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Abstract

The research program contained in the Ph. D thesis refers to the all-optical couplers realized in

the two-core high-index contrast soft glass fibers. It is directly related to the experimental pro-

gram focused on effective switching performance between cores even if cores are asymmetrical,

due to the difference in effective refractive index. Three different experiments were performed,

in the in-house manufactured soft-glass waveguides. In the first two, there were only signal

pulses propagated, first in symmetrical dual-core fiber and then in asymmetrical dual-core fiber.

The outcomes of the experiment are considered with different signal pulse energy, width, and in

the case of asymmetrical fiber choice of the excited core. In the last one, to compensate for re-

fractive index asymmetry, there was a strong control pulse added in one of the channels. Effects

of the fiber length, control pulse energy, and time delay between the control and signal pulses

were under investigation and used to optimize the switching performance. We used the simple

model based on coupled nonlinear Schrödinger equations and obtained fair agreement with ex-

perimental results. Using this model, we could explain the effect of asymmetry and how this

asymmetry can be compensated by the reference pulse. In the last part, we propose an exper-

imental study for a PT-symmetric photonic crystal fiber (PCF) that we designed and analyzed

using the same straightforward model of coupled nonlinear Schrödinger equations.

Keywords— All-optical couplers, soft-glass fiber, dual-core fiber, coupled nonlinear Schrodinger

equations, PT-symmetric photonic crystal fiber, switching.
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Streszczenie

Kontrola transferu energii w wielordzeniowych włóknach z miękkiego szkła o wysokim kontraście

wskaźnika załamania

Program badawczy zawarty w rozprawie doktorskiej odnosi się do całkowicie optycznych sprzęgaczy

zrealizowanych w dwurdzeniowych włóknach o wysokim kontraście wskaźników załamania w miękkim

szkle. Bezpośrednio wiąże się z programem eksperymentalnym skupionym na efektywności przełączania

między rdzeniami, nawet jeśli rdzenie są niesymetryczne z powodu różnicy w efektywnym współczyn-

niku załamania. Przeprowadzono trzy różne eksperymenty, w włóknach o miękkim szkle wytwarzanych

w naszym laboratorium. W dwóch pierwszych przesyłano tylko impulsy sygnałowe, najpierw w syme-

trycznym dwurdzeniowym włóknie, a następnie w niesymetrycznym dwurdzeniowym włóknie. Wyniki

eksperymentów były analizowane pod kątem różnej energii impulsów sygnałowych, ich szerokości i w

przypadku włókna niesymetrycznego, wyboru pobudzonego rdzenia. W trzecim eksperymencie, w celu

zrównoważenia nierówności współczynnika załamania, wprowadzono silny impuls kontrolny do jednego

z kanałów. Badano wpływ długości włókna, energii impulsu kontrolnego i opóźnienia między impulsami

kontrolnym a sygnałowymi w celu zoptymalizowania efektywności przełączania. Wykorzystano prosty

model oparty na sprzężonych równaniach nieliniowych Schrödingera i uzyskano zgodność z wynikami

eksperymentalnymi. Dzięki temu modelowi mogliśmy wyjaśnić efekt asymetrii i sposób, w jaki można

ją zrekompensować przy użyciu impulsu referencyjnego. W ostatniej części proponujemy badania eks-

perymentalne dla fotonicznego włókna kryształowego typu swiatlowod fotoniczny o symetrii PT (PCF),

które zaprojektowaliśmy i przeanalizowaliśmy, korzystając z tego samego prostego modelu opartego na

sprzężonych równaniach nieliniowych Schrödingera.

Keywords— Sprzęgacze calkowicie optyczne, światłowód ze szkiel miekkich, swiatlowody dwur-

dzeniowe, sprzężenie nieliniowe rownanie Schrödingera, światłowód fotoniczny o symetrii PT, przełą-

czanie
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Introduction

Numerous contemporary technologies, such as those in telecommunications, laser technology,

analytical instruments, and imaging systems, find their roots in the principles of nonlinear op-

tics. As a result, the study of optical nonlinear phenomena remains a prominent area of investi-

gation in the field of physics. Among these phenomena, the examination of third-order nonlin-

earity, described by Nonlinear Schrödinger Equations (NLSE), is a particularly well-explored

topic. In certain situations, nonlinear materials allow different components of a system to inter-

act, with the most basic form, involving just two components, known as a nonlinear directional

coupler. A notable example of this setup is the dual-core fiber (DCF), which has the potential

to serve as an all-optical signal switching device. The analysis of DCF behavior primarily relies

on Coupled Nonlinear Schrödinger Equations (CNLSE). While CNLSE is widely applicable,

this thesis focuses on a detailed investigation of how nonlinearity, coupling strength, and core

dissimilarity affect the dynamics of soliton-like pulse propagation within DCF.

The concept of using dual-core fibers (DCFs) for all-optical switching was initially intro-

duced in theoretical discussions during the early 1980s. Since then, substantial efforts have

been dedicated to comprehending and optimizing the performance of these devices. However,

achieving straightforward all-optical switching has remained a significant challenge in the field

of nonlinear fiber optics. The primary challenges in achieving ultrafast nonlinear switching in

traditional nonlinear couplers arise from the high power levels required for signal redirection

and the resulting disruption in the temporal domain. To address these challenges, a novel ap-

proach was proposed, advocating the use of DCFs made of highly nonlinear lead silicate glass,

PBG-08. This study predominantly focuses on assessing the performance of a highly nonlin-

ear DCF configuration with two cores composed of soft glass materials. Incorporating PBG-08

glass introduces a significant degree of nonlinearity, replacing the complex air–glass PCF struc-

ture with low-index glass. The substantial difference in refractive index between the core and

cladding in this setup underscores the efficiency of the proposed switching mechanism
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This thesis contains a comprehensive review of nonlinear pulse propagation physics, prop-

agation in a photonic crystal, and other structured fibers. We describe all three experiments in

separate chapters (Each of them was a subject of separate publication). Furthermore, we employ

numerical solutions to draw a comparative analysis, contrasting our model’s predictions based

on CNLSE with the actual experimental outcomes.

In the opening chapter titled "Linear and Nonlinear Light Transmission in Waveguides," we

revisit the foundational concepts of light propagation within linear and nonlinear mediums, with

a particular focus on optical fibers. We establish the propagation equation from its fundamental

principles, taking into account significant nonlinear phenomena and providing brief explana-

tions of their underlying mechanisms. Subsequently, we deduce the coupled mode equations

for optical couplers by introducing the concept of a coupling parameter. We explore various

linearized scenarios of these coupled mode equations and engage in a discussion of their impli-

cations, aiming to gain a fundamental grasp of how each parameter influences pulse propagation

within the optical fiber.

In the second chapter called “Optical switching in symmetrical dual-core highly nonlin-

ear optical fibers”, we investigate the switching mechanism (optical coupler) in the dual-core

photonic-crystal fiber. We focus the input beam on one of the channels, to study the stability of

the transmission and identify a threshold between switching and self-trapping in either chan-

nel. A model that includes the two coupled channels with intrinsic dispersion and nonlinearity

provides surprisingly good agreement with the experimental findings.

In the third chapter called “Self-trapping and switching in asymmetrical dual-core highly

nonlinear fibers”, we investigate experimentally and theoretically the effects of the inter-core

propagation mismatch on nonlinear switching in dual-core high-index-contrast soft-glass opti-

cal fibers. Incident femtosecond pulses are fed into a single (“straight”) core, to identify tran-

sitions between different dynamical regimes, viz., inter-core oscillations, self-trapping in the

cross core, and retaining the pulse in the straight core. The transitions that have solitonic char-

acter, are controlled by the pulse’s energy. A model based on the system of coupled nonlinear

Schrodinger equations reveals the effect of the mismatch parameter and pulse duration on the

diagram of the various energy-dependent dynamical regimes. Optimal values of the mismatch

and pulse width, which ensure stable performance of the nonlinear switching, are identified.

In the fourth chapter called “Control of dual-wavelength switching in asymmetric dual-core

fiber”, we present a complex experimental and theoretical analysis of dual-wavelength switch-

12



i
i

“output” — 2023/10/27 — 11:26 — page 13 — #13 i
i

i
i

i
i

ing of 1560 nm, 75 fs pulses (labeled as signal) driven by 1030 nm, 270 fs pulses (labeled as con-

trol) using a dual-core fiber. The fiber was specially developed for this aim having high refrac-

tive index contrast and moderate asymmetry of the phase and group refraction index comparing

the two guiding channels. The experimental work involved the study of effects on the switching

performance as fiber length, control pulse energy, and time delay between the control and signal

pulses. We demonstrated the highest switching contrast of 41.6 dB at 14 mm fiber length with a

broadband character in the 1450-1650 nm spectral range. A numerical model of three coupled

pulse propagation equations was used to enlighten the physical processes behind the advanta-

geous switching performance. The theoretical results revealed the role of both the phase and

group refractive index asymmetry and confirmed our preliminary switching concept: nonlinear

balancing of dual-core asymmetry. Furthermore, the numerical outcomes brought comparable

dependence of the switching extinction ratio on the pulse energy and delay. The most important

advantage of the presented approach is the moderate nonlinear interaction between the control

and signal pulses transforming the signal field slightly. The numerical results also support this

concept predicting moderate transformations of the signal spectra and unveiling its non-trivial

dependence on the pulse delay.

The fifth chapter is a proposal for the experiment with additional gain (generated by the

additional external pulse) to study the propagation in the vicinity of the exceptional point (as in

so-called PT-symmetric systems). In this context, we investigate the properties of a soft glass

dual-core fiber for application in multicore waveguiding with balanced gain and loss. Its base

material is a phosphate glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system.

The separated gain and loss channels can realized with two cores with ytterbium and copper

doping of the base phosphate glass. We perform a feasibility study of such an experimental

realization, including the possible use of the exceptional point for stabilization of the pulse

propagation.

The Appendix presents the Fast Fourier Transform (FFT) algorithm, which serves as our

primary tool for addressing the Nonlinear Schrödinger Equations (NLSEs) to analyze pulse

propagation. Furthermore, we look into the numerical stability of our computational methods

and determine the criteria for achieving precision in simulations.
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Chapter 1

Linear and nonlinear light propagation in

waveguides

1.1 Fundamentals of nonlinear optical processes

The nonlinear responses of the material of optical fibers create new dynamics of the optical

fields propagated in them. Therefore, in this section, we are going to review several important

nonlinear effects in nonrestrictive media, without sacrificing crucial characteristics.

1.1.1 The linear wave equation for the slowly varying envelope

Maxwell’s equations in an isotropic linear medium are written as:

∇×H(r, t) =
∂

∂t
D(r, t), (1.1a)

∇× E(r, t) = − ∂

∂t
B(r, t), (1.1b)

∇ ·B(r, t) = 0, (1.1c)

∇ ·D(r, t) = 0, (1.1d)

where E, H are electric and magnetic field, respectively, and D and B are corresponding electric

and magnetic flux densities. The relations of flux densities B andD with electric and magnetic
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field E and H are given by:

B = µ0H, (1.2a)

D = ε0εE = ε0E+P. (1.2b)

where ε0 is the vacuum permittivity, µ0 is the vacuum permeability, and P is the induced electric

polarization. For nondispersive medium, induced electric P = ε0χE, where χ is constant

D = ε0E+P = ε0(1 + χ)E (1.3)

We perform curl in both sides of equation (1.1b), use equation (1.2a) and relation ∇×∇×E =

∇·(∇ · E)−∆E, in the scalar approximation E = Eêx, ∇·E = 0, to obtain the wave equation

∆E =
1

c2
∂2

∂t2
E+ µ0

∂2

∂t2
P . (1.4)

Here we used the relation µ0ε0 = 1/c2 where c is the speed of light. For the dispersive medium

χ is functional. The polarization is given by convolution of functions χ and E as follow:

PL(r, t) =

∫ t

−∞
dt′ε0χ(t− t′)E(r, t′) . (1.5)

We see that polarization in a given time t can depend on the intensity of the electric field in

moments t′ earlier than t. If we assume that χ(s) = 0 fors < 0, then the upper integral limit can

be prolonged to infinity.

Instead of using convolution (1.5), we transform the problem to Fourier space, by defining

the Fourier transform and its inverse for electric field E(t) as

Ẽ(ω) =

∫ +∞

−∞
eiωtE(t) , E(t) =

1

2π

∫ +∞

−∞
e−iωtẼ(ω)dω . (1.6)

In a similar way we define transforms for functions P, D, and χ. It follows from (1.5) that

P̃(ω) = ε0χ̃(ω)Ẽ(ω) = ε0 (εr(ω)− 1) Ẽ(ω) , (1.7)

where we define the functional εr = 1 + χ. One can analogically define the transformation in

16
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space-time

Ẽ(k, ω) =

∫ +∞

−∞
dt

∫
R3

d3r e−ikr+iωtE(r, t) . (1.8)

We consider now the case of plane wave

E(r, t) = E0e
i(k0z−ω0t) (1.9)

It follows from (1.4) and (1.7) that electric field satisfies the equation

∆E =
1

c2
εr(ω0)

∂2E

∂t2
=

(
n(ω0)

c

)2
∂2E

∂t2
, (1.10)

where n(ω0) =
√
εr(ω0) is refractive index of the medium at frequency ω0. Substituting (1.9)

and replace differentiation with respect to the variable z with the multiplication by ik, we obtain

the relation between k = |k| and ω i.e. the dispersion relation

k(ω) =
n(ω)ω

c
. (1.11)

We assume that propagating light waves have a sufficiently narrow spectrum and one propaga-

tion direction (for example a laser pulse moving in a given direction). This means that one can

choose a central frequency ω0 and wave vector k0 in such a way that the function Ẽ(k, ω) is

negligibly small outside vicinity of this point. Then electric field could be presented as a product

of the plane wave and the pulse envelope A(r, t)

E(r, t) = A(r, t)ei(k0z−ω0t) , (1.12)

where the z axis is chosen such that k0 = k0êz. In the function A the oscillations with high

frequency ω0 and in the space k0 have been separated, therefore it is named the Slow-Varying

Envelope. From (1.8) we have

Ẽ(k, ω) =

∫
dt

∫
d3r e−i(k−k0)r+i(ω−ω0)tA(r, t) = Ã(k− k0, ω − ω0) . (1.13)

In our approximation, every solution of the system of Maxwell’s equations is a superposition of

plane waves and every plane wave satisfies its dispersion relation. Thus, for a given pair (k, ω)

function Ẽ(k, ω) does not vanish only for |k| = k(ω). One can write this fact as the following

17
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equation [
k2 − k2(ω)

]
Ẽ(k, ω) = 0 , (1.14)

where k(ω) is the function of ω and does not depend on k for isotropic media. Of course this

relation is satisfied also if we redefine k and ω as follows

[
(k+ k0)

2 − k2(ω + ω0)
]
Ẽ(k+ k0, ω + ω0) = 0 . (1.15)

In the further k and ω are small in comparison with k0 and ω0, by our assumptions that we

consider only small vicinity of the point (k0, ω0). Further calculations will be performed with

accuracy to the second order of these variables. Using (1.13) we obtain

[
(k+ k0)

2 − k2(ω + ω0)
]
Ã(k, ω) = 0 . (1.16)

We expand now the dispersion relation into the Taylor series around ω0

k(ω0 + ω) = k(ω0) +
1

1!
β1ω +

1

2!
β2ω

2 + . . . , (1.17)

where we assume that ω0 is chosen in such a way that k0 = k(ω0). Substituting this expansion

to the equation (1.16)k2x + k2y + k2z + 2k0kz + k20 −
(
k0 +

1

1!
β1ω +

1

2!
β2ω

2 + . . .︸ ︷︷ ︸
D

)2Ã(k, ω) = 0 , (1.18)

(
k2z + 2k0kz + k2x + k2y + k20 −D2︸ ︷︷ ︸

L

)
Ã(k, ω) = 0 . (1.19)

We see that D ≈ k0, so L ≪ k0. For every point (k, ω) which Ã(k, ω) ̸= 0 the expression

inside the parenthesizes is equal to zeros. This approximation gives us a quadratic equation for
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kz. Thus we have two solutions, and we choose one of them by assumptions kz ≪ k0

kz = −k0 + s
√
k20 − L = k0

(√
1− L/k0 − 1

)
≃ − 1

2k0
L− 1

8k20
L2 =

=
1

2k0

[
k2x + k2y + k20 −

(
k0 + β1ω +

β2
2
ω2 + . . .

)2
]
− 1

8k20

 . . .
2

=

=
1

2k0

[
k2x + k2y − 2β1k0ω − β2k0ω

2 − β2
1ω

2 + . . .
]
− 1

8k20
[. . .]2 =

= − k2x
2k0

−
k2y
2k0

+ β1ω +
β2
2
ω2 +O

[
(kx, ky, ω)

3
]
, (1.20)

Then we have (
kz +

k2x
2k0

+
k2y
2k0

− β1ω − β2
2
ω2

)
Ã(k, ω) = 0 , (1.21)

We transform the resulting equation to the real space to obtain a linear propagation equation for

slowly varying envelope as:

∂A

∂z
=

i

2k0
∆⊥A− β1

∂A

∂t
− i

β2
2

∂2A

∂t2
, (1.22)

where ∆⊥ = ∂2

∂x2 +
∂2

∂y2
.

1.1.2 Nonlinear polarization of optical media

In equation (1.5), only the first term in an expansion of the polarization as a function of the

electric field is mentioned. As the field strength Ẽ(ω,k) increases, nonlinear contributions of

electric field strength to the polarization can become important. Thus, the polarization of the

optical medium must consist nonlinear part

P(r, t) = PL(r, t) +PNL(r, t), (1.23)

P(r, ω) = PL(r, ω) +PNL(r, ω). (1.24)

Here, PL and PNL are the linear and nonlinear parts of the polarization. The wave equation

(1.4) then must consider the nonlinear part of polarization then become:

∆E =

(
n(ω)

c

)2
∂2

∂t2
E+ µ0

∂2

∂t2
PNL, (1.25)
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or

∆E(ω, r) =
ω2εr
c2

E(ω, r) + µ0ω
2PNL(ω, r). (1.26)

The nonlinear polarization is given by

PNL(r, t) =

∫ t

−∞

∫ t

−∞
χ(2)(t− t1, t− t2) : E(t1)E(t2)dt1dt2

+

∫ t

−∞

∫ t

−∞

∫ t

−∞
χ(3)(t− t1, t− t2, t− t3)

... E(t1)E(t2)E(t3)dt1dt2dt3 + ..., (1.27)

where χ(2) and χ(3) are the second and third-order nonlinear susceptibilities. We take the Fourier

transform of (1.27)

PNL(ω,k) = χ(2)(ω,k;ωi,ki, ωj,kj)E(ωi,ki)E(ωj,kj)

+ χ(3)(ω,k;ωi,ki, ωj,kj, ωl,kl)

× E(ωi,ki)E(ωj,kj)E(ωl,kl) + ... (1.28)

where χ(2)(ω,k;ωi,ki, ωj,kj) and χ(3)(ω,k;ωi,ki, ωj,kj, ωl,kl)) are the second and third or-

der nonlinear susceptibilities, respectively.

The second-order nonlinear polarization gives rise to three-wave mixing processes. In par-

ticular, if ωi = ωj in the second-order polarization, the second-order nonlinear polarization

describes second-harmonic generation. For SHG, we could have k1 = k2, or k1 ̸= k2, depend-

ing upon whether the momenta of the two destroyed photons are the same (e.g. the two photons

are from the same beam) or not (two different beams entering the crystal in different directions).

In the more general case, where ωi ̸= ωj , the second order nonlinear polarization can describe

SFG ω = ωi + ωj , k = ki + kj or DFG ω = ωi − ωj , k = ki − kj .

The third-order nonlinear polarization is responsible for the four-wave mixing process (FWM).

For the particular case, where ωi = ωj = ωl, a photon with ω = 3ωi and k = ki+kj+kl is gen-

erated then the process corresponds to third harmonic generation. More specific FWM process

related to third third-order nonlinear polarization, requiring ωi = ωj = ωl and ki = kj = kl

generates a photon with frequency ω = ωi − ωj + ωl and wave number k = ki − kj + kl.

Such processes are so-called self-focusing and self-phase modulation. These and other basic

nonlinear-optical processes will be considered in greater detail in the following sections.
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Fig. 1.1: (a) Schematic diagram of SHG. (b) Energy level scheme of SHG process.

1.1.3 Second order Processes

Second-harmonic generation can be visualized by considering the interaction in terms of the

exchange of photons between the various frequency components of the field. In this case, the

process of SHG occurs via multiple steps. A schematic energy-level diagram describing SHG

is shown in Fig. 1.1. In the first step, one photon of frequency ω is annihilated while a molecule

of the medium leaves its initial state to an intermediate state. In the second step, there is the

annihilation of another photon of frequency ω while the excited molecule jumps to another in-

termediate state. In the final step, this excited molecule returns to its initial state while creating

a new photon of frequency 2ω. Since the molecule stays in each intermediate state for an ex-

tremely short time, the three steps mentioned above occur instantaneously and simultaneously.

We can obtain the analytic solution of SHG by using the semi-classical description of the opti-

cal field. Assuming both the incident fundamental field E(ω) and the frequency-doubled field

E(2ω) are linearly-polarized monochromatic plane waves propagating along z-axis and can be

described as

E1(ω) = e1A1(z)e
ik1z, (1.29)

E2(2ω) = e2A2(z)e
ik2z. (1.30)

Here, A1(z) and A2(z) are the amplitude functions, e1 and e2 are the unit vectors along the

light polarization direction, and k2 and k2 are the absolute values of wavevectors for these two

waves, respectively. Thus, the polarization of two waves should be

P(2)(ω) = ε0χ
(2)(2ω,−ω)E2E

∗
1

= ε0χ
(2)(2ω,−ω)e1e2A2(z)A

∗
1(z)e

i(k2−k1)z, (1.31)

P(2)(2ω) = ε0χ
(2)(ωω)E1E1 = ε0χ

(2)(ω, ω)e1e1A
2
1(z)e

2ik1z. (1.32)
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We can now substitute the electric fields in terms of the slowly-varying envelope using equations

(1.29) and (1.30) into (1.26). We then get the following identities

∆E = (k2 + 2ik · ∇+∆)A(z)eikz.

Because A is slowly varying in space and time ∆A ≫ k · ∇A, we can drop the ∆ term. Then,

we use the dispersive relation (1.11): k2 = n2ω2/c2 = εrω
2/c2, to obtain:

∂A1

∂z
= i

µ0ω
2

2k1
e1P

(2)(ω)e−ik1z, (1.33)

∂A2

∂z
= i

µ0ω
2

2k2
e2P

(2)(2ω)e−ik2z. (1.34)

Substituting the second order polarization in (1.31) and (1.32) into equations (1.33) and (1.34),

we obtain the equations governing phase-matching SHG for the slowly varying envelopes of

the pump and second-harmonic fields A1(z) and A2(z) as following:

∂A1

∂z
= i

ω2

2c2k1
e1χ

(2)(2ω,−ω)e2e1A∗
1A2e

−i(2k1−k2)z,

= i
ε0k1
2εr(ω)

e1χ
(2)(2ω,−ω)e2e1A∗

1A2e
−i(2k1−k2)z, (1.35)

∂A2

∂z
= i

ω2

2c2k1
e2χ

(2)(ω, ω)e1e1A
2
1e

i(2k1−k2)z,

= i
ε0k2

2εr(2ω)
e2χ

(2)(ω, ω)e1e1A
2
1e

i(2k1−k2)z. (1.36)

Noticing that for the SHG process, we have e1χ
(2)(2ω,−ω)e2e1 = 2e2χ

(2)(ω, ω)e1e1 = 2χ
(2)
e ,

where χ(2)
e is termed the effective second-order susceptibility value for SHG, then Eq. (1.35)

can be simplified as

∂A1

∂z
= i

2π

λ1n1

χ(2)
e A2A

∗
1e

−i(2k1−k2)z, (1.37)

∂A2

∂z
= i

2π

λ1n2

χ(2)
e A2

1e
i(2k1−k2)z. (1.38)

where n1, n2 are the indexes of refraction of the medium at ω, 2ω, and λ1 are the wavelength of

ω. Thus, the analytic solution for real χ(2) and real input field envelopeA1(0, t) whenA2(0, t) =
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Fig. 1.2: (a) Schematic diagram of SFG. (b) Energy level scheme of SFG process.

0 are

A1(z) = A1(0)sech
[

2π

λ1n2

χ(2)
e A1(0)z

]
, (1.39)

A2(z) = iA1(0)tanh
[

2π

λ1n2

χ(2)
e A1(0)z

]
. (1.40)

Recalling that d/dz tanh(z) = sech2(z) and d/dz sech(z) = −sech(z) tanh(z), we obtain the is

the intensity of the fundamental and second-harmonic wave:

I1(z, τ) = I1(0)sech2

[
2π

λ1n2

χ(2)
e A1(0)z

]
, (1.41)

I2(z, τ) = I1(0)tanh2

[
2π

λ1n2

χ(2)
e A1(0)z

]
. (1.42)

These solutions are appropriate even when the fundamental field has multi-frequency compo-

nents, as long as the input field is real, and provided the fundamental field remains within the

phase-matching bandwidth throughout propagation in the crystal. When the envelope A1(0) is

not real, Eq. (1.40) and (1.40)must be numerically solved.

