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Abstract 

The doctoral dissertation presents the concept of the Adaptive Tuned Particle Impact 

Damper (ATPID) and its application for adaptive mechanical vibration damping. The proposed 

concept involves modification of the classical Impact Damper (ID), which consists of a 

container and an additional element (usually grains) capable of free movement. The ATPID 

damper is enhanced with additional electromechanical elements, mainly an electric motor that 

changes the position of the upper container wall, allowing for real-time changes in the volume 

of the damper. The proposed damper prototype is equipped with a measurement system, 

creating a device with tunable vibration damping by adaptation to the actual excitation. 

The thesis attempts to presents a complete description of subsequent stages of 

development  of the ATPID. The dissertation starts with a literature review of similar technical 

solutions. The main types of impact dampers and their practical applications in the engineering 

environment are described. In the following chapter, an experimental research methodology is 

proposed. For this purpose, an ATPID prototype is constructed, and a test stand is built along 

with a measurement system. The research plan is described in details, including free and 

harmonic vibration analyses of a cantilever beam with the ATPID damper attached at its free 

end. Over 100 experimental measurements are conducted for various system parameters, such 

as excitation frequency or amplitude, grain mass, and the damper height. Both displacement 

and acceleration of the beam at the damper attachment point are measured using a laser sensor, 

accelerometer, measuring cards and dedicated measurement software. 

The further part of the dissertation concerns the development of a numerical model of 

the ATPID damper and the test stand. Theoretical analyses are based on the grain collisions with 

the damper walls using the theory of soft contact. Additionally, a tuned container height 

allowing control of the damper wall position is taken into account. The numerical model is 

validated based on previously conducted experimental measurements. A series of sensitivity 

analyses were performed to describe the detailed operation principle of the proposed device. 

Furthermore, an energy balance analysis is carried out to define the influence of the collisions 

on the change in the dynamics of the tested system. A parametric optimization is performed, 

which allows for the formulation of the criteria for the optimal particle movement from the 

perspective of vibration damping. In the following part, a general concept of the Adaptive 

Impact Damper control strategy is formulated. A predictive control algorithm is presented, 

facilitating the search for optimal damper heights for adopted system parameters and current 

operating conditions. 



The dissertation presents a comprehensive study of the Adaptive Tuned Particle Impact 

Damper concept, including experimental research, numerical modelling, and control strategy 

development. The proposed concept has a significant potential for practical applications in 

various mechanical systems, used in aerospace and automotive engineering. 

 

Keywords: Adaptive Tuned Particle Impact Damper, Damping of vibrations, Adaptive passive 

damping, Controllable damper, Control function, Sensitivity analysis, System optimization, 

Real-time control strategy. 



Streszczenie 

W rozprawie doktorskiej przedstawiono koncepcję Adaptacyjnego Tłumika 

Uderzeniowego (ang. Adaptive Tuned Particle Impact Damper - ATPID) i jego zastosowanie 

do tłumienia drgań mechanicznych. Zaproponowana koncepcja polega na modyfikacji 

klasycznego Tłumika Uderzeniowego (ang. Impact Damper - ID), który składa się z obudowy 

oraz dodatkowego elementu (najczęściej granulatu) zdolnego do swobodnego ruchu wewnątrz 

obudowy. Amortyzator ATPID został wzbogacony o dodatkowe elementy elektromechaniczne, 

głównie silnik elektryczny zmieniający położenie sufitu obudowy, co pozwala na zmianę 

objętości tłumika w czasie rzeczywistym. Proponowany prototyp tłumika wyposażony jest w 

układ pomiarowy, tworzącym urządzenie o możliwościach adaptacyjnych poprzez 

dostosowywanie się do aktualnie występującego wymuszenia. 

W pracy podjęto próbę przedstawienia pełnego opisu kolejnych etapów rozwoju tłumika 

ATPID. W pierwszym rozdziale rozprawy dokonano przeglądu literatury dotyczącej podobnych 

rozwiązań technicznych. Opisano główne typy amortyzatorów oraz ich praktyczne 

zastosowanie  w środowisku inżynierskim. W kolejnym rozdziale zaproponowano metodologię 

badań eksperymentalnych. W tym celu skonstruowano prototyp urządzenia oraz zbudowano 

stanowisko badawcze uwzględniające układ pomiarowy. Szczegółowo opisano plan badań 

obejmujący analizę drgań swobodnych i harmonicznych belki wspornikowej z tłumikiem 

ATPID zamocowanym na jej swobodnym końcu. Przeprowadzono ponad 100 pomiarów 

eksperymentalnych dla różnych parametrów układu, takich jak amplituda i częstotliwość 

wymuszenia, masa granulatu i wysokość tłumika. Zarówno przemieszczenie,                                         

jak i przyspieszenie belki w punkcie mocowania amortyzatora mierzono za pomocą czujnika 

laserowego, akcelerometru, kart pomiarowych oraz dedykowanego oprogramowania 

pomiarowego. 

Dalsza część rozprawy dotyczy opracowania modelu numerycznego tłumika ATPID 

oraz zaproponowanego stanowiska badawczego. Analizy teoretyczne opierają się na 

odwzorowaniu zderzenia granulatu ze ściankami obudowy z wykorzystaniem teorii miękkiego 

kontaktu. Dodatkowo uwzględniono zmienną wysokość obudowy, umożliwiającą kontrolę 

położenia sufitu urządzenia. Model numeryczny został zweryfikowany na podstawie wcześniej 

przeprowadzonych badań eksperymentalnych. Wykonano szereg analiz wrażliwości w celu 

szczegółowego opisania zasady działania proponowanego tłumika. Ponadto przeprowadzono 

analizę energetyczną w celu określenia wpływu poszczególnych zderzeń na zmianę dynamiki 

badanego układu. Przeprowadzono optymalizację parametryczną, która pozwoliła                              



na sformułowanie kryteriów optymalnego ruchu granulatu z punktu widzenia tłumienia drgań. 

W dalszej części sformułowano ogólną koncepcję strategii sterowania Adaptacyjnym 

Tłumikiem Uderzeniowym. Przedstawiono algorytm sterowania predykcyjnego, ułatwiający 

poszukiwanie optymalnych wysokości obudowy dla przyjętych parametrów układu                                     

i aktualnych warunków pracy. 

Rozprawa przedstawia kompleksowe badanie koncepcji Adaptacyjnego Tłumika 

Uderzenia, w tym badania eksperymentalne, modelowanie numeryczne i rozwój predykcyjnego 

algorytmu sterowania. Proponowana koncepcja ma znaczny potencjał praktycznych 

zastosowań w różnych układ mechanicznych, wykorzystywanych w inżynierii lotniczej                         

i motoryzacji. 

 

Słowa kluczowe: Adaptacyjny Tłumik Uderzeniowy, tłumienie drgań, adaptacyjno-pasywne 

tłumienie, sterowalny tłumik, funkcja sterująca, analiza wrażliwości, optymalizacja 

parametryczna, strategia sterowania w czasie rzeczywistym, . 
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Chapter 1

Introduction

1.1 Motivation

The purpose of this research is to develop a highly efficient device that can adaptively

damp mechanical vibrations, providing a practical alternative to the classical absorbers

widely used in mechanical engineering. Mechanical systems are often subjected to dy-

namic excitations, and effective damping of the corresponding vibrations is crucial for

a system safety and reliability. Improper damping strategies can cause significant dam-

age of the protected objects. By improving vibration attenuation techniques, failures

can be prevented, durability can be enhanced, and employee comfort can be maxi-

mized in the design of various objects, such as machines, buildings, bridges, cranes,

and cars. Currently, passive vibration damping systems are the most commonly used,

but without information about actual excitations acting on the equipment, they often

lead to sub-optimal vibration damping in rapidly changing environments with varying

internal and external forces.

Since 1960, the Particle Impact Damper (PID) was introduced a novel device for

vibration attenuation. According to the first concept, it was a passive system with a

simple design and operating principle. The PID damper consists of a container and

grain enclosed inside the absorber. During the vibrations, grain can move and collides

with the walls, and as a result, reduces system vibrations by modifying the structure’s

natural frequency and generating additional forces acting on the structure. Despite

scientific efforts to improve its construction, the PID damper has not been widely used

in engineering due to limitations that prevent optimal adaptation to dynamic operating
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conditions [1]. Hence, there is a need for innovative technology to effectively adapt the

damper to real excitation.

Adaptive devices are complex systems that merge the theoretical modelling of var-

ious physical phenomena with technical solutions in the form of well-designed struc-

tures. These models cover areas such as fluid mechanics, electricity, magnetism, and

machine mechanics. Developed mathematical models enable simulation of the sys-

tem behaviour in real conditions and form the basis for optimizing the structure and

achieving the most efficient damping of vibrations caused by given excitation. Despite

scientific advancements in this area, there is a noticeable lack of adaptive devices that

integrate with classic PID dampers. The modelling and control of Adaptive Impact

Dampers (AID) are not widely recognized in the scientific literature, according to the

author’s understanding.

The dissertation introduces the concept of the "Adaptive Tuned Particle Impact

Damper" (ATPID), a tuneable device with a container that can change its volume in

real-time and a control algorithm that predicts optimal parameters for maximum vibra-

tion damping caused by dynamic excitation. The prototype design, modelling meth-

ods, predictive control algorithm development, and applications of the ATPID damper

are extensively examined. Thus, the research appears significant both from a practical

and theoretical point of view.
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1.2 State of the art

1.2.1 Classical PID damper

Devices that reduce mechanical vibrations have been of interest to researchers and en-

gineers for many years. There are various types of vibration dampers designs used

in everyday engineering applications, including passive shock absorbers that use elas-

tomers with viscous properties. Recently, Particle Impact Dampers have gained impor-

tance in the domain of vibration damping. The classical PID (Fig 1.1) operates through

the particles inelastic collisions enclosed in a special container or cavity. Energy dissi-

pation is also due to the frictional contact between the particles and the damper walls.

When subjected to a vibrating system, the PID device absorbs some of the structure’s

kinetic energy, reducing its vibration amplitudes. The effectiveness of this damping

approach is mainly due to the combination of impact and friction phenomena [2].

Figure 1.1: Simplifed construction of the PID dampers [3]

Most frequently utilized damping devices exhibit energy dissipation typically re-

lated to friction or visco-elastic material deformation, which leads to increased operat-

ing temperature, material wear and reduced damping properties. In the light of these

limitations, granular dampers, where the influence of temperature and material degra-

dation is less significant, are particularly appealing. PIDs offer additional advantages,

such as the ability to operate at a wide range of frequencies, the use of recyclable ma-

terials, lower cost, and a lower overall system mass compared to traditional dampers.

These features make PIDs well-suited for dynamic systems operating in harsh envi-
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ronments [4]. However, the adjustment of damping properties in this class of shock

absorbers is limited and mainly involves selecting the proper type, shape, and size of

grains for the specific application [5, 6].

1.2.2 Types of PID dampers

The traditional particle dampers have undergone several modifications, which pro-

vided their unique characteristics and made them suitable for selected technical ap-

plications [3, 7, 8]. These modifications can be divided into three main categories, as

shown in Fig. 1.2. The categories are based on the various components of modifica-

tions made to the standard Particle Dampers (PD), including configuration , material

type, and combination type.

Particle
Dampers

Basic Traditional Particle Dampers

Impact Damper

Multi-Unit Impact Damper

Particles Damper

Multi-Unit Particles Damper

Material Improved Type of Particle Dampers

Buffered Impact Damper

Fine Particle Impact Damper

Polymeric Particle Damper

Combination Type of Particle Dampers

Tuned Mass Damper

Tuned Liquid Column Damper

Double Pendulum Impact Damper

Tuned Particles Impact Damper

Figure 1.2: Main categories of the Particle Dampers

Basic traditional Particle Dampers

Single Particle Impact Damper (SPID) is a specific type of Impact Damper (ID). The

classic Impact Damper uses a freely moving mass inside the absorber, whose shape and

material can be arbitrary [9, 10]. The SPID is characterised by high noise levels and high

impact forces due to the presence of only one particle being involved in the collision

process (as shown in Fig. 1.3). As a result, the effectiveness of the SPID depends
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on changes in excitation parameters such as excitation amplitude and frequency [11,

12]. Despite their extension from the initial idea of using a moving mass (taking a

different shape than a sphere) to reduce mechanical system vibration, Single Particle

Impact Dampers have significant limitation in the form of fixed container size. This

disadvantage hinders their potential for implementation and improvement in various

industries.

Figure 1.3: The scheme of the Single Particle Impact Damper [13]

The size of the cavity is a crucial factor in determining the efficiency of particle

damping in an impact damper. This parameter affects the overall vibration reduction

of the system. Although, when the optimal size of the container is too large, it may

not be feasible to incorporate such a cavity into the main structure due to practical

constraints in construction. Furthermore, the collision between the particle and the

container can generate a significant amount of noise. To address these issues, some

researchers have proposed using Multi-Unit Impact Dampers that consist of multiple

small cavities with appropriate dimensions (Fig. 1.4). MUID is an advanced form of

Single Particle Impact Damper [14]. The study investigated the effect of the number

and size of cavities on the damper’s effectiveness.
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Figure 1.4: The scheme of the MUID damper [14]

The MUID has been the subject of various theoretical, numerical, and experimental

researches. In 1969, Masri conducted a theoretical analysis of the MUID under har-

monic excitation and obtained an analytical method for the stationary motion, which

agrees with both numerical simulations and experimental investigation [15]. Cempel

[16] proposed the application of an equivalent continuous force as a method for es-

timating the effects of impact interactions and analyzed the oscillations of the MUID

accordingly. Meanwhile, in [17] the authors examined the impact of Coulomb fric-

tion on the MUID’s performance through theoretical investigation and computational

modeling.

Vibration reduction in a structure can be achieved through the use of Particles

Dampers [18, 19, 20]. This passive damping technology involves filling a single cavity

(as shown in Fig. 1.5a) or multiple cavities (Fig. 1.5b for Multi-Unit Particles Dampers

- MUPD) with small particles. The grains can be formed of ceramics or metals that are

thermally stable, which causes that the damping mechanism is independent on vis-

coelastic properties and insensitive to temperature changes. This is a key advantage of

particle dampers. However, modelling the complex interactions between the particles

and walls as well as the development of simplified models that account for various

non-linear physical phenomena [21] is a challenging problem.
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(a) PD (b) MUPD

Figure 1.5: The scheme of the Particles Damper [22] and Multi-Unit Particles Damper
[23]

Material Improved Type of Particle Dampers

The Buffered Impact Damper (BID) is a variant of the traditional Impact Damper

that incorporates soft, elastic buffers connecting the stops (Fig. 1.6). This design mod-

ification helps to reduce the drawbacks associated with ID absorbers, such as extreme

noise levels, large accelerations, and significant impact force. The buffer significantly

reduces the peak value of the impact force and increases the contact time during im-

pact, leading to improved damping performance [24, 25, 26].

Figure 1.6: Scheme of the Buffered Impact Damper [3]
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The purpose of the study in [25] was to conduct systematic experimental research

to investigate the mechanism of buffered impact dampers. Seven different materials

were selected for testing on a shake table, and parameters such as gap distance, mate-

rial, mass ratio, and excitation characteristics were examined. The mechanism of the

attenuation was presented, and several design guidelines for buffered impact dampers

were described. The study proposed collision hardness as a critical factor that can re-

veal momentum exchange, also the issue of the restitution coefficient was thoroughly

discussed. The main finding of the study reveals that increasing the mass ratio causes

a greater reduction of vibration. The mass ratio plays a crucial role and affects the opti-

mal gap distance. Therefore, when designing buffered impact dampers, the mass ratio

should be considered before the gap distance. If there are no practical limitations on

the damper mass, a higher mass ratio is recommended. However, if a higher mass ra-

tio is not feasible, a lower mass ratio with an optimal gap distance can also be a viable

alternative. To achieve a better impact reduction, it is important to use a moderate gap

distance. However, the optimal value for the gap distance depends on the character-

istics of the excitation. Experimental analysis has shown that a larger response from

the structure requires a larger gap distance. The restitution coefficient’s impact on the

vibration effect is complex and cannot be used as the sole indicator of a buffer impact

attenuator performance. When designing the buffer, it is also important to consider

the hardness of the buffering particle, as a softened particle may have a smaller effect

when the response is small. It is recommended to use a hard particle and a soft inner

container wall for practical applications.

The Fine Particle Impact Damper (FPID) provides a plastic deformation of small

particles resulting in continuous energy loss in a vibration system. A small number

of microparticles serve as the damping element in the FPID (Fig. 1.7). Due to the

surface attraction being greater than the gravitational force, fine particles often com-

pletely cover the impact components, including the oscillators and cavity. FPID intro-

duces a new mechanism that relies on the ability of particles compressed between two

large bodies during a normal impact to absorb a significant amount of kinetic energy.

Systems with FPID technology can effectively operate in a vibratory environment as

described [27].
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Figure 1.7: The concept of the Fine Particle Impact Damper [27]

The repeatability of operation in a Fine Particle Impact Damper (FPID) may not be

maintained due to permanent plastic deformation of the fine particles. However, there

are methods that ensure the repeatability despite plastic deformation. One approach

is to intentionally design the FPID to include a specific amount of plastic deformation.

This can be achieved by selecting appropriate materials and applying a careful techni-

cal design. By considering a predetermined level of deformation, the FPID can operate

within an acceptable range without being affected by deformation. Another approach

is to monitor the amount of plastic deformation that occurs during operation and ad-

just the FPID accordingly, if necessary, to maintain an optimal performance. This can

be achieved through regular inspections and tests and making any necessary adjust-

ments or replacements. Additionally, the fine particles used in FPID can be periodically

replaced to ensure that they have not undergone excessive plastic deformation [28].

The conventional impact damper usually features a container partially filled with

metal grains. However, materials with varying physical properties can impact the

damper’s functionality. Viscoelastic polymers, known for their frequency and temper-

ature dependent properties, are commonly used in engineering structures as amplitude-

independent damping elements. In contrast to traditional linear dampers, which lose

their effectiveness at higher amplitudes, PPDs can provide constant damping over a

wide range of vibration amplitudes. In view of this, [29] proposed a Particle Damper

filled with polymeric particles (Fig. 1.8) to introduce new, promising properties that

enhance the vibration damping efficiency of the structure.
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Figure 1.8: The contruction of the Polymeric Particle Damper (PPD) [29]

Combination Type of Particle Dampers

From the damping of vibration point of view, the effectiveness of Particle Impact

Dampers can be seen in the reduction of vibration amplitudes, especially in the fre-

quency range where the excitation is close to resonant. In some situations, the impact

of PID can be considered as similar to that of a Tuned Mass Damper (TMD). The au-

thors of [30, 31, 32] compared the effect of both devices on vibration damping and sug-

gested modelling both absorbers as single or multi-degree-of-freedom systems with

similar operating principles. The damping performance of TMD and PD was evalu-

ated through tests conducted under various dynamic conditions such as seismic excita-

tions and wind loads. The study also investigated the impact of factors like maximum

ground accelerations and wind attack angles on the effectiveness of these devices. Re-

sults demonstrated that TMD and PD are effective passive control devices, capable of

reducing the response of a primary structure in various dynamic scenarios.

When comparing the vibration damping capabilities of mass dampers (PD) and me-

chanical vibration dampers (TMD), PD damping was generally found to be superior to

TMD damping due to different energy dissipation mechanisms. However, the damp-

ing effectiveness of TMD was more sensitive to wind attack angles and seismic input
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characteristics than PD, and TMD only worked effectively within a narrow resonance

frequency band. PD, on the other hand, displayed more stable vibration reduction ef-

fects that were less sensitive to changes in parameters under different types of seismic

excitations or wind attack angles. This makes PD a preferred option in practical engi-

neering designs, as they exhibit a small amplitude of vibration and lower sensitivity to

different parameters.

Tests conducted in an aerodynamic tunnel with aeroelasticity also demonstrated

that PD performance was typically better than TMD in various mass ratio cases. The

application of PD dampers may contribute to favourable and stable dynamic behaviour

of primary structures in the field of civil engineering. The systematic experimental

studies and damping mechanisms investigated for these two devices under different

dynamic loads are a step forwards promoting passive PD-based control technologies.

However, further theoretical and numerical comparative analyses of TMD and PD are

still being investigated.

Since 1980, the idea of using a Tuned Liquid Damper (TLD) to reduce vibrations

in civil and marine engineering structures has been developed and described. The ap-

plication of a rectangular container filled with two non-mixing liquids to damp the

response through interface motion was initially proposed by Bauer [33]. Welt and

Modi [34] implemented Tuned Liquid Dampers (TLDs) in building structures with the

objective of diminishing the overall response during severe weather conditions like

strong winds and seismic activities such as earthquakes. Hayama [35] investigated the

behaviour of the liquid in the container and the effectiveness of TLD. Scientists sug-

gested the U-shaped Tuned Liquid Column Damper (TLCD) filled with liquid (usually

water) and has a controlled valve, as an extension of TLD. Through the mobility of

the liquid inside the container, which balances off external forces, TLCD can decrease

structural vibrations. The damping effect of TLCD is produced by a hydraulic pressure

drop of the liquid due to the opening installed inside the container. The use of TLCD

in engineering structures was first proposed and studied by Sakai and Takeda [36].

Research on the impact of PD and TLD on vibration reduction is being conducted

separately, but there is a lack of comparisons between them. Previous studies have fo-

cused mainly on the damping effect of PD or on the comparison between PD and TMD.

The authors of [37] propose the use of a specific TLCD, which consists of both liquid
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and grains (Fig. 1.9). Such an approach allows for the extension of the functionality

of the device, which cannot be observed when they are used separately. Numerous

numerical and experimental research have been carried out, demonstrating the high

effectiveness of vibration damping in structures such as high-rise buildings.

Figure 1.9: The prototype of Tuned Liquid Column Damper [37]

The paper [38] explores an interesting subject of Particles Impact Damper function-

ing as a double pendulum striking element, referred to as a Double Pendulum Impact

Damper (DPID) (Fig. 1.10). DPID consists of two pendulums connected in series. The

first pendulum is attached to the structure while the second pendulum is attached to

the first one. This type of damper is designed to have different natural frequencies,

allowing for effective vibration damping over a wide range of frequencies. During

vibration, the Double Pendulum Impact Damper responds to the movement of the

structure by oscillating. It absorbs the kinetic energy of the structure, which is then

dissipated in the form of heat. This reduces the amplitude of vibrations, preventing

damage to the structure from excessive movement. The authors found that DPID is

highly effective in reducing vibrations of slender elements and conducted experiments
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considering various excitation rules and DPID parameters.

Figure 1.10: Scheme of the Double Pendulum Impact Damper [38]

Previous studies on the use of PIDs in dynamic systems suggested that altering

their damping properties could only be accomplished through passive methods such

as modifying the container size, grain mass, particle material, or shape. However, the

author of the dissertation aimed to enhance traditional PIDs by introducing the Tuned

Particles Impact Damper (TPID) [39]. The proposed adaptive-passive system allows

the user to actively change the damping properties, as depicted in Fig. 1.11. This

constitutes an improvement over classical passive damping strategies, as adaptive-

passive methods have been shown to be more effective in controlling vibrations.

Figure 1.11: Scheme of the Tuned Particles Impact Damper [40]

27



The TPID as a novel device that can be attached to various mechanical systems to

adjust their dynamic characteristics and minimize their mechanical vibrations. The

considered TPID prototype has a container with a varying volume range (0.2 to 0.79

[dm3]), controlled by an inner balloon. The balloon initially holds loose granular mate-

rial and acts as a concentrated mass. Discs and springs limit the container’s minimum

volume, and the balloon has a valve for connecting an external pump. Increasing the

pressure inside the balloon results in the expansion of the container’s volume, which is

a novel method for adaptive-passive control of the system. The TPID is also favoured

for its simple design and eco-friendliness.

The proposed device presented in Fig. 1.11 should be treated as starting point for

research on real-time controllable PID dampers and offers a preliminary evaluation of

their efficiency. However, it is important to emphasize that the described construction

is patented [41] but the experimental and numerical studies reported in [40] do not

constitute the main part of the dissertation.

1.2.3 Applications of the PID dampers

Particle Impact Dampers have a wide range of applications in mechanical engineer-

ing, including some practical and noteworthy examples of their application presented

below. The transmission system’s vibrations can have an adverse effect on the ma-

chine’s performance and durability. Addressing this problem is crucial for ensuring

a seamless and efficient operation. To minimize the machine transmission system’s

vibrations, techniques such as balancing, dampening, and decoupling can be utilized.

By controlling the transmission vibrations, the stability, durability, and efficiency of

the machinery can be improved. One example of using granular dampers for reduc-

ing vibrations in centrifugal gear transmissions [42, 43]. This is accomplished by in-

serting tightly packed loose granular material into specifically designed holes in the

gears, as shown in Figure 1.12. The reliability of particle impact dampers has been

proven through comparisons between actual system responses and numerical simula-

tions based on the Discrete Element Method.
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Figure 1.12: The prototype of the gear with PID damper [42]

The study described in [42] involved the implementation of a Particle Damper in

order to reduce vibrations in a gearbox. The researchers carried out both theoretical

analysis and experimental testing to investigate how the filling ratio of particles af-

fected the reduction of vibrations under different operating conditions. The results

showed that the damping effect was greatly influenced by the filling ratio of particles,

with a more pronounced effect observed as particle velocity increased. However, once

the rotational speed surpassed a certain critical value, the damping effect of particles

decreased sharply due to the centrifugal force becoming too large. Therefore, in the

case of the tested gearbox system, the smallest structural response and the best particle

damping effect were observed when the particle filling ratio was 88 %. To effectively

apply particle damping in gearboxes, it is crucial to consider rotational speed, which

has a significant impact on the effectiveness of the damper.

An interesting approach is presented in [44], where oscillations in sawing machines

negatively affecting the precision and quality of cuts are reduced by the implementa-

tion of the MUID dampers (Fig. 1.13). Causes of saw oscillations include improper

blade tension, worn or damaged guide bearings, and an unbalanced or dull blade.

Excessive saw oscillations can lead to increased wear and tear on the saw and its com-

ponents, resulting in decreased lifespan and higher maintenance costs. Regular moni-

toring and maintenance of the saw are crucial in preventing oscillations and ensuring

accurate and consistent cuts.
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Figure 1.13: Implementation of the MUID into the mechanical saw [44]

The handle of an oscillating saw was subjected to vibration damping experiments

using a passive damping method. Granular dampers were attached to the handle to

dissipate some of the kinetic energy through inelastic collisions. The size of the gran-

ular dampers was chosen to achieve optimal dissipation rates. According to the study,

when the geometry of the dampers is modified for the particular vibration amplitude,

granular dampers exceed solid mass dampers. This indicates that granular dampers

can be used to provide more effective damping while maintaining the weight of the

saw, or reduce the weight of the saw while keeping the handle’s residual vibration

constant. The purpose of the study was to demonstrate the practical application of

granular dampers, rather than to find the most effective attenuation method, which

would depend on the specific application.

