze, obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Skrzyżowanie osi 

widokowych 

51.80892197389786, 

19.438688189912302 

Zał. Nr 5, 

Krajobraz 

Wieża kościoła karmelitów 

bosych, Czereśniowa 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.8081468942271, 

19.435090138135216 

Zał. Nr 5, 

Krajobraz 

Skrzyżowanie Strykowskiej, 

Wojska Polskiego i Palki 

Miejsce o widoku 

harmonijnym z pojedynczymi 

elementami zaburzającymi 

przestrzeń, węzeł 

komunikacyjny, skrzyżowanie 

osi, otwarcie widokowe 

51.79236495888682, 

19.4886882414949 
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Zał. Nr 5, 

Krajobraz 

Skrzyżowanie w 

Nowosolnej 

Skrzyżowanie osi na ciągu 

widokowym, węzeł założenia 

radialnego 

51.793859651737456, 

19.589673898312135 

Zał. Nr 5, 

Krajobraz 

Teatr Wielki, Plac 

Dąbrowskiego 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Obiekt tworzący główny 

motyw sylwety miasta w 

panoramach 

51.77345590237322, 

19.469707668705905 

Zał. Nr 5, 

Krajobraz 

Kościół pw. św. Teresy i 

św. Jana Bosko, Rondo 

Solidarności 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Obiekt tworzący główny 

motyw sylwety miasta w 

panoramach. Węzeł założenia 

radialnego, otwarcie 

widokowe 

51.778226642584436, 

19.48090472253959 

Zał. Nr 5, 

Krajobraz 

Brama Miasta, Nowe 

Centrum Łodzi 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny w panoramach z 

wielu punktów widokowych; 

Obiekt tworzący główny 

motyw sylwety miasta w 

panoramach 

51.769007953435796, 

19.46544822746343 

Zał. Nr 5, 

Krajobraz 

Kościół Ewangelicki, róg 

Piotrkowskiej i Czerwonej 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.748947985165664, 

19.460288994047186 
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Zał. Nr 5, 

Krajobraz 

Archikatedra Łódzka, Plac 

Katedralny 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.7465481573585, 

19.460811155352847 

Zał. Nr 5, 

Krajobraz 

Wieża Kościoła Św. Anny Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.748760787608354, 

19.48999854320184 

Zał. Nr 5, 

Krajobraz 

Kościół św. Wojciecha, 

Stawy Jana 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.71313383560449, 

19.488822820042742 

Zał. Nr 5, 

Krajobraz 

Kościół św. Faustyny 

Kowalskiej 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na kubaturę (formę), wysokość 

lub walory architektoniczne 

widoczny z osi widokowej 

51.74092418911683, 

19.463921520268148 

Zał. Nr 5, 

Krajobraz 

Blok mieszkalny, Łódzki 

Manhattan 

Obiekt o znaczeniu 

kompozycyjnym, 

wyróżniający się ze względu 

na wysokość; szczyt sylwetki 

Łódzkiego Manhattanu 

51.75841861236623, 

19.460056342266615 

Zał. Nr 13, 

Kryst. Układu 

Przestrz. 

Atlas Arena Dominanta w zamknięciu 

kompozycyjnym wewnętrznej 

osi współczesnej wschód-

zachód 

51.75720301768292, 

19.42501006859015 

Studium 

Uwarunkowań i 

Kierunków 

Zagospodarowania 

Przestrzennego 

Miasta Łodzi, 2010 

Zał. Nr 13, 

Krystal. 

Układu 

Przestrz. 

Obecna „Stajnia 

Jednorożców”, Łódzki 

Manhattan 

Węzeł komunikacyjny na 

przecięciu głównych osi 

krystalizujących plan Łodzi: 

osi historycznej północ-

południe i osi współczesnej 

wschód-zachód 

51.7592302084747, 

19.457067986333477 
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(Prezydent miasta 

Łodzi, 2010) 

n/d Skrzyżowanie Alei Unii 

Lubelskiej i 

Konstantynowskiej 

Węzeł założenia radialnego, 

otwarcie widokowe 

51.767347105376324, 

19.421319217825985 

Opracowanie własne n/d Kościół św. Katarzyny, 

Zgierz 

Dominanta, zamknięcie osi 

widokowych, topografia 

terenu 

51.85606809474244, 

19.403719915059764 

n/d Skwer Orzeszkowej Węzeł założenia radialnego, w 

osi Parku Adama Mickiewicza 

i Liściastej, styk parku z 

zabudową jednorodzinną 

51.80364490021924, 

19.448517570556696 

n/d Most Arturówek Oś stawów na Bzurze, węzeł 

widokowy i komunikacyjny w 

kompleksie Arturówka 

51.822739317054115, 

19.474116941045487 

n/d Plac Słoneczny, Radogoszcz Punkt centralny krystalizujący 

zabudowę osiedla na 

Radogoszczu 

51.82057670889436, 

19.443397750387696 

n/d Kościół Najświętszego 

Sakramentu 

Dominanta w osi Balladyny 51.81902796232642, 

19.440944165924964 

n/d Kopiec w Parku Ocalałych Dominanta wysokościowa, 

węzeł założenia parkowego 

51.785467417188364, 

19.474582897679383 

n/d Pomnik Sprawiedliwych 

Wśród Narodów Świata, 

Park Ocalałych 

Węzeł założenia parkowego 51.78534687726929, 

19.470659781812284 

    

 

Odrzuceni kandydaci do zbioru treningowego. Przykłady nieaktualne, nieistniejące, dominanty i punkty formalnie 

podkreślone jednak niebędące punktami głównymi oraz punkty główne w nieodpowiedniej skali kompozycji. 

Źródło Strona Punkt Przesłanki Lokalizacja 

Kevin Lynch, The 

Image of the City 

(Lynch, 1960) 

79 Wiatrowskaz z konikiem 

polnym, Faneuil Hall, 

Boston 

Symbol 42.36004681293719,  

-71.05608434517856 

79 Złota kopuła State House, 

Boston 

Lokalizacja na wzgórzu 42.358174439996965, -

71.06365005993443 

79 Los Angeles City hall, LA Wysokość, forma 34.05373945159497,  

-118.24270006057436 

79 Christian Science Building, 

Boston 

Kontrast z otoczeniem 42.344905314532014, -

71.0844238818036 



XLIV 

 

79 Jersey City Medical Center, 

przez skalę, Boston 

Skala, obecnie nieaktualne 40.71631288597379,  

-74.05050889797708 

79 Old Hall of Records, Los 

Angeles Civic Center, LA 

Skala okien, orientacja, detal, 

wyburzony 

34.05415760852688,  

-118.24420217242267 

80 Old Hancock Building, 

Boston 

Widoczność z wielu kątów, 

wysokość, obecnie nieaktualne 

ze względu na budowę 

Hancock Tower w latach 70. 

