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Abstract

Optimization of communication networks with variable capacity of links

Logical Tunnel Capacity Control is a traffic routing and protection strategy designed for

communications networks characterized by frequent link capacity fluctuations. The key

component of the LTCC strategy is Flow Thinning – a novel method of controlling the

size of flows assigned to network tunnels in reaction to available link capacity changes.

The thesis presents Mixed-Integer Linear Programming problem models and optimiza-

tion solution algorithms of designing the network that uses the LTCC strategy, and elab-

orates their effectiveness and efficiency. It constitutes a comprehensive study of network

design problem models and solutions corresponding to the variants of the FT mechanism

and the variants of the network links availability description. To deliver computation-

ally efficient network design methods, the problem models and solution algorithms are

based on the path generation and state generation approaches. The thesis elaborates the

resulting network design problem decomposition and the subproblems’ formulations per-

taining to the variants of the FT formula. The effectiveness of the derived formulations

is elaborated in an extensive numerical study, where real traffic and network data is used

to examine the efficiency of the models and algorithms as well as the efficiency of the

network solutions.

The thesis proves that the LTCC strategy is an efficient network solution of routing

and protecting traffic. It shows that the variants of the network design problem that result

from the variants of the FT mechanism can be effectively modeled and solved within a

single conceptual framework. The thesis demonstrates that due to multiple variants of

the FT formula the strategy is a flexible approach to designing and operating networks

with varying link capacities, offering a capability to balance implementation feasibility,

routing robustness, network cost, and optimization time.

Keywords: resilient communications networks, multicommodity flow networks, flow thin-

ning, variable link capacity, linear and mixed-integer programming, robust optimization, wireless

mesh networks, free space optics

v





Streszczenie

Optymalizacja sieci telekomunikacyjnych ze zmienną przepustowością łączy

Logical Tunnel Capacity Control jest strategią kierowania i zabezpieczania ruchu prze-

znaczoną dla sieci teleinformatycznych charakteryzujących się częstymi zmianami przepu-

stowości łączy. Kluczowym elementem strategii LTCC jest oryginalny mechanizm Flow

Thinning pocieniania przepływów sterujący wielkością strumieniu ruchu w odpowiedzi na

zmieniający się stan łączy.

Rozprawa przedstawia modele problemów programowania liniowego całkowitoliczbo-

wego i algorytmy optymalizacyjne służące do projektowania sieci wykorzystujących stra-

tegię LTCC oraz analizuje ich skuteczność i wydajność. Stanowi wszechstronne studium

modeli i rozwiązań problemu projektowania odpowiadających zdefiniowanym wariantom

mechanizmu FT oraz wariantom sposobu opisu stanów dostępności łączy. Aby zapewnić

efektywność obliczeniową proponowanych metod projektowania sieci, rozważane modele

i algorytmy wykorzystują podejście oparte na generacji ścieżek i na generacji stanów.

Rozprawa szczegółowo analizuje wynikającą z takiego podejścia dekompozycję problemu

projektowania oraz szczegółowe sformułowania podproblemów, odpowiadające poszczegól-

nym wariantom mechanizmu FT. Szerokie badania efektywności i wydajności uzyskanych

sformułowań przy użyciu rzeczywistych danych o ruchu i sieci, pozwalają ocenić zarówno

wydajność proponowanych modeli i algorytmów, jak również uzyskiwanych rozwiązań

sieciowych.

Przedstawione wyniki dowodzą, że strategia LTCC jest efektywnym rozwiązaniem

kierowania i zabezpieczania ruchu sieciowego, a warianty problemu projektowania sieci

związane z poszczególnymi odmianami mechanizmu FT można skutecznie modelować i

rozwiązywać korzystając z jednolitego szkieletu pojęciowego. Rozprawa udowadnia, że

dzięki różnorodności wariantów mechanizmu FT strategia LTCC jest elastycznym podej-

ściem do problemu projektowania i zarządzania sieciami teleinformatycznymi ze zmienną

przepustowością łączy, dając możliwość poszukiwania kompromisu pomiędzy odpornością

kierowania, kosztem sieci, łatwością wdrożenia i czasem optymalizacji.

Słowa kluczowe: odporne sieci teleinformatyczne, sieci przepływów wielotowarowych, po-

cienianie przepływów, zmienna przepustowość łączy, programowanie liniowe i całkowitoliczbowe,

optymalizacja odporna, bezprzewodowe sieci kratowe
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Chapter 1

Introduction

1.1 Flow thinning

There exists a class of communications transport networks that are characterized by

link capacity variations. A primary example are wireless networks, where fluctuations of

the signal-to-noise ratio, which reflect varying radio signal propagation conditions, cause

temporary changes of the modulation and coding scheme used on the link and thus of

the link’s bit rate. Since link capacity changes may lead to network overload and result

in traffic losses, appropriate network management and control mechanisms are necessary

that would protect traffic flows against link capacity variations and guarantee the required

quality of service.