A dump truck is a vehicle created for carrying materials like gravel, sand, and dirt

(Fig. 1.14). The cab and seat of a dump truck may be impacted by unpleasant vi-

brations as a result of rough roads and heavy loads. These vibrations can cause not

only discomfort to the driver and passengers but also contribute to increased damage

to the truck’s components. In order to minimize the negative vibrations and enhance

ride comfort, dump trucks may be equipped with shock absorbers, spring isolators,

cab mounts, and air suspension systems. These parts help to absorb the road vibra-

tions and decrease their transfer to the cab and seat, resulting in a smoother and more

comfortable ride [45].
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Figure 1.14: The photograph of the dump truck with PID absorber [45]

A numerical model for reducing vibrations of the cab seat of a dump truck using

particle damping is presented in the paper [45]. The Discrete Element Method is uti-

lized to simulate various damper schemes, particle diameters, and particle filling rates

to obtain optimal parameters. Tests are used to confirm the modelling results, and the

field test yields satisfactory outcomes, where the RMS acceleration of the seat plinth

decreases by 26.8 %, 46.8 %, and 38.4 % in both horizontal directions and vertical di-

rection, respectively, at a speed of 40 [km/h]. Human vibration comfort in the cab of

a dump truck is also analyzed. After adding damping particles, the comfort duration

increases by 85 % at 6.3 [Hz], 20 % at 8 [Hz], and 29.6 % at 20 [Hz] when the velocity

reaches 40 [km/h]. As a result, it has been shown that particle damping can effectively

decrease the vibration associated with sensitive frequencies in human organs while

extending operating comfort.

High-rise buildings and wind turbines are susceptible to vibrations caused by fac-

tors such as earthquakes, wind, mechanical equipment, and pedestrian traffic (Fig.

1.15). These vibrations can pose a threat to the building’s structure and make it un-

comfortable for the people inside. To minimize these impacts, engineers utilize var-

ious techniques such as dampers, isolators, and tuned mass dampers. Dampers are

designed to absorb energy and reduce vibrations, while isolators disconnect the build-
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ing’s structure from the sources of vibrations [46]. A tuned mass damper is constructed

using a large mass placed inside the building that operates in opposition to the build-

ing’s vibrations in order to counteract them. By utilizing these techniques, engineers

can reduce the effects of vibrations on high-rise buildings, ensuring the safety and com-

fort of people inside. The use of Particles Impact Dampers (PIDs) is a possibility for

large structures, like high-rise buildings, which often face seismic vibrations and heavy

dynamic loads. Research on vibration reduction in these types of structures using PID

dampers can be found in the references [46, 31, 47].

Figure 1.15: Examples of the high-rise building with PID dampers [46]

The study in [46] focuses on the evaluation of the effectiveness of particle dampers

with buffering material in controlling the vibrations of structures with multiple degrees

of freedom under dynamic loads. It has been observed that the mass ratio of particles

is important for effective momentum transfer from the primary system to particles

with better vibration damping. The particle damper system with buffering material

performs well in reducing structural responses under both random excitations and

seismic shocks, with higher efficiency in the case of random excitations. The reduc-

tion of responses includes acceleration, displacement, and Root Means Square (RMS)

displacement, where the effectiveness of reducing RMS responses is the highest. An

experiment on a shake table showed that the particle damper with buffering material is

more effective in controlling vibrations than conventional dampers. However, the ex-

act reasons for the increased effectiveness of control require further investigation. The
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research takes into account all significant forces of interaction between particles and

container walls, including friction, gravitational forces, and inclined impacts, using

discrete particle modelling methods. Drawing upon both experimental and analytical

findings, it can be inferred that appropriately engineered particle dampers, in com-

bination with buffering materials, can proficiently mitigate the response of primary

systems featuring multiple degrees of freedom that possess limited damping. Further-

more, this damping method achieves notable effectiveness while introducing only a

negligible increase in mass load, proving its efficacy across diverse load conditions.

Vibrations are a significant factor in the aerospace industry and require careful at-

tention during the design and operation of aircraft. These vibrations can have a neg-

ative impact on the aircraft’s performance, comfort, and safety of passengers. They

are caused by a variety of factors, such as engine operation, aerodynamic forces, and

the partially damaged structure of the aircraft. Aerospace engineers involve a range

of techniques to prevent and control vibrations, including structural changes, passive

damping systems, and active control systems. Passive damping systems, like vis-

coelastic materials or tuned mass dampers, help to reduce vibrations, while active

control systems, such as control surfaces or actuators, actively counteract vibrations

in real-time.

It is essential to understand and manage vibrations in aerospace engineering, es-

pecially in the electric Printed Circuit Board (PCB) presented in Fig. 1.16 to ensure

the safe and efficient operation of aircraft. Precise prediction and analysis of vibra-

tions during the design phase are crucial to minimizing the risk of vibration-related

problems during flight.

Figure 1.16: Application of the PID damper for Printed Circuit Board [48]
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Aerospace engineering is an area where PID dampers are particularly popular. Ac-

cording to [48], PIDs can be used to reduce vibrations in highly sensitive electrical

circuits on the Printed Circuit Board (PCB). Damping of the vibrations in Printed Cir-

cuit Boards is crucial because excessive vibrations can result in damage or malfunction

of both the PCB and the components such as transistors, capacitors and integrated

circuits. These vibrations can generate stress causing cracks, breakages, or loose con-

nections which then lead to decreased reliability and an increased risk of failure in

the electronic system. Furthermore, vibrations can generate electrical noise in signals,

negatively impacting the performance of the electronic system. By reducing vibra-

tions through damping, the reliability and performance of the electronic system can

be enhanced and the chance of failure reduced. As a result, considering damping is

an important aspect in the design of PCBs for ensuring reliable and efficient electronic

systems.

The PID dampers can play an additional role in energy harvesting (Fig. 1.17) [49].

Energy harvesters are equipment that gathers and transforms available energy sources

into usable electrical energy [50]. These devices are utilized in numerous fields, includ-

ing supplying energy to low-power electronics like sensors and wearable technology,

as well as serving as a substitute energy source for isolated systems. Energy harvesters

are gaining more recognition due to their ability to reduce reliance on conventional

energy sources and decrease carbon emissions [51, 52].

Figure 1.17: Scheme of the PID energy harvester [49]

In the aforementioned energy harvester [49], a moving magnet replaces the tradi-

tional grains. First of all, both the classical PID and the colliding magnet with the con-
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tainer walls operate in the same manner, retaining the equivalent damping properties.

Secondly, the device can be improved with an extra feature called energy harvesting

due to the magnet’s motion inside the coils. Finding the parameters at which the best

operating conditions exist for both vibration damping and energy harvesting makes

the analysis of the problem challenging. Research revealed that magnetic shock ab-

sorbers can convert more than 33 % of kinetic energy into electrical energy. To improve

the energy behaviour and vibration of the magnetic shock absorber system, the impact

of changing load resistance and coupling coefficient was studied. The study found

that changing only the load resistance can increase damping efficiency by over 27.6

%. Additionally, increasing the gap size at a constant load resistance can increase the

average collected power and damping efficiency. When the coupling coefficients are

sufficiently large, increasing the gap size at constant coupling coefficient values slowly

increases the average power. An interesting aspect, not discussed in the manuscript

[49], is the possibility of using an electromagnetic field to influence the movement of

the magnet in the container. Such an approach would allow for introducing an addi-

tional case to modify the form of collisions between elements, which is important for

the most effective vibration damping.

1.3 Objectives and plan of the thesis

The objectives of the Ph.D. thesis can be divided into three groups related to:

1. Designing an effective prototype of the Adaptive Tuned Particle Impact Damper

(ATPID) and conducting experimental research to determine its dynamic characteris-

tics and validate the numerical model.

2. Proposing a numerical model of the ATPID damper that accurately reflects phys-

ical phenomena and serves as a basis for the development of a predictive control algo-

rithm.

3. Development of a predictive control algorithm that can determine the optimal

damper height under various dynamic excitations.

The first objective of the thesis involves proposing an innovative design for the

Adaptive Tuned Particle Impact Damper (ATPID). This design modifies the classic PID

damper by adding an electric motor and a suitable mechanical system to the upper
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wall of the damper. This enables dynamic adjustments of the damper volume and

enables control of the particle movement. The electric motor will be connected to a

power supply and real-time controller. The damper will be attached to the free end of

a cantilever beam, which serves as the main component of the test stand. The beam

will be subjected to various kinetic excitations such as harmonic motions with different

amplitudes and frequencies. Measurements of displacements and accelerations of the

beam free end will be made to assess the performance of the ATPID damper. Addition-

ally, tests will be performed to determine the damping characteristics of the absorber

during free vibrations caused by initial beam deflections. These tests will be used to

validate the numerical model, which will be described in the later chapter of the thesis.

The second objective focuses on developing a numerical model for the ATPID dam-

per and test stand. A simplified model will be proposed to describe the non-linear

viscoelastic collisions of the grain with the damper walls. This model will reflect the

response of the system to each type of excitation used in the experimental studies.

The possibility of proposing various functions describing the real-time change of the

damper height. The parameters will be identified and the model will be validated us-

ing experimental results. A sensitivity analysis of the system will be performed to pro-

vide the damper’s operating principle and determine the criteria for optimal particle

movement and maximal damping effectiveness. The process of parametric optimiza-

tion of the system will be also carried out. An energy analysis will be conducted to

describe the influence of grain-wall collisions on the movement and dynamic distur-

bances of the entire structure.

The third objective is to propose and develop a predictive control algorithm for the

ATPID damper. Taking into account the various excitations affecting real mechani-

cal systems, it is important to examine the possibilities of controlling the innovative

damper in order to provide optimal adaptation to existing operating conditions. An

algorithm based on criteria determined from the sensitivity analysis of the numerical

model will be proposed. Further, a series of numerical tests will be carried out to de-

termine if the predicted damper height for a given excitation is close to optimal. The

effectiveness of the method will be analysed for different combinations of parameters

that could vary in real conditions.
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Chapter 2

Adaptive Tuned Particle Impact

Damper - the prototype and

experimental studies

Popular granular vibration attenuators are devices that introduce additional damping

to a system. The literature review concerning PID dampers primarily focuses on pas-

sive damping strategies. The vibrations of structures are damped by loose materials

and can be adjusted mainly by the grain volume ratio, granular material mass, or its

material properties. While it has been demonstrated that PIDs are comparable to other

damping techniques, granular dampers have not been used as part of adaptive damp-

ing systems until now. The dynamic characteristics of such structures are influenced

by several factors, with the key ones including the dimensions, configuration, and ca-

pacity of the container, the proportion of granular material filling, and the attributes of

the individual grains, encompassing density, shape, and surface.

Previous investigations into the implementation of Particle Impact Dampers (PIDs)

in dynamic systems have operated under the assumption that modifying damping

properties can solely be accomplished by making passive modifications to the pa-

rameters mentioned above. Considering the advantages of adaptive passive damping

methods over traditional passive strategies, the author aims to improve classical PIDs

by introducing the Adaptive Tuned Particle Impact Damper that enables the user to

tune the damping properties.
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2.1 The concept and design of the ATPID damper

The classical Particle Impact Damper design consists of a container filled with granular

material. External excitations applied to the attached mechanical system result in par-

ticle movements and impacts with the container walls, thus reducing the amplitudes of

vibrations. The damper volume is a main factor that affects its damping effectiveness.

In order to enhance the efficiency of damping, the author aims to develop an Adap-

tive Tuned Particle Impact Damper (ATPID) that can dynamically adjust its container

height (as depicted in Fig. 2.1) during vibration mitigation process.
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(a) ATPID 3D model (b) ATPID prototype

Figure 2.1: ATPID model and prototype

A single-grain system is often used to describe PID operations, and the proposed

concept also uses this approach. Figs. 2.1a and 2.1b show the 3D model and prototype

of the ATPID damper, respectively. The considered ATPID absorber consists of the

cylindrical container (1) containing a single grain (2) made of the Polylactide (PLA),

a moveable plate (3) joined by screw connections (4) and clutch (5) with an electric

engine (6). The rotation of the engine shaft (7) is transformed into the linear movement

of the ceiling in a vertical direction. A simple electromechanical control system can

change the direction and speed of the upper damper wall’s movement. This method

enables the real-time volume modification of the particle’s chamber as well as dynamic

tuning of the distance between the damper lower (floor) and higher (ceiling) walls. The

damper container was made with the use of 3D printer from PLA material. The Ender

3 printer, shown in Fig. 2.2, was applied for this purpose.
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Figure 2.2: The 3D printer used in the process of the ATPID prototyping

3D printing methods refer to a range of technologies that allow to create 3D ob-

jects based on digital designs. In this case, the Fused Deposition Modelling (FDM)

method was utilized, which involves constructing objects by depositing soluble syn-

thetic material in the form of thin threads layer by layer. The threads are then melted

and fused together to produce a robust structure. 3D printing enables the production

of objects with complex shapes and geometries that are difficult to achieve using tra-

ditional manufacturing techniques. This technology is widely applied in diverse fields

such as medicine, aerospace, and architecture.

For this specific damper construction, 3D printing was used to manufacture an ax-

isymmetric container to which the electric motor responsible for controlling the ceiling

position was attached. It is worth noting that the entire procedure of constructing

the device prototype required skills in modelling systems using CAD software and

generating G-code based on a 3D model in Cura software. G-code is a script that is

implemented into the 3D printer, which describes the position of the extruder (heating

and extruding element of PLA material) at each time interval. As a result, it is possible

to observe the final process of printing.
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2.2 Description of the test stand

The carefully designed laboratory test stand enables investigation of the ATPID damper

efficiency in reducing vibrations of the cantilever beam (Fig. 2.3 and Fig. 2.4). The test

stand is composed of an electric motor with an eccentric disc (1), a mechanism that

transforms rotational motion into linear motion (2), a beam (3), an ATPID damper (4),

a data transmission system (5), a control system (6), two inverters (7), a power sup-

ply (8), and a data analysis system (9). The displacement of the beam’s free end was

the quantity that was measured during the experiment. To carry out the experiment,

a laser sensor (Omron ZX1-LD300A81), accelerometer (PCB 351B03), measuring cards

(Labjack T7-pro and National Instruments NI 9230) and dedicated LABVIEW software

were used.

Figure 2.3: Scheme of the experimental test stand
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Figure 2.4: Experimental test stand

In the free vibrations test, the cantilever beam was positioned horizontally. For the

harmonic vibrations testing, displayed in Fig. 2.4, the horizontal beam was allowed

to move in a transverse direction up and down along the vertical axis. An electri-

cally powered motor, equipped with a gear and linear inverter, enabled the operator

to manually adjust the excitation frequencies from 0 to 60 [Hz]. Due to the mechanical

design of the eccentric discs, the amplitude of excitation varied between ± 5 [mm] and

± 10 [mm]. The main focus of the experimental research was the analysis of resonance

vibrations, where the damper demonstrated its greatest effectiveness. Both laser sen-

sors and accelerometers were utilized to measure the amplitude and acceleration of

the beam tip under various conditions, including changes in excitation amplitude and

frequency, grain mass, and damper heights. Detailed modifications to the parameters

are described in the next section, which pertains to the research methodology.

A cantilever beam is a basic structure which dynamics will be analyzed to ver-

ify the effectiveness of vibration damping achieved by the attached ATPID damper.

Therefore, it is necessary to clearly define the geometric parameters of the used beam.

All relevant parameters are presented in Fig. 2.5 and in Tab. 2.1.
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Figure 2.5: Scheme of the experimental cantilever beam

Table 2.1: Basic parameters of the cantilever beam

Symbol Description Value Unit
ms Beam mass 0.360 [kg]
y Section height 0.008 [m]
x Section width 0.040 [m]
l Beam length 0.450 [m]
l1 Beam attachment point 0.400 [m]

The cantilever beam has a total mass of 0.35 [kg] and its total length is 0.45 [m].

The distance between the place of attachment of the exciter clamp to the point of at-

tachment of the ATPID damper is 0.4 [m]. The beam has a rectangular cross-section

0.04 [m] x 0.008 [m]. Transverse displacement at both the beam’s free end (where AT-

PID damper is attached) and excitation point were measured using an Omron ZX1-

LD300A81 laser sensor (Fig. 2.6a) and a PCB 351B03 accelerometer (Fig 2.6b). The

laser sensor provided a measurement resolution of at least 20 [µm] at 1 [kHz] sampling

frequency, which exceeds the assumed test requirements. The accelerometer was sen-

sitive up to 10 [mV/g], with a measurement range of ± 150 [g] and a frequency range

of 1 to 6000 [Hz].

(a) Laser sensor (b) Accelerometer

Figure 2.6: Photo of the sensors
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The data was collected using National Instruments 9230 and Labjack T7-pro data

acquisition cards. The NI-9230 is a device with a 3-Channel Vibration Input Module

and an analog input voltage range from -30 [V] to 30 [V]. The three input channels of

the NI-9230 can simultaneously measure signals at 12.8 [kS/s] per channel. On the

other hand, the Labjack T7-pro has 14 analog input channels, with an input voltage

range of ±10 [V], ±1 [V], ±0.1 [V], and ±0.01 [V], and a transducer resolution of 16-

bit at 100k [samples/s]. The Labjack T7-pro can communicate using various protocols

such as USB, Ethernet, and WiFi.

(a) NI-9230 (b) Labjack T7-pro

Figure 2.7: Measuring cards used during experimental tests

Two single-channel laboratory power supplies were employed to operate the AT-

PID damper engine. The output of each power supply permitted the setting of voltage

within the 0 to 30 [V] DC range and also offered the flexibility of establishing a current

limit ranging from 0 to 5 [A].

2.3 Experimental results

Before beginning the experimental studies, it is essential to establish a correct research

methodology. Considering the laboratory equipment and the experimental setup lim-

itations, a research plan was proposed and graphically presented in Fig. 2.8. The

scheme outlines the experimental research plan and subsequent numerical analyses

that correspond directly to the conducted study. The experimental measurements will

be performed for various types of parameters of the excitations. Furthermore, differ-
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ent masses of grains will be used inside the ATPID damper and the container will have

varying heights.

Studies of the 
ATPID damper

Experimental
studies

Numerical
analyses

Free vibration

Harmonic vibration

Various initial
condition

Various excitation
amplitudes

Various excitation
frequencies

Various grain mass Various ATPID height

Numerical model

Validation

Sensitivity analyses

Principle of the 
operation

Energy analyses

Parameters
optimization

Control algorithm

Figure 2.8: Scheme of the experimental and numerical research plan

The experimental study will focus on two types of vibrations: free vibrations of

the beam due to initial deflection, and harmonic vibrations resulting from kinematic

excitation. For free vibrations, various cases corresponding to different initial beam

deflections ranging from 0.1 [m] to 0.3 [m] will be analyzed. In the case of harmonic

vibrations, the amplitude of kinematic excitation (±5 [mm] and ±10 [mm]) and fre-

quency will be varied to analyze vibrations ’in’ and ’out’ of resonance. Particles of 5

different masses will be used for all types of vibrations, with the lightest grain having

a mass equal to 2.5% of the total system mass (combined mass of the grain and beam),

and the heaviest particle having a mass of 30% of the total system mass. Additionally,

the height of the damper will be changed to 5 different values for each combination of

excitation parameters and grains mass.

In order to conduct holistic analysis of the system response, the experimental re-

search was carried out for 40 different cases of free vibrations and approximately 100

different parameters variations for harmonic vibrations. The most important parts of

these studies have been presented to draw the most significant conclusions, ensuring

the transparency and readability of the doctoral thesis.
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2.3.1 Free vibrations

The first type of conducted research was the analysis of free vibrations of a beam for

a constant value of initial deflection equal to 0.2 [m]. Grain with a mass equal to

2.5 % of the total system mass (Ms) was used, and 5 different values of damper height

were assumed, which were set from the beginning of the experiments. The minimum

damper height was h1 = 0.017 [m], which corresponded to the situation where the

damper was deactivated, i.e., the grain was blocked and could not move inside the

container. The remaining studies referred to cases in which the damper heights were

equal: h2 = 0.05 [m], h3 = 0.1 m], h4 = 0.15 [m], and h5 = 0.2 [m]. The height h5 is

the maximum damper height due to design limitations. The measurements of the dis-

placement of the beam free end for each of the 5 different damper height variations are

presented in Fig. 2.9.

Figure 2.9: Response of the beam for grain mass mg = 0.025Ms and for 5 various
damper heights h1→ h5

Upon analyzing the response of the beam (Fig. 2.9), it can be observed that it is

similar for each case. Despite the absence of significant differences, a relatively small

variance in vibration amplitudes can be noticed. This is due to the motion and col-

lisions of the grain with the walls of the damper. However, due to their small mass,

these collisions do not introduce significant disturbances that would allow for signif-

icant damping of the system. In order to quantify the small differences in the results,

for each case the damping decrement (δ) was determined according to the formula:

δ =
Asn

Asn+1
(2.1)
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where Asn is the amplitude of the n’th period of vibration system, Asn+1 is the ampli-

tude of the next period of system oscillation.

Generally, for a system characterized only by the internal damping of the beam,

i.e. for the case h1, the damping decrement is a constant value and for the assumed

parameters, it takes an approximate value of 1.31. In the remaining cases, the grain

moves inside the container, but its motion differs in each subsequent vibration period

due to the decreasing vibration amplitudes. These differences are directly related to

the various collisions of the particle with the containers walls, which affect the change

in vibration amplitude in subsequent periods Ti . Therefore, for cases h2 → h5, the

damping decrement changes in each subsequent vibration period. The obtained results

are presented in Fig. 2.10

Figure 2.10: Damping decrement of the beam free vibrations for grain mass
mg = 0.025Ms and for 5 various damper heights h1→ h5

For the case h1, it remains constant at a level of approximately 1.31. In the re-

maining cases, the damping decrement for each iteration of vibration periods changes,

reaching a maximum value of approximately 1.345 for h2 (for the ninth vibration pe-

riod ), 1.38 for h3 (Ti = 8), 1.4 for h4 (for Ti = 7), and over 1.42 for the case h5, where

Ti = 6. These values differ maximally by about 9 % compared to the damping decre-

ment corresponding to the internal damping of the beam. Therefore, the effectiveness

of vibration reduction is small for the presented cases. It should be noted that the

maximum values are achieved at different vibration periods. It has been observed that

the larger damper height corresponds to the greater damping decrement value occur-

ring in the earlier stage of vibration. This means that the impacts of the grain on the

top or bottom of the damper introduce the most effective disturbance from the point of
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view of vibration damping. A detailed description of the conditions of optimal particle

movement will be presented in the further numerical part of the doctoral thesis.

The next step involved conducting similar experimental studies of the free vibra-

tions of the beam for variants in which the mass of the grain amounted to 5 %, 10 %,

20 %, and 30 % of the total system mass. The responses of the system are presented in

Figs. 2.11, 2.13, 2.15, and 2.17, respectively. Additionally, the damping decrement was

determined for each discussed case of grain mass and damper height, and the results

are shown in Figs. 2.12, 2.14, 2.16, and 2.18, respectivelly.

Figure 2.11: Response of the beam for grain mass mg = 0.05Ms and for 5 various
damper heights h1→ h5

Figure 2.12: Damping decrement of the beam free vibrations for grain mass
mg = 0.05Ms and for 5 various damper heights h1→ h5
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Figure 2.13: Response of the beam for grain mass mg = 0.1Ms and for 5 various damper
heights h1→ h5

Figure 2.14: Damping decrement of the beam free vibrations for grain mass mg = 0.1Ms
and for 5 various damper heights h1→ h5

Figure 2.15: Response of the beam for grain mass mg = 0.2Ms and for 5 various damper
heights h1→ h5
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Figure 2.16: Damping decrement of the beam free vibrations for grain mass mg = 0.2Ms
and for 5 various damper heights h1→ h5

Figure 2.17: Response of the beam for grain mass mg = 0.3Ms and for 5 various damper
heights h1→ h5

Figure 2.18: Damping decrement of the beam free vibrations for grain mass mg = 0.3Ms
and for 5 various damper heights h1→ h5

Analysis of the results allows to observe that using grain of a mass of 5 % of the

total system mass to damp free vibrations of the beam is similarly effective as using

49



a particle of a mass of 2.5 % of Ms. Fig. 2.11 shows that there are only small differ-

ences in the dynamic response of the beam. The maximum damping decrement for

h5 is 16 % higher than the constant decrement value for the h1 case and it equals ap-

proximately 1.52. The maximum decrement values for the remaining cases (h2→ h4)

are smaller and are achieved in later vibration periods. However, when the grain mass

was sequentially increased to 10 %, 20 %, and 30 %, significant differences in the beam

vibration displacement plots were observed, as shown in Figs. 2.13, 2.15, and 2.17.

In particular, higher vibration damping is visible in the damping decrement graphs

(Figs. 2.14, 2.16 and 2.18). The maximum damping decrement for mg = 0.1Ms is about

30 % higher than the minimum value of the decrement for this case (for the height h1)

and for mg = 0.2Ms and mg = 0.3Ms, the maximum damping decrement values exceed

2.4 and 3, respectively, which are almost more than 2 times greater than the value of the

minimum decrement (for the height h1). The most effective vibration damping occurs

during the initial phase of vibrations, corresponding to the third and fourth vibration

periods (Ti = 3 and Ti = 4).

To compare the effectiveness of beam vibration damping due to changes in the

grain mass, the maximum damping decrement values were compared. From the above

results, it is clear that the maximum damping decrement values were consistently

achieved for the h5 case, irrespetivelly of the grain mass. Therefore, the decrement

values for the h5 case for different grain masses (mg1
= 0.025Ms → mg5

= 0.3Ms) were

compared and presented in Fig. 2.19.

Figure 2.19: Damping decrement of the beam free vibrations for container height
h5 = 0.2 [m] and for 5 various grain mass mg1

→ mg5
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The results presented in Fig. 2.19 show that increasing the mass of the grain leads to

higher maximum damping decrements in the early stages of vibrations. This indicates

that free vibrations are reduced more quickly which is important from a damping point

of view. However, it should be noted that using heavier grain can significantly alter

the dynamic properties of the structure, making the particle the dominant element

of the system. Furthermore, during the design of the damper, the mass of the grain

must be chosen appropriately based on the frequency and amplitude. If the system is

expected to work at low levels of vibration, it may be difficult to set a very heavy grain

in motion, and it may be impossible to achieve additional damping factors. In such

cases, the lighter particles can move more effectively within the enclosure, making the

ATPID damper more efficient.

In addition, the effect of the initial deflection of the beam (change of the initial po-

tential energy) on the beam response was analyzed for three different grain masses

(10 %, 20 %, and 30 % of the total system mass) and for a damper height equal to

h5 = 0.2 [m]. The cases of particle masses representing 2.5 % and 5 % of the system

mass were omitted because the results obtained so far indicated relatively low damp-

ing effectiveness. The results are presented in Figs. 2.20-2.22.