We also can find analytical solutions to the dynamical equations for phase-matched SFG and

DFG (∆k = k3 − k1 − k2 = 0) for input pulses that are not too short (so that group velocity

mismatch broadening is negligible). These analytic solutions assist in understanding the nature

of the dynamics of SFG and DFG. The dynamic equations governing SFG of phase-matched

plane waves are given in the slowly varying envelope approximation as

∂A1(z, τ)

∂z
= i

2π

λ1n1

χ(2)
e A3A

∗
2e

−i(k1+k2−k3)z, (1.43)

∂A2(z, τ)

∂z
= i

2π

λ2n2

χ(2)
e A3A

∗
1e

−i(k1+k2−k3)z, (1.44)

∂A3(z, τ)

∂z
= i

2π

λ3n3

χ(2)
e A1A2e

i(k1+k2−k3)z. (1.45)
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We consider the case in which one of the applied fields (taken to be at frequency ω2) is strong,

but the other field (at frequency ω1) is weak. This situation would apply to the conversion of

a weak infrared signal of frequency ω1 to a visible frequency ω3 by mixing with an intense

laser beam of frequency ω2. This process is known as upconversion because in this process the

information-bearing beam is converted to a higher frequency. Usually, optical-frequency waves

are easier to detect with good sensitivity than infrared waves. Since we can assume that the

amplitude A2 of the field at frequency ω2 is unaffected by the interaction, we can take A2 as a

constant in the coupled-amplitude equations (1.43-1.45), which then reduce to the simpler set

∂A1(z, τ)

∂z
= K1A3e

−i(k1+k2−k3)z. (1.46)

∂A3(z, τ)

∂z
= K1A1e

i(k1+k2−k3)z, (1.47)

where we have introduced the quantities:

K1 = i
2π

λ1n1

χ(2)
e A∗

2, K2 = i
2π

λ3n3

χ(2)
e A2, (1.48)

we introduce the positive coupling coefficient κ2 defined by:

κ2 ≡ −K1K2 =
4π2[χ

(2)
e ]2|A2|2

λ1λ3n1n3

. (1.49)

The general solution to Eq. (1.46 - 1.47) is:

A1(z) = A1(0) cos(κz), (1.50)

A3(z) = −A1(0)
κ

K1

sin(κz). (1.51)

To simplify the form of this equation we express the ratio κ/K1 as follows:

κ

K1

= −i
√
n1λ1
n3λ3

A2

|A2|
. (1.52)

The ratio A2/|A2| can be represented as eiϕ2 where phi2 denotes the phase of A2. We hence find

that

A3(z) = i

√
n1λ1
n3λ3

A2

|A2|
A1(0)e

iϕ2 . (1.53)

The principle of optical difference-frequency generation is essentially the same as that of
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Fig. 1.3: (a) Schematic diagram of DFG. (b) Energy level scheme of DFG process.

optical parametric amplification except that, for the former the key issue is the generation of

a difference-frequency wave. Still, for the latter, the key issue is the amplification of a low-

frequency incident wave. We assume three waves are linearly polarised and propagating along

z−axis

E(ω1, z) = a1A1(z)e
ik1z, (1.54)

E(ω2, z) = a2A2(z)e
ik2z, (1.55)

E(ω3 = ω1 − ω2, z) = a3A3(z)e
ik3z. (1.56)

Accordingly, the nonlinear polarization sources of these waves can be expressed as the follow-

ing forms

P (2)(ω1, z) = ε0χ
(2)(ω2, ω3)a2a3A2(z)A3(z)e

i(k2+k3)z, (1.57)

P (2)(ω2, z) = ε0χ
(2)(ω1,−ω3)a1a3A1(z)A

∗
3(z)e

i(k1−k3)z, (1.58)

P (2)(ω3, z) = ε0χ
(2)(ω1,−ω2)a1a2A1(z)A

∗
2(z)e

i(k1+k2)z.. (1.59)

Due to permutation and time reversal symmetry of susceptibility, the following relation holds

χ
(2)
e = a1χ

(2)(ω2, ω3)a2a3 = a1χ
(2)(ω1,−ω3)a1a3 = a1χ

(2)(ω1,−ω2)a1a2, where χ(2)
e is the

effective nonlinear susceptibility value of the crystal for this process. Substituting Eq. (1.57-

1.59) into the nonlinear wave equations of Eq. (1.26) leads to

∂A1(z)

∂z
=

ik1
2n2

1

χ(2)
e A2(0)A3(0), (1.60)

∂A2(z)

∂z
=

ik2
2n2

2

χ(2)
e A3(0)

∗A1(0), (1.61)

∂A3(z)

∂z
=

ik3
2n2

3

χ(2)
e A1(0)A

∗
2(0). (1.62)
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Assuming the phase-matching condition of ∆k = 0 is satisfied, the initial boundary conditions

of the three waves are A2(0) ≪ A1(0) and A3(0) = 0. The solutions of equations (1.60-1.62)

which satisfy the boundary condition

A2(z) = A2(0) cosh

[
πχ

(2)
e√

λ2λ3n2n3
A1(0)z

]
, (1.63)

A2(z) = iA2(0)

√
λ2n2

λ3n3

sinh

[
πχ

(2)
e√

λ2λ3n2n3
A1(0)z

]
. (1.64)

From the above solution, we can see that under the condition of the weak input signal and

neglecting depletion of the strong pump wave, both the signal wave and the idle wave experience

exponential gain, the gain coefficient is proportional to χ(2)
e and initial amplitude A1(0) of the

pump wave.

1.1.4 Third order processes. Kerr effect

In section 1.1.3, we have described the elementary mechanism of various three-wave mixing

processes. In those cases, three-photon parametric interaction takes place in a second-order

nonlinear medium. We now consider various four-wave mixing processes in a third-order non-

linear medium. The common feature of these processes is the parametric interaction between

four photons in a third-order nonlinear medium that is transparent at the frequencies of the in-

teracting four photons. For the general-type FWM ω4 = ω1 + ω2 + ω3, we represent the pump

fields as

Ej = ajAje
i(kjz−ωjt), (1.65)

where j = 1, 2, 3 and kj are the complex wave vectors of the pump fields. The FWM field is

written as

E4 = a4A4e
i(k4z−ω4t), (1.66)

where k4 is the complex wavevector of the FWM fields. The third-order nonlinear polarization

responsible for the considered FWM process is

P(3)(ω4) = ϵ0χ
(3)(ω1, ω2, ω3)E1E2E3. (1.67)
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Fig. 1.4: (a) Schematic diagram of third harmonic generation. (b) Energy level scheme of the
third harmonic generation process.

With no depletion of the pump fields, the SVEA equations give the following expression for the

envelope of the i-th Cartesian component of the FWM field

∂A4(z)

∂z
=
ik4ε0
ε4

a4χ
(3)(ω1, ω2, ω3)a1a2a3A1A2A3e

i∆kz. (1.68)

Here ∆k = 3k1 − k2 and χ(3) is the susceptibility for the four-wave mixing processes As an

example, Fig. 1.4 depicts the third harmonic generation, i.e., three waves of the same frequency

of ω interact with a nonlinear medium to generate a new wave at the frequency 3ω. First, an

incident photon of frequency ω is annihilated while a molecule undergoes a transition from its

initial state to an intermediate state. The second and third steps are the sequential transitions

of this molecule to intermediate states, accompanied by the annihilation of another incident

photon of the same frequency. Finally, without any delay, the molecule returns to the initial

state while there is the generation of a new photon with the sum-frequency of 3ω. As the time

in which the molecule stays in each intermediate state is extremely short, these multiple-step

processes occur simultaneously. We can also say that the above-mentioned process is a single-

step process with the annihilation of three incident photons and the simultaneous creation of a

new sum-frequency photon. In this case the THG field is E2 = a2A2e
i(k2z−ω2t). The dynamic

equations governing third harmonic generation (THG) for plane waves are given in the slowly

varying envelop approximation by

∂A2(z)

∂z
=

ik2ε0
ε2

a2χ
(3)(ω, ω, ω)a1a1a1A

3
1e

i∆kz

=
ik2ε0
ε2

χ(3)A3
1e

i∆kz. (1.69)

These equations are similar in form to Eq. (1.35) and (1.36) for SHG. Now, let us first consider

the situation in phase-mismatched condition, i.e., ∆k = 3k1 − k2 ̸= 0. In that case, the energy
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from E1(ω, z) wave cannot transfer to E2(2ω, z) wave effectively. In this case, we can assume

that for the fundamental wave, E1(ω, z) the amplitude change along the z-axis can be nearly

neglected. Under this condition, Eq. (1.69) leads to a solution:

A2(z) =
ε0k2
2∆kε2

χ(3)
e A3

1(0)(e
i∆kz − 1). (1.70)

The intensity change of the third-harmonic wave along the z-direction is

I2(z) ∝ |χ(3)
e |2I31 (0)

(
sin ∆kz

2
∆kz
2

)2

. (1.71)

Eq. (1.71) shows a relationship where the intensity of the third harmonic is directly propor-

tional to the cubic power of the fundamental wave’s intensity. This intensity varies periodically

along the z-axis similar to that for a second-harmonic generation under the condition of phase

mismatch. The period of this intensity variation is 2π/∆k. A larger ∆k leads to smaller peak

intensity and more rapid variation.

In order to significantly increase the conversion efficiency, it is necessary to fulfill the phase

matching requirement, which entails achieving ∆k → 0 or n(ω) → n(3ω). For most transparent

media the normal dispersion effect makes n(ω) > n(3ω). Nevertheless, in specific situations,

specialized techniques can be employed to achieve the necessary phase-matching

It is worth noting that, in general, the third-order nonlinear susceptibility is much smaller

than the second-order susceptibility even with the phase-matching condition of ∆k → 0. Conse-

quently, the power transfer efficiency from the fundamental wave to the third harmonic typically

ranges from less than 10−2 to 10−1 in practical scenarios. Therefore, the undepleted fundamen-

tal wave approximation can be applied to a phase-matched case.

For our discussion of SPM of light, let us first consider the case where the propagation of

a laser pulse in an isotropic medium can be described by the equation for the slowly varying

envelope A(t, z) in a medium with a Kerr-type nonlinearity

∂A

∂z
=
iµ0ω

2
0

2k0
χ(3)|A|2A. (1.72)

As usual, the electric field can be expressed in terms of A as E = Aeik0z−iω0t. Letting A =
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A0e
iϕ, from the above equation, we obtain

∂A0

∂z
= 0, (1.73)

∂ϕ

∂z
=
µ0ω

2
0

2k0
χ(3)|A|2. (1.74)

They yield the solution

A0 = A0(t), (1.75)

ϕ(z, t) = ϕ0 +
µ0ω

2
0

2k0c2
χ(3)|A|2z. (1.76)

Equation (1.75) implies that the laser pulse propagates in the medium without any distortion of

the pulse shape, while Eq. (1.76) shows that the induced phase change ∆ϕ(t) = ϕ(z, t)− ϕ0 is

simply the additional phase shift experienced by the wave in its propagation from 0 to z due to

the presence of the induced refractive index change

∆n =
1

2n0

χ(3)|A|2. (1.77)

The additional phase shift is given by

∆ϕ =
ω

c

∫ z

0

∆ndz. (1.78)

Since the frequency of the wave is ω = ωo(∂∆ϕ/∂t), the phase modulation ∆ϕ(t) leads to a

frequency modulation

∆ω(t) = −∂∆ϕ
∂t

= − µ0ω
2
0

2k0c2
χ(3)∂|A|2

∂t
z. (1.79)

The spectrum of the self-phase-modulated field is, therefore, expected to be broadened. It can

be calculated from the Fourier transformation

|E(ω)| = 1

2π

∫ ∞

−∞
[A(t)e−iω0t]eiωtdz. (1.80)

Cross-phase modulation (XPM) has a similar origin to SPM, which is a result of the non-

linear optical interaction of at least two physically distinguishable light pulses (i.e., pulses with
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different frequencies, polarizations, mode structures, etc.). The phase modulation of one of the

pulses is due to the change in the refractive index of the medium induced by another pulse. We

shall consider light pulse possesses two discrete frequency components. In this case, the electric

field of the input light pulse with a linear polarization status can be expressed as

E = A1(t)e
−iω1t + A1(t)e

−iω2t, (1.81)

where ω1 and ω2 are the central frequencies of these two spectral components, and A1 and A2

are their time-dependent amplitude functions. Assuming A1 = A2 = A0 the above expression

can be simplified as

E = A0e
−i(ω2+ω1)t = A(t)e−iω1t, (1.82)

where

A(t) = A0(1 + e−i(ω2−ω1)t) (1.83)

The complex field function of the output pulse after passing through the nonlinear medium is

A′(t) = A(t)ei∆ϕ(t) = A0e
−i(ω2+ω1)tei∆ϕ(t). (1.84)

The cross-action of a pump pulse with a frequency ω1 on a probe pulse with a frequency ω2

gives rise to a phase shift of the probe pulse, which can be written as

∆ϕ(z, t) =
ω

c

∫ z

0

∆ndz

=
ω

2n0c
χ(3)|A(t)|2z

=
ω

2n0c
χ(3)2A2

0[1 + cos(ω2 − ω1)t]z, (1.85)

where ω = (ω1 + ω2)/2 is the average frequency of the light pulse. The spectral broadening

behavior of the ω1 line is determined by the Fourier transform:

E(ω) =
1

2π

∫ ∞

−∞
[A(t)e−iω1t]e−iωtdt. (1.86)

Cross-phase modulation also opens the ways to study the dynamics of ultra-fast nonlinear pro-

cesses, including multi-photon ionization, and to characterize ultrashort light pulses through

phase measurements on a short probe pulse.
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1.2 Propagation of light pulses in a single waveguide

1.2.1 Nonlinear Schrödinger equation in single waveguide

We have derived the nonlinear Schrödinger to describe the propagation of SVE in a medium

without applying any boundary condition. It is convenient for the introduction and discussion

of linear and nonlinear phenomenons. Propagation of optical mode in a single waveguide is

described by the nonlinear Schrödinger equation. The wave equation can be written in the fol-

lowing form

∆E − 1

c2
∂2E
∂t2

= µ0
∂2PL

∂t2
+ µ0

∂2PNL

∂t2
. (1.87)

where linear and nonlinear polarization PL, PNL are defined as:

PL(r, t) = ϵ0

∫ ∞

−∞
χ(1)(t− t′)E(r, t′)dt′, , (1.88)

PNL(r, t) = ϵ0

∫ ∞

−∞
χ(3)(t− t′)E(r, t1)E(rt2)E(r, t3)dt1dt2dt3. (1.89)

The study of nonlinear effects in optical fibers involves the use of short pulses with widths

ranging from 10 ns to 10 fs. Thus, we assume the optical field to be monochromatic and has a

spectrum centered at ω0, so electric field E has form [1]:

E(r, t) =
1

2
ê[E(r, t)e−iω0t + c.c.]. (1.90)

Similarly, The polarization PNL can be written as:

PNL(r, t) =
1

2
ê[PNL(r, t)e−iω0t + c.c.], (1.91)

where ê is is polarization unit vector of the optical field. If the nonlinear response is assumed to

be spontaneous so that the time-dependent χ(3) is given by the product of three delta function

δ(t− ti), then the equation reduces to:

PNL(r, t) = ϵ0χ
(3)(E(r, t)E(r, t))E(r, t). (1.92)

When the electric field in Eq.(1.90) is substituted into polarization Eq. (1.91) PNL is found to

have term oscillating at ω0 and another term oscillating at the third harmonic frequency 3ω0.
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The latter term is generally negligible in optical fibers. Combine with Eq. (1.91), PNL is found

that:

PNL(r, t) = ϵ0ϵNLE(r, t). (1.93)

Where the nonlinear dielectric constant is defined as:

ϵNL =
3

4
χ(3)|E(r, t)|2. (1.94)

Because of the perturbative nature of PNL and the slowly varying envelope approximation, ϵNL

is treated as a constant during the derivation of the propagation equation. The wave equation for

the Fourier transform of the slowly varying amplitude E(r, t) is found to be:

∆Ẽ(r, ω) + ϵ2(ω)k20Ẽ(r, ω) = 0. (1.95)

Where k0 = ω/c, ϵ(ω) = 1 + χ̃1(ω) + ϵNL and the Fourier transform of Ẽ is defined as:

Ẽ(r, ω − ω0) =

∫ ∞

−∞
Er,te

−i(ω−ω0)tdt. (1.96)

In our perturbative approach the dielectric constantϵ(ω) is approximately assumed as:

ϵ ≈ n2 + 2nδn. (1.97)

δn is a small perturbation given by:

δn = ñ|E|2 + iα̃

2k0
(1.98)

where ñ is measure of fiber nonlinearity and α is fiber absorption. Eq. (1.95) can be solved

using the method of separation variables. We assume the solution of the form:

Ẽ(r, ω − ω0) = Ã(z, ω − ω0)F (x, y)e
iβ0z (1.99)

Where Ã is a slowly varying function of z and β0 the wave number. Eq. (1.95) leads:

∂2F

∂x2
Ã+

∂2F

∂y2
Ã+ F

∂2Ã

∂z2
+ 2iβ0F

∂Ã

∂z
− β2

0FÃ+ ϵ(ω)k0FÃ = 0. (1.100)
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Because Ã1(z, ω) is assumed to be a slowly varying function of z, we can neglect the second

derivative term. The we obtain the two following equation of F and Ã:

∂2F

∂x2
+
∂2F

∂y2
+ [ϵ(ω)k20 − β̃2]F = 0, (1.101)

2iβ0
∂Ã

∂z
+ [β̃2 − β2

0 ]Ã = 0, (1.102)

where we introduce the coefficient β̃, which is determined by solving eigenvalue equation

(1.101) as

β̃(ω) = β(ω) + ∆β, (1.103)

where

∆β =
k0
∫∫∞

∞ δn|F (x, y)|2dxdy∫∫∞
∞ |F (x, y)|2dxdy

. (1.104)

We use the approximated β̃2 − β2
0 by 2β0(β̃ − β0), Eq.(1.102) then becomes:

∂Ã

∂z
= i[β(ω) + ∆β − β0]Ã. (1.105)

Combining Eq. (1.90) and Eq.(1.99), the electric field can be written as:

E(r, t) =
1

2
ê[F (x, y)A(z, t)eiβ0z−iω0t + c.c], (1.106)

where A(z, t) is the slowly varying pulse envelope. The function β(ω) can be expanded in a

Taylor series about carrier frequency ω0 as:

β(ω) = β0 + (ω − ω0)β1 +
1

2
(ω − ω0)

2β2 + ... (1.107)

where :

βm =

(
dmβ

dωm

)
ω=ω0

. (1.108)

We assumed the field to be quasi-monochromatic in our approach so the cubic and higher-

order terms in this expansion are generally negligible. Substitute Eq.(1.106) into Eq.(1.105),

we obtain:
∂Ã

∂z
= i[(ω − ω0)β1 +

1

2
(ω − ω0)

2β2 +∆β]Ã. (1.109)
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We take the inverse Fourier transform to go back to the time domain and replace ω − ω0 with

time differential operator i∂/∂t. The equation for A(z, t) becomes

∂A

∂z
= −β1

∂A

∂t
− iβ2

2

∂2A

∂t2
+ i∆β. (1.110)

Substituting Eq. (1.94) into Eq. (1.111), we obtain that:

∆β =
iα

2
+
k0ñ|A|2

∫∫∞
∞ |F (x, y)|2dxdy∫∫∞

∞ |F (x, y)|4dxdy
. (1.111)

Finally, we obtain the nonlinear Schrödinger equation:

∂A

∂z
= −β1

∂A

∂t
− iβ2

2

∂2A

∂t2
− αA+ iγ|A|2A. (1.112)

Where γ is the nonlinear parameter defined as:

γ =
ñk0
Aeff

, (1.113)

and

Aeff =

∫∫∞
∞ |F (x, y)|2dxdy∫∫∞
∞ |F (x, y)|4dxdy

. (1.114)

1.2.2 Solitons

In mathematics and physics, a soliton is a self-sustaining solitary wave caused by nonlinear

effects occurring in the material through which the wave propagates. Solitons accompany many

physical phenomena and are also found as solutions to nonlinear partial differential equations.

The phenomenon of soliton was first described by John Scott Russell, who observed a soliton

wave in a water channel (Union Canal, Great Britain) and later reproduced this phenomenon in

a specially prepared water tank. Russell named the observed wave "the wave of translation." It

is difficult to precisely define what a soliton is. Drazin and Johnson (1989) defined a soliton as

a solution to a system of nonlinear differential equations that:

1. Represents waves with an unchanged shape.

2. Is localized in such a way that it decays or reaches a constant value at infinity.

3. Can interact strongly with other solitons, but after the collision, it retains its unchanged
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form, experiencing only a phase shift.

Many authors emphasize that solitons can periodically change their shape, and their distin-

guishing feature is the ability to undergo non-destructive collisions. Two and three-dimensional

solitons are also known as "light bullets."

In optics, the term soliton is used to refer to any optical field that does not change during

propagation because of a delicate balance between nonlinear and linear effects in the medium.

(they are sometimes also called "solitary waves"). Many nonlinear partial differential equations

have soliton solutions, e.g. the sine-Gordon equation ψzz−ψtt = sin(ψ) has a solution ψ(z, t) =

−4tan−1exp((z − ct)/(1 − c2)1/2). So does the Kdv equation, ψt + ψzzz + 6ψψz = 0 studied

by Korteweg and de Vries in the e nineteenth century as a water wave equation, which admits

one-soliton solution ψ(x, t) = −c/2 sech2[
√
c/2 (x− ct− a)].

Here we are mostly interested in the solutions to the nonlinear Schrödinger equation, as

shown in equation (1.112). If we introduce the retarded time where tr = t − zβ1, neglect the

linear term α and rescale the equation by introducing time and field envelope so that tr =

τ/
√
β2, ψ =

√
γA, the NLSE (1.112) can be written in the following standard form:

i
∂ψ

∂z
+

1

2

∂2ψ

∂τ 2
+ |ψ|2ψ = 0. (1.115)

Our objective is to find a solution for (1.115) with the given form:

ψ(z, τ) = Φ(t)eikz, (1.116)

where Φ(τ) satisfies the following equation:

−1

2

d2Φ

dτ 2
+ kΦ− Φ3 = 0. (1.117)

This equation can be integrated subject to the boundary condition that both Φ and its derivative

dΦ/dτ vanish as y approaches ±∞. To achieve this, we multiply (1.117) by dΦ/dτ and arrive

at the following statement:

d

dτ

[
1

4

(
dΦ

dτ

)2

− 1

2
kΦ2 +

1

4
kΦ4

]
= 0. (1.118)
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Applying the boundary condition, we obtain:

(
dΦ

dτ

)2

= Φ2(2k − Φ2), (1.119)

which can be integrated as follows:

∫
dΦ

Φ
√
2k − Φ2

= ±τ. (1.120)

This leads to the expression for Φ:

Φ =

√
2k

cosh
(√

2kτ
) . (1.121)

As a result, we find a stable, localized pulse, known as a soliton, which emerges as the solution

of the nonlinear Schrödinger equation:

ψ(z, τ) =

√
2k

cosh
(√

2kτ
)eikz. (1.122)

In the rest of the thesis, we will use a as an amplitude of the pulse, so we set a =
√
2k. Hence,

our "canonical" form of the fundamental soliton, ψ(z, τ) = a sech(aτ)eiz a2/2.

Equation (1.112) has other kinds of soliton solutions. Dark soliton solutions, wherein a dip

appears in a uniform background, exist for Eq. (1.112) for β2 > 0. Specifically the equation

i
∂ψ

∂z
+

1

2

∂2ψ

∂t2
+ |ψ|2ψ = 0 (1.123)

has a solution of the form

ψ(z, τ) = A

√
B−2 − sech2(Aτ)ei[ϕ(τ

′)+(A/B)2z, (1.124)

where τ ′ = Aτ + (A2/B)
√
1−B2z and

ϕ(τ ′) = arcsin[B tanh(τ ′)/
√

1−Bsech2(t′)]. (1.125)

The parameterA is the background level, andB(|B| ≤ 1) is the dip depth. For |B| = 1, |ψ(z, t)| =

|Atanh(At)|, and the intensity of the dip vanishes at the center. This kind of dark soliton is called
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a black soliton because the intensity at the minimum vanishes.

The stability of solitons to perturbations can be systematically studied using inverse scatter-

ing methods. One important type of perturbation involves the case when the peak pulse power

is not exactly matched to the required soliton power. It has been verified that, during propaga-

tion down the fiber, the pulse adjusts its width to evolve into a soliton; an auxiliary part of the

pulse energy is dispersed away as this happens. The pulse evolves into a soliton whose order

is an integer Ñ closest to the launched pulse order N = Ñ + ε, |ε < 1/2|. For example, if the

pulse energy is closest to the fundamental soliton, Ñ = 1, the pulse width increases if ε < 0,

decreases if ε > 0, and no soliton is formed is N < 1/2. Moreover, the exact shape of the input

pulse is not critical to obtain a fundamental soliton. The width and peak power of the input pulse

are not critical to obtain a fundamental soliton. The width and peak power of the input pulse

can vary over a wide range and soliton formation will still occur. However, part of the pulse

energy will disperse away during the formation process. Other types of perturbations have been

studied, such as temporal fluctuations, frequency chirps, etc. We will not pause to enumerate

the stability of solitons to various types of perturbations.

1.2.3 Higher order soliton and soliton breathers

The standard fundamental-soliton solution of Eq. (1.115), with arbitrary amplitude a, is

ψsol = a exp
(
ia2/2z

)
sech(aτ). (1.126)

There is also a special class of solutions of the NLSE, called higher-order solitons, namely

solutions whose initial form at z = 0 is given by ψ(0, τ) = Nsech(τ) with integer N . They

have the property that their magnitude is periodic in z, for N ≥ 2. For instance, when N = 2

we obtain

ψ(z, τ) =
cosh(3τ) + 3e4izcosh(τ)

cosh(4τ) + 4cosh(2τ) + 3cos(4z)
, (1.127)

which has a magnitude that is periodic in z, with period z0 = π/2.

There is also a known result of Satsuma-Yajima [2] which predicts that initial condition

ψ(0, τ) = asech(ητ) (here a does not have to be an integer) generates a breather composed of
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Fig. 1.5: a) Peak power of high order solitons a sech(τ) respect to propagation distance. b)
Dependence Kbeat for a = 2.1.

two fundamental solitons in the parameter region

3/2 < a/η < 5/2. (1.128)

Alternatively, this region can be written in the form of

2a/5 < η < 2a/3. (1.129)

In this case, the breather is composed of two fundamental solitons with amplitudes

a1 = 2a− η, a2 = 2a− 3η. (1.130)

Then, the (spatial) frequency of the internal oscillations of the breather is identified as the

beat frequency produced by the superposition of the two fundamental solitons with amplitudes

(1.130):

ωb = ω(a1)− ω(a2) = 4η (a− η) . (1.131)

In particular, in the case of a = 2η, Eq. (1.131) yields ωb = 4η2, which is a commonly known

value for the exact 2-soliton (elementary breather). Periodic evolution of the peak power of

breathers with non-integer a is shown in 1.5a If expression (1.131) is considered as a function

of η, it attains a maximum at
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ωmax = ωb (ηmax ≡ a/2) = a2. (1.132)

This type of oscillation interplays with inter-core oscillation (will be introduced in section

1.3.4), creating an interesting switching behavior experimentally observed and analyzed in

Chapter 2.