42.34980365499649,  

-71.07325103052949 

    Następca Old Hancock, też 

widoczność, warto dodać, 

wybudowany w latach 70. po 

wydaniu Image Of The City 

42.34922887724831,  

-71.07507774050572 

80 Richfield Oil Building, Los 

Angeles 

Widoczność z wielu katów, 

wysokość, wyburzony 

34.05109536320206,  

-118.25719648167308 

80 Little Gray Lady, 

7th/Flower st. Corner, Los 

Angeles 

Mała skala, cofnięcie od ulicy, 

wiek, materiał (drewno), 

wyburzony 

34.0490326485702,  

-118.25878798165265 

81 Telephone Building, 

Bowdoin Square, 

Cambridge Street, Boston 

Lokalizacja, pomaga podjąć 

decyzję o kontynuowaniu 

podróży wzdłuż ulicy 

42.36139626824704,  

-71.06158677052751 

81 Baptist Temple Symphony 

Hall, Los Angeles 

Funkcja, negatywny konktrast 

między wzniosłą funkcją a 

słabą formą, wyburzone 

34.04943500856028,  

-118.25234030903788 

81 Custom House Tower, 

Boston 

Wysokość, widoczność z 

wielu kątów, nieaktualne, 

obrośnięte wyższymi 

budynkami 

42.359058602722364, -

71.05356664523302 

Kazimierz Wejchert, 

Elementy 

Kompozycji 

Urbanistycznej 

(Wejchert, 1984) 

60 Wieże WTC, Nowy York Skala, widoczność z wielu 

kątów, zniszczone 

40.7115161000248,  

-74.01318311777727 

66 Gmach ONZ, Nowy York Lokalizacja i rola znaczeniowa 40.750107455187965, -

73.96772474728935 

68 Alcazar de Toledo, Toledo, 

Hiszpania 

Skala, wyróżniająca się forma 39.85791251490771,  

-4.0205081766324655 

68 Katedra NŚMP, Toledo, 

Hiszpania 

Skala, wyróżniająca się forma 39.85709799709746,  

-4.023574920356383 

68 Seminario Conciliar de San 

Ildefonso de Toledo 

Skala, wyróżniająca się forma 39.85390849764476,  

-4.023989478439541 
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68 Skarpa staromiejska, Lublin Lokalizacja, skala, symbol, na 

wzgórzu 

51.247891054987896, 

22.567945795202885 

68 Hradczany, Praga, Czechy Lokalizacja, skala, symbol, na 

wzgórzu 

50.09060879569342, 

14.400508825432444 

73 Rondo gen. J. Ziętka, 

Katowice 

Lokalizacja, sąsiedztwo 

ważnych obiektów 

50.2643570826509, 

19.023559714586202 

75 Centrum Pompidou, Paryż Lokalizacja, skala, kontrast 48.86047151124023, 

2.352460724671782 

79 Pomnik Deportowanych, 

Paryż 

Układ przestrzenny, punkt 

podkreślony 

48.85163525581611, 

2.3526449696610374 

97 City Hall, Toronto, Kanada Lokalizacja, forma, piękno 43.65349088264935,  

-79.38397248015865 

103 Posąg Neptuna, Długa, 

Gdańsk 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

54.348545404820186, 

18.653241216625045 

103 Dwór Artusa, Długa, 

Gdańsk 

Punkt charakterystyczny we 

wnętrzu urbanistycznym 

54.3486921629679, 

18.65334985881403 

136 Teatr Wybrzeże, Targ 

Węglowy, Gdańsk 

Lokalizacja, płaszczyzna 

zamykająca, naprowadzenie 

przez linie naprowadzające 

54.35118601294387, 

18.64862343364292 

137 Wieżyczka Kościoła 

Paulinów, Stare Miasto, 

Warszawa 

Lokalizacja, zamknięcie 

zaułka, linie naprowadzające 

52.24828499096968, 

21.01269745708259 

138 Małostrańska Wieża 

Mostowa, Praga, Czechy 

Lokalizacja, linie 

naprowadzające tworzą cokół 

dla dominanty 

50.08731418478959, 

14.406866444643768 

149 Kościół Mariacki, Stare 

Miasto, Gdańsk 

Skala 54.34980556485089, 

18.653253868933913 

149 Biała Wieża, Rynek, Hradec 

Kralove, Czechy 

Wysokość, strzelistość 50.20900783271558, 

15.83081466108146 

149 Katedra Świętego Ducha, 

Rynek, Hradec Kralove, 

Czechy 

Wysokość, strzelistość 50.20876401060737, 

15.831181091543646 

149 Ratusz, Rynek, Hradec 

Kralowe, Czechy 

Wysokość, strzelistość 50.2092911301241, 

15.831425996987806 

155 Chilehaus, Hamburg, 

Niemcy (+liczne otwarcia 

Lokalizacja, otwarcia 

agresywne, zamknięcie wnętrz 

urbanistycznych 

53.54830776019474, 

10.003000335414914 
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agresywne tego typu w 

całym Hamburgu) 

165 Katedra w Sienie, Siena, 

Włochy 

Skala, wyróżniająca się forma, 

sprzęganie szeregu wnętrz 

urbanistycznych 

43.31780149601075, 

11.329034108204878 

Juliusz Żórawski, O 

Budowie Formy 

Architektonicznej 

(Żórawski, 1962) 

50 Obelisk w centrum, Plac św. 

Piotra, Watykan 

Lokalizacja w zespole 

formalnym Bazyliki 

Watykańskiej 

41.90223811543213, 

12.457262932471398 

50 Fontanna, Ognisko 

północne elipsy, Plac św. 

Piotra, Watykan 

Lokalizacja w zespole 

formalnym Bazyliki 

Watykańskiej 

41.90277489658461, 

12.45723569424325 

50 Fontanna, Ognisko 

południowe elipsy, Plac św. 