Figure 2.20: Damping decrement of the beam free vibrations for container height
h5 = 0.2 [m], constant grain mass mg = 0.1Ms and for 5 various initial beam deflections
A1→ A5
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Figure 2.21: Damping decrement of the beam free vibrations for container height
h5 = 0.2 [m], constant grain mass mg = 0.2Ms and for 5 various initial beam deflections
A1→ A5

Figure 2.22: Damping decrement of the beam free vibrations for container height
h5 = 0.2 [m], constant grain mass mg = 0.3Ms and for 5 various initial beam deflections
A1→ A5

Analysis of the first two figures allows to observe that for all five proposed beam

deflection cases, the maximum decrement of damping for the mass mg = 0.1Ms and

mg = 0.2Ms equals approximately 1.8 and 2.5, respectively. The bigger the initial de-

flection of the beam, the more effective vibration damping occurs in later vibration

periods. In Fig. 2.21, it can be observed that the maximum damping decrement for

the initial deflection of A2 = 0.15 [m] is close to 3, which is significantly greater than

the maximum values for the other considered cases. A similar, but more visible case, is

shown in Fig. 2.22, where the maximum value of the damping decrement for the initial

deflection of 0.1 [m] equals 12, which is approximately from 2.5 to 4 times greater than

the other maximum damping decrement values. These cases indicate that in order

to achieve optimal vibration damping, the movement of the grain inside the enclo-
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sure must be appropriate, which corresponds to effective impacts of the grain with

the container walls and introducing additional damping disturbances into the system.

In order to check how the system responds to the specific case described above, the

response of the beam for the granular mass mg = 0.3Ms is presented in Fig. 2.23,

where the damper height was h5 = 0.2 [m], and the amplitude of the initial deflection

is A1 = 0.1 [m].

Figure 2.23: Response of the beam for grain mass mg = 0.3Ms, damper height h5 =
0.2 [m] and amplitude of the initial deflection A1 = 0.1 [m]

The above graph shows a significant influence of the proper impact of the particle

against the container wall, which results in relevant damping occurring in the second

vibration period (T2). The impact location is visible as a sudden change in the beam

response (presented by black colour) around 0.5 seconds after the start of the analysis.

The collision occurred when the beam deflection was equal to 0 which corresponds

to the maximum beam velocity. This may suggest that the most effective reduction

of beam vibrations is obtained when the collisions occur when the system reaches the

maximal kinetic energy.

The conducted experimental research based solely on free vibrations initially re-

vealed the fundamental characteristics of the ATPID damper. It was observed that

a key aspect is to ensure the appropriate level of vibrations (initial deflection of the

beam), to use a suitable grain mas for a given case, and to apply appropriate damper

height. The combined application of all these factors allows to optimize damping prop-

erties of the system. Despite conducting about 40 studies based on different cases, the

basic behaviour of the ATPID damper can be described. Generally, it can be postu-

lated that an increase of granular mass can potentially result in improved damping
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efficiency. However, the complexity arises due to the sensitivity of the investigated

system to various parameters. For example, changes of the container height, while

maintaining the same granular mass, can result in different ratio of vibration damp-

ing. This issue is further complicated by components such as the amplitude of vibra-

tions and the inappropriate choice of the granular mass and damper’s height. Notably,

in the context of free vibrations, even single impacts can significantly reduce vibra-

tions. However, it is not certain whether this effect is also observed in the harmonic

vibrations. Considering the current stage of the research, formulating a concrete set of

guidelines for the design and parameter selection of the ATPID damper is a complex

procedure. For this purpose, the necessary element for further research is to determine

the behaviour of the absorber for harmonic vibrations induced by kinematic excitation

and to attempt to observe how the response of the system changes when the damper

height changes in real time.

2.3.2 Harmonic vibrations

The next type of conducted experimental research concerned harmonic vibrations of

a cantilever beam subjected to kinematic excitations. Initially, preliminary measure-

ments of the beam vibrations were conducted for various excitation frequencies in

order to observe whether there was a significant difference in vibration damping ef-

ficiency caused by the use of an ATPID damper. The research was carried out for an

excitation amplitudes of 0.005 [m] and 0.01 [m], excitation frequencies ranging from

0.7fres to 1.3fres (where fres denotes the first natural frequency of the system). Addi-

tionally, three different grain masses (0.1Ms, 0.2Ms, and 0.3Ms) were used, and the

damper height varied from the minimum height of h1 = 0.017 [m] to the maximum

values of h2 = 0.05 [m], h3 = 0.1 [m], h4 = 0.15 [m], and h5 = 0.2 [m], respectively. The

damper ceiling position change occurred approximately at the sixth second of each

analysis and was tuned at a constant speed (resulting from the power supply of the

electric motor). Out of the 50 different analysed cases, five plots that represent the

beam vibration response for five different excitation frequencies (0.9fres, 0.95fres, fres,

1.05fres, 1.1fres) were selected. In each case, the excitation amplitude was 0.01 [m], the

mass of the grain was equal to 0.2Ms, and the maximum damper height was h5 = 0.2m.

The obtained results are presented in Figs. 2.24 - 2.28.
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Figure 2.24: The amplitude of the beam harmonic vibration for f1 = 0.9fres,
A = 0.01 [m], h5 = 0.2 [m] and mg = 0.2Ms

Figure 2.25: The amplitude of the beam harmonic vibration for f1 = 0.95fres,
A = 0.01 [m], h5 = 0.2 [m] and mg = 0.2Ms

Figure 2.26: The amplitude of the beam harmonic vibration for f1 = fres, A = 0.01 [m],
h5 = 0.2 [m] and mg = 0.2Ms
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Figure 2.27: The amplitude of the beam harmonic vibration for f1 = 1.05fres,
A = 0.01 [m], h5 = 0.2 [m] and mg = 0.2Ms

Figure 2.28: The amplitude of the beam harmonic vibration for f1 = 1.1fres,
A = 0.01 [m], h5 = 0.2 [m] and mg = 0.2Ms

Fig. 2.26 shows the response of the beam that was in resonance during the initial

phase of vibration (up to 6 [s]) due to the minimum height h1 of the damper. Subse-

quently, the damper was opened to a height of h5 which caused the start of vibration

damping process. Fully damped and stabilized vibrations can be observed starting

from approximately 8 seconds of the experiment. Comparing the amplitude of beam

vibrations in the damped and undamped (resonant) ranges, it can be stated that for the

case where the mass of the grain is 20 % of the total mass of the system, the vibrations

were reduced by approximately by 50 %.

Other conducted experiments, including the results presented in Figs. 2.24, 2.25,

2.27, and 2.28, concerned the response of the beam for excitation that does not cause
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resonance and for the same tuning strategy of the damper. For the cases close to res-

onance (Figs. 2.25 and 2.27), relatively small additional damping of the system vi-

brations can be observed around the sixth second of the experiment. For the case of

f2 = 0.95fres, the amplitude of vibrations decreased by about 30 %, and for the case of

f4 = 0.105fres, the vibrations were damped by about 40 %. For other cases, the greater

was the difference between the excitation frequency and the natural frequency of vibra-

tions, the smaller was the amplitude of the system response for a deactivated damper.

The lack of resonance directly affects the dynamics of the beam and the particle. The

obtained system accelerations are so small that it is difficult to obtain detachment of

the grain from the container bottom.

It should be noticed that the ATPID damper operates similarly to the Tuned Mass

Damper. Even when the grain moves inside the container vibrating beyond the reso-

nance range, the change in the dynamic structure of the system will not cause a sig-

nificant reduction in its vibrations. In such a case, contact forces occurring during

collisions could possibly cause the process of vibration damping. However, again, for

non-resonant vibrations for the selected parameters of the conducted experiments, the

effect of the occurring forces on vibration damping was not observed, which is pre-

sented in Figs. 2.24 and 2.28.

Analyzing all the obtained results, it can be stated that the proposed ATPID damper

is an effective construction in reducing vibrations of the system in resonance. In the

preliminary stage of experimental research the applied construction allowed for achiev-

ing a vibration damping efficiency of 50%, which means that the amplitude of the

beam vibrations decreased by half after opening the damper. Similar studies for non-

resonant beam vibrations showed that the effectiveness of the damper decreases along

the shifting from the resonance. It may seem that for ordinary harmonic vibrations, the

prototype damper construction is ineffective. However, it should be noticed that these

are preliminary studies for a construction whose size and parameters resulted from

the available materials and laboratory limitations. The main goal of this stage of re-

search is to generally determine the usefulness of the ATPID damper and the potential

directions of its development.

The next group of experimental studies focused on the influence of the ATPID

damper on reducing vibrations of the beam only in resonance. The research was
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carried out for 50 different cases, where the parameters of the system assumed sim-

ilar values as in the studies concerning free vibrations, i.e., the excitation amplitude

was equal to 0.005 [m] and 0.01 [m], five different grains whose mass changes in

the range was 0.025Ms ≤ mg ≤ 0.3Ms, and five different heights of the damper were

h1 = 0.017 [m]→ h5 = 0.2 [m]. The results of individual measurements are presented

in Figs. 2.29, 2.31, 2.33, 2.35, and 2.37. Summary results allowing to compare the sys-

tem response for different damper heights and the use of different masses of grains are

presented in Figs. 2.30, 2.32, 2.34, 2.36, and 2.38 - 2.43.

(a) h1 = 0.017m (b) h2 = 0.05m

(c) h3 = 0.1m (d) h4 = 0.15m

(e) h5 = 0.2m

Figure 2.29: Response of the beam for A = 0.01 [m], mg = 0.025Ms, and five different
ATPID heights h1→ h5

Figure 2.30: Comparison of the beam response for A = 0.01 [m], mg = 0.025Ms, and
five different ATPID heights h1→ h5

58



The initial obtained results of the beam response Xs show that by using a grain with

a small mass equal to 2.5% of the total system mass, it is possible to achieve only a slight

damping of vibrations. In particular, for the most effective h5 case, the amplitude of

the oscillations is decreased by 20 % in comparison to the range of resonance vibrations

(during first 6-second analysis). For smaller heights, correspondingly lower vibration

damping efficiency was achieved.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 2.31: Response of the beam for A = 0.01 [m], mg = 0.05Ms, and five different
ATPID heights h1→ h5

Figure 2.32: Comparison of the beam response for A = 0.01 [m], mg = 0.05Ms, and five
different ATPID heights h1→ h5
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In the case when the mass of the particle is mg = 0.05Ms, similar conclusions can be

drawn as in the previous case (mg = 0.025Ms). The highest effectiveness was achieved

again for the height h5, and vibrations were reduced by about 32 %. This result should

be treated as another example revealing that using a heavier grain can lead to improved

damping properties.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 2.33: Response of the beam for A = 0.01 [m], mg = 0.1Ms, and five different
ATPID heights h1→ h5

Figure 2.34: Comparison of the beam response for A = 0.01 [m], mg = 0.1Ms, and five
different ATPID heights h1→ h5
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In the case where a grain with a mass of 10 % of the total system mass was used, the

resonant vibrations were damped maximally approximately 45 %. This value was ob-

tained for two different cases when the height of the damper was equal to h4 = 0.15 [m]

and h5 = 0.2 [m]. The only difference was that the time required to obtain a completely

damped (stabilized) system was shorter for the higher damper height. A slightly

smaller vibration reduction was achieved for the case of h3.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 2.35: Response of the beam for A = 0.01 [m], mg = 0.2Ms, and five different
ATPID heights h1→ h5

Figure 2.36: Comparison of the beam response for A = 0.01 [m], mg = 0.2Ms, and five
different ATPID heights h1→ h5
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The use of grain with a mass of mg = 0.2Ms allows to reduce the amplitude of res-

onant vibrations by approximately 50 % by using one of the three available damper

heights h3 → h5. Moreover, there is a noticeable difference in the time required to sta-

bilize the vibrations in these three cases. The shortest time is observed for the highest

container (h5).

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 2.37: Response of the beam for A = 0.01 [m], mg = 0.3Ms, and five different
ATPID heights h1→ h5

Figure 2.38: Comparison of the beam response for A = 0.01 [m], mg = 0.3Ms, and five
different ATPID heights h1→ h5
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The results presented in Fig. 2.38 are further examples confirming the fact that one

of the main factors positively affecting the level of vibration damping is the mass of

the grain placed inside the container. In the above case, it is possible to reduce the

amplitude of the vibrations by 53 %. Similarly, in the case of the particle mass equal

to 0.2Ms, there is a difference in the time of obtaining stabilized damped vibrations,

and the maximum damping can be achieved for 3 selected heights (h3, h4 and h5).

Only slightly worse damping was obtained using height h2. This means that the grain,

under the assumed excitation parameters, moves inside the container in such a way

that its influence on vibration reduction for all 4 cases of the height of the damper is

similar.

In the next stage, the experimental tests were carried out for the same particle

masses and damper heights, changing the excitation amplitude in the range between

0.01 [m] and 0.005 [m]. The aggregated results of beam displacements for the applied

variants are presented in Figs. 2.39 - 2.43.

Figure 2.39: Response of the beam for A = 0.005 [m], mg = 0.025Ms, and five different
ATPID heights h1→ h5
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Figure 2.40: Response of the beam for A = 0.005 [m], mg = 0.05Ms, and five different
ATPID heights h1→ h5

Figure 2.41: Response of the beam for A = 0.005 [m], mg = 0.1Ms, and five different
ATPID heights h1→ h5

Figure 2.42: Response of the beam for A = 0.005 [m], mg = 0.2Ms, and five different
ATPID heights h1→ h5
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Figure 2.43: Response of the beam for A = 0.005 [m], mg = 0.3Ms, and five different
ATPID heights h1→ h5

The results presented in the above figures allow for the analysis of the effects of

excitation amplitude and the dynamics of the primary structure (cantilever beam) on

the effectiveness of resonant vibration damping using the ATPID damper. The con-

clusions that can be drawn are analogous to those presented for the case where the

excitation amplitude was 0.01 [m]. Regardless of the damper height (excluding h1,

which indicates the deactivated damper), a noticeable reduction in the vibration am-

plitude of the beam can be observed. The possibility of using heavier grain results in

an improvement in the effectiveness of vibration damping. For the case when the grain

mass was the largest (0.3Ms), a maximum vibration damping of about 20 % was ob-

served. For a lower grain mass, this value decreased. Additionally, it should be noted

that the maximum vibration reduction value for the case with an excitation amplitude

of 0.01 [m] was above 50 %.

The last graphical form of the obtained results is a comparison of the maximum am-

plitude of damped beam vibrations for each case of particle mass and damper height

plot presented in Fig. 2.46. Therefore, in Figs. 2.44 and 2.45, the response curves for

these variants are presented. The last second of the experimental measurements was

considered as the damped and stabilized range of the system response. For the clarity,

only the curves corresponding to two selected heights indicating deactivated damper

h1 (Fig. 2.44) and most effectively tuned vibrations h5 (Fig. 2.45) were presented.
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Figure 2.44: Response of the beam for A = 0.01m, h1 and five different grain mass
mg1
→ mg5

Figure 2.45: Response of the beam for A = 0.01m, h5 and five different grain mass
mg1
→ mg5

Figure 2.46: Maximum amplitude of the damped beam vibration for A = 0.01 [m],
five different grain mass mg1

→ mg5
and for five different damper heights h1→ h5
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From Fig. 2.46 it can be directly inferred that changing the mass of the grain af-

fects the beam response. The conducted research has shown that the greater the mass,

the higher the efficiency of vibration damping. Additionally, by changing the damper

height, it is possible to influence the particle movement, which translates into the ef-

fectiveness of oscillation reduction. For the h1 height (when the grain in blocked in the

damper), an increase in vibration amplitude is observed with the use of heavier grains

due to the phenomenon of resonance. Each of the proposed damper tuning strategies

results in a reduction of the maximum amplitude of damped vibrations. For the used

cantilever beam and excitation amplitude, the system response amplitude was approx-

imately 0.06 [m], indicating a reduction of resonant vibrations by more than half of

their value. A similar maximum damping ratio was identified for the combination of

several different damper heights h4 and h5 and for most of the used grain masses (with

the exception of a value equal to 2.5 % of the total system mass) as well as for the height

h3 and grain mass equal to 20 % and 30 % of the total system mass. It is expected that

a stiffer beam and a higher height could lead to better absorber performance. At the

preliminary research stage, validation of this hypothesis was not possible due to lab-

oratory limitations and a lack of sufficient knowledge about the appropriate height of

the damper for every case. Further research based on the heuristical method would be

possible, but at this stage, it was decided to develop mathematical model of the test

stand, conduct numerical sensitivity analyses, and thus determine optimal parameters

from the perspective of vibration damping.
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Chapter 3

Adaptive Tuned Particle Impact

Damper - numerical analysis

3.1 Contact modelling - state of the art

It is crucial to propose a numerical model for both the absorber and the test stand.

There is an abundance of fascinating scientific articles concerning PID dampers avail-

able due to the extensive scientific research on this topic. These papers present various

methods for modelling of such absorbers. Although the operating principle of Impact

Dampers remains the same, all numerical models presented in the literature propose

different approaches to modelling collisions between grains, and between grains and

walls of the damper. This section offers a comprehensive literature review on contact

modelling, which facilitates the selection of the most appropriate method to model the

ATPID damper. The study of collisions is a crucial area of research in fields like physics

and engineering where there is a need to comprehend how interacting objects behave.

Generally, collisions can be classified into two types: elastic and inelastic [53]. Elastic

collisions are characterized by the conservation of both the momentum and the kinetic

energy. This implies that the total momentum of the objects prior to the collision equals

the total momentum after the collision, while the total kinetic energy is conserved. On

the other hand, inelastic collisions are characterized by the lost of kinetic energy, which

is converted into other forms such as heat. The momentum is still conserved, but the

final velocities of the objects are generally different from their initial velocities [54].
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To model collisions, it is necessary to understand the physical principles involved

in the interaction between objects and the influence of properties of the objects them-

selves, such as their mass, velocity, and material characteristics. Mathematical models

can be developed to describe the motion of objects before and after the collision, tak-

ing into account factors such as the angles of collision, the coefficient of restitution,

and the nature of the forces involved. Additionally, computer simulations and experi-

mental studies can be employed to better comprehend the behaviour of objects in real

collisions and design materials and structures that can better withstand impacts and

collisions [55, 56].

Hard contact theory

The hard contact theory of collisions is a physical concept which explains how two

objects interact when they collide and bounce off each other. This theory is based on

several assumptions concerning the nature of the collision. Firstly, it assumes that the

objects do not deform or break apart when they collide. Secondly, it assumes that the

collision duration is very short. Thirdly, it is possible to model perfectly elastic as well

as inelastic collisions. Lastly, it assumes that the forces acting on the objects during

the collision are conservative, meaning that energy is not lost due to non-conservative

forces like friction or air resistance. Using these assumptions, the hard contact theory

predicts that the forces acting on the objects during the collision can be calculated using

simple formulas based on the masses and velocities of the objects before and after the

collision [57, 10].

As the first case, let us consider central perfectly elastic collisions. When two rigid

objects collide, the forces between them are assumed to be conservative, so no energy

is lost from the system. In this case, it is also possible to apply the law of conservation

of momentum, which states that the total momentum of objects before and after the

collision must be equal [58]. A collision is considered central if the bodies involved

move initially in the same straight line, resulting in the total momentum having a di-

rection parallel to this line. For a clearer description of the hard contact theory, let us

consider the collision of two bodies, which are labelled with subscripts 1 and 2. Their

velocities before the collision are represented by −, while their velocities after the col-

lision are represented by +. Additionally, the masses of the bodies are denoted by the

variable m. The total momentum after the collision is equal to the momentum before
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the collision:

m1ẏ
+
1 +m2ẏ

+
2 = m1ẏ

−
1 +m2ẏ

−
2 (3.1)

The total kinetic energy after the collision is equal to the kinetic energy of the bodies

before the collision:

m1ẏ
+2

1

2
+
m2ẏ

+2

2

2
=
m1ẏ

−2

1

2
+
m2ẏ

−2

2

2
(3.2)

From Eqs. 3.1 and 3.2 it is possible to determine the velocities of the systems after the

collision:

ẏ+
1 =

(̇m1 −m2)y−1 + 2m2ẏ
−
2

m1 +m2
(3.3)

ẏ+
2 =

(̇m2 −m1)y−2 + 2m1ẏ
−
1

m1 +m2
(3.4)

In the case of the perfectly elastic collision the coefficient of restitution (COR) for an

impact can be defined as the negative value of the ratio between the relative velocity

of the elements after impact to the relative velocity before impact:

e = −
ẏ+

1 − ẏ
+
2

ẏ−1 − ẏ
−
2

(3.5)

In the case of the perfectly elastic collision, COR is equal to 1 where there is no loss

of kinetic energy, and the objects have the same relative velocity as they had before the

collision. Eqs. 3.1 - 3.5 utilizing the restitution coefficient can be used to describe an

inelastic collision.The velocities of the systems after the elastic collision are as follows:

ẏ+
1 = (1 + e)

ṁ1y
−
1 +m2ẏ

−
2

m1 +m2
− eẏ−1 (3.6)

ẏ+
2 = (1 + e)

ṁ1y
−
1 +m2ẏ

−
2

m1 +m2
− eẏ−2 (3.7)

In an inelastic collision, it is assumed that the COR takes values within the range

of 0 < e < 1. The coefficients of restitution are influenced by various factors, such

as the material properties (e.g. elastic modulus and rheology), the angle of impact,
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the shapes of the colliding objects, the coefficient of friction between them, and their

adhesive properties. When two bodies collide at a non-central angle, their paths do

not align on a single straight line. If I observe the collision from a reference frame

where one body is stationary before the collision or their velocities are parallel, the law

of conservation of momentum implies that the momentum vectors after the collision

must lie in the same plane as the momenta before the collision. Hence, by selecting the

right coordinate system, I can examine this event on a two-dimensional plane. The use

of hard contact theory to explain collisions can be found in various literature examples

[59, 60, 61, 62, 63, 64, 65].

However, this theory is not applicable to all types of collisions. For instance, in

collisions involving deformable objects or non-conservative forces, the assumptions of

the hard contact theory may not hold, and more complex models may be needed to

accurately describe the collision. Nevertheless, because of its insufficient description

and exclusion of significant physical processes that emerge as a result of the material

and geometrical properties of the colliding components, it was concluded that hard

contact theory is unsuitable to simulate the ATPID damper.

Soft contact theory

The soft contact theory of collision is a method used to explain the behaviour of

two objects colliding when at least one object is deformable. Unlike the hard contact

theory, which assumes an instantaneous change in momentum during a collision, the

soft contact theory takes into account the deformation of the objects and the duration of

the impact. In a soft collision, the objects involved will deform, absorbing and possibly

dissipating part of the kinetic energy of the system. Consequently, the objects may not

return to their original shape after the collision. The resulting loss of kinetic energy can

be observed. Additionally, the duration of the impact affects the collision. The longer

the duration of the impact, the smaller force is exerted during the collision. Overall,

the soft contact theory mainly provides a more accurate representation of collisions

between objects with elastic and plastic properties. It accounts for the deformation

and energy loss that occurs during the impact [11].

72



There are many different approaches to soft contact problems. They are based on

linear or non-linear contact models and can take into account both elastic and vis-

coelastic phenomena [66, 67, 68]. A wide range of these models has been reviewed and

described in the following section of the doctoral thesis. These models are presented

using general equations, without a detailed explanation of the specific parameters used

to describe them. After reviewing the literature, the most suitable model was chosen

for modelling the impact phenomena occurring in the ATPID damper. This selected

model is described in detail in the following chapter and applied for defining basic

contacts between a grain and a flat surface and the derivation of the final formulation

for contact forces used in numerical simulations.

Linear viscoelastic model of the normal contact force

Linear models of contact are the most commonly used in DEM [69, 70, 71, 72, 73].

To incorporate energy dissipation, the normal force Fn is divided into two parts: one

models elastic repulsion, while the other models viscous dissipation. The elastic com-

ponent behaves like an elastic spring and depends on the relative displacements of

both objects while the viscous component depends on the displacement rate. By incor-

porating dissipation, these models fall into the category of viscoelastic force schemes.

It is important to note that these viscoelastic models often take the linear form, which

corresponds to the force of a damped harmonic oscillator:

Fn = Fn
el + Fn

diss = knlinξ+ γnlinξ̇ (3.8)

where knlin is the equivalent stiffness spring, equivalent linear damping γnlin, overlap

ξ, and overlap rate ξ̇. The advantage of the applied model is the possible analytical

solution of the contact problem. Currently, it is possible to analyse contact problems in

systems made of a variety of materials characterized by non-linear mechanical proper-

ties. Therefore, it is required to develop the discussed linear model.

Non-linear elastic model of the normal contact force

The Hertzian contact model [74] is a theoretical method that explains how two solid

objects, such as spheres or cylinders, interact when they collide with each other. The

model assumes that these objects are elastic, isotropic, and homogeneous and that their

contact happens at a single point or a small area. The force of the contact is calculated

by examining how the objects deform at their contact point. The general form of the
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Hertz Theory contact force is as follows:

Fn = Fn
el = knξ

3
2 (3.9)

The model also takes into account the objects’ curvature and Young’s modulus of the

materials they are, which are included in the non-linear reduced stiffness kn. Although

the Hertzian contact model is extensively used in engineering, e.g. in designing me-

chanical systems like gears and bearings, it has some limitations. These include its

inability to capture plastic deformation and surface roughness effects.

Partly non-linear viscoelastic model of the normal contact force

After the development of several force laws based on the Hertz Theory [74], which

originally focused on elastic contacts, modifications were made to extend the approach

to nonlinear viscoelastic models. The partly non-linear viscoelastic model for the nor-

mal contact force is a mathematical approach utilized to describe the conduct of ma-

terials that demonstrate elastic and viscous properties during loading and unloading

conditions. This model considers the non-linear behaviour of the objects, which im-

plies that the correlation between stress and strain is not linear, and the material’s

response is not directly proportional to the applied load. Lee and Herrmann (LH) [75]

suggested a partially nonlinear model:

Fn = Fn
el + Fn

diss = knξ
3
2 + γnLHξ̇ (3.10)

where γnLH is a phenomenological dissipative factor. The dissipation force Fn
diss remains

linearly related to the displacement rate ξ̇. In the model, the spring’s stiffness kn (from

Hertz Theory) is determined by both the elastic properties of the material and the ge-

ometry of the colliding objects. In the approach introduced by Lee and Herrmann

coefficient of restitution increases as the initial velocity increases and a collision time

decreases with an increase in the impact velocity.
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Fully non-linear viscoelastic model of the normal contact force

A fully nonlinear model was suggested by Kuwabara and Kono (KK) [76].

Fn = Fn
el + Fn

diss = knξ
3
2 + γnKKξ̇ξ

1
2 (3.11)

The introduced model involves a dissipative factor, γnKK, and spring stiffness. This

model was also discovered independently by Brilliantov et al. [77], who identified γnKK

as a material property that can be determined from the bulk viscosities of the materials

involved in the collision. However, since information about the bulk viscosities are

often not available, Brilliantov et al. treated γnKK as a parameter that can be adjusted.

A modified Hertz-type force law with a slightly different exponent of the dissipative

term was suggested by [78]. The force scheme is as follows:

Fn = Fn
el + Fn

diss = knξ
3
2 + γnTξ̇ξ

1
4 (3.12)

with a spring stiffness kn and a phenomenological dissipative factor γnT, which results

in a constant coefficient of restitution and a collision time that is velocity-dependent.

