
WARSAW UNIVERSITY OF TECHNOLOGY
DISCIPLINE OF SCIENCE INFORMATION
AND COMMUNICATION TECHNOLOGY

FIELD OF SCIENCE ENGINEERING AND TECHNOLOGY

Ph.D. Thesis
Jakub Łyskawa, MSc.

Leveraging the distribution of collected samples in reinforcement
learning

Supervisor
Paweł Wawrzyński, PhD DSc

WARSAW 2024

Acknowledgements

First of all, I would like to thank my supervisor, Paweł Wawrzyński, for his
guidance, ideas, and feedback. He played a significant role in my development as a
researcher and in the process of creating this dissertation.

I would also like to show my gratitude to all the people that I had the pleasure
to work with at the Warsaw University of Technology - fellow PhD students and
employees, for creating an environment where I was able to pursue an academic
career.

Last but not least, I wish to thank my partner, family, and friends who supported
me throughout this whole process.

3

Leveraging the distribution of collected samples in
reinforcement learning

This dissertation summarizes a series of five publications regarding improving
off-policy Reinforcement Learning algorithms by leveraging the dependencies be-
tween samples resulting from the designs of the algorithms.

In the first part of this work, we focus on the temporal dependencies between
actions that result from not-temporally-independent exploration methods. Firstly,
we note that a common approach to enforcing the similarity of subsequent actions
is to use autocorrelated action noise. We present a process that generates an auto-
correlated noise that keeps both the correlation between subsequent samples and
marginal distribution in each time step constant. Then, we introduce Actor-Critic
with Experience Replay and Autocorrelated Actions, a Reinforcement Learning
algorithm that uses the properties of the temporally correlated action noise to better
calculate the probability density of a sequence of actions. We present experimental
results that show that our solution obtains significantly better results then both
the baseline and the state-of-the-art Reinforcement Learning algorithms, especially
in fine discretization settings. Secondly, we present a framework for actions with
stochastic duration. We show that it is possible to calculate the probability ratio
of a sequence of actions within this framework and we introduce Actor-Critic with
Experience Replay and Sustained Actions that leverages expected actions duration
decreasing over time to improve training efficiency in simulated robotic environ-
ments.

In the second part of this work, we tackle the problem of designing subgoal
precision in Goal-conditioned Hierarchical Reinforcement Learning. We show that
in published research the parameters determining subgoal precision are not always
optimal. We present Adaptive Subgoal Required Distance, a method that auto-
matically determines the subgoal precision based on the distribution of distance
between past subgoals and achieved states. We demonstrate that Adaptive Subgoal
Required Distance makes hierarchical algorithm perform better than with fixed
subgoal precision parameter in most tested configurations.

Overall, our work presents three off-policy online Reinforcement Learning al-
gorithms based on the premise of leveraging existing dependencies in collected
data.

Keywords: Reinforcement Learning, Fine Discretization, Time-dependent Explo-
ration, Hierarchical Reinforcement Learning

5

Wykorzystanie rozkładu zapamietanego doświadczenia w
uczeniu ze wzmocnieniem

W niniejszej rozprawie przedstawiamy cykl pięciu publikacji dotyczących rozwoju
algorytmów uczenia ze wzmocnieniem off-policy poprzez wykorzystanie zależności
między próbkami wynikających z działania tych algorytmów.

W pierwszej części pracy skupiamy się na zależnościach czasowych wynikają-
cych z metod eksploracji, które nie są niezależne czasowo. Najpierw zwracamy
uwagę, że typowym podejściem do wymuszania podobieństwa kolejnych akcji jest
użycie autokorelowanego szumu. Przedstawiamy proces, który produkuje taki szum,
zachowując równocześnie stałą korelację między kolejnymi jego wartościami oraz
rozkład graniczny szumu w każdym kroku czasowym. Następnie przedstawiamy
algorytm, który wykorzystuje właściwości skorelowanego w czasie szumu akcji, aby
dokładniej wyznaczać gęstości prawdopodobieństwa sekwencji akcji. Przedstawiamy
wyniki eksperymentów, które pokazują, że nasze rozwiązanie otrzymuje znacząco
wyższe nagrody niż zarówno bazowe, jak i powszechnie używane algorytmy uczenia
ze wzmocnieniem. Ponadto przedstawiamy podejście do wykonywania akcji ze zmien-
nym, losowym czasem trwania. Pokazujemy, że w ramach tego podejścia możliwym
jest obliczenie ilorazu gęstości prawdopodobieństw sekwencji akcji i wprowadzamy
algorytm, który wykorzystuje stopniowo zmniejszające się oczekiwane czasy trwania
akcji, aby poprawić wydajność treningu w symulowanych środowiskach robotycznych.

W drugiej części tej pracy poruszamy problem wyznaczania precyzji osiągania
pośredniego celu w hierarchicznym uczeniu ze wzmocnieniem. Pokazujemy, że w
dotychczasowych publikacjach wartości parametrów zadających precyzję osiągania
celów pośrednich nie zawsze są optymalne. Prezentujemy algorytm, który na pod-
stawie rozkładu odległości między poprzednimi osiągniętymi stanami, a zadanymi
celami pośrednimi automatycznie wyznacza precyzję, z którą cele pośrednie mają
być osiągane. Pokazujemy, że dla większości badanych algorytmów i środowisk
nasza metoda pozwala osiągnąć lepsze wyniki niż używanie stałej zadanej precyzji
osiągania celu.

Cała nasza praca wprowadza trzy algorytmy uczenia ze wzmocnieniem, które
wykorzystują zależności występujące w zebranych próbkach.

Słowa kluczowe: Uczenie ze wzmocnieniem, Gęsta dyskretyzacja czasu, Eksplo-
racja zależna od czasu, Hierarchiczne uczenie ze wzmocnieniem

6

Contents

Acknowledgements . 3

1. Introduction 9
1.1. Contribution . 10
1.2. List of publications . 12

1.2.1. Publications in the series . 12
1.2.2. Publication not in the series . 14

2. Background 15
2.1. Reinforcement Learning . 15

2.1.1. Exploration in RL . 17
2.1.2. Actor-Critic with Experience Replay 18

2.2. Hierarchical Reinforcement Learning 19
2.2.1. Goal-conditioned Hierarchical Reinforcement Learning 20

2.3. Quantum Reinforcement Learning . 20

3. Enforcing action similarity 23
3.1. Action autocorrelation . 23

3.1.1. Initial research . 24
3.1.2. Continued research . 25

3.2. Sustaining actions . 26

4. Subgoal reachability in Goal-conditioned Hierarchical RL 29

5. Conclusions 31

6. Other achievements 33

Bibliography 35

Appendices 40

A. List of Abbreviations 41

7

B. Publications 43
B.1.ACERAC: Efficient Reinforcement Learning in Fine Time

Discretization . 44
B.2.A Framework for Reinforcement Learning with Autocorrelated

Actions . 57
B.3.Actor-Critic with Variable Time Discretization via Sustained

Actions . 70
B.4.Subgoal Reachability in Goal Conditioned Hierarchical

Reinforcement Learning . 85
B.5.Influence of IQT on research in ICT 96

8

1. Introduction

A Markov Decision Process (MDP) is a framework for modeling the periodic inter-
actions of an agent with a dynamic environment. The agent makes decisions based
on the current state of the environment, selecting actions from the available action
space. These actions affect the environment. Each action causes the environment to
change its state, according to an underlying state transition distribution, and results
in feedback in the form of a real number called a reward. Many real-world problems
may be represented as MDPs or their derivative models, such as the Multi-Agent
Markov Decision Process, where multiple agents make simultaneous decisions, or
the Partially Observable Markov Decision Process, where instead of the current
state, the agent perceives some function of it that results in information loss.

Reinforcement Learning (RL) is a machine learning paradigm where the agent is
trained to maximize future rewards in MDP. Thanks to such a proactive approach,
RL may be used for many complex problems, where analytic solutions are not known.
Current applications of RL include landmark detection (Zhou et al., 2021), medical
treatment recommendation (Ma et al., 2023), fine-tuning language models to follow
instructions (Ouyang et al., 2022), and autonomous robotic control (Campos et al.,
2022). Improving RL algorithms allows to obtain better results and reduce the
time and data required for training. As such, designing better RL algorithms is an
important research direction (Shakya et al., 2023).

In classical reinforcement learning, the agent improves by a trial-and-error
approach. The agent performs actions and trains using received rewards. The agent
selects the actions according to a parameterized distribution called a decision policy.
The RL algorithm trains the decision policy to maximize future rewards. However, an
important part of RL algorithms is to also maintain the balance between exploration
and exploitation.

The decision policy does not need to depend on the current state only. Starting
with the first works on Deep RL for continuous action spaces, such as Deep Determin-
istic Policy Gradient (Lillicrap et al., 2015), the authors of RL algorithms introduced
the temporal correlation of action noise to RL algorithms. Such autocorrelated
noise improves exploration in environments with inertia, such as robotic control
environments (Wawrzyński, 2015; Lillicrap et al., 2015). However, these algorithms

do not use information that the actions in the replay buffer are autocorrelated in
the training process.

Many Deep RL algorithms, such as Deep Q-Network (Mnih et al., 2013), Deep
Deterministic Policy Gradient (Lillicrap et al., 2015), and Soft Actor-Critic (Haarnoja
et al., 2018), store experience in a replay buffer. This significantly reduces the need
to interact with the environment, making the learning process more sample-efficient
by reusing past samples. Furthermore, using a replay buffer stabilizes the training
process (Saglam et al., 2023). Most RL algorithms that utilize the experience replay
use stored samples to learn to estimate the outcomes of actions and, using these
estimates, adapt action distribution to improve the agent performance.

Hierarchical Reinforcement Learning (HRL) is an RL approach that breaks down
the control into multiple levels. While the environment determines the final objective
for the whole system, higher-level RL agents determine immediate shorter-term
objectives for lower-level agents. Although such a system is more complex than a
flat RL approach, it allows for solving more complex tasks.

Goal-conditioned RL is an RL approach oriented at controlling environments
with specified goals - namely environments where the objective is to achieve a specific
state, called a goal. Goal-conditioned RL may be used for designing HRL algorithms,
where a higher-level agent specifies goals to be achieved by a lower-level agent. In
continuous goal spaces, an important hyperparameter is a subgoal required distance
- a tolerance with which the goal has to be achieved. While the threshold for the
environment goal is usually defined as part of the problem, the threshold for a goal
selected by a higher-level agent needs to be carefully selected to both allow the
reachability of selected goals and provide fine control by the lower level. In existing
methods, it is usually determined by a hand-picked parameter (Andrychowicz et al.,
2017; Levy et al., 2017; Gürtler et al., 2021). However, too strict a value of this
parameter may result in difficulties in communicating between agents, while too lax
value may decrease the control precision.

1.1. Contribution

Using autocorrelated action noise was proposed in multiple works (Wawrzyński,
2015; Lillicrap et al., 2015; Tallec et al., 2019) as a method for structuring exploration
in physical systems with momentum. However, the algorithms used in these works
only consider each action independently during training without considering the
temporal correlations between these actions.

The autocorrelated action noise results in a different probability of a sequence of
actions when compared to a sequence of independent actions. Furthermore, as the

10

action noise at a time step affects the action distribution at the next time step, it
also changes the distributions of future environment states and rewards.

As such, we formulated the following hypothesis:

Hypothesis 1. Including the properties of the autocorrelated action noise in the
training process improves the sample efficiency in physical control environments.

To verify the Hypothesis 1, we proposed Actor-Critic with Experience Replay and
Autocorrelated Actions (ACERAC), a novel algorithm that improves Actor-Critic with
Experience Replay by introducing autocorrelated action noise and incorporating the
properties of the noise into the design of the algorithm. We presented empirical
verification in simulated environments that show that ACERAC obtains better
results than the base ACER algorithm and is much better suited for fine discretization
tasks than other algorithms.

During the research on the Hypothesis 1 we observed that RL algorithms in
fine discretization can obtain higher results while a coarser discretization makes
learning easier. We decided to leverage this observation to improve the performance
of RL algorithms.

Hypothesis 2. Decreasing the expected duration of actions increases the sample effi-
ciency in physical control environments while including the expected action duration
in the collected data allows a value-based algorithm to efficiently reuse old experience
samples.

To test the Hypothesis 2, we introduced Actor-Critic with Experience Replay and
Sustained Actions (SusACER), an algorithm that allows Actor-Critic with Experience
Replay to use experience collected with variable time discretization.

In goal-conditined HRL, the distance to the subgoal required to consider this
subgoal as achieved is usually a hyperparameter. As such, it needs to be either
hand-picked, which carries the risk of selecting a suboptimal value, or included in
hyperparameter optimization, thereby increasing an already significant number of
hyperparameters to optimize.

To the best of our knowledge, there was no previous method to automatically
determine the precision of achieving a subgoal. Our approach to filling this gap may
be summarized in the hypothesis:

Hypothesis 3. The precision of achieving a subgoal in goal-conditioned HRL may
be automatically calculated using a distribution of past distances to subgoals.

To verify this hypothesis we proposed Adaptive Subgoal Reachability Threshold,
a method to automatically determine thresholds of goals selected by a higher level
of a goal-conditioned hierarchical RL algorithm.

11

Overall, the purpose of the research presented in this dissertation is
to demonstrate that including statistical properties introduced into the
experience collected by model-free RL algorithms into the design of these
algorithms should improve their sample efficiency.

This is further highlighted by Quantum Reinforcement Learning, on the topic of
which we made an overview of the current state-of-the-art. Quantum RL algorithms
utilize quantum circuits that significantly affect the behavior of the agent. Thus, it
requires specialized algorithms which may leverage the properties of such an agent.

In Chapter 2 we review the background on RL, the background on HRL, and the
state-of-the-art of Quantum Reinforcement Learning.

In Chapter 3 we describe two approaches to enforcing action similarity: action
autocorrelation and sustained actions. We introduce two novel algorithms, ACERAC
and SusACER. We show how an algorithm designed with action autocorrelation is
well-suited for fine-discretization problems.

In Chapter 4 we analyze how the threshold of the subgoal affects the performance
of goal-conditioned HRL. We present the Adaptive Subgoal Reachability Threshold,
a method that utilizes the distribution of past achieved states to automatically adapt
the reachability threshold.

1.2. List of publications

1.2.1. Publications in the series

This dissertation is based on five original works:
• [P1] Jakub Łyskawa, Paweł Wawrzyński. “ACERAC: Efficient Reinforcement

Learning in Fine Time Discretization”, IEEE Transactions on Neural Networks
and Learning Systems vol. 35(2) (2024).
Contribution:
As the first author, the PhD Candidate was responsible for implementation,
and testing of the developed method. Together with the co-author, the PhD
Candidate developed the method and prepared the manuscript for publication.
Ministerial score: 200
Impact factor: 10.4
Percentage of contribution: 60%

• [P2] Marcin Szulc, Jakub Łyskawa, Paweł Wawrzyński. “ A Framework
for Reinforcement Learning with Autocorrelated Actions”, 27th International
Conference on Neural Information Processing (2020).
Contribution:

12

The PhD candidate was responsible for the literature review and the prepara-
tion of benchmarks. With co-authors, the PhD candidate reviewed the imple-
mentation code and tested the developed algorithm.
Ministerial score: 140
Percentage of contribution: 30%

• [P3] Jakub Łyskawa, Paweł Wawrzyński. “Actor-Critic with Variable Time
Discretization via Sustained Actions”, 30th International Conference on Neural
Information Processing (2023).
Contribution:
As the first author, the PhD Candidate developed, implemented, tested, and
presented the proposed method at the conference. With the co-author, the PhD
Candidate prepared the manuscript for publication.
Ministerial score: 70
Percentage of contribution: 75%

• [P4] Michał Bortkiewicz, Jakub Łyskawa, Paweł Wawrzyński, Mateusz Os-
taszewski, Artur Grudkowski, Bartłomiej Sobieski, Tomasz Trzciński “Subgoal
Reachability in Goal Conditioned Hierarchical Reinforcement Learning”, 16th
International Conference on Agents and Artificial Intelligence (2024).
Contribution:
As a co-author, the PhD Candidate took part in the implementation as a code re-
viewer. He also contributed by discussing results and preparing the manuscript
for publication.
Ministerial score: 70
Percentage of contribution: 20%

• [P5] Bogdan Bednarski, Łukasz Lepak, Jakub Łyskawa, Paweł Pieńczuk,
Maciej Rosoł, Ryszard Romaniuk. “Influence of IQT on research in ICT”, In-
ternational Journal of Electronics and Telecommunications, vol. 68, no. 2
(2022).
Contribution:
As a co-author of a review paper on the topic of Information Quantum Technol-
ogy, the PhD candidate was the author of the section on Quantum Reinforce-
ment Learning.
Ministerial score: 70
Impact factor: 0.7
Percentage of contribution: 16.7%

13

1.2.2. Publication not in the series

• Bartłomiej Olber, Krystian Radlak, Krystian Chachuła, Jakub Łyskawa,
Piotr Frątczak “Detecting Out-of-Distribution Objects Using Neuron Activation
Patterns”, IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2023).

14

2. Background

2.1. Reinforcement Learning

Markov Decision Process is a framework that models the interactions of an agent
with an environment. MDP is defined by a tuple 〈S, A,P0,Pa,T,R〉 where S is a
state space, A is an action space, P0 is a distribution of initial states, Pa is a state
transition distribution, T is a set of terminal states, and R is a reward function. At
each discrete time step t an environment is in a state st ∈ S. An agent performs an
action at ∈ A. The selected action at causes the environment to change state from
st to st+1 according to the transition distribution Pa(st+1|st,at). After performing
action at, the agent receives feedback in the form of reward r t = R(st, st+1,at). A
sequence from the initial state to the terminal state is called an episode. We present
an illustration of MDP in figure 1.

A policy π(a|s) of the agent is a distribution that specifies the probability of
selecting the action a in the state s. Reinforcement Learning is a machine learning
framework that focuses on the task of finding the optimal policy based on the inter-
actions with the environment. The optimal policy maximizes expected discounted
rewards sum

π∗ = argmax
π

E

(∑
i=0

γir t+i

∣∣∣∣∣at+i ∼π(st+i), st = s

)
(2.1)

where γ ∈ [0,1] is a discount rate. The discount rate is a parameter that determines
whether the agent should focus more on current or future rewards. For γ< 1, such
formulation ensures that the target value is finite even for infinite tasks if the reward
is limited. A policy is often parameterized (e.g. neural networks, Q table) and takes
the form of π(a|s,θ).

A function mapping state to expected discounted rewards sum is called a value
function and denoted Vπ(s). It may be defined recursively as

Vπ(s)= E
(∑

i=0
γir t+i

∣∣∣∣∣at+i ∼π(st+i), st = s

)
= E

(
r t +γVπ(st+1)

∣∣at ∼π(st), st = s
)

(2.2)

According to Bellman’s principle of optimality (Bellman, 1952), the optimal pol-

15

State

Agent

Action

Environment

Reward

Figure 1. Illustration of Markov Decision Process

icy chooses optimal actions at each state. As such, most reinforcement learning
algorithms iteratively change policy to maximize the value function for each state.

The action-value function is defined as the expected discounted sum of future
rewards for a given state and action

Qπ(a, s)= E
(
r t +

∑
i≥1

γir t+i

∣∣∣∣∣at+i ∼π(st+i),at = a, st = s

)
= E

(
r t +γVπ(st+1)

∣∣at = a, st = s
)

(2.3)
The action-value function allows for direct assessment of the results of actions.

A common division of RL algorithms is:
• Online RL algorithms. These algorithms assume that data is collected from

the environment as the agent trains, thus allowing for continuous evaluation
of new policies. They are further divided between on- and off-policy algorithms:

1. On-policy RL algorithms utilize only experience collected using current
policy. They gather data, use it for training, and then discard it. Advantage
Actor-Critic (Mnih et al., 2016) and Proximal Policy Optimization (PPO)
(Schulman et al., 2017) are examples of on-policy algorithms.

2. Off-policy RL algorithms collect experience in a replay buffer and reuse it
during later training. As such, they are designed to use data obtained not
only by the current policy of the trained agent but by other policies as well.
Actor-Critic with Experience Replay (Wawrzyński, 2009), Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) and Deep Q-Learning (Mnih et al., 2013) are
examples of off-policy algorithms.

• Offline RL algorithms, designed to train without interacting with the environ-
ment. As such, they are not required to balance exploration and exploitation -

16

however, they must overcome different challenges, such as unknown results of
certain policies.

Another division of RL algorithms is based on explicit modeling of the environ-
ment.

• Model-free RL algorithms, that do not learn to predict the behavior of the
environment.

• Model-based RL algorithms, that explicitly model the environment to mini-
mize the required number of interactions with the environment. However,
model-based RL algorithms are sensitive to the model accuracy and computa-
tionally expensive (Valencia et al., 2023). Examples include Model-Predictive
Control (Omer et al., 2021) and AlphaZero (Silver et al., 2018)

In this work, we focus on online off-policy model-free RL algorithms.

2.1.1. Exploration in RL

In online reinforcement learning, randomness of the policy is an important part
of the training process. This property, called exploration, allows an algorithm to
search the policy space by selecting actions different from the expected one and
measuring their outcomes. The challenge of how much the selected actions should
differ from the expected action is called the exploration-exploitation trade-off (Sutton
and Barto, 2018).

A simple approach to this challenge is to perform, with given probability ϵ, a
random action uniformly sampled from the action space and the expected action
otherwise. This method, called ϵ-greedy exploration, is commonly used in discrete
action space settings. An alternative approach for discrete action spaces is to trans-
form the values of the action-value function, using e.g. softmax function, to map the
expected rewards to action probabilities (Ladosz et al., 2022).

In continuous action space separately determining the probability of each action
is not feasible. Thus, parameterized distributions over the action space are used.
A diagonal Gaussian distribution is typically used, parameterized by means and
standard deviations for each dimension of the action space, although more complex
distributions, such as a squashed Gaussian distribution (Haarnoja et al., 2018) or a
multimodal distribution (Huang et al., 2023) may also be used.

A policy that utilizes diagonal Gaussian distribution equates to a policy where a
stationary Gaussian noise ε with magnitude dependent on the standard deviation
σ(st) is added to the expected action µ(st)

εt ∼N(0,σ(st))

at =µ(st)+εt
(2.4)

17

where µ(st) is determined by the policy and σ(st) is either a hyperparameter, is
adaptively tuned by the RL algorithm independent of the environment state, or is
adaptively tuned by the RL algorithm dependent on the environment state.

Time-independent noise as described above has several drawbacks. Firstly, when
such noise is applied to real-life robot, large differences between consecutive actions
may cause the systems to jerk and result in unstable behaviour (Mysore et al., 2020)
or damage to the system (Wawrzyński, 2015). Secondly, such noise may get lost in
the inertia of the system, resulting in poor exploration (Korenkevych et al., 2019).
There exist multiple alternatives to unstructured exploration such as autocorrelated
noise (Wawrzyński, 2015; Lillicrap et al., 2015), sustaining actions (Dabney et al.,
2020), and parameter-space noise (Raffin and Stulp, 2020)

2.1.2. Actor-Critic with Experience Replay

Actor-Critic with Experience Replay (ACER) (Wawrzyński, 2009) is an online
off-policy model-free RL algorithm. It is based on the Actor-Critic framework (Barto
et al., 1983) with two models, an Actor and a Critic. The purpose of the Critic is to
estimate the future rewards, which in the ACER algorithm is done by estimating the
value function (eq. 2.2). The Actor determines the current policy of the agent. ACER
is a deep RL algorithm. As such, both Actor and Critic are typically implemented
using neural networks.

Experience replay is an important mechanism in many off-policy deep RL al-
gorithms (Fedus et al., 2020). It is used in the ACER algorithm to store tuples of
values (st,at, st+1,πt(at|st), r t,dt+1), where πt(at|st) is the probability (or probability
density for continuous action space) of the agent selecting action at in the state st

according to the policy at the time step t and dt+1 equals 1 if st+1 is a terminal state
and 0 otherwise.

ACER uses n-step trajectories, which are sequences of n consecutive experience
samples, to estimate future discounted rewards. n is sampled from a geometric
distribution independently for each trajectory. The temporal difference error, which
is the error of the expected discounted rewards sum estimator, is calculated for a
trajectory of length n and initial time step t using n-step returns as

δn
t =

n−1∑
i=0

γir t+i +γnVπ(st+n)−V (st) (2.5)

The Critic is trained to minimize the expected value of the squared error (δn
t)2.

The Actor is trained to maximize the expected discounted rewards sum for each
state which is reducible to maximizing Eπ(at|st)δn

t . An underlying gradient-based
algorithm calculates updates for the Actor and Critic parameters.

18

However, the samples stored in the experience replay buffer are collected with the
probabilities at the time of collection πt(at|st), which may differ from the probabilities
at the time of optimization π(at|st) as the policy might have changed. ACER uses
importance sampling (Kloek and van Dijk, 1978) to mitigate the bias introduced to
the optimization process by the change of the action distribution. The gradient for a
trajectory that begins at time step t is weighted by the ratio between the current
probability of the sequence of actions and the probability at the time these samples
were collected

ISn
t =

n−1∏
i=0

π(at+i|st+i)
πt+i(at+i|st+i)

(2.6)

which is later clipped to limit its variance.
The original implementation of the policy in ACER for continuous environments

consists of actor A(s) that outputs the expected action for the state s. Gaussian
noise N(0,σ) with mean 0 and standard deviation σ is added to each element of the
expected action to enable exploration.

2.2. Hierarchical Reinforcement Learning

Hierarchical RL is an approach to solving MDP by decomposing it into multiple
smaller, simpler problems. As such, HRL may be applied to more complex tasks, is
considered an important step in applying RL to life-long learning scenarios, and
increases interpretability of RL systems (Hutsebaut-Buysse et al., 2022).

Specifically, in the HRL setting, the task is decomposed into a hierarchy of
subtasks. The target of a higher-level subtask is to control the policy at the level
directly below it. The lowest-level policy interacts directly with the environment
(Zhang et al., 2021).

Hutsebaut-Buysse et al. (2022) divides HRL methods into three frameworks:
• Problem-specific approaches rely on external knowledge in dividing tasks. While

they are often intuitive and interpretable, it is difficult to automatically create
such a system (Hutsebaut-Buysse et al., 2022).

• Options-based algorithms temporally divide higher-level tasks into separate
actions, called options. These options specify the behavior of the agent until
another option is selected (Huang et al., 2024).

• Goal-conditioned HRL algorithms train a higher-level policy to select a subgoal,
which is a subset of the state space, that the lower-level policy is trained to
achieve (Yu et al., 2024). We describe this HRL framework, which is the focus
of our work in chapter 4, in detail in subsection 2.2.1.

19

2.2.1. Goal-conditioned Hierarchical Reinforcement Learning

In goal-conditioned HRL, the purpose of the highest layer is to control the agent in
a way that maximizes the expected discounted rewards returned by the environment.
To control the agent this layer outputs a subgoal that specifies the desired state of
the agent after a given number of time steps. The purpose of the lower layer is to
achieve this subgoal, either by specifying intermediate subgoals for a further layer
or, in the case of the lowest layer, by directly controlling the agent.

Formally, goal-conditioned HRL utilizes a hierarchy of L layers where layer 0 is
the lowest layer and layer L−1 is the highest. Each layer l has its action space Al,
state space Sl, and a policy πl. Each layer except the highest level has its subgoal
space G l determined by a subgoal function f l : Sl →G l. A single action of l > 0 level
policy is selected at a time step t′ and lasts until the next action is selected until
time step t′′. The subgoal gl−1

t ∈ sl−1
t for the layer l −1 is part of the l-level action

gl−1
t ∈ al

t′ for t ∈ {t′, . . . , t′′}. Time steps t′ and t′′ determine the boundaries of an episode
for the level l−1 (Robert et al., 2024). Duration of l-level layer action in terms of the
number of lower-level time steps may be constant, but recent approaches include it
as part of the l-level action (Gürtler et al., 2021).

The reward for a l-level policy depends mostly on achieving a goal determined
by the higher-level (for l < L−1) (Liu et al., 2022). However, it may also include
a component for (l −1)-level policy achieving the goal determined by the current
level (for l > 0) to increase the achievability of produced goals (Levy et al., 2017).
The reward for achieving the goal in goal-conditioned HRL is often sparse (Zou and
Suzuki, 2023). In continuous environments, the goal is considered achieved if the
mapped state f l(st) is within a certain distance of the goal gl

t, with this distance
determined by a Subgoal Required Distance (SRD) parameter (Andrychowicz et al.,
2017; Levy et al., 2017; Gürtler et al., 2021).

2.3. Quantum Reinforcement Learning

In the publication P5, we reviewed the influence of Information Quantum Tech-
nologies on research in different areas of Information and Communication Technolo-
gies. One of the considered areas is RL, where the influence of quantum technologies
resulted in the emergence of Quantum Reinforcement Learning (QRL), which we
summarize in this section.

QRL is an RL framework where at least one of its components, either the
policy and/or the environment, is realized using a quantum system (Dong et al.,
2008). QRL is designed to approach the challenges of RL methods. The problem

20

of exploration-exploitation balance, one of the most significant challenges of the
RL framework (Dulac-Arnold et al., 2021) may be naturally mitigated by intrinsic
randomness of quantum systems (Dong et al., 2008). Furthermore, the QRL ap-
proach may result in quadratic (Dong et al., 2008) or exponential (Dunjko et al., 2016)
increase in the learning speed in certain scenarios. The relatively high probability of
errors occurring during computations, a characteristic feature of quantum computers
(Nielsen and Chuang, 2011) which is often considered detrimental (Ryan-Anderson
et al., 2021), may be used by QRL methods for enhancing the tendency of the agent
to explore new paths (Flamini et al., 2020).

A quantum state |S〉 in a quantum environment is a superposition of n eigen
states (state values that may be observed) |si〉

|S〉 = ∑
i=1...n

αi |si〉 (2.7)

where αi ∈C are the probability amplitudes of the corresponding eigen states. As
such, αn must satisfy a constraint

∑
i=1...n

|αn|2 = 1 (2.8)

Analogously, a discrete quantum action |A〉 is a superposition of m eigen actions
|a j〉

|A〉 = ∑
j=1...m

β j
∣∣a j

〉
(2.9)

where β j ∈ C are the probability amplitudes of the corresponding eigen actions
constrained by ∑

j=1...m

∣∣β j
∣∣2 = 1 (2.10)

(Dong et al., 2008).
A continuous action a in a quantum environment may be implemented as a

parameter of a unitary U(a) on a quantum state |s〉 (a transformation that determines
the quantum state transition) (Wu et al., 2020).