Logical Tunnel Capacity Control (LTCC) is a strategy of protecting traffic flows

against overloads that are caused by link capacity variations proposed in [58]. A method

of routing and protecting traffic, it assumes that each aggregated end-to-end traffic flow is

load balanced across the set of dedicated end-to-end logical tunnels whereas the amount

of traffic directed to each tunnel is an affine combination of link capacities. The charac-

teristic feature of the method is that the set and the routing of logical tunnels is static,

only the size of the flow assigned to each tunnel changes. Moreover, the computational

complexity of the load balancing function is extremely low. Due to the use of the affine

function, the decrease of link capacities usually results in decreasing the size of the flows

on selected tunnels. Hence, this traffic control mechanism is referred to as Flow Thinning

(FT), which is also a common name of the traffic routing and protection method. Finally,

it is important that the traffic control mechanism is applied independently to each end-to-

1



end traffic flow, and is executed locally at the source node of the flow. Combined together,

those features offer potential implementation simplicity and operations efficiency of the

LTCC strategy.

Practical deployment of LTCC requires as a minimum developing appropriate network

design methods, defining modifications and extensions of the existing network control

architectures and protocols, and evaluating the performance of the strategy, in particular,

in order to examine whether it matches the performance of more complex traffic protection

schemes, e.g., those that are based on rerouting of established tunnels. The aim of this

thesis is to develop efficient methods of network design, evaluate their computational

performance, and examine the effectiveness of the LTCC strategy.

1.2 Potential applications

The network design problem considered in this thesis is relevant to any communication

network that makes use of logical tunnels and treats varying link capacity as typical,

potentially being capable of adjusting logical tunnel capacity in reaction to link capacity

changes. The most interesting and promising field of application of the considered network

design models are Wireless Mesh Networks (WMN) utilizing Free Space Optics (FSO)

transmission and Multiprotocol Label Switching (MPLS) tunneling technologies.

WMNs are packet-switched networks composed of Internet gateways and fixed IP

routers interconnected with links that are realized by means of wireless technologies,

such as FSO, microwave or radio. WMN is undoubtedly a promising solution to provide

broadband Internet access for fixed and mobile users in short time in the areas lacking

network infrastructure or where deployment of the wired infrastructure is hardly feasible

or very costly. This is due to the fact that in many cases WMNs are cheaper and simpler

to plan, deploy, maintain and operate as compared to wired networks [35]. Another

example of WMN application is a corporate network deployed in a large city using FSO

links installed on the roofs of buildings.

FSO is a wireless optical transmission technology, assuming the transmission link is

realized by means of the optical laser beam sent between a pair of transceivers that are

placed within the line-of-sight of each other. The key advantages of the FSO technology

in comparison to the optical fiber communication are license free operation, ease of de-
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ployment, high data rates, and increased security [22]. However, at the same time the

FSO transmission system is vulnerable to weather disruptions (such as heavy rainfall, fog,

haze) that lead to substantial degradation of transmission quality. Fortunately, the FSO

link is capable of adapting to constantly varying channel propagation conditions appro-

priately adjusting the Modulation and Coding Scheme (MCS) of the transmission [20] to

match the current channel state. Still, even if not complete unavailability of the trans-

mission link, the result is link capacity decrease. Therefore, one of the major issues in the

design of FSO-based networks is to assure network resilience defined as the ability of the

network to guarantee an acceptable level of service in the face of faults and challenges to

its normal operation [62].

WMNs with links based on the FSO technology is the main application of the net-

work design models considered in this thesis. However, IP/MPLS networks using Dense

Wavelength Division Multiplexing (DWDM) transmission technology also can make use

of the considered models: since the IP link might be a bundle composed of a number of

network connections of the DWDM optical network layer, when a failure occurs in the

DWDM layer, the link is likely to lose only a part of its capacity [56].

It is worth noticing, that there is also a somehow specific, though technology-agnostic,

situation when the models can even be applied to networks with constant capacities of

links: if a network realizes connections with (at least) two priorities, from the perspective

of the low-priority connections the available capacity of links varies as it depends on the

configuration of high-priority connections; this scenario might apply, in particular, to

DWDM networks that use lambda-switching [75], which, as it is worth noting, is not a

packet-switching- but circuit-switching-based technology.