Elastoplastic (hysteretic) contact models

There is a distinct group of materials that undergo permanent deformation as a

result of the action of various forces. Thus, exceeding the yield strength results in a

lack of return to the original shape. The study of plastic deformation caused by the

collision of particles with a specific surface is an important topic in both basic research

and practical applications. Various elastoplastic models, including linear and nonlin-

ear models, have been proposed [79, 80, 81, 82, 83]. These models use different springs

with various stiffness for loading and unloading periods, and some models even sub-

divide these periods further. A partially latching model, initially proposed by Walton

and Braun [79], can achieve an ideal plastic force scheme. Multiple analyses conducted

on the impacts of metal spheres have demonstrated an almost linear relationship be-

tween displacement and loading as well as unloading behaviours. The Walton-Braun

model offers a straightforward analytic solution that yields a final particle deforma-

tion dependent on the velocity of the penetration. Conversely, Sadd proposed a model

for investigating wave propagation in granular materials, which assumes material be-

haviour without incorporating any dissipation effects dependent on velocity [80]. In-
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stead, the concept of deformation-dependent damping is introduced by integrating

distinct non-linear springs to account for the three stages of loading, unloading, and

reloading. Thornton proposed a theoretical model for the elastic-perfectly plastic ma-

terial behaviour of spheres [81, 82]. The collision process is divided into three cycles:

the first loading phase assumes elastic material behaviour according to Hertz Theory,

and then the contact becomes ideal plastic after reaching the yield point. Finally, in the

unloading phase, the force-displacement behaviour follows a non-linear elastic pat-

tern. Despite their differences, all hysteretic models share the common characteristic

of generating permanent deformations of the materials in contact. The thesis focuses

on viscoelastic collisions, which do not result in any plastic deformation of the objects

involved. Hence, a comprehensive discussion of the various hysteretic contact models

was not provided. Interested readers are encouraged to refer to the cited literature for

further information and understanding of the topic.

Discrete and Finite Element Method

The Discrete Element Method (DEM) and Finite Element Method (FEM) can be

utilized to model sphere collisions in particle impact dampers. In DEM, particles in-

teract dynamically and reach states of equilibrium when internal forces are balanced.

This method traces the movements of individual particles to determine the contact

forces and displacements of a stressed particle assembly. Numerically, DEM employs

a time-stepping algorithm, assuming constant velocities and accelerations within each

timestep, which is similar to the explicit finite-difference method for continuum analy-

sis. DEM operates under the assumption that the timestep is small enough that distur-

bances cannot propagate further than immediate neighbours during a single timestep.

Hence, in every case, the forces exerted on a particle are solely governed by its inter-

actions with other particles in contact. The discrete Element Method (DEM) employs a

cyclical process of applying Newton’s second law to particles and a force-displacement

relationship at contact points. The motion of individual particles is governed by New-

ton’s second law, which takes into account both contact and body forces. Simultane-

ously, the force-displacement law is utilized to update the contact forces based on the

relative motion occurring at each contact point [84, 85, 86, 87]. The DEM represents the

material as a collection of particles that interact with each other via contact forces. This

method is a perfect approach for problems involving the analysis of the dynamics of a
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PID damper consisting of multiple elements (spheres). It turns out that many authors

use the Discrete Element Method to describe the effectiveness of PID dampers, and

their results are described in [88, 89, 90, 91, 92]. While particles of arbitrary shapes can

be used, spherical particles are commonly used for their simplicity and computational

efficiency. However, the collision of particles is a time-dependent process that involves

the deformation of the particles due to contact. In some cases, this deformation cannot

be treated as purely elastic, especially in ductile materials like metals [93]. As a result,

interparticle penetration must be considered in the contact model of the DEM.

FEM is commonly used to model continuous materials that can be described by

continuum mechanics, such as metals and plastics. It models the material as a contin-

uous field of interconnected elements, enabling the analysis of stress and strain under

different loading conditions. FEM is useful for simulating sphere behaviour during

collisions as it accurately predicts stresses and strains that occur in the material, fa-

cilitating the design of structures that can withstand such stresses and strains [94, 95,

96]. To simulate more complex systems and materials, coupled DEM-FEM methods

combine both approaches by exchanging information between the continuum and dis-

crete domains at their interface. These methods are useful tools for modelling complex

systems, such as rock fragmentation during blasting, granular flow in silos, and com-

posite material behaviour, and designing more efficient materials and structures [97,

98, 99, 100].

The accomplishments of Rojek and his research team are worthy of special recog-

nition for their comprehensive numerical and experimental analyses that include a de-

tailed implementation of plastic phenomena in both the Discrete Element Method and

the Finite Element Method [101, 102, 103, 104, 105]. In their papers, they addressed

a variety of issues such as high-velocity impacts of copper particles, rigid-soft parti-

cle mixtures, multi-scale analysis, thermal conductance effects of sintered particles, 3D

formulation of deformable structures, particle-reinforced composites, and intermetal-

lic matrix composite manufacturing. Undoubtedly, these studies offer the potential for

sophisticated DEM computations, allowing for the analysis of very complex issues that

can not be resolved using simplified contact models.
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Multiscale contact modelling

Multiscale modelling is a very interesting approach which involves connecting dif-

ferent models in various scales or descriptions of matter and improving information

about the phenomenon being studied. An example of a multiscale problem is the in-

teraction between rough surfaces with various geometric characteristics at different

scales, from the shape of touching objects to atomic fluctuations on nanoscale surfaces.

Earthquakes exemplify a multiscale problem in time, where accumulated stresses over

years are released within seconds, causing seismic waves. Spatial multiscale prob-

lems are more challenging to model than time multiscale problems because time is

one-dimensional [106]. Many researchers have been inspired by the multiscale prob-

lem, leading to a variety of theoretical and computational studies with the aim of ex-

panding diagnostic capabilities. Studies presented in [107] include the approach of the

diagnosis of bearings using coupled electromechanical phenomena and the thermo-

mechanical phenomena which allow exchanging of heat during collisions. Multiscale

contact modelling theory provides a detailed understanding of various phenomena,

such as the stress-strain response in shape memory alloys [108], identifying material

parameters and traction field for soft bodies [109], examining the effects of friction and

deformations in lubricated soft contacts [110, 111], and investigating spurious soften-

ing in the macroscopic response of elastic-viscoplastic composites [112].

Leidenfrost effect

An interesting phenomenon to describe is the Leidefrost effect, which is used to

model the behaviour of grains in a specific range of operations. Researchers observed

a phenomenon that a liquid droplet can hover over a solid surface with a thin layer of

vapour forming between them when the solid is heated to a temperature much higher

than the boiling point of the liquid. This phenomenon, known as the Leidenfrost effect,

prevents the liquid from boiling and instead causes slow evaporation due to the insu-

lating effect of the vapour film [113]. Lei was inspired by this effect and studied the

granular Leidenfrost effect in vibrated beds with bumpy surfaces, discovering that un-

der sufficiently high vibration conditions, the entire granular bed can levitate above the

vibrating base. The occurrence of the Leidenfrost state gives rise to an unequal energy

distribution among particles, creating a disparity between those in close proximity to

the vibrating base and those within the bulk material. Zhang [114] further investigated
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the rheological behaviour and optimal damping effect of granular particles in exper-

iments. This approach provides an optimal way to explore the relationship between

the Leidenfrost effect and characteristic parameters to improve damping performance

[115, 116, 117, 118].

Conclusions

The literature review provided an opportunity to explore several models which

explain the contact forces arising during collisions. These models include diverse de-

pendencies that allow them to describe a wide range of physical phenomena, from

simple to complex. To develop a numerical model of the ATPID damper, it was es-

sential to choose an appropriate model for this problem. However, it was discovered

that the granulate and silencer housing materials have nonlinear physical properties.

Hence, the linear model (Eq. 3.8) would not be suitable. Conversely, Hertz’s model

(Eq. 3.9) considers only elastic components. To address these limitations, a non-linear

viscoelastic model, derived in [78] (Eq. 3.12), was selected. This model builds upon

Hertz’s contact theory and includes the ability to describe viscous phenomena, which

are crucial in understanding the ATPID damper’s behaviour.

3.2 Numerical model of the ATPID damper

The collisions between the particle and container walls and the resulting energy dissi-

pation are the key phenomena in PID modelling. Characterization of the contact force

in terms of grain overlap and overlap rate forms the basis of the soft contact theory.

The effects of elastic repulsion and viscous dissipation are included in the description

of the full spectrum of contact schemes based on these two factors. Hertz Theory is

primarily used to define the contact force, both linearly and nonlinearly. A soft con-

tact model has been chosen for the research because it more accurately captures the

physical consequences of grain collisions while incurring a higher computational cost.

A comprehensive mathematical explanation of contact mechanics is necessary to

understand the phenomena of the interaction of two bodies. Hertz proposed a few

fundamental laws that describe an elastic contact [74]. Hertzian contact theory, in

particular, enables analysis of the interaction between a specimen’s flat surface and

a sphere-shaped indenter, where the definition of the radius of the contact circle a is
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calculated as:

a3 =
3RFc
4Eef f

(3.13)

where R is the indenter radius, Fc is the indenter force and Eef f is the effective Young’s

modulus of the specimen and indenter defined as:

1
Eef f

=
1− ν2

w

Ew
+

1− ν2
p

Ep
(3.14)

where Ew is the specimen Young’s modulus, Ep is the indenter Young’s modulus, νw is

the specimen Poisson’s ratio and νp is the indenter Poisson’s ratio. Subscripts w and p

correspond to the container wall and particle (grain), respectively. Hertz also described

the overlap ξ in terms of radius of contact circle a and indenter radius R:

ξ =
a2

R
(3.15)

By using Eq. 3.13 and Eq. 3.15, the overlap can be written as:

ξ3 =
(

3
4Eef f

)2 F2
c

R
(3.16)

The transformation of the Eq. 3.16 allows obtain final definition of the elastic contact

force:

Fc =
4
3

Eef f

√
Rξ

3
2 (3.17)

In most cases when two bodies collide, viscoelastic characteristics are present and

have to be taken into account simultaneously throughout the modelling process. There-

fore, Hertz elastic contact force is extended by an extra viscous component to explain

the general form in such a situation:

Fc =
4
3

Eef f

√
Rξ

3
2 +αξ̇ (3.18)

where α is a damping factor and ξ̇ is an overlap rate. According to the classical theory

of the mechanical systems oscillations, the damping factor α can be expressed as a

function of the system damping ratio β, mass m and stiffness k:
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α = 2β
√
km (3.19)

Following the approach proposed by Tsuji [78], the stiffness k can be expressed as:

k =
4
3

Eef f

√
Rξ

1
2 (3.20)

By using Eqs. 3.18 - 3.20, a viscoelastic force can be found:

Fc =
4
3

Eef f

√
Rξ

3
2 + 2β

√
4
3

Eef f

√
Rξ

1
2mξ̇ (3.21)

By introducing reduced parameters of effective stiffness kef f and damping cef f :

kef f =
4
3

Eef f

√
R (3.22)

cef f = 2β
√
kef fm (3.23)

the following formula may be used to define the viscoelastic contact force as:

Fc = kef f ξ
3
2 + cef f ξ̇ξ

1
4 (3.24)

The ATPID damper is represented in the proposed method as a system composed

of a container and a single particle (grain), see Fig. 2.7. The primary assumption of the

mathematical model is that both the grain movement and the absorber motion occur

in the same direction. This implies that the model ignores a particle’s motion (and

associated contact forces) in a direction perpendicular to the motion of the absorber.

The only form of contact that takes place in the ATPID damper, as was previously

indicated, is the grain-container contact. Two contact forces grain - floor Fc1
and grain

- ceiling Fc2
- appear as a result.

81



kc ccxbi

h

xs

xb

Fc1

Fc2

cckc

mb

Figure 3.1: Mathematical basic model of the ATPID damper

A nonlinear contact model is used to characterize the contact forces (Eq. 3.24). The

forces Fc1
and Fc2

in the proposed approach are defined as functions of grain overlaps

(ξc1
and ξc2

) and overlaps rates (ξ̇c1
and ξ̇c2

) as follows:

Fc1
= kcξ

3/2
c1

+ ccξ̇c1
ξ1/4
c1

(3.25)

Fc2
= kcξ

3/2
c2

+ ccξ̇c2
ξ1/4
c2

(3.26)

where: ξc1
, ξ̇c1

- overlap and overlap rate of the grain during the floor impact, ξc2
, ξ̇c2

- overlap and overlap rate of the grain during the ceiling impact, kc - reduced effec-

tive stiffness, cc - reduced effective damping. The grain-container reduced effective

stiffness is calculated using geometrical parameters and elastic material properties of

grain and container walls, according to Eq. 3.22:

kc =
4
3

Eef f
√
r (3.27)

where r is the grain radius and effective Young’s modulus is given by Eq. 3.14. The

reduced damping parameter cc is determined according to Eq. 3.23, assuming a critical

damping condition (β = 1) and mass of the grain mg :

cc = 2
√
kcmg (3.28)

Analysis of Eqs. 3.25 and 3.26 demonstrate that prescribed contact forces can have

negative values for particular stiffness and damping parameter values. By restrict-

ing the overlap value during the rebound of the grain from each container wall, only
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positive values of contact forces are evaluated, hence eliminating the aforementioned

non-physical effect in further computations.

Assuming the controllable container height h, its velocity ḣ, the initial position of

grain xgi , its radius r, displacement of the container xs, displacement of grain xg , veloc-

ity of the container ẋs, and velocity of the grain ẋg , the overlaps and overlap rates can

be described by the following equations:

ξc1
=

 −xgi + r + xs − xg if −xgi + r + xs − xg > 0

0 if −xgi + r + xs − xg ≤ 0
(3.29)

ξ̇c1
= (ẋs − ẋg)sgn(ξc1

) (3.30)

ξc2
=

 xgi + r + xg − xs − h if xgi + r + xg − xs − h > 0

0 if xgi + r + xg − xs − h ≤ 0
(3.31)

ξ̇c2
= (ẋg − ẋs − ḣ)sgn(ξc2

) (3.32)

Taking into account the definitions of the overlaps Eq. 3.29, Eq. 3.31 and overlaps

rates Eq. 3.30, Eq. 3.32 the definitions of both contact forces for the case of positive

overlaps take the form:

Fc1
= kc(−xgi + r + xs − xg)3/2 + cc(ẋs − ẋg)(−xgi + r + xs − xg)1/4 if ξc1

> 0 (3.33)

Fc2
= kc(xgi + r − h+ xg − xs)3/2 + cc(ẋg − ẋs − ḣ)(xgi + r − h+ xg − xs)1/4 if ξc2

> 0 (3.34)

A changeable ATPID height h is one of the most innovative and interesting elements of

the model. Eq. 3.34 reveals a nonlinear relationship between time-dependent damper

height, its time-derivative, and upper contact force Fc2
as well as their effect on the

damper response. Let us take notice that the particle velocity after collision with the

damper ceiling is influenced by the ATPID height, and how this indirectly impacts the

value of the lower contact force Fc1
.
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The ceiling’s minimal position, hmin, the ceiling’s controllable range of movement,

∆h, and the dimensionless control function, 0 < ψ < 1, which describe the features of

the admissible changes, are used to define the function of damper container height:

h = hmin +∆hψ (3.35)

A real movement of the damper height controlling element may be described by the

control function ψ of the arbitrary form. In the considered case, a linear control func-

tion with two distinct tuning times will be used. The practical aspects of system imple-

mentation also contribute to the application of the linear modification of the damper

height. The technique used to adjust the position of the container ceiling during ex-

perimental tests directly affects the suggested control function. The damper ceiling’s

position changes linearly as a result of the motor’s constant current output as follows:

ψ =


0 if t < t1
t−t1
∆t12

if t1 < t < t2

1 if t > t2

(3.36)

where: t - control time, t1 - activation start time, t2 - saturation start time, ∆t12 = t2 − t1
- activation period.

Finally, the whole model of the ATPID damper incorporates the definition of gen-

erated force obtained using the contact forces specified by Eqs. 3.33 and 3.34 as well as

the equation of grain motion:

FATPID = −Fc1
(xs,xg , ẋs, ẋg) + Fc2

(xs,xg , ẋs, ẋg ,h, ḣ) (3.37)

mg ẍg − Fc1
(xs,xg , ẋs, ẋg) + Fc2

(xs,xg , ẋs, ẋg ,h, ḣ) + Qg = 0 (3.38)

where the gravity force of the grain is Qg . To determine the displacement of the grain

xg and contact forces resulting from applied kinematic excitation generated by dis-

placement xs, the equation of grain motion has to be solved. The ATPID absorber’s

force may be calculated using Eq. 3.37. Thus, both equations are required to determine

the response of the damper under arbitrary kinematic excitation.

Fig. 3.2 shows the 2-DOF soft contact model of the mechanical system used in the
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numerical tests. The proposed model’s governing equations and initial conditions are

provided by Eqs. 3.43.

us

ms

ks cs

kc Ccxgi

h

xs

xg

Fc1

Fc2

cckc

mg

Figure 3.2: Scheme of the ATPID damper

msẍs + Fext − FATPID(xs,xg , ẋs, ẋg ,h, ḣ) + Qs = 0 (3.39)

mg ẍg + FATPID(xs,xg , ẋs, ẋg ,h, ḣ) + Qg = 0 (3.40)

ẋs(t = 0) = 0 xs(t = 0) = −
(ms +mg)g

ks
(3.41)

ẋg(t = 0) = 0 xg(t = 0) = −
(ms +mg)g

ks
+ xgi (3.42)

Fext = ks[xs −us] + cs[ẋs − u̇s] (3.43)

The model contains the beam (primary system) parameters: ms - reduced mass,

ks - reduced stiffness, cs - reduced damping, ẍs - beam acceleration, ẋs - beam velocity,

xs - beam displacement, Qs = msg - beam gravity force; the grain parameters: mg - grain

mass, ẍg - grain acceleration, ẋg - grain velocity, xg - grain displacement, xgi = r - ini-
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tial position of the grain in the container, Qg = mgg - grain gravity force; g - gravity;

and excitation parameters: u̇s - support velocity, us - support displacement. Moreover,

FATPID is a total force generated by the ATPID damper defined by Eq. 3.37.

At the beginning of the simulations, the system achieves a static equilibrium due

to the provided initial conditions. To get the beam’s oscillations around the initial

equilibrium point, the displacements of the beam, container, and grain are shifted by

xs(t = 0).

The function defining the motion of the structural support defines the applied kine-

matic excitation as:

us = Asin(2πf t) (3.44)

where the resonance frequency f depends on mass ms and mg as follows:

f =
√
ks

2π√ms +mg
(3.45)

and amplitude of excitation A = 10 [mm].

The modelling of the dynamic response of the system subjected to the aforemen-

tioned excitation includes phenomena like multiple grain-wall collisions, which are

characterized by very short duration times and are represented by the nonlinear con-

tact model. Therefore, a numerical solution to the equations of motion is required,

together with a thorough evaluation of its correctness. The numerical techniques used

in practice included the Implicit Rosenbrock third-fourth order Runge-Kutta method

(Rosenbrock), Cash-Karp fourth-fifth order Runge-Kutta method (CK45), Fehlberg fourth-

fifth order Runge-Kutta method (RKF45), and Livermore Solver for Ordinary Differen-

tial Equations (LSODE). A series of computations in the MAPLE program showed that

when the absolute error tolerance and relative error tolerance are very small and near

to 10−10, the results obtained using different approaches are comparable.

The next part of the dissertation will concentrate on the various aspects of grain and

container variables, including generated contact forces, system kinematics, and the

consequent effectiveness of vibration damping, which affects the system’s response.

Such parameters are supplied as tables at the beginning of each simulation.
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3.3 Validation of the numerical model

The results of basic experimental tests and numerical simulations using the system’s

reduced parameters were carefully compared to each other in order to confirm the

mathematical model given by Eqs. 3.39 - 3.43. In the numerical simulations experi-

mental component, a cantilever beam with mass mb = 0.36 [kg], was reduced to to the

1-DOF system. A conventional method was used to determine the reduced stiffness

Ks associated with the first mode of vibrations. By performing a spectrum analysis on

experimentally observed free vibrations of the tested object, the system’s natural fre-

quencies were identified. In order to provide the estimated reduced stiffness with an

accurate value of the first natural frequency (3.02 [Hz]), the reduced mass was com-

puted as ms = 0.905mb. In addition, to achieve comparable computational and experi-

mental amplitudes of the free vibrations reduced damping Cs was found.

Finding the grain’s reduced mass, mg , was the next step in the modelling process.

The initial natural frequency in the experimental investigation was assumed to be

2.862 [Hz] and 2.944 [Hz], respectively, and the mass of the grain was considered to

be 10% and 5% of the total mass of the tested system. The decreased mass of the grain

was considered to be 10% and 5% of the total mass of the reduced system in the nu-

merical example, which produced identical results for the first system eigenfrequencies

equal to 2.868 [Hz] and 2.947 [Hz], respectively. Physical characteristics of the reduced

tested object (ks, cs, νw, νp, Ew, Ep) are either known physically or computed based on

preliminary experiments and are shown in Table 3.1.

Table 3.1: Basic simulations parameters

ks cs νp = νw Ew = Ep

117.6 [ N
m ] 0.56 [ Ns

m ] 0.2 2.1 · 108 [Pa]

The damper activation start time t1 = 6 [s] and the activation period ∆t12 = 1 [s]

were used to determine the assumed control functionψ. Eq. 3.35 assumes two different

minimum heights for the controllable damper: 0.01 [m] for grain mass equal to 0.05M

(Fig. 3.3a) and 0.017 [m] for grain mass equal to 0.1M (Fig. 3.3b). The minimum

damper heights correspond to the different sizes of the grains. The maximum container

height (hmax) in both cases was equal to 0.1 [m].
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(a) hmin = 0.01 m, mg = 0.05Ms (b) hmin = 0.017 m, mg = 0.1Ms

Figure 3.3: Assumed changes of controllable damper heights

Table 3.2 contains all other container and particle parameters required for the nu-

merical test. The results of the simulations of system vibrations are shown in Figs. 3.4

and 3.5.

Table 3.2: Parameters used in simulations

mg[kg] hmin [m] hmax [m] r [m] kc [ N
m3/2 ] cc [ Ns

m5/4 ]
0.05M 0.01 0.1 0.05 1.031 · 107 841
0.1M 0.017 0.1 0.085 1.344 · 107 1395.3

Figure 3.4: Comparison of the experimental and numerical results, mg = 0.05Ms

Figure 3.5: Comparison of the experimental and numerical results, mg = 0.1Ms
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The three primary stages of the beam’s response to the proposed harmonic excita-

tion are as follows:

• The first stage when the grain is initially blocked (h = hmin), the vibration becomes

resonant and stabilizes in the range of 4[s] < t < 6[s].

• The second stage occurs when the controlling process is active and the damper

ceiling rises to its highest point and the beam vibrations stabilize in the range of

6.5[s] < t < 12[s].

• The third stage, which occurs when beam vibrations are reduced and a steady-

state is visible in the range 12[s] < t < 14[s].

For two alternative grain mass values, the presented results effectively validate the

mathematical model. The displacement amplitudes derived from the experiments and

numerical simulations closely match in both situations. The consistency between the

two results also applies to different kinematic excitation amplitudes and frequencies.

The above comparison shows that an operation of the ATPID damper can be effectively

investigated using numerical simulations based on the proposed mathematical model.

The Root Mean Square Errors (RMSE) of the beam displacements corresponding to

periods of the transient (6[s] < t < 10[s]) and damped (t > 10[s]) vibrations for each

simulation XSim and experimental XExp result were determined using the following

formula.

RMSE = RMS
(

XExp −XSim

XExp

)
(3.46)

The aforementioned parameter was computed for five different grain masses (1%,

2.5%, 5%, 10%, and 20%), as well as for a range of stimulation frequencies (0.9, 0.95, 1,

1.05, and 1.1 of resonance frequency value). For various transient vibrations, the values

of the RMSE of beam displacements are shown in Table 3.3 and for various steady-state

damped vibrations, in Table 3.4. The proposed approach made it possible to show

the consistency between the simulation and experiment when the grain impacts both

container walls at resonance and in its near area.
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Table 3.3: RMSE comparison of vibrations in transient range

0.9fres 0.95fres fres 1.05fres 1.1fres
0.01M 0.016 0.079 0.059 0.062 0.019

0.025M 0.018 0.09 0.067 0.7 0.025
0.05M 0.019 0.1 0.075 0.079 0.032
0.1M 0.022 0.115 0.084 0.089 0.035
0.2M 0.027 0.129 0.094 0.101 0.039

Table 3.4: RMSE comparison of vibrations in steady-state range

0.9fres 0.95fres fres 1.05fres 1.1fres
0.01M 0.019 0.087 0.075 0.08 0.023

0.025M 0.019 0.079 0.07 0.073 0.02
0.05M 0.018 0.073 0.064 0.067 0.017
0.1M 0.015 0.067 0.058 0.062 0.015
0.2M 0.012 0.061 0.053 0.057 0.014

According to the results shown in Tables 3.3 and 3.4, the RMSE of experimental and

numerical system response for resonant excitations are simillar in both of the assumed

ranges, and they are 0.059 to 0.094 for transient vibrations and 0.053 to 0.075 for steady-

state vibrations. The ranges near resonance reveal an increase in the RMSE coefficient,

but their values are also small (maximum 0.129 for a transient range, and maximum

0.087 for a steady-state range). The obtained results demonstrate the possibility of

using the proposed mathematical model for further numerical analyses. The proposed

2-DOF soft contact model of the ATPID damper and cantilever beam was named as

Complex Model and will be used in Chapter 4 to describe the novel Predictive Control

Algorithm.

3.4 Detailed analysis of the ATPID damper operating prin-

ciple

The examination of the proposed system’s governing equations (Eqs. 3.39 and 3.40)

reveals that the ATPID damper’s behaviour is complex and requires further investiga-

tion. By integrating the relationship between contact forces derived from the equation

of grain motion (Eq. 3.40) into the equation of system motion (Eq. 3.39), it is possi-

ble to acquire a better understanding of the dynamic process under investigation. The
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resulting equation has two equivalent forms that can be written as:

(ms +mg)(ẍs + g)−mg

(
1−

ẍg + g

ẍs + g

)
(ẍs + g) + Fext = 0 (3.47)

(ms +mg)(ẍs + g) +mg(ẍg − ẍs) + Fext = 0 (3.48)

The initial state of the analyzed system is described by the first component of the Eqs.

3.47 and 3.48 where the grain cannot move inside the container (hmax = 2r) and the total

system mass is the sum of the masses of the basic structure and the grain (M = ms+mg).

Although the second component in both equations is the same, it can be interpreted in

two separate ways as two alternative ATPID operation principles. The first term of the

second component of Eq. 3.47 defines the Mass Modification Effect (MME), which de-

notes a change in system mass ∆m caused by the presence of the moving and colliding

grain. In comparison, the second component of Eq. 3.48 defines the Pseudo-Inertial

Force Effect (PIFE), which involves the generation of auxiliary force Finer produced by

grain movement. The PIFE effect is used to demonstrate the mathematical relation and

similarities between the ATPID damper and inerters, which are currently common me-

chanical systems that use inertial forces based on the relative accelerations of system

components [119, 120]. Both of the aforementioned operational principles explain a

change between three different possible system states.