There were multiple approaches to creating QRL algorithms, including the fol-
lowing examples:

• Dong et al. (2008) proposed to store actions |As〉 in a single quantum register
for each eigen state |s〉. When observed, action |As〉 collapses into an eigen
action |ai〉 with the probability

∣∣βs
i

〉
. Amplitudes βs

i are iteratively updated
using Grover algorithm (Grover, 1996) to maximize the value function.

• Dunjko et al. (2016) utilized the quantum model of an environment as an oracle
to quickly find rewarding action sequences using the Grover algorithm.

21

• Variational Quantum Circuits (Du et al., 2020), which are parameterized cir-
cuits considered analogous to neural networks (Cerezo et al., 2021), were applied
to several deep RL algorithms such as Deep Q Network (Chen et al., 2019),
Deep Deterministic Policy Gradient (Wu et al., 2020), and PPO (Kwak et al.,
2021) to adapt them to quantum computers.

QRL was already shown to give promising results in tasks such as modeling and
explaining human decision process (Li et al., 2020) or high-fidelity cloning of an
unknown quantum state (Shenoy et al., 2020).

22

3. Enforcing action similarity

In this chapter, we present our approaches to different methods of enforcing
the similarity of subsequent actions. These methods are presented in detail in
publications P1, P2 (action autocorrelation), and P3 (sustained actions).

For simplicity, in this chapter, we use single-dimensional notation to describe
action noises, as the exploration processes considered in this work are independent
for each dimension.

3.1. Action autocorrelation

Autocorrelation of the action noise is one of the methods for enforcing action
similarity in RL. It is especially important for environments that represent physical
systems, such as robots, as unstructured noise results in rapidly changing control
signals that may damage the system, as most motors are not well-suited to such
control signals or get lost in the momentum of the system. However, while certain
previous works, such as Lillicrap et al. (2015); van Hoof et al. (2017); Tallec et al.
(2019), use autocorrelated action noise, they do not account for this noise during
training. In P1 and P2 we approached the challenge of creating an RL algorithm
that incorporates the autocorrelation of the action noise in the training process to
increase its sample efficiency.

Following Lillicrap et al. (2015), most approaches to RL that utilize action auto-
correlation use the Ornstein–Uhlenbeck process (Uhlenbeck and Ornstein, 1930) as
the action noise ξτ for continuous τ

dξτ =−θξτ+σdBτ (3.1)

where θ and σ are parameters and Bt is the Brownian motion. For discrete time step
t, dBt is implemented using the normal distribution, resulting in the following noise
process for discrete time step t

εt ∼N(0,1)

ξt = (1−θ)ξt−1 +σεt
(3.2)

23

For continuous action spaces, instead of the uncorrelated action noise as in eq. 2.4,
this noise is added to the expected action µ(st) to produce the action for the time step
t.

3.1.1. Initial research

In the publication P2, which presented our initial work on this topic, we redefined
the autocorrelated process. Firstly, we applied the constraint that the distribution
of the noise should be normal with mean 0 and standard deviation σ, which in our
work is a hyperparameter. Secondly, the correlation coefficient between noise and
its previous value should be constant. We denote this coefficient as α. Thirdly, we
kept the Markovian property of the Ornstein-Uhlenback process, making the noise
at a given time step dependent only on its immediate predecessor. This gives the
following definition of the noise

εt ∼N(0,σ)

ξt =
εt if t = 1

αξt−1 +
p

1−α2εt otherwise

(3.3)

This noise is later added to the expected action µ(st) to produce the action at for the
time step t

at =µ(st)+ξt (3.4)

Given the above definition of the noise, we calculated the conditional probability
π̄(ān

t |s̄n
t ,ξt−1) of a sequence of n actions ān

t given a sequence of n states s̄n
t and the

previous noise ξt−1.
Our initial version of the ACERAC, algorithm presented in the publication P2,

is based on the ACER algorithm. Instead of sampling the trajectory length from a
random distribution, it uses constant trajectory length. It uses the redefined action
noise for exploration and the conditional probability of a sequence of actions with
autocorrelated noise to estimate the importance sampling weights. Furthermore,
instead of optimizing action probabilities to maximize rewards as in the ACER algo-
rithm, it optimizes the probabilities of sequences of actions. We used four simulated
robotic environments from an open-source PyBullet simulator (Coumans and Bai,
2021) to experimentally verify the quality of the algorithm. The experimental results
presented in this publication show that this version of ACERAC obtains improved
results when compared to the base ACER algorithm, and obtains similar results as
the state-of-the-art RL algorithms PPO and SAC.

24

3.1.2. Continued research

In publication P1 we continued research presented in publication P2. We re-
designed the critic used by the ACERAC algorithm to include not only the state of
the environment but also the state of the noise in the form of the expected action for
this environment state.

In publication P1 we introduced the noise-value function W(u, s) which reflects
that future rewards depend not only on the state of the environment but also on the
state of the autocorrelated noise as well. Thus, we defined the noise-value function
as

W(u, s)= E
(∑

i
γir t+i

∣∣∣∣∣st = s,Eat = u

)
(3.5)

namely, as the expected discounted sum of future rewards given state s and the
expected action u. The expected action for a time step t is calculated as

ut = E (at|st,ξt−1)=
µ(st) if t = 1

µ(st)+αξt−1 otherwise
(3.6)

for the action mean µ(st) determined by the policy and the expected noise for this time
step given the noise for the previous time step ξt−1. Such formulation, which uses
the expected action instead of the state of the action noise, makes the noise-value
function more robust to changes in the policy function.

The revised version of the ACERAC algorithm presented in the publication P1
uses the noise-value function estimator as critic.

In the publication P1 we also extended the experimental setting to include
fine-discretization environments. For this purpose, for each of the four simulated
robotic environments, we also included versions that used 3 and 10 times higher
control frequencies. We tested the revised version of the ACERAC and compared
it to ACER, PPO, and SAC. We also compared it to another algorithm designed for
fine-discretization settings, Continuous Deep Advantage Updating (CDAU) (Tallec
et al., 2019).

Our experimental results presented in publication P1 show that the revised
ACERAC is on par with state-of-the-art RL algorithms on base discretization and
outperforms them in fine discretization settings. It is an improvement over the base
ACER algorithm and it also outperforms the CDAU algorithm for all discretization
settings. Our research shows that n-step returns and action autocorrelation allow
RL algorithms to obtain better results in fine discretization settings, making AC-
ERAC especially well-suited for such tasks. We also show that while using finer

25

discretization control on an environment makes it more difficult for RL algorithms,
it allows them to find better control policies.

3.2. Sustaining actions

Following observations from the experimental study presented in the publication
P1 that while finer discretization allows to obtain better results a coarser discretiza-
tion makes learning easier, we designed an algorithm that starts with longer actions
and over time reduces the sustain length to match the base discretization of the
environment to improve its sample efficiency. We presented our solution in the
publication P3.

We based our framework for changing the discretization of the environment on
sustaining actions.

In the RL framework, an agent selects an action, at, at the time step t. If the
action at is sustained for k ≥ 0 time steps, then the agent performs at at each time
step t+ i for i = {0, . . .k}. At the time step t+k+1 the agent selects the next action.

If each action is sustained for the same number of steps, then effectively the
discretization of the environment is lowered. Such an approach was used by Mnih
et al. (2013). Further works extended this approach by applying different sustain
lengths for different environments (Kalyanakrishnan et al., 2021) and by optimizing
action duration (Yu et al., 2021; Biedenkapp et al., 2021).

In our work, we presented another approach to leveraging sustaining actions.
Our solution starts from longer sustain durations and it decreases them over time
to finally perform each action for only a single step.

To make sequences of actions drawn from continuous distributions probable in
different discretizations we used stochastic sustain durations. The number of time
steps for which an action at is sustained is drawn from a geometric distribution with
a success probability pt. As a result, in each time step t the agent selects a new
action with a probability pt or sustains the previous one with a probability pt−1. The
expected duration of an action E t taken at the time step t equals 1

pt
.

The above formulation changes a continuous action distribution to a mixed
discrete/continuous one. In the publication P3 we derived the probability ratio for
such distribution and showed that pt not decreasing over time is a sufficient condition
for this method not introducing infinite factors to the probability ratio.

We also considered how sustaining actions affect the exploration/exploitation
balance. Assuming that the underlying system may be approximated over a short
time period [τ,τ+∆] by a differential equation dsτ

dτ
∼= B+Caτ we showed that executing

n independent actions over a given short time period decreases the covariance of

26

the state change n-times when compared to executing a single action over this time
period.

In the publication P3 we introduced the Actor-Critic with Experience Replay
and Sustained Actions (SusACER) algorithm. It is based on the ACER algorithm
described in the subsection 2.1.2. The duration of the actions follows the stochastic
sustaining process described above with the expected duration of the action E t

decreasing linearly from its initial value E0 over TE time steps, where both E0

and TE are hyperparameters. SusACER also adapts the dispersion of the action
distribution to keep the exploration at the same level as if the actions were selected
independently in each time step.

In the experimental study, we compared the SusACER algorithm to the base
ACER algorithm and two state-of-the-art RL algorithms, SAC and PPO. We also
performed an ablation study of the influence of the introduced hyperparameters E0

and TE. We performed the experiments using 4 simulated environments.
Our research showed that SusACER obtained results either similar to or higher

than other algorithms. We also verified that while SusACER on each of the environ-
ments we used benefited from initially increased discretizations, for more difficult
environments that required finer control optimal values of E0 were lower than for
the simpler environments.

27

4. Subgoal reachability in
Goal-conditioned Hierarchical RL

In goal-conditioned HRL the Subgoal Reachability Distance parameter is usually
hand-picked or included in hyperparameter search (Chane-Sane et al., 2021; Colas
et al., 2020; Liu et al., 2022). However, this increases an already significant number
of hyperparameters of an HRL algorithm. Furthermore, selecting too small a value
of Subgoal Reachability Distance may result in unrealistic subgoals, while selecting
too large a value may result in imprecise control, with both these cases hindering
the training of the whole system. In our work, detailed in publication P4, we verified
that a value of Subgoal Required Distance that both allows for improved control
and is achievable by the current policy may be automatically inferred from past
distances to subgoals.

We experimentally verified that goal-conditioned HRL algorithms such as Hi-
erarchical Actor-Critic (HAC) (Levy et al., 2017) and Hierarchical reinforcement
learning with Timed Subgoals (HiTS) (Gürtler et al., 2021) are sensitive to the value
of the SRD parameter, and setting it to too low or too high a value hinders the
training process. Our research showed as well that the SRD values hand-picked by
the authors of the aforementioned methods are not optimal in all cases.

We proposed an approach that ensures that the SRD value is neither too high
to allow improvement of the lower-level policy nor too low for the goals to be reach-
able. Our method, called Adaptive Subgoal Required Distance (ASRD), sets SRD to
q-quantile of the past distances to subgoals recorded in a sliding window of fixed
size.

Our experimental study shows that, on 7 out of 8 tested environment/algorithm
pairs, using ASRD allows to obtain higher results than using fixed SRD selected by
the original authors of the HAC and HiTS algorithms. Furthermore, ASRD shows
less susceptibility to disturbances of initial SRD value when compared to the base
algorithms with disturbed SRD value.

5. Conclusions

In this work, we presented several solutions that leverage the statistical depen-
dencies in collected data.

ACERAC and SusACER extend ACER by considering the temporal dependency of
the action noise when calculating the probabilities of action sequences. Our experi-
mental research, especially in fine-discretization settings for ACERAC, confirms that
both ACERAC and SusACER outperform the base ACER algorithm in simulated
environments. The results of the ACERAC algorithm shows that including the
properties of the autocorrelated action noise in the training process improves the
sample efficiency in physical control environments. The results of the SusACER
shows that decreasing the expected duration of actions increases the sample efficiency
in physical control environments. Including the expected action duration in the data
collected by SusACER allows it to efficiently reuse old experience samples.

ASRD automatically determines the SRD in goal-conditioned HRL algorithms
based on the distribution of past distances to subgoals. We showed that ASRD
improves the performance and robustness of goal-conditioned HRL methods while
simplifying hyperparameter search.

Overall, we demonstrate in this dissertation that the statistical properties of the
collected data, that are introduced by RL algorithms, may be leveraged to further
improve the performance of these algorithms.

6. Other achievements

This dissertation is based on publications listed in section 1.2.1. Other achieve-
ments of the PhD candidate are:

Conference presentation
• “Actor-Critic with variable time discretization via sustained actions”, 30th

International Conference on Neural Information Processing (2023).

Projects
• Predictive modeling and power flow optimization of industrial refrig-

eration and freezing plants.
01 III 2019 – 30 IX 2019.
Project leader: Paweł Cichosz, PhD.
Scope of work of the candidate: statistical modeling of the temperature in
industrial freezing plants.

• Feasible and Effective Exploration in Reinforcement Learning.
12 IV 2021 – 30 VI 2021.
Project leader: Paweł Wawrzyński, PhD DSc.
Scope of work of the candidate: developing and assessing methods of exploration
adaptation for RL algorithms.

• Methods of simulation and analysis of logistic networks of postal oper-
ators.
01 II 2022 – 31 VIII 2022
Project leader: Rafał Biedrzycki, PhD DSc.
Scope of work of the candidate: development of an application of a system for
optimizing the logistic network of a postal operator.

• Integrated Computer System for Safety Assessment of deep neural
networks in autonomous driving.
08 XI 2022 – 31 XII 2023.
Project leader: Krystian Radlak, PhD.
Scope of work of the candidate: creating a method for automatic evaluation
of the quality of image detection annotations and development of a tool for
automatic evaluation of image detection database.

Didactic
• Second Degree Team Rector’s Award in Didactic Achievements

Social activity
• Organization of a workshop with an introduction to RL for the AI science club

“Golem”. 18 XII 2021 & 08 I 2022
• Mentor on Machine Learning & Data Science Hackaton. 04 VI 2022 – 05 VI

2022, Warsaw.
• Organization of a workshop with an introduction to RL for the AI science club

“Golem”. 20 III 2024
• Presentation for AI science club “Golem” on “Reinforcement Learning in Medical

Applications - an overview.”. 06 VI 2024

34

Bibliography

Andrychowicz, M., Wolski, F., Ray, A., Schneider, J., Fong, R., Welinder, P., McGrew,
B., Tobin, J., Abbeel, P., and Zaremba, W. (2017). Hindsight experience replay.
CoRR, abs/1707.01495.

Barto, A. G., Sutton, R. S., and Anderson, C. W. (1983). Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE Transactions on Systems,
Man, and Cybernetics, SMC-13(5):834–846.

Bellman, R. (1952). On the theory of dynamic programming. Proceedings of the
National Academy of Sciences, 38(8):716–719.

Biedenkapp, A., Rajan, R., Hutter, F., and Lindauer, M. (2021). Temporl: Learning
when to act. CoRR, abs/2106.05262.

Campos, F. R., Fidêncio, A. X., Domingues, J., Pessin, G., and Freitas, G. (2022).
Application of reinforcement learning to the orientation and position control of
a 6 degrees of freedom robotic manipulator. In 2022 Latin American Robotics
Symposium (LARS), 2022 Brazilian Symposium on Robotics (SBR), and 2022
Workshop on Robotics in Education (WRE), pages 1–6.

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean,
J. R., Mitarai, K., Yuan, X., Cincio, L., and Coles, P. J. (2021). Variational quantum
algorithms. Nature Reviews Physics, 3(9):625–644.

Chane-Sane, E., Schmid, C., and Laptev, I. (2021). Goal-conditioned reinforcement
learning with imagined subgoals.

Chen, S. Y.-C., Yang, C.-H. H., Qi, J., Chen, P.-Y., Ma, X., and Goan, H.-S. (2019).
Variational quantum circuits for deep reinforcement learning.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P. (2020). Intrinsically motivated
goal-conditioned reinforcement learning: a short survey. CoRR, abs/2012.09830.

Coumans, E. and Bai, Y. (2016–2021). Pybullet, a python module for physics simula-
tion for games, robotics and machine learning. http://pybullet.org.

Dabney, W., Ostrovski, G., and Barreto, A. (2020). Temporally-extended ϵ-greedy
exploration. CoRR, abs/2006.01782.

Dong, D., Chen, C., Li, H., and Tarn, T.-J. (2008). Quantum reinforcement learn-
ing. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics),
38(5):1207–1220.

Du, Y., Hsieh, M.-H., Liu, T., and Tao, D. (2020). Expressive power of parametrized

http://pybullet.org

quantum circuits. Physical Review Research, 2(3).
Dulac-Arnold, G., Levine, N., Mankowitz, D. J., Li, J., Paduraru, C., Gowal, S., and

Hester, T. (2021). Challenges of real-world reinforcement learning: definitions,
benchmarks and analysis. Machine Learning, 110(9):2419–2468.

Dunjko, V., Taylor, J. M., and Briegel, H. J. (2016). Quantum-enhanced machine
learning. Phys. Rev. Lett., 117:130501.

Fedus, W., Ramachandran, P., Agarwal, R., Bengio, Y., Larochelle, H., Rowland,
M., and Dabney, W. (2020). Revisiting fundamentals of experience replay. CoRR,
abs/2007.06700.

Flamini, F., Hamann, A., Jerbi, S., Trenkwalder, L. M., Nautrup, H. P., and Briegel,
H. J. (2020). Photonic architecture for reinforcement learning. New Journal of
Physics, 22(4):045002.

Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. In
Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, page 212–219, New York, NY, USA. Association for Computing
Machinery.

Gürtler, N., Büchler, D., and Martius, G. (2021). Hierarchical reinforcement learning
with timed subgoals. CoRR, abs/2112.03100.

Haarnoja, T., Zhou, A., Hartikainen, K., Tucker, G., Ha, S., Tan, J., Kumar, V., Zhu,
H., Gupta, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic algorithms and
applications. CoRR, abs/1812.05905.

Huang, Z., Liang, L., Ling, Z., Li, X., Gan, C., and Su, H. (2023). Reparameterized
policy learning for multimodal trajectory optimization. ICML.

Huang, Z., Liu, Q., Zhu, F., Zhang, L., and Wu, L. (2024). Hierarchical reinforcement
learning with unlimited option scheduling for sparse rewards in continuous spaces.
Expert Systems with Applications, 237:121467.

Hutsebaut-Buysse, M., Mets, K., and Latré, S. (2022). Hierarchical reinforcement
learning: A survey and open research challenges. Machine Learning and Knowl-
edge Extraction, 4(1):172–221.

Kalyanakrishnan, S., Aravindan, S., Bagdawat, V., Bhatt, V., Goka, H., Gupta, A.,
Krishna, K., and Piratla, V. (2021). An analysis of frame-skipping in reinforcement
learning.

Kloek, T. and van Dijk, H. K. (1978). Bayesian estimates of equation system param-
eters: An application of integration by monte carlo. Econometrica, 46(1):1–19.

Korenkevych, D., Mahmood, A. R., Vasan, G., and Bergstra, J. (2019). Autoregressive
policies for continuous control deep reinforcement learning. CoRR, abs/1903.11524.

Kwak, Y., Yun, W. J., Jung, S., Kim, J.-K., and Kim, J. (2021). Introduction to
quantum reinforcement learning: Theory and pennylane-based implementation.

36

Ladosz, P., Weng, L., Kim, M., and Oh, H. (2022). Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22.

Levy, A., Jr., R. P., and Saenko, K. (2017). Hierarchical actor-critic. CoRR,
abs/1712.00948.

Li, J.-A., Dong, D., Wei, Z., Liu, Y., Pan, Y., Nori, F., and Zhang, X. (2020). Quantum
reinforcement learning during human decision-making. Nature Human Behaviour,
4(3):294–307.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N. M. O., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2015). Continuous control with deep reinforcement learning.
CoRR, abs/1509.02971.

Liu, M., Zhu, M., and Zhang, W. (2022). Goal-conditioned reinforcement learning:
Problems and solutions. CoRR, abs/2201.08299.

Ma, S., Lee, J., Serban, N., and Yang, S. (2023). Deep attention q-network for
personalized treatment recommendation. In 2023 IEEE International Conference
on Data Mining Workshops (ICDMW), pages 329–337.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T. P., Harley, T., Silver,
D., and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. CoRR, abs/1602.01783.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., and
Riedmiller, M. A. (2013). Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602.

Mysore, S., Mabsout, B., Mancuso, R., and Saenko, K. (2020). Regularizing action
policies for smooth control with reinforcement learning. CoRR, abs/2012.06644.

Nielsen, M. A. and Chuang, I. L. (2011). Quantum Computation and Quantum
Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th
edition.

Omer, M., Ahmed, R., Rosman, B., and Babikir, S. F. (2021). Model predictive-actor
critic reinforcement learning for dexterous manipulation. In 2020 International
Conference on Computer, Control, Electrical, and Electronics Engineering (ICC-
CEEE), pages 1–6.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang, C.,
Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F., Miller, L.,
Simens, M., Askell, A., Welinder, P., Christiano, P. F., Leike, J., and Lowe, R. (2022).
Training language models to follow instructions with human feedback. In Koyejo,
S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., and Oh, A., editors, Advances
in Neural Information Processing Systems, volume 35, pages 27730–27744. Curran
Associates, Inc.

Raffin, A. and Stulp, F. (2020). Generalized state-dependent exploration for deep

37

reinforcement learning in robotics. CoRR, abs/2005.05719.
Robert, A., Pike-Burke, C., and Faisal, A. A. (2024). Sample complexity of

goal-conditioned hierarchical reinforcement learning. In Proceedings of the 37th
International Conference on Neural Information Processing Systems, NIPS ’23,
Red Hook, NY, USA. Curran Associates Inc.

Ryan-Anderson, C., Bohnet, J. G., Lee, K., Gresh, D., Hankin, A., Gaebler, J. P.,
Francois, D., Chernoguzov, A., Lucchetti, D., Brown, N. C., Gatterman, T. M.,
Halit, S. K., Gilmore, K., Gerber, J. A., Neyenhuis, B., Hayes, D., and Stutz, R. P.
(2021). Realization of real-time fault-tolerant quantum error correction. Phys.
Rev. X, 11:041058.

Saglam, B., Mutlu, F. B., Cicek, D. C., and Kozat, S. S. (2023). Actor prioritized
experience replay. Journal of Artificial Intelligence Research, 78:639–672.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017). Proximal
policy optimization algorithms. CoRR, abs/1707.06347.

Shakya, A. K., Pillai, G., and Chakrabarty, S. (2023). Reinforcement learning
algorithms: A brief survey. Expert Systems with Applications, 231:120495.

Shenoy, K. S., Sheth, D. Y., Behera, B. K., and Panigrahi, P. K. (2020). Demonstration
of a measurement-based adaptation protocol with quantum reinforcement learning
on the ibm q experience platform. Quantum Information Processing, 19(5):161.

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis,
D. (2018). A general reinforcement learning algorithm that masters chess, shogi,
and go through self-play. Science, 362(6419):1140–1144.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT
press.

Tallec, C., Blier, L., and Ollivier, Y. (2019). Making deep q-learning methods robust to
time discretization. In Chaudhuri, K. and Salakhutdinov, R., editors, Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, pages 6096–6104. PMLR.

Uhlenbeck, G. E. and Ornstein, L. S. (1930). On the theory of the brownian motion.
Phys. Rev., 36:823–841.

Valencia, D., Jia, J., Li, R., Hayashi, A., Lecchi, M., Terezakis, R., Gee, T., Liarokapis,
M., MacDonald, B. A., and Williams, H. (2023). Comparison of model-based and
model-free reinforcement learning for real-world dexterous robotic manipulation
tasks. In 2023 IEEE International Conference on Robotics and Automation (ICRA),
pages 871–878.

van Hoof, H., Tanneberg, D., and Peters, J. (2017). Generalized exploration in policy
search. Machine Learning, 106(9):1705–1724.

38

Wawrzyński, P. (2009). Real-time reinforcement learning by sequential actor–critics
and experience replay. Neural Networks, 22(10):1484–1497.

Wawrzyński, P. (2015). Control policy with autocorrelated noise in reinforcement
learning for robotics. International Journal of Machine Learning and Computing,
5:91–95.

Wu, S., Jin, S., Wen, D., and Wang, X. (2020). Quantum reinforcement learning in
continuous action space.

Yu, H., Xu, W., and Zhang, H. (2021). TASAC: temporally abstract soft actor-critic
for continuous control. CoRR, abs/2104.06521.

Yu, L., Ji, T., Sun, F., Liu, H., Zhang, J., Jing, M., and Huang, W. (2024).
Goal-conditioned hierarchical reinforcement learning with high-level model ap-
proximation. IEEE transactions on neural networks and learning systems, PP.

Zhang, J., Yu, H., and Xu, W. (2021). Hierarchical reinforcement learning by discov-
ering intrinsic options. CoRR, abs/2101.06521.

Zhou, S. K., Le, H. N., Luu, K., V Nguyen, H., and Ayache, N. (2021). Deep reinforce-
ment learning in medical imaging: A literature review. Medical Image Analysis,
73:102193.

Zou, Q. and Suzuki, E. (2023). Sample-efficient goal-conditioned reinforcement
learning via predictive information bottleneck for goal representation learning. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages
9523–9529.

39

Appendices

40

A. List of Abbreviations

ACER – Actor-Critic with Experience Replay
ACERAC – Actor-Critic with Experience Replay and Autocorrelated aCtions
ASRD – Adaptive Subgoal Required Distance
CDAU – Continuous Deep Advantage Updating
HAC – Hierarchical Actor-Critic
HiTS – Hierarchical Reinforcement Learning with Timed Subgoals
HRL – Hierarchical Reinforcement Learning
ICT – Information and Communication Technologies
IQT – Information Quantum Technologies
MDP – Markov Decision Process
PPO – Proximal Policy Optimization
QRL – Quantum Reinforcement Learning
RL – Reinforcement Learning
SAC – Soft Actor-Critic
SRD – Subgoal Required Distance
SusACER – Actor-Critic with Experience Replay and Sustained Actions

B. Publications

The following pages contain detailed bibliographic information and full texts of
the publications listed in subsection 1.2.1.

B.1. ACERAC: Efficient Reinforcement Learning in
Fine Time Discretization

Title ACERAC: Efficient Reinforcement Learning
in Fine Time Discretization

Authors Jakub Łyskawa, Paweł Wawrzyński

Journal IEEE Transactions on Neural Networks and Learning Systems

Volume 35

DOI 10.1109/TNNLS.2022.3190973

Pages 2719 – 2731

Ministerial score 200

44

1

ACERAC: Efficient reinforcement learning in fine
time discretization

Jakub Łyskawa, Paweł Wawrzyński

Abstract—We propose a framework for reinforcement learning
(RL) in fine time discretization and a learning algorithm in
this framework. One of the main goals of RL is to provide
a way for physical machines to learn optimal behavior instead of
being programmed. However, effective control of the machines
usually requires fine time discretization. The most common RL
methods apply independent random elements to each action,
which is not suitable in that setting. It is not feasible because
it causes the controlled system to jerk, and does not ensure
sufficient exploration since a single action is not long enough to
create a significant experience that could be translated into policy
improvement. To address these pitfalls, in this paper we introduce
an RL framework and adequate analytical tools for actions that
may be stochastically dependent in subsequent time instances.
We also introduce an RL algorithm that approximately optimizes
a policy that produces such actions. It applies experience replay
to adjust likelihood of sequences of previous actions to optimize
expected n-step returns the policy yields. The efficiency of this
algorithm is verified against four other RL methods (CDAU,
PPO, SAC, ACER) in four simulated learning control problems
(Ant, HalfCheetah, Hopper, and Walker2D) in diverse time
discretization. The algorithm introduced here outperforms the
competitors in most cases considered.

Index Terms—Reinforcement learning, Actor-Critic, Experi-
ence Replay, Fine Time Discretization.

I. INTRODUCTION

The subject of this paper is reinforcement learning (RL)
[1]. This field offers methods of learning to make sequential
decisions in dynamic environments. One application of such
methods is the literal implementation of “machine learning”,
i.e., enabling machines and software to learn optimal behavior
instead of being programmed.

The usual goal of RL methods is to optimize a policy that
samples an action based on the current state of a learning
agent. The only stochastic dependence between subsequent
actions is through state transition: the action moves the agent
to another state, which determines the distribution of another
action. The main analytical tools in RL are based on this
lack of other dependence between actions. For example, for
a given policy, its value function expresses the expected sum of
discounted rewards the agent may expect starting from a given
state. The sum of rewards does not depend on actions taken
before the given state has been reached. Hence, only the given
state and the policy matter.

Lack of dependence between actions beyond state transition
leads to the following difficulties. In the physical implemen-
tation of RL, e.g., in robotics, the lack of dependence usually
means that white noise is added to control actions. However,

this makes control discontinuous and subject to constant rapid
changes. In addition, this is often impossible to implement
since electric motors to execute these actions can not change
their output too quickly. Even if such control is possible, it
requires large amounts of energy, makes the controlled system
shake, and exposes it to damages.

Control frequency for real-life robots can be much higher
than that of simulated environments for which RL methods are
designed. The typical frequency of the control signal for envi-
ronments commonly used as benchmarks for RL algorithms
ranges from 20 to 60 Hz [2], while the control frequency
considered for real-life robots is 10 times higher, from 200
to 500 Hz [3] and can be even higher, up to 1000 Hz [4].
Therefore, finer time discretization should be considered to
make RL more suitable for robotics.

The lack of dependence between actions beyond state transi-
tion may also reduce the efficiency of learning as follows. Each
action is then an independent random experiment that leads
to policy improvement. However, due to the limited accuracy
of (action-)value function approximation, the consequences
of a single action may be hard to recognize. The finer the
time discretization, the more serious this problem becomes.
The consequences of a random experiment distributed over
several time instants could be more tangible and thus easier
to recognize.