1.3 Problem description

The development of the LTCC strategy is a scientific problem that consists of the following

subproblems.

• Elaboration of formal mathematical models and effective solution algorithms for link

dimensions, path routing and flow protection design in communications networks

with variable link capacity and FT traffic control mechanism.

3



• Elaboration of functional models of the data, control and management planes of the

network, covering architectural, functional, and protocol extensions required by the

implementation of the FT traffic control mechanism.

• Verification of both the mathematical and the functional models in a proof of concept

simulation framework.

The core of this thesis is dedicated to the first subproblem, whereas the latter two

subproblems are discussed only briefly.

Communications network design [16, 30], and more generally, communications network

planning, can be considered as one of the areas of the operations research, the others being,

e.g., production planning [41], inventory management [68], logistics design [61], to name a

few. Thus, to solve the network design problems mathematical programming methods are

used. The problems are regarded as optimization problems that are formally described

as optimization problem models and solved with appropriate mathematical programming

algorithms.

The network design problems considered in this thesis are best described and formal-

ized using the theory of multicommodity flow networks [1]. The network is modelled by

means of the graph whose vertices and edges correspond to network nodes and network

links, respectively. The network traffic is modelled as a set of demands, with each ag-

gregated end-to-end traffic flow corresponding to a separate commodity, and the demand

volume being equal to the size of the aggregated flow. Following the principles of the FT

method, the demands are realized as network flows in a bifurcated way – each demand

uses a set of paths. The paths are assigned path flows so that the total size of those path

flows is equal to the demand’s volume.

Due to the link capacity variations the problem is best expressed using a multi-state

variant of the multicommodity flow network model [72]. The set of network states defines a

set of network configurations. Each state corresponds to a combination of link capacities.

The state that every link has its maximum capacity is regarded as the nominal state,

while in each non-nominal state the available capacity of any link can be lower than its

nominal capacity, the fraction being defined by the link availability coefficients. Hence, the

states are referred to as link availability states. Since, due to the nature of link capacity

variations, in a typical state only some links are fully available while on the other links

only a fraction of the nominal capacity can be used, we consider what we call a multiple

4



partial link availability state model of the multicommodity flow network: in each state

multiple links may have only part of its nominal capacity available.

While for every demand in each non-nominal state only the paths can be used that are

used in the nominal state, the sizes of the path flows are state-dependent – in general, they

can be different for each state. Due to the nature of the FT traffic control mechanism,

the size of the path flow in the non-nominal state must not be larger than the size of that

flow in the nominal state and it must be a function of the link capacities. While the total

size of the demand’s path flows must still be equal to the demand’s volume, in the most

severe states, when substantial network capacity has been lost, it is allowed to realize

demands partially, decreasing the demand volumes while still providing acceptable level

of service to the aggregated traffic flows.

Given the unit costs of link capacity, the set of link availability states, the values of

link availability coefficients, and the demand volumes for each state, the network design

problem consists in defining the set of paths for every demand, and the size of each path

flow for every state.

The problem of finding either a feasible, or, e.g., a minimum-cost solution, of the

network design problem can be formulated either as a Linear Programming (LP) problem

model, especially if the path flow size is a linear function of link capacities, like in the case

of the path flow size being an affine combination of link capacities, or more, generally, as a

Mixed-Integer Linear Programming (MILP) [40] problem model. Due to inherent nature

of the traffic control mechanism, in particular the inter-dependance of the path flows in

the nominal and the non-nominal state, the link-path formulation of the multicommodity

flow problem must be used. Therefore, the resulting formulation is non-compact as the

number of network paths is exponential. In general, the number of network states is also

exponential, since the multiple partial link availability model is assumed.

Thus, it is virtually impossible to optimally solve the optimization models directly

already for medium-sized networks: the number of paths and the number of states growing

exponentially with the size of the network make the models’ sizes beyond comprehension.

This thesis considers effective solution algorithms for the models, capable of dealing with

exponential growth of the two sets.

The optimization algorithms considered in this thesis must be based both on well-

known state-of-art optimization methods and on rather specific techniques. The basic
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approach that enables solving the problem must be path generation, which is a common

application of the column generation technique [23]. The approach requires defining the

master problem and appropriate pricing problems that can be solved efficiently. Those

problems are rather specific and become complex and difficult to solve due to the form of

the FT function. The pricing problems must be developed using the dual theory [31].

Additionally, to make both the master problem and the pricing problems solvable

efficiently the formulations must be strengthened by defining effective problem cuts. In

order to limit the size of problem formulations and to solve the problems efficiently, row

generation and cutting-plane generation techniques must be used [7] As a result, the

considered problem solution algorithms must be based on the branch-and-price-and-cut

approach [15, 2].