The first system state the sittuation when the damper is closed or the situation when

grain may move (hmax > 2r), and is pushed by one of the container walls, correspond to

the first system state, which happens when the accelerations of the container and the

grain are aproximately equal ẍg ≈ ẍs. Both the component denoting mass modification

in Eq. 3.47 and the term indicating inertial force in Eq. 3.48 are equal to zero under such

conditions. As a result, the two degrees of freedom (2 - DOF) system can be substituted

by the system with one degree of freedom (1 - DOF) system with mass M = ms + mg ,

which is governed by the equation:

(ms +mg)(ẍs + g) + Fext = 0 (3.49)

The second system state is when the grain is free-flying and does not collide against

the walls of the container (ẍg = −g). The terms indicating mass modification in Eq. 3.47
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and inertial force in Eq. 3.48 are then equal:

∆m = −mg , (3.50)

Finer = −mg(ẍs + g) (3.51)

In this situation, the pseudo-inertial force term has an untypical form that includes the

grain mass and system acceleration, while the mass modification term indicates a de-

crease in the total system mass by the grain mass (M = ms). As a result, the equivalent

1-DOF system is represented by the simple equation:

ms(ẍs + g) + Fext = 0 (3.52)

The third state, which corresponds to the phenomena of a short collision with the grain

rebounding from the container wall, denotes the situation where the accelerations of

the grain and container are considerably different (ẍg , ẍs). Then, the terms represent-

ing mass modification in Eq. 3.47 and inertial force in Eq. 3.48 then assume general

forms:

∆m = −mg

(
1−

ẍg + g

ẍs + g

)
(3.53)

Finer = mg(ẍg − ẍs) (3.54)

In such a case, the pseudo-inertial force component represents the short and quick

change of additional force, while the mass modification term describes a short and

rapid change of system mass. Both of these quantities depend on the grain’s mass as

well as grain and mass accelerations. Additionally, they can take positive or negative

values depending on the grain-wall collision case. Mass modification parameters and

pseudo-inertial components are fully described by the model defined by Eq. 3.47 and

Eq. 3.48, respectively.
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By taking into account and analyzing the spectrum of the system’s free vibrations

with an ATPID damper (Figs. 3.6 and 3.7), the MME effect can be identified. The

following values are applied to all simulation parameters: ms = 0.905mb , mg = 0.1M,

ks = 427.6[ N
m ], cs = 0.56[ Ns

m ], νp = νw = 0.2, kc = 1.334 · 107[ N
m3/2 ], cc = 1395.3[ Ns

m5/4 ],

Ep = Ew = 2 · 108 [Pa].

Figure 3.6: Free vibrations for various ATPID heights

Figure 3.7: Spectrum of system free vibrations

One example of the MME is the spectrum change of the vibration spectrum. The

natural frequency of the system’s vibrations at a low container height (h = 0.017 [m])

is f = 5.49 [Hz], and results from the mass of the system’s components, a beam, an

ATPID compartment, and grain. The natural frequency of vibrations with a bigger

container height (h = 0.4 [m] or h = 0.6 [m]) equals to f = 5.77 [Hz] and refers to a

system composed of a beam and a damper container with no grain. The dynamic fea-

tures of the system are variable and depend on the damper ceiling position. For other

situations of the container height, the natural frequencies are between above extreme

values.

93



Moreover, the natural frequencies of the system for the two cases hmax = 0.4 [m] and

hmax = 0.6 [m] (f = 5.77 [Hz]) are comparable, however, the vibration amplitude for a

larger container height is noticeably higher. It should be noted that while the effective

mass of the system is identical to that demonstrated in the eigenfrequencies (f = 5.77

[Hz]) for two situations of the container heights (hmax = 0.4 [m] and hmax = 0.6 [m]),

the amplitude of the vibrations for a higher container height is noticeably bigger. The

whole mechanics of the system (ATPID floor, ceiling, and grain displacements) for the

two specified container heights were presented in Fig. 3.8 in an effort to identify the

cause of the system’s worse damping for higher container heights.

(a) h = 0.4 Hz (b) h = 0.6 Hz

Figure 3.8: Damper (floor and ceiling) and grain movement for various container
heights

In the situation hmax = 0.4 [m], the grain regularly collides with the container’s floor

and ceiling during the first two vibration cycles. In contrast, when hmax = 0.6 [m], the

grain impacts happen irregularly throughout random process cycles. Because colli-

sions take place over a longer period of time, the process presents better damping in

the first case. Additionally, the Mass Modification Effect and the Pseudo-Inertial Force

Effect (second components of Eqs 3.47 and 3.48), which become unpredictable and oc-

cur in random states of beam vibration, are responsible for worse damping abilities in

the second case.

The ATPID’s operating principle can be also understood by examining the change

in system energy that occurs during the investigated process of free vibrations. The

equation of beam motion (Eq. 3.39) can be integrated over its displacement in order to

calculate the system’s energy balance:

∫
∆xs

msẍsdxs +
∫
∆xs

Fextdxs +
∫
∆xs

(Fc1
− Fc2

)dxs +
∫
∆xs

Qsdxs = 0 (3.55)

By identifying the subsequent terms of Eq. 3.55 as the change of kinetic energy ∆Es
k,

change of elastic energy ∆Es
el , viscous dissipation Ws

d and change of potential energy
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∆Es
p the equation of the energy balance can be written in a form:

∆Es
k +∆Es

el + Ws
d +

∫
∆xs

(Fc1
− Fc2

)dxs +∆Es
p = 0 (3.56)

The total energy of the beam Es
tot can be defined as a sum of kinetic Es

k, elastic Es
el and

potential energy Es
p, and according to Eq. 3.56, its change ∆Es

tot is caused by work done

by contact forces generated in ATPID damper and viscous dissipation Ws
d :

∆Es
tot = −

∫
∆xs

(Fc1
− Fc2

)dxs −Ws
d (3.57)

The work done by contact forces produced in the ATPID damper has a significant im-

pact on the change of the total beam energy and the efficiency of the vibration damping

process since viscous dissipation is an uncontrollable process. Therefore, the study of

the variations in the integral quantity will be the main focus of the following numer-

ical examples. The work of the contact forces will be denoted by and given by the

formulae:

Ws
Fc

= −
∫
∆xs

(Fc1
− Fc2

)dxs =
∫
∆xs

(FATPID)dxs (3.58)

has to be positive and possibly large in order to cause the decrease of total beam energy

and efficient process of vibrations damping.

The plots presented in Fig. 3.9 reveal the change of work done by forces generated

by ATPID damper Ws
Fc

during the first impact of the grain against the lower container

wall. The work is calculated between the initial time instant of contact and time instant

of the permanent detachment of both objects.

Figure 3.9: Change of work done by contact forces during the first impact of grain and
container wall during the process of free vibrations for various container heights.
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The first group of cases (navy lines) corresponds to extremely low damper heights

(hmax = 0.04 [m] and hmax = 0.1 [m]), which results in the impact of the grain during the

downward movement of the container when the directions of motion of both objects

are the same. In such a case, after impact and a small grain rebound, both objects

move together and then the grain is pushed by the bottom container wall. As a result,

the contact force’s initial effect on container displacement is negative, but it gradually

improves during the second stage of impact when the grain is pushed upward. As a

result, the total work performed by the contact force at the process’ final time instant

is close to zero or takes a small positive value.

The second group of examples (black lines) pertains to bigger damper heights (hmax =

0.2 [m] and hmax = 0.3 [m]) when grain impacts the container during upward move-

ment of the container then the directions of the motion of the objects are opposite. In

the first case, the second impact and the phase where the grain is pushed by the con-

tainer wall come after a significant grain rebound. Contact forces perform larger work

in both these processes. In contrast, in the second example, just a short pushing phase

can be seen near the end of the process, and the second impact is similarly followed

by grain rebound. Thus, the increase in energy happens mostly during the first im-

pact and partially during the second impact. The work performed by contact forces is

therefore significant in both cases.

The damper heights are the largest (hmax = 0.4 [m], hmax = 0.5 [m], hmax = 0.6 [m],

hmax = 0.7 [m], hmax = 0.8 [m]) in the third group of situations, which means that im-

pact happens when the container is moving upward and at a relatively high velocity.

In the studied cycle of vibrations, the grain impacts the bottom container wall, and

then immediately strongly rebounds without subsequent contact with the cylinder bot-

tom. In each situation taken into consideration, the contact forces’ work increases for

a short period of time when the bodies collide. As the container’s pre-impact veloc-

ity increases, the change in work done by contact force raises, reaching its maximum

value when the collision takes place close to the beam equilibrium state. In the follow-

ing cases, when the height of the container is larger, the velocity of the container wall

before the impact is lower and the work done by contact forces becomes smaller.
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According to the previous study, the work done by contact forces is either close

to zero or assumes a positive value after each impact, independently of the collision

scheme, which is determined by the direction and velocity of the beam. The grain

and walls of the damper can collide further for various grain and damper movement

directions and velocities, but the three above described types of collisions are followed.

As a result, the use of the ATPID damper always results in a reduction in system energy

and an efficient process of vibration damping.

The total beam energy Es
tot for each case was calculated in order to extend the inves-

tigation of the kinematic results provided in Fig. 3.6. The results are depicted in Figure

3.10. The plots enable a more in-depth analysis of the influence of various damper

heights on vibration damping process during a longer period of time. When a colli-

sion between the grain and the container walls will occur when the grain is moving

in the opposite direction than the beam. As a result of such impacts, the total beam

energy is reduced thanks to the positive work done by the contact forces, effectively

damping system vibrations. When the grain and the beam collide and both directions

of the movement are the same, the work done by the contact forces temporarily de-

creases and the beam energy immediately increases. If collisions occur in the same

direction of movement of the grain and beam, then the temporary increase in energy

does not significantly affect the system’s ability to attenuate, because as a result of the

sticking effect in the next phase of the vibration, the energy of the system decreases.

Figure 3.10: The total energy of the beam Es
tot for various container heights
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3.5 Sensitivity analysis

Eqs. 3.39 - 3.45 were used to determine the effects of various parameters (container

height, grain mass, and excitation amplitude) on the dynamic response of the can-

tilever beam under harmonic excitation in order to analyze the sensitivity of the pro-

posed damper. Fig. 3.11 shows the displacements of the free end of the beam during

resonance excitation for various container heights. Additionally, grain, container floor,

and ceiling displacements for different damper heights are shown in Fig. 3.12 and Fig.

3.13, for various grain mass in Fig. 3.14 and for various excitation amplitudes in Fig.

3.15.

3.5.1 Influence of the container height

The damper height is one of the most crucial system parameters from the vibrations

attenuation point of view. Five different maximal container heights (h1 → h5) were

considered in order to understand the differences in the system dynamic caused by

the changing of the container ceiling position (Table 3.5). The system’s dynamic re-

sponse computed for such container heights is presented in Fig. 3.11. The remaining

parameters of the functions h were constant and equal: hmin = 0.017 [m], t1 = 6.5 [s],

t2 = 9 [s] where fass of the grain is equal mg = 0.1M and excitation amplitude A = 0.1

[m].

Table 3.5: Parameters used in simulations

hmax [m] h1 = 0.04 h2 = 0.08 h3 = 0.12 h4 = 0.16 h5 = 0.20

Figure 3.11: Displacements of the free end of the beam for various maximal container
heights - h1→ h5
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The container’s maximum height determines the space available for grain move-

ment, influences damping efficiency, and affects the vibration amplitudes of the damped

system. As a result, in the ATPID control process, proper ceiling position tuning is re-

quired. The results shown in Fig. 3.11 reveal that there are considerable differences in

the efficiency of vibration reduction obtained for various damper heights. The largest

damping (h5) occurs when the maximum amplitude of the vibrations in the resonance

range (xs = 0.23 [m]) is decreased by 78% and stabilizes at 0.048 [m]. Lower damp-

ing is evident for other examined maximal container heights h4 → h1, and vibration

amplitudes are reduced by 71%, 57%, 32%, and 5%, respectively.

The results of the simulations were used to determine the main reasons for the

differences in vibration mitigation for various damper heights. Fig. 3.12 presents the

grain, container floor, and ceiling displacements.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 3.12: Damper (floor and ceiling) and grain displacement for various container
heights (h1→ h5)

For various ATPID container heights, the results are described in terms of the dif-

ferent forms of grain movement. The definitions of two impact types will be provided

for the sake of clarification:

• When the grain is pushed by the container wall after impact and their velocities

are identical, this is referred to as an impact with the sticking effect.
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• The impact followed by an immediate grain rebound, in which the grain and wall

move at significantly different rates, is what is known as a short impact without

a sticking effect.

When the damper ceiling position (h1=0.04 [m], h2=0.08 [m], h3=0.12 [m]) is rela-

tively low, the first type of ATPID operation takes place (Figs. 3.12a - 3.12c). In such

a case the system response can be defined as a subsequent occurrence of the sticking

effects between the grain and a lower or higher container wall, with intermediate non-

contact periods of the grain movement being significantly shorter than the sticking

stages. As a consequence, the system’s effective mass and natural frequency are com-

parable to that of the closed damper. As a result, the ATPID’s damping abilities are

generally low, but they rise as the damper height increases.

The second type of operation occurs when the damper container is significantly

higher (h5=0.2 [m]) and impacts without the sticking effect can be seen during every

vibration cycle (Fig. 3.12e). As it was noted in the discussion of Eq. 3.47, the mass of

the whole system is reduced significantly in this situation. As a result, the system’s

natural frequency is shifted into a new range, and the ATPID’s damping abilities are

much bigger than in the previously examined situations including the sticking effect

(Figs. 3.12a - 3.12c). The sticking effect between the grain and the damper floor as well

as the impact without a sticking effect between the grain and the container ceiling are

both visible in Fig. 3.12d, which shows the third type of ATPID operation. The above

analysis reveals that the ATPID damper is the most effective and the amplitudes of

the steady-state vibrations are the smallest when only short grain-wall impacts (with-

out sticking effect) occur in every period of vibrations (the second type of operation,

Fig. 3.12e). The above conclusion is in agreement with a conclusion regarding ATPID

effectiveness in damping of free vibrations, which was also the highest for the case of

short grain impacts (cf. Figs. 3.6 and 3.7).

The following numerical simulations were conducted for the purpose of analyzing

how the particle movement would change if the ceiling position were higher than pre-

viously assumed. Two damper heights were taken into consideration: h6 = 0.3 [m] and

h7 = 0.6 [m]. Fig. 3.13 reveals grain as well as the ATPID floor and ceiling displace-

ments.
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(a) h6 (b) h7

Figure 3.13: Damper (floor and ceiling) and grain movement for large container heights
(h6 and h7)

Focusing on the results, two novel ATPID operating principles random impacts and

lack of ceiling impacts can be identified. The first type of operation (Fig. 3.13a) con-

cerns a situation in which the grain collides with both the bottom and top wall of the

container, but the collisions do not occur during every period of vibrations. When the

particle can not reach the ceiling position and floor impacts do not occur during every

vibration period, the second type of operation (Fig. 3.13b) occurs. Unpredictable grain

movement within the container and low vibration damping efficiency are characteris-

tic for both situations. Therefore, they are treated with as undesirable effects.

3.5.2 Influence of the grain mass

The calculation of the grain mass effect on the grain movement and the ATPID damp-

ing ability was another crucial component of the sensitivity analysis process. The parti-

cle mass mg was assumed four different values: m1 = 0.05Ms, m2 = 0.1Ms, m3 = 0.2Ms,

m4 = 0.4Ms, where M = mg + ms. The excitation frequency for each case was com-

puted under the assumption that it was a resonance frequency, according to the for-

mula f =
√

ks
mg+ms

. The other parameters of the analysis were: the constant height of

the damper hmax = 0.2 [m] and the excitation amplitude A = 0.01 [m]. The displace-

ment of the damper floor, grain and damper ceiling are presented in Fig. 3.14.
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(a) m1 (b) m2

(c) m3 (d) m4

Figure 3.14: Damper (floor and ceiling) and grain movement for various grain mass
(m1→ m4)

The four previously described types of ATPID operation previously described can

be observed for the proposed values of the grain mass (m1 → m4). The sticking effect

between the grain and the damper floor or ceiling occurs for the proposed values of

the system parameters for very low grain masses (m1) (Fig. 3.14a). A larger mass of the

grain (m2) allows to observe the most effective system damping with the non-sticking

contact of the grain with the damper walls (Fig. 3.14b). Further particle mass increase

reveals the undesirable effect of random collisions (Fig. 3.14c), while even larger mass

causes the situation when the grain-ceiling impacts do not occur (Fig. 3.14d). The

analysis shows that grain mass significantly influences the type of grain movement,

and that the ATPID height should be tuned for the selected grain mass.

3.5.3 Influence of the excitation amplitude

The amplitude and frequency of the excitation have an impact on the grain movement,

ATPID’s vibration damping ability, and the resulting displacement of the beam. In

particular, the paper [64] in particular discusses different particle displacements as a

function of a dimensionless acceleration factor dependent on the excitation amplitude.

Here, I emphasize a simpler approach and take into account grain movement for four

different excitation amplitudes:A1 = 0.005 [m], A2 = 0.0075 [m], A3 = 0.01 [m], A4 =

0.02 [m]. Each simulation assumes a constant damper height of hmax = 0.2 [m] and a

particle mass of mg = 0.1Ms. Fig. 3.15 shows the displacements of the damper floor,

ceiling, and grain.
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(a) A1 (b) A2

(c) A3 (d) A4

Figure 3.15: Damper (floor and ceiling) and grain movement for various excitation
amplitudes (A1→ A4)

The performed study reveals the same ATPID operation types as those in the pre-

vious cases of height and grain mass influence (Figs. 3.12, 3.13, 3.14)). For the low

excitation amplitudes (Figs. 3.15a and 3.15b), the grain velocity and resulting beam

acceleration at the end of each contact stage are too small to achieve the grain-ceiling

impact (case A1), or the obtained impacts are irregular and unpredictable (case A2).

However, Fig. 3.15c illustrates the favourable situation in which only impacts without

a sticking effect are observed when grain mass and damper height are appropriately

tuned to the analysed excitation amplitude. The velocity of the beam rises with increas-

ing excitation amplitude, which also results in the undesirable sticking of the grain to

the lower or upper ATPID wall.

Specific Damping Coefficient (SDC) is a parameter which allows to describe ATPID

operation characteristics [121]. It can be defined as a ratio of the energy lost W(ti) and

initial energy E(ti) per one cycle of vibrations:

Ψ (ti) =
W(ti)
E(ti)

(3.59)

Calculations for energy lost during a single vibration cycle include:

W(ti) = E(ti)− E(ti+1) (3.60)

The SDC calculations can be simplified by analyzing time instants when the system

velocity equals zero, the associated kinetic energy disappears (Ek = 0) and the total

system energy equals the potential energy:
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E(ti) =
kx(ti)2

2
(3.61)

By using Eq. 3.59, 3.60 and 3.61, one obtains the final formula for the SDC:

Ψ (ti) =
x(ti)2 − x(ti+1)2

x(ti)2 (3.62)

For five different damper heights, the changes in the Specific Damping Coefficient

for several cycles of beam vibrations during the unstable state of system operation

(6[s] < t < 12[s]) were calculated and presented in Fig. 3.16. The ATPID damping

ability changes depending on the process time and container height, according to the

SDC plots. The obtained results reveal that the damping ability for the lowest analysed

container height h1 is negligible and that the highest damping efficiency is obtained for

the container height h5. In each case, the largest SDC value can be seen approximately

in the middle of investigated damper activation period.

Figure 3.16: Specific Damping Coefficient of vibration during unsteady state of system
operation

The SDC was also calculated for the ATPID damper heights equal to h6 = 0.3 [m]

and h7 = 0.6 [m]. When the collisions between the grain and ceiling do not occur during

every period of the vibrations, in such conditions, the unpredictability of collisions

results in an unstable system response with oscillating vibration amplitudes. This is

demonstrated by irregularly shifting Specific Damping Coefficients, which can take on

positive or negative values.

The presented considerations prove that the appropriate choice of the damper height

is crucial for the ATPID damping abilities and mitigation of the dynamic response of

the considered system. This is a reason for proposing solutions in which it is possible

to tune (in real time) the damper height and adapt it to the current system operation.
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3.6 Energy analysis

The complex ATPID operation and the nonlinear influence of its parameters on damp-

ing ability were described in the previous sections. An energy analysis of the system

must be carried in order to obtain a better understanding of the occurring physical pro-

cesses. The section starts with an analysis of the grain-floor and grain-ceiling contact

forces (Fig. 3.17), which play a crucial role in the changes in system energy. Further,

I present the change of the total beam energy (Figs. 3.18 and 3.19), the entire system

energy balance, which includes the work performed by the contact forces (Figs. 3.20

and 3.21) and the work produced by external excitation (Fig. 3.22).

3.6.1 Overlaps, overlaps rates and contact forces

The nonlinear viscoelastic contact theory and the corresponding Eqs. 3.25 and 3.26 de-

termine the grain-wall contact forces. Grain-wall overlaps and the rates of overlaps

that occur during subsequent impacts are the parameters that are fundamentally im-

portant in the definition of the contact forces. The overlaps, overlaps rates, and contact

forces in the study are presented in Fig. 3.17 for five different damper heights (h1→ h5).

(a) Grain-container floor overlaps (b) Grain-container ceiling overlaps

(c) Grain-container floor overlaps rates (d) Grain-container ceiling overlaps rates

(e) Grain-container floor contact forces (f) Grain-container ceiling contact forces

Figure 3.17: Overlaps, overlaps rates and contact forces for various container height -
h1→ h5

The grain-floor and grain-ceiling overlap plots shown in Figs. 3.17a and 3.17b differ
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noticeably for various cylinder heights. Two stages can be observed in both situations:

the first one is a short peak with a large overlap amplitude, and the second one is a

long period of time where the overlap is nearly constant before gradual decrease to

zero. The first collision between the grain and the wall, that can be observed in each of

the studied cases, constitutes the first stage. The second stage is the sticking effect that

occurs when the grain is pushed by the container’s bottom or top (cases h1→ h4 in Fig

3.17a and cases h1→ h3 in Fig 3.17b). During the first impact and the sticking stage, the

grain-floor and grain-ceiling overlap rates (Figs. 3.17c and 3.17d) assume positive and

negative values, respectively. The contact force plots (Figs. 3.17e and 3.17f) show high-

amplitude peaks of force related to the initial impact and smaller peaks corresponding

to the secondary impact at the beginning of the sticking stage.

3.6.2 Balance of system energy

The equations of motion (Eqs. 3.39 and 3.40) were integrated with respect to displace-

ments xs and xg to obtain the equations of global energy balance of the beam and grain.

It was carried out to demonstrate the influence of the contact forces on change of sys-

tem energy and vibration damping:

∫
∆xs

msẍsdxs +
∫
∆xs

Fextdxs +
∫
∆xs

(Fc1
− Fc2

)dxs +
∫
∆xs

Qsdxs = 0 (3.63)

∫
∆xg

mg ẍgdxg −
∫
∆xg

(Fc1
− Fc2

)dxg +
∫
∆xg

Qgdxg = 0 (3.64)

By identifying the terms denoting changes in kinetic energy and potential energy as

well as work performed by external excitation and contact forces the equations for

energy balance can be expressed in the following form:

∆Es
k −Ws

Fext
−Ws

Fc
+∆Es

p = 0 (3.65)

∆Eg
k −Wg

Fc
+∆Eg

p = 0 (3.66)
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The equation of beam energy balance the contains change of beam kinetic energy ∆Es
k,

work done by excitation force on beam displacement Ws
Fext

, work done by both con-

tact forces on beam displacement Ws
Fc

and change of beam potential energy ∆Es
p. The

equation of grain energy balance the contains change of grain kinetic energy∆Eg
k , work

done by both contact forces Wg
Fc

on grain displacement and change of grain potential

energy ∆Eg
p.

Summing up the equations of the beam and grain energy balance (Eq. 3.65 and Eq.

3.66) allows to obtain the global energy balance for the entire system:

∆Es
k +∆Eg

k −Ws
Fext
−Ws

Fc
−Wg

Fc
+∆Es

p +∆Eg
p = 0 (3.67)

Occurring in the above equation term indicating work done by contact forces on beam

displacement Ws
Fc

is an additive inverse of the work done by the system due to interac-

tion with the grain W
s
Fc :

Ws
Fc

= −W
s
Fc (3.68)

Moreover, the difference of work done by the system due to interaction with the grain

W
s
Fc and work done by the contact force on the grain displacement Wg

Fc
is the total work

done on the contact element (contact spring and dashpot) and can be expressed as:

W
s
Fc −Wg

Fc
= D +∆Ec

p (3.69)

where D is energy dissipation in the contact element and ∆Ec
p is the change of potential

energy of the contact spring, which vanishes in non-contact stage of the process. Thus,

the energy balance for the whole system during the periods when the contact between

ball and container wall does not appear takes a classical form:

∆Es
k +∆Eg

k −Ws
Fext

+ D +∆Es
p +∆Eg

p = 0 (3.70)

Eqs. 3.65 and 3.70 can be compared to demonstrate the differences between factors that

influence beam energy and system energy. The work done by an external force and the

work done by the system due to contact with the grain both contribute to the change of

beam energy. The work done by external excitation and dissipation occurring during
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grain-wall collisions, in turn, change the energy of the entire system. Let us observe

that the grain’s total kinetic and potential energy remains unchanged after each cycle

of vibrations during the system’s steady-state response: ∆Eg
k = ∆Eg

p = 0. Thus, accord-

ing to Eq. 3.66, the work done by contact forces on the grain displacement equals zero:

Wg
Fc

= 0 and according to Eq. 3.69, the work done by the system due to interaction with

the grain is equal to total energy dissipation in the system: W
s
Fc = D. This indicates that

the work done by the beam as a result of its interaction with the grain W
s
Fc is always

positive and causes a reduction in the total energy of the beam as well as an atten-

uation of its vibrations. Additionally, the system’s total energy dissipation decreases

the energy of the beam while having no impact on the energy of the grain, which is

advantageous from the vibration damping point of view.

The selected of the above defined energy and work terms were calculated for var-

ious container heights and presented in Figs. 3.18 - 3.21. Due to the fact that direct

numerical computation of the work done by contact forces of extremely short duration

is difficult and time-consuming, they were determined by computing all other energy

and work terms and assuming that Eqs. 3.55 and 3.64 are a priori fulfilled.

Figure 3.18: Change of the beam summary kinetic and potential energy for various
container heights - h1→ h5

Fig. 3.18 shows the difference in the beam’s summary kinetic and potential energy

for various ATPID container heights. The maximum summary kinetic and potential

energy value for the deactivated (closed) damper exceeds 9 [J]. The process of opening

the ATPID reduces the maximum value of system energy in each considered situation.

The vibration damping method is most successful for the largest container height un-

der consideration, h5. In such a case the beam’s maximum total kinetic and potential

energy is below 1 [J] during the steady-state response (for t > 12[s]). As previously
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stated, changes in the system’s natural frequency resulting from the particle’s move-

ment can be considered as responsible for the observed process of vibration reduction.