Additionally, fine time discretization makes policy evalua-
tion more difficult, as it requires accounting for more distant
rewards. Technically, the discount factor needs to be larger,
which makes learning more difficult for most RL algorithms
[5].

To avoid the above pitfalls, we introduce in this paper
a framework in which an action is both a function of state and
a stochastic process whose subsequent values are dependent.
In particular, these subsequent values can be autocorrelated,
which makes the resulting actions close to one another. A part
of action trajectory can create a distributed-in-time random
experiment that leads to policy improvement. An RL algorithm
is also introduced that optimizes a policy based on the above
principles.

The contribution of this paper may be summarized by the
following points:

• A framework is introduced here in which a policy pro-
duces actions based on the states and values of a stochas-
tic process. This framework is suited for the application
of RL to optimization of control in physical systems, e.g.,
in robots.

0000–0000/00$00.00 © 2021 IEEE

45

2

• An ACERAC algorithm, based on Actor-Critic structure
and experience replay, is introduced that approximately
optimizes a policy in the aforementioned framework.

• An extensive study is described here with four benchmark
learning control problems (Ant, Half-Cheetah, Hopper,
and Walker2D) at diverse time discretization. The per-
formance of the ACERAC algorithm is compared using
these problems with state-of-the-art RL methods.

This paper extends [6] in several directions. We introduce
here the notion of adjusted noise which is the input to the
noise-value function. Also, when manipulating the policy
parameter, the value of the noise-value function at the end of
the action sequence is taken into account. The experimental
study of the resulting algorithm is almost entirely new.

The rest of the paper is organized as follows. The problem
considered here is formulated in Sec. II. Another section
overviews related literature. Sec. IV introduces a policy that
produces autocorrelated actions along with tools for its analy-
sis. Sec. V introduces the ACERAC algorithm that approx-
imately optimizes this policy. Sec. VI presents simulations
that compare the algorithm presented with state-of-the-art
reinforcement learning methods. The last section concludes
the paper.

II. PROBLEM FORMULATION

We consider here the standard Markov Decision Process
(MDP) model [1] in which an agent operates in discrete time
t = 1, 2, At time t the agent finds itself in a state, st ∈ S,
takes an action, at ∈ A, receives a reward, rt ∈ R, and is
transited to another state, st+1 ∼ Ps(·|st, at), where Ps is
a fixed but unknown conditional probability.

The goal of the agent is to learn to designate actions to
be able to expect at each t the highest discounted rewards in
the future. To ensure exploration, there is usually a random
component introduced into the action selection.

We mainly consider the application of the MDP model to
control physical devices. Therefore, we assume that both S and
A are spaces of vectors of real numbers [7]. We also assume
fine time discretization typical for such applications, which
means that designating actions the agent should account for
rewards that are quite distant in terms of discrete-time steps in
the future. This translates into a discount parameter close to 1,
e.g., γ ∈ (0.995, 1). We require the reasons for the instability
of learning with such a large γ [5] to be overcome.

To ensure applicability to control of physical machines,
we require that the actions should generally be close for
subsequent t, even if they are random. Also, the learning
should be efficient in terms of the amount of experience needed
to optimize the agent’s behavior.

III. RELATED WORK

A general way to make subsequent actions close is the
autocorrelation of the randomness on which these actions
are based. Efficiency in terms of experience needed can be
provided by experience replay. We focus on these concepts in
the literature review below.

A. Stochastic dependence between actions

An autocorrelated stationary stochastic process was pre-
sented in [8]. It was later proven to be the only non-trivial
autocorrelated Gaussian stochastic process that satisfied the
Markov property [9].

A policy with autocorrelated actions was analyzed in [10].
This policy was optimized by a standard RL algorithm that
did not account for the dependence of actions. In [11] a policy
was analyzed whose parameters were incremented by the au-
toregressive stochastic process. Essentially, this resulted in
autocorrelated random components of actions. In [12] a policy
is analyzed that produced an action that was the sum of
the autoregressive noise and a deterministic function of the
state. However, no learning algorithm was presented in the
paper that accounted for the specific properties of this policy.

B. Reinforcement learning for fine time discretization

In [13] RL in arbitrarily fine time discretization is analyzed.
It is proven that RL based on the action-value function can
not be effective when time discretization becomes sufficiently
fine and note the importance of the dependence of the action
noise in the next timesteps. In the aforementioned work
RL algorithm called Deep Advantage Updating (DAU) for
discrete actions and its variant for continuous actions (CDAU)
are introduced. These methods are based on estimating the
advantage function and are presented as immune to time
discretization.

Integral Reinforcement Learning (IRL) is an approach to
learning control policies for continuous-time environments.
IRL is based on the assumption that the control problem can be
divided into a hierarchy of control loops [14]. This assumption
is usually not satisfied in challenging tasks and thus IRL is not
applicable to tasks with any state transition dynamics, only
those belonging to a certain relatively narrow class [15].

C. Reinforcement learning with experience replay

The Actor-Critic architecture for RL was first introduced
in [16]. Approximators were applied to this structure for the
first time in [17]. Basic on-line RL algorithms use consecutive
events of the agent-environment interaction to update the
policy. To boost the efficiency of these algorithms, expe-
rience replay (ER) can be applied, i.e., storing the events
in a database, sampling, and using them for policy updates
several times per each actual event [18]. ER was combined
with the Actor-Critic architecture for the first time in [19].

However, the application of experience replay to Actor-
Critic encounters the following problem. The learning algo-
rithm needs to estimate the quality of a given policy based
on the consequences of actions that were registered when
a different policy was in use. Importance sampling estimators
are designed to do that, but they can have arbitrarily large
variances. In [19] the problem was addressed with truncating
density ratios present in those estimators. In [20] specific
correction terms were introduced for that purpose.

Another approach to the aforementioned problem is to
prevent the algorithm from inducing a policy that differs

46

3

too much from the one tried. This idea was first applied in
Conservative Policy Iteration [21]. It was further extended
in Trust Region Policy Optimization [22]. This algorithm
optimizes a policy with the constraint that the Kullback-
Leibler divergence between this policy and the one being
tried should not exceed a given threshold. The K-L divergence
becomes an additive penalty in Proximal Policy Optimization
algorithms, namely PPO-Penalty and PPO-Clip [23].

A way to avoid the problem of estimating the quality of
a given policy based on the one tried is to approximate
the action-value function instead of estimating the value
function. Algorithms based on this approach are Deep Q-
Network (DQN) [24], Deep Deterministic Policy Gradient
(DDPG) [25], and Soft Actor-Critic (SAC) [26]. In the original
version of DDPG time-correlated OU noise was added to the
action. However, this algorithm was not adapted to this fact
in any specific way. SAC uses white noise in actions and
it is considered one of the most efficient in this family of
algorithms.

IV. POLICY WITH AUTOCORRELATED ACTIONS

In this section, we introduce a framework for reinforcement
learning where subsequent actions are stochastically dependent
beyond state transition. We also design tools for the analysis
of such a policy.

Let an action, at, be designated as

at = π(st, ξt; θ), (1)

where π is a deterministic transformation, st is a current state,
θ is a vector of trained parameters, and (ξt)

∞
t=1 is a stochastic

process with values in Rd. We require this process to have the
following properties:
• Stationarity: The marginal distribution of ξt is the same

for each t.
• Zero mean: Eξt = 0 for each t.
• Autocorrelation decreasing with growing lag:

EξTt ξt+k > EξTt ξt+k+1 > 0 for k ≥ 0. (2)

Essentially that means that values of the process are close
to each other when they are in close time instants.

• Markov property: For any t and k, l ≥ 0, the conditional
distributions

(ξt, . . . , ξt+k|ξt−1, . . . , ξt−1−l) and (ξt, . . . , ξt+k|ξt−1)
(3)

are the same. In words, dependence of future values of
the process, ξt+k, k ≥ 0, on its past is entirely carried
over by ξt−1.

Consequently, if only π (1) is continuous for all its argu-
ments, and subsequent states st are close to each other, then
the corresponding actions are close too, even though they are
random. Because they are close, they are feasible in physical
systems. Because they are random, they create a consistent
distributed-in-time experiment that can give a clue to policy
improvement.

Below we analyze an example of (ξt) that meets the above
requirements.

Fig. 1. Realization of the normal white noise (εt), and the auto-regressive
process (ξt) (4).

a) Example: Auto-Regressive (ξt): Let α ∈ [0, 1) and

εt ∼ N(0, C), t = 1, 2, . . .

ξ1 = ε1

ξt = αξt−1 +
√

1− α2εt, t = 2, 3, . . .

(4)

Fig. 1 demonstrates a realization of both the white noise (εt)
and (ξt). Let us analyze if (ξt) has the required properties.
Their derivations can be found in Appendix A.

Both εt and ξt have the same marginal distribution N(0, C).
Therefore, (ξt) is stationary and zero-mean. Applying induc-
tion to (4) one obtains

Eξtξ
T
t+k = α|k|C and EξTt ξt+k = α|k|tr(C)

for any t, k. Therefore, (ξt) is autocorrelated, and this autocor-
relation decreases with growing lag. Consequently, the values
of ξt are closer to one another for subsequent t than the values
of εt, namely

E‖εt − εt−1‖2 = E(εt − εt−1)T (εt − εt−1) = 2tr(C)

E‖ξt − ξt−1‖2 = E
(

(α−1)ξt−1 +
√

1− α2εt

)T

×
(

(α− 1)ξt−1 +
√

1− α2εt

)

= (α− 1)2tr(C) + (1− α2)tr(C)

= (1− α)2tr(C).

The Markov property of (ξt) directly results from how ξt (4)
is computed.

In fact, marginal distributions of the process (ξt), as well as
its conditional distributions, are normal, and their parameters
have compact forms. Let us denote

ξ̄nt = [ξTt , . . . , ξ
T
t+n−1]T . (5)

The distribution of ξ̄nt is normal

N(0,Ωn0), (6)

where Ωn0 (21) is a matrix dependent on n, α, and C. The
conditional distribution (ξ̄nt |ξt−1) is also normal,

N(Bnξt−1,Ω
n
1), (7)

47

4

where both Bn (24) and Ωn1 (25) are matrices dependent on
n, α, and C.

b) Noise-value function: In policy (1) there is a stochas-
tic dependence between actions beyond the dependence re-
sulting from the state transition. Therefore, the traditional
understanding of policy as distribution of actions conditioned
on state does not hold here. Each action depends on the
current state, but also previous states and actions. Analytical
usefulness of the traditional value function and action-value
function is thus limited.

Our objective now is to define an analytical tool in the form
of a function that satisfies the following:

R1. A hard requirement: The function designates an expected
value of future discounted rewards based on entities that
this expected value is conditioned on.

R2. An efficiency requirement: A small change of policy
corresponds to a small change of this function. While
this is not necessary, it facilitates concurrent learning of
the policy and this function approximation.

In order to meet the above requirements we introduce
an adjusted noise, (ut)

∞
t=1, as follows. ut and ξt belong to

the same space Rd. Let

f(·; θ, s) (8)

be a bijective function in Rd parameterized by θ and state. We
have

ξt−1 =f(ut−1; θ, st)

ut−1 =f−1(ξt−1; θ, st).
(9)

Formally, we can apply f to convert ξt−1 to ut−1 and back
whenever necessary.

As an analytical tool satisfying the aforementioned hard
requirement R1, we propose the noise-value function defined
as

Wπ(u, s) = Eπ

∑

i≥0

γirt+i

∣∣∣ξt−1 = f(u; θ, s), st = s

 .

(10)
The course of events starting in time t depends on the current
state st and the value ut−1. Because of the Markov property
of (ξt) (3) and the direct equivalence between ξt−1 and ut−1,
the pair 〈ut−1, st〉 is a proper condition for the expected value
of future rewards.

To satisfy the aforementioned efficiency requirement R2,
we design the f function (8) based on π. It should make
the distribution of an initial part of the action trajectory
(at, . . .) similar for given 〈ut−1, st〉, regardless of the policy
parameter θ. Therefore, when θ changes due to learning,
the arguments of the Wπ function (10) still define similar
circumstances in which the rewards start being collected. This
prevents large changes in the shape of Wπ . An example of
an appropriate f function is provided below in (18).

We can consider the pair 〈ut−1, st〉 a state of an extended
MDP. Therefore, the noise-value function has all the properties

of the ordinary value function. In particular, we consider n-
step look-ahead equation in the form

Wπ(ut−1, st) (11)

=Eπ

(n−1∑

i=0

γirt+i+γ
nWπ(f(ξt+n−1; θ, st+n), st+n)

∣∣∣ut−1, st

)
.

It says that the noise-value function is the expected sum
of several first rewards, and that the rest of them are also
designated by the noise-value function itself.

The algorithm introduced below manipulates the policy π
(1) to make n-step sequences of registered actions more or
less likely in the future. Let us consider

s̄nt = [sTt , . . . , s
T
t+n−1]T ,

āni = [aTt , . . . , a
T
t+n−1]T ,

and
π̄(ānt |s̄nt , ξt−1; θ) (12)

being a probability density of the action sequence ānt condi-
tioned on the sequence of visited states s̄nt , the preceding noise
value ξt−1, and the policy parameter θ. This density is defined
by π, and the conditional probability distribution ξ̄nt |ξt−1. The
algorithm defined in the next section updates θ to manipulate
the above distribution.

c) The neural-AR policy: A simple and practical way to
implement π (1) is as follows. A feedforward neural network,

A(s; θ), (13)

has input s and weights θ. An action is designated as

at = π(st, ξt; θ) = A(st; θ) + ξt, (14)

for ξt in the form (4). Let us analyze the distribution π̄ (12).
In this order the density of the normal distribution with mean
µ and covariance matrix Ω will be denoted by

ϕ(· ;µ,Ω). (15)

Let us also denote

Ā(s̄ni ; θ) = [A(st; θ)
T , . . . , A(st+n−1; θ)T]T . (16)

It can be seen that the distribution (ānt |s̄nt , ξt−1) is normal,
namely N(Ā(s̄nt ; θ) +Bnξt−1,Ω

n
1), (see (6) and (7)). There-

fore,

π̄(ānt |s̄ni , ξt−1; θ) = ϕ(ānt ; Ā(s̄nt ; θ) +Bnξt−1,Ω
n
1).

What is of paramount importance is the log-density gradient
∇θ ln π̄. For π̄ defined as (14) it may be expressed as

∇θ ln π̄(ānt |s̄ni , ξt−1; θ) (17)

= ∇θĀ(s̄nt ; θ)(Ωn1)−1(ānt −Bnξt−1 − Ā(s̄nt ; θ)).

The f function (8) may have the form

ut−1 = f−1(ξt−1; θ, st) = A(st; θ) + αξt−1

ξt−1 = f(ut−1; θ, st) = α−1(ut−1 −A(st; θ)).
(18)

Then ut−1 is the expected value of at given θ, st, and ξt−1.
Consequently, this definition of f delimits differences between
noise-value functions of different policies. This is because

48

5

Wπ(u, s) means for any policy the expected sum of future
rewards received starting from the same point, which is the
current state equal to s and the expected action equal to u.
Therefore, if Wπ is accurately approximated for a current
policy and this policy is updated, the approximation of Wπ

needs only limited adjustment.

V. ACERAC: ACTOR-CRITIC WITH EXPERIENCE REPLAY
AND AUTOCORRELATED ACTIONS

The RL algorithm presented in this section has an actor-
critic structure. It optimizes a policy of the form (1) and uses
the critic,

W (u, s; ν),

which is an approximator of the noise-value function (10)
parametrized by the vector ν. The critic is trained to approx-
imately satisfy (11).

A constant parameter of the algorithm is natural n.
It denotes the length of action sequences whose prob-
abilities the algorithm adjusts. For each time instant of
the agent-environment interaction, the policy (1) is applied.
Also, data is registered that enables recall of the tuple
〈s̄nt , ānt , π̄nt , r̄nt , st+n〉, where π̄nt = π̄(ānt |s̄nt , ξt−1; θ).

The general goal of policy training in ACERAC is to
maximize Wπ(uj−1, sj) for each state sj registered during
the agent-environment interaction. In this order previous time
instants are sampled, and sequences of actions that followed
these instants are made more or less probable depending
on their return. More specifically, j is sampled from {t −
M, . . . , t − n}, where M is a memory buffer length, and θ
is adjusted along with a policy gradient estimate, which is
derived in B. In other words, the conditional density of the
sequence of actions ānj is being increased/decreased depending
on the return

rj + · · ·+ γn−1rj+n−1 + γnW (uj+n−1, sj+n; ν)

this sequence of actions yields.

A. Actor & Critic training

At each t-th instant of agent–environment interaction expe-
rience replay is repeated several times in the form presented
in Algorithm 1 to calculate actor and critic weight updates.

In Line 2, the algorithm selects an experienced event to
replay with the starting time index j. In the following lines
the vectors of states s̄nj = [sTj , . . . , s

T
j+n−1]T and actions ānj =

[aTj , . . . , a
T
j+n−1]T are considered.

In Lines 3-4 Xj−1 and Xj+n−1 are appointed to be values
of the noise with which the current policy would designate the
past actions. Then, in Lines 5-6, the corresponding adjusted
noise values uj−1 and uj+n−1 values are calculated.

In Line 7 a temporal difference is computed. It determines
the relative quality of āni .

In Line 8 a softly truncated density ratio is computed. The
density ratio implements two ideas. Firstly, θ is changing due
to being optimized, thus the conditional distribution (āni |ξj−1)
is now different than it was at the time when the actions
āni were executed. The density ratio

π̄(ānj |s̄nj ,Xj−1;θ)

π̄n
j

accounts

Algorithm 1 Calculating weights update from a single trajec-
tory in Actor-Critic with Experience Replay and Autocorre-
lated aCtions, ACERAC

1: ACTOR AND CRITIC UPDATES()
2: select randomly j ∈ t−m . . . t− n
3: Xj−1 ← E [ξj−1| . . . sj−1,aj−1, . . . ; θ]
4: Xj+n−1 ← E [ξj+n−1| . . . sj+n−1,aj+n−1, . . . ; θ]
5: uj−1 ← A(sj ; θ) + αXt−1

6: uj+n−1 ← A(sj+n; θ) + αXj+n−1

7: dnj (θ, ν) = rj + · · ·+ γn−1rj+n−1

+γnW (uj+n−1, sj+n; ν)−W (uj−1, sj ; ν)

8: ρj ← ψb

(
π̄(ānj |s̄nj ,Xj−1;θ)

π̄n
j

)

9: ∆θ ← ∇θ ln π̄(ānj |s̄nj , Xj−1; θ)dnj (θ, ν)ρj
+γn∇θW (uj+n−1(θ), sj+n; ν)ρj
−∇θL(sj , θ)

10: ∆ν = ∇νW (uj−1(θ), sj ; ν)dnj (θ, ν)ρj(θ)
11: return ∆θ,∆ν

for this discrepancy of distributions. Secondly, to limit the
variance of the density ratio, the soft-truncating function ψb
is applied. E.g.,

ψb(x) = b tanh(x/b), (19)

for a certain b > 1. In the ACER algorithm [19], the hard trun-
cation function, min{·, b} is used for the same purpose which
is limiting density ratios necessary in designating updates due
to action distribution discrepancies. However, soft-truncating
distinguishes the magnitude of density ratio and works slightly
better than hard truncation.

In Line 9 an improvement direction for actor is com-
puted. The sum of ∇θ ln π̄(ānj |s̄nj , Xj−1; θ)dnj (θ, ν)ρj(θ) and
γn∇θW (uj+n−1(θ), sj+n; ν)ρj is an improvement direction
estimate of Wπ(uj−1, sj) derived in Appendix B. It is de-
signed to increase/decrease the likelihood of occurrence of
the sequence of actions āni proportionally to dni (θ, ν). L(s, θ)
is a loss function that penalizes the actor for producing
actions that do not satisfy constraints, e.g., they exceed their
boundaries.

In Line 10 an improvement direction for critic, ∆ν, is
computed. It is designed to make W (·, · ; ν) approximate the
noise-value function (10) better.

In Line 7 the improvement directions ∆θ and ∆ν are
applied to update θ and ν, respectively, with the use of either
ADAM, SGD, or another method of stochastic optimization.

Implementation details of the algorithm using the neural-AR
policy (14) are presented in (17) and Appendix A.

VI. EMPIRICAL STUDY

This section presents simulations whose purpose was to
compare the algorithm introduced in Sec. V to state-of-the-
art reinforcement learning methods. We compared the new
algorithm to Actor-Critic with Experience Replay (ACER)
[19], Proximal Policy Optimization (PPO) [23], Soft Actor-
Critic (SAC) [26] and Continuous Deep Advantage Updating
(CDAU) [13]. We used the RLlib implementation [27] of

49

6

(a) (b)

(c) (d)
Fig. 2. Environments used in simulations: Ant (a), HalfCheetah (b), Hopper
(c), Walker2D (d).

SAC and PPO, and implementation of CDAU published by
its authors 1. Our experimental software is available online.2

For the comparison of the RL algorithms to be the most in-
formative we chose four challenging tasks inspired by robotics.
They were Ant, Hopper, HalfCheetah, and Walker2D (see
Fig. 2) from the PyBullet physics simulator [28]. A simulator
that is more popular in the RL community is MuJoCo [29].3

Hyperparameters that assure optimal performance of ACER,
SAC, and PPO applied to the environments considered in
MuJoCo are well known. However, PyBullet environments
introduce several changes to MuJoCo tasks, which make them
more realistic and thus more difficult. Additionally, physics in
MuJoCo and PyBullets differ slightly [30], hence we needed
to tune the hyperparameters.

We do not limit the experiments only to the original
environments. We also use modified ones with 3 and 10 times
finer time discretization. This is to verify how the algorithms
work in these circumstances.

We used actor and critic structures as described in [26] for
each learning algorithm. That is, both structures had the form
of neural networks with two hidden layers of 256 units each.

A. Experimental setting

Each learning run with basic time discretization lasted for 3
million timesteps. Every 30000 timesteps of training a simu-
lation was made with frozen weights and without exploration
for 5 test episodes. An average sum of rewards within a test
episode was registered. Each run was repeated 5 times.

In experiments with, respectively, 3 and 10 times finer time
discretization, the number of timesteps for a run and between

1https://github.com/ctallec/continuous-rl
2https://github.com/lychanl/acerac
3We chose PyBullet because it is freeware, while MuJoCo is commercial

software.

tests was increased, respectively, 3 and 10 times. Also, to
keep the scale of the sum of discounted rewards, the discount
parameter was increased from 0.99 to, respectively, 0.991/3

and 0.991/10, and the rewards were decreased, respectively, 3
and 10 times. The number of model updates was kept constant
for different discretization. The data buffer was increased 3
and 10 times, respectively. In ACERAC, the n coefficient was
increased 3 and 10 times, respectively and in ACER the λ
parameter was increased to λ1/3 and λ1/10, respectively.

For each environment-algorithm-discretization triple hyper-
parameters such as step-sizes were optimized to yield the
highest ultimate average rewards. The values of these hyper-
parameters are reported in Appendix C.

B. Results
Figures 3, 4, 5, respectively, present learning curves for

all four environments and all four compared algorithms. The
figures are for, respectively, the original, 3 times, and 10 times
finer time discretization. Each graph shows how a sum of
rewards, in test episodes evolves in the course of learning.
Solid lines represent the average sums of rewards and shaded
areas represent their standard deviations.

Fig. 3 presents learning curves for the original discretiza-
tion. It can be seen that for Ant the algorithm that achieved the
best performance was ACERAC, then SAC and ACER, then
PPO and CDAU. For HalfCHeetah, the best performance was
achieved by ACERAC, then ACER, SAC, PPO and CDAU.
For Hopper all the algorithms achieved similar performances
with the exception of CDAU which performed noticeably
worse. Finally, for Walker2D, the algorithm that won was
ACERAC, then PPO, SAC, ACER and CDAU.

Fig. 4 presents learning curves for time discretization three
times finer than the original. It can be seen that for Ant the
algorithms that achieved the best performance were ACERAC
and ACER, then PPO, SAC and CDAU. For HalfCHeetah,
the best performance was achieved by ACERAC, then SAC,
ACER, CDAU and PPO. For Hopper the algorithm that won
was ACER, which was slightly better than ACERAC, then
SAC, CDAU and PPO. Finally, for Walker2D, SAC achieved
the best performance, then ex equo ACERAC, ACER and PPO,
and then CDAU.

Fig. 5 presented learning curves for time discretization ten
times finer than the original. It can be seen that for Ant
the algorithm that achieved the best performance was ACER,
slightly before ACERAC, then CDAU, PPO and SAC. For
HalfCHeetah, the best performance was achieved by ACERAC
and ACER, then CDAU, PPO and SAC ex equo. For Hopper
the algorithm that won was ACERAC, with the rest of algo-
rithms performing poorly. Finally, for Walker2D, ACERAC
achieved the best performance, then ACER, and then CDAU,
PPO and SAC ex equo.

A curious result of our experiments was the extraordinarily
high rewards obtained in some experiments with time dis-
cretization 10 times finer than the original. Namely, ACER
and ACERAC obtained such results for Ant, and ACERAC for
Hopper and Walker2D. Apparently, these environments require
fast intervention of control and no algorithm is able to learn
it at coarser time discretization.

50

7

(a) (b)

(c) (d)
Fig. 3. Learning curves for the original time discretization: Average sums of rewards in test trials. Environments: Ant (a), HalfCheetah (b), Hopper (c) and
Walker2D (d).

It can also be seen that for most discretizations and problems
ACERAC obtained relatively good results in the initial training
steps, which is a desirable feature in robotic control [31].

C. Discussion

The performance of the algorithms in our experiments with
fine time discretization can be attributed to two features. The
first is whether they use 1-step returns (SAC and CDAU) or
n-step returns (PPO, ACER, and ACERAC). For fine enough
time discretization and large enough discount parameter, the 1-
step returns failed due to the limited accuracy of the critic. This
explains the poor performance of SAC and CDAU, depicted in
Fig. 5. ACERAC, ACER, and PPO used n-step returns. Thus,
the critic inaccuracy did not harm these algorithms, and their
performance in fine time discretization was better.

The second factor is autocorrelated actions. ACERAC and
CDAU use them, but only ACERAC utilize their properties.
Other considered algorithms do not use them. It can be seen in
Figures 3-5 that ACERAC achieved the best performance for 8
discretization-environment pairs out of 12. The autocorrelated
actions seem to be an efficient way to organize exploration,

better than actions without any stochastic dependence beyond
state transition. However, a policy with autocorrelated actions
requires specialized training, which is provided in ACERAC.

Even though CDAU was designed in [13] to assure efficient
RL in fine time discretization, that algorithm yielded poor
performance in our experiments. However, it was presented as
an extension of a method, DAU, for discrete actions, and no
experimental material on CDAU was presented in the original
paper.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, a framework has been introduced for the
application of reinforcement learning to policies that admit
stochastic dependence between subsequent actions beyond
state transition. This dependence is a tool that enables re-
inforcement learning in physical systems and fine time dis-
cretization. It can also yield better exploration and therefore
faster learning.

An algorithm based on this framework, Actor-Critic with
Experience Replay and Autocorrelated aCtions (ACERAC),
was introduced. Its efficiency was verified by simulations of

51

8

(a) (b)

(c) (d)
Fig. 4. Learning curves for time discretization 3 times finer than the original: Average sums of rewards in test trials. Environments: Ant (a), HalfCheetah (b),
Hopper (c) and Walker2D (d).

four learning control problems, namely, Ant, HalfCheetah,
Hopper, and Walker2D, at diverse time discretization. The
algorithm was compared with CDAU, PPO, SAC, and ACER.
ACERAC exhibited the best performance in 8 out of 12
discretization-environment pairs.

It would be desirable to combine the framework proposed
here with adapting the amount of randomness in actions by
introducing reward for the entropy of their distribution, as is
done in PPO. Also, the framework proposed here has been
specially designed for applications in robotics. An obvious
next step in our research would be to apply it in this area,
which is more demanding than simulations.

ACKNOWLEDGEMENT

This work was partially funded by a grant of Warsaw
University of Technology Scientific Discipline Council for
Computer Science and Telecommunications.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction.
Second edition. The MIT Press, 2018.

[2] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,
J. Tang, and W. Zaremba, “Openai gym,” 2016, arXiv:1606.01540.

[3] P. Khosla, “Choosing sampling rates for robot control,” in IEEE Inter-
national Conference on Robotics and Automation, 1987, pp. 169–174.

[4] J. Schrimpf, “Sensor-based real-time control of industrial robots,” Ph.D.
dissertation, Norwegian University of Science and Technology, 2013.

[5] V. Francois, R. Fonteneau, and D. Ernst, “How to discount deep
reinforcement learning: Towards new dynamic strategies,” 2015,
arXiv:1512.02011.

[6] M. Szulc, J. Łyskawa, and P. Wawrzyński, “A framework for reinforce-
ment learning with autocorrelated actions,” in International Conf. on
Neural Information Processing, 2020, pp. 90–101.

[7] R. Liu, F. Nageotte, P. Zanne, M. de Mathelin, and B. Dresp-Langley,
“Deep reinforcement learning for the control of robotic manipulation:
A focussed mini-review,” Robotics, vol. 10, no. 1, 2021. [Online].
Available: https://www.mdpi.com/2218-6581/10/1/22

[8] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Phys. Rev., vol. 36, pp. 823–841, Sep 1930. [Online].
Available: https://link.aps.org/doi/10.1103/PhysRev.36.823

[9] J. L. Doob, “The brownian movement and stochastic equations,” Annals
of Mathematics, vol. 43, no. 2, pp. 351–369, 1942. [Online]. Available:
http://www.jstor.org/stable/1968873

[10] P. Wawrzyński, “Control policy with autocorrelated noise in reinforce-
ment learning for robotics,” International Journal of Machine Learning
and Computing, vol. 5, no. 2, pp. 91–95, 2015.

[11] H. van Hoof, D. Tanneberg, and J. Peters, “Generalized exploration in
policy search,” Machine Learning, vol. 106, pp. 1705–1724, 2017.

52

9

(a) (b)

(c) (d)
Fig. 5. Learning curves for time discretization 10 times finer than the original: Average sums of rewards in test trials. Environments: Ant (a), HalfCheetah
(b), Hopper (c) and Walker2D (d).