Piotra, Watykan 

Lokalizacja w zespole 

formalnym Bazyliki 

Watykańskiej 

41.90170130750023, 

12.457278008723337 

50 Posąg Marka Aureliusza, 

Plac Kapitoliński, Rzym 

Lokalizacja w zespole 

formalnym Placu 

Kapitolińskiego 

41.893323183044274, 

12.482934735894471 

50 Wieża zegarowa Pałacu 

Senatorów, Plac 

Kapitoliński, Rzym 

Lokalizacja w zespole 

formalnym Placu 

Kapitolińskiego 

41.89301876417793, 

12.483561305130888 

52 Paład Dożów, Plac św. 

Marka, Wenecja 

Lokalizacja w zespole 

formalnym Placu św. Marka 

45.43384799274172, 

12.339997088644589 

52 Kolumna św. Marka, Plac 

św. Marka, Wenecja 

Lokalizacja w zespole 

formalnym Placu św. Marka 

45.4333540584212, 

12.33991578944312 

52 Kolumna San Todaro, Plac 

św. Marka, Wenecja 

Lokalizacja w zespole 

formalnym Placu św. Marka 

45.433285220072136, 

12.33965995328723 

133 Pomnik Gattamelaty 

Donatella, Piazza del Santo, 

Padwa, Włochy 

Lokalizacja na Piazza del 

Santo 

45.40157301647186, 

11.87998528794386 

133 Fasada Bazyliki św. 

Antoniego, Piazza del 

Santo, Padwa, Włochy 

Lokalizacja na Piazza del 

Santo 

45.40133877761612, 

11.88033432873618 

Francis D. K. Ching, 

Architecture Form, 

Space, and Order 

(Ching, 2007) 

5 Posąg Marka Aureliusza, 

Plac Kapitoliński, Rzym 

Lokalizacja, rysunek posadzki 41.893323183044274, 

12.482934735894471 

20 Obelisk, Piazza della Trinita 

dei Monti, Rzym, Włochy 

Lokalizacja, widoczność, 

topografia, naprowadzenie 

przez schody hiszpańskie 

41.90616294978277, 

12.483210466966078 
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20 Kościół Trinita dei Monti, 

Rzym, Włochy 

Lokalizacja, widoczność, 

topografia, naprowadzenie 

przez schody hiszpańskie 

41.90623092251156, 

12.48341910603524 

31 Obelisk, Piazza Ducale, 

Sabbioneta, Włochy 

Lokalizacja 44.99931830761596, 

10.489976172243857 

31 Wieża ratusza, Piazza 

Ducale, Sabbioneta, Włochy 

Lokalizacja, wysokość, 

strzelistość 

44.999354711748424, 

10.490290654131071 

128 Punkt wystąpień, Piazza del 

Campo, Siena, Włochy 

Naprowadzenia rysunku na 

posadzce 

43.318267770612586, 

11.331817478341481 

128 Obelisk w centrum, Plac św. 

Piotra, Watykan 

Lokalizacja w zespole 

formalnym bazyliki 

Watykańskiej 

41.90223811543213, 

12.457262932471398 

128 Fontanna, ognisko północne 

elipsy, Plac św. Piotra, 

Watykan 

Lokalizacja w zespole 

formalnym bazyliki 

Watykańskiej 

41.90277489658461, 

12.45723569424325 

128 Fontanna, ognisko 

południowe elipsy, Plac św. 

Piotra, Watykan 

Lokalizacja w zespole 

formalnym bazyliki 

Watykańskiej 

41.90170130750023, 

12.457278008723337 

276 Obserwatorium Paryskie, 

Paryż, Francja 

Lokalizacja, punkt formalnie 

podkreślony 

48.83641607356397, 

2.3365973292578155 

 

Załącznik 5. Tabela ewaluacji wytrenowanego algorytmu na zbiorze 

testowym 

Kodowana techniką multi-hot: 

Wartości procentowe: 74,4% 50,0% 13,8% 10,6% 3,8% 75,6% 56,9% 2,5% Skuteczność 

całkowita:  59,4% 

Nazwy 

robocze 

Koord. L.p. Czy 

rozpoznany 

jakikolwiek 

punkt 

główny? 

Czy dominanta  

lub punkt 

orientacyjny o 

znaczącej skali 

o lokalizacji 

podkreślonej 

przez 

kompozycję 

miejską i/lub 

topografię 

terenu? 

Czy 

zakończ. 

założenia 

osiowego? 

Czy główny 

punkt 

centralny  w 

kompozycji 

radialnej? 

Czy jeden z 

głównych 

węzłów 

założenia 

sieciowego? 

Czy linie 

naprowadz. 

są 

zaznaczone 

sensownie? 

Czy 

przynajmniej 

jedno z 

kryteriów dot. 

punktów 

głównych 

spełnione? 

Czy pominięcie 

punktu miało 

sens? 

Oznaczone 

punkty główne 

Plac Unii 

Lubelskiej 

52.21357, 

21.02163 
1 1 1  1 1 1 1  Plac Unii, 

Biurowiec Plac 
Unii, Riviera 

2 1 1     1  Biurowiec Plac Unii 

3 1 1  1 1 1 1  Plac Unii, 
Biurowiec Plac 

Unii, Riviera 

4 1   1 1 1 1  Plac Unii, Estakada 
przy Placu Na 

Rozdrożu 
(pominięcie 
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samego Placu na 
Rozdrożu) 

5 1 1  1 1 1 1  Plac Unii, 
Biurowiec Plac Unii 

Muzeum 

Fryderyka 

Chopina 

52.23659, 

21.02291 

6 1 1    1 1  Prudential 

7          

8 1 1 1    1  Wieżowiec 
domykający oś ul. 

Kopernika 

9          

10          

Plac 

Zbawiciela 

(+ place 

okoliczne) 

52.21985, 

21.01800 
11 1    1 1 1  Estakada przy 

Placu Na Rozdrożu 
(pominięcie 

samego Placu na 
Rozdrożu) 

12 1 1 1   1 1  Otwarcie na Plac 
Konstytucji 

13 1 1 1   1 1  Dwa główne 
otwarcia na Plac 

Konstytucji 

14 1 1 1   1 1  Dwa główne 
otwarcia na Plac 

Konstytucji 

15 1    1 1 1  Estakada przy 
Placu Na Rozdrożu 

(pominięcie 
samego Placu na 

Rozdrożu) 

Osiedle 

Zacisze 

52.28421, 

21.06992 

16 1 1    1 1  Placyk przed 
Domem Kultury 

Zacisze 

17 1 1    1 1  Placyk przed 
Domem Kultury 

Zacisze 

18 1 1    1 1  Placyk przed 
Domem Kultury 
Zacisze, Skwer z 

placem zabaw przy 
mostku pieszym 

nad Kanałem 
Bródnowskim 

19 1   1  1 1  Duże skrzyżowanie 
Młodzieńczej z 
Radzymińską 

20 1 1    1 1  Placyk przed 
Domem Kultury 

Zacisze 

Ursynów 

Północny 

52.15936, 

21.02794 
21 1 1 1   1 1  Wyjście z ciągu 

pieszego ul. 
Dzwonniczej na 

Aleję Komisji 
Edukacji 

Narodowej, duże 
Skrzyżowanie 

Romera z 
Puławską 

22 1 1 1   1 1  Duże Skrzyżowanie 
Romera z 
Puławską 

23 1 1 1   1 1  Wieżowiec 
mieszkalny w osi 

Parku 
Kozłowskiego 

24 1 1 1   1 1  Wyjście z ciągu 
pieszego ul. 