On the other hand, the occurrence of contact forces and the influence of these forces on

the displacement of the beam could be used to describe such a process.

Eq. 3.65 reveals that the total energy of the beam changes due to both the permanent

work done by external excitation and the work done by contact forces during impact

periods. The height of the ATPID damper’s container affects both of the above work

terms. The work done by the contact forces on beam displacement and changes in

beam kinetic energy during impacts will also vary, in particular, because the changes

of the contact forces are noticeably different for various damper heights, as depicted in

Figs. 3.17e and 3.17f. The changes in the beam summary kinetic and potential energy

damped steady-state vibrations for five various container heights were computed and

shown in Fig. 3.19 in order to analyze such a situation.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 3.19: Change of the beam summary kinetic and potential energy for steady state
response - 13[s] < t < 14[s]

In the case h1, impacts begin to occur when the kinetic energy of the beam reaches

about half of its maximum value in steady state. The energy of the beam during the

primary stage of impact increases by 3.7 % of the maximal amplitude because the direc-

tion of the contact force and the direction of the beam movement are the same. In the

situation h2 (Fig. 3.19b), when collisions take place while the beam’s kinetic energy is
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almost zero and its energy increases by 3.5 %, an analogous situation is observed. The

direction of the beam movement in the next three situations (h3 - h5) is the opposite

of the direction of the contact forces without a sticking effect, resulting in a decrease

in the beam’s energy in each collision. For example, in the case h3, when the impact

occurs when the kinetic energy is still relatively low, the energy is reduced by 15% and

12% for the grain collisions with the upper and lower walls of the damper, respectively.

The effectiveness of impacts raises when the container height is increased because they

occur closer to the beam maximum kinetic energy value. In the case h4, the energy is

reduced for the upper and lower impacts, respectively, by 35% and 16% of the maximal

amplitude. The upper contact force changes the beam energy by 53% of the maximum

amplitude and the lower contact force by 23% of the maximum amplitude for the most

efficient case h5, where the impact occurs when the kinetic energy of the beam is very

near to maximal.

Analysis of the work done by the system due to the contact with the grain W
s
Fc and

work done by external excitation ∆Ws
Fext

during the whole process provides additional

information. For example, Fig. 3.20 shows the difference in the work performed by the

system as a result of interaction with the grain W
s
Fc for different container heights.

Figure 3.20: Work done by the system due to interaction with the grain W
s
Fc and for

various container heights - h1→ h5

Despite the fact that the contact forces that occur are completely different for each

container height, the calculated work W
s
Fc is always positive and increases gradually

in all cases. The changes in work during the process have a nonlinear form. During

the first part of the process, the work done by the system increases along with the con-

tainer height. Consequently, it is the largest for the optimal container height h5, which

corresponds to the smallest vibration amplitudes. However, during the second part
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of the process, such tendency is not maintained, and work computed for the optimal

container height h5 becomes smaller than in the other cases (h3 and h4).

The short time plots (13[s] < t < 14[s]) of the work performed by the system as

a result of contact with grain are presented separately for each container height in

Fig. 3.21 in order to provide a more detailed investigation. The plots in Figs. 3.21a

and 3.21b correspond to situations in which the impact directions are the same as the

beam movement directions in such situations. Each collision can be divided into two

stages. The work done by the system on the grain during the main impact stage rapidly

decreases (work is done by the grain on the system), which corresponds to an increase

in beam kinetic energy. However, when the grain is pushed by the beam during the

sticking stage, the system’s work increases to a values higher than before the impact. In

contrast, in cases h3 - h5 the computed work increases during each collision and causes

a permanent decrease of beam kinetic energy, which is favourable from the vibrations

mitigation point of view.

(a) h1 (b) h2

(c) h3 (d) h4

(e) h5

Figure 3.21: Work done by the system due to interaction with the grain W
s
Fc for steady-

state beam response - 13[s] < t < 14[s]

Due to the differences in the type of work performed by external forces in each

situation, the ATPID damper’s efficiency varies for different container heights. The

system’s natural frequency is modified due to a change of the container height, which

also moves the excitation frequency out of its resonance range and decreases the ampli-

111



tudes and velocities of the system’s vibrations. Fig. 3.22 presents the work performed

by excitation forces Ws
Fext

and the work performed by the system as a result of interac-

tion with the grain W
s
Fc for two different container heights (h1 and h5), respectively, in

order to explain the corresponding changes in the system energy.

(a) h1 (b) h5

Figure 3.22: Work done by excitation forces Ws
Fext

(brown) and work done by the system

due to interaction with the grain W
s
Fc (black) for two container heights (h1 and h5)

The average difference between the work done by excitation forces (Ws
Fext

) and the

work done by the system due to contact with the grain (W
s
Fc) is significant over the

whole vibration process in the case when the height of the container is very low (h1)

(Fig. 3.22a). This indicates that the rapidly oscillating component of the work pro-

duced by excitation forces has a significant role in shaping the system’s total energy

changes. As a result, the change in the system’s energy is almost unnoticed. When

the container’s height (h5) is correctly tuned, oscillations in the work done by excita-

tion forces gradually decrease until they are very small when a damped steady state is

reached (Fig. 3.22b). Additionally, the system’s work resulting from interaction with

the grain is almost identical to the values of the work produced by excitation forces.

As a result, the difference in the work produced by the two forces is relatively small,

which corresponds to minimal oscillations in the system energy and an efficient beam

vibration damping process.

112



3.7 Parameters optimization

The sensitivity of the dynamic response of the ATPID damper to three parameters

(container height, grain mass, and excitation amplitude) was discussed in the previous

section. The amplitudes of the steady-state beam vibrations xs will be optimized in

this section with to the maximum container height hmax for various grain mass mg and

excitation amplitude values A. According to Eqs. 3.71 - 3.73 the optimization values

under consideration can be mathematically formulated as follows:

Minimize: maxt∈(tmin,tmax)[xs(A,mg ,hmax, t)]

with respect to: hmax

subject to: governing equations: Eqs. 3.39 - 3.43

A = Ai , (i = 1, ...,5) (3.71)

mg = mi , (i = 1, ...,5) (3.72)

h∗max < hmax < h∗∗max (3.73)

The system parameters used in the numerical analysis of the optimization problem are

equal: tmin = 12 [s], tmax = 14 [s] (range of damped steady-state vibrations), h∗max =

0.017 [m], h∗∗max = 0.8 [m] (full range of container height considered in the previous sec-

tions). Moreover, the subsequent values of decreasing grain masses mg and excitation

amplitudes A are presented in Tab. 3.6.

Table 3.6: Parameters used in the optimization problem

mg [kg] m1 = 0.3Ms m2 = 0.2Ms m3 = 0.1Ms m4 = 0.05Ms m5 = 0.025Ms

A [m] A1 = 0.03 A2 = 0.02 A3 = 0.01 A4 = 0.005 A5 = 0.0025

The formulated optimization problem was solved by performing a direct search of

the parameters space. In Fig. 3.23, which is divided into five plots representing vari-

ous excitation amplitude values, the analysis’s results are displayed. For five different

grain masses and a wide range of container heights, the vertical axis of each plot shows

the maximum vibration amplitude during ATPID damped steady-state operation.
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(a) A1 (b) A2

(c) A3 (d) A4

(e) A5

Figure 3.23: Optimization of the container height for various grain mass and excitation
amplitudes

The type of ATPID operation (explained in the previous section) and the effective-

ness of vibration mitigation are determined by the interaction of the ATPID container

height, grain mass, and excitation amplitude. In the ideal scenario, it is expected

that the selected container height will provide an impact without a sticking effect and

shortest possible time of grain-wall contact in every cycle of vibration. According to

114



Fig. 3.23a, an optimal damper height differs for different grain masses and excitation

amplitudes. For the m1 case, the optimal height hopt for the m1 case is equal to about

0.2 [m], the m2 case hopt is equal to 0.35 [m], and the m3 case hopt is equivalent to

0.6 [m]. The global solution for cases m4 and m5 is higher than the upper bound of

the damper height range that is assumed. The sticking effect between the grain and

container walls, as was previously discussed, causes the worse damping ability for the

container heights lower than optimal one. However, at container heights greater than

the optimal one, the unpredictable movement of the grain without cyclic impacts on

the lower and upper absorber wall results in the worse damping properties. Analo-

gous conclusions can be applied to the Fig. 3.23b (cases m1 - m5), Fig. 3.23c (cases

m2 - m5), Fig. 3.23d (cases m3 - m5) and Fig. 3.23e for the cases m4 and m5.

The rumble effect, which decreases the system response compared to the optimal

one, is usually present after the optimal solution. However, the largest grain mass

(m1) in Fig. 3.23c demonstrates the deviation from this principle. The optimal damper

height is quickly reached with this solution, and the rumble effect is almost not visible.

The process of damping is stabilized for larger damper heights, which corresponds to

the constant value of the obtained vibration amplitude. The system’s response, in this

case, is equivalent (or only slightly worse) to that for the optimal damper height. The

analogous situation is demonstrated in Figs.3.23d and 3.23e for cases m1, m2 and m3,

respectively. For the case m4, another phenomenon can be observed in Fig. 3.23e,

where the rumble effect combines with the constant system response.

The important and interesting feature of the proposed particle impact damper is

that each combination of grain mass and excitation amplitude requires a different op-

timal value of container height corresponding to the minimal vibration amplitude. On

the other hand, it is expected that during real-life operation, the considered mechanical

system will be subjected to different dynamic excitations, which will require different

optimal values of damper parameters. Such a problem requires a technical solution

providing control of the damper height in a real time, which is possible thanks to the

proposed ATPID construction.

In order to compare damper efficiency for different excitation amplitudes, the pa-

rameter d, which is defined as the percentage ratio of the amplitudes of damped steady-

state vibrations xds and undamped steady-state vibrations xuds (when the particle cannot

move inside the container):

d = |1− xds
xuds
| · 100% (3.74)
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Five graphs that that correspond to various particle mass are presented in Fig. 3.24

to demonstrate the obtained results. Each graph is composed of five plots showing

the parameter d for given excitation amplitudes in terms of various ATPID damper

heights.

(a) m1 (b) m2

(c) m3 (d) m4

(e) m5

Figure 3.24: ATPID damping efficiency for various container heights, grain mass and
excitation amplitudes
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The presented plots allow for the estimation of the optimal container height and

related damping effectiveness in relation to the excitation amplitude and grain mass.

The analysis demonstrates that the efficiency of vibration mitigation is the lowest and

does not approach 35 % for a small grain mass m5 and low vibration amplitude A5, as

demonstrated in Fig. 3.24e. When the excitation amplitude is increased, the particle

movement is more efficient and the damper’s efficiency can be increased (A5→A1 for

the case m5). Additionally, increasing the grain mass results in higher contact force

values and a steady improvement in the damper efficiency (Fig. 3.24e → Fig. 3.24a).

The efficiency parameter d reaches 90 % for the maximum excitation amplitude A1

and the biggest grain mass m1. It should be noticed that selecting a damper height

that is too high for the excitation amplitude and grain mass can cause rumbling and

significantly reduce the system’s ability to attenuate vibrations.

The optimal damper heights for each combination of five different masses and five

different excitation amplitudes were computed and presented in Fig. 3.25a based on

the results from Figs. 3.23 and 3.24. The corresponding damping efficiencies were

presented in Fig. 3.25b.

(a) Optimal container heights correspond-
ing to various grain mass and excitation
amplitudes

(b) ATPID damper efficiencies for cor-
responding to optimal container heights,
various grain and excitation amplitudes

Figure 3.25: Optimal results for various system parameters

The analysis of the results from Fig. 3.25a allows to conclude that the increase of

the excitation amplitude and the reduction of the grain mass requires a larger damper

height in order to obtain maximal vibration mitigation. In turn, Fig. 3.25b shows that

the highest damping efficiency is obtained for the highest excitation amplitude and

the largest grain mass. The obtained theoretical results reveal that the ATPID damper

enables reduction of the resonance vibrations up to 90%. However, it should be noticed

that the optimal solution is very close to the range in which the system may fall into an
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undesirable rumble response.

Experimental verification

Figs. 3.24 and 3.25b indicate that the ATPID damper is most effective in reducing

beam vibrations, achieving around 90 % efficiency, when using a grain with a mass of

30 % (m1) and 20 % (m2) of the entire system’s mass, and when the excitation ampli-

tudes are A1 = 0.03 [m] and A2 = 0.02 [m]. Therefore, the test stand was adjusted ac-

cordingly to these values. The experimental tests were conducted for two cases: when

the damper was deactivated (with a height of h1 = 0.017 [m]) and when the damper

was optimally tuned (referred to as h2 in the figure legends). The results for the pa-

rameters m1 = 0.3Ms and A1 = 0.03 [m] are presented in Fig. 3.26, while the results for

the remaining parameters are listed in table 3.7.

Figure 3.26: Comparison of the vibration amplitudes obtained in the experimental tests
for the undamped system (h1) and the system with optimal ATPID height (h2) for the
parameters: m1 = 0.3Ms and A1 = 0.03 [m]

Table 3.7: Results of the undamped vibration amplitude xuds , optimal damped vibration
amplitude xds and ATPID damper efficiency d for various grain mass mg and excitation
ampltidues A

mg [kg] A [m] xuds [m] xds [m] d %
m1 = 0.3Ms A1 = 0.03 0.745 0.065 91.4
m1 = 0.3Ms A2 = 0.02 0.493 0.043 91.3
m2 = 0.2Ms A1 = 0.03 0.698 0.064 90.8
m2 = 0.2Ms A2 = 0.02 0.462 0.052 88.7

Upon examination of the experimental test results (Fig. 3.26 and Tab. 3.7), it is evi-

dent that the amplitude of beam vibrations in a damped steady state (xuds ) is reduced

by approximately 90 % compared to the beam response in resonance vibrations (xds )

when the damper is deactivated. These experimental tests offer compelling evidence

for the accuracy of the proposed numerical model and confirm the results obtained

from the numerical analyses presented in Figs. 3.23, 3.24, and 3.25.
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Chapter 4

ATPID damper control algorithm

4.1 State of the art

Prof. Masri from the Department of Civil Engineering of the University of Southern

California and the scientists from other research institutions around the world, deserve

a great credit for their work on the development of the classical Impact Damper. Since

around 1969, they have been analyzing and describing the characteristics [15, 122] of

such devices. They have conducted a series of experimental studies to determine the

performance of impact absorbers subjected to random, harmonic, and stochastic exci-

tations [123, 124, 125, 126], and mounted them on various complex primary structures.

They have proposed several analytical models which describe the behaviour of ID in

a simplified manner. In addition, their research has focused on the stability of systems

with Impact Dampers [59, 127]. The knowledge obtained from their research papers

has enabled the observation and formulation of criteria for their own control algorithm

aimed at the most effective reduction of primary system vibrations. In the paper [128],

the authors proposed an "active" Impact Damper in which real-time control is possible.

In essence, the proposed device is a classical container containing a moving mass. By

introducing appropriate limits, characteristic collisions between the auxiliary (moving)

mass and the stops of the device can be obtained. From the vibration-damping point of

view, the time of impacts plays a crucial role for the process effectiveness. The authors

presented criteria describing the optimal motion of the auxiliary mass:

• the impacts have to occur when the velocity of the corresponding primary system

mass reaches its maximum value,

• the velocities of two colliding masses have to be opposite to each other at the time
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of impact.

The above conditions were implemented into a simple analytical model allowing

for sensitivity and effectiveness analysis of the proposed control algorithm. The pre-

sented results are limited to a narrow range of parameters changes and demonstrate

solutions that fulfill the above criteria defining effective vibration reduction.

The model used in this doctoral thesis is similar to that in [128]. Based on the

research conducted in the thesis, there may be doubts about the correctness of the

criteria presented by Prof. Masri. It appears that they do not consider all the relevant

physical phenomena that can significantly affect the efficiency and optimal vibration

damping. In the further part of the thesis, a novel Predictive Control Algorithm (PCA)

will be proposed, which will include a set of assumptions constituting the criteria that

must be fulfilled in order to find the optimal solutions. In the paper [128], the authors

conducted an experimental verification of the aforementioned control algorithm using

a special system that allowed for real-time adjustment of the device parameters. The

scheme of this device is shown in Fig. 4.1.

Figure 4.1: The scheme of the active impact damper device by Prof. Masri [128]

The proposed device consists of a container of a rectangular shape which is em-

ployed to restrict the movement of the auxiliary mass (13). An auxiliary mass mounted

on a bearing (10) was permitted to move with minimal friction in tracks (12 and 14) lo-

cated at the center of the container face plates (5), attached to the primary structure.

The device included four panels (4) that could be moved to position of the stoppers (3)

and initiate a collision between the auxiliary mass and the primary structure. These

panels had the ability to move forwards and backwards in relation to the centerline of
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the panel. The panels had 16 stoppers (3) which were attached to the moving panel (4)

using pins (1 and 2) that enabled the auxiliary mass (11 and 13) to move freely in only

one direction. The upper panels permitted unrestricted movement in one direction

along the longitudinal axis (12) of the container, while the lower panels allowed move-

ment in the opposite direction. As a result, the panels created an electromechanically-

controlled ratchet-like mechanism. The electromechanical system consisted of a spacer

(6), solenoid bracket (7), solenoid mounting plate (8) and magnetic solenoid (9). The

primary objectives of this design were to eliminate the need for sensors to monitor

the state of the auxiliary mass and to use simple control mechanism based on/off al-

gorithm. This approach eliminated the requirement to calculate and provide the gap

size, which allowed to reduce the computation time required for the decision-making

process. As a result, the delay was shortened, providing more time for hardware acti-

vation.

Comparing the technical solution presented in this dissertation with the one shown

in Fig. 4.1, many similarities can be observed. However, it should be noted that in

this experimental and numerical studies, Prof. Masri has not included any phenomena

related to gravity and friction. This fact significantly simplifies the solved problem. In

reality, many systems are subjected to vertical motion, where gravity plays a signifi-

cant role. This means that the behaviour of the system observed by Prof. Masri cannot

be directly transformed into the behaviour of a similar system that would move verti-

cally. Finally, it’s also worth mentioning that the control strategy through the extension

of specific stoppers can be described as a discrete control using a step function. The

collision of the auxiliary mass depends directly on its dynamics, the dynamics of the

primary structure, and the position of the stoppers. In the solution proposed in the

doctoral thesis, it is also possible to influence the collision through the linear or non-

linear motion of the moving ceiling. This expands the functionality and possibilities of

the control strategy by applying a collision of a moving mass with a moving wall.

Additionally, Prof. Masri described his device as an active system. Based on its

principle of operation, it is difficult to agree with such a classification. The control of

the dynamics of the entire system is carried out by extending the appropriate stop-

pers, thus limiting the range of motion of the auxiliary mass and influencing the time

of collisions. It is obvious that electrical energy is necessary to control the stoppers.

However, the energy used does not directly affect the dynamics of the entire system.

Only collisions, which are purely mechanical phenomena, have a direct impact on the

system vibrations. For this reason, the presented device could be called a semi-active or
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adaptive-passive device (because the control of the stoppers can be done in real-time).

It should also be emphasized that in the following years, no author did any attempt to

propose further technical solutions based on Tuned Impact Dampers or their technical

counterparts which would expand functionality and eliminate the drawbacks of the

"active" technical design proposed by Prof. Masri [14, 129, 22, 130].

4.2 General concept of the control strategy

The ATPID damper is a type of device that has the ability to tune the height and vol-

ume of the container in a real-time, which gives it the feature of being a controllable

absorber. To enhance its functionality, the system can be equipped with components

that enable to observe the vibrating structure and respond accordingly in order to re-

duce the resulting vibrations effectively, making it an adaptive system. Hence, it is

crucial to develop an algorithm being able to determine the optimal height of the AT-

PID damper for the current operational conditions.

The obtained results indicate that the ATPID damper is a highly non-linear system.

Consequently, development of the algorithm presents a challenging task, as it necessi-

tates dealing with a complex problem that requires a verified numerical model. First,

let us consider the situation where the ATPID damper is attached to a vibrating can-

tilever beam. The parameters of the system and the excitation have to be identified

but at this stage, I omit the fact of the practical way of identification of the excitation

amplitude. For the known excitation amplitude and using the numerical 2-DOF soft

contact model of the damper developed in Chapter 3, a series of calculations can be

made to determine the optimal height of the damper which provides the most effec-

tive reduction of the beam vibrations.

An algorithm, which can be used to obtain optimal ATPID height can be based

on the numerical implementation of subsequent heights of the damper and observing

damping of the steady-state system response. When the system’s amplitude response

in a given iteration is smaller than the response for the damper height set in the pre-

vious iteration, the damping coefficient is rising, and the process of increasing the ab-

sorber’s height should be continued. The detailed steps of the described algorithm are

presented below:

• The change in the height of the damper occurs periodically (e.g. every 4 [s]).

• The height of the damper changes by a constant value (e.g. 0.1 [m]).
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• The opening time (i.e. the time after which the assumed value is achieved) is

treated as a constant value (e.g. 1 [s]).

• After reaching the assumed height of the damper (in a given iteration), the algo-

rithm observes the system response and checks the maximum amplitude of the

beam vibration in a stabilized state, comparing it with the maximum amplitude

of stabilized vibrations determined in the previous iteration (i.e. for the previous

damper height).

• If the next value of the beam vibration amplitude is smaller than the previous

one, the algorithm continues with the above steps.

• If the next value of the response amplitude is higher (i.e. the damping is worse),

the algorithm returns to the previous height and considers it as optimal.

Fig. 4.14 is a graphical form of the above algorithm for exemplary parameters of the

entire vibrating system.

Figure 4.2: Amplitude of the system vibration (Xs - blue color) for various damper
heights (h - red color) - the searching process of the optimal damper height

The results depicted in Fig. 4.14 demonstrate how the amplitude of the beam vibra-

tions varies depending on the damper height. With each opening of the container, the

vibration amplitude of the system decreases. Towards the end of the control process, it

is observed that for one of the heights, the system exhibits a rumbling behaviour with

larger vibration amplitudes, indicating that the height is tuned too high. Following the

established assumptions, n such a scenario the algorithm returned to the settings from

the previous iteration and the previously selected value can be considered as the opti-

mal due to the previously determined nature of the amplitude change of the vibrations

as a function of the damper height (Fig. 4.14).
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The above algorithm has both advantages and disadvantages. The advantage is the

ability to determine the optimal or close-to-optimal height (depending on the accuracy

of the search). Real accuracy will depend on the time of calculations, the time between

the changes, the time of each process of damper opening, and the constant value of the

damper height between the iterations. The disadvantage is the long time required to

find the optimal height. Often, this will be the time when the structure will already be

destroyed due to the occurrence of resonance.

The algorithm presented above is a simple concept of the searching process for the

optimal height of the damper for a given excitation amplitude. However, in reality,

vibration amplitude changes in real-time and the process of controlling such a system

have to be dynamic. Therefore, in the next step, the above concept will be expanded

and described in detail as a general method of adaptive vibration damping. The de-

velopment of real-time control strategies, which allow for effective adaptation of the

ATPID damper to the actual working environment and improve a vibration mitiga-

tion process, is based on the obtained experimental results, numerical simulations, and

optimization processes. The control strategy could be designed to adapt the damper

height in real-time to the changing amplitude of the kinematic excitation. This sec-

tion describes such a control method and provides numerical examples confirming its

effectiveness in reducing steady-state vibrations.

The proposed real-time control strategy for the system subjected to a kinematic

excitation of varying amplitude is based on a simple feedback control loop which is

activated multiple times during the vibration mitigation process and repeatedly deter-

mines the optimal value of the damper height. A measured kinematic excitation and

the amplitude of its frequency as determined by FFT (Fast Fourier Transformation)

analysis provide the simplest form of the feedback signal for the control loop. The

optimal damper height and corresponding voltage signal of the electric engine (Fig.

2.7) are provided by the output of the feedback control loop, which in turn determines

the minimal amplitude of steady-state system vibrations. The appropriate container

height for the detected excitation amplitude value can be efficiently determined using

the results from the comprehensive analysis of the ATPID damper. Two different types

of control system operations can be taken into consideration:

• It can be assumed that the optimal damper heights for the expected range of exci-

tation amplitudes were computed before and saved in the hardware controller’s

memory. In this situation, the surface [A,m,h] from the carried out optimization

process (Fig. 3.25a) can be used as a look-up table to choose the optimal container
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height for the actual amplitude of kinematic excitation,

• it could possibly be considered that the optimal damper height is a variable that

has to be calculated during the vibration mitigation process because it is not an

a priori known factor. In this situation, the process of determining an optimal

value can make use of previously identified fundamental properties of the sys-

tem, which are reflected in dependencies between the damper height and a vibra-

tion amplitude (Fig. 3.23) or the damping percentage ratio (Fig. 3.24), especially

the fact that the optimal height is the highest one at which the rumbling effect

does not occur. Moreover, optimization for successive excitation amplitudes can

create a data matrix [A,m,h], which demonstrates that the optimal damper height

depends monotonically but not linearly on the excitation amplitude,

Finally, the proposed control system (Fig. 4.3) uses a single feedback control loop and

consists of the following parts::

• block for the on-line measurement or identification of the actual amplitude of the

applied kinematic excitation,

• block for selecting the optimal container height corresponding to the identified

excitation amplitude based on either: i) a pre-created look-up table with a list

of the most appropriate container heights for a given grain mass and expected

excitation amplitudes; or ii) an online optimization or direct search algorithm

that applies the fundamental properties of the analyzed system,

• block for generation of the required voltage signal for the electric engine,

• block of the electric engine which provides that the appropriate height of the

container is set.

The control loop takes a chosen component of the system’s actual response, usually the

amplitude of the beam vibration as its input parameter and utilizes it to identify the

external excitation amplitude. The output of the control loop is the optimal height of

the container, which is obtained by the applied engine using an optimal voltage signal.

The input to the entire system equipped with ATPID includes the external excitation

and the optimal container height obtained from the execution of the control loop. Both

of these values contribute to the system’s dynamic response.
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Figure 4.3: General scheme of the proposed control system

When the measurement system detects a change in the excitation amplitude dur-

ing the vibration mitigation process (or its change exceeds a certain threshold), the

application of the above feedback control loop is repeated several times. Such a pro-

cedure guarantees that the container height is adjusted in real-time for maximum per-

formance, the ATPID damper operates adaptively, and the steady-state vibration is

effectively mitigated.