1.2.4 Soliton compression

Optical pulses at wavelengths exceeding 1.3 µm generally experience both SPM and anomalous

GVD during their propagation in silica fibers. Thus, a single piece of fiber can act as a com-

pressor by itself, without requiring an external grating pair, and such an approach has been used

since 1983 for this purpose. The compression mechanism is related to a fundamental property

of higher-order solitons. As discussed above, these solitons follow a periodic evolution pattern

such that they undergo an initial narrowing phase at the beginning of each period. Because of

this property, with an appropriate choice of fiber length, input pulses can be compressed by a

factor that depends on the soliton order N. Such a compressor is referred to as the soliton-effect

compressor to emphasize the role of solitons. We will refer to this effect in Chapter 3.

1.2.5 Generalized nonlinear Schrödinger equation

In section 1.2.1 we have derived the nonlinear Schrödinger equation with an approximation that

the light field propagated in the waveguide is monochromatic. Therefore propagation constant

β The nonlinear response has different contributions that behave differently in that respect: the

response of the electrons of the medium is normally assumed to be virtually instantaneous.

There are also contributions from vibrations of the crystal lattice, which can be excited by

intense electric fields and influence the polarization of the medium. Such contributions to the

nonlinear polarization occur on rather short timescales, but still long enough to be substantially

non-instantaneous e.g. in the context of ultrashort pulses of light. Such a non-instantaneous

response means that the induced nonlinear polarization at a certain time depends not only on

the electric field intensity at that time but rather on that intensity during some time interval

before. This can be described with a response function R(t)

PNL = ε0χ
(3)E(r, t)

∫ ∞

0

R(t− t′)dt′. (1.133)
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The response function is in principle defined for arbitrarily large time delays but essentially

vanishes within a certain time, during which the system “forgets” any influences from that

distant past. There are no contributions from negative time delays because those would violate

the principle of causality.

An instantaneous response would simply be described with a response function which is

a delta function. The above-mentioned combination of a virtually instantaneous electronic re-

sponse and a delayed response related to lattice vibrations leads to a combination of a delta

function with an oscillatory (but decaying) function h(t′):

R(t) = (1− fR)δ(t
′) + fRh(t

′). (1.134)

Here, the factor fR quantifies how strong the contribution of the oscillatory function is; that

function is normalized such that its integral over all non-negative time arguments is unity. In a

situation where the nonlinear polarization is driven by a relatively long light pulse, the result

will be approximately the same as if one would set fR = 0. For shorter light pulses, however,

the oscillatory term makes a difference.

The generalized nonlinear Schrödinger equation (GNSE) including effects like coupling co-

efficient dispersion, self-steepening nonlinearity, and its spectral dependence, stimulated Raman

contribution, cross-phase modulation effect, and waveguide losses is expressed in the following

form:
∂A

∂z
=
α(ω)

2
A+ iβ(ω) + iγA(1 + is

∂

∂t
)

∫ ∞

−∞
R(t− t′)|A|2dt′, (1.135)

where β(ω) and γ(ω) is the nonlinear parameter as a function of frequency, s is the characteristic

time of shock wave formation, R is the Raman response function

1.3 Coupled nonlinear Schrödinger equation in dual-core

waveguides

In this section, we will discuss systems of two coupled waveguides. Fiber couplers or directional

couplers are one such system that is used routinely for a variety of applications related to fiber

optics. More specifically, A dual-core fiber, designed to have two cores close to each other

throughout its length, can also act as a directional coupler. In order to describe such a system,

we have to use the coupled nonlinear Schrödinger equations. In the subsections below, we will
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Fig. 1.6: Schematic illustration of nonlinear switching in a fiber coupler.

derive and discuss some of their solutions in special cases.

1.3.1 Coupled mode equations

In section 3.1 we derive the NLSE in the single-core waveguide. The same procedure can be

applied to derive the coupled mode equation, which describes the wave propagation in couplers.

We assume the distance between two cores is close enough to couple them, but does not change

the fundamental modes in each core. Using the method of separation variable, the equation

(1.95) has an approximated solution: [3]:

Ẽ(r, ω) ≈ ê[Ã1(z, ω)F1(x, y) + Ã2(z, ω)F2(x, y)]e
iβz, (1.136)

where Ã1,2(z, ω) and F1,2 are is a slowly varying functions of z and the modes in each channel,

respectively. From the above assumption, each mode must satisfy:

∂2Fm

∂x2
+
∂2Fm

∂y2
+ [n2

mk
2
0 − β2

m]Fm = 0, (1.137)

where m = 1, 2. We substitute equation (1.136) to equation (1.95) we obtain following equa-

tion:

∑
m

{
Ãm

[
∂2Fm

∂x2
+
∂2Fm

∂y2
+

]

+ Fm

[
∂2Ãm

∂z2
+ iβ

∂Ãm

∂z
− β2Ãm + n2(x, y)k20Ãm

]}
= 0.

(1.138)
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We can rewrite the above equation as:

∑
m

{
Ãm

[
∂2Fm

∂x2
+
∂2Fm

∂y2
+ nm(x, y)

2k20Fm − β2
mFm

]

+ Fm

[
iβ
∂Ãm

∂z
+ [β2

m − β2 + k20n
2(x, y)− k20n

2
m(x, y)]Ãm

]}
= 0.

(1.139)

The first term in equation (1.139) will vanish due to the (1.137) condition. Here, the second

derivative ∂2Ãm/∂z
2 also vanished because of the slowly varying approximation. We multiply

equation (1.139) with F ∗
1 or F2 and integrate over the x-y plane, we obtain the coupled mode

equations:
∂Ã1(z, ω)

∂z
= i(β1 +∆βNL

1 − β)Ã1z, ω − iκ12Ã1(z, ω),

∂Ã2(z, ω)

∂z
= i(β2 +∆βNL

2 − β)Ã2z, ω − iκ32Ã2(z, ω),

(1.140)

where κmp and ∆βNL
1 are defined as:

κmp =
k0
2β

∫∫ ∞

−∞
(ñ− n2

p)F
∗
mFpdxdy, (1.141)

∆βNL
1 =

(k0)
2

2β

∫∫ ∞

−∞
(ñ− n2

L)F
∗
mFndxdy, (1.142)

where nL is the linear part of ñ and modal distributionFm are normalised such that
∫∫∞

∞ |Fm|2dxdy

= 1. By expanding Bm(ω) in a Taylor series around the carrier frequency ω0 as:

βm(ω) = β0m + (ω − ω0)β1m +
1

2
(ω − ω0)

2β2m + ..., (1.143)

keeping term up to second order and replacing (ω − ω0) by a time derivative while taking the

inverse Fourier transform, we obtain the time domain coupled mode equation

∂A1

∂z
+ β11

∂A1

∂T
+
iβ21
2

∂2A1

∂T 2

= iκ12A2 + iδA1 + i(γ1|A1|2 + C12|A2|2)A1,

∂A2

∂z
+ β12

∂A2

∂t
+
iβ22
2

∂2A2

∂t2

= iκ21A1 + iδA2 + i(γ2|A2|2 + C21|A1|2)A2,

(1.144)

where 1/β1m is group velocity and β2m is group velocity dispersion (GVD) in the m-th core.
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We introduce

δ =
1

2
(β01 − β02), β =

1

2
(β01 + β02). (1.145)

The parameter δ1 is the mismatch between the two cores. The nonlinear parameters γm and

Cmn, where m,n =1 or 2 are defined as:

γm = n2(k0)

∫∫ ∞

−∞
|Fm|4dxdy, (1.146)

Cmn = 2n2(k0)

∫∫ ∞

−∞
|Fm|2|Fn|2dxdy, (1.147)

where the parameter γm corresponds to self-phase-modulation(SPM) and Cmn is corresponds

to cross-phase-modulation(XPM).

The set of equations (1.144) are valid under quite general conditions and include both the

linear and nonlinear coupling mechanisms between the optical fields propagating inside the two

cores of an asymmetric fiber coupler. They simplify considerably for a symmetric coupler with

two identical cores. Using δa = 0, κ12 = κ21 ≡ κ, and C12 = C21 ≡ γΓ, the coupled-mode

equations for symmetric couplers become

∂A1

∂z
+ β1

∂A1

∂t
+
iβ2
2

∂2A1

∂t2
= iκA2 + iγ(|A1|2 + Γ|A2|2)A1,

∂A2

∂z
+ β1

∂A2

∂t
+
iβ2
2

∂2A2

∂t2
= iκA1 + iγ(|A2|2 + Γ|A1|2)A2,

(1.148)

where the subscript identifying a specific core has been dropped from the parameters β1, β2, and

γ since they have the same values for both cores. The XPM parameter Γ is quite small in practice

and can often be neglected altogether. The reason is related to the fact that the integral in Eq.

(1.147) involves overlap between the mode intensities and is relatively small even when the two

cores are close enough that κ (involving between the mode amplitudes) cannot be neglected.

The set of equations (1.148), if considered with only linear terms, can be solved analytically.

In the following sections, we will derive solutions for most simple cases which will provide

fundamentals of the explanations of complicated couplers.

1.3.2 Coupled nonlinear Schrödinger equation and analytic solutions.

In this section, we present a recapitulation of analytic results of linearly coupled NLSE, but

standard, known in the literature, and the new solutions that we found and discussed in the
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Fig. 1.7: Energy in first and second cores for four values of σ when a CW beam is launched in
one core at z = 0.

papers published throughout my Ph.D. studies. In the following chapters, when I will analyze

the series of experiments for various systems of all-optical switches, and present my numerical

simulations, I will refer to these results.

1.3.3 Low-power CW beam in couplers

We start with considering the simplest case of the equations (1.148) for a low-power CW beam

incident on one of the input ports of a fiber coupler. The time-dependent terms in (1.144) are set

to zero. Due to the low energy of CW, the nonlinear terms are also negligible. First, we assume

that the coupling is constant κ(ω) = κ0. Then, we define dimensionless parameters distance,

amplitude, and mismatch between the two cores: ζ = z(2κ0/π), and ψ =
√
γ/κ0A, σ = δ/κ0

and cast remaining term of equations (1.144) in the following form

dψ1

dζ
= iψ2 + σψ1, (1.149)

dψ2

dζ
= iψ1 − σψ2. (1.150)

By differentiating Eq.(1.149) and eliminating dψ2/dζ using Eq. (1.150), we obtain the follow-

ing equation for ψ1:
d2ψ1

dζ2
+ κ2eψ1 = 0, (1.151)
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where the effective coupling coefficient κe is defined as

κe =
√
1 + σ2. (1.152)

The same harmonic-oscillator-type equation is also satisfied by ψ2. By using the boundary con-

dition that a single CW beam is incident on one of the input ports such that ψ1(0) = ψ0 and

ψ2(0) = 0 where ψ0 is an arbitrary constant amplitude, the solution of Eqs. (1.149) and (1.150)

is given by

ψ1(ζ) = ψ0[cos(κeζ) + i(σ/κe) sin(κeζ)], (1.153)

ψ2(ζ) = ψ0(i/κe) sin(κeζ). (1.154)

Thus, even though ψ2 = 0 initially at z = 0, some power is transferred to the second core as

light propagates inside the fiber coupler. Figure 1.7 shows the ratio |ψ2/ψ0|2 as a function of ζ

for several values of σ. In all cases, power transfer to the second core occurs periodically. The

maximum power is transferred at distances such that κez = mπ/2, where m is an integer. The

shortest distance at which maximum power is transferred to the second core for the first time is

called the coupling length and is given by Lc = π/(2κe).

In the case that the frequency dependence of the coupling coefficient κ cannot be ignored,

it can be included by expanding κ(ω) in a Taylor series around the carrier frequency ω0 so that:

κ(ω) = κ0 + (ω − ω0)κ1 +
1

2
(ω − ω0)

2κ2, (1.155)

where κm = dmκ/dωm is evaluated at ω = ω0. The exact solutions of more complex couplers

where the first-order time-derivative terms can also be obtained. We rescale the parameter for

the first order coupling ϵ = κ1/
√
κ0|β2|. Equations (1.158) and (1.159) then become

i
∂ψ1

∂ζ
= −iϵ∂ψ2

∂τ
− σψ1 − ψ2, (1.156)

i
∂ψ2

∂ζ
= −iϵ∂ψ1

∂τ
− (α2 − α1)

∂ψ2

∂τ
+ σψ2 − ψ1, (1.157)

where α1 = β11/
√
κ0|β21|, α2 = β12/

√
κ0|β21|, τ = tr

√
κ0/β2 with retarded time tr = t−zβ1.
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The solution of equations (3.58) and (3.59) is

ψ1(ζ) = ψ0 sin (Kζ) e
i(pζ−Ωτ), (1.158)

ψ2(ζ) = = ψ0 [A cos (Kζ) + iB sin (Kζ)] ei(pζ−Ω). (1.159)

Here Ω is an arbitrary frequency shift, which defines the family of the CW solutions. Further, p

is the corresponding shift of the propagation constant, B is the relative amplitude of the waves

in the two cores, and 2π/K is the period of the power switching between the cores. The latter

parameters are expressed in terms of Ω as follows:

A = −
[
σ +

Ω

2
(α1 − α2)

]
/(1 + ϵΩ), (1.160)

B = K/(1 + ϵΩ), (1.161)

p = −1

2
Ω2 +

Ω

2
(α1 − α2) , (1.162)

K2 = (1 + ϵΩ)2 +

[
σ +

Ω

2
(α1 − α2)

]2
. (1.163)

This solution is tantamount to the previously known one [1]. The exact CW solution, given by

Eqs. (1.158)-(1.163), is a novel finding. It can be obtained if the Doppler shift, (α1 − α2) Ω, is

added to the phase-velocity mismatch, 2σ. The asymmetry of the solution is characterized by

the ratio of the amplitudes:

max (|ψ2(ζ)|)
max (|ψ1(ζ)|)

=
√
B2 +K2 ≡

√
1 + 2

[
σ +

Ω

2
(α1 − α2)

]2
, (1.164)

where index 2 represents the excited core. Note that the asymmetry is canceled at a specially

chosen value of the frequency shift,

Ω0 = −2σ/ (α1 − α2) . (1.165)

1.3.4 Low power pulses in couplers

In the case of low-energy optical pulses, nonlinear effects can be neglected but the effects of

fiber dispersion should be included. Practically, the second-order term in coupling expansion is

negligible for pulses as short as 0.1 ps. For symmetric couplers, the coupled mode equations,
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the set of Eqs.(1.148) become:

i
∂ψ1

∂ζ
=
s

2

∂2ψ1

∂τ 2
− iϵ

∂ψ2

∂τ
− ψ2, (1.166)

i
∂ψ2

∂ζ
=
s

2

∂2ψ2

∂τ 2
− iϵ

∂ψ1

∂τ
− ψ1. (1.167)

where s = sgn(β2) = ±1 . Conventionally, dispersion length is defined as LD = T 2
0 /β2, where

T0 is related to the pulse width. Moreover, the coupling length is defined as Lc = π/(2κ). How-

ever, in the Eqs. (1.166)-(1.167) above, the dimensionless unit variables of time and distance

are defined in such a way that the coupling and dispersion parameters are rescaled to 1. Thus,

the dispersion is only characterised by pulse width η = t0/T
2
0 , where t0 =

√
|β2|/κ is dimen-

sionless units of time. GVD effects become significant only for ultrashort pulses with pulse

width T0 < 0.1 ps and for pulses with T0 > 1 ps GVD effects are negligible since the coupling

strength κ is typically much larger than 1. In the case that the GVD term in Eqs. (1.166)-(1.167)

is neglected, e.g. picosecond optical pulses, the resulting equations become identical to those

applicable for CW beams. Therefore, the energy is transferred to the neighboring core periodi-

cally when such pulses are incident on one of the input ports of a fiber coupler. The analytical

solution of (1.166)-(1.167) yields

ψ1(z, τ) =
1

2
[ψ0(τ − ϵζ)eiζ + ψ0(τ + ϵζ)e−iζ ],

ψ2(z, τ) =
1

2
[ψ0(τ − ϵζ)eiζ − ψ0(τ + ϵζ)e−iζ ].

(1.168)

When κ1 = 0, the solution reduces to

ψ1(z, τ) = ψ0(τ) cos(ζ), ψ2(z, τ) = ψ0(τ) sin(ζ). (1.169)

The solution (1.169) shows that the pulse switches back and forth between the two cores while

maintaining its shape when the frequency dependence of the coupling coefficient can be ne-

glected. However, when ϵ is not negligible, Eq. (1.168) shows that the pulse will split into two

sub-pulses after a few coupling lengths, and separation between the two would increase with

propagation. This effect is referred to as inter-modal dispersion and is similar to polarization-

mode dispersion occurring in birefringent fibers. Inter-modal dispersion was observed in a 1997

experiment by launching short optical pulses (width about 1 ps) in one core of a dual-core fiber

with the center-to-center spacing d ≈ 4a [14]. The auto-correlation traces showed evidence of
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pulse splitting after 1.25 m, and the sub-pulses separated from each other at a rate of 1.13 ps/m.

The coupling length was estimated to be about 4 mm. Inter-modal dispersion in fiber couplers

becomes of concern only when the coupler length L ≫ Lc and pulse widths are approximately

1 ps or shorter.

We have found the solutions of NLSEs regarding mismatch and dispersive coupling sepa-

rately, each with CWs or short pulses (> 1 ps). We now consider both of these effects, while

including GVD, in the case of ultrashort pulses. The NLSE for the ultrashort pulse is written as:

i
∂ψ1

∂ζ
=
s

2

∂2ψ1

∂τ 2
− ϵ

∂ψ2

∂τ
− σψ1 − ψ2, (1.170)

i
∂ψ2

∂ζ
=
s

2

∂2ψ2

∂τ 2
− ϵ

∂ψ1

∂τ
+ σψ2 − ψ1. (1.171)

The simplified form of the exact solution admits a more sophisticated exact solution. It is a

two-component chirped Gaussian pulse, localized (and, in the general case, moving) along the

temporal coordinate, with two components periodically oscillating between the cores. These

solutions also contain an arbitrary frequency shift Ω, cf. Eqs. (1.158) and (1.159):

(ψ1)Gauss = Φ(ζ) sin
(√

1 + σ2ζ
)

× exp

(
−1

2
φ(ζ) (T + Ωζ)2 − iΩT − i

2
Ω2ζ

)
, (1.172)

(ψ2)Gauss = Φ(ζ)
[
−σ cos

(√
1 + σ2ζ

)
+ i

√
1 + σ2 sin

(√
1 + σ2ζ

)]
× exp

(
−1

2
φ(ζ) (T + Ωζ)2 − iΩT − i

2
Ω2ζ

)
, (1.173)

where φ(ζ) and Φ(z) are the following complex functions:

φ(ζ) =
1

W 2 + iζ
, (1.174)

Φ(ζ) =
Wψ0√
W 2 + iζ

, (1.175)

with an arbitrary parameter W which determines the width of the Gaussian. The oscillation

period between the cores is determined by the ζ-dependence of the energies of components
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Fig. 1.8: Energy in first and second cores for four values of σ when a pulse with initial form
sech(ητ) is launched in one core at z = 0.

(1.172) and (1.173), cf. Fig. 3.11 below:

 E1(ζ)

E2(ζ)

 =
√
π |ψ0|2W

 sin2
(√

1 + σ2ζ
)

σ2 + cos2
(√

1 + σ2ζ
)
 . (1.176)

Naturally, the total energy, E1(ζ) + E2(ζ), stays constant in the course of the oscillations be-

tween the cores. As concerns the frequency shift, it is related to the experimentally controllable

shift ∆λ of the carrier wavelength, λ0. In physical units, the relation is

Ωphys−units ≈ −2πc0
nλ20

∆λ, (1.177)

where c0 is the light speed in vacuum, and n is the refractive index. In the scaled form adopted

above, the value is

Ω = t0Ωphys−units,

where t0 is the time unit defined as t0 =
√
|β2|κ. Such a simple analytical approach allows

us to evaluate the excitation wavelength effect on the coupling efficiency. It is predicted that

decreasing the excitation wavelength will reduce the coupling efficiency. Due to that reason, we

chose the excited wavelength accordingly with other parameters of the fiber in Chapter 3, to

maximize the switching performance.
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1.4 Photonic crystal fibers

1.4.1 Introduction

An optical fiber is a cylindrical dielectric waveguide (nonconducting waveguide) that transmits

light along its axis through the process of total internal reflection. A fiber consists of a core

surrounded by a cladding layer, both of which are made of dielectric materials. Photonic crystal

fibers (PCF) are optical fibers with regular refractive index material structures in the background

with a high refractive index. They operate on the same index-guiding principle as conventional

optical fiber — however, they can have a much higher effective refractive index contrast be-

tween core and cladding and therefore can have much stronger confinement for applications

in nonlinear optical devices, and polarization-maintaining fibers. One of the most important

advantages offered by photonic crystal fibers (PCFs) is the high design flexibility. In fact, by

changing the geometric characteristics of the fiber cross-section, such as the air-hole dimension

or disposition, it is possible to obtain fibers with opposed optical properties [4]. Thus, they can

also be made with much lower effective index contrast. Few optical parameters like birefrin-

gence, chromatic dispersion, effective mode area, loss of confinement, and non-linearity can be

determined by PCF. Due to their unique geometric structure, PCF possesses special properties

and capabilities that lead to an outstanding potential for supercontinuum generation and sensing

applications.

There has been a lot of research on Photonic Crystal Fiber and the PCF technology has been

modified by those researches. In 1978, the Bragg Fiber Idea revolutionized telecommunications

with component sensors and filters, but there were the main disadvantages encountered were no

large modes, their enormous size, and greater losses [5]. Later in 1992, the fiber design included

the Total Internal Reflection method with good perforation in telecommunications except with

a few problems such as limited choice of material, and restricted core diameter for single-mode

operation [6].

In 1996, the photonic coated fiber was manufactured with additional characteristics of in-

creased durability, high strength, and high-temperature resistance according to use in nuclear

radiation, harsh chemical environments, medical applications, etc.

In 1997, single-mode PCF with no higher order modes regardless of optical wavelength, low

non-linearity, and low confinement loss was used as filtering mode, sensors, interferometers,
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etc. [7]. In 1999, PCF with photonic band-gap air core was implemented as a different variety

of wave-guide structures in the core of an array of air holes for various purposes [8].

In 2000, PCF was made of highly birefringent with different diameters of air holes along

the two orthogonal axes or high data rates and fiber loop production due to uneven core design.

In the same year, Supercontinuum generation was generated by high non-linear PCF and Zero

Dispersion Wavelength applications in Pulse Compression, Laser Sour Spectroscopy, WDM,

etc. [9]. Later in 2001 work of manufacture of Bragg fiber eventually found uses in optical sen-

sors, fiber laser, and PCF laser with double cladding (Ytterbium-doped double-clad) provided

high power was found by Fabry Perot specification. PCF with ultra-flattened dispersion was

implemented in 2002 in which Zero Dispersion was acquired at a much broader wavelength

range of 1-1.6µm used primarily for supercontinuum generation. Bragg fiber with air core and

silica was present in 2003, reducing the loss of non-linearity propagation and filling in as a

model to consider the non-linear optical stage materials [10]. Chalcogenide Photonic Crystal

Fibers (CPCF) were developed in 2004 and offered several unique optical properties such as

a transmission window that extends far into the infrared spectral region and demonstrates an

extraordinarily high nonlinear refractive-index coefficient.

In 2005, Kagome Lattice PCF was implemented with a gas-filled hypo-cycloid fiber con-

taining three very strong band gaps overlapping to provide low loss at a very large wavelength

range. The pressure and temperature of the gas can be observed as also the gas’s significant

contribution to the refractive index, which was used to design bright temporally coherent opti-

cal sources [5]. Furthermore, in the year of 2006, the creation of Hybrid Photonic Crystal Fiber,

a type of PCF made up of air holes and germanium-silica rods prepared around an un-doped

silica core which guides light inside a core by Total Internal Reflection (TIR) and anti-resonant

reflection guidance. Later in 2007, Silicon Double Inversion was used to produce photonic crys-

tal polymer templates that were an intermediate approach where silica was produced at room

temperature via Atomic Level Deposition (ALD). Hollow Core Photonic Band Fiber (HC-PCF)

which was free of surface modes was developed in 2009. Due to the complete elimination of

surface modes, there will be a substantial increase in fiber bandwidth, and a reduction in dis-

persion may easily lead to more carrying capacity [11]. In 2013, the Double Cladding of Seven

Photonic Crystal Fibers was implemented in which each core was made to transmit only the

basic mode known as the super mode and offered great support in making a multi-core fiber

with proper guiding properties for high-power supercontinuum generation [12]. Another very
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effective nano-displacement sensor, which can work directly for horizontal as well as verti-

cal displacement, was acquired in 2014 as a PCF - based on a slightly different sensitivity

nano-displacement sensor. different sensitivity. For mid-infrared supercontinuum generation,

Photonic Crystal Fibers - with an equiangular 8 mm long PCF were intended in 2015. This

would generate laser pulses with a high power of 500W [13]. The PCFs were later integrated

into a Fiber Laser. For High Power Applications, a monolithic fiber with a 40µm core with

Yb-do PCFs amplifier configuration generating up to 210 W average powers at 1064 nm was

introduced. Helically twisted photonic crystal fibers (PCFs) were analyzed in 2016 based on

the Helical Bloch theory. This twisted periodic ’space’ causes spiral light across the fiber axis

and will include dips in the transmission spectrum, and core-less PCF may have low loss guid-

ance [14].

1.4.2 Types of photonic crystal fibers

Photonic Crystal Fiber can be illustrated as a structure comprised of a core and clad, ensuring the

propagation law of total internal reflection as in usual fiber. Periodic nano-structures influence

photon motion as this ionic lattice affects electrons in solids. It occurs naturally in the shape of

coloring the structure. The core of this particular fiber is made of silica as a solitary material

and can either be solid or hollow. The core is encompassed via air holes that experience the

fiber so it is called ’holey’ or’ microstructured fiber and because of this structure the light is

restricted and transferred through the core which goes about as a cavity. Photonic crystal fibers

can be divided into two modes of operation, according to their mechanism for confinement:

index guiding and photonic bandgap [15].