Dzwonniczej na 
Aleję Komisji 

Edukacji 
Narodowej 

25      1    

26 1 1  1  1 1  Duże skrzyżowanie 
Płaskowickiej z 
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Ursynów 

Płd., Natolin 

52.14015, 

21.05629 
Aleją Komisji 

Edukacji 
Narodowej 

27 1 1  1  1 1  Duże skrzyżowanie 
Płaskowickiej z 

Dereniową/Stryjeń
skich 

28 1 1    1 1  Wieżowiec 
mieszkalno-

usługowy Galeria 
Ursynów 

29 1 1    1 1  Wieżowiec 
mieszkalno-

usługowy Galeria 
Ursynów 

30 1 1    1 1  Wieżowiec 
mieszkalno-

usługowy Galeria 
Ursynów 

Saska Kępa, 

ul. Francuska 

52.23326, 

21.05492 
31 1 1  1  1 1  Dwa wieżowce 

mieszkalne w 
osiach ulic 

radialnych na 
Saskiej Kępie 

32 1 1    1 1  Wejście do 
Stadionu 

Narodowego od 
strony Ronda 
Waszyngtona 

33 1 1  1  1 1  Rondo 
Waszyngtona 

34          

35 1 1     1  Rondo 
Waszyngtona 

Cerkiew 

Praska 

52.25481, 

21.03322 
36 1 1    1 1  Skrzyżowanie Alei 

Solidarności z 
Targową przy 

Dworcu Wileńskim 

37 1 1    1 1  Skrzyżowanie Alei 
Solidarności z 
Targową przy 

Dworcu Wileńskim 

38 1 1    1 1  Skrzyżowanie Alei 
Solidarności z 
Targową przy 

Dworcu Wileńskim 

39 1 1 1   1 1  Skrzyżowanie Alei 
Solidarności z 
Targową przy 

Dworcu 
Wileńskim, 

Przejście piesze 
między budynkami 

w osi długiego 
budynku 

Jagiellońska 44 

40 1 1    1 1  Skrzyżowanie Alei 
Solidarności z 
Targową przy 

Dworcu Wileńskim 

Stara Praga 52.25214, 

21.03764 
41 1 1    1 1  Dworzec Wileński 

42 1        Skrzyżowanie 
Zamoyskiego z 

Sokoła 

43 1 1  1  1 1  Centrum Placu 
Weteranów 1863 

roku w osi Katedry 
św. Michała 

44 1 1    1 1  Skrzyżowanie Alei 
Solidarności z 
Targową przy 

Dworcu Wileńskim 

45 1 1    1 1  Skrzyżowanie Alei 
Solidarności z 
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Targową przy 
Dworcu Wileńskim 

Zakłady FSO 52.28464, 

21.01087 

46        1  

47      1    

48        1  

49 1     1   Punkt na 
Jagiellońskiej 
naprzeciwko 
przychodni 

Luxmed 

50      1    

Focus 52.21757, 

21.00811 

51 1 1    1 1  Wejście do Focusa 

52      1    

53 1 1    1 1  Wejście do Focusa 

54 1 1    1 1  Riviera 

55 1 1    1 1  Riviera, Zebra 
Tower 

Nowodwory 52.33233, 

20.94701 

56 1 1 1   1 1  Blok mieszkalny 
Premium Point 

zamykający oś ul. 
Ćwiklińskiej 

57 1     1   Stadion 
Białołęckiego 

Ośrodka Sportu 

58 1  1   1 1  Narożny blok 
mieszkalny przy 
Książkowej 9F w 
osi wewnętrznej 
drogi osiedlowej 

59 1  1   1 1  Narożny blok 
mieszkalny przy 
Książkowej 9F w 
osi wewnętrznej 
drogi osiedlowej 

60          

Domaniewsk

a 

52.18348, 

21.00218 
61 1 1    1 1  Skrzyżowanie 

Domaniewskiej z 
Wołoską: węzeł 
komunikacyjny 

„Mordor” 

62 1 1    1 1  Skrzyżowanie 
Wołoskiej z 

Marynarską/Wilan
owską 

63 1 1    1 1  Skrzyżowanie 
Domaniewskiej z 
Wołoską: węzeł 
komunikacyjny 

„Mordor" 

64 1 1    1 1  Skrzyżowanie 
Domaniewskiej z 
Wołoską: węzeł 
komunikacyjny 

„Mordor", 
skrzyżowanie 
Woronicza z 

Wołoską 

65 1 1    1 1  Skrzyżowanie 
Domaniewskiej z 
Wołoską: węzeł 
komunikacyjny 

„Mordor" 

Sady 

Żoliborskie 

52.26723, 

20.97172 
66 1 1    1 1  Skrzyżowanie 

Krasińskiego z 
Popiełuszki 

67 1 1  1  1 1  Skrzyżowanie 
Słowackiego z 

Popiełuszki 

68 1     1   Kładka pieszo-
rowerowa nad 

aleją Armii 
Krajowej 



LI 

 

69 1 1    1 1  Skrzyżowanie 
Krasińskiego z 

Popiełuszki 

70 1 1  1  1 1  Skrzyżowanie 
Słowackiego z 

Popiełuszki 

Plac 

Narutowicza 

52.21910, 

20.98368 
71 1 1 1   1 1  Wieżowiec Ochota 

Residence 

72 1 1    1 1  Wieżowiec Atlas 
Tower 

73 1 1    1 1  Skrzyżowanie 
Grójeckiej z 

Wawelską/Kopińsk
ą 

74 1 1    1 1  Wieżowiec Ochota 
Residence 

75 1 1    1 1  Skrzyżowanie 
Grójeckiej z 

Wawelską/Kopińsk
ą 

Las 

Bielański 

52.29324, 

20.95605 
76      1    

77      1  1  

78      1    

79      1    

80 1 1    1 1  Skrzyżowanie 
Marymonckiej/De

wajtis i 
Marymonckiej: 
wjazd do Lasu 
Bielańskiego 

Pałac w 

Wilanowie 

52.16509, 

21.08919 

81 1        Pawilon 
Potockiego 20/22 

82 1     1   Skrzyżowanie Alei 
Wilanowskiej z 
Przyczółkowską 

83 1     1   Skrzyżowanie Alei 
Wilanowskiej z 
Przyczółkowską 

84 1        Skrzyżowanie Alei 
Wilanowskiej z 

Przyczółkowską, 
pętla autobusowa 

Wilanów 

85          

Centrum 

Nauki 

Kopernik, 

Bulwary 

Wiślane 

52.24220, 

21.02883 

86      1    

87 1 1     1  Motel One 
Warszawa Chopin 

88 1 1    1 1  Elektrownia 
Powiśle, blok 

mieszkalny przy 
Leszczyńskiej 

89          

90          

Muzeum 

Powstania 

Warsz. 