4.3 Numerical simulations of real-time control algorithm

The following numerical examples show the operation of the previously proposed real-

time control algorithm for adjusting the height of the ATPID to actual working condi-

tions. The example reveals that the control algorithm effectively reduces steady-state

vibrations caused by a harmonic kinematic excitation with variable, time-dependent

amplitude. During the analyzed vibration mitigation process, the amplitude of ap-

plied kinematic excitation assumes three different values (Fig. 4.4). During the first

0.5 [s] the excitation amplitude linearly increases to 0.15 [m] and maintains a constant

level at 0.5 - 6 [s]. During the following 2 [s] it linearly increases to 0.04 [m] and during

the time period 8 – 13 [s] it is maintained at a constant level of 0.04 [m]. During the 1

[s] it linearly decreases to 0.03 [m], while during the final time period 14 – 20 [s] it is

maintained constant at a constant level of 0.03 [m].
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Figure 4.4: Change of the amplitude of applied kinematic excitation

The displacement of the system with a closed ATPID damper (container height

equal to the grain size) is presented in Fig. 4.5. It can be observed that the initial steady-

state of system response is reached after approximately 4 [s] and the corresponding

displacement amplitude exceeds 0.3 [m]. The second steady-state (corresponding to

the second vibration amplitude) is reached approximately at time instant 13 [s] and the

corresponding displacement amplitude reaches 0.85 [m]. Eventually, the final steady-

state is obtained also approximately at 17 [s] of the simulation and the corresponding

displacement amplitude exceeds 0.65 [m].

Figure 4.5: Displacement of the system with closed ATPID damper

The real-time control algorithm used in the following numerical simulations ad-

justs the damper actual height in accordance to the amplitude of the kinematic excita-

tion that has been measured or determined. It is considered that at least two vibration

cycles are required for precise measurement or identification of the excitation. On-line

simulations of the system response for various container heights (and direct search of

the successive heights) are used to identify the optimal value of the damper height dur-

ing the vibration mitigation process. It is assumed that the process of determining the

appropriate height is very short in comparison to the time required for the vibrations
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mitigation. The process of changing the damper height has a constant rate of height

change, and it requires less time to reach the final value than to find the next excita-

tion amplitude. The values of the calculated optimal damper heights for the identified

amplitudes (Fig. 4.6) are used as the reference points for the computation of the other

optimal heights. Additionally, the process of finding the optimal container height is

continued in the case of the lack of a change in excitation amplitude, by searching for

values corresponding to predicted excitation amplitudes. This allows for the devel-

opment and steady expansion of the database containing the set of optimal damper

heights.

Figure 4.6: Change of the damper height obtained by application of real-time control
algorithm

A comparison of the vibration amplitudes obtained in the system with a closed AT-

PID damper and the system with implemented real-time control strategy of container

height is presented in Fig. 4.7. It can be observed that for the first excitation ampli-

tude, the optimal damper height (Fig. 4.6) reaches 0.3 [m] and results in amplitude of

steady-state vibrations of approximately 0.07 [m]. For the second excitation amplitude,

the optimal damper height is equal above 0.7 [m] and the response amplitude reaches

above 0.17 [m]. Finally, for the third excitation amplitude, the container height is equal

0.57 [m] for the amplitude of vibration of 0.13 [m]. Thus, it can be concluded that the

obtained amplitudes of vibrations constitute less than 20% of the amplitudes of the

undamped system. This confirms high efficiency of the proposed adaptive system and

developed real-time control algorithm.
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Figure 4.7: Comparison of vibration amplitudes obtained in the undamped system
(black) and in the system with real-time control algorithm (red)

The operation of the entire system requires a hardware implementation of the pro-

posed real-time control algorithm, which constitutes a separate research challenge and

is planned in the next stage of the system development. The fully developed system

will contain a hardware controller (such as the NI Compact Rio), a controlled elec-

tric engine that is currently in use, and a dedicated measurement system. Specific

system for measuring system kinematics will include measurement cards, accelerom-

eters, and laser sensors. It will also include software that enables data preprocessing

techniques such as filtering and Fast Fourier’s Transform. For the purpose of identify-

ing the time history of external excitation and computing the actual value of excitation

amplitude, the hardware controller will collect and save the measurement data. The

optimal damper height corresponding to to the identified excitation amplitude will

then be determined using one of the methods described above, and the necessary con-

trol signal for the engine will be generated. Finally, the engine will change the damper

height in real-time so that the system can respond to the shifting excitation and effec-

tively reduce the system vibrations.

Experimental verification

The experimental tests were conducted to validate the proposed control algorithm,

which had been developed using numerical analyses and taking into account the real-

time variations in excitation amplitude. In the presented numerical example, each

change in excitation value was implemented in a linear manner, resulting in succes-

sive amplitudes of 0.015 [m], 0.04 [m], and 0.03 [m] (Fig. 4.4). However, due to equip-

ment limitations, it was not feasible to exactly replicate this numerical approach. Con-

sequently, modifications were made to the research equipment to enable a stepped

change in excitation amplitude, resulting in values of 0.03 [m], 0.02 [m], and 0.01 [m].

An example of the applied excitation amplitude is shown in Fig. 4.8.
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Figure 4.8: Change of excitation amplitude applied in the experiment

The described control algorithm was used to identify the optimal damper heights

(in the range between 0.05 [m] and 0.5 [m]). During the computation, 101 discrete

values of excitation amplitude were considered (with a step value equal 0.0045 [m])

and three different grain masses, namely 30 % (case 1), 20 % (case 2), and 10 % (case 3)

of the total system mass were considered. Consequently, for each discrete value of

excitation amplitude, three optimal damper heights were determined. This approach

led to the creation of the look-up table containing the obtained data, which was then

implemented into the Arduino Mega 2560 microcontroller.

The laser displacement sensor-based measuring system was used during the ex-

perimental tests to monitor the real-time kinematic excitation and the response of the

beam’s free end. The collected data was stored in the microcontroller’s memory, which

analyzed the input signal and determined the optimal container height as the one cor-

responding to the closest pre-recorded excitation amplitude value in the look-up table.

The microcontroller then controlled the electric motor responsible for adjusting the po-

sition of the upper wall of the damper to achieve the optimal ceiling position. This

control strategy was tested for all three cases of the grain mass. Figure 4.9 shows the

real-time position of the ceiling obtained during the experimental tests.

Figure 4.9: Experimental implementation of the ATPID damper control strategy for
three different grain mass (cases)
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The experimental results of the ATPID control strategy, as shown in Fig. 4.9, indi-

cated that different optimal damper height values were achieved for each excitation

amplitude and particle mass. The electric motor maintained a constant current, result-

ing in a uniform rate of change in damper height, but differences in the initiation time

of each stage of damper opening or closing were observed. This was mainly due to

the difference in amplitude changes in subsequent tests and the time required for the

Arduino to identify the optimal damper height. The proposed control strategy was

implemented for each grain mass case, and the displacement of the beam’s free end

was measured. Figs. 4.10 - 4.12 show a comparison of the cases of a closed damper and

a damper with implemented control strategy.

Figure 4.10: Comparison of measured responses of the beam vibrations for the case 1
(mg = 0.3Ms)

Figure 4.11: Experimental response of the beam vibration for case 2 (mg = 0.2Ms)
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Figure 4.12: Comparison of measured responses of the beam vibrations for the case 3
(mg = 0.1Ms)

Figs. 4.10 - 4.12 illustrate that the performed experimental verification enabled real-

time control of the ATPID damper, and ensured maximum reduction of beam vibra-

tions for dynamically changing excitation amplitudes (as shown in Fig. 4.8). This led

to the reduction of resonant vibrations by approximately 90 % for case 1 (mg = 0.3Ms).

For case 2 (mg = 0.2Ms), the vibration amplitude was reduced by 89 % for the largest

excitation amplitude and 85 % for the smallest one. The lowest efficiency in reducing

the beam is vibrations was observed in case 3 (mg = 0.1Ms), where resonant vibra-

tions were mitigated by approximately 80 % throughout the beam’s vibrations process.

These results confirm the high effectiveness of the ATPID damper, which was previ-

ously described by numerical and experimental analyses. These studies of the control

algorithm lay the groundwork for developing control algorithms that can identify op-

timal damper heights more quickly and efficiently.

4.4 Predictive control algorithm (PCA)

From the previous studies of the ATPID damper principle of operation, it has been no-

ticed that the movement of the grain changes depending on the height of the damper.

The damper provides the most efficient vibration damping when the grain moves in a

distinct pattern. Having those findings in mind, an algorithm for a given set of excita-

tion parameters could quickly and easily find the height of the damper which results in

the optimal movement of the grain was attempted to be developed. The features that

define the optimal movement of the grain constitute the basis of the predictive control

algorithm’s criteria:

• Impacts occur when the direction of the primary system movement is opposite

to the direction of the grain movement.
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• Impacts occur when the velocity of the primary system is maximal or when its

velocity decreases.

• Impacts occur in every period of vibrations. Otherwise, the system response will

be unstable.

• The sticking effect between grain and walls should be avoided.

Before starting to implement Predictive Control the general assumptions have to be

provided:

• The basic oscillating system is a cantilever beam.

• The excitation parameters (amplitude and frequency) can be identified during

the process.

• The ATPID damper is deactivated at the start of the process (the grain is blocked).

• The beam is in resonance during vibrations for the closed ATPID damper.

• The physical and geometric parameters of the beam are known.

Based on the introduced assumptions and the control criteria, it is possible to propose

a Predictive Control Algorithm (PCA), which allows to determine the optimal damper

height. The diagram of a PCA is presented in Fig. 4.13.

Simplified Model Predictive Model Complex Model

Initial predicted

response

Initialization

Data

Computations

Predicted optimal

damper height

Data

Simulations

Displacement and 

velocity of the beam

and grain

Figure 4.13: Scheme of the Predictive Control Algorithm

133



Idea of the Predictive Control Algorithm

The following situation presents a basic vibrating structure subjected to resonant

excitation, with an ATPID damper attached. The excitation and numerical model are

known, so it is possible to predict the system response when the damper is deactivated

and assumes the minimum possible height (it will not introduce additional damping).

At this point, the question is, what is the optimal damper height for the most effective

reduction of vibrations? It is possible to use the numerical model to check the sys-

tem response for different damper heights and based on that determine the optimal

one. Unfortunately, this method is time-consuming and, depending on the complex-

ity of the system, can be long-lasting. Therefore, to find the optimal height of the

damper providing effective vibrations reduction, an algorithm that shortens the time-

consuming process of checking system responses for different heights is needed. Ac-

cording to the proposed concept, starting from a Simplified Model (SM), it is possible

to predict the system response corresponding to damper height a height greater than

the optimal height. Based on the obtained results and the previously defined PCA cri-

teria, the initial damper height (the first guess) can be determined using the Predictive

Model. In the first iteration of the calculations, this value will differ from the optimal

one because of the application of the Simplified model containing significant simplifi-

cations and primarily predicting the system response in the range of vibrations when

the ATPID damper height is too high. Although the obtained damper height is not

optimal, it constitutes the initial stage of further calculations, which will introduce ad-

ditional physical phenomena. This stage will utillize both the Complex model (CMi)

and the Predictive model (PMi where i constitutes a number of the iteration of the PCA

algorithm). The Complex Model is the same 2-DOF soft contact model that was used

in the main part of the ATPID damper modelling described in Chapter 3. These models

will determine the dynamics of the system and the height of the damper respectively,

and exchange data with each other. Iterative running of the Complex and Predictive

Model set will allow to determine such a damper height that will be optimal or close

to optimal. Finally, in order to find the height which is the most efficient, a searching

process in the range close to the final height determined by the PCA algorithm will be

performed.
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Taking the above into account, a predictive control procedure can be constructed as

follows:

Minimize: max(xds )

with respect to: hmax

subject to: governing equations: 3.39 and 3.40

ξc1
> 0 <=> ẋs > 0 and ẋg < 0 (4.1)

ξc2
> 0 <=> ẋs < 0 and ẋg > 0 (4.2)

ξc1
> 0 and ξc2

> 0 in every period of vibrations (4.3)

ξc1
> 0 and ξc2

> 0 <=> |ẋs| is maximal (4.4)

tc <
γ

2
T (4.5)

where γ << 1 and for this case it is assumed as γ ≈ 0.1, where tc - a single contact time,

T - one period of beam oscillation, max(xds ) - maximum amplitude of damped beam

vibrations.

Detailed description of the PCA algorithm

Simplified Model

The Simplified Model is a model that represents a reduced beam with an ATPID

damper in two characteristic states. The first state is when the ATPID damper has a

minimum height, as a result of which the grain is blocked. This means that throughout

the entire process of resonant vibrations, the mass of the whole system consists of the

mass of the beam and the particle. Due to the lack of grain movement, no additional

forces are introduced into the system. In this situation, the beam and ATPID damper

system can be presented as a 1-degree-of-freedom system, with the total mass of both

elements. The equation of motion takes the form:

Ms(ẍs + g) + ks[xs −us] + cs[ẋs − u̇s] = 0 (4.6)

where Ms = ms +mg and us is defined by Eq. 3.44.

The numerical solution of the Simplified Model (Eq. 4.6) and the 2-DOF soft contact

model discussed in Chapter 3 showed that the system resonant response is the same

(Fig. 4.14). The 2-DOF soft contact model, when the damper is closed, can be modelled

as a 1-degree-of-freedom system without contact forces with the total mass of the beam

and grain.
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Figure 4.14: Comparison of the response of the beam vibration from the Simplified
Model - red line (when Ms = ms +mg) and 2-DOF soft contact model - black line (when
the damper is deactivated)

The second type of vibration that can be studied using the Simplified Model is the

situation when the mass of the system consists only of the mass of the beam. The situa-

tion in which the mass of the grain can be ignored requires that the contact between the

particle and the cylinder walls is as rare and as short as possible. This case is possible

only when the height of the damper is significantly greater than the optimal one and

so large that the grain is unable to reach the upper wall position. A solution to such a

case will allow to obtain important results necessary to determine the expected height

of the damper. Therefore, an attempt was made to determine the analytical solution,

which further will be used as a component of the Predictive Model. For the purposes of

further consideration, it is assumed that the analytical solution of the Simplified Model

is called the predictive solution of the vibrating system xspred and describes oscillations

around the equilibrium state considering the initial deflection xspred(t = 0) = −(msg)/ks
which correspond to the occurence of the gravity forces. Therefore, the equation of

motion can be represented as a system that does not take into account the component

related to the force of gravity. The initial velocity is equal ẋspred(t = 0) = 0. The equation

of motion and its transformed version are described by Eq. 4.7 and Eq. 4.8, respec-

tively:

msẍ
s
pred + ks[x

s
pred −us] + cs[ẋ

s
pred − u̇s] = 0 (4.7)

msẍ
s
pred + ksx

s
pred + csẋ

s
pred = ksus + csu̇s (4.8)
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The kinematic excitation takes the harmonic form:

us = Asin(2πf t) (4.9)

while the excitation rate is as follows:

u̇s = 2πf Acos(2πf t) (4.10)

where excitation frequency and natural frequency of the system are presented by Eqs.

4.11 and 4.12, respectively.

f =
√
ks

2π
√
ms +mb

(4.11)

f0 =
√
ks

2π
√
ms

(4.12)

The transformations of the above equations finally allow to determine the form of the

equation of motion with harmonic force excitation. By substituting Eqs. 4.9 and 4.10

into the right-hand side of Eq. 4.8, the general harmonic form of the excitation is ob-

tained as follows:

ksus + csu̇s = ksAsin(2πf t) + cs2πf Acos(2πf t) (4.13)

The above equation can be reduced to a single trigonometric function that takes into

account the reduced amplitude Dred :

Dredsin(2πf t +φ) = ksAsin(2πf t) + cs2πf Acos(2πf t) (4.14)

By using basic theory from the field of mechanical vibrations, a detailed formula can

be derived to calculate the reduced amplitude of a harmonic force excitation:

Dred =
√

A2
0 + B2

0 (4.15)

where: A0 = ksA, B0 = csωA and ω = 2πf . The final form of the reduced amplitude of

the excitation is presented in Eq. 4.16.

Dred = A
√
k2
s + c2

sω
2 (4.16)
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In the general case, the phase shift φ can be calculated using the formula:

φ = atan
A0

B0
(4.17)

Generally, φ is responsible for the shifting of the displacement of the beam vibration

response in relation to the excitation waveform. In the considered case, this aspect

is not significant. Additionally, for the sake of simplicity and transparency of further

analyses of the grain motion inside the cylinder, it is assumed that the displacement

response of the beam at the beginning of the simulation process (t = 0) will be zero.

This assumption unambiguously defines the values of the phase shift as φ = 0. The

final form of the equation of motion with harmonic force is:

msẍ
s
pred + ksx

s
pred + csẋ

s
pred = Dredsin(2πf t) (4.18)

It is expected that the system response will be in the form of a trigonometric function

typical for steady-state vibrations:

xspred = Apredsin(2πf t) (4.19)

The amplitude of the expected solution can be calculated from the formula 4.20.

Apred =
Dred

ms

√
4β2ω2 + (ω2 −ω2

0)2
(4.20)

where: ω0 = 2πf0.

In summary, xspred is the displacement of the system, which has a mass equal to the

mass of the beam. The frequency of excitation is calculated based on both the mass

and the beam. In Fig. 4.15 the analytical solution in a stabilized state is shown for

the following parameters: ms = 0.905mb = 0.3258 [kg], mg = 0.1Ms = 0.0362 [kg],

ks = 427.6[ N
m ], cs = 0.56[ Ns

m ], A = 0.07 [m], f = 5.469 [Hz], f0 = 5.765 [Hz].
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Figure 4.15: The predicted response of the system from the Simplified Model

The result from Fig. 4.15 was compared with a numerical simulation of a classical

2 DOF system model. At the beginning of the simulation, resonant vibrations were

observed as the ATPID damper was closed. Then, the damper height was tuned to the

optimal level for damping vibrations and this comparison was presented in Fig. 4.16.

Figure 4.16: Comparison of the response of the beam vibration obtained from the
Simplified Model - red line(when Ms = ms) and the 2-DOF soft contact model - black
line (when damper height is optimal)

Analyzing the results shown in the above figure, it can be observed that the re-

sponses of both systems in a damped and stabilized state differ in terms of vibration

amplitude. This difference is due to the fact that in the 2-DOF soft contact model,

collisions between the grain and the walls are taken into account, thus introducing

a disturbance responsible for additional phenomena that reduce the vibration ampli-

tude. To prove this hypothesis, in the 2-DOF soft contact model, the damper height

was also set significantly higher than the optimal one (Fig. 4.17) and the grain could

not collide with the container ceiling.
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Figure 4.17: Comparison of the response of the beam vibration obtained from the
Simplified Model - red line (when Ms = ms) and the 2-DOF soft contact model - black
line (when the damper height exceeds the optimal height)

Fig. 4.17 shows that the response predicted using the Simplified Model system

is similar to the response computed using the 2-DOF soft contact model when the

damper height is assumed to be significantly higher than optimal. Such a compari-

son was made for other cases of the ratio between grain mass and mass of the entire

system, which were analyzed in previous studies. It was revealed that for cases of par-

ticle mass in the range from 5 % to 30 % of the mass of the whole system, the differences

in the amplitudes of vibration responses are negligible.

Predictive model

The purpose of the predictive model is to reflect the expected optimal movement of

the grain and determine the height of the damper close to the optimal one. In the first

iteration of calculations, from the Simplified Model, I obtain the beam displacement

for a characteristic state, that is when the damper height is significantly larger than

the optimal one. Additionally, from the sensitivity analysis of the system presented in

Chapter 3, it is known that such vibrations often exhibit a rumble phenomenon, but

the amplitude of these oscillations and the amplitude of system vibrations for the op-

timal damper height are relatively similar (Figs. 4.16 and 4.17). In the first iteration

of calculations, the Predictive Model will attempt to find using the system response

determined from the Simpified Model.The damper height at which the criteria for op-

timal particle movement could be fulfilled. To predict the movement of the particle in

the container, a scheme of the model was proposed and is presented in Fig. 4.18.
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hpred

xspred

xhpred

rXg

Figure 4.18: Scheme of the model for Predictive Model calculations

In order to simulate the movement of the grain in the container, it is necessary to

determine the displacement of the bottom and the top wall of the damper. The dis-

placement of the floor of the container is the predicted response of the system obtained

from the Simplified Model xspred (Eq. 4.7). The displacement of the upper part (ceiling)

of the damper has the following form:

xhpred = Apredsin(2πf t) + hpred (4.21)

At this stage hpred is unknown and the main goal of the algorithm is to determine this

value. In the following step of the procedure, the initial condition of the simulation

has to be established and the beam’s location where the contact with the grain occurs

has to be identified. This requires determining the time of the particle’s impact with

the lower part of the container tc1
. The displacement of the beam due to the tc1

can be

expressed using the following equation:

x
tc1
pred = Apredsin(2πf tc1

) (4.22)

According to the previously introduced algorithm assumptions, the collision (without

the sticking effect) with the bottom part of the container will occur when the beam

velocity is at its maximum or the beam starts to decelerate: 0 ≤ 2πf tc1
≤ π/2. Therefore,

the time of the first impact occurs in the time range: 0 ≤ tc1
≤ 1/(4f ). For the purpose

of further analysis, it is initially assumed that the impact of the grain against the lower

damper wall occurs when the velocity of the lower wall is maximal: tc1
= 0 and then

x
tc1
pred = 0.

At this stage, it is necessary to assume the time tc2
at which the grain will collide

with the upper part of the container. Based on previous research and introduced op-

timal criteria (impacts occur in every period of the vibrations), it is known that, in the
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case of optimal particle movement, two collisions occur during one vibration period

(one with the ceiling and one with the floor). Therefore, in general, the second collision

has to occur when: π ≤ 2πf tc2
≤ 3

2π and then 1
2f ≤ tc2

≤ 3
4f . Similarly to the situation

with the first collision, for further consideration, it is assumed that the collision of the

grain with the upper wall of the container will also occur when the beam reaches its

maximal velocity. Therefore, the time of collision equals: tc2
= 1

2f and then the position

of the beam during the collision of the grain with the ceiling of the damper has the

form:

x
tc2
pred = xhpred(t = tc2

) = Apredsin(2πf tc2
) + hpred (4.23)

Before observation of the motion of the grain, it is necessary to know its equation of

motion and the corresponding initial conditions. The initial position of the particle is

determined by the position of the lower container wall at the time instant of impact:

xki = xspred(t = tc1
) + r = r (4.24)

Next, as a result of the impact, the grain acquires an initial velocity vk0
. The main

problem of the entire algorithm is the lack of information about the system conditions

and dynamics in the initial phase of the calculations (before the simulation starts). With

regard to the current situation, it is known:

• what is the initial position of the beam and the grain, and the initial velocity of

the beam (i.e. at time tc1
),

• the velocity of the beam at the time tc1
depends only on the excitation and the

properties of the beam,

• the analytical solution for the dynamic response of the beam based on the Sim-

plified Model does not take into account the contact forces, so it is not possible

to observe disturbances in the beam response as a result of such phenomena by

utilizing the Simplified Model.

The above facts cause that determination of the initial velocity of the grain immediately

after the impact using commonly used mathematical methods is impossible. Therefore,

a simplified method of determining the grain velocity has been adopted. To explain the

proposed approach, the simulations of system response were performed using a 2-DOF

soft contact model, where an optimal damper height was assumed and the velocity of

142



the particle and beam was determined in an optimally damped and stabilized state.

The example results are presented in Figs. 4.19 and 4.20.

Figure 4.19: Example result of the beam and grain velocity obtained from a Classic
Model with optimal height

Figure 4.20: Beam and grain velocity for a classic model with optimal height - short
range of the time

By analyzing Figs. 4.19 and 4.20 in detail, it can be observed that after the grain hits

the floor or ceiling of the cylinder, it reaches a velocity close to the velocity of the beam

before the impact. Based on these observations, it is assumed that in the first iteration

of Predictive Model calculations, the initial velocity of the particle will be assumed to

be equal to the velocity of the beam at the time of the collision, i.e. at time tc1
. This

assumption can be described by the formula:

Vk0
= ẋspred(t = tc1

) = 2πf Apredcos(2πf tc1
) (4.25)

After the impact, the grain is expected to move without encountering any further col-

lisions, and its motion can be described as an uniformly decelerated. Hence, the equa-

tion that describes value of the grain displacement at the time tc2
, will take the follow-

ing form:
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Xg = xki + Vk0
(tc2 − tc1)−

g(tc2
− tc1

)2

2
(4.26)

The collision of the grain with the upper wall of the damper will occur when:

Xg + r = x
tc2
pred (4.27)

Substituting the Eqs.4.21 and 4.26 into Eq. 4.27, the general form is as follows::

r + Apredsin(2πf tc1) + Vk0
(tc2 − tc1)−

g(tc2 − tc1)2

2
+ r = Apredsin(2πtc2) + hpred (4.28)

By transforming the Eq. 4.28, the general formula for the predicted height of the ATPID

damper takes the form:

hpred = 2r + Apredsin(2πf tc1) + Vk0
(tc2 − tc1)−

g(tc2 − tc1)2

2
−Apredsin(2πf tc2) (4.29)

In the specific case of the previously assumed assumptions (tc1
= 0 and tc2

= 1
2f ), the

equation simplifies to a special form which will be used in the first iteration of the

calculations:

hpred = 2r + Vk0
(tc2)−

g(tc2)2

2
−Apredsin(2πf tc2) (4.30)

Application of the Simplified Model and Predictive Model

The first iteration of calculations of the PCA algorithm (application of Simplified

Model and Predictive model) was used to determine hpred for 3 different excitation

amplitudes A = 0.07 [m], A = 0.05 [m], and A = 0.02 [m]. The results were compared

against each other and presented in Figures 4.21 - 4.22. For an excitation amplitude

equal to A = 0.07 [m], the preliminary predicted height is hpred = 1.98 [m]. The opti-

mal value was previously obtained using the 2-DOF soft contact model by searching

the height of the damper over a wide range and identifying the value for which the

vibration amplitude was minimal. The optimal height for these parameters is equal to

1.41 [m]. The determined height hpred was included in the 2-DOF soft contact model

and a numerical simulation was performed. The response of the system was presented

in Fig. 4.21.
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Figure 4.21: Response of the beam vibrations for 2-DOF soft contact model with ini-
tially predicted ATPID height for excitation amplitude A = 0.07 [m]

Analyzing the results, it can be observed that the preliminarily determined height

is larger than the optimal one, and a rumble effect is observed in beam vibrations.

For the remaining vibration amplitudes, A = 0.05 m and A = 0.02 m, the preliminary

predicted height hpred is 1.4 m and 0.55 m, respectively. The vibrations of the beam for

the above parameters determined by 2-DOF soft contact model are shown in Figs. 4.23

and 4.22.

Figure 4.22: Response of the beam vibrations for 2-DOF soft contact model with ini-
tially predicted ATPID height for excitation amplitude A = 0.05 [m]

Figure 4.23: Response of the beam vibrations for 2-DOF soft contact model with ini-
tially predicted ATPID height for excitation amplitude A = 0.02 [m]
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The results from the plots in Figs. 4.21 - 4.23 demonstrate that in all three situations,

the predicted height surpasses the height that would be most effective in decreasing

mechanical vibrations in the tested system. Nevertheless, after the specified height

hpred is established, the system starts to vibrate in a chaotic manner because of the ir-

regular movement of the grain in the container. Additional analysis will be performed

to identify the optimal height of the damper so that the particle movement fulfill the

predetermined criteria. Fig. 4.24 presents the initial stage of the grain movement in-

side the damper by utilizing the results obtained from both the first iteration of the

Simplified Model and Predictive Model (SM + PM1),

Figure 4.24: Upward motion of the grain in the container with initially predicted height
hpred from the Predictive Model

The displacement of the bottom wall of the container is given by the analytical solu-

tion xspred obtained from the Simplified Model (Eq. 4.19). The displacement of the up-

per wall of the container can be determined as the sum of the displacement of the floor

and the predetermined height of the damper (Eq. 4.21). Based on the initial velocity of

the grain, its movement towards a collision with the damper ceiling can be observed.