Index guiding photonic crystal fiber: In index guiding PCF light is centered by the total

internal reflection between the solid core and various air gaps cladding. The solid core of file

controlling PCF with a miniaturized scale basic exhibit of air gaps is encompassed by unadul-

terated silica cladding with a refractive index of 1.462. Because of the huge refractive index

difference between air (1.000) and silica (1.462), the light is centered by total internal reflec-

tion which is an element of wavelength. Effective Refractive Index fundamentally measures the

stage delay per unit length in PCF concerning stage delay in a vacuum.

Photonic band-gap fiber: Photonic band-gap fiber is obtained by the structure formed as

if the core part of the air holes array is simply replaced by a much larger hole of much larger

diameter in comparison to the surrounding holes. There is an adjustment in its optical properties
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because of the deformity of the broken structure of periodicity. No electromagnetic modes are

permitted to have a recurrence in the hole. Its impact is displayed in photonic crystal band-

gap fiber where the wavelength controls light in a low index core region. The light-controlling

wonder in the fiber depends on the recurrence of the outside light if matches the band-gap

recurrence, the light gets limited in the holes and like manner is guided all through the length

of the fiber. So there is no prerequisite higher refractive index of the center.

1.4.3 Analysis of the optical properties

Birefringence is an important parameter in fiber optics and many detecting gadgets where light

needs to hold a straight polarization area, regularly requiring high birefringence. Normally ma-

terials with uniaxial anisotropy - the hub of symmetry is called the optical pivot of a specific ma-

terial and has no comparable hub in the plane opposite to it - display this optical phenomenon.

Liner polarized light beams in parallel and opposite headings will express uneven effective re-

fractive indices ne and no for unexpected and normal developing beams separately. At the point

when an un-captivated light emission goes through the material with a nonzero intense edge to

the optical hub, the oppositely spellbound segment may confront refraction at an edge accord-

ing to the ordinary law of refraction and its contrary part at a non-standard point appeared by

the distinction between the two compelling refractive records called as the birefringence extent.

Chromatic Dispersion: The total waveguide and material dispersion add to the chromatic

dispersion or total dispersion. The material dispersion is trademark to the use of material to

create the fiber though the waveguide dispersion can fluctuate by changing the plan parameter

of the waveguide in this way all out scattering is permitted to be modified.

Confinement Loss: The occurrence of limited air holes in the center region causes the

optical mode to leak from the inner core region to the outer air holes and this is inevitable, re-

sulting in confinement losses. Fundamental mode is used to calculate confinement loss from the

imaginary part of the complex effective index neff , using Lc = (1/λ)(40π/ln(10)) Im(neff ).

Confinement Loss is the leakage of light from the material of the core to the material of the

external matrix. It can be changed according to the parameters like number of air holes, number

of layers, air hole diameter, and pitch.

Zero Dispersion Wavelengths (ZDW): For optical fibers, ZDW is the wavelength where

the group delay dispersion (second-order dispersion) is zero. For PCFs with small mode areas,

which can execute particularly strong waveguide dispersion, the ZDW can be shifted into the
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visible spectral region, so that anomalous dispersion is obtained in the visible wavelength re-

gion, allowing for soliton transmission. PCFs as well as some other fiber designs can generate

two or three different ZDW. SCG (Supercontinuum Generation) can lead to particularly broad

optical spectra when the pump light has a wavelength near the ZDW.

Effective Mode Area: Aeff of the PCF is follows by the equations Aeff = (
∫ ∫

|E|2

dxdy)2/
(∫ ∫

|E|4dxdy
)
, where E is the electric field amplitude. The integration is cross over

the center zone, yet over the entire plane surface. A significant impact of a small effective mode

area is that the optical intensities for a given power level are high, making nonlinearities impor-

tant.

Non-linearity The non-linear coefficient of PCF represents a very significant parameter

during SCG analysis. Nonlinear coefficient γ is directly corresponding to nonlinear refractive

index (n2) and contrarily proportional to the effective area (Aeff ). The non-linear coefficient of

PCF is defined, as γ = 2πn2/(λAeff ).

1.4.4 Applications of PCF

Applications of photonic crystal fibers include lasers, amplifiers, dispersion compensators, and

nonlinear processing. Photonic crystal fiber structures are currently produced in many labora-

tories worldwide using a variety of different techniques. Below we list several specific applica-

tions.

• A highly nonlinearly designed PCF with 4 strands of air holes with different diameters

can be accessed for broadband supercontinuum generation that is used in dermatology,

ophthalmology, dental, and detection of dermatology.

• PCF-in-PCF structure shows ultra-flattened negative dispersion at a large range of wave-

lengths ranging from 1360 to 1690 nm and can be utilized for residual dispersion com-

pensation in optical transmission

• Varying the diameters of the inner air opening can be utilized for supercontinuum gen-

eration and gives a flat dispersion profile formed-infrared range from 1- 10µm. A highly

nonlinear photonic hexagonal crystal fiber with a structure of five rings can be used.

• Photonic crystal fiber with a central core region doped with GeO2, abutter fly lattice

structure, and fiber Bragg grating (FBG) fetched in the core can be used as an optical

fiber pressure sensor.
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• A chalcogenide glass PCF with square lattice and hexagonal lattice structure with the

pitch of 0.2µm can be used as dispersion compensating fibers. In comparison to silica,

this fiber makes available high negative dispersion in the wavelength range 1.2– 1.6µm.
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Chapter 2

Optical switching in symmetrical

dual-core highly nonlinear optical fibers

In this chapter, we investigate the switching mechanism (optical coupler) in the dual-core

photonic-crystal fiber. We focus the input beam on one of the channels, to study the stability of

the transmission and identify a threshold between switching and self-trapping in either chan-

nel. A model that includes the two coupled channels with intrinsic dispersion and nonlinearity

provides surprisingly good agreement with the experimental findings.

The realization of all-optical switching in a simple format has long been a challenge for

nonlinear fiber optics. The concept of nonlinear directional couplers based on dual-core fibers

(DCFs) was introduced theoretically in the early 1980s [16–18]. Since then, considerable effort

has been devoted to the characterization and optimization of the device performance [1, 19].

In particular, a promising demonstration of ultrafast nonlinear switching had been reported uti-

lizing femtosecond pulses in the normal-group-velocity-dispersion (GVD) range of the silica

fiber coupler [20]. The main limitations of ultrafast nonlinear switching in conventional non-

linear couplers are relatively high powers ( 100 kW) required for the signal redirection, and

the ensuing breakup in the temporal domain [20, 21]. Additionally, the switching performance

is compromised by the intra-channel and inter-modal GVD, which strongly affects pulses of

width 100 fs. To avoid the degradation driven by these factors, it was proposed to exploit tem-

poral solitons [22], taking advantage of their robustness. Numerous theoretical works [23–28]

have reported diverse schemes of the soliton switching. Despite the theoretical advances, very

few experimental studies have been performed for switching of temporal solitons in nonlinear
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couplers, with results remaining far behind the theoretical predictions. Experimental works ex-

ploiting the soliton propagation in dual-core photonic-crystal fibers (PCFs) [29, 30] were ham-

pered by the fission of naturally emerging higher-order solitons, resulting in output distributed

chaotically between the two channels [31]. Later, an extensive numerical study for an air–glass

dual-core PCF made of a highly nonlinear lead silicate glass (PBG-08) revealed the possibility

of self-trapping of higher-order solitons, following their self-compression [32]. Such an effect,

which tends to keep a spectrally broadened pulse in one fiber core, was demonstrated in a mul-

tichannel fiber structure, as a basis of the creation of “arrayed light bullets” [33]. Motivated by

these concepts, we initiated a new study of self-trapping, alternating between the two fiber cores,

aiming at achieving high-contrast switching performance. It is focused on the performance of a

highly nonlinear DCF with two soft glass kernels. Strong nonlinearity is ensured by using the

PBG-08 glass, while the complex air–glass PCF structure is replaced by a low-index glass [34].

The high-index contrast between the core and cladding in this system supports very efficient

switching performance, as predicted by simulations [35]. Moreover, a higher level of dual-core

symmetry was achieved in this fiber, in comparison to previously used dual-core PCFs, which

is necessary for the operation of all-optical switching in DCFs [36].

2.1 Symmetrical dual-core highly nonlinear optical fibers

Fig. 2.1: SEM images of the final fabricated all-solid DCF with simple cladding DCFs with
optimal symmetry.

The fiber’s core material was the lead-silicate glass PBG-08, which has been popularly

used for all solid nonlinear PCFs. However, it did not exhibit superior switching performance
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compared to the air-glass PCF. PBG-08 has a high nonlinear refractive index of 4.3·10−19 m2/W

and a linear refractive index of approximately 1.9 in the near-infrared (NIR) spectral region. To

achieve better results, a complementary borosilicate glass was developed to match the thermal

properties of PBG-08, resulting in the creation of the new glass, UV-710, with a refractive index

of around 1.5 in the NIR [37].

Figure 2.2 displays the group refractive index for both glasses in the visible and NIR spectral

regions, along with their essential rheological properties. The graph illustrates a significant

index contrast of 0.4 between the glasses in the NIR, even during short pulse propagation.

The thermal treatment behavior of both glasses is quite similar, allowing them to be combined

in the all-solid fiber manufacturing process.

Fig. 2.2: Group refractive index of the two selected glasses and their key rheological properties
(in the inserted table) [38].

The fabrication of the double-clad fiber (DCF) was accomplished using the stack-and-draw

method, commonly employed in PCF manufacturing. Initially, cylindrical glass rods of identical

diameters were prepared from both glasses: the high-index PBG-08 and the low-index UV-710.

The UV-710 glass rods were arranged in a hexagonal lattice structure with 6 rings of elements

surrounding the central rod. Subsequently, two UV-710 glass rods flanking the central rod were

replaced with PBG-08 ones, and the small air gaps between the rods were filled during the

two-step drawing process.

In the first step, several 20-cm long sub-preforms with a diameter of about 1.6 mm were
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manufactured. After identifying the best symmetry sub-preform, the final drawing process was

performed. Before the last drawing process, the sub-preform was enclosed in a capillary of

PBG-08 glass to create the outer cladding with a larger diameter, approaching the standard size.

The resulting fiber had an outer diameter of 111 µm.

The scanning electron microscope (SEM) images in Fig. 2.1 (a magnification of 5000 and

20,000) show that the core borders did not form the expected regular hexagons, instead taking on

a star-like shape. This deformation occurred because the UV-710 glass used for the cladding is

harder than the PBG-08 glass used for the core, preserving the original curvature of the cladding

rods. The distance between the centers of the DCF cores is 3.1 µm, and the effective mode area

Aeff of a single core is 1.86 µm2.

2.2 Experimental results

The pilot experiments in the optimized dual-core-fiber, using pulses of 100 fs duration, with car-

rier wavelength 1700 nm, have demonstrated, for the first time, high-contrast (16.7 dB) switch-

ing in the soliton regime [38]. In this section, we report essentially more advanced experimental

results achieved in the C-band (at 1560 nm), using a new generation of strongly nonlinear high-

index-contrast DCFs. The experimental findings are supported by simulations that use a model

with experimentally relevant parameters.

In the experiment, we used a setup similar to the one in Ref. [38]. The laser source was a

Menlo C-fiber amplified oscillator, generating 3 nJ pulses at 1560 nm, with a pulse width of 75

fs, at the frequency of 100 MHz. The output channels of the DCF were monitored sequentially

by a CCD camera (ElectroOptic CamIR1550) collecting images recorded at each level of the

input pulse energy.

Figure (2.3) presents a sequence of camera images recorded with increasing input energy.

These results are similar to the switching performance reported for the 1700 nm carrier wave-

length [38], but achieved at lower pulse energies. The switching performance includes back-

and-forth switching steps, following the increase in energy, at levels 100–150 pJ and 150–200

pJ, respectively. They correspond to the above-mentioned numerically predicted transitions

from oscillations to the trapping in the cross channel, finally followed by the retention in the

straight one

The spectrally resolved dual-core extinction ratio,ER(λ), was calculated, on the basis of the
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Fig. 2.3: Camera images sequence of the output pulse for increasing energies of the input.

experimental data, using power spectra Sright(λ) and Sleft(λ), which were separately collected

from both cores, as following

ER(λ) ≡ 10 log(Sright(λ)/Sleft(λ))

The dependence of ER(λ) on the input pulses energy, E, is shown in Fig.2.4, revealing spectral

details of the complex Fig. 3. Sequence of camera images of the output fiber facet for different

energies of the input switching behavior, in correspondence with the camera images: at first,

ER(λ) decreases with the increase in E in the range of 50–150 pJ, then it increases between 150

and 250 pJ. The scenario of the all-optical soliton switching is supported by the fact that only

moderate spectral broadening takes place, and the switching is spectrally homogeneous. The

same forth-and-back switching scenario is presented by the arrow pairs in Fig. 2.4, spanning in

a spectral range of 1510–1575 nm. This range covers the majority of the pulse energy taking into

consideration the basic spectral profile presented in the inset in Fig. 2.4. The fourth switching

step has lower contrast according to the spectral results comparing the length of the cyan and

orange arrows. The origin of this discrepancy is the chromatic aberration of the out-coupling

optics avoiding the sharp separation of the two output spectra originating from the straight and

cross channels [38], even though the switching performance reveals the possibility of directing

the energy to either channel in a reversible way. An essential asset of the operation scheme

produced in this work, in theoretical and experimental forms, is that it provides high switching

contrasts without the requirement of precise adjustment of the fiber length.

2.3 Theoretical model and simulation results

In Chapter 1, we have derived the coupled nonlinear Schrödinger equations (NLSEs) for direc-

tional couplers and several of their solutions in low-power regimes (linear cases). In the higher

power regime, where nonlinearity is not negligible, The NLSEs can only be solved numeri-
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Fig. 2.4: Spectrally resolved extinction ratio between output intensities in the two channels,
measured for different input energies, E. The inset displays the respective spectral intensity
for E = 50 pJ.

cally. In this chapter, we will investigate a nonlinear switching mechanism in a dual-core highly

nonlinear, high-contrast fiber, which is introduced in Chapter 1, using a model based on the

system of NLSEs. The model does not consider another nonlinear effect such as Raman scatter-

ing, self-steepening, and higher order GVD effect (cf. Ref. [34]). Thus, the model is based on

the system of linearly coupled nonlinear Schrödinger equations (NLSEs) [39–42], written for

complex envelopes A1,2(t, z) of electromagnetic waves in the cores:

i
∂A1

∂z
=

−β2
2

∂2A1

∂t2
− γ|A1|2A1 − κA2,

i
∂A2

∂z
=

−β2
2

∂2A1

∂t2
− γ|A1|2A2 − κA1.

(2.1)

Where z and t are the propagation distance and time in physical units, respectively. β2,γ,

and κ represent the GVD, Kerr nonlinearity, and inter-core coupling. We define dimensionless

parameter for time, distance and amplitude t = τ
√
β2/κ, z = ζ/κ, ψ1,2 =

√
κ/γA1,2. Units of

the propagation length and time are z0 = π/(2κ) ≈ 21 mm and t0 ≈ 32 fs. The set of Eq. (2.1)

in rescaled units becomes:

i
∂ψ1

∂ζ
= −1

2

∂2ψ1

∂τ 2
− |ψ1|2ψ1 − ψ2,

i
∂ψ2

∂ζ
= −1

2

∂2ψ2

∂τ 2
− |ψ1|2ψ2 − ψ1.

(2.2)
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Fig. 2.5: Frequency of soliton breather as a function of eta for two values of amplitude a = 1.15
and a = 2.6. The red lines represent the limits of the interval 3a/2 < η < 5a/2, where the
formula (1.131) is valid.

In our simulation of the system, a soliton-like pulse with independent amplitude a and in-

verse width η was launched in one core, coupled at ζ = 0, and has the form:

ψ1(0, τ) = a sech(ητ),

ψ2(0, τ) = 0. (2.3)

Where the relation of η and FWHM width of the pulse is tFWHM = 1.76t0/η. Simulations

of Eq. (2.2) were performed using the split-step Fourier method with parameters corresponding

to the all-solid 4.3 cm long DCF. The respective parameters, produced by Lumetrical mode

solver at wavelength 1.56 µm, are the inverse group velocity β1 = 6.56 × 10−9 s/m, GVD

β2 = −7.73×10−26, inter-core coupling κ = 75 m−1 and nonlinear coefficient γ = 0.4 W−1m−1

(measured in Ref. [43]). The FWHM width of the pulse is tFWHM ≈ 75 and η = 0.78. In Eq.

2.2 the period of the popular oscillation between the cores is π, and the length of the sample

approximately equals 3 so switching could be obtained. Relation of energy and scaled amplitude

a in equation 2.3 is:

E =
κ

γ

∫ +∞

−∞
|ψ1(0, τ)|2t0dτ ≈ 1.14

a2tFWHMκ

γ
≈ 30a2. (2.4)

63



i
i

“output” — 2023/10/27 — 11:26 — page 64 — #64 i
i

i
i

i
i

Fig. 2.6: Periodic inter-core oscillations, produced by numerical solutions of Eqs. (2.2) for the
of the input amplitude a = 1.15 , and inverse width, η = 0.78. The left and central columns
display spatiotemporal patterns of the intensities, |A1,2(z.t)|2, in the bar and cross channels,
respectively. The blue and red curves in the right column show the energy in each channel
(and the total energy, shown by the cyan curve) versus the propagation distance. The black
vertical line at ζ = 3 denotes the length of the fiber corresponding to the experiment.

2.3.1 Osillation, switching and self-trapping

In the case κ = 0, the input in Eq. (2.3) only propagates in one core, generating intrinsic oscil-

lations of deform solitons or so-called breathers. Referring to the exact solution of NLSE Eq.

(1.115) in Chapter 1, the spatial frequency of these oscillations is given by ω = 4(a− η)η when

the width of the input pulse falls within the range 3/2 < a/η < 5/2. Figure 2.5 illustrates the

breather frequency with respect to η for two amplitude values, as calculated using the above

formula and obtained from simulations. Remarkably, the frequency formula and simulation re-

sults exhibit agreement within the interval 3/2 < a/η < 5/2. Outside of this range, oscillations

still occur, but the correspondence between simulation and approximation formulas cannot be

guaranteed. If the coupling parameter κ is greater than zero, it results in the interaction between

oscillations inter- and intra-channel oscillations and the emission of small amplitude waves in

each channel, mostly at the initial stage of the propagation.

The amplitude of the pulse, which is directly related to the degree of nonlinearity, plays a

crucial role in the switching mechanism. When the amplitude is relatively small we observe

quasi-harmonic oscillations of energy exchange between the cores. This behavior is due to

the stronger inter-core oscillation dominating the weaker intra-core oscillation. Fig. 2.6 shows

spatiotemporal patterns in τ and z plane and z-dependent energy for each channel for amplitude

a = 1.15 from input function (2.3). The right-hand panels depict the slow decay of total energy

over long propagation distances, indicated by cyan lines. This decay is primarily due to losses

at absorbers placed at the edges of the time-integration domain, simulating the radiation losses
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observed in the experiment. In the case of ζ ≈ 3, which corresponds to a fiber length of 4.3

cm in the experiment, the losses are negligible. By slowly increasing the amplitude of the input,

the domination of the linear effect fades away as shown in Fig. 2.8. In the left panel, which

corresponds to amplitude is smallest a = 1, The dynamics in the two cores are analogous to

the linear oscillations with an unchanging period. In the central panel, which corresponds to

a = 1.15, the inter-core oscillation slightly changes its frequency and decreases the contrast

between the two cores. This change is more profound in the case of a = 1.4, which is shown in

the right panel.

Fig. 2.7: Self-trapping in the cross channel, produced by numerical solutions of equations (2.2)
for the of the input amplitude a = 2.0, and inverse width, η = 0.78. The left and central
columns display spatiotemporal patterns of the intensities, |A1,2(z.t)|2, in the bar and cross
channels, respectively. The blue and red curves in the right column show the energy in each
channel (and the total energy, shown by the cyan curve) versus the propagation distance. The
black vertical line at ζ = 3 denotes the length of the fiber corresponding to the experiment.

Fig. 2.8: Comparison of energy in each channel as a function of propagation distance z (solid
lines) in the low nonlinear regime, with respect to the energy of linear oscillation (dashed
lines). The panels from left to right correspond to a = 1, 1.15, and 1.4, respectively.

However, if we increase the amplitude to a = 2.0, the quasi-soliton will switch to the cross

channel. The spatiotemporal patterns in τ and z plane and z-dependent energy for each channel

for a = 2 are shown in figs 2.7. Here, the Kerr nonlinearity overwhelms the linear coupling,
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Fig. 2.9: retention in the cross channel, produced by numerical solutions of equations (2.2)
for input amplitude a = 2.6, and inverse width, η = 0.78. The left and central columns
display spatiotemporal patterns of the intensities, |A1,2(z.t)|2, in the bar and cross channels,
respectively. The blue and red curves in the right column show the energy in each channel
(and the total energy, shown by the cyan curve) versus the propagation distance. The black
vertical line at ζ = 3 denotes the length of the fiber corresponding to the experiment.

Fig. 2.10: Comparison of energy in each channel as a function of propagation distance z (solid
lines) in the high nonlinear regime, with respect to the energy of linear oscillation (dashed
lines). The panels from left to right correspond to a = 2.0, 2.1, and 2.2.

thus inter-core oscillation is becoming weaker than intra-core oscillation. If the amplitude is

further increased to a = 2.6 or higher, strong nonlinearity ensures that most of the energy

remains in the straight channel, while the residual radiation oscillates between the channels.

The spatiotemporal patterns in τ and z plane and z-dependent energy for each channel for this

case are shown in Fig. 2.9. The inter-cores oscillation is negligible in this scenario. In order

to show how fragile the switching/trapping process we did some extra studies (not presented

in the paper). We compare the linear oscillation and the dynamics of the system in such high

nonlinearity, demonstrated in Fig. 2.10. In this case, the system becomes very fragile and totally

different from linear oscillation. However, it seems that the linear effect is still a decisive factor

where switching occurs. In the left panel of Fig. 2.10 the switching of energy takes place at

exactly one period of linear oscillation. In the right panel, after several oscillations between two

cores, with the same period with linear oscillation, the pulse transfers to the cross channel.
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2.3.2 The effect of soliton fission

In the simulations presented above, we observe, for higher amplitudes of the pulse, a phe-

nomenon known as soliton fission. Originally this term was used for the breaking-up of fem-

tosecond optical pulse propagating as a high-order soliton into its constituent fundamental soli-

ton due to strong nonlinear effects. We described the dynamics of higher-order solitons in Chap-

ter 1. We stated there that for N > 2 solitons exhibit regular oscillations. This refers to solitons

in the single channel, described by the single Nonlinear Schrödinger Equation. The main idea

behind soliton fission is that when high-order solitons are perturbed by several effects inside op-

tical fibers, including third-order dispersion, self-steepening, and intrapulse Raman scattering,

the dynamics become more complicated, and is no longer harmonic. More frequencies appear

when soliton breaks into more constituents. In my opinion, this is the main characteristic of

soliton fission.

Our system consists of two coupled equations and as we see in Fig 2.10, the dynamics is

no longer harmonic, even though higher-order effects are not included. As we show below, the

dramatic change of the pulse shape and division into fundamental solitons and anharmonic dy-

namics may occur for higher-order solitons solely due to the coupling between channels. To

show that the temporal shapes of the pulse in the time domain are examined at various prop-

agation distances. The study aims to analyze the effect of linear coupling and nonlinearity on

soliton fission and its connection to the self-trapping and switching behavior. Figure 2.11, 2.12,

and 2.13 display three sequences of snapshots illustrating the temporal shape of the pulse for

input amplitudes of a = 1.15, 2.0, and 2.6, respectively. After a short propagation distance, the

pulse breaks into smaller side peaks, while the central peak increases in intensity and narrows

in width. Subsequently, these smaller peaks, except for the central one, break into even smaller

peaks, spreading out along the time axis. The central peak which is the major part of the pulse

also either oscillates between the two cores, self-trapping in bar-core, or switching to cross-

core. We observed that soliton fission occurs earlier with stronger narrowing and intensification

of the central peak as the amplitude of the input pulse is increased, even by a small amount. As

a result, when the peak intensity surpasses the critical point, the pulse is trapped in the current

channel. The difference between self-trapping in bar-core and switching to cross-core is that, in

the latter case, the trapping occurs later because of the lower intensity of the central peak.
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Fig. 2.11: Snapshots wave function in the time domain at different propagation distances for
a = 1.15.

Fig. 2.12: Snapshots wave function in the time domain at different propagation distances for
a = 2.0.
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Fig. 2.13: Snapshots wave function in the time domain at different propagation distances for
a = 2.6.

Fig. 2.14: Chart of dynamical regimes of the system in the (η, a)plane, created by numerical so-
lutions of of Eq. (2.2) with input in Eq. (2.3). Gray, green, and blue areas represent inter-core
oscillations, switching into the cross channel, and trapping in the straight one, respectively.
Red circles refer to the two bottom rows in Fig. 2.1. The top row falls in the gray area be-
neath the frame of the chart.
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2.3.3 Regions of the three outcomes of the dynamics

Finally, we systematically investigate the effects of pulse width and amplitude on the dynamics

of the system by changing each parameter with small steps (0.02 for η and 0.025 for a). Figure

2.14 summarises the results of simulation in a plane of parameters (η, a) of input in equation

2.3. The chart displays three outcomes: periodic oscillation (gray area); switching into the cross

channel (green area) and self-trapping in the straight one (blue). For η < 1, the increase of

a exhibits a simple trend for the transition of oscillation to switching, followed by the transi-

tion to self-trapping in the straight channel. For η > 1, varying amplitude a we cross several

borders between regions corresponding to the self-trapping in the cross and straight channels.

This complex structure exists due to the fact that, in the course of self-compression, the initial

pulse keeps oscillating between the channels, while the self-trapping occurs only if the soliton

acquires a sufficiently high peak intensity. The pulsations persist in the course of several periods

due to the interplay between the single-channel breathing of the deformed soliton and inter-core

oscillations.