52.23224, 

20.98138 
91 1 1     1  Warsaw Spire, 

Warsaw Trade 
Tower 

92 1 1    1 1  Warsaw Spire, 
Warsaw Trade 

Tower 

93          

94          

95 1 1     1  Warsaw Spire 

Stary 

Mokotów 

52.20354, 

21.01006 
96 1 1    1 1  Skrzyżowanie 

Madalińskiego z 
Aleją 

Niepodległości 

97 1 1    1 1  Skrzyżowanie 
Madalińskiego z 
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Aleją 
Niepodległości 

98 1 1    1 1  Skrzyżowanie 
Madalińskiego z 

Aleją 
Niepodległości 

99 1 1 1   1 1  Wieżowiec 
mieszkalny 

Giordana Bruna 34 

100          

Pałac na 

Wyspie 

(Łazienki) 

52.21476, 

21.03587 

101 1     1   Centrum Stawu 
Łazienkowskiego w 
osi Podchorążówki 
(przed Pałacem na 

Wyspie) 

102 1     1   Centrum Stawu 
Łazienkowskiego w 
osi Podchorążówki 
(przed Pałacem na 

Wyspie) 

103 1        Blok mieszkalny 
Podchorążych 39a 

104      1    

105      1   Centrum Stawu 
Łazienkowskiego w 
osi Podchorążówki 
(przed Pałacem na 

Wyspie) 

Białołęka 52.30455, 

20.97790 

106 1  1   1 1  Blok mieszkalny na 
wzniesieniu 

zamykający placyk 
osiedlowy w osi ul. 

Leszczynowej 

107 1  1   1 1  Blok mieszkalny na 
wzniesieniu 

zamykający placyk 
osiedlowy na w osi 

ul. Leszczynowej 

108          

109 1  1   1 1  Blok mieszkalny na 
wzniesieniu 

zamykający placyk 
osiedlowy w osi ul. 
Leszczynowej, blok 

mieszkalny 
naprzeciwko 

Szkoły 
Podstawowej nr 

118 

110 1  1   1 1  Blok mieszkalny na 
wzniesieniu 

zamykający placyk 
osiedlowy w osi ul. 
Leszczynowej, blok 

mieszkalny 
naprzeciwko 

Szkoły 
Podstawowej nr 

118 

Stadion 

Narodowy 

52.23942, 

21.04580 

111          

112 1 1  1  1 1  Centrum Stadionu 
Narodowego 

113          

114 1 1  1   1  Centrum Stadionu 
Narodowego 

115 1 1     1  Wejście do 
Stadionu 

Narodowego od 
strony Ronda 
Waszyngtona 

Boernerowo 52.26295, 

20.90216 
116      1    

117          

118 1        Mały parking 
samochodów 
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osobowych między 
Boernerowem a 

Lotniskiem 
Bemowo 

119      1    

120      1    

Bielany w 

okolicy stacji 

metra 

Młociny 

52.29032, 

20.93509 
121 1 1    1 1  Skrzyżowanie 

Kasprowicza z 
Sokratesa/Przy 

Agorze 

122 1 1     1  Skrzyżowanie 
Kasprowicza z Al. 
gen. Marii Witek: 

Węzeł Młociny 

123 1     1   Blok mieszkalny 
Wrzeciono 17 

124 1 1    1 1  Skrzyżowanie 
Kasprowicza z 
Sokratesa/Przy 

Agorze, blok 
mieszkalny 

Wrzeciono 42 

125 1 1    1 1  Skrzyżowanie 
Kasprowicza z 
Sokratesa/Przy 

Agorze 

Fort VIIA 

Służewiec 

52.17242, 

21.01565 

126 1   1  1 1  Skrzyżowanie Al. 
Lotników z 

Modzelewskiego, 
drobne założenie 

radialne 
Niegocińska-Al. 

Lotników 

127 1 1    1 1  Centrum stawu na 
Potoku 

Służewieckim 

128      1    

129 1 1    1 1  Skrzyżowanie Al. 
Lotników z 

Modzelewskiego, 
wieżowiec 
mieszkalny 

Irysowa 29 w osi ul 
Niedźwiedziej 

130 1     1   Skrzyżowanie Al. 
Lotników z 

Modzelewskiego, 
Gmach Wydziału 
Zarządzania UW 

Fort 

Szczęśliwice 

52.20671, 

20.94989 
131 1     1   Skrzyżowanie Al. 

Jerozolimskich z ul. 
Śmigłowca 

132      1    

133      1    

134      1   Narożny blok 
mieszkalny 

Włodarzewska 83 

135 1     1    

Fort 

Chrzanów 

52.22021, 

20.89245 

136 1 1 1 1  1 1  Skrzyżowanie 
Lazurowej, 
Sterniczej, 

Kopalnianej i 
Steligowskiej w osi 

Fortu Chrzanów, 
węzeł 

komunikacyjny 

137 1     1   Dojście do małego 
stawu na parkingu 
za halą handlową 

Selgros 

138 1     1    

139      1  1  
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140 1 1 1 1  1 1  Skrzyżowanie 
Lazurowej, 
Sterniczej, 

Kopalnianej i 
Steligowskiej w osi 

Fortu Chrzanów, 
węzeł 

komunikacyjny 

Fort Blizne 52.24688, 

20.89487 

141 1     1   Estakada 
lazurowej nad 

Aleją Obrońców 
Grodna 

142 1     1   Estakada 
lazurowej nad 

Aleją Obrońców 
Grodna 

143 1        Estakada 
lazurowej nad 

Aleją Obrońców 
Grodna 

144 1        Estakada 
lazurowej nad 

Aleją Obrońców 
Grodna 

145 1     1   Akademik 
Wojskowy nr 3 

Fort 

Wawrzyszew 

52.27749, 

20.90736 
146          

147 1     1   Punkt na fosie 
Fortu Wawrzyszew 

w osi fortu 

148          

149          

150 1 1 1    1  Wieżowiec 
biurowy 

Wólczyńska 133 
domykający oś 
Wólczyńskiej 

Fort Bema 52.25661, 

20.93882 

151 1     1   Blok mieszkalny 
Obrońców 
Tobruku 23 

152 1     1   Narożnik 
Cmentarza 

Wojskowego 

153 1     1   Blok mieszkalny 
Obrońców 
Tobruku 23 

154      1    

155      1    

Fort Służew 52.16655, 

21.04087 

156 1 1     1  Dom studencki 
IKAR SGGW 

157 1 1    1 1  Dom studencki 
IKAR SGGW 

158 1        Dom studencki 
Feniks SGGW 

159 1 1 1   1 1  Blok mieszkalny 
Noskowskiego 8 
domykający oś 
Noskowskiego, 

widoczny z 
otwarcia 

widokowego 
wzdłuż 

Nowoursynowskiej 

160 1 1    1 1  Dom studencki 
IKAR SGGW 
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Załącznik 6: Lista punktów głównych wykrytych przez sieć neuronową we 

fragmencie Warszawy 

W celu demonstracji możliwości seryjnego przetwarzania większych obszarów sieć neuronowa 

wytrenowana w eksperymencie głównym została aplikowana do fragmentu obszaru zabudowy 

śródmiejskiej Warszawy o wymiarach 5x5km. Obszar został przetworzony przez sieć w 100 

zachodzących na się na siebie kafelkach (każdy pokrywający około 1km kwadratowy). Na 

potrzeby wizualizacji nałożono także 7 kafelków ze zbioru testowego (Rys. 72). 