Last but not least, to deal with a potentially huge number of network states, it might

be beneficial to consider network states indirectly, using more sophisticated and more

specific problem modelling and optimization techniques of affine decision rules [5, 47, 60]

and uncertainty sets [8, 3].

1.4 Related work

The thesis considers optimization problems that belong to the area of resilient multicom-

modity flow networks. Significant amount of research was done in this area in recent

years (see [76, 56, 21]). Additionally, some research focused on auxiliary aspects of rout-

ing and protecting network traffic such as traffic uncertainty [10, 78, 71, 9], fair network

optimization [32, 37, 42, 48], and multicast transmission [59, 45, 46]. This thesis considers

optimization problems that arise when combining two specific aspects of the traffic rout-

ing and protection design being the link capacity model and the traffic control mechanism

of the FT method.

The link capacity model considered in this thesis assumes multiple partial link avail-

ability or, equivalently, multiple partial link failures. The case of single total link failures

has been studied in [13, 11, 19, 74]. This case can also be found in [56] under the name

Link Restoration (LR). The case of multiple link failures, though limited to total failures,

is known in the literature as Shared-Risk Link Group (SRLG) and has been studied, in

particular, in [69, 43]. One of a very few proposed traffic protection mechanisms that
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assumes multiple partial link availability is Unrestricted Reconfiguration (UR) (see [56]).

UR, also known in the literature as Global Rerouting (GR), admits unlimited reconfigura-

tion of flows in case of a network state change. In other words, with UR all flows are first

disconnected and then reestablished from scratch in the surviving link capacity. Exactly

for that reason, UR is hardly applicable in real networks as it is operationally complex,

time-consuming, and may lead to large traffic losses.

In turn, the traffic control mechanism considered in this thesis is novel. FT was

first proposed in the conference papers [58] and [57], and later described in the journal

articles [50] and [17]. FT is a traffic routing and protection method designed specifically

to take into account multiple partial link availability: the size of the path flow is adjusted

dynamically in reaction to fluctuations of available link capacity, the adjustment consisting

in appropriate thinning of the flow compared to its nominal size. FT is related to and

inspired by the following traffic protection and routing mechanisms: Elastic Routing (ER)

and Demand-Wise Shared Protection (DWSP). ER (see [67, 18]) assumes multiple total

link failures. ER enables increasing to a certain extent traffic flows on still available paths

of the demands affected by the failure at the cost of decreasing path flows of the unaffected

demands. DWSP (see [29, 77], and [73, 43] under the name Path Diversity Protection –

PDP) also assumes multiple total link failures. DWSP disconnects path flows affected by

the failure, and guaranties that the unaffected path flows are sufficient to realize (possibly

decreased) demand traffic volumes.

1.5 Thesis contribution

The preliminary results contained in the original publications [58, 57, 50, 17] showed that

FT (and especially its so called affine version, AFT) is a promising traffic protection and

routing method. However, when first proposed, the FT concept was at a preliminary

stage of development, lacking thorough elaboration of optimization models and solution

algorithms, and missing network-technology-related deployment solutions; further devel-

opment was thus required in order to make FT applicable in real networks.

Most of the work on the FT method was then carried out within the research project

“LTCC – Logical Tunnel Capacity Control – a traffic routing and protection strategy for

communication networks with variable link capacity” granted by the National Science

7



Centre of Poland – the grant no. 2015/17/B/ST7/03910. The results of that project have

been presented in the following publications.

• Conference publication [52] and its extended journal version [53] contain an opti-

mization model for affine FT together with an effective solution algorithm for the

model based on the so called path generation and pricing problem.

• Conference publication [51] and its extended journal version [55] contain path gen-

eration algorithm and pricing problem for other potentially implementable variants

of FT, the so called general FT and quadratic FT.

• Conference publication [54] and its extended journal version [27] add robustness to

the optimization models of FT, that is achieved by characterizing the link avail-

ability states by means of the so called state polytope instead of the explicit list of

preselected states. Furthermore, these papers contain effective solution algorithms

for the models based on the combination of path generation algorithm and the so

called cutting-plane algorithm.

• Journal publication [28] extends optimization models of FT by the so called max-

min fairness concept. Moreover, it contains a method for estimating availability of

FSO link capacity in adverse weather conditions.

• Book chapter [49] discusses optimization models of FT along with optimization

models designed specifically for networks in which links interfere with each other.

• Technical reports [36] and [26] focus on FT implementation options and the FT

simulation framework, respectively.