[12] D. Korenkevych, A. R. Mahmood, G. Vasan, and J. Bergstra, “Autore-
gressive policies for continuous control deep reinforcement learning,”
in Proceedings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence (IJCAI-19), 2019, pp. 2754–2762.

[13] C. Tallec, L. Blier, and Y. Ollivier, “Making deep q-learning methods
robust to time discretization,” in International Conference on Machine
Learning (ICML), 2019, pp. 6096–6104.

[14] D. Vrabie and F. Lewis, “Neural network approach to continuous-time
direct adaptive optimal control for partially unknown nonlinear systems,”
Neural Networks, vol. 22, no. 3, pp. 237–246, 2009.

[15] X. Guo, W. Yan, and R. Cui, “Integral reinforcement learning-based
adaptive nn control for continuous-time nonlinear mimo systems with
unknown control directions,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, 2019.

[16] A. G. Barto, R. S. Sutton, and C. W. Anderson, “Neuronlike adaptive
elements that can learn difficult learning control problems,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 13, pp. 834–
846, 1983.

[17] H. Kimura and S. Kobayashi, “An analysis of actor/critic algorithms
using eligibility traces: Reinforcement learning with imperfect value
function,” in ICML, 1998.

[18] S. Mahadevan and J. Connell, “Automatic programming of behavior
based robots using reinforcement learning,” Artificial Intelligence, no.
55(2–3), pp. 311–365, 1992.

[19] P. Wawrzyński, “Real-time reinforcement learning by sequential ac-
tor–critics and experience replay,” Neural Networks, vol. 22, no. 10,
pp. 1484–1497, 2009.

[20] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu,

and N. de Freitas, “Sample efficient actor-critic with experience replay,”
2016, arXiv:1611.01224.

[21] S. Kakade and J. Langford, “Approximately optimal approximate re-
inforcement learning,” in Proceedings of the Nineteenth International
Conference on Machine Learning, ICML’02, 2002, pp. 267–274.

[22] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2015, arXiv:1502.05477.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017, arXiv:1707.06347.

[24] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing atari with deep reinforcement learn-
ing,” 2013, arXiv:1312.5602.

[25] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforcement
learning,” 2016, arXiv:1509.02971.

[26] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” 2018, arXiv:1801.01290.

[27] E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gon-
zalez, M. Jordan, and I. Stoica, “RLlib: Abstractions for distributed rein-
forcement learning,” in Proceedings of the 35th International Conference
on Machine Learning, ser. Proceedings of Machine Learning Research,
J. Dy and A. Krause, Eds., vol. 80. Stockholmsmässan, Stockholm
Sweden: PMLR, 10–15 Jul 2018, pp. 3053–3062.

[28] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” http://pybullet.org,
2016–2019.

53

10

[29] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for
model-based control,” in 2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems. IEEE, 2012, pp. 5026–5033.

[30] T. Erez, Y. Tassa, and E. Todorov, “Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ode and physx,” in 2015
IEEE International Conference on Robotics and Automation (ICRA),
2015, pp. 4397–4404.

[31] K.-T. Song and W.-Y. Sun, “Robot control optimization using
reinforcement learning,” Journal of Intelligent and Robotic Systems,
vol. 21, no. 3, pp. 221–238, Mar 1998. [Online]. Available:
https://doi.org/10.1023/A:1007904418265

APPENDIX

A. Properties of Auto-Regressive process and the policy based
on it

In this section the key properties of the process (ξt) (4) are
derived.

a) Stationary distribution of ξt: From (4) one can see
that if for a certain t it is true that ξt−1 ∼ N(0, C), then also
ξt ∼ N(0, C). By induction this leads us to the conclusion
that ξt ∼ N(0, C) for all t.

b) Stationary distribution of ξ̄nt : Applying induction to
(4) for k ≥ 0 one obtains that

ξt+k = αkξt +
√

1− α2

k−1∑

i=0

αiεt+k−i. (20)

Consequently,

Eξtξ
T
t+k = α|k|C and EξTt ξt+k = α|k|tr(C)

Therefore,

ξ̄nt = [ξTt , ..., ξ
T
t+n−1]T ∼ N(0,Ωn0)

Ωn0 = Λn0 ⊗ C, Λn0 = [α|l−k|]l,k, 0 ≤ l, k < n. (21)

The symbol “⊗” denotes Kronecker product of two matrices.
We have

(Λn0 ⊗ C)−1 = (Λn0)−1 ⊗ C−1. (22)

c) Conditional distribution ξ̄nt |ξt−1: From (20) we have
that

E(ξt+k|ξt−1) = αk+1ξt−1,

and for 0 ≤ k ≤ l we have

cov(ξt+k, ξt+l|ξt−1)

= E

(√
1− α2

k∑

i=0

αk−iεt+i

)

√

1− α2

l∑

j=0

αl−jεt+j

T

= (1− α2)αl−k
(
1 + α2 + · · ·+ α2k

)
C

= αl−k
(
1− α2k+2

)
C.

Therefore, the conditional distribution ξ̄nt |ξt−1 takes the form

ξ̄nt |ξt−1 ∼ N(Bnξt−1,Ω
n
1) (23)

Bn = [αI, . . . , αnI]T (24)

Ωn1 = Λn1 ⊗ C, Λn1 = [α|l−k| − αl+k+2]l,k, 0 ≤ l, k < n.
(25)

d) Distribution of actions’ trajectory: For
at = A(st; θ)+ξt and n > 0 we have ānt = Ā(s̄nt ; θ)+ξ̄nt . The
distribution of the actions that initiate a trial, π̄(ānt |s̄nj , ∅; θ),
is thus normal N(Ā(s̄nt ; θ),Ωn0). The distribution of
further actions π̄(ānt |s̄nt , ξt−1; θ) is also normal, namely
N(Ā(s̄nt ; θ) +Bnξt−1,Ω

n
1).

e) Retrieving ξt−1 and ut−1 from past actions: For
Auto-Regressive processes the values of ξt−1 and ut−1 may
be calculated from actions and actor’s outputs as

ξt−1 = at−1 −A(st−1; θ) (26)
ut−1 = A(st; θ) + αξt−1 (27)

= A(st; θ) + α(at−1 −A(st−1; θ)). (28)

If t is an initial instance of a trial, the conditional expected
values of ξt−1 and ut−1 are calculated from A(st; θ) and at,
namely

ξt−1 = α−1(at −A(st; θ)) (29)
ut−1 = A(st; θ) + αξt−1 = at. (30)

B. Policy gradient estimator derivation

In this section we derive a policy gradient estimator, which
is an estimator of a gradient of

Eπ

(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)
∣∣∣ξ∗j−1, sj

)

with respect to the current polity parameter θ, for constant
ξ∗j−1 = ξj−1(θ).

Let us denote by A the action space, by θ the current policy
parameter, by π the current policy, by θj the policy parameter
used when aj was selected, by π(θj) the policy used then,
and the density ratio by

ρj(θ) =
π̄(anj |s̄nj , ξ∗j−1; θ)

π̄nj
.

54

11

We have

d
dθT

Eπ(θ)

(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)
∣∣∣ξ∗j−1, sj

)

=
d

dθT

∫

An

(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)

)

× π̄(ānj |s̄nj , ξ∗j−1; θ)dānj

=

∫

An

(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)

)

×∇θπ̄(ānj |s̄nj , ξ∗j−1; θ)dānj

+ γn
∫

An

∇θWπ(uj+n−1(θ), sj+n)π̄(ānj |s̄nj , ξ∗j−1; θ)dānj

=

∫

An

(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)

)

×
∇θπ̄(ānj |s̄nj , ξ∗j−1; θ)

π̄(ānj |s̄nj , ξ∗j−1; θ)
ρj(θ)π̄

n
j dānj

+ γn
∫

An

∇θWπ(uj+n−1(θ), sj+n)ρj(θ)π̄
n
j dānj

= Eπ(θj)

{[(
n−1∑

i=0

γirj+i + γnWπ(uj+n−1(θ), sj+n)

)

×∇θ ln π̄(ānj |s̄nj , ξ∗j−1; θ)

+ γn∇θWπ(uj+n−1(θ), sj+n)

]
ρj(θ)

}
.

The analytical property

Eπ(θj)

{
∇θ ln π̄(ānj |s̄nj , ξ∗j−1; θ)ρj(θ)

}
= 0

allows us to subtract any constant baseline from the sum of
rewards above. Consequently, an unbiased estimator of the
policy gradient may take the form
[(

n−1∑

i=0

γirj+i+γ
nWπ(uj+n−1(θ), sj+n)−Wπ(ξ∗j−1, sj−1; ν)

)

×∇θ ln π̄(ānj |s̄nj , ξ∗j−1; θ) (31)

+ γn∇θWπ(uj+n−1(θ), sj+n)

]
ρj(θ).

The above estimator is not feasible. Firstly, it is based on
the noise-value function, which is unknown. Also, it uses
the density ratio, which could make its variance excessive.
In the feasible version of the above estimator, we use the
approximator of the noise-value function, and the density ratio
is softly truncated from above.

C. Algorithms’ hyperparameters

This section presents hyperparameters used in the simula-
tions described in Sec. VI. For the original time discretization
all algorithms used a discount factor equal to 0.99. The rest
of the hyperparameters for ACERAC, ACER, SAC, PPO, and
CDAU, are depicted in Tab. I, II, III, IV, and V, respectively.

TABLE I
ACERAC HYPERPARAMETERS. d DENOTES DISCRETIZATION INCREASE

(1, 3, OR 10).

Parameter Value
Action std. dev. 0.3

α 0.5d
−1

Critic step-size 10−4

Actor step-size 10−5

n d · 2
b 2

Memory size d · 106
Minibatch size 256

Target update interval d
Gradient steps 1
Learning start d · 103

TABLE II
ACER HYPERPARAMETERS. d DENOTES DISCRETIZATION INCREASE (1, 3,

OR 10). FOR ENVIRONMENT- AND DISCRETIZATION-SPECIFIC
HYPERPARAMETERS, SEE TAB. VI

Parameter Value
Action std. dev. 0.3

λ 1− 1−0.9
d

b 2
Memory size d · 106

Minibatch size 256
Target update interval d

Gradient steps 1
Learning start d · 103

TABLE III
SAC GENERAL HYPERPARAMETERS. d DENOTES DISCRETIZATION

INCREASE (1, 3, OR 10). FOR ENVIRONMENT- AND
DISCRETIZATION-SPECIFIC HYPERPARAMETERS SEE TAB. VII

Parameter Value
Replay buffer size d · 106

Minibatch size 256
Target smoothing coef. τ 0.005

Target update interval d
Gradient steps 1
Learning start d · 104

TABLE IV
PPO HYPERPARAMETERS. d DENOTES DISCRETIZATION INCREASE (1, 3,

OR 10). FOR ENVIRONMENT- AND DISCRETIZATION-SPECIFIC
HYPERPARAMETERS, SEE TAB. VIII

Parameter Value
GAE parameter (λ) 0.95

Minibatch size 64
Horizon d · 2048

Number of epochs 10
Value function clipping coef. 10

Target KL 0.01

TABLE V
CDAU HYPERPARAMETERS. d DENOTES DISCRETIZATION INCREASE (1,

3, OR 10).

Parameter Value
dt 0.3

Step-size for HalfCheetah and Ant 0.01
Step-size for Hopper and Walker2D 0.003

θ 7.5
σ 1.5

Memory size d · 106
Minibatch size 256
Gradient steps 1

55

12

TABLE VI
ACER STEP-SIZES

Parameter Value
Discretization increase 1 3 10

Actor step-size for HalfCheetah env. 10−5 3 · 10−6 10−5

Actor step-size for Ant env. 10−5 10−5 3 · 10−6

Actor step-size for Hopper env. 10−5 3 · 10−5 3 · 10−5

Actor step-size for Walker2D env. 10−5 3 · 10−5 10−6

Critic step-size for HalfCheetah env. 10−5 3 · 10−5 10−5

Critic step-size for Ant env. 10−5 3 · 10−5 10−4

Critic step-size for Hopper env. 10−5 3 · 10−5 10−5

Critic step-size for Walker2D env. 10−5 3 · 10−5 10−5

TABLE VII
SAC REWARD SCALING.

Parameter Value
Discretization increase 1 3 10

Reward scaling for HalfCheetah env. 0.1 10 300
Reward scaling for Ant env. 1 100 3000

Reward scaling for Hopper env. 0.03 10 3
Reward scaling for Walker2D env. 30 3 3

TABLE VIII
PPO STEP-SIZES AND CLIP PARAMS.

Parameter Value
Discretization increase 1 3 10

Step-size for HalfCheetah env. 3 · 10−4 10−4 10−5

Step-size for Ant env. 3 · 10−4 3 · 10−5 10−5

Step-size for Hopper env. 3 · 10−4 3 · 10−4 10−5

Step-size for Walker2D env. 3 · 10−4 3 · 10−4 10−5

Clip param for HalfCheetah env. 0.2 0.3 0.1
Clip param for Ant env. 0.2 0.2 0.1

Clip param for Hopper env. 0.2 0.2 0.3
Clip param for Walker2D env. 0.2 0.2 0.3

56

B.2. A Framework for Reinforcement Learning
with Autocorrelated Actions

Title A Framework for Reinforcement Learning
with Autocorrelated Actions

Authors Marcin Szulc, Jakub Łyskawa, Paweł Wawrzyński

Conference 27th International Conference on Neural Information Processing

Year 2020

DOI 10.1007/978-3-030-63833-7_8

Ministerial score 140

57

A framework for reinforcement learning
with autocorrelated actions

Marcin Szulc1, Jakub Lyskawa1, and Pawe l Wawrzyński1[0000−0002−1154−0470]

Warsaw University of Technology, Institute of Computer Science, Warsaw, Poland
{marcin.szulc,jakub.lyskawa}.stud@pw.edu.pl, pawel.wawrzynski@pw.edu.pl

Abstract. The subject of this paper is reinforcement learning. Poli-
cies are considered here that produce actions based on states and ran-
dom elements autocorrelated in subsequent time instants. Consequently,
an agent learns from experiments that are distributed over time and
potentially give better clues to policy improvement. Also, physical im-
plementation of such policies, e.g. in robotics, is less problematic, as it
avoids making robots shake. This is in opposition to most RL algorithms
which add white noise to control causing unwanted shaking of the robots.
An algorithm is introduced here that approximately optimizes the afore-
mentioned policy. Its efficiency is verified for four simulated learning con-
trol problems (Ant, HalfCheetah, Hopper, and Walker2D) against three
other methods (PPO, SAC, ACER). The algorithm outperforms others
in three of these problems.

Keywords: Reinforcement learning · Actor-Critic · Experience replay ·
Fine time discretization.

1 Introduction

The usual goal of Reinforcement Learning (RL) to optimize a policy that samples
an action on the basis of a current state of a learning agent. The only stochastic
dependence between subsequent actions is through state transition: The action
moves the agent to another state which determines the distribution of another
action. Main analytical tools in RL are based on this lack of other dependence
between actions. E.g., for a given policy, its value function expresses the expected
sum of discounted rewards the agent may expect starting from a given state.
The sum of rewards does not depend on actions taken before the given state was
reached. Hence, only the given state and the policy matter.

Lack of dependence between actions beyond state transition leads to several
difficulties. In physical implementation of RL, e.g. in robotics, it usually means
that white noise is added to control actions. However, that makes control discon-
tinuous and rapidly changing all the time. This is often impossible to implement
since electric motors that are to execute these actions can not operate this way.
Even if it is possible, it requires a lot of energy, makes the controlled system
shake, and exposes it to damages.

58

2 M. Szulc, J. Lyskawa, P. Wawrzyński

It is also questionable if the lack of dependence between actions beyond
state transition does not reduce efficiency of learning. Each action is an ex-
periment that leads to policy improvement. However, due to limited accuracy
of (action-)value function approximation, consequences of a single action may
be difficult to recognize. The finer the time discretization, the more serious this
problem becomes. Consequences of a random experiment distributed over several
time instants could be more tangible thus easier to recognize.

The contribution of this paper may be summarized in the following points:

– A framework is introduced in which a policy produces actions on the basis
of states and values of a stochastic process. That enables relation between
actions that is beyond state transition.

– An algorithm is introduced that approximately optimizes the aforementioned
policy.

– The above algorithm is tested on four benchmark learning control problems:
Ant, Half-Cheetah, Hopper, and Walker2D.

The rest of the paper is organized as follows. Section 2 overviews related
literature. Sec. 3 introduces a policy that produces autocorrelated actions along
with tools for its analysis. Sec. 4 introduces an algorithm that approximately
optimizes that policy. Sec. 5 presents simulations that compare the presented
algorithm with state-of-the-art reinforcement learning methods. The last section
concludes the paper.

2 Related Work

2.1 Stochastic dependence between actions

The idea of introducing stochastic dependence between actions was analyzed
in [16] as a remedy to problems with application of RL in fine time discretiza-
tion. The control process was divided there into “non-Markov periods” in which
actions were stochastically dependent. A policy with autocorrelated actions was
analyzed in [18] with a standard RL algorithm applied to its optimization that
did not account for the dependence of actions.

In [5] a policy was analyzed whose parameters were incremented by the au-
toregressive stochastic process. Essentially, this resulted in autocorrelated ran-
dom components of actions. In [8] a policy was analyzed that produced an action
being a sum of the autoregressive noise and a deterministic function of state.
However, no learning algorithm was presented in this paper that accounted for
specific properties of this policy.

2.2 Reinforcement learning with experience replay

The Actor-Critic architecture of reinforcement learning was introduced in [1].
Approximators were applied to this structure for the first time in [7]. In order to
boost efficiency of these algorithms, they were combined with experience replay
for the first time in [17].

59

A framework for reinforcement learning with autocorrelated actions 3

Application of experience replay to Actor-Critic encounters the following
problem. The learning algorithm needs to estimate quality of a given policy on
the basis of consequences of actions that were registered when a different policy
was in use. Importance sampling estimators are designed to do that, but they
can have arbitrarily large variance. In [17] that problem was addressed with
truncating density ratios present in those estimators. In [15] specific correction
terms were introduced for that purpose.

Another approach to the aforementioned problem is to prevent the algorithm
from inducing a policy that differs too much from the one tried. That idea was
first applied in Conservative Policy Iteration [6]. It was further extended in
Trust Region Policy Optimization [12]. This algorithm optimizes a policy with
the constraint that the Kullback-Leibler divergence between that policy and the
tried one should not exceed a given threshold. The K-L divergence becomes
an additive penalty in Proximal Policy Optimization algorithms, namely PPO-
Penalty and PPO-Clip [13].

A way to avoid the problem of estimating quality of a given policy on the
basis of the tried one is to approximate the action-value function instead of
estimating the value function. Algorithms based on this approach are Deep Q-
Network (DQN) [11], Deep Deterministic Policy Gradient (DDPG) [10], and Soft
Actor-Critic (SAC) [4]. In the original version of DDPG the time-correlated OU
noise was added to action. However, this algorithm was not adapted to this fact
in any specific way. SAC uses white noise in actions and it is considered one of
the most efficient in this family of algorithms.

3 Policy with autocorrelated actions

Let an action, at, be computed as

at = π(st, ξt; θ) (1)

where π is a deterministic transformation, st is a current state, θ is a vector of
trained parameters, and (ξt, t = 1, 2, . . .) is a stochastic process. We require this
process to have the following properties:

– Stationarity: The distribution of ξt is the same for each t.
– Zero mean: Eξt = 0 for each t.
– Autocorrelation decreasing with growing lag:

EξTt ξt+k > EξTt ξt+k+1 ≥ 0 for k ≥ 0. (2)

Essentially that means that values of the process are close to each other
when they are in close time instants.

– Markov property: For any t and k, l ≥ 0, the conditional distributions

(ξt, . . . , ξt+k|ξt−1, . . . , ξt−1−l) and (ξt, . . . , ξt+k|ξt−1) (3)

are the same. In words, dependence of future values of (ξt) on its past is
entirely carried over by ξt−1.

60

4 M. Szulc, J. Lyskawa, P. Wawrzyński

Consequently, if only π (1) is continuous for all its arguments, and subse-
quent states st are close to each other, then the corresponding actions are close,
although random. In words, they create a consistent, distributed in time exper-
iment that can lead to policy improvement.

Fig. 1: A realization of the normal white
noise (εt), and the auto-regressive pro-
cess (ξt) (4).

Example: Auto-Regressive (ξt). Let
α ∈ [0, 1) and

εt ∼ N(0, C), t = 1, 2, . . .

ξ1 = ε1

ξt = αξt−1 +
√

1− α2εt, t = 2, 3, . . .

(4)

Fig. 1 demonstrates a realization of
both the white noise (εt) and (ξt).
Let us analyze if (ξt) has the required
properties.

Both εt and ξt have the same dis-
tribution N(0, C). Therefore (ξt) is
stationary and zero-mean. A simple
derivation reveals that

Eξtξ
T
t+k = α|k|C and EξTt ξt+k = α|k|tr(C)

for any t, k. Therefore, (ξt) is autocorrelated, and this autocorrelation decreases
with growing lag. Consequently, the values of ξt are closer to one another for
subsequent t than the values of εt, namely

E‖εt − εt−1‖2 = E(εt − εt−1)T (εt − εt−1) = 2tr(C)

E‖ξt − ξt−1‖2 = E
(

(α−1)ξt−1 +
√

1− α2εt

)T (
(α− 1)ξt−1 +

√
1− α2εt

)

= (α− 1)2tr(C) + (1− α2)tr(C) = (1− α)2tr(C).

The Markov property of (ξt) directly results from how ξt (4) is computed.
In fact, marginal distributions of the process (ξt), as well as its conditional

marginal distributions are normal, and their parameters have compact forms.
We shall not present derivations of these parameters due to lack of space, but
we shall denote them for further use. Namely, let as consider

ξ̄nt = [ξTt , . . . , ξ
T
t+n−1]T . (5)

The distribution of ξ̄nt is normal

N(0, Ωn0), (6)

where Ωn0 is a matrix dependent on n, α, and C. The conditional distribution
(ξ̄nt |ξt−1) is also normal,

N(Bnξt−1, Ω
n
1), (7)

where both Bn and Ωn1 are matrices dependent on n, α, and C.

61

A framework for reinforcement learning with autocorrelated actions 5

The neural-normal policy. A simple and practical way to implement π (1) is as
follows. A feedforward neural network,

A(s; θ), (8)

has input s and weights θ. An action is computed as

at = π(st, ξt; θ) = A(st; θ) + ξt, (9)

for ξt in the form (4). While the discussion below can be extended to the general
formulation (1), in order to make it simpler we will further assume that a policy
is of the form (9).

Let us consider

s̄nt = [sTt , . . . , s
T
t+n−1]T ,

āni = [aTt , . . . , a
T
t+n−1]T ,

Ā(s̄ni ; θ) = [A(st; θ)
T , . . . , A(st+n−1; θ)T]T ,

and fixed θ. With (9) the distributions (ānt |s̄nt) and (ānt |s̄nt , ξt−1) are both normal,
namely N(Ā(s̄nt ; θ), Ωn0), and N(Ā(s̄nt ; θ) + Bnξt−1, Ωn1), respectively (see (6)
and (7)). The algorithm defined in the next section updates θ to manipulate
the above distributions. Density of the normal distribution with mean µ and
covariance matrix Ω will be denoted by

ϕ(· ;µ,Ω). (10)

Noise-value function. In policy (1) there is a stochastic dependence between
actions beyond the dependence resulting from state transition. Therefore, the
traditional understanding of policy as distribution of actions conditioned on state
does not hold here. Each action depends on the current state, but also previous
states and actions. Analytical usefulness of the traditional value function and
action-value function is thus limited.

As a valid analytical tool we propose noise-value function defined as

Wπ(ξ, s) = Eπ

∑

i≥0
γirt+i

∣∣∣ξt−1 = ξ, st = s

 . (11)

The course of events starting in time t depends on the current state st and the
value ξt−1. Because of Markov property of ξt (3), the pair (ξt−1, st) is a proper
condition for the expected value of future rewards.

The value function V π : S 7→ R is slightly redefined, namely

V π(s) = E
(
W (ξt−1, st)|st = s

)
. (12)

The random value in the above expectation is ξt−1 and its distribution is con-
ditional with the condition st = s. The distribution of ξt−1 may differ for dif-
ferent st. However, being in the state st and not knowing ξt−1 the agent may
expect the sum of future rewards equal to V π(st).

62

6 M. Szulc, J. Lyskawa, P. Wawrzyński

4 ACERAC: Actor-Critic with Experience Replay and
Autocorrelated aCtions

The algorithm presented here has Actor-Critic structure. It optimizes a policy
of the form (9) and uses Critic,

V (s; ν),

which is an approximator of the value function (12) parametrized by a vector, ν.
For each time instant of the agent-environment interaction the policy (9) is

applied and a tuple, 〈st, At, at, rt, st+1〉, is registered, where At = A(st; θ).
The general goal of training is to maximize Wπ(ξi−1, si) for each state si

registered during the agent-environment interaction. In this order previous time
instants are sampled, and sequences of actions that follow these instants are
made more/less probable depending on their return. More specifically, i is sam-
pled from {1, . . . , t − 1} and the conditional density of the sequence of actions
(ai, . . . , ai+n−1) is being increased/decreased depending on the return

ri + · · ·+ γn−1ri+n−1 + γnV (si+n; ν)

this sequence of actions yields. At the same time adjustments of the same form
are performed for several sequences of actions starting from ai, namely for n =
1, . . . , τ , where τ ∈ N is a parameter.

4.1 Actor & Critic training

The following procedure is repeated several times at each t-th instant of agent–
environment interaction:

1. A random i is sampled from the uniform distribution over {1, . . . , t− 1}.
2. If i is the initial instant of a trial, then consider for n = 1, . . . , τ

µi+j = E(ξi+j) = 0, j = 0, . . . , n− 1

ηi+j = E(ξi+j) = 0, j = 0, . . . , n− 1

Ωn2 = Ωn0 .

Otherwise, consider

µi+j = E(ξi+j |ξi−1 = ai−1 −Ai−1), j = 0, . . . , n− 1

ηi+j = E(ξi+j |ξi−1 = ai−1 −A(si−1; θ)), j = 0, . . . , n− 1

Ωn2 = Ωn1 .

3. Consider the following vectors for n = 1, . . . , τ

µ̄ni = [µTi , . . . , µ
T
i+n−1]T ,

η̄ni = [ηTi , . . . , η
T
i+n−1]T ,

s̄ni = [sTi , . . . , s
T
i+n−1]T ,

āni = [aTi , . . . , a
T
i+n−1]T ,

Āni = [ATi , . . . , A
T
i+n−1]T ,

Ā(s̄ni ; θ) = [A(si; θ)
T , . . . , A(si+n−1; θ)T]T .

63

A framework for reinforcement learning with autocorrelated actions 7

4. Temporal differences are computed for n = 1, . . . , τ

dni (θ, ν) =
(
ri + · · ·+ γn−1ri+n−1 + γnV (si+n; ν)− V (si; ν)

)
×

× ψb
(
ϕ(āni ; Ā(s̄ni ; θ) + η̄ni , Ω

n
2)

ϕ(āni ; Āni + µ̄ni , Ω
n
2)

)
,

(13)

where ψb is a soft-truncating function, e.g. ψb(x) = b tanh(x/b), for a certain
b > 1.

5. Actor and Critic are updated. The improvement directions for Actor and
Critic are

∆θ =
1

τ

τ∑

n=1

∇θ lnϕ(āni ; Ā(s̄ni ; θ) + η̄ni , Ω
n
2)dni (θ, ν)−∇θL(si, θ) (14)

∆ν =
1

τ

τ∑

n=1

∇νV (si; ν)dni (θ, ν), (15)

where L(s, θ) is a loss function that penalizes Actor for producing actions
that do not satisfy conditions e.g., they exceed their boundaries. ∆θ is de-
signed do increase/decrease the likelihood of the sequence of actions āni pro-
portionally to dni (θ, ν). ∆ν is designed to make V (· ; ν) approximate the value
function (12) better. The improvement directions ∆θ and ∆ν are applied to
update θ and ν, respectively, with the use of either ADAM, SGD, or other
method of stochastic optimization.

In Point 1 the algorithm selects an experienced event to replay. In Points 2
and 3 it determines the parameters the distribution of the sequence of subsequent
actions, āni . In Point 4 it determines the relative quality of āni . The temporal dif-
ference (13) implements two ideas. Firstly, θ is changing due to being optimized,
thus the conditional distribution (āni |ξi−1) is now different than it was at the
time when the actions āni were happening. The density ratio in (13) accounts for
this discrepancy of distributions. Secondly, in order to limit variance of the den-
sity ratio, the soft-truncating function ψb is applied. In Point 5 the parameters
of Actor, θ, and Critic, ν, are being updated.

5 Empirical study

This section presents simulations whose purpose has been to compare the algo-
rithm introduced in Sec. 4 to state-of-the-art reinforcement learning methods. We
compared the new algorithm (ACERAC) to ACER [17], SAC [4] and PPO [13].
We used the rllib implementation [9] of SAC and PPO in the simulations. Our im-
plementation of ACERAC is available at https://github.com/mszulc913/acerac.

We used four control tasks, namely Ant, Hopper, HalfCheetah, and Walker2D
(see Fig. 2) from PyBullet physics simulator [2] to compare the algorithms.
A simulator that is more popular in the RL community is MuJoCo [14].1 Hyper-
parameters that assure optimal performance of ACER, SAC, and PPO applied

1 We chose PyBullet because it is a freeware, while MuJoCo is a commercial software.

64

8 M. Szulc, J. Lyskawa, P. Wawrzyński

to the considered environments in MuJoCo are well known. However, PyBul-
let environments introduce several changes to MuJoCo tasks, which make them
more realistic, thus more difficult. Additionally, physics in MuJoCo and PyBul-
lets slightly differ [3], hence we needed to tune the hyperparameters. Their value
can be found in appendix A.

For each learning algorithm we used Actor and Critic structures as described
in [4]. That is, both structures had the form of neural networks with two hidden
layers of 256 units each.

Fig. 2: Environments used in simulations: Ant (left upper), HalfCheetah (right upper),
Hopper (left lower), Walker2D (right lower).