Both the initial collision with the bottom wall and the subsequent collision with the

upper wall of the damper occur when the position of the beam assumes the zero value

(when its velocity is maximum and in this case equal Vgrain = Vbeam = 21.96 [m/s] after

the collision between grain and damper floor). In order to proceed to the next analy-

sis, the further trajectory of the grain was calculated. After contacting the upper wall,

the velocity of the particle was assumed in a similar manner as at the beginning of

the simulation (equal to the velocity of the beam before the collision). As a result, the

displacement of the grain while moving downward was determined. Such results are

presented in Fig. 4.25.
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Figure 4.25: Upward and downward motion of the grain in the container with initially
predicted heigh hpred from the Predictive Model

Next, the time at which the grain collided again with the bottom wall of the damper

was identified. The position and velocity of the beam and the particle at the moment of

collision are respectively Xbeam = −0.0402 [m], Xgrain = −0.0317 [m], Vbeam = 21.92 [m/s]

and Vgrain = −22.79 [m/s]. These values constitute the initial conditions for the simu-

lation, which will be continued in the Complex Model.

Application of the Complex Model and Predictive Model

As was mentioned, the Complex Model is the same 2-DOF soft contact model that

was used in the dedicated to the ATPID damper modelling (described in Chapter 3).

It takes into account more physical phenomena (including collisions) compared to the

Simplified Model. The main advantage is the ability to account for disturbances in the

dynamics of the beam due to collisions with the grain. For the previously computed

initial conditions and calculated primary height of the damper from the Predictive

Model (PM1), the previous (first) simulation was continued with the use of the Com-

plex Model (CM1) and the results are presented in Fig. 4.26.

Figure 4.26: Motion of the grain and damper walls in the Complex Model with initially
predicted height of the container from the Predictive Model
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The graph indicates that for the calculated damper height, an unpredictable move-

ment of the grain and a rumble effect occur which confirms that the determined height

is too high. Therefore, it was decided to limit the analysis to the initial upward and

downward motion of the particle until the next impact against the lower wall of the

container. The detailed section of the graph under consideration has been presented in

the following figure.

Figure 4.27: A short time motion of the grain and damper walls in the Complex Model
with initially predicted height of the container from the Predictive Model

In the next step, it is essential to identify the end of the current simulation by deter-

mining the time at which the first impact of the particle with the bottom of the damper

occurs. This is achieved by calculating the lover overlap and performing its detailed

analysis. An illustrative plot is shown in Fig. 4.28 where the first lover overlap is

identified in a wide range of time.

Figure 4.28: Identification of the grain collision (overlap) with the lover wall of the
container
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Next, the precise start time of the impact is identified, and based on that, the end time

of the impact can be determined. This time denotes the end of the current simulation.

A detailed plot describing the identified lower overlap is presented in Fig. 4.29.

Figure 4.29: Detailed identification of the grain collision (overlap) with the lower wall
of the container

In summary, the entire movement of the particle and the damper walls can be de-

termined from the start of the Predictive Control Algorithm process, where the initial

system response and damper height were determined. In particular, the first cycle

of upward and downward movement of the grain and the damper can be computed

using the Simplified Model and Predictive Model - SM + PM1. The second cycle of

upward and downward movement of the grain can be computed for previously deter-

mined damper height using Predictive Model and Complex Model (PM1+CM1) taking

into account collisions described by soft contact theory. The plot of the grain’s move-

ment inside the container from the beginning of the simulation is shown in Fig. 4.30.

Figure 4.30: Motion of the grain and damper walls from the beginning of the calcula-
tions
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The position and velocity of the beam and the grain at the end of the impact are

Xbeam = 0.097 [m], Xgrain = 0.1055 [m], Vbeam = 8.38 [m/s], Vgrain = 12.83 [m/s]. These

values will be treated as input data for further calculations in the Predictive Model.

The initial damper height was calculated using the formula 4.30 and by assuming

a specific situation where all collisions occurred when the beam reaches maximum ve-

locity. Therefore, the times of collision between the grain and the lower (tc1) and upper

(tc2) walls of the container were assumed as 0 and 1/(2f ), respectively. To determine

the new height of the damper, one needs to use the general form of Eq. 4.29. To better

describe the subsequent mathematical operations, the above formula is below:

hpred = 2r + Xbeam + Vgrain(tc2 − tc1)−
g(tc2 − tc1)2

2
−Apredsin(2πf tc2) (4.31)

The times tc1 and tc2 denote the contact time of the grain with the lower and upper

wall of the damper, based on the system response predicted Apred using the Simplified

Model. The response of the system from the SM differs slightly from the response of

the system from the Complex Model, what is presented in Fig. 4.30. Therefore, the

time tc1 should be determined by solving the equation 4.32.

Apredsin(2πf tc1) = Xbeam (4.32)

The above equation has many solutions and the time tc1 can assume many values,

but for further calculations, I take into account the value that is in the first period of

vibrations. Therefore, to fulfill the assumption that the grain has to collide with the

ceiling of the damper when it reaches maximum velocity, the time tc2 has to be equal

to 1/(2f ).

The Eq. 4.31 contains several constant components, such as the radius of the grain r,

gravity g, the beam response amplitude determined from the Simplified Model Apred .

The assumption that the collision between the grain and the upper wall of the damper

will occur when the beam velocity is maximal, which directly affects the value of the

time tc2. There are also terms that possess more physical characteristics due to vis-

coelastic collisions, primarily the position and velocity of the beam and grain at the

end of the previous simulation and correspond to the times tc1
and tc2

. These values

serve as initial data to calculate the new height hpred . One of the main parameters is

the initial velocity of the particle Vk0
, which assumes the value from the end of the

previous stage of the simulation: Vgrain = 12.83 [m/s]. These calculations also need to
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be performed for a situation where the beam position Apredsin(2πf tc1) after the grain

collision with the container floor is equal to the beam position at the end of the previ-

ous simulation Xbeam = 0.097 [m]. The solution of the equation yields a new time tc1.

Next, it is necessary to determine for which value of tc2 cyclic collisions between the

particle and the upper part of the container will occur when the beam velocity is at its

maximum.

The above assumptions allow determining the new height of the ATPID damper.

For the newly determined height from the second iteration of the Predictive Model

(PM2), simulations are continued using only the Complex Model (CM2). If the random

movement of the grain without cyclic collisions with damper ceiling and floor is still

observed without cyclic collisions with the damper ceiling and floor, the entire process

of determining the damper height is repeated for new values of the particle and beam

velocity and position. In most cases, however, longer observation of the grain’s motion

inside the container allows to conclude that the beam vibrations are stabilized and

damped. An example of such analysis is presented in Fig. 4.31.

Figure 4.31: Motion of the grain and container for new predicted damper height

Analyzing the obtained results, it turns out that collisions between the particle and

the container are cyclic and occur when the direction of the grain is opposite to the

direction of the damper movement, the beam velocity is close to the maximum, and

there is no sticking effect between the grain and cylinder walls. This means that all

criteria for optimal grain movement are fulfilled. The movement of the particle inside

the container controlled by the entire PCA algorithm is shown in Fig. 4.32.
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Figure 4.32: Motion of the grain and damper walls from the beginning of the calcula-
tions

The final value of the height determined using the PCA algorithm was named the

initial optimal height. Despite this, once all the preliminarily assumed conditions are

fulfilled, it is still important to ensure that the initially determined damper height is fi-

nally optimal, i.e., the amplitude of the beam’s vibration response is minimized. There-

fore, it is necessary to search through a range of values close to the last predicted height

and determine for which height of the container the system’s response is minimal.

Precise tuning of pre-determined ATPID height

The searching process involves decreasing the previously calculated damper height

by 10% of its value and checking the changes in the system’s response. The height de-

crease process is repeated until the system’s response amplitude will start to increase.

The last calculated height (hpred) value is then increased by
hpred ·10%

1.5 and the beam’s

response is analyzed again. This stage is repeated until the system’s response begins

to deteriorate (the vibration amplitude starts to increase). The entire procedure is then

repeated, and the damper height is changed by
hpred ·10%

1.5n , where n increases by 1 every

time the transition from decreasing to increasing the height occurs and vice versa is

performed. The results obtained from the PCA control algorithm itself are compared

with the results from the searching stage, which involves exploring the range of val-

ues around the last calculated height, to ensure that the determined height is optimal

and provides minimal beam vibration. The results and their comparison are presented

below.
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Figure 4.33: Example of the searching process for the optimal ATPID height

Successively determined damper heights obtained from the searching process are

shown in Fig. 4.33. This is the final stage that allows determining the optimal height

for which the amplitude of the vibration response of the system is minimal (Fig. 4.34).

Fig. 4.33 shows a process in which alternately decreasing and increasing the damper

height allows for describing the optimal height for the assumed system parameters.

Figure 4.34: Example of the system response changes for the heights analyzed during
the searching process

Fig. 4.34 shows the vibration amplitudes of the system for individual heights as-

sumed in the search process. Analyzing this graph, it can be concluded that the beam

vibrations are reduced throughout the process, which can clearly indicate the correct-

ness of the algorithm for searching for the optimal height corresponding to minimal

vibration amplitude. In the above case, it was enough to perform 16 iterations of cal-

culations, which provided the optimal height of the ATPID damper was determined.

In the general case, the scanning process will continue until successively determined

heights will result in changes of vibration amplitude smaller than 1 %.
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Sensitivity analysis of the PCA algorithm

The presented control algorithm allows for determining the preliminary height of

the damper, which calculated values were close to the optimal one. In order to de-

termine the final optimal value of the container ceiling position, a searching process

around the preliminarily determined height was applied. As a result, an algorithm

was developed that enables prediction of the ATPID damper size for various system

parameters, which provides that the vibrations will be most effectively reduced. Con-

sequently, a sensitivity analysis of the proposed Predictive Control Algorithm was con-

ducted. In the first assumed situation, optimal damper heights are determined (after

PCA algorithm and searching process) for various excitation amplitudes and presented

in Fig. 4.35. The remaining system parameters are constant and assume the values:

ms = 0.905mb = 0.3258 [kg], mg = 0.1Ms = 0.0362 [kg], ks = 427.6[ N
m ], cs = 0.56[ Ns

m ],

A = 0.07 [m] and f = 5.469 [Hz].

Figure 4.35: Change of the optimal ATPID height for a narrow range of excitation
amplitudes

By analyzing Fig. 4.35, it can be observed that the change in optimal height for

different excitation amplitudes gradually increases and is close to linear. These calcu-

lations were performed for a narrow range of amplitudes (up to 0.022 [m]). The results

are interesting because the numerical model of the system is nonlinear. Similar analy-

ses were conducted for a wide range of excitation amplitude changes (up to 1 [m]) and

are presented in Fig. 4.36.
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Figure 4.36: Change of the optimal ATPID height for a wide range of excitation ampli-
tudes

Based on Fig. 4.35, it can be concluded that the change of the optimal heights for

a wide range of excitation amplitudes is still linear. The next analyses that were con-

ducted involved computing the percentage difference between the preliminary damper

height value determined by the PCA algorithm and the final optimal height obtained

through the search process. These results will serve as a parameter describing the ef-

fectiveness of the proposed PCA algorithm. The analyses were performed for a wide

range (Fig. 4.37) and a narrow range (Fig. 4.38) of excitation amplitudes.

Figure 4.37: The percentage difference between the initial optimal height (determined
from PCA) and the final optimal height (determined from the search stage) for a nar-
row range of excitation amplitudes
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Figure 4.38: The percentage difference between the initially optimal height (deter-
mined from PCA) and the final optimal height (determined from the search stage) for
a wide range of excitation amplitudes

Fig. 4.38 shows that the percentage error decreases to 4% as the excitation am-

plitude increases. An interesting phenomenon is the occurrence of large percentage

discrepancies (from about 50% to 10%) for small amplitudes of excitation (up to about

0.1 m). Gravity is believed to be mainly responsible for discrepancies. Small excitation

amplitudes correspond to small velocities and accelerations of the vibrating system

and grain. This causes the grain in the open damper to remain in constant contact with

the floor. Even when it does detach, the distance achieved between them is small. In

such a case, it is difficult to correctly determine the height of the damper using the

PCA algorithm while considering all the criteria that describe the optimal motion of

the grain. As a result, the discrepancy between the initially determined height and the

final optimal height is large. Next, optimal heights of the ATPID damper were deter-

mined for two other grain masses (mg = 0.2Ms and mg = 0.3Ms) for a wide range of

excitation amplitude changes. The results are shown in Fig. 4.39.

Figure 4.39: Change of the optimal ATPID height for a wide range of excitation ampli-
tudes for three different grain masses: 0.1Ms (black line), 0.2Ms (red line), 0.3Ms (blue
line)
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The linear relationship between the optimal absorber height and the excitation am-

plitude occurs in all three cases presented in Fig. 4.39. Calculations were also made for

grain masses ranging from 10% to 30% of the total system mass. The optimal heights

depend in a similar way on the change in amplitude and can be described by linear re-

gression models with different slope parameters for each case. However, these results

were not included in the figure for the sake of consistency and clarity. For the above

three different cases, the effectiveness of the PCA algorithm was calculated for three

different masses and the results are shown in Fig. 4.40.

Figure 4.40: The percentage difference between the initial optimal height (determined
from PCA) and the final optimal height (determined from the search stage) for a wide
range of excitation amplitudes and three different grain masses: 0.1Ms (black line),
0.2Ms (red line), 0.3Ms (blue line)

Based on the obtained results, it can be concluded that for the cases where the grain

had different masses, the effectiveness of the algorithm depends on the value of excita-

tion amplitude. For small excitation, amplitudes are relatively low for small excitation

amplitudes (differences ranging from 40% to 10%). For increasing amplitude values,

the error decreases and the difference between the initially determined height (from

the PCA algorithm) and the height after the search stage is approximately 4%. These

values can be considered as acceptable from a functional point of view. As previously

mentioned, the small effectiveness of the algorithm for small excitation amplitudes is

due to the significant influence of gravity on the dynamics of the system. To confirm

the correctness of this assumption, the optimal damper heights (for cases with and

without gravity) were determined for a wide range (Fig. 4.41) and a narrow range

(Fig. 4.42) of excitation amplitudes, as well as for different grain masses (the results

shown on the graphs concern a particle of a mass equal to 10% of the total system

mass). Additionally, the percentage error determining the effectiveness of the PCA
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algorithm was calculated and presented in Fig. 4.43.

Figure 4.41: Change of the optimal ATPID height for a wide range of excitation ampli-
tudes for the system taking into account and disregarding the force of gravity

Figure 4.42: Change of the optimal ATPID height for a narrow range of excitation
amplitudes for the system taking into account and disregarding the force of gravity

Figs. 4.41 and 4.42 present the linear correlation between the optimal height of the

ATPID damper for various excitation amplitudes for two distinct system: one with

gravity and one without gravity. The plots demonstrate that the optimal absorber

height for the given amplitude remains almost the same regardless of whether gravity

is considered or not, indicating no significant difference. A more precise analysis of the

impact of gravity is provided by comparing the calculated errors for both considered

cases. Fig. 4.40 presents a case where numerical analysis incorporates the influence of

gravity and the error in the PCA algorithm calculations for small amplitudes is con-
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siderably high. A corresponding scenario was computed by eliminating the impact

of gravity from the system, and the efficiency results of the PCA algorithm were pre-

sented in Figure 4.43.

Figure 4.43: The percentage difference between the initially optimal height (deter-
mined from PCA) and the final optimal height (determined from the search stage) for
a wide range of excitation amplitudes (system with and without gravity)

It turns out that the lack of consideration of the phenomenon of gravity causes the

PCA algorithm to be very effective for the entire considered range of excitation ampli-

tudes. The error between the results is small and equals approximately 4%. Consid-

ering the fact that for both systems (with gravity and without gravity) the determined

optimal heights take almost the same values (Fig. 4.41), it can be concluded that in

order to increase the efficiency of the control algorithm, a model without gravity can

be used.

By examining Fig. 4.39, it is evident that the optimal height changes linearly in

terms of the excitation amplitude. To further investigate, an interesting problem is the

identification of the type of regression (linear or nonlinear) describing a correlation

between the grain and various masses. Hence, an analysis was conducted to deter-

mine the optimal height of the ATPID damper for four different excitation amplitudes

(A1 = 0.9 [m], A2 = 0.2 [m], A3 = 0.1 [m], A4 = 0.03 [m]), and for particle masses rang-

ing from 10% to 30% of the total system mass. The obtained results are illustrated in

Fig. 4.44.
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(a) A1 = 0.9 m (b) A2 = 0.03 m

(c) A3 = 0.01 m (d) A4 = 0.0025 m

Figure 4.44: Change of the optimal ATPID height in terms of the mass of the grain
(from 10 % to 30 % of the mass of the whole system) for various excitation amplitudes

The plots shown in Fig. 4.44 indicate that there is a non-linear relationship between

the optimal height of the damper and the change of grain mass, regardless of the ex-

citation amplitude. This non-linearity makes prediction of the system’s behaviour dif-

ficult. Therefore, there is a need to develop algorithms that can quickly determine the

optimal damper height for various combinations of excitation amplitudes and particle

masses.

In the final stage of the analysis, the parameter d (defined as the percentage ratio

of the amplitudes of optimally damped steady-state vibrations and undamped steady-

state vibrations) was determined using the optimal height obtained from the proposed

PCA algorithm and searching process in order to increase of damper effectiveness. The

results are shown in Figs. 4.45 and 4.46.

Figure 4.45: ATPID damper efficiencies corresponding to optimal container heights for
various grain mass and excitation amplitude A1
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Figure 4.46: ATPID damper efficiencies corresponding to optimal container heights for
various grain mass and excitation amplitudes

Fig. 4.46 shows that an increase of the mass of the grain improves the efficiency of

the ATPID damper. For the applied excitation amplitudes, the vibrations of the system

are reduced by approximately 92% for a mass equal to 30% of the mass of the whole

system. It should be noted that the ATPID device was designed to damp vibrations as

an additional component attached to the basic vibrating structure. Therefore, consider-

ing a larger mass is unnecessary because then the damper should be treated as a basic

dynamic structure and then will play a dominant role in the whole system. For smaller

masses of grain, the efficiency of the ATPID damper decreases non-linearly. For var-

ious amplitudes of the vibration, a different damping efficiency can be achieved. For

the case A1 (black line) the maximal d can be obtained. For the lower excitation ampli-

tude, a decreased damping efficiency can be observed.

These results confirm the previous calculations shown in Fig. 3.25. The difference

between Figs. 3.25 and 4.46 is the method that allows to the determination of the op-

timal height of the damper. The sensitivity analysis of the PCA algorithm made it

possible to assess the correctness of the algorithm and its effectiveness by comparing

the obtained results with the results of previous analyses. Unfortunately, the disad-

vantages of the PCA algorithm include:

• The complete (identified) model of the vibrating structure (beam) and the excita-

tion have to be known.

• The assumption of the grain’s initial velocity (is simplified in the first iteration of

the PCA algorithm calculation and adopted on the basis of observations).

• The PCA algorithm does not determine the optimal damper height for small ex-

citation amplitudes with a high accuracy. Therefore, this algorithm is supported

by the search process.
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In order to eliminate the above disadvantages, the following solutions should be pro-

posed in the future research:

• An algorithm that performs structural and parametric identification based on

measurements of the vibrating system response.

• Replacing the intermediate data concerning the dynamics of the beam and the

grain (used in the Predictive Model stage) by real-time experimental measure-

ments.

• Omitting the influence of gravity.

• Replacing the PCA algorithm and searching process with a neural network model.
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Chapter 5

Summary

Adaptive Tuned Particle Impact Damper (ATPID) is an innovative type of vibration

attenuator, which consists of a container of a controllable size. It allows for dynamic

tuning of the system damping and adaptation to the actual excitation.

The author proposed a prototype of the ATPID damper with the controllable height

of the container and particle. A series of experimental studies of free and harmonic

vibrations of the cantilever beam was conducted. As a part of the practical investiga-

tions, several parameters of the system and excitations were taken into account. The

conducted research allowed to observe the fundamental behaviours for the initially

selected range of damper parameters. It turns out that the effectiveness of vibration

reduction in the system is significantly influenced by the height of the damper, which

directly describes the change in the volume of the container in which the particle is

located. It defines the space for grain movement without a sticking effect between the

grain and walls of the damper. This is an important aspect in terms of the frequency of

collisions and the duration of contact between the particle and the container. Addition-

ally, the damping of vibrations is affected by the mass of the grain used in the damper.

It can be clearly stated that the larger the mass of the particle causes increasing of the vi-

brations reduction. Studies conducted for different amplitudes of excitation (harmonic

vibrations) and initial deflections of the beam (free vibrations) revealed a greater effec-

tiveness in damping vibrations when larger amplitudes of beam vibration responses

occur. Subsequently, an attempt was made to provide a theoretical description of the

PID damper and the test stand.

Development of efficient methodology of ATPID modelling requires simplification

of grain physical properties, soft contact theory based on the Hertzian model, opti-

mization and control strategy as well as experimental validation. The presented re-
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sults prove that the proposed method of ATPID modelling based on the soft-contact

theory enables accurate simulation of the damper’s influence on the mitigation of vi-

brating system response, which is confirmed by the satisfactory agreement with the

conducted experimental tests. The developed mathematical model reveals the fun-

damental principles of ATPID operation, which include the Mass Modification Effect

and Pseudo-Inertial Force Effect. The conducted sensitivity analysis discloses that the

increase of container height and grain mass as well as the decrease of excitation ampli-

tude cause gradual change in the type of grain movement from the permanent sticking

to container walls through the short cyclic impacts to the chaotic motion with irreg-

ular impacts. Moreover, the sensitivity analysis allows to conclude that ATPID op-

eration is the most efficient in the case of short cyclic impacts and to determine the

corresponding ranges of container height, grain mass and excitation amplitude. In ad-

dition, the analyses based on Specific Damping Coefficient, contact forces and change

of system energy indicate that container height is the most important ATPID param-

eter and reveal the desired range of its maximal values. Eventually, the solution of

the optimization problem aimed at finding container height resulting in the most effi-

cient mitigation of system vibrations discloses a decrease of optimal container height

along with grain mass and its increase along with applied excitation amplitude. The

largest efficiency of the proposed ATPID damper is found to be achieved for the largest

grain mass and the largest excitation amplitude. In such a case, the proposed ATPID

damper is extremely efficient and allows for reduction of the amplitudes of resonance

vibrations up to 90 %. These results were verified by experimental tests.

Then, a general control strategy was proposed, allowing for the basic process of

searching for optimal damper heights from the perspective of the most efficient vi-

bration damping. This is a necessary element in the practical implementation of the

damper’s adaptive functionality. The test stand setup was expanded with a measure-

ment system connected to Arduino microcontroller. The microcontroller identified cur-

rently occurring excitation in real-time based on measurements, and then, using a pre-

viously created map of optimal parameters, it read the required damper’s height. The

matrix of the optimal damper heights was created based on the mentioned general con-

trol algorithm. Due to the drawbacks and limitations of the initially proposed control

algorithm, an attempt was made to create a Predictive Control Algorithm. The pro-

posed feedback loop system based on numerical analysis and experimental measure-

ments allowed for the quick determination of the optimal damper height value. The

algorithm procedure involves alternately applying results from the Simplified Model
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and Complex Model. These results are iteratively utilized by the Predictive Model,

which determines intermediate values of the damper height. When the subsequently

determined damper height values do not significantly differ from each other, the PCA

algorithm ceases to operate. To ensure that the determined value is optimal, an ad-

ditional searching process is conducted around the determined height parameter. It

is found that even a small number of PCA algorithm iterations allow for satisfactory

values of the container height to be determined, which differ slightly from the actual

optimal damper height determined through the searching process. Sensitivity analy-

sis was carried out to determine the effectiveness of the PCA algorithm for different

parameter changes. It turned out that the algorithm has a high efficiency, and most

of the determined values differ from the actual optimal values by less than 5 %. The

algorithm’s error exceeded 15 %, only in the extreme cases when it was difficult (and

sometimes impossible) to fullfil all the criteria for optimal grain movement.

The objectives of the thesis were categorized into three distinct groups, each fo-

cused on experimental studies of the prototype, modelling of ATPID dampers, and

developing control strategies. Consequently, the original contributions of the thesis

can be attributed to advancements made in these three subsections.

Achievements concerning the experimental studies of the ATPID damper:

• Formulation of the disadvantages of the classic PID damper and determining the

reasons for not using this type of device in the engineering environment.

• The proposition of the novel Adaptive Tuned Particle Impact Damper which con-

struction eliminates the disadvantages of the classical PID dampers.

• Development of the ATPID damper by application of the electromechanical con-

trol system control which is innovative in such structures.

• Extention of PID-type damper functionalities and their prospective application

as an alternative adaptive device in the engineering environment.

• Elaboration of experimental studies and initial characteristics of the ATPID dam-

per for various conditions.

Achievements concerning the numerical analysis of the ATPID damper:

• Formulation of the theoretical model of Adaptive Tuned Particle Impact Damper

based on nonlinear viscoelastic contact model of the grain-walls collision.
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• Implementation of the control component which is innovative in such structures.

• Development of the model sensitivity analysis, energy balance and parameters

optimization.

• Formulation of the detailed ATPID operation principles.

• Elaboration of the ATPID high damping efficiency for various parameters of the

system.

Achievements concerning the control strategies of the ATPID damper:

• Formulation of the criteria for the optimal ATPID damper attenuation.

• Formulation of the basic concept of the ATPID control strategy.

• Experimental validation of the basic control concept effectiveness and feasibility.

• Formulation of the Predictive Control Algorithm which provides a quick deter-

mination of the optimal ATPID damper heights for any system parameters.

• Elaboration of the PCA algorithm effectiveness and sensitivity.

The doctoral dissertation lacks consideration and exploration of several important

aspects. It seems important to study the effect of different grain densities and vari-

ous materials and shapes of the damper container. Investigation of the influence of

magnetism on the dynamics of the particle and improvement of the efficiency of the

absorber is also an interesting phenomenon. Additionally, there is a potential to re-

place both the fundamental mechanical system model and the ATPID damper with an

artificial neural network model. Artificial intelligence algorithms may also serve as

viable alternatives to support or supplant ATPID damper control algorithms. Overall,

the subject matter concerning machine learning is captivating and has shown signifi-

cant advancement in recent years. The absence of theoretical and practical solutions for

cyber-physical approaches in mechanical engineering is noticeable. The combination

of existing adaptive technical system concepts with computer-based methods based on

artificial intelligence algorithms is certainly an intriguing field of study.

The author hopes that the research will prove valuable for engineers involved in

the design of adaptive mechanical vibration dampers and that the innovative concepts

presented in the work will play a significant role in the development and promotion of

the use of Particle Dampers in the engineering industry.
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