Additionally, though not directly related to the LTCC project and primarily not fo-

cussed on the FT method, the following publications present results that played an im-

portant role in the FT development.

• Conference and journal publication [25] contains a comparison of two pricing prob-

lems for path generation related to UR optimization model.

• Conference publications [14, 65, 64] and journal publications [38, 66] consider re-

silient optimization models of UR based on the so called uncertainty sets and Ben-

ders decomposition. Apart from the optimization models, these articles concen-

trated on development of a method of translating historical weather records into
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appropriate modulation and coding scheme data, which in turn determines FSO link

availability. Moreover, both the optimization models and the translation method

were tested on a realistic FSO network instance, created especially for the purpose

of the research on the basis of the real data of Paris metropolitan area. PhD thesis

[63] summarizes these publications.

The author of this thesis is a co-author of the majority of the above publications,

with the exception of [36, 14, 63]. The author’s work on the LTCC strategy, and the FT

method in particular, concentrated on the algorithmic aspects of the developed optimiza-

tion models and on their computational efficiency. While each of the publications targeted

a specific aspect of the LTCC strategy, this thesis constitutes a comprehensive study of

the FT optimization problem models, problem solution algorithms, and their efficiency,

and focusses on the author’s contribution to the development of the LTCC strategy and

the FT method. In particular, the thesis does not consider deployment models of the

LTCC strategy, which were elaborated in detail in [36], where both centralized, based

on the Software Defined Network (SDN) concept and technology, and distributed, based

on the Generalized Multi-Protocol Label Switching (GMPLS) architecture of the control

plane, architectural solutions of LTCC deployment were defined.

The thesis consists of five chapters. After the description of the problem, the scope of

the research that has been carried out, and the contribution of this thesis in Chapter 1,

Chapter 2 presents optimization models of designing the network that operates according

to the FT principle, defining a general form of the model, and developing its specific

variants that result from different forms of the FT function and different link availability

description approaches. Chapter 3 develops solution methods of solving the optimization

problem, introducing a generic algorithm based on path generation and state generation,

the formulation of the master problem and the set of specific formulations of the pricing

problem corresponding to the variants of the FT function. Chapter 4 describes a series of

numerical experiments aimed at evaluating the computational effectiveness of the solution

algorithms and at comparing the traffic efficiency of the considered variants of the FT

mechanism. Finally, Chapter 5 concludes the thesis.

9



Chapter 2

Optimization problems

In this chapter we formally define network design problems. We express the design prob-

lems as MILP optimization problem models, for each problem defining the parameters

of the problem, its optimization variables and constraints, and the objective function.

We start, however, by defining the formal model of the network, which is shared by all

optimization models. We note that while defining network and problem models we con-

sistently use the convention that while referring to the element of the parameter vector

we put the index in brackets, and while referring to the element of the variable vector we

put it either in the subscript or in the superscript.

2.1 Network model

We model the considered network with graph G = (V , E), where V is the set of nodes

and E is the set of links. We assume that, unless stated otherwise, graph G is undirected,

although most of the following considerations apply to directed graphs as well. We also

assume that G is simple (has no multiple edges); then each link e ∈ E corresponds to an

undirected pair of nodes: e = {v, w}, where v, w ∈ V and v 6= w. For each v ∈ V , δ(v) ⊆ E

denotes the set of links incident to node v. Vector ξ = (ξ(e), e ∈ E) denotes unit capacity

costs of the links, i.e., ξ(e) is the cost of realizing one demand unit on link e. Nominal

link capacities are represented by vector c = (c(e), e ∈ E) when the capacities of links are

given (they are parameters of the optimization model), or by vector y = (ye, e ∈ E) when

they are optimization variables.
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We model network traffic with set D of (traffic) demands: each demand models an end-

to-end aggregated traffic flow entering the network. We assume that traffic demands are

directed, thus for each d ∈ D, let o(d) and t(d) be, respectively, the originating (ingress)

and the terminating (outgress) node of demand d. Vector h = (h(d), d ∈ D) denotes

nominal volumes of the demands.