5.1 Experimental setting

Each learning run lasted for 3 million timesteps. Every 30000 timesteps of a simu-
lation was made with frozen weights and without exploration for 5 test episodes.
An average sum of rewards within a test episode was registered. Each run was
repeated 5 times.

65

A framework for reinforcement learning with autocorrelated actions 9

Fig. 3: Learning curves for Ant (left upper), HalfCheetah (right upper), Hopper (left
lower) and Walker2D (right lower) environments: Average sums of rewards in test trials.

5.2 Results

Figure 3 presents learning curves for all four environments and all four compared
algorithms. Each graph reports how a sum of rewards in test episodes evolves
within learning. Solid lines represent the average sums of rewards and shaded
areas represent their standard deviations.

It is seen that for Ant the algorithm that achieve the best performance is
ACERAC, then ACER and SAC, then PPO. For HalfCHeetah, the best per-
formance is achieved by ACERAC which is slightly better than ACER, then
SAC, then PPO. For Hopper the algorithms to win are ACERAC ex aequo with
ACER, then PPO, then SAC; actually SAC fails in this task. Eventually, for
Walker2D, PPO achieves the best performance, then ACERAC and SAC, and
then ACER.

5.3 Discussion

It is seen in Fig. 3 that ACERAC is the best performing algorithm for three en-
vironments out of four (in one ACER preforms equally well). ACERAC extends
ACER in two directions. Firstly, it admits autocrrelated actions. This enables
exploration distributed in many actions instead in one. Secondly, in order to
mimic learning with eligibility traces [7], ACER estimates improvement direc-
tions with the use of a sum whose limit is random. This increases variance of

66

10 M. Szulc, J. Lyskawa, P. Wawrzyński

these estimates. Instead, for each state ACERAC computes an improvement di-
rection as an average of increments similar to those ACER selects on random.
Hence smaller variance of improvement direction estimates in ACERAC which
enables larger step-sizes and faster learning.

It is important to note that the algorithm introduced here, ACERAC, has
been designed for fine time discretization and real life control problems. However,
here it has been tested on simulated benchmarks in which time discretization was
not particularly fine and control could be arbitrarily discontinuous. Its relatively
good performance is a desirable result. It allows to expect that this algorithm
will perform relatively even better in real life control problems. That remains to
be confirmed experimentally in further studies.

6 Conclusions and future work

In this paper a framework was introduced to apply reinforcement learning to
policies that admit stochastic dependence between subsequent actions beyond
state transition. This dependence is a tool to enable reinforcement learning in
physical systems and fine time discretization. It can also yield better exploration
thus faster learning.

An algorithm based on this framework, Actor-Critic with Experience Re-
play and Autocorrelated aCtions (ACERAC), was introduced. Its efficiency was
verified in simulations of four learning control problems: Ant, HalfCheetah, Hop-
per, and Walker2D. The algorithm was compared with PPO, SAC, and ACER.
ACERAC outperformed the competitors in Ant and HalfCheetah. For Hopper
ACERAC was the best ex aequo with ACER. For Walker2D the best results was
obtained by PPO.

It is desirable to combine the framework proposed here with adaptation of
dispersion of actions by introducing reward for the entropy of their distribution,
as it is done in PPO. The framework proposed here is specially designed for
applications in robotics. An obvious step of our further research is to apply it in
this field, obviously much more demanding than simulations.

Acknowledgement

This work was partially funded by a grant of Warsaw University of Technology
Scientific Discipline Council for Computer Science and Telecommunications.

References

1. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
learn difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics B 13, 834–846 (1983)

2. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org (2016–2019)

67

A framework for reinforcement learning with autocorrelated actions 11

3. Erez, T., Tassa, Y., Todorov, E.: Simulation tools for model-based robotics: Com-
parison of bullet, havok, mujoco, ode and physx. In: 2015 IEEE International
Conference on Robotics and Automation (ICRA). pp. 4397–4404 (2015)

4. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Offpolicy
maximum entropy deep reinforcement learning with a stochastic actor (2018),
arXiv:1801.01290

5. van Hoof, H., Tanneberg, D., Peters, J.: Generalized exploration in policy search.
Machine Learning 106, 1705–1724 (2017)

6. Kakade, S., Langford, J.: Approximately optimal approximate reinforcement learn-
ing. In: Proceedings of the Nineteenth International Conference on Machine Learn-
ing, ICML’02. pp. 267–274 (2002)

7. Kimura, H., Kobayashi, S.: An analysis of actor/critic algorithms using eligibility
traces: Reinforcement learning with imperfect value function. In: ICML (1998)

8. Korenkevych, D., Mahmood, A.R., Vasan, G., Bergstra, J.: Autoregressive policies
for continuous control deep reinforcement learning. In: Proceedings of the Twenty-
Eighth International Joint Conference on Artificial Intelligence (IJCAI-19). pp.
2754–2762 (2019)

9. Liang, E., Liaw, R., Nishihara, R., Moritz, P., Fox, R., Goldberg, K., Gonzalez, J.,
Jordan, M., Stoica, I.: RLlib: Abstractions for distributed reinforcement learning.
In: Dy, J., Krause, A. (eds.) Proceedings of the 35th International Conference on
Machine Learning. Proceedings of Machine Learning Research, vol. 80, pp. 3053–
3062. PMLR, Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018)

10. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning (2016),
arXiv:1509.02971

11. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013),
arXiv:1312.5602

12. Schulman, J., Levine, S., Moritz, P., Jordan, M.I., Abbeel, P.: Trust region policy
optimization (2015), arXiv:1502.05477

13. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), arXiv:1707.06347

14. Todorov, E., Erez, T., Tassa, Y.: Mujoco: A physics engine for model-based control.
In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.
pp. 5026–5033. IEEE (2012)

15. Wang, Z., Bapst, V., Heess, N., Mnih, V., Munos, R., Kavukcuoglu, K., de Freitas,
N.: Sample efficient actor-critic with experience replay (2016), arXiv:1611.01224

16. Wawrzyński, P.: Learning to control a 6-degree-of-freedom walking robot. In: Pro-
ceedings of EUROCON 2007 The International Conference on Computer as a Tool.
pp. 698–705 (2007)

17. Wawrzyński, P.: Real-time reinforcement learning by sequential actor–critics and
experience replay. Neural Networks 22(10), 1484–1497 (2009)

18. Wawrzyński, P.: Control policy with autocorrelated noise in reinforcement learning
for robotics. International Journal of Machine Learning and Computing 5(2), 91–95
(2015)

68

12 M. Szulc, J. Lyskawa, P. Wawrzyński

A Algorithms’ hyperparameters

This section presents hyperparameters used in simulations reported in Sec. 5. All
algorithms used the discount factor equal to 0.99. The rest of hyperparameters
for ACERAC, ACER, SAC, and PPO, are depicted in Tab. 1, 2, 3, and 4,
respectively.

Parameter Value
Action std. dev. for Hopper 0.3

Action std. dev. for other envs. 0.4
α 0.5

Critic step-size for Walker2D 10−4

Critic step-size for other envs. 6 · 10−5

Actor step-size for Walker2D 5 · 10−5

Actor step-size for other envs. 3 · 10−5

τ 4
b 2

Memory size 106

Minibatch size 256
Target update interval 1

Gradient steps 1
Learning start 103

Table 1: ACERAC hyperparameters

Parameter Value
Action std. dev. 0.3
Critic step-size 10−5

Actor step-size 10−5

λ 0.9
b 2

Memory size 106

Minibatch size 256
Target update interval 1

Gradient steps 1
Learning start 103

Table 2: ACER hyperparameters

Parameter Value
Step-size for Hopper 0.0001

Step-size for other envs 0.0003
Replay buffer size 106

Minibatch size 256
Target smoothing coef. τ 0.005
Target update interval 1

Gradient steps 1
Learning start for Ant 104

Learning start for HalfCheetah 104

Learning start for Hopper 103

Learning start for Walker2D 103

Reward scale for Ant 1
Reward scale for HalfCheetah 0.1

Reward scale for Hopper 30
Reward scale for Walker2D 30

Table 3: SAC hyperparameters

Parameter Value
GAE parameter (λ) 0.95

Minibatch size 64
Step-size 0.0003
Horizon 2048

Number of epochs 10
Policy clipping coef. 0.2

Value function clipping coef. 10
Target KL 0.01

Table 4: PPO hyperparameters

69

B.3. Actor-Critic with Variable Time Discretization
via Sustained Actions

Title Actor-Critic with Variable Time Discretization
via Sustained Actions

Authors Jakub Łyskawa, Paweł Wawrzyński

Conference 30th International Conference on Neural Information Processing

Year 2023

DOI 10.1007/978-981-99-8079-6_37

Ministerial score 70

70

Actor-Critic with variable time discretization via
sustained actions

Jakub Łyskawa1[0000−0003−0576−6235] and
Paweł Wawrzyński2[0000−0002−1154−0470]

1 Warsaw University of Technology, Pl. Politechniki 1 00-661 Warsaw, Poland
2 IDEAS NCBR, ul. Chmielna 69 00-801 Warsaw, Poland

Abstract. Reinforcement learning (RL) methods work in discrete time.
In order to apply RL to inherently continuous problems like robotic con-
trol, a specific time discretization needs to be defined. This is a choice
between sparse time control, which may be easier to train, and finer
time control, which may allow for better ultimate performance. In this
work, we propose SusACER, an off-policy RL algorithm that combines
the advantages of different time discretization settings. Initially, it op-
erates with sparse time discretization and gradually switches to a fine
one. We analyze the effects of the changing time discretization in robotic
control environments: Ant, HalfCheetah, Hopper, and Walker2D. In all
cases our proposed algorithm outperforms state of the art.

Keywords: reinforcement learning · frame skipping · robotic control

1 Introduction

Reinforcement Learning (RL) is an area of machine learning that focuses on
maximizing expected rewards’ sum in the Markov Decision Process [25]. Such
approach may be applied to difficult problems such as robotic control, video
games, and healthcare [7, 24, 31]. It may result in control policy that is robust
to unpredicted events and is able to solve control problems that are difficult or
impossible to be solved by human engineers [20].

The interaction with the environment is typically assumed to be the most
expensive part of the RL process. Thus, when comparing RL methods, an im-
portant aspect to consider is the sample efficiency. It is defined as the speed of
the learning process with respect to the number of training samples collected.
An algorithm with higher sample efficiency will achieve a desired policy using
less environment data and, given a specific amount of data, such algorithm will
likely obtain a better policy [6, 15,27].

Reinforcement learning algorithms work in discrete time. It is natural when
considering setting that are naturally discrete, such as video games or health-
care [18, 31]. However, reinforcement learning is applied often to the problems
that are continuous and it requires time discretization of the control process.
Recent research shows that while finer discretization allows us to obtain better

71

results, it is much more difficult, especially for algorithms that were not prepared
specifically for fine time discretization setting [28,33].

In this work, we aim to utilize the benefits of both a simpler learning pro-
cess with coarser time discretization and the possibility to obtain better poli-
cies using finer discretization. For this purpose, we propose an algorithm that
can use experience collected by policy working in different discretization. The
underlying policy uses a stochastic process to control current discretization by
sustaining actions with a given probability. This approach separates the environ-
ment discretization, which is the finest discretization available, from the agent’s
discretization.

The contribution of this paper can be summarized as follows:

1. We introduce a framework for manipulating discretization during the rein-
forcement learning process via sustained actions.

2. We introduce an algorithm based on the Actor-Critic with Experience Replay
that utilizes variable discretization. We call this algorithm Actor-Critic with
Experience Replay and Sustained actions (SusACER).

3. We provide experimental results that compare the SusACER algorithm with
state-of-the-art RL algorithms on simulated robotic control environments
with continuous action spaces.

2 Problem Formulation

We consider typical reinforcement learning in a Markov Decision Process that is
built on an underlying continous control process.

At the time step t the environment is in a state, st. An agent interacts with
the environment by performing an action, at, at each time step. It causes the
environment to change its state to st+1 and the agent receives a reward, rt. An
episode is a single run of the agent-environment interaction, from an initial state
to a terminal state.

The agent performs actions according to its policy π(a|s) that determines
the probability of each action a in the given state s.

The policy is optimized to maximize the expected total rewards’ sum through-
out an episode. A practical way to do that is to maximize the expected discounted
rewards’ sum E(

∑
i=0 γ

irt+i|xt = x;π) for each state x in the state space, where
γ ∈ (0, 1) is a discount factor.

We note that the actor should select an optimal action in each time step to
maximize the expected rewards sum. As such, we assume that the final policy
obtained in a reinforcement learning process should make decisions in each time
step to allow the best performance.

We assume that the Markov Decision Process is built on an underlying con-
tinuous control process. This control process is discretized in the time domain,
making each time step of the environment last for a given short period of time.
Our goal is to design an efficient learning algorithm for this setting.

72

3 Related Work

Actor-Critic algorithms. The Actor-Critic approach to reinforcement learning
was first introduced by Barto et al. [2]. The approach to use approximators to
estimate discounted rewards sum was proposed by Kimura and Kobayashi [11].
The Actor-Critic with Experience Replay was introduced in [30] as an algo-
rithm that combines the Actor-Critic structure with offline learning via replaying
variable-length sequences of samples, called trajectories, stored in a buffer. This
algorithm uses importance sampling to solve the problem of using trajectories
obtained using different policies. [26] introduce constant length trajectories and
soft truncation of importance sampling. Many state-of-the-art algorithms used
for robotic control problems, such as Soft Actor-Critic (SAC) [9] and Proximal
Policy Optimization (PPO) [22], use Actor-Critic structures.

Structured exploration for robotic settings Lillicrap et al. [14] introduced the
Deep Deterministic Policy Gradient (DDPG) algorithm and shows the need
for structured exploration in robotic environments. DDPG algorithm uses the
Uhlenbeck-Ornstein process [29] to generate temporally correlated noise. Tal-
lec et al. [28], Szulc et al. [26], and Łyskawa and Wawrzyński [33] show the
importance of structured exploration for fine discretization controlling physical
objects. Łyskawa and Wawrzyński [33] show that in fine discretization setting
reinforcement learning algorithms should employ multiple-step trajectories for
calculating approximators’ updates.

Environment discretization and sustained actions Sustaining actions over constant-
length number of frames was first introduced by Mnih et al. [18] for ATARI
environments to reduce the number of times the policy has to be calculated in a
setting where environment steps are relatively fast. This approach is used in later
works as a standard preprocessing for Atari environments [13,19]. Kalyanakrish-
nan et al. [10] noted that for many video game environments, a higher frame skip
parameter allows obtaining a higher score. [28] applies the Uhlenbeck-Ornstein
process to the underlying values for calculating discrete action probabilities to
provide a method for temporally-correlated actions in discrete action space set-
tings. Dabney et al. [5] proposed ϵz-greedy exploration as a temporal extension of
ϵ-greedy exploration, where the action duration is selected from a given distribu-
tion z to increase the probability of finding states outside policies similar to the
greedy policy. However, this approach assumes action-value function estimation
and single-step updates, which makes it not easily transferrable to algorithms
that use value function estimation.

Learning optimal action duration Lakshminarayanan et al. [13] introduced Dy-
namic Action Repetition. This method works by including actions extended by a
given number of steps in the available action space. Mann et al. [16] introduced
Fitted Value Iteration algorithm. Similarly to the Dynamic Action Repetition,
it extends the environment action space. It is however not limited to actions
with increased duration. Instead it utilizes the framework of options, which are

73

general sequences of actions and include both simple actions and actions with
increased duration. Biedenkapp et al. [3] introduced a method based on the Q-
Learning, called TempoRL, where action duration was introduced to the action
space, resulting in an approach similar to some hierarchical reinforcement learn-
ing approaches [8]. Sharma et al. [23] introduced method called Figar, which uses
an additional model to select one of the predefined action lengths. Yu et al. [32]
introduced Temporally Abstract Actor-Critic, that includes additional model for
determining if an action should be sustained. However, these works assume that
the trained agent would make decisions only in selected time steps. Metelli et
al. [17] points out that reducing control frequency results in performance loss.
Thus, in this work we assume that outside training the agent selects the optimal
action in each time step.

Action-value based RL in fine-time discretization Park et al. [21] utilise sustained
actions to allow the usage of reinforcement learning algorithms that use action-
value function estimators in fine-time discretization. Baird [1] notes that without
increasing action duration the action-value function degrades to the value func-
tion, as the effect of a single very short action becomes negligible. This problem
does not occur when using reinforcement learning algorithms that use the value
function estimator [28], such as Actor-Critic with Experience Replay [30]

Summary Most of the existing methods utilising action sustain use action-value
function estimators and single step updates. As such, they are not as well-suited
to fine-time discretization problems as algorithms that use value function esti-
mators.

4 Variable discretization

In this work, we consider two-level time discretization. The base discretization
T = {1, 2, 3, ...} is the finest available environment discretization, further referred
to as environment discretization. The second discretization Ta is called the agent
discretization. A single agent time step lasts for several environment time steps.
The distribution of length of the agent time step at the environment time step t is
determined by a geometric distribution3 with a success (action finish) probability
parameter pt. In the geometric distribution, the probability of sustaining current
action is the same regardless of how long the action already lasts, which is an
useful property. The action selected at the beginning of an agent time step is
sustained for the whole duration of the agent time step. We denote the expected
duration of a sustained action as

Et = 1 +
1− pt
pt

=
1

pt
(1)

Et is greater by 1 than the expected value of the geometric distribution as it
also includes the environment step when the agent chooses the action.
3 Defined as the number of failures before the first success.

74

Generally, pt increases with t to 1, which means that the expected duration
of actions decreases to 1. Initially, the actions are longer, and shorter combina-
tions of them lead to high expected rewards. The space of these combinations
is smaller, and the agent requires less experience to search it, thereby learn-
ing faster. Having learned to choose long-lasting actions, the agent is in a good
position to learn dexterous behavior based on short-lasting actions.

We denote the underlying base agent policy πa(a|s; θ), where θ is the vector of
the policy parameters. It determines the probability of the action a being selected
in the state s of the environment. The environment-time-step-level policy π is
thus defined as

π(a|st, at−1; pt, θt) =

{
πa(a|st; θt) if the agent must choose an action
(1− pt)U(a|at−1) + ptπa(a|st; θt) otherwise,

(2)

where U(a|at−1) is a probability distribution of sustained action at−1, resulting in
at = at−1. For discrete action space U(a|at) = 1 if a = at else 0. For continuous
action space U(a|at) = δ(a − at) where δ is a Dirac delta in the environment
action space. The agent must choose an action if the previous action cannot be
sustained, e.g. at the beginning of the episode.

The process described above in both the environment time discretization and
the agent time discretization is Markovian. However, the policy in the environ-
ment discretization depends on both previous action and state.

4.1 Trajectory importance sampling

We consider a trajectory, st, at, st+1, at+1, ...st+n, where t ∈ Ta, i.e., at was
selected from the actor’s action probability distribution πa(·|st). The following
actions are selected or sustained independently in each environment step, thus
the importance sampling of a trajectory is a product of density ratios for each
environment step within this trajectory:

ISn
t =

πa(at|st; θ)
πa(at|st; θt)

t+n−1∏

τ=t+1

π(aτ |sτ , aτ−1; p, θ)

π(aτ |sτ , aτ−1; pτ , θτ)
, (3)

for registered data indexed with t and τ , and current policy parameter θ and
success parameter p.

For discrete action distribution, all probabilities in Eq. 3 are finite. How-
ever, for continuous action spaces for aτ = aτ−1 and success parameter p the
environment-time-step-level action probability density is equal to (1− p)δ(0) +
pπa(a|sτ ; θτ). For p < 1 the expression (1−p)δ(0) is infinite. However, for pτ < 1
the infinite part is in both the nominator and denominator of this expression
and the density ratio reduces to the following form.

π(aτ |sτ , aτ−1; p, θ)

π(aτ |sτ , aτ−1; pτ , θτ)
=

{
1−p
1−pτ

iff aτ = aτ−1

p
pτ

πa(aτ |sτ ;θ)
πa(aτ |sτ ;θτ) otherwise

(4)

75

If the action is not sustained, the density ratio for the time step τ is equal to the
densities ratio of the actor’s probability distributions multiplied by the ratio of
the probabilities that the actor will select the action. If the action is sustained,
the importance sampling for the time step τ is equal to the ratio of probabilities
that the action will be sustained. This value is greater than 0 for p < 1 and
equal to 0 for p = 1. We can safely ignore the case when aτ = aτ−1 for pτ = 1 as
the probability of drawing the same action from a continuous distribution twice
is equal to 0.

As such, each sequence of sustained actions is non-negligible as long as p <
1. Furthermore, as we assume that the agent selected the first action of the
trajectory from the underlying base agent policy πa, a part of the trajectory is
feasible even for p = 1. As such, the experience collected with any pt ∈ (0, 1] can
be feasibly replayed for any other p ≥ pt.

4.2 Adaptation of exploration to sustained actions

Sustaining actions over a number of steps increases the intensity of exploration
[5]. In order to keep the exploration at the level defined by the underlying pol-
icy in control settings we propose the following solution. Let’s assume that the
underlying system is a Markovian continuous-time control process with contin-
uous state and action spaces. Given continuous time τ and state sτ , it can be
described by a differential equation

dsτ
dτ

= F (sτ , aτ) (5)

where aτ is the action.
Let us assume that in short time [τ, τ+∆] the F function can be approximated

by an affine function,
F (sτ , aτ) ∼= B + Caτ . (6)

If a single action with covariance matrix Σ is executed in time [τ, τ + ∆], the
covariance matrix Σs of the state difference sτ+∆ − sτ equals

Σs = CΣCT∆2. (7)

However, if in time τ to τ +∆ a sequence of n independent actions that have co-
variance matrices Σ′ is performed, then the covariance Σ′

s of the state difference
sτ+∆ − sτ equals

Σ′
s = nCΣ′CT

(
∆

n

)2

=
1

n
CΣ′CT∆2 (8)

Hence, for a constant action covariance, the amount of randomness in a state
increases when the actions are sustained longer. However, we want to keep this
amount of randomness in the state similar regardless of how long actions are
sustained. In this order, we set the covariance of the action distribution inversely
proportional to the expected time of sustaining actions.

76

5 SusACER: Sustained-actions Actor-Critic with
Experience Replay

We base our proposed SusACER algorithm on Actor-Critic with Experience Re-
play (ACER) [30]. We selected ACER as the base algorithm as it matches mul-
tiple requirements for efficient reinforcement learning in robotic control settings,
namely uses state-dependant discounted rewards sum estimator, multiple-step
updates, and experience replay. It was also demonstrated in [33] that it per-
forms well in different discretization settings. As opposed to the original ACER
algorithm, SusACER uses n-step returns for a constant n and soft truncation of
density ratios, as proposed in [33].

SusACER uses two parameterized models, namely Actor and Critic. Actor
specifies a policy, πa(·|s; θ). It takes as input the environment state s and it is
parameterized by θ. Critic V (s; ν) estimates the discounted rewards sum for each
state s and is parameterized by ν.

At each environment time step t the agent chooses an action according to
the environment-level policy π. Then the experience samples ⟨st, at, rt, st+1,
π(at|st, at−1; pt, θt), πa(at|st; θt)⟩ are stored in the memory buffer of size M .

At each learning step the algorithm takes a trajectory of n samples starting
at τ ∈ [t −M, t − n] ∩ Ta and calculates updates ∆θ and ∆ν of parameters θ
and ν.

The algorithm calculates m-step estimates of the temporal difference

Am
τ =

m−1∑

i=0

γirτ+i + γmV (sτ+m; ν)− V (sτ ; ν) (9)

for m = 1, 2, . . . , n. To mitigate the non-stationarity bias, temporal difference
estimates are weighted by importance sampling. Weights ρmτ for each m-step
estimate correspond to the change of the probability of the given experience
trajectory according to Eq. 3. Following [26], we apply a soft-truncation function
ψb(x) = b tanh(x

b) to the calculated weights to improve the stability of the
algorithm. Thus, the weight for an m-step estimate is given as

ρmτ = b tanh(ISm
τ /b) (10)

The algorithm calculates the unbiased temporal difference estimate dmτ for
a sampled trajectory as an average of the m-step temporal difference estimates
Am

τ weighted by ρmτ .
The algorithm calculates the update ∆ν to train Critic to estimate the value

function and the update ∆θ to train Actor to maximize the expected discounted
rewards’ sum. The complete algorithm to calculate the updates is presented in
Algorithm 1. We use ADAM [12] to apply the updates to the θ and ν parameters.

6 Empirical study

In this section we present empirical results that show the performance of the
SusACER algorithm. As benchmark problems we use a selection of simulated

77

Algorithm 1 Calculating parameters update from a single trajectory in Actor-
Critic with Experience Replay and Sustained actions
Input: a trajectory of length n beginning at time step τ
Output: parameter updates ∆θ and ∆ν
1: for m ∈ {1, 2, ..., n} do
2: Am

τ ←
∑m−1

i=0 γirτ+i + γmV (sτ+m; ν)− V (sτ ; ν)
3: Calculate ISm

τ according to Eq. 3
4: ρmτ ← ψb(IS

m
τ)

5: end for
6: dnτ = 1

n

∑n
m=1A

m
τ ρ

m
τ

7: ∆ν ← ∇νV (sτ ; ν)dnτ
8: ∆θ ← ∇θ lnπ(at|sτ ; θ)dnτ

robotic environments, specifically Ant, HalfCheetah, Hopper and Walker2D. In
our experiments we use the open source multiplatform PyBullet simulator [4].

On all benchmark problems we run experiments for 3 · 106 environment time
steps. Each 3 · 104 steps we freeze the weights and evaluate the trained agents
for 5 episodes. Learning curves in this section present the average results of
evaluation runs over multiple runs and their standard deviations. For algorithm
comparison we use the final obtained results and the area under the learning
curve (AULC). AULC value is less influenced by noise and better reflects the
learning speed.

We compare the results obtained using SusACER algorithm to the base
ACER algorithm with constant trajectory length and two state-of-the-art al-
gorithms, namely Soft Actor-Critic (SAC) [9] and Proximal Policy Optimization
(PPO) [22]. We use the optimized hyperparameter values for SAC, PPO and
ACER as provided in [33]. However, as ACER used in this study differs from
ACER used in [33] by using constant trajectory length, we optimized the trajec-
tory length with possible values set {2, 4, 8, 16, 32} and the learning rates with
possible values {1 · 10−4, 3 · 10−4, 1 · 10−5, 3 · 10−5, 1 · 10−6}.

For SusACER we used the same hyperparameters as for ACER where possi-
ble. We use the following environment discretization. The expected action sustain
length Et, as defined in Eq. 1, decreases linearly from E0 to 1 over TE steps.
Specifically,

Et = E0 + (1− E0) min

{
t

TE
, 1

}
(11)

which directly translates into pt (1). We use Et instead of pt as a parameter as
we believe that it is more intuitive.

For SusACER we limit the maximum sustain length to the length of the
trajectory used for calculating weight updates to avoid collecting and storing
samples that would not be used for the training process.

Source code for experiments that we present in this section is available on
github4. We list all hyperparameter settings in the Appendix A.
4 https://github.com/lychanl/acer-release/releases/tag/SusACER

78

6.1 Ablation study

We present results that show the impact of different discretization settings for
SusACER.

We ran experiments using 3 different initial expected action length values E0,
namely 2, 4, and 8. We also tested 3 different expected action length decrease
times TE , namely 3 · 104, 1 · 105, and 3 · 105.

Table 1 shows final results and AULC for these experiments. For Ant, the
best results and AULC values are obtained for shorter sustain probability decay
times and rather lower E0 values. For HalfCheetah, the results vary, with the
best results and AULCS obtained for medium E0 value and long TE value. For
Hopper, the results are similar for all settings, with slightly better results for
smaller initial expected action lengths. For Walker2D the best AULC values
are obtained for smaller values of TE , however the results have large standard
deviation values.

For comparison with other algorithms we selected the discretization settings
with the largest AULC values. Highest AULC values match the highest final
results for all environments except of the Walker2D and for most discretization
settings has lower standard deviation than the final result.

Table 1. Results and areas under the learning curves for Ant, HalfCheetah, Hopper,
Walker2D for SusACER with different discretization settings. The bolded results have
the highest AULC value and thus are used for comparison with other algorithms.

E0 TE
Ant HalfCheetah Hopper Walker2D

Result AULC Result AULC Result AULC Result AULC

2 3 · 104 3311 2698 2837 2351 2218 2268 1477 1283
±218 ±146 ±444 ±408 ±315 ±126 ±699 ±459

2 1 · 105 3403 2730 2426 1935 2486 2278 2059 1481
±83 ±86 ±908 ±705 ±236 ±133 ±520 ±292

2 3 · 105 3274 2616 2558 1929 2551 2357 1061 1041
±128 ±130 ±668 ±779 ±67 ±113 ±721 ±196

4 3 · 104 3427 2775 2911 2261 2457 2287 1885 1367
±244 ±131 ±303 ±419 ±108 ±65 ±950 ±483

4 1 · 105 3351 2683 2699 1932 2551 2273 1856 1195
±167 ±199 ±470 ±441 ±133 ±108 ±923 ±375

4 3 · 105 3217 2532 3059 2501 2466 2131 1914 1275
±140 ±107 ±151 ±195 ±44 ±85 ±811 ±171

8 3 · 104 3281 2723 2887 2406 2310 2261 1768 1192
±216 ±185 ±385 ±264 ±339 ±78 ±778 ±354

8 1 · 105 3185 2374 2882 2289 2382 2259 2012 1177
±260 ±218 ±381 ±444 ±282 ±154 ±595 ±236

8 3 · 105 3301 2577 2682 1862 2418 2200 2228 1322
±384 ±173 ±413 ±406 ±187 ±115 ±399 ±180

79

6.2 Experimental results and discussion

We compare the results obtained using SusACER algorithm to the results of
the ACER, SAC, and PPO algorithms. Figure 1 shows learning curves for these
algorithms. Table 2 shows the final results and AULC for these experiments.

Fig. 1. Learning curves for SUSACER, SAC, PPO and FastACER for Ant (upper left),
HalfCheetah (upper right), Hopper (lower left) and Walker2D (lower right) environ-
ments

SusACER obtains high results for all 4 environments. For HalfCheetah and
Walker2D, it outperforms other algorithms by a large margin in terms of both
training speed and final obtained results. For Ant and Hopper, it obtains similar
final result as ACER. However, SusACER learns faster in the initial part of the
training, which is reflected by higher AULC values.