Na badanym obszarze sieć rozpoznała 64 punkty główne. Kursywą oznaczono 2 przykłady 

znajdujące się także w zbiorze treningowym. Pogrubieniem oznaczono 43 przykłady, w 

których decyzja sieci neuronowej wydaje się trafna. Zwykłym tekstem oznaczono 19 

przykładów niejednoznacznych. Od północy w kierunku południowym: 

• Skrzyżowanie ul. Tatarskiej z Powązkowską. Zamknięcie osi ul. Tatarskiej, zakład 

kamieniarski bez dominanty przestrzennej. 

• Babka Tower przy rondzie Radosława. Dominanta wysokościowa przy 

podkreślonym kompozycyjnie przecięciu osi komunikacyjnych. Brama wyznaczona 

wraz z wieżą kompleksu Forest (symetria środkowa względem ronda).  

• Wieża kompleksu biurowego Forest przy Rondzie Radosława. Dominanta 

wysokościowa przy podkreślonym kompozycyjnie przecięciu osi komunikacyjnych. 

Brama wyznaczona wraz z Babka Tower (symetria środkowa względem ronda). 

• Wieżowiec Intraco. Dominanta wysokościowa na zamknięciu kilku osi widokowych. 

Brama Północna wyznaczona wraz z North Gate. 

• Zamknięcie ul. Koźlej przy ul. Franciszkańskiej. Naprzeciwko Koźlej 5. Otwarcie 

widokowe na zieloną ul. Fondamińskiego i tył Kościoła św. Franciszka Serafickiego. 

• Kościół Franciszka Serafickiego. Podkreślona kompozycyjnie elewacja przy skośnie 

wycofanej pierzei. Zaakcentowany narożnik. 

• Ostroga regulacyjna na przedłużeniu ul. Ratuszowej. Zamknięcie osi nad Wisłą bez 

dominanty przestrzennej. Ścieżka piesza. Ekspozycja na tle Wisły i naprowadzenie 

przez oś wyspy piaskowej. 

• Zamek Królewski. Naprowadzenia widokowe, podkreślona elewacja, lokalna dominanta 

wysokościowa wieży, lokalizacja na wzgórzu. 

• Skrzyżowanie Al. Jana Pawła i ul. Anielewicza. Przecięcie dużych osi widokowych. 
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• Parking naprzeciwko centrum handlowego Klif. Na podkreślonym widokowo 

załamaniu osi Okopowej pomiędzy Klif Tower a kompleksem Okopowa 56. 

• Skrzyżowanie ul. Radziwie z Obozową. Otwarcie widokowe, skrzyżowanie większej 

osi widokowej z kilkoma mniejszymi. Zakończenie rytmicznego układu Wola Tower, 

brama zapraszająca na ul. Radziwie. Narożnik placu wyznaczonego przez MPO 

Obozowa 43. 

• Anielewicza 30. Skrzyżowanie osi skośnego rytmu czterech punktowców 

mieszkaniowych z osią ul. Anielewicza. 

• Błękitny wieżowiec. Dominanta wysokościowa, zamknięcie kilku osi widokowych. 

Sprzężenie Placu Bankowego w osi jego północno-wschodniej pierzei.  

• Teatr Wielki. Dominanta przestrzenna w osi Placu Teatralnego. Zamknięcie kilku osi 

widokowych. Na przedłużeniu zielonej pierzei Ogrodu Saskiego. 

• Skrzyżowanie Al. Jana Pawła II i Al. Solidarności. Przecięcie dwóch dużych osi 

widokowych oznaczone podwyższeniem zabudowy w narożnikach. 

• Al. Solidarności 127. Naprzeciwko Sądu Okręgowego w Warszawie. 

• Elektrownia Powiśle. Lokalizacja na szczycie niskiego wzgórza (o wiele czytelniejsza 

w przestrzeni cech niż w rzeczywistości). Na zamknięciu kilku drobnych osi 

widokowych (m.in. osiedla Nowe Powiśle). 

• Część ul. Leszczyńskiej między numerami 1a i 4. Na przecięciu przedłużenia osi 

ul. Elektrycznej z osią ul. Leszczyńskiej. 

• Hala Gwardii. Zakończenie osi Saskiej, przecięcie z osią ul. Zimnej i osią ścieżki 

pieszej w Parku Mirowskim (od ul. Grzybowskiej). 

• Skrzyżowanie Górczewskiej i Płockiej. Przecięcie dwóch dużych osi widokowych. 

Podkreślone dodatkowo przez skośnie usytuowany budynek Płocka 41. Skośne 

elewacje wzdłuż skrzyżowania wyznaczają pierzeje pięciokątnego placu. 

• Warsaw Trade Tower. Dominanta wysokościowa na zamknięciu wielu dużych osi 

widokowych, dodatkowo podkreślona przez łuk ul. Okopowej. Wraz z Warsaw Spire 

i Warsaw Unit wyznaczają warszawski „Isengard”. 

• Wieżowiec Cosmopolitan. Dominanta wysokościowa w narożniku trójkątnego placu 

Grzybowskiego. Zamknięcie osi ul. Emilii Plater i Próżnej. 

• Prudential. Dominanta wysokościowa, sprzężenie placu Powstańców Warszawy. 
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• Chopin Motel One. Narożnik kwartału na szczycie skarpy przy kładce pieszej Muzeum 

Fryderyka Chopina. 

• Tamka 49. Dominanta wysokościowa na zamknięciu osi ul. Karasia-Kopernika. 

• Centrum placu wyznaczonego przez ul. Kopernika, Kopczyńskiego, Tamkę i wieżowiec 

Tamka 40. Obecnie rondo. 

• Skrzyżowanie Wolskiej i Płockiej. Przecięcie dużych osi widokowych. Brama 

ul. Płockiej wyznaczona przez szczyt wysokościowej zabudowy mieszkaniowej 

Skierniewickiej 21 i Płockiej 17. Stacja metra Płocka. 

• Warsaw Spire. Dominanta wysokościowa widoczna z wielu otwarć widokowych. 

Wraz z Warsaw Trade Tower i Warsaw Unit wyznaczają warszawski „Isengard”. 

• Młotek przy Smolnej 9. Dominanta wysokościowa na skarpie. Zamknięcie osi 

ul. Smolnej i ul Czerwonego Krzyża.  