For each d ∈ D, P̂(d) is a set of all simple paths connecting end nodes o(d) and t(d)

of demand d, and P(d) ⊆ P̂(d) is the set of paths that can actually be used by the

logical tunnels of demand d. We also define set P̂ := ⋃
d∈D P̂(d) of all network paths

and set P := ⋃
d∈D P(d) of all admissible network paths. For all d ∈ D, p ∈ P̂(d),

E(d, p) ⊆ E denotes the set of links of path p of demand d. Alternatively, we also

express the relationship between links and paths with link-path incidence coefficients:

for all e ∈ E , d ∈ D, p ∈ P̂(d), δ(e, d, p) equals 1 if, and only if, e ∈ E(d, p), and 0

otherwise. For all d ∈ D, e ∈ E , R(d, e) ⊆ P(d) and R̂(d, e) ⊆ P̂(d) denote the sets

of paths of demand d that traverse link e: R(d, e) := {p ∈ P(d) : e ∈ E(d, p)} and

R̂(d, e) := {p ∈ P̂(d) : e ∈ E(d, p)}. Finally, for all d ∈ D, p ∈ P̂(d), V(d, p) ⊆ V denotes

the set of nodes of path p of demand d.

Paths correspond to logical tunnels that carry traffic, and thus we model traffic flows

carried by tunnels as path flows. The demand is realized by a set of path flows. For all

d ∈ D, p ∈ P(d), variable x0
dp denotes the nominal size of the path flow of demand d on

path p.

We model network configurations with set S of network states: at any instant of time

the network finds itself in some state s ∈ S. Each state corresponds to a combination

of link capacities. Since the actual capacity of the link is some available portion of the

link’s total capacity c(e), states are also referred to as link availability states. For each

s ∈ S, the capacities of the links in state s we characterize with the vector of link

availability coefficients α(s) = (α(e, s), e ∈ E), α(e, s) ∈ [0, 1], which define the fraction

of the nominal link capacity that is available in state s: for all e ∈ E , s ∈ S, the capacity

of link e available in state s is defined as yse = α(e, s)y0
e and c(e, s) = α(e, s)c(e). We

also use the vector of link degradation coefficients β(s) = (β(e, s), e ∈ E), β(e, s) ∈ [0, 1],

where β(e, s) = 1− α(e, s) for all e ∈ E , s ∈ S.

The state s with all links fully operational (i.e, α(e, s) = 1, for all e ∈ E , s ∈ S) is

called the nominal state. For each s ∈ S, the set of links that are not fully operational in
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state s is defined as E(s) := {e ∈ E : α(e, s) < 1}. In a similar way, for each e ∈ E , the set

of states in which link e is not fully operational is defined as S(e) := {s ∈ S : α(e, s) < 1}.

Certainly, for a nominal state E(s) = ∅.

In any non-nominal state s ∈ S the available link capacities ys are decreased in

comparison with the nominal link capacities y0, and applying the nominal flows x0
dp in

that state might cause link overloads and lead to traffic losses. Therefore, the path flows,

in general, have to be changed in those states. For all s ∈ S, d ∈ D, p ∈ P(d), variable

xsdp denotes the size of the path flow of demand d on path p in state s. Since in some

severe states the network can loose a significant part of its total link capacity, in such

states it is reasonable to accept a partial realization of demands. Thus, for all d ∈ D,

s ∈ S, h(d, s) is the volume of demand d that must be realized in state s; h(d, s) ≤ h(d).

Note that link capacities, demand volumes and path flows are expressed in the same

units (e.g., Gbps).

2.2 Optimization models

In this section we define MILP optimization problem models, starting from the benchmark

model followed by the models related to the LTCC strategy.

2.2.1 Unrestricted Reconfiguration

Unrestricted Reconfiguration (UR) is a traffic protection and routing mechanism applica-

ble to communication networks operating under the assumption of multiple partial link

availability. With UR, in a given state the traffic demands are restored from scratch in

the available capacity. The optimization problem corresponding to UR can be represented

as the following LP problem model using the link-path formulation and state-dependent

path flow variables xsdp.

Problem UR(P ,S):

F = min ∑e∈E ξ(e)ye (2.1a)∑
d∈D

∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)ye, e ∈ E , s ∈ S (2.1b)∑

p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (2.1c)

ye ∈ R+, e ∈ E ; xsdp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S. (2.1d)
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Objective (2.1a) minimizes the total network cost expressed as the sum of link capacities

weighted by their unit capacity costs. Constraint (2.1b) ensures that for all e ∈ E , s ∈ S,

the available link capacity is not exceeded by the corresponding link loads. Constraint

(2.1c) ensures that for all d ∈ D, s ∈ S, path flows are sufficient to realize the reduced

demand volumes.

Note that in order to solve (2.1) optimally, all elementary paths P̂ should be taken

into account. As the number of elementary paths grows exponentially with the graph size,

the formulation (2.1) becomes non-compact due to the exponential number of path flow

variables xsdp. Still, UR can be formulated as a compact LP in node-link notion with link

flow variables xsed instead of path flow variables. Alternatively, it is possible to indirectly

consider all elementary paths in (2.1) by using the so called column generation technique

(see Section 3.1).