When compared to the results obtained by ACER, the results obtained using
SusACER with different inital discretizations and decay times are, for most com-
binations, similar or better than the results obtained by the ACER aglorithm. It
shows that the action sustain at the beginning of the training may easily improve
the performance in simulated robotic problems.

The results presented in this section show that the impact of discretization
setting may vary for each environment. For some environmnets, like Hopper,

80

Table 2. Results and areas under the learning curves for Ant, HalfCheetah, Hopper,
Walker2D for SusACER, ACER, SAC and PPO. The bolded values are the highest
final results and AULCs

Ant HalfCheetah Hopper Walker2D
Result AULC Result AULC Result AULC Result AULC

SusACER 3427 2775 3059 2501 2551 2357 2059 1481
±244 ±131 ±151 ±195 ±67 ±113 ±520 ±292

ACER 3289 2664 2562 2005 2230 2308 1700 1051
±124 ±156 ±362 ±567 ±412 ±122 ±578 ±320

SAC 2788 2233 2329 1890 1496 1791 1801 785
±263 ±194 ±753 ±566 ±664 ±179 ±674 ±160

PPO 1820 1385 1931 1417 1941 1816 1790 1271
±153 ±140 ±83 ±95 ±441 ±84 ±135 ±215

this impact is negligible. For other, like HalfCheetah, correct discretization set-
ting may greatly contribute to the algorithm performance. However, even if the
impact is low, it may increase the speed of the learning process.

The optimal discretization setup varies between the environments. All tested
environments require relatively fine discretization (with initial values of E0 equal
to 2 or 4), with more sensitive simulations, Hopper and Walker2D, requiring
lower value than the two easier problems, Ant and HalfCheetah.

7 Conclusions and future work

In this paper, we have introduced SusACER, a reinforcement learning algo-
rithm that manipulates time discretization to maximize learning speed in its
early stages while simultaneously increasing the final results. In the early stages,
the actions effectively last longer, which makes their sequences until the goal is
reached shorter, and thus makes them easier to optimize. Eventually, the times-
pan of actions is reduced to their nominal length to allow finer control. Our
experimental study with the robotic-like environments Ant, HalfCheetah, Hop-
per, and Walker2D confirms that this approach reaches its objectives: SusACER
proves more efficient than state-of-the-art algorithms by a significant margin.

In this study, our approach to manipulating time discretization was combined
with one of the most basic RL algorithms with experience replay, still giving high
performance gain. The combination with other algorithms, such as SAC, could
result in an even more efficient method.

We also show that optimal discretization varies between the environments.
A possible next step in the research of the variable discretization setting would
be to create a method to determine optimal discretization.

Ethical statement This work does not focus on processing personal data. The
novel solutions presented in this paper cannot be directly used to collect, pro-
cess, or infer personal information. We also believe that reinforcement learning

81

methods, including SusACER, are currently not viable solutions for control pro-
cesses used for policing or the military. This work does not have any ethical
implications.

References

1. Baird, L.: Reinforcement learning in continuous time: advantage updating. In: Pro-
ceedings of 1994 IEEE International Conference on Neural Networks (ICNN’94).
vol. 4, pp. 2448–2453 vol.4 (1994). https://doi.org/10.1109/ICNN.1994.374604

2. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can
learn difficult learning control problems. IEEE Transactions on Systems, Man, and
Cybernetics B 13, 834–846 (1983)

3. Biedenkapp, A., Rajan, R., Hutter, F., Lindauer, M.: Temporl: Learning when to
act. CoRR abs/2106.05262 (2021), https://arxiv.org/abs/2106.05262

4. Coumans, E., Bai, Y.: Pybullet, a python module for physics simulation for games,
robotics and machine learning. http://pybullet.org (2016–2021)

5. Dabney, W., Ostrovski, G., Barreto, A.: Temporally-extended ϵ-greedy exploration.
CoRR abs/2006.01782 (2020), https://arxiv.org/abs/2006.01782

6. Dulac-Arnold, G., Levine, N., Mankowitz, D.J., Li, J., Paduraru, C., Gowal, S.,
Hester, T.: Challenges of real-world reinforcement learning: definitions, benchmarks
and analysis. Machine Learning 110(9), 2419–2468 (Sep 2021)

7. ElDahshan, K.A., Farouk, H., Mofreh, E.: Deep reinforcement learning
based video games: A review. In: 2022 2nd International Mobile, Intelli-
gent, and Ubiquitous Computing Conference (MIUCC). pp. 302–309 (2022).
https://doi.org/10.1109/MIUCC55081.2022.9781752

8. Gürtler, N., Büchler, D., Martius, G.: Hierarchical reinforcement learning with
timed subgoals (2021)

9. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: Offpolicy
maximum entropy deep reinforcement learning with a stochastic actor (2018),
arXiv:1801.01290

10. Kalyanakrishnan, S., Aravindan, S., Bagdawat, V., Bhatt, V., Goka, H., Gupta, A.,
Krishna, K., Piratla, V.: An analysis of frame-skipping in reinforcement learning
(02 2021)

11. Kimura, H., Kobayashi, S.: An analysis of actor/critic algorithms using eligibility
traces: Reinforcement learning with imperfect value function. In: ICML (1998)

12. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: Bengio,
Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
(2015), http://arxiv.org/abs/1412.6980

13. Lakshminarayanan, A., Sharma, S., Ravindran, B.: Dynamic action repetition for
deep reinforcement learning. Proceedings of the AAAI Conference on Artificial
Intelligence 31(1) (Feb 2017). https://doi.org/10.1609/aaai.v31i1.10918, https:
//ojs.aaai.org/index.php/AAAI/article/view/10918

14. Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D., Wierstra, D.: Continuous control with deep reinforcement learning (2016),
arXiv:1509.02971

15. Liu, R., Nageotte, F., Zanne, P., de Mathelin, M., Dresp-Langley, B.: Deep re-
inforcement learning for the control of robotic manipulation: A focussed mini-
review. Robotics 10(1) (2021). https://doi.org/10.3390/robotics10010022, https:
//www.mdpi.com/2218-6581/10/1/22

82

16. Mann, T.A., Mannor, S., Precup, D.: Approximate value iteration with temporally
extended actions. In: Proceedings of the 26th International Joint Conference on
Artificial Intelligence. p. 5035–5039. IJCAI’17, AAAI Press (2017)

17. Metelli, A.M., Mazzolini, F., Bisi, L., Sabbioni, L., Restelli, M.: Control fre-
quency adaptation via action persistence in batch reinforcement learning. CoRR
abs/2002.06836 (2020), https://arxiv.org/abs/2002.06836

18. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra,
D., Riedmiller, M.: Playing atari with deep reinforcement learning (2013),
arXiv:1312.5602

19. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G.,
Graves, A., Riedmiller, M., Fidjeland, A.K., Ostrovski, G., Petersen, S., Beattie, C.,
Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., Hassabis,
D.: Human-level control through deep reinforcement learning. Nature 518(7540),
522–533 (2015)

20. OpenAI, Akkaya, I., Andrychowicz, M., Chociej, M., Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J., Tezak,
N., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W., Zhang, L.: Solving
rubik’s cube with a robot hand (2019)

21. Park, S., Kim, J., Kim, G.: Time discretization-invariant safe action repetition for
policy gradient methods. CoRR abs/2111.03941 (2021), https://arxiv.org/
abs/2111.03941

22. Schulman, J., Wolski, F., Dhariwal, P., Radford, A., Klimov, O.: Proximal policy
optimization algorithms (2017), arXiv:1707.06347

23. Sharma, S., Srinivas, A., Ravindran, B.: Learning to repeat: Fine grained action
repetition for deep reinforcement learning (2020)

24. Singh, B., Kumar, R., Singh, V.P.: Reinforcement learning in robotic applica-
tions: a comprehensive survey. Artificial Intelligence Review 55(2), 945–990 (Feb
2022). https://doi.org/10.1007/s10462-021-09997-9, https://doi.org/10.1007/
s10462-021-09997-9

25. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. Second edi-
tion. The MIT Press (2018)

26. Szulc, M., Łyskawa, J., Wawrzyński, P.: A framework for reinforcement learning
with autocorrelated actions. In: International Conf. on Neural Information Pro-
cessing. pp. 90–101 (2020)

27. Sünderhauf, N., Brock, O., Scheirer, W., Hadsell, R., Fox, D., Leitner, J., Up-
croft, B., Abbeel, P., Burgard, W., Milford, M., Corke, P.: The limits and poten-
tials of deep learning for robotics. The International Journal of Robotics Research
37(4-5), 405–420 (2018). https://doi.org/10.1177/0278364918770733, https://
doi.org/10.1177/0278364918770733

28. Tallec, C., Blier, L., Ollivier, Y.: Making deep q-learning methods robust to time
discretization. In: International Conference on Machine Learning (ICML). pp.
6096–6104 (2019)

29. Uhlenbeck, G.E., Ornstein, L.S.: On the theory of the brownian motion. Phys. Rev.
36, 823–841 (Sep 1930). https://doi.org/10.1103/PhysRev.36.823, https://link.
aps.org/doi/10.1103/PhysRev.36.823

30. Wawrzyński, P.: Real-time reinforcement learning by sequential actor–critics and
experience replay. Neural Networks 22(10), 1484–1497 (2009)

31. Yu, C., Liu, J., Nemati, S., Yin, G.: Reinforcement learning in healthcare: A survey.
ACM Comput. Surv. 55(1) (nov 2021). https://doi.org/10.1145/3477600, https:
//doi.org/10.1145/3477600

83

32. Yu, H., Xu, W., Zhang, H.: TASAC: temporally abstract soft actor-critic for con-
tinuous control. CoRR abs/2104.06521 (2021), https://arxiv.org/abs/2104.
06521

33. Łyskawa, J., Wawrzyński, P.: Acerac: Efficient reinforcement learning in fine time
discretization. IEEE Transactions on Neural Networks and Learning Systems pp. 1–
0 (2022). https://doi.org/10.1109/TNNLS.2022.3190973

A Hyperparameters

In this section we provide hyperparameters used to obtain results in the section
6. Table 3 contains common parameters for the offline algorithms, namely for
SusACER, ACER and SAC. Table 4 contains shared parameters for SusACER
and ACER algorithms. Tables 5 and 6 contain hyperparameters for SAC and
PPO, respectively. Table 7 contains environment-specific reward scaling param-
eter values for the SAC algorithm.

Parameter Value
Memory size 106

Minibatch size 256
Update interval 1
Gradient steps 1
Learning start 104

Table 3. Common parameters for offline
algorithms (SusACER, ACER, SAC).

Parameter Value
Action std. dev. 0.4

Trajectory length n 4
b 3

Actor step-size 3 · 10−5

Critic step-size 10−4

Table 4. SusACER and ACER hyperpa-
rameters.

Parameter Value
Target smoothing coef. τ 0.005

Learning start 104

Table 5. SAC general hyperparameters.
For environment-specific hyperparameters
see Tab. 7

Parameter Value
GAE parameter (λ) 0.95

Minibatch size 64
Horizon 2048

Number of epochs 10
Value function clipping coef. 10

Target KL 0.01
Step-size 3 · 10−4

Clip param 0.2
Table 6. PPO hyperparameters.

Parameter Value
Reward scaling for HalfCheetah env. 0.1

Reward scaling for Ant env. 1
Reward scaling for Hopper env. 0.03

Reward scaling for Walker2D env. 30
Table 7. SAC reward scaling.

84

B.4. Subgoal Reachability in Goal Conditioned
Hierarchical Reinforcement Learning

Title Subgoal Reachability in Goal Conditioned
Hierarchical Reinforcement Learning

Authors
Michał Bortkiewicz, Jakub Łyskawa, Paweł Wawrzyński,

Mateusz Ostaszewski, Artur Grudkowski, Bartłomiej Sobieski,
Tomasz Trzciński

Conference 16th International Conference on Agents and Artificial Intelligence

Year 2024

DOI 10.5220/0012326200003636

Ministerial score 70

85

Subgoal Reachability in Goal Conditioned Hierarchical Reinforcement
Learning

Michał Bortkiewicz1 a, Jakub Łyskawa 1 b, Paweł Wawrzyński1,2 c, Mateusz Ostaszewski1 d, Artur
Grudkowski1, Bartłomiej Sobieski1, Tomasz Trzciński1,2,3,4,5 e

1Warsaw University of Technology, Institute of Computer Science
2IDEAS NCBR

3Jagiellonian University
4Tooploox
5Ensavid

michal.bortkiewicz.dokt@pw.edu.pl

Keywords: Hierarchical Reinforcement Learning, Deep Reinforcement Learning, Control

Abstract: Achieving long-term goals becomes more feasible when we break them into smaller, manageable subgoals.
Yet, a crucial question arises: how specific should these subgoals be? Existing Goal-Conditioned Hierarchical
Reinforcement Learning methods are based on lower-level policies aiming at subgoals designated by higher-
level policies. These methods are sensitive to the proximity threshold under which the subgoals are considered
achieved. Constant thresholds make the subgoals impossible to achieve in the early learning stages, easy to
achieve in the late stages, and require careful manual tuning to yield reasonable overall learning performance.
We argue that subgoal precision should depend on the agent’s recent performance rather than be predefined. We
propose Adaptive Subgoal Required Distance (ASRD), a drop-in replacement method for subgoal threshold
creation that considers the agent’s current lower-level capabilities for appropriate subgoals. Our results
demonstrate that subgoal precision is essential for HRL convergence speed, and our method improves the
performance of existing HRL algorithms.

1 Introduction

Hierarchical reinforcement learning (HRL) performs
remarkably well on complex tasks, unsolvable by flat
methods (Gehring et al., 2021; Gürtler et al., 2021;
Nachum et al., 2018; Levy et al., 2017; Ghosh et al.,
2019; Eysenbach et al., 2019). This is because the
control of sequential decision making in complex dy-
namical systems is often easier to synthesize when
decomposed hierarchically (Nachum et al., 2019). The
high-level agent breaks down the problem into a series
of subgoals to be sequentially executed by the low-
level policy. To illustrate this concept, consider how a
child learns to walk: they don’t need to master it per-
fectly from the beginning; instead, they initially grasp
the fundamental dynamics of the skill and then progres-

a https://orcid.org/0000-0001-5470-7878
b https://orcid.org/0000-0003-0576-6235
c https://orcid.org/0000-0002-1154-0470
d https://orcid.org/0000-0001-7915-6662
e https://orcid.org/0000-0002-1486-8906

sively refine it as they go along (Adolph et al.,). This
hierarchical approach simplifies learning higher-level
skills while continuously improving basic abilities.

Most existing works in Goal Conditioned HRL
(GCHRL) assume fixed criteria of subgoal required
distance (SRD), i.e. a radius of the region in the state
space, which the agent should reach to accomplish a
subgoal (Nachum et al., 2018; Gürtler et al., 2021;
Lee et al., 2022). In a sparse reward setting, if the
lower-level (LL) policy achieves SRD within a higher-
level (HL) action time, it receives a positive reward.
Notably, SRD is usually predefined by a human expert
or found using a hyperparameter search (Chane-Sane
et al., ; Colas et al., ; Liu et al., 2022).

However, two serious issues can arise from a prede-
fined SRD when the HL policy is not well-trained. If
the SRD is too small, it can create subgoals that are too
narrow and impossible to achieve. As a result, the LL
policy may never accomplish any subgoal, making it
difficult to learn anything. However, if the SRD is too
large, the LL policy may learn to reach given subgoals

86

Figure 1: Conceptual illustration of the SRD impact on algo-
rithm performance. Fixed SRD yields high-performing algo-
rithms only when adjusted to agent capabilities. However,
in practice, it usually needs to be found using fine-tuning.
Thus, too wide or narrow SRD may limit LL policy accuracy
in subgoal reaching and result in lower performance.

imprecisely, leading to clumsy control and unsatisfac-
tory progress in the main task. Thus, this approach is
sensitive to SRD and works only with expert domain
knowledge or after meticulous SRD tuning (Fournier
et al., 2018). In this work, we empirically demonstrate
this sensitivity.

We recognize this limitation in GCHRL and ad-
dress it by adjusting SRD along the training. We ar-
gue that precision is more prominent in later train-
ing phases but may be eased initially. Thus, the
SRD should depend on the agent’s recent performance
rather than be fixed. We propose a simple method that
adapts the SRD to the current performance of the agent
as measured during the training process, forming a cur-
riculum of subgoal thresholds (Figure 1). We indicate
that curricular approaches were widely surveyed re-
garding exploration (Portelas et al., 2020; Zhang et al.,
2020b; Li et al., 2021); however, few works explored
it in the context of subgoal reachability issue (Fournier
et al., 2018), especially in HRL.

This work closely examines the problem of tuning
SRD in GCHRL. Our contributions are as follows:

1. We show that HRL methods are highly sensitive to

subgoal precision and environment goal precision.

2. We propose Adaptive Subgoal Required Distance
(ASRD), a novel, easy-to-implement method adapt-
ing SRD that boosts training robustness, improves
final policy performance and simplifies the hyper-
parameter tuning procedure.

3. We perform an extensive analysis of the proposed
method, showing that it allows us to obtain higher
control precision faster.

2 Problem statement

We consider the typical RL setup (Sutton and Barto,
2018) based on a Markov Decision Process (MDP): An
agent operates in its environment in discrete time t =
1,2, At time t it finds itself in a state, st ∈ S , per-
forms an action, at ∈ A , receives a reward, rt ∈R, and
the state changes to st+1. The agent is trained to maxi-
mize the discounted rewards sum E(∑i=0 γirt+i|st) for
each state st where γ ∈ [0,1) is the discount factor.

We assume that effective hierarchical control is
possible in this MDP. Let there be L > 1 levels of
the hierarchy. Each l-th level defines an MDP with
its state space S l , its action space A l and rewards.
For the highest level S L = S and for the bottom level
A1 = A . Taking action at l-th level, l ≥ 2, al

t , launches
an episode of the MDP at l−1-st level. al

t defines the
goal in this lower-level episode and may specify the
time to achieve this goal, thus the states and rewards
in this episode are co-defined by al

t . Once this episode
is finished, another action at l-th level is taken.

Actions at the l-th level are defined by a policy,

al
t ∼ πl(·|sl

t), l = L, . . . ,1, (1)

where sl
t is the state of the agent perceived at l-th level

of the hierarchy at time t. For l < L, the goal of the
episode at level l is for a certain state projection, f l(st),
to approach a given goal gl

t ∈ Gl (optionally, gL
t is the

environment goal in the current episode). For l < L,
Gl = Al+1 The f l function, f l : S → Gl+1, usually
just extracts certain coordinates from its vector input.
For l < L, the state sl

t also includes a subgoal of l-th
level gl

t . SRD value εl > 0 specifies the precision with
which the policy πl must approach the state projection
f l(st) of subgoal gl

t . The reward for the l-th level rl
t

depends on the successful approaching of f l(st) in the
assumed time.

The overall task considered in this paper is to learn
the hierarchy of policies (2) so that the expected sum
of future discounted rewards is maximized in each
state at each hierarchy level.

87

3 Related Work

Hierarchical Reinforcement Learning (HRL) is a
framework that introduces hierarchy into control by
decomposing a Markov Decision Process (MDP) into
smaller MDPs. This approach enhances structured
exploration and facilitates credit assignment (fam-
ily=Vries et al.,), particularly in scenarios with sparse
rewards (Pateria et al., ; Nachum et al., 2019). HRL
comprises three main branches: option-based (Sut-
ton et al., 1999; Barto and Mahadevan, 2003; Pre-
cup, 2000; Bagaria and Konidaris, 2019; Shankar
and Gupta, 2020), skill-based (Eysenbach et al., 2018;
Sharma et al., 2019; Campos et al., 2020), and goal-
based.

Our research primarily focuses on the goal-
conditioned hierarchical reinforcement learning
(GCHRL) approach, where the high-level policy com-
municates with a lower-level policy (Schmidhuber,
1991; McGovern and Barto, 2001; Vezhnevets et al.,
2017; Zhang et al., 2020a). In this setup, the high-
level policy typically returns a subgoal that conditions
the lower-level policies. Consequently, the low-level
policy is rewarded for approaching the designated sub-
goal. Nevertheless, training a hierarchy of policies
using prior experience introduces non-stationarity is-
sues (Jiao and Tsuruoka,), as selecting subgoals for
lower-level policies can yield different results due to
policy changes during learning. To address this chal-
lenge, various methods of subgoal re-labelling have
been proposed.

Levy et al. (Levy et al., 2017) introduced hierar-
chical experience replay (HAC), employing hindsight
experience replay, where actual states achieved are
treated as if they had been selected as subgoals. On
the other hand, Nachum et al. (Nachum et al., 2018)
presented HIRO, a method based on off-policy cor-
rection, where unattained subgoals in transition data
are re-labelled with alternatives drawn from the dis-
tribution of subgoals that maximize the probability of
observed transitions.

Furthermore, recent advancements have enhanced
high-level guidance and introduced timed subgoals in
Hierarchical Reinforcement Learning with Timed Sub-
goals (HiTS) (Gürtler et al.,). This method enhances
the precision of communication between hierarchical
levels, which is particularly crucial in dynamic envi-
ronments.

Nevertheless, as far as we can tell, there is a notable
absence of literature on utilising varying SRD within
a hierarchical setup, even though there is an extensive
body of knowledge concerning subgoals impact on
exploration (Portelas et al., 2020; Zhang et al., 2020b;
Li et al., 2021). In HRL, varying subgoal criteria

emerge naturally due to the ongoing training of low-
level and high-level policies. Therefore, we must gain
a deeper understanding of this interaction.

3.1 Varying subgoal achievement
criterion in sparse reward GCHRL

In most of the GCRL methods (Levy et al., 2017;
Gürtler et al.,), the goal (or subgoal) is reached when
the distance between each of the corresponding ele-
ments of the current state and the subgoal state gl

t is
smaller than εl > 0. Thus, the goal is not reached when
part of the achievement criteria is unsatisfied. This for-
mulation enforces strict control over goal-conditioned
policy. However, (Fournier et al., 2018) shows that
reachability is poor at the beginning of the training
and adaptive strategies of SRD improve the training
efficiency in flat RL.

The SRD impacts the performance of goal-
conditioned RL (Liu et al., 2022), especially GCHRL
methods with sparse rewards on every level. This is be-
cause HRL methods like HAC (Levy et al., 2017) and
HiTS (Gehring et al., 2021) use a mechanism to test if
the subgoals defined by the higher level are attainable.
This mechanism, dubbed testing transitions, results
in additional penalties for HL if generated subgoals
are not reachable by the deterministic LL policy. As
a consequence, HL policy is encouraged to produce
mostly reachable subgoals.

However, the frequent cause of failure of GCHRL
methods with sparse rewards and testing transition
mechanism arises from the wrong ratio of HL rewards
environmental and reachability (Levy et al., 2017).
Usually, the environment yields sporadic positive feed-
back for task completion, and reachability rewards
are designed a priori by the algorithm author. The
failure manifests itself with optimization of reacha-
bility rather than environmental return, which results
in easily achievable subgoals that do not lead to task
progression. In practice, there is a narrow range of
possible penalty values for testing transitions that do
not interfere with environmental reward, i.e. balances
these two sources of the reward signal. Thus, for ef-
ficient learning of the HRL method, there is a need
to either find a proper hyperparameter of the percent-
age of testing transitions or εl that defines the subgoal
SRD.

We propose a new method that effectively identi-
fies suitable SRDs to address this limitation. Unlike
Fournier’s approach (Fournier et al., 2018), our method
does not make any assumptions about the SRD and
instead learns it directly from past experience. This
makes our approach more flexible and applicable to a
wider range of scenarios with limited prior knowledge

88

Figure 2: During the training, the average distance to the
subgoal, i.e. subgoal error, decreases over time due to higher
LL policy precision. In this symbolic diagram, black dots
represent the subgoal position, while green circle represents
SRD. We propose SRD defined as the function of recent
distances to subgoals to consider current LL performance.
As the training progresses, the distribution errors approach
a distribution determined by the physical constraints of the
manipulator.

about the problem domain.

4 Adaptive Subgoal Required
Distance (ASRD)

Within our approach, SRD is designated online for a
given fraction of recent final episode states to have got
close enough to their goals. The method’s primary goal
is to aid the training robustness in finding a proper SRD
and, as a result, increase higher final performance. The
following sections call the proposed method adaptive
subgoal required distance (ASRD).

Specifically, at the end of every (l +1)-level action
we store the distances to the subgoal gl , l < L in a
buffer Bl . We use a cyclic buffer of maximum size
N. We define a new SRD, εl , based on the distances
stored in the buffer Bl . Specifically, j-th element of
the subgoal equals the quantile of order q of the j-th

Require :sl
t , gl

t
Ensure : l-level episode ended at t
Store (gl

t − f l(sl
t)) in a FIFO buffer Bl of max

size N;
if size(Bl) = N then

for j := 1, . . . ,dim(Gl) do
/* Calculate new SRD for each

goal dimension */

εl
j := Qq

(
{|d j| : d ∈ Bl}

)

end
else

/* If the buffer is not yet
filled, use a fixed SRD */

εl := εl
0

end
Algorithm 1: ASRD algorithm, to be run after gathering
the final state of the l-th level episode.

elements of the distances stored in the buffer Bl

εl
j = Qq

(
{|d j| : d ∈ Bl}

)
(2)

where Qq denotes the quantile of order q of its argu-
ment. At the beginning of the training, when there is
not enough data in the buffer to accurately determine
the quantile, we use a fixed SRD εl

0. We present our
ASRD method in Algorithm 1.

It is worth noting that the higher dimensional the
subgoal, the lower the chances of successfully reach-
ing it, which has already been shown in (Gehring et al.,
2021). The overall likelihood of achieving a subgoal
results from the conjunction of probabilities of achiev-
ing the subgoal criteria per element.

5 Empirical Results

Our experiments aim to evaluate the effect of the pro-
posed mechanism of ASRD in GCHRL methods with
sparse reward in terms of SRD robustness. Specifically,
we compare the performance of baseline GCHRL
methods with their equivalent enhanced with ASRD.

In particular, we verify the following hypothesis in
this section:

• H0: performance of HRL methods is highly sensi-
tive to environment goal required distance.

• H1: the proposed method of varying SRD aids the
robustness of the training process of GCHRL with
sparse rewards.

• H2: adjustable SRD allows obtaining higher con-
trol precision faster.

89

5.1 Experimental Setup

We evaluate our method for two goal-conditioned hier-
archical algorithms, namely HAC (Levy et al., 2017)
with fixed-length subgoals and HiTS (Gehring et al.,
2021) with timed subgoals, both using hindsight expe-
rience replay (Andrychowicz et al., 2017). These two
methods are used because both use sparse rewards on
every hierarchy level. We assess the effectiveness of
our method using the same hyperparameters for HAC
and HiTS as those in (Gehring et al., 2021), without
making any changes. Results are reported across 4 dif-
ferent environments (shown in Figure 3) where spatial
and timed precision of subgoal reachability is crucial
in order to achieve high performance:

1. Drawbridge: The agent controls a ship travelling
on a straight river. Its goal is to cross the draw-
bridge the moment it opens. Therefore, the agent
must synchronise its actions with the position of
the drawbridge and accelerate early enough to pass
it without hitting it and losing all of the momen-
tum. It is impossible for the agent to actively slow
down the ship – this makes this simple problem
challenging as it requires the agent to learn to wait.

2. Pendulum: This environment is based on the clas-
sic problem in control theory and consists of a pen-
dulum attached at one end to a fixed point, and the
other end being free. The agent’s goal is to apply
torque on the free end to swing it into an upright
position, each time starting with a random angle
and velocity. Despite being conceptually simple,
this problem requires a sequence of properly timed
swings to finish in the desired position.

3. Platforms: In this environment, the agent starts on
the lower level and must get to the upper level us-
ing a pair of moving platforms. The first platform
moves up and down independently of the agent’s
actions, while the second platform is only activated
when the agent steps on a special button. In this
challenging scenario, the agent must learn to syn-
chronize the activation of the second platform with
the position of the first, and then use both to get to
the higher level.

4. UR5Reacher: The agent’s task is to move a robotic
arm, which it controls by rotating its joints, to a
specified location. Because the joints affect each
other’s position, it must learn and synchronise
these interdependencies. Decomposing this prob-
lem into a sequence of sensible subgoals can solve
it much faster than using flat RL.

Our method considers distances to subgoals over
the most recent 1000 HL actions. It calculates a pre-
defined quantile of them to use as an SRD in the fol-

Figure 3: The environments used in our experiments.
From the left: Drawbridge, Pendulum, Platforms and
UR5Reacher.

lowing HL action. In the following experiments, we
use three different quantiles of orders 0.1, 0.25, and
0.5 for adapting SRD with different target goal achiev-
ability. It is worth noting that the proposed method
reduces the burden of tuning every element of subgoal
achievement criteria (which may be as big as state
space) separately. Instead, using the proposed method
one can replace this tunning with a grid search for one
scalar (quantile) that works best.

5.2 H0: Sensitivity to goal required
distance

We recognize that the task of achieving sparse reward
heavily depends on the environmental goal required
distance. In particular, the task becomes harder if the
environmental goal requires higher precision. Environ-
mental requirements might not be fulfilled if the agent
does not adjust subgoals precision to learn fine-grained
control. This issue is depicted in Figure 4, which il-
lustrates how the need for greater precision affects the
agent’s ability to achieve the environmental goal.

In our observations, we found that when we in-
creased the necessary precision by 4 and 10 times, both
algorithms were affected, but HAC showed a greater
sensitivity. Furthermore, when comparing vanilla
HAC and HiTS to cases where the ASRD mechanism
was used, we noticed that the former two algorithms
took longer to reach their final performance. Notably,
our method only slightly delayed convergence in sce-
narios where environmental precision remained un-
altered, but it enhanced performance in cases with
disturbances.

90

Figure 4: Sensitivity to environmental goal required distance
on UR5Reacher environment for HAC and HiTS with and
without ASRD. In the legend, numbers describe the coeffi-
cient by which we scaled the environmental goal required
distance. The smaller the number, the harder the task of
reaching the environmental reward.