• Dworzec Warszawa Powiśle. Przecięcie osi kolejowej z Alejami Jerozolimskimi. 

Zakończenie mostu Poniatowskiego. 

• Skrzyżowanie Żelaznej i Prostej. Przecięcie dużych osi widokowej. Środek osi 

poprzecznej skweru Nelsona Mandeli. Zaakcentowany wieżowcem Mennica Legacy 

Tower. 

• Pałac Kultury i Nauki. Dominanta przestrzenna, przecięcie osi widokowych. Centrum 

placu wyznaczonego przez ul. Marszałkowską, Świętokrzyską, Emilii Plater 

i Aleje Jerozolimskie. 

• Złota 44. Dominanta wysokościowa na zamknięciu kilku otwarć widokowych 

podkreślona przez geometrię kompleksu handlowo-biurowego Złote Tarasy. 

• Varso Tower. Dominanta wysokościowa, najwyższy obecnie budynek w Warszawie. 

Widoczność z wielu otwarć widokowych. 

• Rondo Charlesa de Gaulle’a. Przecięcie ważnych osi widokowych. 

Oś trapezoidalnego placu wyznaczonego przez poszerzenie ul. Nowy Świat. 

Co ciekawe, punkt wskazany przez sieć dokładnie pokrywa się z lokalizacją słynnej 

Palmy Joanny Rajkowskiej (Rajkowska, 2002); sama palma nie znajdowała się w mapie 

cech widzianych przez sieć neuronową. 

• Warsaw Unit. Dominanta wysokościowa przy Rondzie Daszyńskiego. Widoczna 

z wielu otwarć widokowych. Wraz z Warsaw Spire i Warsaw Trade Tower wyznacza 

warszawski „Isengard”. 
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• Adgar Renaissance Tower. Dominanta wysokościowa. Zamknięcie kilku mniejszych 

osi widokowych. Naprowadzenie przez bramę ul. Łomnickiego. 

• Novotel Warszawa Centrum. Dominanta wysokościowa podkreślona przez rondo 

Romana Dmowskiego będące przecięciem ważnych osi widokowych. Pierwszy, 

narożny wieżowiec od strony południowo-wschodniej wyróżniający się na tle 

otaczających go niższych kwartałów. 

• Pomnik Wincentego Witosa na Placu Trzech Krzyży. Zakończenie osi ul. Nowy 

Świat i ul. Bolesława Prusa. Podkreślony kompozycyjnie uskok w Placu Trzech Krzyży 

utworzony przez wycofaną elewację Ośrodka Rozwoju Edukacji w Warszawie. 

• Hotel Marriott. Dominanta wysokościowa. Swoisty układ podwójny z Oxford Tower 

podkreślony przez identyczne proporcje. 

• Roma Office Center. Dominanta wysokościowa ukryta za zabudową ul. Nowogrodzkiej 

i Poznańskiej. 

• Biurowiec Warsaw Vibe. Biurowiec w narożniku Towarowej i Kolejowej. 

• Oxford Tower. Dominanta wysokościowa. Swoisty układ podwójny z Hotelem 

Marriott podkreślony przez identyczne proporcje. 

• Atlas Tower. Dominanta wysokościowa podkreślona przez rondo na placu Zawiszy. 

Pierwszy wieżowiec od strony południowo-zachodniej. Wyeksponowany widokowo 

przez płaszczyznę Warszawskich Filtrów. 

• Skrzyżowanie ul. Dalekiej i Grójeckiej, pierzeja zachodnia. 

• Skrzyżowanie ul. Dalekiej i Grójeckiej, pierzeja wschodnia. 

• Północne otwarcie Placu Konstytucji. Skrzyżowanie osi widokowych ul. 

Marszałkowskiej, Koszykowej i Pięknej. Brama utworzona przez pierzeje placu 

Konstytucji. 

• Centrum południowej części Placu Konstytucji. Punkt centralny pomiędzy 

południowymi osiami ul. Marszałkowskiej i Waryńskiego. Naprowadzenie przez oś 

północnej części ul. Marszałkowskiej i Śniadeckich. 

• Ochota Residence. Dominanta wysokościowa podkreślona przez ostry narożnik i 

naprowadzenie widokowe ul. Kaliskiej. 

• Eurocentrum Alfa. Najwyższy z wieżowców bramy zachodniej Warszawy. Obecnie 

pierwszy od strony południowej w rytmicznym układzie 10 brył biurowców o 

zbliżonych do siebie proporcjach. 
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• Grójecka 19/25. Budynek mieszkalny o charakterystycznej bryle na planie litery X. 

Lokalna dominanta wysokościowa na skrzyżowaniu ul. Niemcewicza i Grójeckiej. 

• Skrzyżowanie Al. Jerozolimskich i ul. Sokołowskiego „Grzymały”. 

Charakterystyczne załamanie i jednoczesne poszerzenie Al. Jerozolimskich kierujące 

uwagę na ścianę wieżowców bramy zachodniej. Przecięcie ważnych osi widokowych. 

• Biurowiec West Station II. Zaakcentowany przez otwarcie widokowe Sokołowskiego 

„Grzymały” i obecną przerwę w zabudowie bramy zachodniej między West Station II 

a Erocentrum Alfa. 

• Skrzyżowanie ul. Sokołowskiego „Grzymały”, Barskiej i Szczęśliwickiej. Przecięcie 

osi widokowych. Podkreślenie przez skośną elewację budynku mieszkalnego 

Szczęśliwicka 8 stanowiącą płaszczyznę zaginającą oś widokową ul. Barskiej. 

• Wejście do przejścia podziemnego między Parkiem Zachodnim a Dworcem 

Zachodnim. Naprowadzenie przez osie ścieżek Parku Zachodniego. Główne dojście 

piesze na Dworzec Zachodni. Skrzyżowanie z osią Al. Jerozolimskich. 

• Skrzyżowanie ul. Nowowiejskiej i Waryńskiego. Przecięcie osi widokowych. 

Skrzyżowanie między Placem Politechniki i Placem Zbawiciela. 

• Skrzyżowanie Al. Ujazdowskich, Al. Armii Ludowej, ul. Koszykowej i Al. Szucha. 

Skrzyżowanie wielu ważnych osi widokowych przy Placu Na Rozdrożu. Podkreślone 

przez zetknięcie zabudowy z zieloną pierzeją Łazienek, Ogrodu Botanicznego i Parku 

Ujazdowskiego. 

• Focus. Lokalna dominanta przestrzenna podkreślona przez ścieżki Pola 

Mokotowskiego. 

• Przejścia podziemne skrzyżowania Al. Niepodległości i Al. Armii Ludowej. 

Wielopoziomowe skrzyżowanie ważnych osi widokowych z podziemnymi przejściami 

łączącymi poszczególne poziomy i narożniki skrzyżowania. 