Due to the fact that UR applies no restrictions on flow rearrangement during the

change of the network state, the mechanism becomes hardly usable in the networking

practice. Yet, UR gives the lower-bound on the network cost and serves well as a compu-

tationally efficient benchmark mechanism for comparison while evaluating more specific

network protection mechanisms.

2.2.2 Flow Thinning

In its general form, FT is a traffic protection and routing mechanism similar to the

UR mechanism, but with additional restrictions on flow rearrangement: state-dependent

path flows are thinned with respect to their corresponding nominal path flows. The

following LP formulation represents the general optimization problem for FT; it is a

general formulation of the problem as it does not specify the FT formula.

Problem FT(P ,S):

F = min ∑e∈E ξ(e)y0
e (2.2a)∑

d∈D
∑
p∈P(d) δ(e, d, p)x0

dp ≤ y0
e , e ∈ E (2.2b)∑

p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (2.2c)∑

d∈D
∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)y0

e , e ∈ E , s ∈ S(e) (2.2d)

xsdp ≤ x0
dp, d ∈ D, p ∈ P(d), s ∈ S (2.2e)

y0
e ∈ R+, e ∈ E ; x0

dp, x
s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S. (2.2f)
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The formulation (2.2) (unlike the formulation (2.1)) distinguishes the nominal state among

all other states and makes use of nominal path flows variables x0
dp. Constraint (2.2b) en-

sures that nominal flows do not cause overflowing of the nominal link capacity. Constraint

(2.2e) ensures thinning: i.e., no state-dependent path flow xsdp exceeds its corresponding

nominal path flows x0
dp. The remaining constraints (2.2c) and (2.2d) are similar to con-

straints (2.1c) and (2.1b) in the UR formulation, respectively. The only difference in these

constraints is that (2.2d) is written down not for all link-state pairs (i.e., e ∈ E , s ∈ S),

but only for such link-state pairs in which the considered link is not fully available. The

reason is that for any state s ∈ S \ S(e) constraint (2.2d) is auxiliary as it is implied by

constraints (2.2b) and (2.2e).

Introducing the thinning constraint in FT significantly reduces the number of flows

that are adjusted in a transient period, i.e., when the network is moving from some state

s1 to some state s2, as compared to UR. With FT, the number of adjusted flows is upper-

bounded by the number of flows traversing links that are not fully available in either s1

or s2, while with UR virtually all flows can be changed.

As flows are not adjusted instantly, some flows can be increased before other flows

are decreased, causing potential link overloads. Thus, small number of adjusted flows

achieved with FT decreases the chance of link overloads (traffic losses) during transient

period. The disadvantage of FT as compared with UR is following: in order to realize the

same traffic FT requires in general at least as much total link capacity as UR, and hence

network cost F is in general higher than for UR.

2.2.3 Flow thinning formula

The practical usefulness of the general FT presented in Section 2.2.2 is limited, mainly

because of potential difficulties with the real-time broadcasting of the current link capacity

information and with defining path flow values in the states that are not considered during

optimization. The reason is as follows. Suppose that a network is in operational mode,

and it uses path flows xsdp obtained from solving the FT formulation (2.2). In order to

properly use these flows, the current network state s should be known to all nodes that

are originating nodes of at least one demand path (thus, practically to all network nodes).

As state s is defined by the vector of availability coefficients of all links α(s), the vector

should be known to all nodes. Otherwise, any differences between the actual network state

14



and the states seen from the originating nodes’ perspective could lead to traffic losses.

Such differences are inevitable, as it is problematic to disseminate the current availability

coefficients of all links to all originating nodes in real-time. Moreover, when the network

finds itself in a state not considered during optimization, no path flows are defined for

such a state, which is another source of potential traffic losses.

Using the so called flow thinning formula is a way to overcome the aforementioned

difficulties. Flow thinning formula is based on the notion of decision rules [5]. With the

FT formula, path flows xsdp do not directly depend on specific state s ∈ S. Instead, they

are defined for all d ∈ D, p ∈ P(d) independently through function Fdp, arguments of

which, and they are link degradation coefficients β(s), describe the state:

xsdp = Fdp(β(s)). (2.3)

Note that formula (2.3) could be defined through the vector of link availability coefficients

α(s) as well, still, link degradation coefficients are used here to make the forthcoming

formulae and formulations more concise. For given d ∈ D, p ∈ P(d), s ∈ S, the following

quadratic form of the link degradation coefficients is the most general form of the flow

thinning formula considered in this thesis:

xsdp = z0
dp −

∑
e∈Ẽ(d,p) β(e, s)zedp +∑

{e,e′}∈Ẽ |2|(d,p) β(e, s)β(e′, s)zee′dp . (2.4)