5.3 H1: Robustness of GCHRL training
to varying SRD

To test the sensitivity of the considered HRL methods
to the SRD parameter, we disturb its value fine-tuned
by their authors. Specifically, we scale them with
a predefined factor called the SRD multiplier. We
examine the agents’ performance with and without
ASRD in this setting. In particular, we evaluate agents’
performance based on the average success rate from
the final training performance, i.e. last 10% of time
steps, to reduce the noise in the results.

We show the aggregated results obtained by the
base HAC and HiTS algorithms with constant SRD
and with SRD adapted by our method in Table 1 for
better clarity. The results of methods enhanced with
ASRD are the same or higher for almost all environ-
ment/algorithm/SRD multiplier combinations for at
least one quantile. The performance of agents in the
undisturbed scenario, i.e. where SRD Multiplier is 1,
our method yields a boost in performance for every
environment/algorithm combination except for HiTS
in the Platforms environment.

The SRD Multiplier has a greater impact on
the final outcome of the HiTS algorithm than the

tested ASRD variations on Pendulum, Platforms, and
UR5Reacher environments. On the other hand, the
HAC algorithm is more affected by the initial SRD
on Drawbridge and UR5Reacher. HAC achieves a
low average success rate on the Platforms environment
regardless of SRD. However, when using SRD adapta-
tion with q = 0.25 and q = 0.5, it consistently achieves
a higher success rate compared to the base algorithm.

For all environments, HAC with SRD adaptation
obtains good results when using q = 0.25, although
for Drawbridge, it obtains even better results using
q = 0.1 and for UR5Reacher using q = 0.5. HiTS with
SRD adaptation obtains good results using any q value,
however, the best q value varies between environments.
The best results on HiTS with SRD adaptation obtains
using q = 0.25 for Drawbridge, q = 0.1 for Pendulum,
q = 0.5 for Platforms, and any q for UR5Reacher.

Our method helps address the issue of varying lev-
els of achieved testing transitions by defining SRD
based on recent data. The level of testing transitions
success is determined by the quantile and the explo-
ration of the lower level, which in our experiments
forces it to stay low along the training. As a result, our
method improves the training stability of HiTS and
HAC. However, it should be noted that the quantile
order hyperparameter should be tuned per environment
because there is no clear indication of one quantile that
performs best across all environments. Also, due to the
inherent noisiness of sparse reward HRL, the reported
standard deviations indicate a significant discrepancy
in performance across runs. Overall, adaptive SRD re-
sults in faster algorithm convergence to optimal policy
in HiTS and a boost in the performance of HAC, which
without our method cannot solve the Drawbridge envi-
ronment.

5.4 H2: Adaptive SRD convergence

In this section, we closely examine the impact of
ASRD on agents’ precision, defined as a distance to the
subgoal, i.e. subgoal error, at the end of the HL action.
We also explore the implications of using different
length time windows in ASRD. Given the current ca-
pabilities of the lowest level, we would assume that
adaptive SRD should result in sufficiently demanding
but still realistic subgoals.

To calculate the distance to the subgoal, we store
the vectors representing the final state of the agent
and the subgoal state for each HL action. We then
subtract the state vector from the subgoal vector and
calculate the l2 norm of this difference. By splitting the
data acquired in this way into 3 equal-sized parts from
different training phases, we observe how precise our
agent was in reaching subgoals and how its capability

91

SRD Multiplier

Env Method Q order 0.25 0.5 1 2 4

Drawbridge

HAC - 97.5±1.7 60.1±30.4 10.8±6.7 0.1±0.0 0.4±1.0
0.1th 94.9±7.6 88.7±18.7 98.5±1.8 94.3±9.1 92.6±8.0
0.25th 66.9±22.4 65.8±27.4 78.2±21.6 76.6±28.7 65.4±5.2
0.5th 0.7±0.1 4.5±4.8 2.4±3.9 9.9±9.7 19.9±27.3

HiTS - 99.9±0.0 100.0±0.0 99.6±0.7 99.8±0.1 100.0±0.0
0.1th 99.9±0.1 99.9±0.1 99.9±0.1 99.9±0.1 87.7±28.7
0.25th 99.8±0.3 99.8±0.2 99.9±0.0 99.9±0.2 96.6±6.7
0.5th 99.9±0.1 99.8±0.3 99.9±0.0 99.9±0.1 83.6±32.7

Pendulum

HAC - 47.3±33.3 73.3±11.5 66.0±15.0 77.1±13.6 64.9±23.9
0.1th 41.8±30.5 50.8±36.1 58.6±27.0 81.1±15.8 87.2±4.7
0.25th 34.1±31.4 51.1±33.8 80.0±7.1 85.3±5.6 84.0±7.5
0.5th 18.5±21.7 42.6±36.2 57.4±27.6 75.1±8.2 82.8±5.1

HiTS - 81.2±10.9 91.7±0.4 90.2±2.0 84.6±7.9 70.8±7.3
0.1th 92.0±4.1 89.8±6.9 91.1±3.6 89.9±2.4 86.9±5.5
0.25th 91.2±3.2 75.2±18.5 89.3±5.7 86.9±4.2 83.5±4.6
0.5th 87.8±1.5 79.4±7.9 85.4±8.1 82.6±3.1 82.3±5.5

Platforms

HAC - 37.0±36.3 27.6±17.5 43.5±29.2 6.0±8.5 0.3±0.6
0.1th 54.3±39.7 2.4±4.6 4.1±6.8 4.3±6.5 14.5±16.4
0.25th 49.7±37.3 37.8±38.0 45.1±39.9 44.4±39.3 35.7±34.1
0.5th 39.6±3.1 55.9±21.8 35.1±18.2 27.4±26.9 48.0±23.4

HiTS - 66.8±46.4 75.8±24.2 85.7±35.0 66.7±47.1 14.3±35.0
0.1th 79.0±25.9 82.0±19.0 67.4±34.5 69.9±29.4 64.2±35.5
0.25th 80.7±31.5 64.4±43.2 61.6±41.1 60.5±41.3 79.5±33.0
0.5th 86.9±23.4 82.2±22.7 75.7±22.8 57.2±38.2 93.9±4.6

UR5Reacher

HAC - 99.9±0.0 99.9±0.1 99.8±0.1 99.5±0.7 90.1±23.8
0.1th 99.8±0.1 99.9±0.0 99.7±0.2 98.9±0.9 98.7±0.7
0.25th 99.9±0.1 99.9±0.0 99.8±0.1 99.5±0.2 98.8±1.1
0.5th 99.9±0.0 99.9±0.1 99.8±0.1 99.4±0.4 99.5±0.3

HiTS - 100.0±0.0 100.0±0.0 100.0±0.0 99.1±1.0 93.1±3.0
0.1th 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
0.25th 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0
0.5th 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

Table 1: Comparison of final average success rates for different environments, algorithms, adaptive SRD quantile orders, and
initial SRD value multipliers. Q order of ’-’ denotes the base algorithm with constant SRD. The reported averages and standard
deviations are calculated using five different seeds.

evolved during the training.
Indeed, the effect of squashed subgoal error dis-

tribution across training can be observed in Figure 5.
It shows that, from the beginning of the training, our
method makes the agent more focused on finishing
closer to the assigned subgoal. Because, during the
training, the LL performance increases and HL learns
what the lower level is currently capable of, subgoals
are getting gradually more reachable in terms of dis-
tance as the training progresses.

We analyzed how the window length influence the
adaptive SRD method by comparing the average suc-
cess rates of HAC+ASRD and HiTS+ASRD for dif-
ferent window lengths, namely 50, 500, and 1000. In
Table 2 we report the results of this experiment for
each environment.

Clearly, HiTS method is less susceptible to window
length changes in terms of final average performance
than HAC. However, HiTS and HAC exhibit the high-

est variance in results in the Platforms environment,
which is the hardest among tested environments. There
is also a considerable difference between HAC perfor-
mance in Drawbridge and Pendulum environments
which indicates higher dependence on window length
for HAC. The highest results for HiTS+ASRD are ob-
tained using shorter window lengths, while there is no
clear relation between window length and performance
for HAC.

It is important to not that HAC and HiTS differ in
how they determine the length of their high-level (HL)
actions. HAC uses fixed times, whereas HiTS learns
the optimal timing for each HL action. As a result,
the length of HL actions may vary greatly between
these two algorithms. This difference in action length
can cause a delay between the current low-level (LL)
capabilities and the subgoal distances recorded in the
distances to the subgoal replay buffer. In fact, this is
particularly noticeable in the HiTS algorithm, where

92

Figure 5: Normalized histograms of the distances to the subgoals throughout training on the Platforms-v1 environment. In
both cases (left: vs. HAC, right: vs. HiTS), our method leads to distributions with smaller mean and variance. The distribution
change across training is evident for the HiTS+ASRD method where subgoal error forms distribution with a significantly
thinner tail than HiTS.

using a smaller window length for learning HL actions
leads to better performance in every environment.

Window length

Env Method 50 500 1000

Drawbridge HAC 88.9± 15.7 87.7 ± 17.3 98.5 ± 1.8
HiTS 99.9± 0.1 98.5± 1 99.9 ± 0.1

Pendulum HAC 87.0 ± 3.0 76.0 ± 16.5 80.0 ± 7.1
HiTS 91.4 ± 2.6 90.3 ± 2.8 91.1± 3.6

Platforms HAC 21.0 ± 29.8 50.6 ± 14.7 35.1 ±18.2
HiTS 99.3 ± 0.2 64.0 ±45.3 75.7±22.8

UR5Reacher HAC 99.8 ± 0.1 99.5± 0.2 99.8±0.1
HiTS 100 ± 0 100 ± 0 100 ± 0

Table 2: Influence of window length on ASRD performance
for HiTS and HAC algorithm. The final success rate’s re-
ported averages and standard deviations are calculated using
multiple seeds.

6 Discussion and Further Work

We consider the ASRD a step forward in formulat-
ing suitable subgoals in the control task for GCHRL,
especially in a sparse reward setting. The proposed
method leads to higher results in 7 out of 8 environ-
ment/algorithm combinations while using the original
SRD proposed by HAC and HiTS authors. While
disturbing the SRD by the predefined multiplier, our
method significantly boosts performance in most cases.
However, our method’s main limitation is that no sin-
gle quantile order or window length universally works
for all environments. Further research is needed to des-
ignate these parameters without trial-and-error tuning.

We speculate that environment dimensionality and,
as a consequence, subgoal dimensionality are critical

factors in determining the optimal quantile order for
ASDR. This is supported by the monotonic tendency
for performance increase/decrease in Table 1 with re-
spect to the quantile order.

The relation between window length and perfor-
mance is clear for HiTS. The window length should be
short to consider only the most recent HL actions and
LL capabilities. However, there is no clear prescrip-
tion for window length in HAC, as it appears to be
more environment-specific. Further research is needed
to understand this difference.

One promising avenue for future research involves
the development of adaptive masks for state vectors.
These masks would identify critical state coordinates
that could be used as subgoals, with varying levels of
importance assigned to each component. This would
enable the subgoal vector to be composed of coor-
dinates with highly disparate levels of importance
for successful task completion without sacrificing
the agent’s performance. Additionally, the proposed
method could be extended to scenarios where each
coordinate of the subgoal vector has its quantile or-
der, allowing less important elements to use higher
quantiles. This way, only key subgoal elements would
determine the reachability bottleneck.

7 Conclusions

Our work addresses a significant limitation in GCHRL
algorithms by proposing a novel method that adapts the
subgoal range dynamically based on the agent’s recent
performance. We show that fixed subgoal ranges can
lead to either too narrow or imprecise subgoals, which
hinder the learning process. Our adaptive approach

93

improves training robustness and method performance
while simplifying the hyperparameter tuning proce-
dure. Our findings also suggest that our method leads
to higher control precision and faster convergence in
most cases. Overall, our work contributes to the on-
going effort to improve HRL methods, especially in
subgoal reachability issues in sparse reward GCHRL.

ACKNOWLEDGEMENTS

This research was partially funded by the Warsaw Uni-
versity of Technology within the Excellence Initiative:
Research University (IDUB) programme LAB-TECH
of Excellence (grant no. 504/04496/1032/45.010013),
research project "Bio-inspired artificial neural net-
work" (grant no. POIR.04.04.00-00-14DE/18-00)
within the Team-Net program of the Foundation
for Polish Science co-financed by the European
Union under the European Regional Development
Fund, and National Science Centre, Poland (grant no
2020/39/B/ST6/01511). This research was supported
in part by PLGrid Infrastructure.

REFERENCES

Adolph, K. E., Cole, W. G., Komati, M., Garciaguirre, J. S.,
Badaly, D., Lingeman, J. M., Chan, G. L. Y., and Sot-
sky, R. B. How Do You Learn to Walk? Thousands of
Steps and Dozens of Falls per Day. 23(11):1387–1394.

Andrychowicz, M., Crow, D., Ray, A., Schneider, J., Fong,
R., Welinder, P., McGrew, B., Tobin, J., Abbeel, P.,
and Zaremba, W. (2017). Hindsight experience replay.
ArXiv, abs/1707.01495.

Bagaria, A. and Konidaris, G. (2019). Option discovery
using deep skill chaining. In International Conference
on Learning Representations (ICLR).

Barto, A. G. and Mahadevan, S. (2003). Recent advances
in hierarchical reinforcement learning. Discrete event
dynamic systems, 13(1):41–77.

Campos, V., Trott, A., Xiong, C., Socher, R., Giró-i Nieto,
X., and Torres, J. (2020). Explore, discover and learn:
Unsupervised discovery of state-covering skills. In
International Conference on Machine Learning, pages
1317–1327. PMLR.

Chane-Sane, E., Schmid, C., and Laptev, I. Goal-
Conditioned Reinforcement Learning with Imagined
Subgoals.

Colas, C., Karch, T., Sigaud, O., and Oudeyer, P.-Y.
Autotelic Agents with Intrinsically Motivated Goal-
Conditioned Reinforcement Learning: A Short Survey.
74.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S. (2018).
Diversity is all you need: Learning skills without a
reward function. In International Conference on Learn-
ing Representations.

Eysenbach, B., Salakhutdinov, R. R., and Levine, S. (2019).
Search on the replay buffer: Bridging planning and re-
inforcement learning. Advances in Neural Information
Processing Systems, 32.

family=Vries, given=Joery A., p. u., Moerland, T. M., and
Plaat, A. On Credit Assignment in Hierarchical Rein-
forcement Learning.

Fournier, P., Sigaud, O., Chetouani, M., and Oudeyer, P.-Y.
(2018). Accuracy-based Curriculum Learning in Deep
Reinforcement Learning.

Gehring, J., Synnaeve, G., Krause, A., and Usunier, N.
(2021). Hierarchical skills for efficient exploration.
Advances in Neural Information Processing Systems,
34:11553–11564.

Ghosh, D., Gupta, A., Reddy, A., Fu, J., Devin, C., Eysen-
bach, B., and Levine, S. (2019). Learning to reach
goals via iterated supervised learning. arXiv preprint
arXiv:1912.06088.

Gürtler, N., Büchler, D., and Martius, G. (2021). Hier-
archical reinforcement learning with timed subgoals.
Advances in Neural Information Processing Systems,
34:21732–21743.

Gürtler, N., Büchler, D., and Martius, G. Hierarchical Rein-
forcement Learning with Timed Subgoals.

Jiao, Y. and Tsuruoka, Y. HiRL: Dealing with Non-
stationarity in Hierarchical Reinforcement Learning
via High-level Relearning.

Lee, S., Kim, J., Jang, I., and Kim, H. J. (2022). Dhrl: A
graph-based approach for long-horizon and sparse hi-
erarchical reinforcement learning. Neural Information
Processing Systems.

Levy, A., Konidaris, G., Platt, R., and Saenko, K.
(2017). Learning multi-level hierarchies with hind-
sight. arXiv:1712.00948.

Li, S., Zhang, J., Wang, J., Yu, Y., and Zhang, C. (2021).
Active hierarchical exploration with stable subgoal rep-
resentation learning. In International Conference on
Learning Representations.

Liu, M., Zhu, M., and Zhang, W. (2022). Goal-Conditioned
Reinforcement Learning: Problems and Solutions.

McGovern, A. and Barto, A. G. (2001). Automatic discovery
of subgoals in reinforcement learning using diverse
density.

Nachum, O., Gu, S. S., Lee, H., and Levine, S. (2018). Data-
efficient hierarchical reinforcement learning. In Neural
information processing systems (NeurIPS), volume 31.

Nachum, O., Tang, H., Lu, X., Gu, S., Lee, H., and Levine,
S. (2019). Why does hierarchy (sometimes) work so
well in reinforcement learning? arXiv preprint arXiv:
Arxiv-1909.10618.

Pateria, S., Subagdja, B., Tan, A.-h., and Quek, C. Hier-
archical Reinforcement Learning: A Comprehensive
Survey. 54(5):1–35.

Portelas, R., Colas, C., Weng, L., Hofmann, K., and Oudeyer,
P.-Y. (2020). Automatic Curriculum Learning For Deep
RL: A Short Survey.

Precup, D. (2000). Temporal abstraction in reinforcement
learning. University of Massachusetts Amherst.

94

Schmidhuber, J. (1991). Learning to generate sub-goals for
action sequences. In Artificial neural networks, pages
967–972.

Shankar, T. and Gupta, A. (2020). Learning robot skills
with temporal variational inference. In International
Conference on Machine Learning, pages 8624–8633.
PMLR.

Sharma, A., Gu, S., Levine, S., Kumar, V., and Hausman,
K. (2019). Dynamics-aware unsupervised discovery of
skills. arXiv:1907.01657.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learn-
ing: An Introduction. Second edition. The MIT Press.

Sutton, R. S., Precup, D., and Singh, S. (1999). Between
mdps and semi-mdps: A framework for temporal ab-
straction in reinforcement learning. Artificial intelli-
gence, 112(1-2):181–211.

Vezhnevets, A. S., Osindero, S., Schaul, T., Heess, N., Jader-
berg, M., Silver, D., and Kavukcuoglu, K. (2017).
Feudal networks for hierarchical reinforcement learn-
ing. In International Conference on Machine Learning,
pages 3540–3549. PMLR.

Zhang, T., Guo, S., Tan, T., Hu, X., and Chen, F. (2020a).
Generating adjacency-constrained subgoals in hierar-
chical reinforcement learning. Advances in Neural
Information Processing Systems, 33:21579–21590.

Zhang, Y., Abbeel, P., and Pinto, L. (2020b). Automatic
Curriculum Learning through Value Disagreement.

95

B.5. Influence of IQT on research in ICT

Title Influence of IQT on research in ICT

Authors Bogdan Bednarski, Łukasz Lepak, Jakub Łyskawa,
Paweł Pieńczuk, Maciej Rosoł, Ryszard Romaniuk

Journal International Journal of Electronics and Telecommunications

Volume 68

Year 2022

DOI 10.24425/ijet.2022.139876

Ministerial score 70

Pages 259 – 266

96

INTL JOURNAL OF ELECTRONICS AND TELECOMMUNICATIONS, 2022, VOL. 68, NO. 2, PP. 1–6
Manuscript received May 10, 2022; revised MM DD, 2022. DOI: 10.24425/ijet.2022.126xxx

Influence of IQT on research in ICT
B. J. Bednarski, Ł. E. Lepak, J. J. Łyskawa, P. Pieńczuk, M. Rosoł and R. S. Romaniuk

Abstract—This paper is written by a group of Ph.D. students
pursuing their work in different areas of ICT, outside the direct
area of Information Quantum Technologies IQT. An ambitious
task was undertaken to research, by each co-author, a potential
practical influence of the current IQT development on their
current work. The research of co-authors span the following areas
of ICT: CMOS for IQT, QEC, quantum time series forecasting,
IQT in biomedicine. The intention of the authors is to show how
quickly the quantum techniques can penetrate in the nearest
future other, i.e. their own, areas of ICT.

Keywords—ICT, control theory, IQT, Information Quantum
Technologies, Quantum 2.0, applications of IQT, quantum sys-
tems, qubit neural networks, quantum time series forecasting,
Quantum Reinforcement Learning

I. INTRODUCTION

THE broad area of ICT embraces hardware and soft-
ware for computer engineering, communications, sensing

and measurements, system science and technology, networks,
and applications. IQT embraces quantum computing, quantum
communications and networks, timing, quantum sensing and
measurements. The mutual coverage of research and applica-
tion areas is surprisingly large.

Artificial Intelligence is an area that has a lot of potential
in applying quantum technologies to real-life problems. While
normally it would require much larger quantum computers
than currently available, a lot of research is done using sim-
ulations and small-scale problems. Reinforcement learning,
an area of artificial intelligence, is intensively adapted in
recent years to be able to utilise quantum technology to its
advantage, including integrating non-deterministic aspects of
quantum into its design. Control theory is an area of applied
mathematics with a broad range of applications in many
fields of engineering. Control of qubits and gates in quantum
computers reveal many interesting problems both resolved,
deeply analyzed ones and those which are in pretty early
stage of theoretical development. Owing to specific nature of
quantum systems, finding solutions to these problems implies
advancement not only to the quantum technology but also to
control theory itself.

Classical and quantum technologies in the mentioned ar-
eas differ essentially in all aspects. IQT bases on coherence
and entanglement as operational resources [14]. Quantum re-
sources are very precious and irreplaceable, thus their usage in
single operational steps should be carefully optimized. NISQ
processors started to be used as computational coprocessors
in classical ICT systems, but so far only for a confined set of
problems [43]. Search goes on widening this set.

II. CMOS FOR IQT INTERFACE

Nowadays, the most of the Quantum Devices and Sys-
tems work under the cryogenic regime. These devices require
special casing and chambers to maintain the extremely low
temperatures. It is also needed to interface with existing in-
struments, like measurement units or control units. The need
for miniaturizing and reliability requires integration of parts,
working under very hard conditions. Application-specific in-
tegrated circuits (ASICs) can address this demand. Although
there is a continuing research on semiconductor qubits [6],
in this section only the classic electronics interface with is
discussed.

CMOS (Complementary Metal-Oxide-Semiconductor) tech-
nology is mature yet still developed semiconductor process.
Although the standard CMOS target is room temperature,
there is much effort put into characterizing and modeling
these devices’ cryogenic performance. CMOS technology can
reduce the number of complex interconnections between the
cryogenic chamber and room temperature world. It can result
in a more compact and reliable system [45]. To create a
chip for these applications, it is needed to develop an EDA
platform, known as Process Design Kit (PDK).

Typical PDK consists of valid models, device instances,
EDA tools setups (e.g., Design Rule Check), and detailed
documentation. Some manufacturers also provide prepared
cells (digital gates, memory cells) for automatic digital block
generation. Many of them include the I/O blocks with pads
and electrostatic discharge (ESD) protection. Availability of
generic analog cells (operational amplifiers, references or
other) is not obligatory but it speeds up the design process.

A. Models

There are plenty of CMOS PDKs with accurate room
temperature models on the market. Standard purpose CMOS
processes are characterized within (-40 °C; + 120 °C) range.
The Cryo-CMOS should be characterized under shallow tem-
perature, down to a few K. In this region, several effects should
be considered.

The broadening of the depletion region under the cryogenic
regime is observed [58]. This effect is caused by the incom-
plete ionization of dopants in bulk. In effect, the effective
dimensions of the transistor are modified, so its performance.

Furthermore, the carrier mobility rises with the lower tem-
perature; however, this rise is strongly correlated with the
channel length [58]. It can improve the dynamic performance
of the MOS transistors by pushing the cut-off frequency
higher. Another result of carrier mobility rise is the higher

© The Author(s). This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0,
https://creativecommons.org/licenses/by/4.0/), which permits use, distribution, and reproduction in any medium, provided that the Article is properly cited.

97

2 B. J. BEDNARSKI, Ł. E. LEPAK, J. J. ŁYSKAWA, P. PIEŃCZUK, M. ROSOŁ, R. S. ROMANIUK

drain current. Different models can be used for this task. Two
most popular are BSIM (industry-standard) and EKV [55].
While BSIM is more accurate (BSIM6.0), especially in the
deep submicron nodes [52], EKV requires less parameters to
achieve some acceptable fitness level. Even if the computa-
tional resources are rather large nowadays, this trade-off is
still worth consideration once the complex system simulation
is needed.

B. Devices

There are plenty of CMOS PDKs with accurate room tem-
perature models on the market. The Cryo-CMOS should be
characterized under shallow temperature, down to a few K. In
this region, the operation of MOSFET devices at extremely
low temperatures has many advantages. For example, the
carrier mobility and speed are enhanced, and the thermal noise
is lowered. There are also drawbacks, like hot-carrier effects,
which may lead to reduced reliability and device lifetime [49].
Although the physics in the discussed regime is well-known,
most of the IC EDA platforms do not allow to perform
valid simulations below 230 K because the devices are not
characterized in this region [58]. It should be pointed out that
both p-channel and n-channel devices (PMOS and NMOS)
have the same temperature dependencies.

In IQT, photodetectors can be used for the detection of
low power optical signal from photon-based qubit systems.
It can be used for interfacing data transmitting optical fibers
as well. CMOS processing allows embedding the photodiode
to the semiconductor structure, as in popular CMOS cam-
eras. Integration of the detector with a readout circuit can
improve signal to noise ratio (SNR) and minimize the size
of the entire system. In low temperatures, CMOS Avalanche
Photodiodes (APD) have generally lower quantum efficiency
but non-monotonic relative quantum efficiency. APDs have
higher forward burn-on voltage, higher drop voltage, and lower
reverse breakdown voltage [31]. Although the parameters are
different, it is reasonable to characterize and model these
devices to push the development of IQT further.

Passive devices, like resistors, capacitors, and inductors,
have different characteristics while cooled down. All types
of resistors (metalized, diffusion, and poly) have much lower
resistance in low temperatures [58]. The benefit is that the
interconnects are less resistive in low-temperature. On the
contrary, it is harder to achieve high-value resistors, often
required by the designers. Salicide block (SAB) resistors have
almost constant R-T dependency in low temperatures, which
can be useful in temperature-independent reference generators.

C. Circuits and Systems

Fig. 1 represents the potential scheme of the system. Once
there are available models of devices operating at discussed
conditions, correlated to the physical layout of the device, the
designer is capable of creating whole blocks. They can be used
for interfacing low temperature region with room temperature
world. From the system point of view, it could be profitable to
move some of the operation to this regime, once the specific
circuits would be designed and properly characterized. It may

Fig. 1: Cryo-CMOS system applied in IQT - an idea

reduce the complexity of interconnections, reduce overall size
of the system and improve the reliability.

The low-noise amplifiers (LNAs) are used to amplify the
weak signal with lowest noise and distortion possible. The
line drivers are required to connect to room temperature
devices (like measurement devices with 50Ω inputs). A lot
of electronic circuits also need stable, process, voltage and
temperature (PVT) independent references, both voltages and
currents. Transimpedance amplifiers (TIAs) are used for high-
speed current to voltage signal conversion from the photodi-
odes. Such systems may work in radio frequencies (RF), so
typical blocks of RF signal chain can be required (like mixers
or local oscillators, LO).

Designing the analog-to-digital converters (ADCs) in the
cryogenics region can help capture the signal with lowest dis-
tortion possible. The counterpart, digital-to-analog converter
(DAC) can be used for control both the quantum electron-
ics as well as classical electronics. DACs are also the part
of successive-approximation (SAR) ADCs, which are golden
mean in terms of ADC parameters.

Since the amount of the data transmitted via Quantum
Devices is expected to be huge, it seems that some digital
domain operations should be performed in the low temperature
region, e.g. error-checking interfacing with room temperature
parts of the system. It may be beneficial to perform some
digital signal processing (DSP) on the signals. That fast data
stream may require some caching within on-chip memory.

III. ERROR-CORRECTED, FAULT-TOLERANT QUANTUM
SYSTEMS AND THE UNDERLYING CONTROL THEORY

There was a short way from the formalization of control
techniques, which had given rise to a control theory as a field
of applied mathematics, to the emergence of optimal control
as the key concept of this discipline. The strong interest in this
topic initiated by Pontryagin [41] proved to be a milestone in
technological and scientific research in general.

In quantum computing the optimal control is widely ex-
plored w.r.t. two concepts: correction of qubit errors and
fault tolerance of quantum operations. These control objectives
belong to different sections of a cascaded control system, with
sections respecting quantum computer layers as proposed by

98

INFLUENCE OF IQT ON RESEARCH IN ICT 3

N. C. Jones [32]. In this section another, rather heuristic per-
spective is chosen where control of logical qubit is considered
with tighter relation with control of physical qubit.

A. Single qubit and quantum gates control aspects

Error correction is term related to both physical and logical
qubits. As a design principle it is realized via encoding of sin-
gle quantum state into a whole system of physical qubits which
yields additional degrees of freedom. Additional degrees of
freedom present in such system can be used to accomplish
detection and correction of errors. Those in turn arise due to
partial decoherence of a system of physical qubits [26] and
represent as a whole an instance of logical qubit [23]. The
problem of qubit control is therefore considered on two levels:
control of the whole quantum system defining the logical qubit
and direct control of individual physical qubits. The additional
layer of abstraction associated with the former allows for intro-
duction of more advanced control methods [13]. On the other
hand the implementation-specific nature of the latter currently
tends to better exploit the characteristics of an underlying
physical quantum system [36].

The control theory behind quantum gates has been pushed
towards more advanced methods by Eastin-Knill theorem [22]
which effectively rules out the existence of a universal quan-
tum computer composed solely of transversally implemented
logical unitary operations [60]. Ever ince then, there is a
constantly growing interest not only in circumventing the
use of non-Clfford gates via magic states but also in more
advanced methods of error correction and fault tolerance im-
plementation [60].

B. Error correction and fault tolerance in terms of the optimal
control

The main body of novel work done on the topic of error
correction retains strong ties with optimal control. In 2007
Brańczyk et al. [7] presented optimal solution for denoising
of two-level quantum system based on optimization of convex,
fidelity-based objective function. In the same paper a family
of classical control methods - namely ”discriminate and repra-
pare” and ”do nothing” strategies - are also analyzed in terms
of optimal control. A recent study of T. Shibata et al. [48]
exemplifies an interesting shift in the system optimization
techniques, where an optimal control is applied to quantum
gates on the basis of realistic models of molecular spin qubits.