• Pomnik Lotnika. Skrzyżowanie ul. Wawelskiej, Uniwersyteckiej i Raszyńskiej. 

Charakterystyczne załamanie ul. Raszyńskiej. Plac z rondem zaakcentowany przez ostre 

narożniki ul. Wawelskiej i Uniwersyteckiej oraz ul. Uniwersyteckiej i Raszyńskiej. 

• Skrzyżowanie ul. Grójeckiej, Kopińskiej i Wawelskiej. Przecięcie osi widokowych. 

• Akademik Riviera. Dominanta przestrzenna na skrzyżowaniu Al. Armii Ludowej i ul. 

Waryńskiego. Ekspozycja widokowa z Pola Mokotowskiego. Naprowadzenie przez oś 

ul. Oleandrów i ścieżki Pola Mokotowskiego. 
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• Wieżowiec Plac Unii. Dominanta wysokościowa sprzęgająca Plac Unii Lubelskiej. 

Naprowadzenie widokowe ul. Puławskiej. Otwarcie widokowe od strony skrzyżowania 

Batorego i Waryńskiego. 

• Plac Unii Lubelskiej. Jeden z placów gwiaździstych założenia ujazdowskiego. 

Przecięcie kilku osi widokowych. Silny punkt centralny.  

Załącznik 7: Tabela rozmiarów warstw sieci eksperymentu głównego i liczba 

trenowalnych parametrów 

Całkowita liczba parametrów: 52 851 908 

Generator: 50 215 299 

Dyskryminator: 2 636 609 

 

Generator, lista warstw 

Liczba filtrów i progów 1d 2d 3d Parametry 

64 4 4 3 3136 

128 4 4 64 131200 

256 4 4 128 524544 

512 4 4 256 2097664 

512 4 4 512 4194816 

512 4 4 512 4194816 

512 4 4 512 4194816 

512 4 4 512 4194816 

512 4 4 512 4194816 

512 4 4 1024 8389120 

512 4 4 1024 8389120 

512 4 4 512 4194816 

256 4 4 1024 4194560 

128 4 4 512 1048704 

64 4 4 256 262208 

3 4 4 128 6147 
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Dyskryminator, lista warstw 

Liczba filtrów i progów 1d 2d 3d Parametry 

64 4 4 6 6208 

256 4 4 128 524544 

512 4 4 256 2097664 

1 4 4 512 8193 

Załącznik 8. Wybór ciekawszych baz danych, które można wykorzystać w 

trenowaniu architektonicznych sieci neuronowych. 

Wybór na podstawie przeprowadzonej kwerendy stanu wiedzy. 

Nazwa Źródło Opis 

Cyfrowa Kolekcja 

Muzeum 

Architektury we 

Wrocławiu 

https://ma.wroc.pl/pl/kolekcja/ Zdigitalizowane przykłady 

tysięcy dzieł 

architektonicznych 

podzielonych na 

architekturę 

międzywojenną i 

współczesną 

SpaceNet 

Challenge 

Datasets 

https://spacenet.ai/datasets/ Publiczna baza danych 

zawierająca 67 tysięcy 

kilometrów kwadratowych 

oznaczonych zdjęć 

satelitarnych (m.in. mapy 

rozwoju urbanistycznego 

w czasie) 

Sentinel 2 https://dataspace.copernicus.eu/analyse/apis Otwarte dane satelitarne 

Europejskiej Agencji 

Kosmicznej systemu 

Copernicus z dostępnymi 

serwisami API w języku 

Python. 



LXII 

 

Numeryczny 

model pokrycia 

terenu Geoportal 

https://www.geoportal.gov.pl/en/dane/numeryczny-model-

pokrycia-terenu 

Dane dostępne przez 

geoportal, reprezentacja 

powierzchni terenu wraz z 

obiektami wystającymi 

ponad powierzchnię 

(budynki, drzewa, 

infrastruktura…) 

MexCulture142 https://github.com/montoyaobeso/mexculture142 Zbiór 284 budynków 

meksykańskiego 

dziedzictwa kulturowego 

podzielonych na 142 klasy 

Architectural Style 

Classification 

Dataset 

https://sites.google.com/site/zhexuutssjtu/projects/arch 

https://www.kaggle.com/datasets/wwymak/architecture-dataset 

Zbiór 5000 zdjęć obiektów 

architektonicznych 

podzielonych na 25 klas 

względem stylu 

architektonicznego 

UAVid Semantic 

Segmentation 

Dataset 

https://uavid.nl/ Zbiór filmów lotniczych 

nakręconych w mieście 

przez autonomiczne drony. 

Filmy posegmentowane 

semantycznie na 8 klas. 

Mapster http://igrek.amzp.pl/ Zabiór archiwalnych 

materiałów 

kartograficznych w 

różnych formatach 

Arcbazar arcbazar.com/ Zbiór cyfrowych, 

konkursowych projektów 

architektonicznych w 

formacie BIM/CAD. 

Większość projektów 

płatna. 

Laion-400 https://laion.ai/laion-400-open-dataset/ 400 milionów par obraz-

opis (wiele przykładów 

architektonicznych 

i urbanistycznych) 
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Laion-5B https://laion.ai/laion-5b-a-new-era-of-open-large-scale-multi-

modal-datasets/ 

5 milardów par obraz-opis 

(wiele przykładów 

architektonicznych 

i urbanistycznych) 

ROBIN Dataset https://github.com/gesstalt/ROBIN Zbiór 510 rzutów 

architektonicznych 

mieszkań podzielonych 

względem liczby 

pomieszczeń  

Harmonized 

Landsat and 

Sentinel-2 

https://hls.gsfc.nasa.gov/hls-data/ Zbiór danych satelitarnych 

NASA i USGS 

Open Buildings 

Dataset 

https://www.kaggle.com/datasets/paultimothymooney/open-

buildings 

Wielkoskalowy zbiór 

obrysów 512 milionów 

budynków na zdjęciach 

satelitarnych Afryki 

Modern 

Architecture 

https://www.kaggle.com/datasets/tompaulat/modernarchitecture Zbiór 100 tysięcy zdjęć 

obiektów 

architektonicznych 

oznaczonych względem 

typu budynku i 

przedstawionego 

fragmentu 

UrbanSound8K https://www.kaggle.com/datasets/chrisfilo/urbansound8k Zbiór 8732 oznaczonych 

nagrań odgłosów miejskich 

Urban 

Segmentation - 

ISPRS 

https://www.kaggle.com/datasets/aletbm/urban-segmentation-

isprs 

Zbiór zdjęć satelitarnych 

poddanych semantycznej 

segmentacji dla 3 miast: 

Poczdam, Toronto i 

Vaihingen 

 

Dodatkowe materiały cyfrowe związane z niniejszą rozprawą doktorską znajdują 

się w repozytorium: https://github.com/TomaszDzieduszynski 