To summarize the comparison between the numerical and experimental results presented

above, we note that the three values of the pulse’s amplitude in Eq. (2.3), a = 1.15, 2, and

2.6, which give rise to the different outcomes of the transmission through the DCF presented in

Figs. 2.6, 2.7 and 2.9 (quasi-linear oscillations, self-trapping in the cross channel, and retention

in the straight one), correspond, in physical units, to incident pulse energies 40, 120, and 205

pJ, respectively. The numerical results, obtained for this set of values of the energy correspond

precisely to the experimental results observed for energies 50, 150, and 250 pJ, which differ

from their theoretical counterparts by a constant factor, ≈ 1.25. Additional effects, such as

third-order GVD and Raman effects [16], account for the remaining discrepancy

Losses may also affect the soliton propagation in the DCF. However, limited fiber lengths,

for which the current experiments were performed, make dissipative effects a relatively weak

perturbation [38]; therefore, they are not included in the theoretical model presented above. In

conclusion, the reversible high-contrast switching performance of ultra-fast quasi-solitons in the

C-band is demonstrated in the strongly nonlinear DCF made of soft glass. Both experimental

and numerical results reveal three different scenarios of soliton propagation, viz., periodic os-

cillations, self-trapping in the cross channel, and self-trapping in the straight one, depending on

the energy of the incident pulse. The experimentally observed scenarios and transitions among

them are predicted by systematic simulations of the system of coupled NLSEs. The results
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may be summarized as a well-defined forth-and reverse soliton-switching effect, controlled by

the monotonous increase in the pulse’s energy. Such a sub-nano joule high contrast switching

protocol may find applications to the design of all-optical signal-processing setups.
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Chapter 3

Self-trapping and switching in

asymmetrical dual-core highly nonlinear

fibers

Here we investigate experimentally and theoretically the effects of the inter-core propagation

mismatch on nonlinear switching in dual-core high-index-contrast soft-glass optical fibers. In-

cident femtosecond pulses of various energy are fed into a single (“straight”) core, to identify

transitions between different dynamical regimes, viz., inter-core oscillations, self-trapping in the

cross core, and retaining the pulse in the straight core. The transfer between channels, which

has a solitonic character, is controlled by the pulse’s energy. A model based on the system of

coupled nonlinear Schrödinger equations reveals the effect of the mismatch parameter and pulse

duration on the diagram of the various energy-dependent dynamical regimes. Optimal values of

the mismatch and pulse width, which ensure stable performance of the nonlinear switching, are

identified. The theoretical predictions are in agreement with the experimental findings.

In Chapter 2, the exchangeable self-trapping in both cores is the key mechanism in the stud-

ied dynamical regimes, which could be simulated using a relatively simple model. However,

the role of asymmetry of the dual-core structure was not investigated experimentally or theoret-

ically. In the third chapter of the thesis, we consider optical couplers with two cores, but they are

not identical. The asymmetry can be caused for example by the difference in effective refrac-

tive index. For simulations, we use the set of linearly coupled nonlinear Schrödinger equations

(NLSEs) written for complex envelopes A(z, t) of electromagnetic waves. In the mismatched
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cores of the DCF, it read:

∂A1

∂z
= −β11

∂A1

∂t
− iβ2

2

∂2A1

∂t2
+ iδA1 + iγ|A1|2A1 + iκ012A2 − κ112

∂A2

∂t
(3.1)

∂A2

∂z
= −β11

∂A2

∂t
− iβ2

2

∂2A2

∂t2
− iδA2 + iγ|A1|2A2 + iκ021A1 − κ121

∂A1

∂t
(3.2)

All coefficients were evaluated at central frequency ω0 corresponding to the wavelength λ0 =

1700 nm of the excitation pulses for the specific fiber employed in our experimental study, using

a mode solver from Lumerical. The two fiber cores have a nearly hexagonal shape, with the 3.1

µm distance between their centers and the effective mode area of 1.66 µm2 at 1700 nm [44].

The frequency-independent coupling coefficients κ012 and κ021 are, respectively:

κ012 =
2π2

λ20β

∫ ∫ ∞

−∞
(n2 − n2

1)F
∗
1F2dxdy, (3.3)

κ021 =
2π2

λ20β

∫ ∫ ∞

−∞
(n2 − n2

2)F
∗
2F1dxdy. (3.4)

where functions F1(x, y) and F2(x, y) are field-distribution profiles of fundamental modes in

each core, subject to the normalized conditions,

∫ ∫ ∞

−∞
|F1 (x, y) |2dxdy =

∫ ∫ ∞

−∞
|F2 (x, y) |2dxdy = 1,

κ021 and κ012 are the first-order expansion of the frequency dependent coupling coefficient κ (cou-

pling dispersion), n1 and n2 are refractive indices of the two cores and n(x, y) is the refractive-

index profile of the DCF [1]. In our case, the refractive indices of both cores are identical (the

PBG08 glass was used as the core material, with n1,2 = 1.9), while the asymmetry is underlined

by a difference in the shapes of the cores. Beyond the core, the refractive index is uniform, cor-

responding to the cladding material, viz., UV710 glass (n = 1.52). The asymmetry parameter

is

δ =
1

2
(β01 − β02) (3.5)

where β0m are propagation constants at λ0 in the individual channel (m = 1, 2). The nonlinear

Kerr coefficients are:

γm =
2πñ2

λ0

∫ ∫ ∞

−∞
|Fm(x, y)|4dxdy (3.6)

where ñ2 = 4.3× 10−19 m2/W is the nonlinear index of refraction of the PBG08 glass used as
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the core material, which is about 20 times higher than in silica.

3.1 Rescaling the physical parameters

In the simulations, we used re-scaled parameters and noticed that in our fiber differences be-

tween the cores in terms of the coupling coefficients are negligible, therefore: κ0,112 ≈ κ0,121 = κ0,1.

We define dimensionless parameters for time, distance, and amplitude in the same fashion as

the previous Chapter, and cast Eqs. (3.1)-(3.2) in the following form (notice that we have de-

fined unit of time t0 and unit of length z0, which will later be related to the pulse duration and

propagation length):

−i∂ψ1

∂ζ
= iϵ

∂ψ2

∂T
− i(α2 − α1)

∂ψ1

∂T
+

1

2

∂2ψ1

∂T 2
+ σψ1 + |ψ1|2ψ1 + ψ2, (3.7)

−i∂ψ2

∂ζ
= iϵ

∂ψ1

∂T
+
α

2

∂2ψ2

∂T 2
− σψ2 + |ψ2|2ψ2 + ψ1. (3.8)

where α1 = β11/
√
κ0|β21|, α2 = β12/

√
κ0|β21|, α = |β22|/|β21|, ϵ = κ1/

√
κ0|β21|, and the

mismatched parameter: σ = (β01 − β02)/(2κ0) and we used the retarded time T = τ − α2ζ .

Using the values reported in Table 3.1 α1 = 656.0245871, α2 = 656.0485128, ϵ = −0.01492.

The last parameter which is related to the dispersive character of the coupling coefficient is

crucial for pulse propagation dynamics.

Table 3.1: Optical parameters of the dual-core fiber, which were utilized for the numerical
study of the nonlinear propagation. The parameters, corresponding to the fiber used in the
experiment, were produced with the help of the mode-solver at the carrier wavelength of
1700 nm.

Physical
quantity 1st core 2nd core Units
neff 1.77766 1.77719
β0 6.56172× 106 6.55996× 106 1/m
β1 6.58061× 10−9 6.58085× 10−9 s/m
β2 −9.886149× 10−26 −9.886149× 10−26 s2/m
γ 0.85338 0.85584 1/(W.m)
κ0 1017.8058 1017.8058 1/m
κ1 −1.49662× 10−13 −1.49662× 10−13. s/m

Due to the small difference between the GVD and nonlinearity in both cores, average values

were used for the numerical modeling, viz., β2 = −9.886149 × 10−26 s2m−1, γ = 0.85461
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W−1m−1 and α = 1. The negative value of β2 means anomalous GVD of the fiber at 1700 nm,

hence solitonic propagation may be expected, initiated by the ultrafast excitation pulse in such

a highly nonlinear fiber.

We call the core with higher group velocity high-index core, and the one with lower group

velocity low-index core. The units of propagation length and time for our experimental condi-

tions can be evaluated to be

z0 =
π

2κ
= 1.54 mm, (3.9)

t0 =
√
|β2|/κ = 9.86 fs. (3.10)

The length of our fiber in the experiment was about 18 mm, which corresponds to the di-

mensionless propagation distance of 18.3. It is worth mentioning that, after the completion of

full periods of inter-core oscillations in the linear propagation regime, the energy stays in the

initially excited core. In particular, the 18 mm propagation length, representing about 6 periods,

maintains this effect, as confirmed experimentally by monitoring the field distribution in the

area of both cores at the output.

The asymmetry parameter σ plays an important role in the dynamics of the pulse propa-

gation in the fiber. Considering the difference between the optical parameters of the two cores

presented in Table (3.1), it is obvious that the most “influential" coefficient is the propagation

constant. The group-velocity mismatch, determined by the frequency derivative of β0, is more

than an order of magnitude lower, and the GVD mismatch between the cores is completely neg-

ligible. For this reason, the group-velocity difference was fixed, and only σ = (β01 − β02)/(2κ)

was varied in the course of the simulations, as it represents the dominant effect of the mis-

match. Therefore, in our study, the impact of the asymmetry is investigated by systematically

increasing the value of σ from 0, which represents the symmetric coupler without any mis-

match. The asymmetry parameter is increased up to the level where the nonlinear switching is

still possible, but with lower sensitivity to small changes of the input energy, in terms of the

output-port-dominance exchange.

We have also examined the effect of the pulse’s shape and concluded that the results are

practically the same when sech or Gaussian pulses are used. The pulse-width effect was exam-

ined experimentally in the range between 110 and 150 fs, which is sufficiently broad, taking

into consideration that the soliton order increases linearly with the increasing width [1]. Care-

ful complex amplitude-phase diagnostics was performed under step-by-step realignment of the
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setup of the optical parametric amplification (OPA) source to establish the two above-mentioned

border values: 110 and 150 fs. For our simulations, we used the input Gaussian pulse

ψ(0, τ) = a exp
(
−η2τ 2

)
, (3.11)

where a is the amplitude of the pulse envelope. From the FWHM definition,

ητ = η
tFWHM

2t0
=

√
ln(2)

2
≈ 0.5887 (3.12)

it follows that η = 1.1774t0/tFWHM, hence the respective values of the inverse-width parameter

in Eq. (3.11) are {η(150 fs); η(110 fs)} = {(11.609/150); (11.609/110)} = {0.0774; 0.1055}.

The energy of the pulse as a function of a and η can be expressed as

E =

∫ +∞

−∞
|A(z, t)|2dt = κt0

γ

√
π

2

a2

η
= 14.739

a2

η
[pJ]. (3.13)

The experimental work was carried out with the standard setup presented in detail in Refs.

[38, 45]. Femtosecond pulses centered at 1700 nm were generated in an OPA pumped by the

second harmonics of commercial Yb:KGW laser system (Pharos, Light Conversion) operating

at 1 kHz repetition rate. The OPA allowed the tuning of the pulse wavelength in the range

of 1500 − 1900 nm, which is an essential option for studying DCFs with different levels of

asymmetry. The propagation-constant mismatch decreases with the increase of the wavelength

[36] therefore the DCF sample which featured poor switching performance at 1560 nm was

studied in this work, using 1700 nm input pulses. The pulses were guided through a half-wave

plate and polarizer representing a tunable attenuator and through a second half-wave plate to

set the proper pulse polarization. The in-coupling and out-coupling of the beam were provided

by two 40x microscope objectives mounted on 3D-positioners, securing submicron precision.

The output of the fiber was monitored by an infrared camera imaging the output facet on its

detector surface. Under the single-core excitation, a series of camera images were registered by

changing the energy of the excitation pulses in the range of 0.1 − 1.5 nJ separately for the fast

and slowcore excitation. Additionally, the recordings were repeated for different pulse widths

achieved by tuning the OPA while simultaneously keeping the central wavelength at 1700 nm.
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3.2 Numerical results for nonlinear propagation

3.2.1 The effects of asymmetry and nonlinearity

Let us recall the exact solution (1.172) and, (1.173) of the linearized version of the system, de-

scribed by Eqs. (1.170s -1.171) for two components chirped Gaussian pulse in the absence of

the group velocity mismatch, α1 − α2 = 0 introduced in Chapter 1. We showed that the depen-

dent of energies of the two components oscillate between the cores according to Eq. (1.176),

where asymmetry coefficient σ decrease the oscillation period and hampers the energy trans-

fer between cores. We now introduce a small nonlinearity to the system using Eqs. (3.7 - 3.7)

above. Here, the width of the input pulse introduced in Eq. (3.11) is chosen to be η = 1. We

fix the value of the asymmetry coefficient at σ = 1 and change the amplitude of the input pulse

a = 1.2, 1.5, 1.9 and 2.0. The normalized ζ−dependent energies in the two cores are numeri-

cally calculated and shown in Fig. 3.1.

Fig. 3.1: Energy in first and second cores for σ = 1 and four values of amplitude a when a
pulse with initial form sech(ητ) is launched in one core at z = 0. The dashed lines in the
first panel represent dynamics on the linear system with the same asymmetry.
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When the amplitude of the wave is low (a = 1.2), the energies undergo oscillations within

each core during propagation but predominantly remain concentrated in the excited core, re-

sembling the behavior seen in the linear case. As the amplitude a increases, the energy transfer

rises and we observe more oscillations between the two cores, peaking at a = 1.9. However,

this oscillation at its peak only obtains to more than 50% energy transfer. In comparison with

symmetrical linear oscillation, it has a lower contrast between the two cores. This correlation

between amplitude and energy transfer arises because the amplitude is directly linked to the

intensity |ψ|, serving as a balancing factor to minimize asymmetry and reduce the effects of

self-trapping. However, due to the oscillation, the magnitude of ψ undergoes variation during

propagation and is not uniformly distributed in the time domain, preventing this energy transfer

can reaching 100% efficiency, which is possible in linearized cases without mismatch. At higher

amplitudes, the oscillation is started to be replaced by switching, where energy is transferred

and trapped into the bar core.

Fig. 3.2: Energy in first and second cores for σ = 2 and 4 of amplitude a when a pulse with
initial form sech(ητ) is launched in one core at z = 0. The dashed lines in the first panel
represent dynamics on a linear system with the same asymmetry.

Similarly, when σ = 2, a comparable dynamic change is observed, shown in Fig 3.2. In this
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situation with a higher value of σ, the initial intra-channel oscillation exhibits a smaller ampli-

tude, and the energy gap between the two cores becomes larger. With an increase in amplitude,

the energy gap between the two cores is reduced, leading to significantly lower contrast inter-

core oscillation. It seems that, with a fixed value of sigma, the increase of the amplitude within

a certain range creates a steady change of dynamics from high contrast intra-core oscillation, to

lower contrast inter-core oscillation. At very high amplitude, strong linearity creates higher con-

trast switching or self-trapping. In this regime, complex layers of switching and self-trapping

regions alternate with each other when the amplitude of the pulse is varied. We will investigate

these behaviors in the next section.

Fig. 3.3: Energy in first and second cores for a = 2.1 and 4 values of asymmetry σ when a pulse
with initial form sech(ητ) is launched in one core at z = 0.

In the subsequent investigation, we maintain a fixed amplitude of a = 2.1 while gradually

varying the asymmetry value from σ = 0.6 to 1.5. In Fig 3.3, we present four distinct behaviors

of the system resulting from these changes. When the nonlinearity is strong, around σ = 1, we

surpass the range of inter-core oscillation observed in Fig. 3.1 and achieve switching. At lower

asymmetry, specifically σ = 0.6, an even higher contrast is obtained. On the other hand, if we

increase the asymmetry greater than 1, this switching becomes less contrast and eventually turns
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to low contrast inter-core oscillation.

The same trend of dynamic changes is also observed in the scenario where self-trapping

occurs at lower asymmetry. The results for a = 2.4 with varying values of σ are illustrated

in Fig. 3.3. As the asymmetry increases, the energy between the two cores in self-trapping

decreases, eventually leading to high-contrast inter-core oscillation.

Fig. 3.4: Energy in first and second cores for a = 2.4 and 4 values of asymmetry σ when a pulse
with initial form sech(ητ) is launched in one core at z = 0.

3.2.2 Simulation with experimental data

The analytical solution of phase shift (1.3.4), derived from linearized equation (1.170-1.171)

has predicted the reduced coupling efficiency with decreasing excitation wavelength. In corre-

spondence to work done by L. Curilla et al. [36] the same effect was observed, therefore we

performed the experimental study at 1700 nm instead of 1560 nm. Taking into consideration the

positive value of ∆λ tuning the wavelength from 1700 to 1560 nm and the negative value of

group velocity mismatch α1 − α2, the shorter wavelength excitation causes reduced coupling

efficiency.

In numerical simulations, we used pulses with two different widths at the FWHM level, 150
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and 110 fs to match the experimental data. In the case of the Gaussian pulse, the corresponding

values of the inverse pulse width, defined above, were η1 = 0.077 and η2 = 0.11, respectively.

Additionally, we investigated the effect of the mismatch in the effective refractive index to find

optimal conditions for controllable switching performance. The propagation distance in the sim-

ulations was approximately 25 mm, and since the numerically calculated coupling length was

1.54 mm, it corresponds to about 8 periods of inter-core-coupling oscillations. It provides a

possibility for analysis of the nonlinear dual-core propagation even beyond the experimentally

studied 18 mm length and puts the findings into a broader context. The simulation parameters

(see Table 3.1) were selected from the mode solver analysis of the actual fiber structure. The

use of these parameters allows a direct comparison of the numerical results and experimental

observations. In the nonlinear simulations, we considered both high-index- and low-index-core

excitations, resulting in qualitative agreement with the experimental results in terms of the de-

pendence of the propagation picture on the input energy. However, the considered simple model,

which takes into account neither the linear dissipative effects (absorption, Rayleigh scattering)

nor nonlinear ones (the stimulated Raman scattering and the generation of dispersive waves),

cannot predict precise values of the switching energies. Therefore, when presenting the numeri-

cal results, we refer to values of the pulse’s amplitude, properly comparing the predictions with

the experimental findings.

Fig. 3.5: The pulse amplitude dependence of the dynamical propagation regime of the 150 fs
Gaussian pulse in the case of the excitation of the low-index core, for different values of
the propagation-constant mismatch, σ. The red color designates oscillatory behavior, when
the final state depends on the actual length of the fiber. Blue means that, after a few initial
oscillations, the pulse self-traps mostly in the excited (straight) channel; and yellow means
the eventual self-trapping in the initially empty (cross) channel. White stripes were used to
mark regions of low contrast, when the signal in both channels is comparable, with small
oscillations along the propagation direction.
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Fig. 3.6: The pulse amplitude dependence of the dynamical propagation regime of the 150 fs
Gaussian pulse in the case of the excitation of the high-index core, for different values of the
propagation-constant mismatch, σ. The meaning of the color code is the same as in Fig. 3.5.

Preliminary experimental observations imply that introducing core asymmetry may lead to

more stable and controllable switching performance (self-trapping of the pulse in the straight,

initially populated or the opposite, initially empty channel, depending on the initial pulse am-

plitude) [45]. To put it in quantitative terms, in our simple model we varied the asymmetry

parameter σ from 0.1 to 0.5 for the 150 fs pulse and classified outcomes of the dynamics ac-

cording to the dependence on the input pulse amplitude. Results are summarized in Figs. 3.5

and 3.6, which represent maps of the nonlinear dynamical scenarios in two cases, when the

incident pulse excites either the low- or high-index core. The red color designates oscillatory

behavior, when the final state depends on the actual length of the fiber. Blue means that, after a

few initial oscillations, the pulse self-traps mostly in the excited (straight) channel; and yellow

means the eventual self-trapping in the initially empty (cross) channel. We also marked (with

white stripes) cases where we observed low-contrast oscillatory behavior as a function of prop-

agation distance. In the case of launching the pulse into the low-index core, at relatively low

mismatch values (σ < 0.3) we observe several alternations of the pulse trapping between both

channels with increasing amplitude. At some amplitudes of input pulses, after a transient dis-

tance, the signal becomes almost equally redistributed between two channels, performing low

contrast oscillations (white regions). This outcome seems too fragile for the system to be used

as an all-optical switch. However, at σ = 0.3 they are not very frequent and the self-trapping

takes place in the initially empty (cross) channel in a broad range of pulse amplitude. Such be-

havior is quite natural, given the propensity of light to stay in a medium with a higher refractive

index. This outcome persists up to the highest analyzed amplitude of the input, i.e. a = 2.0,
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with some exceptions in narrow amplitude regions (white stripes), where equalized energies

were predicted comparing the two channels.

In the case of higher mismatch, i.e. σ = 0.4, similar behavior is predicted, with some equal-

ized dual-core energy distribution situations, but without retaining effect in the excited core.

Thus, the low-index core excitation with 150 fs pulse width is not optimal for nonlinear switch-

ing performance. In the case of low asymmetry level (σ ≤ 0.2), the system is unstable: there

are several transitions between the excited and cross-core self-trapping state with increasing

pulse amplitude. On the other hand, the higher asymmetry levels (σ > 0.2) do not express

self-trapping in the excited core; therefore, it does not support the effective nonlinear switching

performance.

If the high-index core is initially excited, we again observe, at first, oscillations-straight

(excited) channel trapping transition in the region of low energy. When the energy is higher,

self-trapping occurs also in the empty (cross) channel. Such switching behavior to the cross-

channel takes place in some narrow intervals of values of a (e.g., around 1.6 for the moderate

asymmetry, σ = 0.3, which is shown in Fig. 3.6). Additionally, the trapping threshold decreases

when the asymmetry increases. The reason for the latter effect is that the initial asymmetry of

the fiber strengthened the trend to self-trapping in the high-index core. The higher the initial

asymmetry, the lower the pulse energy is sufficient to induce additional asymmetry (discrete

self-focusing in terms of the channels) for establishing the self-trapping process. The yellow-

colored areas disappear above σ = 0.3: only equalized dual-core energy effect is predicted

(white stripes) in some narrow amplitude intervals. The reason for this behavior in the case of

the highest asymmetry level is that the initial asymmetry already prevents self-trapping in the

cross-channel. Therefore, we conclude that 0.3 is the optimal mismatch value for switching in

the case of 150 fs pulse width and high index core excitation, with a clear self-trapping effect

also in the non-excited channel. Thus we have a robust possibility to control the release of the

pulse from a particular output port, regardless of whether the high or low index core is excited.

Analyzing the numerical results, we have concluded that the optimal value of the asymmetry

parameter is 0.3 because for higher values of σ the self-trapping in the originally non-excited

core is not more predicted. The switching dynamics are different when we excite the low- or

high-index-core, with the cross or straight-core self-trapping dominance occurring, respectively,

in the former and latter cases. Furthermore, in the case when the fiber length in the experimental

realization is equal to a multiple of the inter-core-oscillation period, a different peculiarity is
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observed in the transition between the inter-core oscillations and self-trapping in the high-index

core. As concerns the dominance of the output core, it is preserved in the case of the excitation

of the high-index core, and, on the contrary, it is exchanged in the case of the low-index core

excitation. In addition to that, the self-trapping may be switched between the two channels in

narrow intervals of the initial amplitude, as may be concluded from Figs. 3.5 and 3.6 at low

or moderate levels of the phase-velocity mismatch. The overall dynamics seem more stable

in comparison to that observed in symmetric or weakly-asymmetric DCF studied before [44],

where the diagram of dynamical regimes was more intricate, exhibiting stronger sensitivity to

small variations both of the amplitude and pulse width.

3.3 Detailed comparison with experimental observations

Here, we aim to compare predictions of the above theoretical model with the experimental ob-

servations made in a nonlinear DCF, with the structure expressing optical parameters presented

in Table 3.1, at wavelength 1700 nm. Numerical simulations were performed with parameters

matched to the experimental setup, including the wavelength, shape, and duration of the incident

pulse.

3.3.1 The core selection effect

In Fig. 3.7 we present the comparison between the theoretical model and experimental reg-

istration for the case of the low-index core excitation and the incident Gaussian pulse width

tFWHM = 150 fs (the top panel of Fig. 3.7). Camera images demonstrate a single exchange

of the dominant core around the critical value of the pulse energy of E = 0.87 nJ. The sim-

ulation results predict the same one-step switching behavior from the inter-core oscillations to

self-trapping in the cross-core, which takes place at the amplitude a = 0.95. A narrow region of

low contrast was predicted around a = 1.45, 1.55, and 1.75, and a similar effect is visible from

the camera images. The bottom panel of Fig. 3.7 reports the distance-dependent dynamics of the

energy distribution in both cores (blue - low-index/bottom core, red - high-index/top core) in the

case of 150 fs pulse width and a = 1.65. It reveals that the propagation maintains an oscillatory

character over the whole analyzed length, with an exponential decrease of the peak power after

each period z/z0 = 1.65. It is an example of the disturbing effect of the coupling on the soliton

self-trapping mechanism. It takes place when the pulse cannot reach the self-trapping critical
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Fig. 3.7: The comparison between the simulations diagram and experimental registration of the
energy-dependent output dual-core field distribution for the case of 150 fs Gaussian pulse
launched into the low-index core. The bottom figure shows typical dynamics in the low-
contrast regions.

peak power, resulting in equalized field distribution between the two channels during the soliton

self-compression process. As a consequence, the self-trapping process doesn’t take place and

the propagation maintains its harmonic features along the entire considered length. However,

such an effect requires a certain ratio between the self-compression distance determined by the

pulse amplitude and the coupling. Therefore, a slight tuning of the amplitude below or above

the 1.65 level results in a clear self-trapping effect. In the case of the high-index-core excitation,

the images of the output fiber facet reveal a different result, viz., transient switching behavior

at higher pulse energy, i.e. around 1.26 nJ (Fig. 3.8). Under further increasing of the pulse’s en-

ergy, the same straight-core dominance was observed as in the linear propagation regime. The

simulations predict a similar outcome with the transient cross-core dominance effect around the

amplitude level of 1.65.
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Fig. 3.8: The comparison between the simulations diagram and experimental registration of the
energy-dependent output dual-core field distribution for the case of 150 fs Gaussian pulse
launched into the high-index core.

The transition between the oscillatory and straight-core self-trapping, predicted by the sim-

ulations at the 0.72 level, is not observable experimentally because it does not change the core

dominance in the output, due to the choice of the fiber’s length corresponding to an integer

number of oscillation periods. Thus, the optimal level of the mismatch parameter identified in

the numerical study (σ = 0.3) predicts a similar switching performance as the experimental ob-

servation. It is a signature of the same optimal asymmetry level established in the experiment.