Geometric Quantum Computation is a recent example of
the same trend for quantum gates [12] [16] and is posing an
interesting technoscientific challenge due to the discrepancy
between its theoretical robustness w.r.t. control errors and cur-
rent problems with environmentally induced decoherence [13].
The importance of physical level events for the logical level
systems is clearly visible in this topic.

C. From local to global optimization

While distinguishing between concepts of physical and
logical layers seems very natural and desirable in quantum
computer, their existence is not so obvious from the control

system’s perspective. In more recent publications one can
observe emergence of more detailed physical descriptions
of qubits inside models of whole logical gates [12]. This
suggests that construction of a universal quantum computer
calls for a shift in perspective – possibly the needed level of
precision together with overall sensitivity of quantum systems
is enough to force the use of control methods based on global
optimization.

Subsystem-oriented approach resulting in decoupled and/or
cascaded control schemes may in the long run hinder the
possibility of achieving high qubit fidelity with the error in
range of 10−4 [29] and below as well as further advancing
decoherence time. Alternatively, such approach can provide
valid solution at the expense of low logical system dynamics
as even interference from control electronics itself can become
problematic in quantum systems [57]. Thus global, possibly
even multi-objective optimization may become crucial aspect
of control system design for logical qubits and quantum gates,
being the strongest solution able to satisfy broad spectrum of
requirements set on quantum processors. If this should be the
case, an interesting problem then emerges whether classical
electronics will be able to accomplish control schemes for
such distributed problems in real time. Negative answer to this
question can be a spur to use high speed quantum systems –
initially NISQs – as a control platform for a larger and/or more
precise quantum systems. Possibly in the future besides ancilla
there will be also a place for control qubits in a partially self-
regulating, error-correcting and fault-tolerant systems. This
would allow quantum computers to retain an elegant analogy
to the evolution of classical computers with analog circuitry
serving the supportive role in larger digital systems. Regardless
of a specific nature of their future implementations, quantum
computers can become a strong incentive for popularization of
advanced state-space optimal control methods in other areas
of technoscience.

IV. QUANTUM TIME SERIES FORECASTING

Time series are a popular kind of datasets, in which every
sample contains information about time it was measured or
created. In most cases, these samples come from sequential
measures or observations. Example time series datasets may
include:

• weather data - i.e. wind and temperature changes
• financial data - i.e. stock and asset prices
• credit card transactions of a given user
• voltage and current measurements in an electrical circuits

Essentially, any dataset with sequential timestamps may be
considered a time series.

In this section, we will focus mainly on time series fore-
casting, as it is the application to which quantum computing
techniques are applied with success.

A. Time series forecasting task

Formally, a time series dataset may be defined as a se-
quence:

(xt), xt ∈ Rm, t = 1, ..., n (1)

99

4 B. J. BEDNARSKI, Ł. E. LEPAK, J. J. ŁYSKAWA, P. PIEŃCZUK, M. ROSOŁ, R. S. ROMANIUK

where xt is a sample containing m real values, called features,
for time t, and n is the number of samples in time series [25].
A value of the given feature at the given time is xit.

Time series forecasting uses historical time series data to
predict future values in the series. This may be defined as
follows:

ŷ(t+i,...,t+j) = f̂(x(t−l,...,t−k), θ) (2)

where:
• j − i + 1 ∈ N define output window width - number of

time steps being predicted.
• l − k + 1 ∈ N define input window width - number of

time steps being used to make predictions.
• θ represent parameters of the approximator used to make

predictions, i.e. weights in neural network model.
• f̂ is an approximation function represented by the model,

used to make predictions based on time series samples.
• ŷ is a prediction returned from the model.

For example, if we would like to forecast the weather for the
next 6 hours from now using data from the previous 12 hours,
we would have i = 0, j = 5,m = 1, n = 12.

B. Classical forecasting methods

Many classical forecasting methods utilize statistics to make
predictions. In the case of financial series, technical and
fundamental analysis techniques are also used. Examples of
such methods include exponential smoothing, moving average,
autoregression, and their combinations, such as Autoregres-
sive [Integrated] Moving Average (AR[I]MA) and [General-
ized] Auto-Regressive Conditional Heteroskedasticity model
([G]ARCH) [15].

Recently, machine learning models, such as random forests,
are used in time series forecasting, achieving good results
[10]. Also, deep neural networks, especially recurrent and
attention-based, gain more popularity, due to their general-
ization abilities and increased computing capabilities [38]. In
some applications, hybrid models using both statistical and
machine learning methods achieve the best results [30].

Looking at the progress of classical time series forecasting
methods, it is clear that the next step in evolution of these
methods is quantum computation.

C. Time series forecasting - quantum computing applications

Time series forecasting may be realized using qubit neu-
ral networks (QNNs). First QNN models were modelled as
complex neural networks, working similarly to artificial neural
networks, but with complex numbers. They were able to
match performance of simple artificial neural networks and
ARIMA models [3]. Now, qubit neural networks are based on
parametrized quantum circuits (PQCs) [4]. Forward propaga-
tion in such QNNs is fully quantum and PQCs gate param-
eters are learned with classical back propagation algorithms.
QNNs built on top of parametrized quantum circuits are able
to achieve equal or even better results than state-of-the-art
recurrent neural networks. These QNNs also have significantly
less learned parameters than their artificial neural network
counterparts, making them less susceptible to overfitting [24].

Quantum methods are also utilized in fuzzy time series fore-
casting. In fuzzy datasets, values are split into some sets, for
which intervals are not known. In [51], the authors presented
a hybrid method connecting quantum computations and linear
programming for fuzzy time series datasets. [50] introduced a
quantum method that achieves better results on fuzzy datasets
than state-of-the-art fuzzy forecasting methods. Another use of
quantum computing is for parameter optimization for classical
time series forecasting methods [27].

V. QUANTUM REINFORCEMENT LEARNING

Reinforcement learning is an area of artificial intelligence.
It focuses on creating agents that make decisions based on
the current state of the environment to perform specific tasks
in a way that maximizes both short- and long-term rewards.
Current and potential applications include notably robot con-
trol [34], bots for video games [46], and natural language
processing [56].

Reinforcement learning methods meet a number of chal-
lenges that prevent or make it difficult to apply them for real-
world problems. However, some of these problems, such as
the exploration-exploitation balance [20] may be mitigated by
the use of Quantum Information Processing (QIP) systems via
the use of Quantum Reinforcement Learning (QRL) methods
[18]. Furthermore, [18] shows that QRL can offer quadratic
increase in learning speed as compared to classical reinforce-
ment learning, and the speedup of some methods can be even
exponential for some settings [21].

An important feature of current quantum computers is the
probability of the occurrence of errors during computations
[39], which is a serious obstacle to fully employing quantum
computers [44]. This phenomenon however can be beneficial
and enhance the learning process when using QRL methods
[28].

A. Classical Reinforcement Learning framework

The framework for reinforcement learning is that of the
Markov Decision Process. It is defined by a set of states S,
a set of actions A, initial state probability P0(s), state transi-
tion probabilities conditional on actions P (st+1|st, at), and a
reward function R(at, st). The agent is defined by a decision
policy π(a|s) that for each state defines probabilities of each
action. The goal of the reinforcement learning process is to
find a decision policy that maximizes the expected rewards
[33].

B. Quantum Reinforcement Learning framework

The framework for quantum reinforcement learning meth-
ods reflects that of the framework for classical RL methods,
but with either policy and/or the decision process realized
using quantum circuits.

A quantum environment may be organized as follows. An
observable of a quantum system is selected. The eigenvectors
of this observable form a set of complete orthogonal bases.
The eigenvectors are called eigen states and correspond to the
states of a classical reinforcement learning environments. A

100

INFLUENCE OF IQT ON RESEARCH IN ICT 5

quantum state |S⟩ is defined as a superposition of eigen states
|sn⟩

|S⟩ =
∑

n

αn |sn⟩ (3)

where αn are the probability amplitudes of the corresponding
eigen states, constrained by

∑

n

|αn|2 = 1 (4)

Analogously, eigen actions of an observable correspond to
the classical reinforcement learning actions. A quantum action
|A⟩ is defined as a superposition of eigen actions |am⟩

|A⟩ =
∑

m

βm |am⟩ (5)

with probability amplitudes βm being constrained by
∑

m

|βm|2 = 1 (6)

[18].
The action can also be represented by a parameterized

unitary U(θ) on state |s⟩, where θ is a parameter, thus allowing
a quantum environment realization to have continuous action
space [59].

One approach to storing a reward is to use classical register
[18]. Another approach replaces classical reward registers
with quantum register |rt⟩ for calculating the quantum reward
function. It is updated using a functional f , a unitary Ur, and
measurement observable M with a reward for the time step
t+ 1 being calculated as follows

rt+1 ≡ f(⟨st| ⟨0|U†(θt)U
†
rMUrU(θT) |0⟩ |st⟩) (7)

where f , Ur and M are selected for the specific problem [59].

C. QRL algorithms

• An approach introduced in [18] implements the policy
for a quantum environment by storing quantum actions
in a single quantum register for each eigen state of the
environment. Whenever the action |A⟩ is measured, it
randomly collapses into an eigen action |am⟩ with the
probability |βm|2. Furthermore, the efficiency of explo-
ration is increased by the state and action being in a su-
perposition state. This way, the algorithm provides good
balance between exploration and exploitation based on
the physical properties of the underlying quantum system.
An additional quantum register is used to save |A⟩ to
prevent the memory loss associated with the collapse.
The initial probability amplitudes are equal. The proposed
QRL algorithm works by amplifying the probabilities of
the actions that provide better rewards using the Grover
algorithm.

• A similar approach was used to improve the classical RL
methods. A fair quantum model of an environment was
used as an oracle. This algorithm was able to outperform
classical algorithms on tested benchmark problems by
utilizing the quantum parallelism. It was able to search
faster for rewarding action sequences using the Grover
algorithm. [21].

• Introduction of the Variational Quantum Circuits [19] al-
lowed another approach to quantum reinforcement learn-
ing. A number of classical reinforcement learning al-
gorithms were adapted to utilize Variational Quantum
Circuits as Quantum Neural Networks, including Deep Q-
Learning [11], Deep Deterministic Policy Gradient [59]
and Proximal Policy Optimization [35]. Such approach
allows to use inherent uncertainty of NISQ circuits for
exploration.

D. QRL applications

Quantum reinforcement learning, similarly to reinforcement
learning, can be used as a model for analyzing learning process
and decision making of humans and animals, with quantum
approach giving promising results for explaining human deci-
sion making [37].

A dedicated quantum reinforcement algorithm was also
applied to a task of cloning an unknown state, a critical task
required for many applications of quantum computing. This
approach allowed to obtain high fidelity copies with relatively
low cost when compared to the usual method used for this
task i.e., tomography [47].

VI. INFLUENCE OF IQT ON BIOMEDICINE (MACIEJ’S
SECTION)

Quantum technologies are a very promising field of research
in terms of biomedical applications. The main hopes for
quantum technologies relate to the sequencing of the human
genome, aid in the diagnosis, personalization of treatment
using artificial intelligence and drugs discovery [8].

A. Molecular biology

Better understanding the human genome is a challenge
scientists take to understand the causes of cancer, diseases
risk factors, or to personalize medical treatment. Currently
computing the DNA-profile of an individual person takes about
one week with big computational power in use. With quantum
computing, this process could be significantly accelerated as
input data would be analyzed in parallel as a superposition
of wave function [5]. In genomics, it is popular to use hid-
den Markov models (HMM) for the structural annotation of
genes. The quantum version of this algorithm, hidden quantum
Markov models (HQMM) has already been proposed. The
usage of quantum properties allows for modeling the data
with fewer hidden states than classical HMM [54]. Differ-
ent quantum algorithms might be applied in many branches
of molecular biology. In tasks of gene sequencing besides
HQMM also Grover’s algorithm and quantum least-squares
algorithms are also very promising techniques, which may lead
to development in the field and in the long term perspective
of personalized medicine based on individuals’ DNA [42].

B. Drug discovery

The process of drug discovery is not only very expensive
but also time-consuming. Currently, the process of computer-
aided drug design begins with modeling interactions between

101

6 B. J. BEDNARSKI, Ł. E. LEPAK, J. J. ŁYSKAWA, P. PIEŃCZUK, M. ROSOŁ, R. S. ROMANIUK

the drug candidates and biological target and estimating the
parameters of molecules such as absorption, distribution,
metabolism, extraction and toxicity. Those calculations de-
mand very high computational power and are time-consuming.
The usage of quantum computers could not only accelerate
computations but also create opportunities for modeling which
is impossible using classical computers [9]. An example of the
algorithm which can help in modeling molecules structure and
chemical reactions is variational quantum eigensolver (VQE)
[2]. It is a hybrid quantum-classical algorithm that minimizes
the energy of the Hamiltonian, which was proposed to omit the
limitation of the quantum phase estimation algorithm, which
demands hardware much more advanced than present quantum
computers. This algorithm is based on the following steps [17]:

1) Construction of fermionic Hamiltonian
2) Representation of fermionic Hamiltonian as a sum of

Paulis strings (mapping into qubit Hamiltonian)
3) Generation of ansatz with initial parameters θ
4) Computation of the energy of Hamiltonian on a quantum

computer
5) Summation of calculated energies on a classical com-

puter and update of the parameters θ based on a chosen
optimization algorithm.

6) Steps 4 and 5 are repeated until the convergence criterion
is met.

C. Diagnostics

Quantum computing might also be a breakthrough in
computer-aided diagnostics (CAD) as it allows for a speedup
of calculations of many conventional machine learning al-
gorithms, which are broadly used in CAD systems. In the
imaging diagnostics techniques like MRI or CT CAD systems
often use convolution neural networks (CNN) for images
analysis [53]. Thanks to the usage of quantum computing
the time complexity of CNN could be reduced from O(N)
(using classical computers) to O(logN) [40]. Another algo-
rithm that finds application in medicine is Bayesian deep
learning, which is used for image classification, segmentation
and reconstruction, analysis of electronic health records and
classification tasks in different diseases [1]. Its computational
complexity on a classic computer is equal to O(N), while
with a quantum computer it can be reduced to O(

√
N) [40].

Quantum computing could be also beneficial for genetic data
analysis as it allows for the reduction of time complexity to
O(log(N)) in the case of algorithms such as PCA and SVM
which are commonly used for this type of data and their time
complexity for the classical computer is equal to O(N) and
O(N2) or O(N3) respectively [40].

VII. CONCLUSIONS

From the above collection of analyzes of relations between
specific branches of ICT and IQT one can draw a conclusion
that quantum computing is far from reaching the state of
maturity. This is especially obvious when considering the
proliferation of articles related to this topic published in a
broad range of journals. What possibly makes IQT such an
scientifically attractive topic is its ability to not only raise new

knowledge in its own merit, but also induce advancements
in the related fields when they are mutually applied to one
another.

Quantum computing benefits both from new and well-
established technologies stemming from other fields of techno-
science. This blend of state-of-the-art and new methods may
strengthen further the scientific strive for quantization.

The ongoing improvement of both quantum hardware and
algorithms allow new practical applications of IQT to emerge.
The analyzes presented in this paper suggest that this de-
velopment is gaining momentum at an unprecedented scale.
On the other hand those advancements’ undeniably limited
visibility outside of a pretty confined scientific group can
possibly provide a clue to the contemporary direction of IQT’s
development as specialized tool for scientific and military
purposes, outside of reach of consumer electronics in general.

REFERENCES

[1] Abdullah A. Abdullah, Masoud M. Hassan, and Yaseen T. Mustafa.
A review on bayesian deep learning in healthcare: Applications and
challenges. IEEE Access, 10:36538–36562, 2022.

[2] Peruzzo Alberto, McClean Jarrod, Shadbolt Peter, Yung Man-Hong,
Zhou Xiao-Qi, Love Peter J., Aspuru-Guzik Alán, and O’Brien
Jeremy L. A variational eigenvalue solver on a photonic quantum
processor. Nature Communications, 5(4213), 07 2014.

[3] Carlos RB Azevedo and Tiago AE Ferreira. The application of qubit
neural networks for time series forecasting with automatic phase adjust-
ment mechanism. In Proc. XXVII Congr. Brazilian Comput. Sci. Soc.(VI
Nat. Meeting Artif. Intell.), volume 2007, pages 1112–1121, 2007.

[4] Marcello Benedetti, Erika Lloyd, Stefan Sack, and Mattia Fiorentini.
Parameterized quantum circuits as machine learning models. Quantum
Science and Technology, 4(4):043001, 2019.

[5] K. Bertels, A. Sarkar, T. Hubregtsen., M. Serrao, A. A. Mouedenne,
A. Yadav, A. Krol, and I. Ashraf. Quantum computer architecture:
Towards full-stack quantum accelerators. In 2020 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1–6, 2020.

[6] Blokhina, Elena and et al. CMOS Position-Based Charge Qubits: The-
oretical Analysis of Control and Entanglement. IEEE Access, 8:4182–
4197, 2020.

[7] Agata M Brańczyk, Paulo E. M. F Mendonça, Alexei Gilchrist, An-
drew C Doherty, and Stephen D Bartlett. Quantum control of a single
qubit. Physical review. A, Atomic, molecular, and optical physics, 75(1),
2007.

[8] Nico Bruining, Rogier Barendse, and Paul Cummins. The future of
computers in cardiology: ‘the connected patient’? European Heart
Journal, 38(23):1781–1794, 06 2017.

[9] Y. Cao, J. Romero, and A. Aspuru-Guzik. Potential of quantum com-
puting for drug discovery. IBM Journal of Research and Development,
62(6):6:1–6:20, 2018.

[10] Vitor Cerqueira, Luis Torgo, and Carlos Soares. Machine learning
vs statistical methods for time series forecasting: Size matters. arXiv
preprint arXiv:1909.13316, 2019.

[11] Samuel Yen-Chi Chen, Chao-Han Huck Yang, Jun Qi, Pin-Yu Chen,
Xiaoli Ma, and Hsi-Sheng Goan. Variational quantum circuits for deep
reinforcement learning, 2019.

[12] Tao Chen and Zheng-Yuan Xue. High-fidelity and robust geometric
quantum gates that outperform dynamical ones. Physical review applied,
14(6), 2020.

[13] Tao Chen, Zheng-Yuan Xue, and Z. D Wang. Error-tolerant geometric
quantum control for logical qubits with minimal resource. 2021.

[14] Eric Chitambar and Gilad Gour. Quantum resource theories. Reviews
of modern physics, 91(2), 2019.

[15] Jan G De Gooijer and Rob J Hyndman. 25 years of time series
forecasting. International journal of forecasting, 22(3):443–473, 2006.

[16] Cheng-Yun Ding, Li-Na Ji, Tao Chen, and Zheng-Yuan Xue. Path-
optimized nonadiabatic geometric quantum computation on supercon-
ducting qubits. 2021.

[17] Fedorov Dmitry A., Peng Bo, Govind Niranjan, and Alexeev Yuri. VQE
method: a short survey and recent developments. Matherials Theory,
6(2), 01 2022.

102

INFLUENCE OF IQT ON RESEARCH IN ICT 7

[18] Daoyi Dong, Chunlin Chen, Hanxiong Li, and Tzyh-Jong Tarn. Quantum
reinforcement learning. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 38(5):1207–1220, oct 2008.

[19] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, and Dacheng Tao. Expres-
sive power of parametrized quantum circuits. Physical Review Research,
2(3), jul 2020.

[20] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cos-
min Paduraru, Sven Gowal, and Todd Hester. Challenges of real-world
reinforcement learning: definitions, benchmarks and analysis. Machine
Learning, 110(9):2419–2468, Sep 2021.

[21] Vedran Dunjko, Jacob M. Taylor, and Hans J. Briegel. Quantum-
enhanced machine learning. Phys. Rev. Lett., 117:130501, Sep 2016.

[22] Bryan Eastin and Emanuel Knill. Restrictions on transversal encoded
quantum gate sets. Physical review letters, 102(11):110502–110502,
2009.

[23] Laird Egan, Dripto M Debroy, Crystal Noel, Andrew Risinger, Daiwei
Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R
Brown, Marko Cetina, and Christopher Monroe. Fault-tolerant control
of an error-corrected qubit. Nature (London), 598(7880):281–286, 2021.

[24] Dimitrios Emmanoulopoulos and Sofija Dimoska. Quantum ma-
chine learning in finance: Time series forecasting. arXiv preprint
arXiv:2202.00599, 2022.

[25] Philippe Esling and Carlos Agon. Time-series data mining. ACM
Computing Surveys (CSUR), 45(1):1–34, 2012.

[26] Philippe Faist, Sepehr Nezami, Victor V. Albert, Grant Salton, Fernando
Pastawski, Patrick Hayden, and John Preskill. Continuous symmetries
and approximate quantum error correction. Physical Review X, 10(4),
oct 2020.

[27] Zhong-kai Feng, Wen-jing Niu, Zheng-yang Tang, Zhi-qiang Jiang, Yang
Xu, Yi Liu, and Hai-rong Zhang. Monthly runoff time series prediction
by variational mode decomposition and support vector machine based on
quantum-behaved particle swarm optimization. Journal of Hydrology,
583:124627, 2020.

[28] Fulvio Flamini, Arne Hamann, Sofiène Jerbi, Lea M Trenkwalder,
Hendrik Poulsen Nautrup, and Hans J Briegel. Photonic architecture
for reinforcement learning. New Journal of Physics, 22(4):045002, apr
2020.

[29] Jay M Gambetta, Jerry M Chow, and Matthias Steffen. Building logical
qubits in a superconducting quantum computing system. npj quantum
information, 3(1):1–7, 2017.

[30] Zahra Hajirahimi and Mehdi Khashei. Hybrid structures in time se-
ries modeling and forecasting: A review. Engineering Applications of
Artificial Intelligence, 86:83–106, 2019.

[31] Johnson, Erik B. et al. Characteristics of CMOS avalanche photodiodes
at cryogenic temperatures. In 2009 IEEE Nuclear Science Symposium
Conference Record (NSS/MIC), pages 2108–2114, 2009.

[32] N. Cody Jones, Rodney Van Meter, Austin G. Fowler, Peter L. McMa-
hon, Jungsang Kim, Thaddeus D. Ladd, and Yoshihisa Yamamoto.
Layered architecture for quantum computing. Physical review. X,
2(3):031007, 2012.

[33] Leslie Pack Kaelbling, Michael L. Littman, and Andrew W. Moore.
Reinforcement learning: A survey. CoRR, cs.AI/9605103, 1996.

[34] Jens Kober, J. Andrew Bagnell, and Jan Peters. Reinforcement learning
in robotics: A survey. The International Journal of Robotics Research,
32(11):1238–1274, 2013.

[35] Yunseok Kwak, Won Joon Yun, Soyi Jung, Jong-Kook Kim, and
Joongheon Kim. Introduction to quantum reinforcement learning: The-
ory and pennylane-based implementation, 2021.

[36] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien,
Sylvain Schwartz, Alexander S Zibrov, Manuel Endres, Markus
Greiner, Vladan Vuletić, and Mikhail D Lukin. High-fidelity control
and entanglement of rydberg-atom qubits. Physical review letters,
121(12):123603–123603, 2018.

[37] Ji-An Li, Daoyi Dong, Zhengde Wei, Ying Liu, Yu Pan, Franco Nori,
and Xiaochu Zhang. Quantum reinforcement learning during human
decision-making. Nature Human Behaviour, 4(3):294–307, Mar 2020.

[38] Bryan Lim and Stefan Zohren. Time-series forecasting with deep
learning: a survey. Philosophical Transactions of the Royal Society A,
379(2194):20200209, 2021.

[39] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, USA, 10th edition, 2011.

[40] Carlos Outeiral, Martin Strahm, Jiye Shi, Garrett Morris, Simon Ben-
jamin, and Charlotte Deane. The prospects of quantum computing
in computational molecular biology. Wiley Interdisciplinary Reviews:
Computational Molecular Science, 11, 05 2020.

[41] L. S. Pontryagin. The Mathematical Theory of Optimal Processes.
Interscience, New York, 1962.

[42] Emani Prashant S., Warrell Jonathan, Anticevic Alan, Bekiranov Stefan,
Gandal Michael, McConnell Michael J., Sapiro Guillermo, Aspuru-
Guzik Alán, Baker Justin T., Bastiani Matteo, Murray John D.,
Sotiropoulos Stamatios N., Taylor Jacob, Senthil Geetha, Lehner
Thomas, Gerstein Mark B., and Harrow Aram W. Quantum computing
at the frontiers of biological sciences. Nature Methods, 18:701–709, 01
2021.

[43] John Preskill. Quantum computing in the nisq era and beyond. Quantum,
2:79, 2018.

[44] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh, A. Hankin, J. P.
Gaebler, D. Francois, A. Chernoguzov, D. Lucchetti, N. C. Brown,
T. M. Gatterman, S. K. Halit, K. Gilmore, J. A. Gerber, B. Neyenhuis,
D. Hayes, and R. P. Stutz. Realization of real-time fault-tolerant quantum
error correction. Phys. Rev. X, 11:041058, Dec 2021.

[45] Sebastiano, Fabio et al. Cryogenic CMOS interfaces for quantum
devices. In 2017 7th IEEE International Workshop on Advances in
Sensors and Interfaces (IWASI), pages 59–62, 2017.

[46] Kun Shao, Zhentao Tang, Yuanheng Zhu, Nannan Li, and Dongbin
Zhao. A survey of deep reinforcement learning in video games. CoRR,
abs/1912.10944, 2019.

[47] Kishore S. Shenoy, Dev Y. Sheth, Bikash K. Behera, and Prasanta K.
Panigrahi. Demonstration of a measurement-based adaptation protocol
with quantum reinforcement learning on the ibm q experience platform.
Quantum Information Processing, 19(5):161, Apr 2020.

[48] Taiki Shibata, Satoru Yamamoto, Shigeaki Nakazawa, Elham Hosseini
Lapasar, Kenji Sugisaki, Koji Maruyama, Kazuo Toyota, Daisuke Sh-
iomi, Kazunobu Sato, and Takeji Takui. Molecular optimization for
nuclear spin state control via a single electron spin qubit by optimal
microwave pulses: Quantum control of molecular spin qubits. Applied
magnetic resonance, 2021.

[49] Simoen, Eddy and Claeys, Cor. Impact of CMOS processing steps on the
drain current kink of NMOSFETs at liquid helium temperature. IEEE
Transactions on Electron Devices, 48(6):1207–1215, 2001.

[50] Pritpal Singh. Fqtsfm: A fuzzy-quantum time series forecasting model.
Information Sciences, 566:57–79, 2021.

[51] Pritpal Singh, Gaurav Dhiman, Sen Guo, Ritika Maini, Harsimran Kaur,
Amandeep Kaur, Harmanpreet Kaur, Jaswinder Singh, and Napinder
Singh. A hybrid fuzzy quantum time series and linear programming
model: Special application on taiex index dataset. Modern Physics
Letters A, 34(25):1950201, 2019.

[52] Singh, Kirmender and Jain, Piyush. BSIM3v3 to EKV2.6 Model
Parameter Extraction and Optimisation using LM Algorithm on 0.18µ
Technology node. International Journal of Electronics and Telecommu-
nications, 64:5–11, 01 2018.

[53] Yang Song, Yu-Dong Zhang, Xu Yan, Hui Liu, Minxiong Zhou, Bing-
wen Hu, and Guang Yang. Computer-aided diagnosis of prostate cancer
using a deep convolutional neural network from multiparametric MRI.
J. Magn. Reson. Imaging, 48(6), 12 2018.

[54] Siddarth Srinivasan, Geoff Gordon, and Byron Boots. Learning hidden
quantum markov models. In Amos Storkey and Fernando Perez-
Cruz, editors, Proceedings of the Twenty-First International Conference
on Artificial Intelligence and Statistics, volume 84 of Proceedings of
Machine Learning Research, pages 1979–1987. PMLR, 4 2018.

[55] Stefanovic, Danica and Kayal, Maher. Structured Analog Design.
Springer Netherlands, 2008.

[56] Vı́ctor Uc-Cetina, Nicolás Navarro-Guerrero, Anabel Martı́n-González,
Cornelius Weber, and Stefan Wermter. Survey on reinforcement learning
for language processing. CoRR, abs/2104.05565, 2021.

[57] J.P.G. van Dijk, E. Kawakami, R.N. Schouten, M. Veldhorst, L.M.K.
Vandersypen, M. Babaie, E. Charbon, and F. Sebastiano. Impact of
classical control electronics on qubit fidelity. Phys. Rev. Applied,
12:044054, Oct 2019.

[58] Wang, Zewei et al. Designing EDA-Compatible Cryogenic CMOS
Platform for Quantum Computing Applications. In 2021 5th IEEE
Electron Devices Technology Manufacturing Conference (EDTM), pages
1–3, 2021.

[59] Shaojun Wu, Shan Jin, Dingding Wen, and Xiaoting Wang. Quantum
reinforcement learning in continuous action space, 2020.

[60] Yuxiang Yang, Yin Mo, Joseph M Renes, Giulio Chiribella, and Mis-
cha P Woods. Optimal universal quantum error correction via bounded
reference frames. 2020.

103

	Acknowledgements
	Introduction
	Contribution
	List of publications
	Publications in the series
	Publication not in the series

	Background
	Reinforcement Learning
	Exploration in RL
	Actor-Critic with Experience Replay

	Hierarchical Reinforcement Learning
	Goal-conditioned Hierarchical Reinforcement Learning

	Quantum Reinforcement Learning

	Enforcing action similarity
	Action autocorrelation
	Initial research
	Continued research

	Sustaining actions

	Subgoal reachability in Goal-conditioned Hierarchical RL
	Conclusions
	Other achievements
	Bibliography
	Appendices
	List of Abbreviations
	Publications
	ACERAC: Efficient Reinforcement Learning in Fine Time Discretization
	A Framework for Reinforcement Learning with Autocorrelated Actions
	Actor-Critic with Variable Time Discretization via Sustained Actions
	Subgoal Reachability in Goal Conditioned Hierarchical Reinforcement Learning
	Influence of IQT on research in ICT