It was ensured by tuning the wavelength of the excitation pulses to secure robust switching

performance. Indeed, exciting the same DCF by C-band pulses resulted in poor switching per-

formance [46]. However, the 1700 nm excitation improved it significantly; therefore, we set this

wavelength also in our numerical analysis.

3.3.2 The pulse-width effect

Figure 3.9 presents the case of the low-index core excitation by pulses with 110 fs pulse width.

It shows more sophisticated dynamics than the one in the case of 150 fs pulse width presented

in Fig.3.6. It expresses three transitions between the output straight/cross core dominance at

pulse energies 0.42 nJ, 0.69 nJ, and 1.03 nJ, considering both the simulation outcomes (top

panel) and the experimental results (bottom panel). The numerical results predict transitions
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around amplitude levels 0.95, 1.8, and 1.95, which resemble the experimental observations with

two dominance exchanges. The images in Fig. 3.10 show the corresponding situation when the

high-index core is excited with 110 fs pulse (bottom panel) and the predictions of the theoret-

ical model for the same conditions at which the experiments were performed (top panel). The

simulations exhibit three transitions: inter-core oscillations to self-trapping in the straight core

at amplitude 0.75, then some low contrast lines transition to the straight core self-trapping state

around level 1.85, followed by the inverse transition. The latter was not observed in the experi-

ments due to limitations imposed on the pulse input energy, which should be kept below 1.5 nJ

in order not to damage the input facet of the fiber. Furthermore, the oscillations to straight core

self-trapping transition do not cause any exchange of the dominant core, as in the case of the

results obtained for 150 fs pulse width (Fig.3.5). Therefore, from the camera images, one can

see that only one straight/cross-core transition is observed at 1.27 nJ, in correspondence to the

numerical outcomes. between the inter-core oscillations and self-trapping in the cross-core oc-

curs, at the amplitude 0.95. In contrast, considering both the low and high-index core excitation

cases, the 110 fs pulse width causes more complex changes in the pulse energy-dependent dual-

core propagation dynamics. The reason for such character in the case of the shorter pulse is the

linear decrease of the soliton order N with decreasing pulse width, according to the following

equation

N2 =
γP0T

2
0

|β2|
, (3.14)

where P0 is the input pulse peak power and T0 the pulse width. The lower soliton order in the

case of 110 fs pulse width reduces the disturbance of the pulse during the soliton fission process.

Thus, the more preserved single pulse character supports more exchanges between the trapped

channels with increasing pulse energy. The soliton self-compression effect, characterized by the

factor Fc = 4.1N [47] is also more pronounced in the case of longer pulses. Consequently, the

stronger selective self-focusing (which favors a particular channel) prohibits the transfer to the

straight core at higher pulse amplitudes. Summarizing this sub-chapter, the 110 fs pulse width

seems to be more advantageous because it enables high switching contrast between the channels

based on self-trapping taking place in both of them. It is governed just by a slight change of the

pulse amplitude and it is predicted in the case of both high- and low-index core excitation.

The experimental observations confirmed these findings by comparing 110 fs vs. 150 fs pulse

excitation and considering both core’s excitation.
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Fig. 3.9: The comparison between the simulations diagram and experimental registration of the
energy-dependent output dual-core field distribution for the case of 110 fs Gaussian pulse
launched into the low-index core.

Fig. 3.10: The comparison between the simulations diagram and experimental registration of
the energy-dependent output dual-core field distribution for the case of 110 fs Gaussian pulse
launched into the high-index core.
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Fig. 3.11: The dependence of the integral field energy on the propagation distance in both cores,
as produced by the simulations. It shows the transition of oscillations to the cross-core self-
trapping for the input pulse amplitudes 0.875 (the upper panel) and 1.0 (the lower panel).
Excitation pulses with a width of 110 fs and Gaussian shape were launched into the low-
index core of the fiber with asymmetry parameter σ = 0.3. The black arrow marks the length
of the fiber in the experiment.

Fig. 3.12: The dependence of the integral field energy on the propagation distance in both cores,
as produced by the simulations. It shows the transition of the trapping from the cross core to
the straight one for input pulse amplitudes 1.8 (the upper panel) and 1.85 (the lower panel).
Excitation pulses with a width of 110 fs and Gaussian shape were launched into the low-
index core of the fiber with asymmetry parameter σ = 0.3.
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Finally, in Figs.3.11-3.13 we illustrate the propagation-distance-dependent distribution in

both cores in the case of 110 fs pulse width, which signals the onset of the same sequence of

three transitions as observed experimentally (bottom panel of Fig. (3.9). The top panel of Fig.

3.11 reveals that, when nonlinear effects are small at the low amplitude level, the propagation

features an oscillatory character in the whole studied propagation range [44]. The harmonic

behavior in the propagation evolution graphs with higher pulse amplitudes terminates after a few

initial oscillations due to the soliton self-compression and the subsequent self-trapping process

[34]. According to our simulations, when the self-trapping commences, the core dominance is

preserved in the whole subsequent range of the studied propagation lengths, including the value

corresponding to the fiber length in the experiment. Another important aspect of the dual-core

field-evolution plots is that they express nearly 100% transfer of the pulse’s energy between

the cores. It originates from the low level of the propagation constant mismatch parameter, 0.3,

which, according to Eq. (1.164) describing various linear propagation approaches causes only a

slight modification of the effective coupling constant, hence the coupling period remains similar

to that for the zero mismatch. Black arrows indicate the observation point, which corresponds to

the fiber length used in the experiment. All three transitions are presented subsequently in Figs.

3.11-3.13 exhibit a clear exchange of the dominant cores following a slight increase of the pulse

amplitude between the top and bottom panels. Accordingly, all of them have been identified

experimentally by the camera monitoring the output fiber facet, and the corresponding pairs

of camera images (0.27 - 0.42 nJ, 0.53 - 0.69 nJ, 0.86 - 1.03 nJ) exhibit convincing switching

contrasts. Thus, the experimental observations have confirmed the predictions of the numerical

simulations, i.e. the three-transition character of the energy dependence for the 110 fs pulse

width, in the case of low-index core excitation.
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Fig. 3.13: The dependence of the integral field energy on the propagation distance in both cores,
as produced by the simulations. It shows the transition of the trapping from the straight core
to the cross one for input pulse amplitudes 1.95 (the upper panel) and 1.975 (the lower
panel). Excitation pulses with a width of 110 fs and Gaussian shape were launched into the
low-index core of the fiber with asymmetry parameter σ = 0.3.
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Chapter 4

Control of dual-wavelength switching in

asymmetric dual-core fiber

We present a systematically produced experimental and theoretical investigation of dual-wavelength

switching of 1560 nm, 75 fs signal pulses (SPs) driven by 1030 nm, 270 fs control pulses (CPs)

in a dual-core fiber (DCF). We demonstrate the switching contrast of 31.9 dB at the 14 mm fiber

length by in-coupling temporally synchronized CP-SP pairs into the fast core of the DCF with a

moderate inter-core asymmetry. A model based on three coupled propagation equations is used

to identify the nonlinear compensation of the asymmetry as a physical mechanism behind the

efficient switching performance.

In the experimental study in reference [48], it was shown the first evidence of proof of dual-

wavelength switching based on the interaction between two temporally synchronized pulses

using an all-solid DCF. It is based on a combination of two femtosecond pulses of different

wavelengths, simultaneously launched into the same fiber core. A longer wavelength (1560 nm)

low energy pulse served as an information carrying signal and the shorter wavelength one (1030

nm) with higher energy was the control pulse. It was demonstrated that using such a temporally

synchronized pair of pulses at appropriately adjusted control pulse energy, the intra-channels

refractive index mismatch is compensated leading to signal switching from the excited to the

non-excited core with negligible distortions. Such an approach is more effective than the simple

energy control of one single ultrashort pulse presented in our other works (self-switching) [34,

44–46, 49], as it provides balancing the inter-core asymmetry. The latter problem is inherent to

DCFs, being a basic limiting factor of high-contrast directional coupler performance. In general,
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the two cores of a DCF are distinguished as slow and fast ones, with effective refractive indices

n01 and n02 < n01, respectively. The motivation for the use of the nonlinear dual-wavelength

interaction is that the co-propagating control pulses of appropriate energy reduce the group

velocity vg,2 of the signal pulses in the excited core in the time window of the control pulse

duration to the level of the non-excited core group velocity [48]. An important aspect of this

approach is the strong spectral dependence of the coupling length, which prevents the energy

transfer of the shorter wavelength CP pulses to the cross core. As a result, the switching contrasts

> 25 dB were recorded, exceeding the best experimental results of the self-switching in the C-

band [45] and the theoretical predictions of ultrafast solitonic self-trapping in highly nonlinear

DCFs [34]. Additionally, we point out that a shorter fiber length of only 14 mm was used, instead

of the 35 mm used during the self-switching study at a similar 1550 nm signal wavelength. A

complete comparison between the two methods can be found in [50].

Our pilot dual-wavelength switching demonstration showed some drawbacks, mainly the

relatively high energies of the control pulses at the level of a few nanojoules. In this Chapter, we

present an advanced study, supported also by numerical simulations. We analyzed several DCF

samples and optimized simultaneously their length, control pulse energy, and delay between the

signal and control pulses. Thanks to these efforts, we reduced the switching energy down to the

sub-nanojoule regime preserving the advantageous switching contrast level. Furthermore, we

also performed several numerical simulations considering fiber parameters, especially mismatch

and higher-order coupling, to investigate their roles in the switching performance of the DCFs.

4.1 Description of the Experiment

We investigated a simple cladding of all-solid DCFs with the cross-section presented in Fig.4.1

(left). The fiber was made with two thermally matched soft glasses (PBG-08 - lead-silicate and

UV-710 – borosilicate for cores and cladding, respectively) and expressed a DC asymmetry level

of δna = 2.2×10−4 at 1560 nm. It is calculated as the difference between the effective refractive

indices of the slow and fast cores δna = n01−n02, respectively. The experimental setup consisted

of two laser arms, where two femtosecond pulses with different wavelengths were generated at

10 kHz repetition rate, labeled as control (1030 nm, 270 fs pulse from a commercial ultrafast

Yb:KGW amplifier - Pharos, Light Conversion) and signal (1560 nm, 75 fs pulse, generated

in a self-made double pass optical parametric amplifier (OPA), pumped by second-harmonic
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of the same Yb:KGW amplifier). The two pulses were combined by a dichroic mirror and

synchronized by a delay line unit positioned in the control arm. The energy and polarization

of the control pulses were controlled independently using two half-wave plates separated by a

Glan-Taylor polarizer placed between them; however, the control field was selectively filtered

out after the fiber by a high reflectance mirror. Thus, only the signal field on the DCF output

facet was imaged on the multimode collections fiber of a spectrometer or alternatively on an

infrared camera chip tilting a flip mirror into the output beam path.

Control pulse energy-dependent series of the space and spectral distribution of the output

field were recorded separately from both cores to study the effect of the fiber length, the delay

between the signal and control pulses, and the choice of the fiber core. More details about the

experimental setup are presented in [38,48]. The camera images were processed by calculating

the dual-core extinction ratio (ER) integrating separately the intensity distribution in the area

of both cores. Fig.1 (right) shows the camera images at the output facet of the DCF with an

optimal length of 14 mm under excitation of the fast (top series) and slow (bottom series) cores,

respectively. The results revealed that the fast core excitation supports a more efficient switch-

ing performance than the slow one thanks to the DC asymmetry balancing principle [48]. In the

first case, a switching contrast of 41.5 dB was calculated between 0.2 and 0.6 nJ control energy

levels at which the highest and lowestER were identified, respectively. In the case of slowcore

excitation (bottom series), no switching performance has been recorded. Therefore, in this pa-

per, we report solely on the results of the fast core excitation, mainlyER dependence on control

pulse energy, delay, and spectral transformations under different experimental conditions.

Fig. 4.1: Scanning electron microscope image of the cross-section of the all-solid DCF structure
(left). Infrared camera images of the 1560 nm, 75 fs signal field at the DCF output under
increasing energy of 1030 nm, 270 fs control pulses and exciting the right (top series) and
left (bottom series) cores of a 14 mm DCF with the combined beam.
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4.2 Theoretical Insight

4.2.1 Theoretical model and rescale of physical parammeter

To follow the main features of the system dynamics we introduced a model based on coupled

nonlinear Schrödinger equations (NLSE). The dynamics of the control pulse amplitude A0,

which is propagating only in the bar core, is described by

∂A0

∂z
= −β10

∂A0

∂t
− iβ20

2

∂2A0

∂t2
+ iγ|A0|2A0, (4.1)

where z and t are the propagation distance and time in physical units, and coefficients β10, and

β20, γ, represent, respectively, group velocity the group-velocity dispersion and Kerr nonlinear-

ity. Similarly, equations for signal pulse amplitudes in the mismatched bare and cross-cores of

the fiber read

∂A1

∂z
= −β11

∂A1

∂t
− iβ21

2

∂2A1

∂t2
+ iκ0A2 − κ1

∂A2

∂t
− 2iδA1 + iγ|A0|2A1,

∂A2

∂z
= −β12

∂A2

∂t
− iβ22

2

∂2A2

∂t2
+ iκ0A1 − κ1

∂A1

∂t
, (4.2)

where β11 = β12 = β1 is the signal pulse inverse group velocity, β21 = β22 = β2 is the

signal pulse GVD, (equal in both cores), γ is nonlinearity coefficient (control pulse is acting on

the signal by XPM only), δ is the difference of the refractive index between cores, defined as

δ = (β01 − β02)/2, κ0 and κ1 are zeroth and first-order coupling coefficient, respectively.

By means of the rescaling and introducing retarded time τ = t
√
κ0/|β2|, unit of length

z = zκ0, ψ =
√
γ/κ0A0 and ϕ1,2 =

√
γ/κ0A1,2, Eqs. (4.1) and (4.2) are cast in the normalized

form, with β2, γ, and κ set equal to 1. We use the retarded time T = τ − zβ10, to follow the

control pulse (notice that control and signal pulses move with different group velocities). The

rescaled equation for the control pulse in our simplified model becomes:

i
∂ψ

∂z
=
β20
2β2

∂2ψ

∂T 2
− |ψ|2ψ. (4.3)

At the input of the bar core, the control pulse has form ψ(0, τ) = ac exp[−(τ/w1)
2], where

w1 = Tc/(1.1774t0) and ac is the amplitude of control pulse in the reduced units. Here, Tc is
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fullwidth half maximum. The set of rescaled equations for a signal pulse becomes:

i
∂φ1

∂z
= −iα∂φ1

∂T
− 1

2

∂2φ1

∂T 2
− (γ|ψ|2 − 2σ)φ1 − φ2 − iϵ

∂φ2

∂T
,

i
∂φ2

∂z
= −iα∂φ2

∂T
− 1

2

∂2φ2

∂T 2
− φ1 − iϵ

∂φ1

∂T
(4.4)

where α = (β1 − β10)/
√

|β|/κ0 is the group velocity mismatch between control and signal

pulses, σ = δ/κ0 is the index mismatch between the cores and ϵ = κ1/
√
κ0|β2| is the dispersive

coupling coefficient.

The input of signal pulse, which enters only slow channel, has form ϕ1(0, τ) = as exp{−[(τ−

d)/w2]
2}, where w2 = Ts/(1.1774t0), Ts is full width half maximum and as is the amplitude of

the signal pulse. The parameter d in the signal pulse formula denotes the delay between the con-

trol and signal pulse. The units of propagation length and time are related to the experimental

parameters by:

t0 ≡
√
|β2|/κ0 = 2.49854× 10−14[s], (4.5)

z0 ≡ 1/κ0 = 8.11402× 10−3[m]. (4.6)

The energy of the control pulse as a function of intensity ac can be expressed as:

E =

∫ +∞

−∞
|A1(0, τ)|2t0dτ =

κ0τ0a
2
cw1

γ
≈ 15.189a2c pJ. (4.7)

The width of the control pulse is Tc = 270 fs and signal pulses Ts = 75 fs. Effective coupling

is given by κeff =
√
κ20 + δ2 = 900.97812 m−1, where κ0 = 123.24347 m−1. We calculate

the widths of the pulses for the rescaled equations, obtaining w1 = 9.1780, w2 = 2.5494. The

values mentioned here are constants; therefore, they will no longer be specified in the parameter

list in the following figure captions.

4.2.2 Switching mechanism

We simulated pulse propagation in the parameter range corresponding to the experiment per-

formed in the 14 mm long all-solid dual-core in-house drawn fiber. The values of parameters,

mentioned above, were produced by Lumerical mode solver at carrier wavelength λ = 1030

nm for the control pulse, and λ = 1560 nm for the signal. In the simulations, we also used the
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Table 4.1: Optical parameters of the first core, corresponding to the fiber used in the experi-
ment, was produced with the help of the mode-solver at the carrier wavelength of 1030 nm.

Physical
quantity Value Units
neff 1.85333
β00 11.3051× 106 1/m
β10 6.58267× 10−9 s/m
β20 10.2827× 10−26 s2/m
γ 1.86066 1/(W.m)

Table 4.2: Optical parameters of the dual-core fiber, corresponding to the fiber used in the
experiment, was produced with the help of the mode-solver at the carrier wavelength of
1560 nm.

Physical
quantity 1st core 2nd core Units
neff 1.79384 1.79341
β0 7.22477× 106 7.22304× 106 1/m
β1 6.57165× 10−9 6.57198× 10−9 s/m
β2 −7.69372× 10−26 s2/m
κeff 900.97812 1/m
κ0 123.24347 1/m
κ1 −9.20669× 10−13 s/m

value of γ = 1.86 (W · m)−1 for the nonlinearity coefficient. Notice that the control pulse expe-

riences both effects of dispersion and self-phase modulation, but the signal, which is relatively

weak, interacts with control via cross-phase modulations, and only in the first channel (core).

First, we looked at the interaction of control and signal pulse that occurred at the overlap area.

Figure 4.2a shows a schematic of the relative width of signal and control pulses and relative

the walk-off over the length of the DCF (dashed lines) where the delay is arbitrarily chosen to

be 510 fs. The walk-off distance is about one-half of the FWHM of the control pulse. Thus the

signal pulse only interacts with either the trailing edge or the leading edge of the control pulse.

Furthermore, due to the self-phase modulation, the control pulse is widened in the time domain,

coinciding with a weakening of the peak power. This behavior is presented in the 4.2b, showing

the evolution of the control pulse after various propagation distances. Therefore, to maximize

energy transfer using compensation of mismatch and nonliterary, the control pulse intensity at

the input of the excited core must be higher than the level of mismatch.
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Fig. 4.2: a) Schematic of the relative width of signal and control pulses; the distance between
dashed lines indicates relative the walk-off over the length of the DCF. b)Control pulse after
different distances

Fig. 4.3: Switching performance in the DCF: a) Perfect cross-transfer in the case of symmetric
fiber. b) oscillations with negligible transfer for the used asymmetric DCF without control
pulse. c) The best switching performance that we obtained using a control pulse of 340 pJ.
d) situation when compensating control pulse has too high intensity.

Then we calculated the energy transfer of the energy of the signal pulse between both cores.

Results of the simulations are presented in Fig. 4.3. In panel (a) we show, for the control,

switching in the case of the fiber with perfectly symmetric cores. Notice that it approximately

corresponds to half the period of the inter-core oscillation. When asymmetry is present, the

period of oscillations is increased; however, the transfer is dramatically reduced (see model

below). Its effect on the experimental conditions is represented in panel (b) The presence of an

extra control pulse of appropriate intensity compensates for the mismatch, as shown in panel

(c). Nonetheless, if the control intensity is not optimized, the switching performance may still
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Fig. 4.4: Switching performance in the DCF with fiber length equals to 2.5: a) Inter-channel
oscillation in the symmetrical fiber in the absence of control pulse. b) oscillations with neg-
ligible transfer for the used asymmetric DCF without control pulse. c) show the best per-
formance that we obtained using a control pulse of 550 pJ d) situation when compensating
control pulse has too high intensity.

be rather low, as shown in panel (d). Hence, optimization has to be performed for suitable

delays between signal and control and for suitable lengths of the fiber. In figure 4.4 we show,

not related to our particular experiment, that optimization is also possible for longer fibers. In

the absence of mismatch, they would accommodate several oscillations, and, when using an

appropriate energy of the control pulse, quite effective switching can be achieved.

4.2.3 The effect of delay and control energy

Naturally, the total energy, E1(z) + E2(z), stays constant in the course of the oscillations be-

tween the cores. To further characterize the quality of the switching performance, we investi-

gated how the output extinction ratio, defined as ER = 10 · log(E1/E2), depends on the delay

between signal and control pulses and how it depends on the power of the control pulse. In Fig.

4.6a and 4.6b we report the experimental result and simulation of delay dependences of ER,

showing that its minimal value at larger delays with increasing control pulse energy. It is in cor-

respondence with the asymmetry compensation principle because at higher control energies the

signal pulse experiences the same refractive index change already at larger delays on the falling

edge of the control pulse. The simulations predict the possibility of reaching ER minima at the

level of -10 dB at energies in the range of 280 – 300 pJ and around delays of 75 fs. Taking into

consideration the 150 fs walk-off determined by the 14 mm fiber length, such conditions are
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related to signal pulse moving in the peak area of the control one. However, the experimental

results did not reveal such low ER most probably due to the nonlinear distortions of the control

pulse - not included in our model - which are significant just around the pulse peak. On the other

hand, the delay dependence at 340 pJ fits the obtained experimental curve (inset) both in terms

of ER minima level and range of delays where ER has a negative sign. It is worth mentioning

that the experimental curve was obtained at 600 pJ control energy, which is another signature

of further loss processes affecting the control pulse and preventing reaching the compensation

effect at lower pulse energies.

Fig. 4.5: ER dependence as a function of 1030 nm, 270 fs control pulse energy under excitation
with various delay times in the case of DCF with 14 mm length. Panel a) shows the experi-
mental results corresponding to the simulation ones in panel b).

In the following experiment we keep the delay time constant and change the control energy,

then calculate the output extinction ratio. The result is shown in figure 4.5b. Our simulation re-

sult is presented in figure 4.5b, where we plot the control energy dependence of ER for different

delays between signal and control pulses in the range of 125 - 175 fs. Those curves confirm

again that the experimentally accessible ER minima is supported at 150 fs delay, which is an

essential outcome due to the lack of absolute delay scale identification during the experimental

study. Furthermore, such a large delay applied to get the best experimental results suggests the

improvement potential of our approach which contributes to suppressing the walk-off. Taking

into consideration the complex study of control pulse energy and delay dependencies, we con-

clude that there is a quite wide range of both delay times and energies where the effective high

contrast switching occurs and that this phenomenon is robust. In addition to the study above, we

examine the effect of asymmetry on switching performance by assuming that the asymmetry is

smaller than that in the experiment. In this case, we use the same set of parameters except for
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Fig. 4.6: ER dependence as a function of delay of the signal pulse from the control one in the
case of DCF with 14 mm length and under excitation with various energies of 1030 nm, 270
fs control pulses. Panel a) shows the experimental results corresponding to the simulation
one in panel b) when the control pulse energy is 490 pJ.

asymmetry in which σ = 2 and vary the control energy in the same fashion in the previous sim-

ulation. The result is shown in Fig. 4.7. When the control pulse energy is low, especially 61 pJ,

the extinction ratio curves have one minimum at ER ≈ −6[dB]. When the energy of control in-

creases to 76 pJ, the minimum decreases and reaches the lowest values at ER ≈ −17[dB]; this

is where switching performance is optimized. However, if we increase the control energy even

further, two minima of the extinction ratio emerge, with one having a slightly lower ER than the

other. The switching performance now becomes less effective as the minima of the ER curve

increases. Due to low asymmetry, the energy of the control pulse required to compensate for

asymmetry is low. The control pulse shape then does not expand as much as shown in Fig4.2b

through propagation. Thus, in the case of a single minimum, the cross-phase modulation and

asymmetry are well balanced at a single point in which the signal pulse passes through the peak

of the control pulse. In the case of two minima, the cross-phase modulation and asymmetry are

well balanced when the signal pulse passes through either the trailing edge or leading edges of

the control pulse where asymmetry and control pulse are. Overall, compared with the simula-

tion result from the real structure, switching is slightly improved with a smaller ER in a more

symmetrical DCF. However, the range of delay that switching takes place is smaller in this case,

around 50 fs if it is optimized.

Another parameter that can affect the switching performance is dispersive coupling. In

Fig.4.8, we show ER-dependent on delay, with various values of ϵ, especially ϵ = 0.05, 0.1, 0.15, 0.2

and 0.25. The energy of control in this case is 320 pJ. If ϵ = 0.05, there are two local minima in
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Fig. 4.7: ER dependence as a function of delay of the signal pulse from the control one in the
case of DCF with 14 mm length and under excitation with various energies of 1030 nm, 270
fs control pulses asymmetry coefficient σ = 2.

the ER curve with one responding to a positive delay (between 100 to 150 fs) having a smaller

ER and one responding to a positive delay (between -50 to 0 fs) has a larger ER. As ϵ increase,

the higher minimum become less distinct and when ϵ = 0.2, it completely disappears. The lower

minimum meanwhile only slightly decreases and it is comparable with the ϵ = 0.3, which is

rescaled from Eq. (4.2). Despite that, the dramatic change from two minimum features to one

minimum makes the dispersive coupling could not be ignored in our model.

4.2.4 Effect on signal spectrum

Finally, we performed several simulations varying delay for σ = 7.03252, α = 3.5, and energy

E = 320 pJ for the fiber length 14 mm and analyzed the spectral shape of the output signal

pulses. The results of the simulation are shown in Fig. 4.9, where we also present in panel

a) experimental results. From these simulations, which are in qualitative agreement with the

experiment, we obtained that for positive delay spectrum of the signal pulse at the output is red-

shifted and slightly broadened. In the case of the negative delay, when the center of the control

is proceeding that of the signal we observe blue shift and spectral narrowing.

We conducted a detailed analysis of the dual-wavelength switching of 1560 nm, 75 fs pulses

103



i
i

“output” — 2023/10/27 — 11:26 — page 104 — #104 i
i

i
i

i
i

Fig. 4.8: ER dependence as a function of delay of the signal pulse from the control one in the
case of DCF with 14 mm length and under excitation with various values dispersive coupling.
The control energy is 320 pJ

Fig. 4.9: Normalized spectral shapes of the signal pulse for different delays at the output of the
excited core (dashed lines) or non-excited core (solid lines): a) Experimental results where
fiber length and energy of control are 14 mm and 600 pJ, respectively. b) Simulation results
where fiber length and energy of control pulse are 17 mm and 320 pJ, respectively. Other
parameters are α = −3.5, ϵ = 0.3 and σ = 7.03252. The corresponding experimental values
of group velocity difference, dispersive coupling, and mismatch are β1−β10 = 11.102 ·10−11

s/m, δ = 865 1/m, κ0 = 123.24347 1/mm.
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(labeled signal) using 1030 nm, 270 fs pulses (labeled control) through a dual-core fiber, in-

cluding the effects of fiber length, control pulse energy, and time delay between the control and

signal pulses on the switching performance. We found that the highest switching contrast of

41.5 dB was achieved at a fiber length of 14 mm, with a broadband character in the spectral

range of 1450-1650 nm.

The theoretical simulations revealed the role of the asymmetry of the effective refractive

index and walk-off between the control and signal pulses confirming our preliminary switch-

ing concept: the nonlinear balancing of such asymmetry. Moreover, the numerical outcomes

revealed the simultaneous effect of the pulse energy and delay on the dual-core extinction ra-

tio. One of the key advantages of our approach is the moderate nonlinear interaction between

the control and signal pulses, which only slightly transforms the signal field. The numerical

results also support this concept, predicting moderate transformations of the signal spectra and

revealing a non-trivial dependence on the pulse delay.

One of the key advantages of our approach is the moderate nonlinear interaction between

the control and signal pulses, which only slightly transforms the signal field. The numerical

results also support this concept, predicting moderate transformations of the signal spectra and

revealing a non-trivial dependence on the pulse delay. On the other hand, the control pulses

experience more complex nonlinear transformations than expected in our model; therefore, the

numerical results predict better switching performance than the obtained experimental results.

However, in the region of moderate nonlinear interaction - i.e. the falling edge of the control

pulse – we found a convincing correspondence between the experimental and numerical results.

In summary, our study provides a comprehensive analysis of dual-wavelength switching using a

specially developed dual-core fiber. Our experimental and theoretical findings shed light on the

physical mechanisms behind this process and highlight the advantages of our approach, which

offers moderate nonlinear interactions and only slight transformations of the signal field. In

the frame of the current experiment, the alignment and the synchronization of the two beams

were improved thanks to fewer reflections imposed by mirrors along the optical paths and better

alignment between the signal and control beams. Thanks to these precautions, the energies at

which the switching performance takes place are about 10 times lower than the ones identified

in the optimal case in [48]. The sub-nanojoule, high switching contrast results presented in

this paper show an interesting application potential in the field of all-optical signal processing.

Finally, the numerical calculations reveal the possibility for further improvement both in terms
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of switching contrast and energy eliminating the walkoff between the control and signal pulses.
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Chapter 5

PT-symmetry in dual-core photonic crystal

fibers

PT -symmetry is a theoretical concept elaborated by Bender et al. in 1998 [51]. It is based on

the possibility of treating a Hermitian quantum system as a combination of two non-Hermitian

non-isolated subsystems [52]. Both of them are characterized by a nonzero flux of probabil-

ity, positive and negative respectively, across their boundaries; however, the non-isolated com-

bined system has no net flux of probability, i.e. it could exhibit real spectra or equivalently

real eigenvalues [53]. This concept finds application in several fields of science, such as atomic

systems [54], mechanics [55] and electronics [56].

In this chapter, we investigate the properties of a soft glass dual-core fiber for application

in multicore waveguiding with balanced gain and loss. Its base material is a phosphate glass in

a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system. The separated gain and loss chan-

nels are realized with two cores with ytterbium and copper doping of the base phosphate glass.

The ytterbium-doped core supports a laser (gain) activity under excitation with a pump at 1000

nm wavelength, while the copper-doped is responsible for strong attenuation at the same wave-

length. We establish conditions for an exact balance between gain and loss and investigate pulse

propagation by solving a system of coupled generalized nonlinear Schrödinger equations. We

predict two states of light under excitation with hyperbolic secant pulses centered at 1000 nm;

1) linear oscillation of the pulse energy between gain and loss channel (PT -symmetry state),

with strong power attenuation; 2) retention of the pulse in the excited gain channel (broken

PT -symmetry), with very modest attenuation. The optimal pulse energy levels were identified
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to be 100 pJ (first state) and 430 pJ (second state).

5.1 General concept of PT symmetry

5.1.1 The Parity-Time Reversal Operator

The time evolution of a physical system is determined by equations derived from the Hamil-

tonian. In conventional quantum mechanics, physical systems evolve according to a Hermitian

Hamiltonian. We refer to such systems as closed or isolated systems. We use the term Hermitian

Hamiltonian to mean that if the Hamiltonian H is in matrix form, then H remains invariant under

the combined operations of matrix transposition and complex conjugation. The eigenvalues of

a Hermitian Hamiltonian are always real, thus, it conserves probability (the norm of a state).

In a non-isolated system, there is an energy exchange with the external environment. Here,

we are only interested in the ones that have no net flux of probability. Such a system can be

constructed by coupling two exact copies of a non-isolated system but with the opposite net flux

of probability. Thus, the new total physical system consists of two subsystems: (i) the original

non-isolated physical system, which has a nonzero net probability flux across the boundary, and

(ii) the time-reversed system, which has the opposite flux of probability. Together, these two

subsystems demonstrate an equilibrium in probability exchange since any gain (or loss) in the

original system is exactly countered by a loss (or gain) in the time-reversed system. Hence, the

composite system experiences no net gain or loss. The composite loss-gain system exhibits a

symmetry called PT symmetry.

We can easily prove that PT symmetry Halmitonians also have real eigenvalue. Let sym-

bol P represent the parity operator (space-reflection) operator which flips the sign of spatial

coordinates

P : r → −r,

while the time operator T represents the operation of time reversal, and it has the effect of

turning a system with gain into a system with loss (and vice versa). Mathematically, it changes

the sign of time:

T : t → −t.
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In terms of the position and momentum operators x̂ and P ,

P : x→ −x, p→ −p,

T : x→ x, p→ −p. (5.1)

P and T are characterized by the following

P2 = T 2 = I,

[P , T ] = 0. (5.2)

Let |Ψ⟩ and λ be an eigenstate and eigenvalue of PT T . Then, using Eqs. (5.1)-(5.2), we can

write

PT PT |ψ⟩ = PT λ |ψ⟩ =⇒ |ψ⟩ = λ∗λ |ψ⟩ =⇒ |λ| = 1. (5.3)

An operator Â is P − T symmetric if [Â,PT ] = 0. Thus the eigenvalues of the PT operator

are of the form λ = eiθ for some θ ∈ [0, 2π). H and PT commute, so if H has eigenstate |Ψ⟩

and eigenvalue E, we have

H |ψ⟩ = E |ψ⟩ (5.4)

H(PT |ψ⟩) = PT H |ψ⟩ = PT E |ψ⟩ = E∗(PT |ψ⟩).

Thus, E∗ is also an eigenvalue of H, corresponding to the eigenstate PT |ψ⟩. This property of

PT symmetry guarantees that all eigenvalues appear in complex-conjugate pairs. PT symmetry

is considered to be spontaneously broken when H and PT are no longer simultaneously diag-

onalizable. An operator H has unbroken PT symmetry if H and PT can be diagonalized by

the same eigenstates. In other words, if |ψ⟩ is an eigenstate of H with E as its corresponding

eigenvalue, then there exists a λ such that PT |ψ⟩ = λ |ψ⟩. We can prove that unbroken PT

symmetry is sufficient for real energy spectra. Let non-Hermitian operator H have unbroken PT

symmetry. Then, H and PT can be simultaneously diagonalized by the eigenstate |ψ⟩ of H

H |ψ⟩ = E |ψ⟩ (5.5)

PT |ψ⟩ = λ |ψ⟩ = eiθ |ψ⟩ .
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Operating PT on the first equation:

PT H |ψ⟩ = PT E |T ⟩ = E∗PT |ψ⟩ = E∗eiθ |ψ⟩ . (5.6)

Since H and PT commute, PT H |ψ⟩ = HPT |ψ⟩ = EPT |ψ⟩ = Eeiθ |ψ⟩. Hence, E = E∗

and the spectrum of H is real

5.1.2 Exceptional point

Consider a minimal example of non-Hermitian, PT-symmetric systems, given by

H =

iα κ

κ −iα

 = κσ1 + iασ2. (5.7)

where g, κ ∈ R, g, κ > 0, and we have used σJ , J = 1, 2, 3 to denote the Pauli matrices

σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (5.8)

The eigenvalues and eigenvectors of H are given by

E± = ±
√
κ2 − α2, |ψ⟩± =

ig ±√
κ2 − α2

κ

 , (5.9)

for κ ≥ α the spectrum of H is purely real. For κ < g the spectrum of H is purely real.

PT symmetry is spontaneously broken at κ = α. As α → κ from both sides, both pairs of

eigenvalues (real and imaginary) coalesce to a single eigenvalue at E = 0, and the eigenvectors

of H become parallel. At this point, the single eigenstate of H does not span.

These symmetry-breaking points in parameter space of the form κ, g in this case have been

dubbed exceptional points (EPs). They are the boundaries between regions of unbroken PT

symmetry, where a Hamiltonian H has all real eigenvalues, and regions of broken PT symmetry

where H has at least one pair of complex conjugate eigenvalues.

Exceptional point physics lends itself well to understanding gain/loss systems, which are

especially prevalent in optics and photonics. Experimentalists discovered that PT symmetry

could be readily established in coupled resonators with spatially balanced gain (amplification
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of optical power) and loss elements [57]. Their setups allowed for direct control over the energy

exchange process via dene-tuning the coupling between the resonators [58].

In reference to our simple model presented in Equation (5.7), let’s consider α as the param-

eter representing the optical gain or loss of one of two identical coupled optical components,

such as waveguides or resonators. Parity P interchanges the gain and loss elements, while time

reversal T converts gain to loss and vice-versa ( α ↔ −α ). The strength of interaction of

these two elements is given by their coupling constant κ, describing the rate of signal trans-

fer between the two elements - more coupling (higher values of κ) means less loss of signal

(photons). When α ≪ κ, the coupling between the optical devices is much larger than their

energy interchange with the external environment, resulting in a PT-symmetric system. When

α ≫ κ, the rate of perturbation from the external environment dominates over the rate of prob-

ability transfer between the gain and loss components. As a result, a qualitatively different set

of eigenstates emerges. In our example, these would be the states corresponding with the purely

imaginary spectrum of the Hamiltonian given in (Eq. 5.9), i.e. exponentially growing and decay-

ing modes. In the case where α = κ, as before, corresponds to an EP where some eigenmodes

of the system coalesce. As mentioned previously, the eigenstates of the system no longer form

a complete basis at this point, making certain modes inaccessible.

5.2 PT-symmetry breaking in dual-core phosphate-glass

optical fibers

In the field of optics and the paraxial propagation regime, the condition on complex potential

translates into the one on the real and imaginary part of the refractive index, which should be

symmetric and anti-symmetric, respectively [59], i.e.

n(x, y) = n∗(−x, y). (5.10)

This means that the two refractive index profiles should be symmetric with respect to the

central symmetry point and should have the same absolute values [60, 61] If this condition is

not satisfied, the eigenvalues of the system cease to be real and the parity-time symmetry breaks

down (it is referred as PT -symmetry breaking), leading to complex spectra [62]. Theoretical

works predicted such scenario in several optical systems [59, 63, 64], and also experimental
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verifications were achieved in periodic structures [65], photonics lattices [66], semiconductor-

based dual microring laser resonators [67], plasmonic systems [68] and - recently - in high

power large-area lasers [69].

One of the simplest realizations of PT -symmetric optical system is a coupled waveguide,

with one subjected to gain (active waveguide) and the other one to loss (dissipative waveguide)

[70, 71] Moreover, it is possible to benefit the optical properties of gain/loss waveguides even

in the nonlinear regime, i.e. studying PT -symmetry in nonlinear directional couplers [72]. In

these systems, the non-Hermitian eigenvectors formally maintain the same structural form of the

corresponding linear one [60, 73, 74] It has been demonstrated that such systems are beneficial

for all-optical switching in the nonlinear regime because of the possibility to lower the required

switching power [75], achieve faster transition [76] and support stable switching states due

to the possibility to support solitons [77, 78] The exact analytical formalism describing the

switching dynamics in nonlinear PT -symmetric couplers has been presented in [79]. In the

last decades, dual-core [80, 81] and multicore optical fibers [82], which are one of the possible

implementations of the nonlinear directional coupler, have attracted significant interest in the

implementation of nonlinear PT -symmetric systems due to their possible application in all-

optical signal processing. In particular, dual-core fibers (DCFs) consist of two parallel channels

throughout their whole length: one of the channels should provide gain for the guided light

along propagation (gain channel), while the other one should cause losses to the propagating

light (loss channel). To satisfy Eq.(5.10), the amount of provided gain and loss should be equal.

In the following sections, we will present a proof of concept, a possible implementation of

a PT -symmetric optical system in the form of DCF. The base material of the fiber is phosphate

glass in a P2O5-Al2O3-Yb2O3-BaO-ZnO-MgO-Na2O oxide system [83]. Gain and loss chan-

nels are implemented by ytterbium-based and copper-based doping, respectively. The fiber is

suitable for fabrication with the stack-and-draw method [84]. We present the numerical studies

of nonlinear phenomena in such optical PT -symmetric systems, first evaluating effective pa-

rameters and then showing the predictions of pulse propagation in such systems using a simple

model. These considerations can be also viewed as an interesting perspective of the all-optical

switching using fiber-based devices.
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5.3 Materials and design

The implementation of PT -symmetric DCF requires first of all the gain channel. We propose

to take advantage of the Yb-doped phosphate glass photonic crystal fiber laser fabricated by our

group [85]. Fig.5.1a presents the SEM images of the cross-section of the fabricated fiber with

different magnifications. The core material is phosphate glass doped with 6% mol of Yb2O3

(15.69 · 1020 Yb3+ cm-3). In the frame of this study, a laser generation is demonstrated at the

central wavelength of approximately 1 µm with more than 400 dB m-1 of pump absorption

and the highest generation power of 150 W m-1. The pump is a laser diode with a wavelength

of 973.5 nm and 3 nm bandwidth. The threshold power for laser activity is 8.7 W, while the

maximum pump power could reach the value of 35 W. The maximum output laser power in

the CW regime is 9 W. The slope efficiency, which indicates the power conversion between the

pump and the laser beam – i.e. power pump/laser gain– could be as high as 36.2%. For our

purpose, we consider this value as the target value of gain.

Next, we focus on the loss channel. In order to respect the balance between gain and loss, we

need to use in the loss channel a glass that realizes a 36.2% power attenuation – or equivalently

73.8% transmission – at 1 µm and the same length of 6 cm. In order to estimate the loss coeffi-

cient for the loss channel α, we use the standard Beer-Lambert law, P (z) = P0e
−iαz, where P0

is the input power and z is the propagation distance. Considering that P (z = 6 cm)/P0 should

be ≈ 73.8%, the absorption coefficient resulted in the value of α = 7.49 m-1. Here we propose

CuO-doped glass for the loss channel. As the phosphate glass has a much higher attenuation

than silica (0.46 vs 0.001 m-1) [83], the estimated required percentage of copper doping should

be rather low, at the level of 0.015% CuO.

Fig.5.1 a report the refractive index profile of the phosphate glass (blue curve) and Yb-doped

one (red curve) in the spectral range 430-1490 nm, while Fig.5.1b shows the difference between

the two refractive indices in the same spectral range. The difference between the refractive

indices is rather low, reaching a maximum value of approximately 1.4 · 10m-3 at 1490 nm. At 1

µm, the difference is 1.04 · 10 m-3. The nonlinear refractive index n2 of phosphate glass is 0.99

· 10-19 m2/W at 1064 nm [43], approximately 4 times higher than the fused silica one (0.246 ·

10-19 m2/W [86]).
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Fig. 5.1: (a) Refractive index profiles of the undoped phosphate glass (blue curve) and Yb-doped
one (red curve) in the spectral range 430-1490 nm. (b) Difference of the refractive indices
between undoped and Yb-doped phosphate glasses in the same spectral range.

5.4 Finding optical properties

For the particular design of the fiber (including geometry and the material), we can find the

optical properties of the setup using numerical tools, for instant commercial LUMERICAL

software. We started with the design shown in Fig.5.2a (schematic plot of the proposed fiber).

This seemed to be a natural choice. Notice that due to the small refractive index difference

between Yb-doped and undoped phosphate glass (see Fig.5.1b), we need to introduce a photonic

lattice of air holes in the undoped phosphate glass in order to support the fundamental modes and

improve the coupling efficiency between the cores [32]. Still, the concentration of copper doping

in the loss channel is much lower than the ytterbium one in the gain channel (0.015% mol of

CuO vs 6% mol of Yb2O3, respectively) and further studies are required to get more experience

with this kind of glass. Therefore, we decided to postpone the study of this particular setup until

we examine it thoroughly, both theoretically and in real experiments. Therefore we decided to

postpone the study of this particular setup until we examine it thoroughly, both theoretically and

in real experiments.
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Fig. 5.2: (a) Structure of the designed DCF laser: Yb-doped phosphate glass for the gain chan-
nel, Cu-doped one for the loss channel, and undoped phosphate glass for the cladding. An
extra photonic lattice of air holes is introduced to support the coupling between the cores.
(b) Fiber structure used for the simulation phase: the material of the loss channel has been
substituted from Cu-doped phosphate glass to Yb-doped phosphate glass.

Here we consider the structure in Fig.5.2b, where we replace the Cu-doped core with another

Yb-doped one. The core diameter d and the lattice pitch Λ (marked with yellow arrows in

Fig.5.2b) were the same as the optimized soft glass DCF presented in [35]. We used the same

structure with d = 1.85 µm and Λ = 1.6 µm and added an extra photonic lattice of air holes

with diameter dA = 1.4 µm surrounding the two Yb-doped cores. The distance between centers

of the cores is then 2Λ = 3.2 µm, as in the fiber structure in [34].

Subsequently, the new structure was characterized in the context of optical field propagation

in the linear regime. The commercial Mode Solution software from Lumerical was used to

calculate the spectral dependences of the field mode profile, the corresponding effective index,

and the waveguide losses for each fundamental mode. All the relevant quantities were acquired

in the spectral window between 500 and 2400 nm, which sufficiently covers the wavelength of

our interest (1000 nm).

Fig.5.3 shows the dispersion profiles of the fundamental supermodes, with horizontal po-

larization direction (along X-axis) and dual-core symmetric state. The dispersion is normal

(D < 0) in the wavelength range of 800-1200 nm. We calculated another important linear pa-
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Fig. 5.3: Simulated dispersion curves of the fundamental Symmetric-X supermode of the dual-
core structure in Fig.5.3b. The fiber shows normal dispersion in the whole range of 800-1200
nm.

rameter, the coupling length Lc. From the theory of nonlinear directional couplers, we know

that, in the DCFs, the input radiation coupled in one of the two cores experiences (in the linear

regime) periodic oscillations between cores with a period equal to Lc, defined as

Lc =
π

|βS − βA|
(5.11)

where βS and βA are the propagation constants of symmetric and antisymmetric supermodes of

the fiber, respectively [1, 34].

Fig. 5.4: Simulated coupling length Lc spectral characteristics for fundamental X- and Y-
polarized modes of the DCF in Fig.5.3b. The values are calculated using Eq.(5.11).

Fig.5.4 reports the coupling length characteristics of the two fundamental supermodes, with

horizontal and vertical polarization direction (X and Y-polarization, respectively) in the same

wavelength range of Fig.5.3 (800-1200 nm). At 1000 nm, the values of Lc are 4.7 and 7.3 cm,

respectively.
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We calculated other linear and nonlinear parameters at the wavelength of interest 1000 nm,

which were used for the numerical simulations. They include the effective refractive indices of

the cores neff, the propagation constants β0, β1, β2, the coupling coefficient κ and the nonlinear

parameter γ. All the values except κ were calculated for a single core structure, that was ob-

tained by filling one of the cores with undoped phosphate glass with diameter d = 1.85 µm and

including one air hole with diameter dA = 1.4 µm. We calculate the dispersion profile of the

single-core fibers (left and right core separately) using Mode Solution software from Lumer-

ical, including the spectral dependences of the field mode profile, the corresponding effective

index, and the waveguide losses for each fundamental mode. The dispersion profiles of the

single-mode fibers are reported in Fig.5.5. As the fiber structure is symmetric, the profiles of

the two cores are identical and show a value of -780 ps/nm/km at 1000 nm. We also calculated

the coupling coefficient between the two single-core modes based on the overlap integrals [1].

5.5 Numerical simulations of pulse propagation: method

and results

In this section, we develop numerical methods to study pt-symmetric dynamics in our system.

The goal of this part of the investigation is twofold. First, we identify the most important param-

eters (eliminating the others) and then we study the role of chromatic dispersion of the crucial

characteristics: pulse dispersion, inter-channel coupling, and gain/loss coefficient.

5.5.1 Generalized Nonlinear Schrodinger Equation

In order to have a complete view of the system dynamics, the CGNLSE were solved numer-

ically, including effects like coupling coefficient dispersion, self-steepening nonlinearity, and

its spectral dependence, stimulated Raman contribution, cross-phase modulation, and waveg-

uide losses. The resulting mathematical model is a system of two equations expressed in the

following set of equations (r=1,2)
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∂A(r)(z, t)

∂z
= (−1)r+1

(
−iδ0A(r)(z, t)− δ1

∂A(r)(z, t)

∂t

)
+
∑
l

il

l!
α
(r)
l

∂lA(r)(z, t)

∂tl
+

+
1

2

∑
m

im+1

m!
β(r)
m

∂mA(r)(z, t)

∂tm
+
∑
n

in+1

n!
κ(r)n

∂nA(3−r)(z, t)

∂tn
+

+ iγ(r)

(1 + iτ shk
(r) ∂

∂t

)∫ ∞

−∞
R(τ)

∣∣A(r)(z, t− τ
)
|2dτ + σ(r)|A(3−r)(z, t)|2

A(r)(z, t)

(5.12)

where r = 1, 2 denotes the number of the core (1 – gain channel, 2 – loss channel),Ar is the cor-

responding electric field amplitude and quantities δ0 = (β
(r)
0 − β

(3−r)
0 ) and δ1 = (β

(r)
1 − β

(3−r)
1 )

represent the difference between the phase and group velocities respectively. Furthermore, α(r)
k ,

β
(r)
k and κ(r)k are the k-th order of Taylor expansion coefficients around the central frequency of

gain/loss coefficient, propagation constant (dispersion) and coupling coefficient, respectively.

Finally, γ(r) is the nonlinear parameter, τ shk
(r) is the characteristic time of shock wave forma-

tion, R is the Raman response function, and σ(r) is the overlap integral between the single

core modes defining for the cross-phase modulation effect in the r-th core. Both experimentally

determined instantaneous Kerr and delayed Raman response of the guiding PBG-08 glass are

included in the material nonlinear response function.

Moreover, we introduced the gain and loss coefficient in the CGNLSE by modeling the

function of the loss coefficient α(r)(λ). We modeled α(r)(λ) to have a Gaussian-like profile in

the wavelength domain as follows:

α(r)(λ) = (−1)rαp · exp

[
(λ− λ0)

2

2σ2
λ

]
, (5.13)

where λ0 = 1000 nm, which corresponds to the frequency ω0 = (2πc)/λ0 = 1.8837 · 1015 rad

· s-1, σλ = 100 nm is the standard deviation of the Gaussian and αp = 7.49 m-1 is the peak

amplitude.

The CGNLSE in Eq.(5.12) was solved numerically by the split-step Fourier method with

160,000 steps [34]. After every 400 calculation step, the field arrays were saved and then used

to plot the output propagation maps; this means that the whole propagation distance is divided

into 400 intervals. This approach represents a good compromise between the calculation time

and the resolution of the propagation distance (fiber length). We considered a fiber length of

30 cm, which is 10 times larger than the estimated coupling length at 1000 nm (see Fig.5.4).
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Using the split-step method, we considered the whole spectral behavior of loss and gain and

applied them always at the frequency step. The input pulse shape was approximated by the

sech2 function, which is a good approximation for ultrafast oscillators. The power envelope of

the pulse is expressed as:

P (t) =
0.88 · E
T FWHM

sech2

 t

T FWHM
1.763

 (5.14)

At each of the 200 propagation steps, we integrated the pulse envelopes in each channel to

observe the trend of the energy transfer along propagation. Fig.5.5 shows the propagation maps

in case of 1000 nm wavelength, 1 ps pulse width hyperbolic secant pulse excitation with energy

100 pJ (top row) and 445 pJ (bottom row). We checked that the PT -symmetry breaking takes

place at 430 pJ: an energy increase through the fiber length is predicted in the gain channel,

with some low-input features after 20 cm.

5.5.2 Simplified theoretical model

To simplify the model in Eq.(5.12), we set σ = 0 (no cross-phase modulation), tshk = 0 (no

shock wave formation), and
∫∞
−∞R(τ)dτ = 1 (impulsive Raman response). Moreover, we limit

the dispersive terms to the second-order β(r)
2 , and only linear coupling. Due to the sensitivity

of the system to the change of gain and loss, we keep the gain/loss coefficient with the full

spectral dependence. We consider symmetric fiber structure, therefore κ(1,2)0 = κ
(2,1)
0 = κ0,

β
(1)
2 = β

(2)
2 = β2,γ(1) = γ(2) = γ. Eq.(5.12) takes the form as follows

∂A(r)(z, t)

∂z
= −iβ2

2

∂2A(r)(z, t)

dt2
+iκ0A(3−r)(z, t)+

(
α̃(r) ∗ A(r)

)
(z, t)+iγ

∣∣A(r)(z, t)
∣∣2A(r)(z, t)

(5.15)

where (r = 1, 2). Since the function α(r) is defined in the frequency domain (α(r) = α(r)(ω))

it is crucial to apply convolution according to the following property of Fourier transform

(̃f · g)(t) = (f̃ ∗ g̃)(t). In our case, it is given by: ˜(α(r) · Ã(r))(z, t) = (α̃(r) ∗ A(r))(z, t).

For the simulation study using the simplified model, we used the optical parameters cal-

culated at 1000 nm central wavelength reported in Table 5.1. All the parameters are the same

for both cores. The estimated value for the gain/loss coefficients (7.49 m-1) was included in the

119



i
i

“output” — 2023/10/27 — 11:26 — page 120 — #120 i
i

i
i

i
i

Fig. 5.5: Time domain evolution of the field intensity in the excited (left) and non-excited (right)
core under excitation by 1000 nm central wavelength and 1 ps width pulses with 100 pJ
(top) and 430 pJ (bottom) energies, in the case of the gain channel (left) excitation of a 30
cm length fiber with structure as in Fig.5.2b.

parameter α0: it has a positive sign for losses, indicating power attenuation, while a negative

one for gain, indicating power increase.

We generated, with our simplified model, 2D time-domain evolution plots with parameters

corresponding to those used in Fig.5.5 and the difference was hard to notice. Therefore, in order

to trace subtle differences we looked at the pulse shapes in the time domain at 4 specific fiber

lengths for the two cases above. The result is shown in Fig.5.6 for input energies 100 pJ and

430 pJ, respectively. Solid lines present the results of the simulation obtained using the full

Fig. 5.6: Normalized integrated energies in the corresponding channels at the corresponding
energy levels of (a) 100 pJ and (b) 430 pJ for full (solid blue lines: gain channel, solid red
lines: loss channel) and simplified model (dashed blue lines: gain channel, dashed red lines:
loss channel).
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Fig. 5.7: Snapshot of 100pJ pulses corresponding channels simulated in full model (solid blue
lines: gain channel, solid red lines: gain channel) and simplified model (dashed blue lines:
gain channel, dashed red lines: loss channel) at different propagation distances: a) 8 cm, b)
12 cm, c) 21 cm and d) 30 cm.

Fig. 5.8: Snapshot of 430 pJ pulses corresponding channels simulated in full model (solid blue
lines-gain channel, solid red lines-gain channel) and simplified model (dashed blue lines:
gain channel, dashed red lines: loss channel) at different propagation distances: a) 8 cm, b)
10 cm, c) 12 cm and d) 14 cm.

model (red: unexcited, loss channel; blue: excited, gain channel), while dashed lines present

the ones obtained using the simplified model. In Fig.5.7, we compare pulse shapes generated

by both methods; the four panels refer to lengths: (a) 8 cm, (b) 12 cm, (c) 21 cm, and (d) 30

cm. We observe that there is a close correspondence between the two models in each reported

case. A small discrepancy between the two models is observed only on the rising edge of the

pulse in the loss channel at 21 and 30 cm (i.e. between solid and dashed red lines of Fig.5.7c

and d for t in the range -1.0 to 1.0). In Fig.5.8, which was calculated in the unstable regime,

the four panels refer to lengths: (a) 8 cm, (b) 10 cm, (c) 12 cm, and (d) 14 cm. In this case,

as observed in Fig.5.8c and d, the two models give significantly different results after 12 cm:
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Table 5.1: Optical linear and nonlinear parameters of the DCF in Fig.5.3b.

λ0 = 1000 nm 1st core 2nd core
β2 4.21 · 10-25

γ 0.3
α0 -7.49 7.49
κ0 33.74153

the solid and dashed curves significantly differ from each other. It is not a great surprise that

in an unstable regime, propagation is sensitive to the fiber parameters used in the extended and

simplified models. However, the good news is, that the position of the exceptional point, the

border between stable and unstable regimes, in both models is very close. In conclusion, the

simplified model can be used for finding critical intensity in the nonlinear regime.

5.5.3 The role of dispersion

In this section, we investigate the role of the dispersion of crucial parameters: intra-channel

coupling, and gain/loss coefficient, on the stability of pulse propagation in a waveguide with

two coupled channels. We restrict the analysis to the linear regime and study the dynamics

described by the equation

∂A(r)

∂z
= −iβ2

∂2A(r)

∂t2
+ iκ̃ ∗ A(3−r) + α̃ ∗ A(r). (5.16)

Note that we have two terms on the right-hand side of the equation (5.16) in the form of a

convolution. Each of the functions κ and α are functions of frequency ω. For the current study,

we have chosen Gaussian functions for all dispersion profiles and each of them is characterized

by three parameters: width σ, central frequency ω0, and maximum; for example, the inter-core

coupling will be equal to

κ(ω) = κ0 exp
[
(ω − ω0)

2/σ2
κ

]
. (5.17)

The dispersion in the gain/loss coefficient α(ω) is introduced by analogy. We have checked

that our conclusions are the same if we use Lorenzian functions instead of Gaussians. In this

formulation, the constant coefficient corresponds to the Gaussian function, which is a very broad

function of frequency. In each of the studies reported below, we looked for the exceptional point

that lies on the boundary between stable and unstable propagation regions. Unstable propagation

is characterized by the exponential growth of the signal in the gain channel, while in the lossy
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channel, the pulse decays rapidly to zero.

Fig. 5.9: Maximum value of the real part of the eigenvalues for different amplitudes of the
coupling coefficient. The width of the gain/loss coefficient is arbitrarily set equal to one, and
the widths of the coupling coefficients as a function of ω are given in the inset. Note that in all
cases where the width of the coupling is smaller than the width of the gain/loss coefficient,
we do not observe stable propagation.

In the case of linear propagation considered here, it is sufficient to examine the maximal real

part of the eigenvalue Re(λ)max of the characteristic equation derived from Eq. (5.16). It is worth

noting, that this result remains consistent regardless of the shape of intensity of the input pulse.

In the nonlinear scenario, however, our approach becomes ineffective. Then, in order to predict

the dynamics of the system and to identify the specific exceptional points, we must resort to

direct simulations. The ability to find these exceptional points depends on various parameters

associated with the channels, and this requires a different methodology compared to the linear

case.

First, we considered the case where all coefficients are constant. In this case, the system

becomes unstable when the magnitude of α is greater than the interchannel coupling κ, regard-

less of the value of the dispersion β2, which is a well-known result. We then introduced the

dispersion to κ and α in the manner described above. A summary of this study is shown in Fig.

(5.9). We clearly observe that as long as the width of the coupling is greater than the gain/loss

profile, we have a region of stable dynamics as long as κ0 > α0. In the opposite case, when the

width of the gain/loss function exceeds the width of the coupling function, Re(λ)max is always

positive and tends to linear growth (with increasing value of α0) as the gain/loss profiles become

more and more narrow. This gives us a clue about the possible components of our system. If we
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include a small nonlinearity, we expect essentially the same characteristics, with the shift of the

exceptional point.

Finally, we investigated, whether the center frequency for the gain/loss and coupling profiles

need not be the same. To do this, we introduced the shift ∆ = |ω0,α − ω0,κ| between the two

profiles and set the width of the inter-channel coupling to be several times greater than the width

of the gain/loss parameter (σκ = 6 and σα = 1). As illustrated in Fig. (5.10), so long as the shift

between these two profiles remains smaller than the coupling width of the coupling (note that

we arbitrarily choose the value of the gain/loss profile to be equal to one), an exceptional point

appears. We have carried out thorough studies, including various coupling widths and shifts, to

establish that the features shown in Fig. 5.10 are representative of a wide range of parameters,

including the proposed configuration. The main insight from our simulations is that, for practical

implementation, we should look for setups with consistent coupling and carefully study how the

relative shifts of the resonances, in both κ and α coefficients, vary with frequency.

Fig. 5.10: Maximal real part of eigenvalues in the case when gain/loss and interchannel coef-
ficients are centered at frequencies shifted by ∆, as indicated in the inset. Other parameters
are: σω = 1, σκ = 6 and κ0 = 1.

5.6 Conclusion

We predicted PT -symmetry breaking in a dual-core photonic crystal fiber made of phosphate

glasses synthesized in-house. The fiber cores are made of phosphate glasses with 6% mol yt-

terbium (gain channel) and 0.015% mol copper doping (loss channels) and have the following

124



i
i

“output” — 2023/10/27 — 11:26 — page 125 — #125 i
i

i
i

i
i

structural parameters: core diameters of 1.85 µm, lattice pitch of 1.6 µm, and extra photonic lat-

tice of air holes with diameter 1.4 µm. The fiber exhibits normal dispersion of the fundamental

supermodes in the range of 500-2000 nm and coupling length in the order of 5 cm at 1000 nm.

We investigated the stability of the PT -symmetric DCF system by simulating the propagation

of hyperbolic secant pulses with a width of 10 ps and 1 ps: the system is stable considering

both temporal widths and values of gain-loss/coupling coefficients ratio α/κ ≤ 0.25. The de-

signed fiber resulted in a α/κ value of 0.22. Then, we solved the system of CGNLSE with

the Split-Step method, considering excitation pulses with a wavelength of 1000 nm and width

of 1 ps. We predicted two regimes of light propagation through the designed fiber: 1) linear

oscillations of the pulse energy between the gain and loss channel (PT -symmetry state); 2)

unstable dynamics with strong enhancement in both channels (broken PT -symmetry). Initial

input energies were 100 pJ, and 430 pJ, respectively. The same scenarios were predicted con-

sidering pulses with the same input energy and using a simplified theoretical model, which only

includes second-order dispersion term, linear coupling, first-order nonlinearity, and dispersive

gain/loss coefficient. We carried out an extensive investigation of the influence of dispersion on

both the gain/loss and the coupling. Our investigation led us to understand that stable dynamics

prevail when the coupling width (σκ) exceeds the gain/loss profile width (σκ > σα), while a

linear growth of intensity is predicted in the opposite case. These predictions hold even when

the relative frequency shift between the gain/loss and coupling profiles is taken into account.

The results presented here represent a very promising prediction of PT -symmetric breaking

using a manufacturable dual-core optical fiber. This breakthrough has significant potential for

several applications, including all-optical switching and the development of robust high-power

lasers.
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Conclusions

In this thesis, we presented the results of our study on all-optical switching of ultrashort soliton-

like pulses using soft-glass DCFs. In particular, we investigated the coupling, asymmetrical, and

nonlinear characteristics of the fiber using a simple theoretical model. Our goal was to provide

valuable insight into the switching and self-trapping behavior, along with predicting the set of

parameters that yield efficient switching performance. The numerical results were compared

with experimental data to analyze the advantages and limits of the simple model for DCFs.

In the first part of the study, we started from the simplest case of a linear coupled system,

which was analytically solved, to show the effect of asymmetry on the coupler. Subsequently,

we study the effect of high nonlinearity on a symmetrical system by modeling the high nonlinear

symmetrical soft-glass DCF. This attempt effectively demonstrated that the simple model was

capable of capturing both the qualitative and quantitative aspects of symmetrical DCF.

In the next part, we proceeded to examine the combined effect of both asymmetry and

nonlinearity within one coupled system, that is, highly nonlinear asymmetrical DCFs made of

the same material. In this context, our theoretical model, while showing reasonable quantitative

agreement with experimental data, also revealed the system’s remarkable sensitivity to even

slight variations in either asymmetry or nonlinearity parameters.

In addition to this, we conducted a thorough numerical investigation of different approaches

aimed at enhancing switching performance, utilizing dual-wavelength configurations within

asymmetrical DCFs. This investigation not only explained the switching mechanism and the

observed spectral broadening effect in experimental setups but also yielded optimized parame-

ter values for enhanced energy transfer.

Lastly, we introduced a feasible fiber structure grounded in the concept of PT symmetry,

employing a simplified model. By identifying the exceptional points within the PT symmetry

system, we derived the stability limits for the fiber design. This study on PT-symmetrical fibers

lays the groundwork for future endeavors in fiber fabrication and experimental exploration.
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Appendix A

The Split-Step Fourier method

The Split-Step Fourier method is a powerful pseudo-spectral numerical method used to solve

nonlinear partial differential equations, such as the nonlinear Schrodinger equation. This method

derives its name from two key features: the computation of solutions in small steps, where the

linear and nonlinear steps are treated separately, and the requirement to Fourier transform back

and forth since the linear step is taken in the frequency domain and the nonlinear step is taken

in the time domain.

Compared to other methods, the Split-Step Fourier method offers high accuracy and fast

computational speed. In this thesis, we introduce the Split-Step Fourier method for the solution

of a single nonlinear Schrodinger equation, and then extend the approach to the more complex

case of coupled nonlinear Schrodinger equations.

By employing this method, we can obtain accurate numerical solutions for a wide range

of nonlinear partial differential equations, making it an invaluable tool for researchers across

multiple scientific fields.

A.1 Time differentiation property of Fourier transform

The Split-Step Fourier method takes advantage of the time differentiation property of the Fourier

transform. It is much more accurate with other methods of differentiation, for instance, the finite

difference method, with giving time of computation. Let us define the Fourier transform of a
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continuous-time function A(t) as:

Ã(ω) =

∫ ∞

−∞
A(t)e−iωtdt. (A.1)

The inverse Fourier transform is defined as:

A(t) =
1

2π

∫ ∞

−∞
Ã(ω)eiωtdω. (A.2)

Then, the differentiation of a function in the time domain is equivalent to the multiplication of

its Fourier transform by a factor iω in the frequency domain:

∂nA(t)

∂tn
=

1

2π

∫ ∞

−∞
Ã(ω)

∂n

∂tn
[eiωt]dω =

1

2π

∫ ∞

−∞
Ã(ω)iωeiωtdω. (A.3)

In numerical simulations, the Fast Fourier Transform (FFT) algorithm is commonly used to

facilitate the transformation of data between the time and frequency domains.

∂nA

∂tn
= F−1{(iω)nF [A(ω)]}. (A.4)

A.2 The Split-Step Fourier method for nonlinear

Schrodinger equation

Consider the NLSE in single core:

i
∂A

∂z
= −β2

2

∂2A

∂τ 2
− γ|A|2A. (A.5)

Here, the retarded time τ = t − β1z is used to keep the pulse in the defined temporal window.

We define operators D̂ and N̂ from above equation as

D̂ = −β2
2

∂2A

∂τ 2
, (A.6)

N̂ = −γ|A|2. (A.7)

The equation (A.5) becomes:

i
∂A

∂z
= D̂A+ N̂A. (A.8)
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If the step size ∆z along the propagation direction z is sufficiently small, N̂ can be considered

constant and the exact solution of this equation at the next step along the propagation direction

can be formally written as

A(τ,∆z) = e−i∆z(D̂+N̂)A(τ, 0). (A.9)

Applying both operators at once is not possible during numerical integration. The idea of the

split-step method is to approximate ei∆z(D̂+N̂) by a sequence of split operators as:

e−i∆z(D̂+N̂) ≈ e−ibnN̂e−ian∆zD̂...e−ib1∆zN̂e−ia1∆zD̂, (A.10)

where coefficients aj and bj are constants. The simplest split-step scheme is when we take

a1 = b1 = 1 and other coefficients to be zero. In this case, we get

e−i∆z(D̂+N̂) ≈ e−i∆zD̂e−i∆zN̂ . (A.11)

This splitting scheme is first-order accurate in time. First, the linear half-step is calculated in

the spectral domain. Then, the partial solution is transferred to the time domain using the FFT

algorithm and the nonlinear step is calculated. In the end, the solution is transferred back to the

spectral domain, and the first linear half-step is applied. The solution takes this form:

A(z0 +∆z) = F−1{e−i∆ω2zβ2/2F [A(z0)e
−i∆zγ|A(z,τ)|2 ]}. (A.12)

A.3 The Split-Step Fourier method for coupled NLSEs

Consider the coupled NLSE

i
∂A1

∂z
= −β2

2

∂2A1

∂τ 2
− γ|A1|2A1 − κA2,

i
∂A2

∂z
= −β2

2

∂2A2

∂τ 2
− γ|A2|2A2 − κA1.

(A.13)

The coupled nonlinear Schrodinger equation can be written in the operator form as follows:

i
∂A(z, τ)

∂z
= M̂A(z, τ), (A.14)
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where A(z, τ) is the total field in the coupler defined as a column vector of two fields in the two

channel:

A(z, τ) =

A1(z, τ)

A2(z, τ)

 (A.15)

and M̂ is a matrix operator defined as

M̂ = L̂+ N̂ =

D̂1 Ĉ1

Ĉ2 D̂2

+

N̂1 0

0 N̂2

 . (A.16)

The dispersion D̂m and nonlinear N̂m operators for m-th fiber core are defined as same as in the

case of a single core. The coupling Ĉm operator in symmetrical coupler is defined as:

Ĉm = κ. (A.17)

The composition of the one-step solution is performed for the dual-core case using the second-

order Split-Step scheme written as

A(z0 +∆z, τ) = e−i∆zM̂A(z0, τ) ≈ e−i∆zN̂e−i∆zL̂A(z0, τ). (A.18)

Exponential of L̂ and N̂ in matrix form respectively are:

e∆zL̂ =exp

∆z

D̂1 Ĉ1

Ĉ2 D̂2


 =

e−i∆zω2β2/2 0

0 e−i∆zω2β2/2

×

×

 cos∆zκ i sin∆zκ

i sin∆zκ cos∆zκ


(A.19)

e∆zN̂ = exp

∆z

N̂1 0

0 N̂2


 =

e−i∆zγ|A|2 0

0 e−i∆zγ|A|2

 . (A.20)

Here, we consider the coupling as a constant, which is equivalent to the zeroth order term of

Taylor’s expansion of coupling function κ(ω). If the higher-order coupling is taken into account,

the matrix calculation above can also be used. In the case of higher order coupling, the matrix

elements in (A.18) will consist of cos and sin of κ0 + ωκ1 + ω2κ2 + .... When the full function
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κ(ω) is considered, we just simply replace κ with κ(ω) everywhere in the matrix element. Put

the resulting matrices at (A.18) and (A.19) together, we obtain the solution of A(z0 + ∆z) in

first order spit-step scheme as

A(z0 +∆z) =F−1


e−i∆zω2/2 0

0 e−i∆zω2/2

F


 cos∆zκ i sin∆zκ

i sin∆zκ cos∆zκ

×

×

ei∆z|A|2 0

0 ei∆z|A|2


A1(z, τ)

A2(z, τ)



.

(A.21)

A.4 Numerical Stability of Split-Step Methods

Solving equations (A.5) using the split-step method could be very accurate and fast with rela-

tively large time and distance steps in comparison with other well-known methods. However,

this does not mean the split-step method is unconditionally stable. In fact, the derived scheme

above could lose it accuracy if we use it with large ∆z for a very long propagation distance

(such as to z = 200). In such cases, high-frequency Fourier modes will become prominent cre-

ating numerical instability. Below we will extend that analysis to derive stability conditions for

the first-order split-step methods on the NLSE Let us consider split-step methods as applied to

the NLSE (A.5). The NLSE (A.5) admits an exact x-independent solution

A(z, τ) = ae2i|a|
2z, (A.22)

where a is a constant. Since the NLSE is phase invariant, we take a to be a real number. When

this solution is perturbed to

A(z, τ) = e2ia
2z[a+ δA(z, τ)], δA(z, τ) ≪ 1. (A.23)

We now analyze how the perturbation δA(z, τ) evolves under the split-step scheme e−i∆zM̂ .

Substituting (A.23) into (A.12) and neglecting terms of δA(z, τ) and higher, we obtain the

iteration equation for the perturbation as

Ψ(z0 +∆z) = e−i∆zM̂Ψ(z0) = e∆zD̂e∆zN̂Ψ(z0), (A.24)
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where Ψ(z0) = F [δA(z0), δA(z0)
∗]T and

e∆zD̂ =

e−iω2∆z/2 0

0 e−iω2∆z/2

 , e∆zN̂ =

1 + 2ia2∆z 2ia2∆z

2ia2∆z 1 + 2ia2∆z

 . (A.25)

The e∆zD̂ and the e∆zN̂ matrices respectively give the perturbation iteration after the linear

step and the nonlinear step of the method. Therefore, eigenvalues of the iteration matrix e−i∆zM̂

determine if the perturbations will grow or not. Since det
(
e−i∆zM̂

)
= 1, eigenvalues of e−i∆zM̂

are

λ = ρ±
√
ρ2 − 1, (A.26)

where

ρ =
1

2
Tr
(
e−i∆zM̂

)
= cos

(
ω2∆z

)
+ 2a2∆z sin

(
ω2∆z

)
. (A.27)

Perturbations will grow if |λ| > 1, i.e., when |ρ| > 1. Rewriting ρ as [87]

ρ = r cos
(
ω2∆z − θ

)
, (A.28)

where

r =
√
1 + 4a4∆z2, tg θ = 2a2∆z, 0 < θ <

1

2
π. (A.29)

Unstable Fourier modes are associated with frequencies in the intervals [87]

0 < mod(ω2∆z, π) < 2θ. (A.30)

The largest growth occurs at frequency where mod(ω2∆z, π) = θ, which can be written as:

|λ|max =
√
1 + 4a4∆z2 + 2a2∆. (A.31)

It is important to note that, the first interval of unstable modes

0 < ω2∆z < 2θ (A.32)

134



i
i

“output” — 2023/10/27 — 11:26 — page 135 — #135 i
i

i
i

i
i

is not induced by numerical instability. Rather it is caused by modulation instability of the

constant solution (A.22) in the NLS equation (A.5). The other intervals

ω2∆z ∈ (π, π + 2θ), (2π, 2π + 2θ), ... (A.33)

are true intervals of numerical instability. In the numerical implementation of the split-step

method in A.12, the Fourier frequency is discrete:

ω = 0,±ω0,±2ω0, ...,±
1

N
ω0, (A.34)

where ω0 = 2π/T is the frequency separation, T is the length of the computational interval, and

N is the number of temporal grid points. Thus, to avoid numerical instability occurring during

calculation, it is necessary and sufficient to keep none of these discrete Fourier frequencies

(A.34 falls in the numerical-instability intervals (A.33). Note that the largest discrete Fourier

frequency in A.34 is [87]

|ω|max =
Nω0

2
=

π

∆t
. (A.35)

Thus a sufficient condition for numerical stability of split-step methods is |ω|2max∆z = π i.e.

[87]
∆t

∆z2
≤ 1

π
. (A.36)

If the time-step condition (A.36) is not met, some of the discrete Fourier frequencies (A.33)

may fall in the unstable intervals (A.32), causing numerical instability.
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List of acronyms

CGNLSE Coupled generalized nonlinear Schrödinger

equation. 117

CW Continuous wave. 48

DCF Dual-core fiber. 74, 77, 85, 87, 127

DFG Difference frequency generation. 20

FFT Fast Fourier transform. 13, 131

FWHM Full width at half-maximum. 63, 77, 81, 98

FWM Four-wave mixing. 26

GVD Group velocity dispersion. 39, 42, 47, 48, 57, 62,

63, 70

NIR Near-infrared. 59

NLSE Nonlinear Schrödinger equation. 13, 61, 62, 64,

70, 73, 133

PCF Photonic crystal fiber. 5

SEM Scanning electron microscope. 113

SFG Sum frequency generation. 20
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Baltuška, Ryszard Buczyński, and Ignác Bugár. High contrast all-optical dual wavelength switch-

ing of femtosecond pulses in soft glass dual-core optical fiber. Journal of Lightwave Technology,

39(15):5111–5117, 2021.

[49] Viet Hung Nguyen, Le Xuan The Tai, Mattia Longobucco, Ryszard Buczyński, Ignac Bugar, Ignas
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Ryszard Buczyński. Yb3+ doped silica nanostructured core fiber laser. Opt. Express, 27(24):35108–

35119, Nov 2019.

[85] M Franczyk, R Stepien, D Pysz, I Kujawa, and R Buczynski. Phosphate Yb3+ photonic crystal fiber

single-mode laser with enormous high pump absorption. Laser Physics Letters, 11(8):085104, jun

2014.

[86] Robert Adair, L. L. Chase, and Stephen A. Payne. Nonlinear refractive index of optical crystals.

Phys. Rev. B, 39:3337–3350, Feb 1989.

[87] Jianke Yang. Nonlinear Waves in Integrable and Nonintegrable Systems, chapter 7, pages 327–403.

158


	Acknowledgments
	Abstract
	Streszczenie
	Introduction
	Linear and nonlinear light propagation in waveguides
	Fundamentals of nonlinear optical processes
	The linear wave equation for the slowly varying envelope
	Nonlinear polarization of optical media
	Second order Processes
	Third order processes. Kerr effect

	Propagation of light pulses in a single waveguide
	Nonlinear Schrödinger equation in single waveguide
	Solitons
	Higher order soliton and soliton breathers
	Soliton compression
	Generalized nonlinear Schrödinger equation

	Coupled nonlinear Schrödinger equation in dual-core waveguides
	Coupled mode equations
	Coupled nonlinear Schrödinger equation and analytic solutions.
	Low-power CW beam in couplers
	Low power pulses in couplers

	Photonic crystal fibers
	Introduction
	Types of photonic crystal fibers
	Analysis of the optical properties
	Applications of PCF


	Optical switching in symmetrical dual-core highly nonlinear optical fibers
	Symmetrical dual-core highly nonlinear optical fibers
	Experimental results
	Theoretical model and simulation results
	Osillation, switching and self-trapping
	The effect of soliton fission
	Regions of the three outcomes of the dynamics


	Self-trapping and switching in asymmetrical dual-core highly nonlinear fibers
	Rescaling the physical parameters
	Numerical results for nonlinear propagation
	The effects of asymmetry and nonlinearity
	Simulation with experimental data

	Detailed comparison with experimental observations
	The core selection effect
	The pulse-width effect


	Control of dual-wavelength switching in asymmetric dual-core fiber
	Description of the Experiment
	Theoretical Insight
	Theoretical model and rescale of physical parammeter
	Switching mechanism
	The effect of delay and control energy
	Effect on signal spectrum


	PT-symmetry in dual-core photonic crystal fibers
	General concept of PT symmetry
	The Parity-Time Reversal Operator
	Exceptional point

	PT-symmetry breaking in dual-core phosphate-glass optical fibers
	Materials and design
	Finding optical properties
	Numerical simulations of pulse propagation: method and results
	Generalized Nonlinear Schrodinger Equation
	Simplified theoretical model
	The role of dispersion

	Conclusion

	Conclusions
	Appendices
	The Split-Step Fourier method
	Time differentiation property of Fourier transform
	The Split-Step Fourier method for nonlinear Schrodinger equation
	The Split-Step Fourier method for coupled NLSEs
	Numerical Stability of Split-Step Methods

	List of acronyms
	Bibliography