In (2.4), the predefined set Ẽ(d, p) ⊆ E (called the range of the flow thinning formula)

consists of the links whose degradation coefficients influence the flow on path p ∈ P(d)

of demand d ∈ D, and Ẽ |2|(d, p) is the set of all 2-element subsets of Ẽ(d, p). For given

d ∈ D, p ∈ P(d), vector of variables

zdp := (z0
dp; zedp, e ∈ Ẽ(d, p); zee′dp , {e, e′} ∈ Ẽ |2|(d, p)) (2.5)

expresses in what extent a certain degradation coefficient β(e, s) of link e ∈ E in state

s ∈ S influences state-dependent path flow xsdp. Variables in zdp are measured in the same

units as xsdp. Note that when the flow thinning formula (2.4) is applied in LP, path flow

variables xsdp become auxiliary because they are defined by other variables.

2.2.4 Variants of flow thinning formula

The formula (2.4) is the most general, and several special cases of it are considered in

this thesis. These cases (also called variants) differ by three aspects: form, range, and

structure.
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2.2.4.1 Form

Two types of the form of the flow thinning formula are considered:

• quadratic Q: (2.4);

• affine A: xsdp = z0
dp −

∑
e∈Ẽ(d,p) β(e, s)zedp.

Clearly, the affine formula is a special case of the quadratic formula. Hence, the quadratic

form is in general more effective in terms of traffic protection and requires less protec-

tion capacity than the affine form. On the other hand, the optimization process for the

quadratic formula is computationally more complex and potentially less efficient than for

the affine formula (see Section 3.2.6).

2.2.4.2 Range

Three types of the range of the flow thinning formula, that defines set Ẽ(d, p) ⊆ E , are

considered:

• path’s links E(d, p): the formula depends only on the degradation coefficients of the

links along the path;

• path’s incident links E+(d, p) := ⋃
v∈V(d,p) δ(v): the formula depends on the degra-

dation coefficients of the links incident to the nodes along the path;

• all links E : the formula depends on the degradation coefficients of all links of the

network.

Clearly, the larger the range of the flow thinning formula the more effective traffic pro-

tection can be achieved. On the other hand, the range of the formula has strong impact

on the implementation feasibility of the FT mechanism, since the all links range E re-

quires some kind of (impractical) link capacity state signalling mechanism of the flooding

kind. The two remaining range variants are much less demanding in this aspect, as the

signalling conveys only the information pertaining to the links of the managed tunnel. As

far as the efficiency of the optimization process is concerned, the E(d, p) and E variants

considerably outperform the E+(d, p) variant.
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2.2.4.3 Structure

Two types of the structures of the flow thinning formula are considered:

• general G: z0
dp ∈ R and zdp ∈ R;

• simple S: z0
dp = x0

dp and zdp ∈ R+.

Once again, since the simple structure is a special case of the general structure, in terms

of traffic protection the latter is in general more effective than the former. However, the

simple structure appears to be considerably more safe (and thus more effective) when

applied to the states that are not foreseen in the optimization (i.e., the states outside the

state list S), because it always thins down the nominal flows for any non-nominal state,

which may not be the case for the general structure. Moreover, with the simple formula,

the more severe the link capacity degradation appears to be the more flows are thinned.

All combinations of the form, range, and structure result in 12 valid variants of the

flow thinning formula presented in Table 2.1.

Table 2.1: Variants of the FT formula.

form range str. formula

A

E(d, p)
S xsdp = x0

dp −
∑

e∈E(d,p)
β(e, s)zedp

G xsdp = z0
dp −

∑
e∈E(d,p)

β(e, s)zedp

E+(d, p)
S xsdp = x0

dp −
∑

e∈E+(d,p)
β(e, s)zedp

G xsdp = z0
dp −

∑
e∈E+(d,p)

β(e, s)zedp

E
S xsdp = x0

dp −
∑
e∈E

β(e, s)zedp

G xsdp = z0
dp −

∑
e∈E

β(e, s)zedp

Q

E(d, p)
S xsdp = x0

dp −
∑

e∈E(d,p)
β(e, s)zedp + ∑

{e,e′}∈E |2|(d,p)
β(e, s)β(e′, s)zee′dp

G xsdp = z0
dp −

∑
e∈E(d,p)

β(e, s)zedp + ∑
{e,e′}∈E |2|(d,p)

β(e, s)β(e′, s)zee′dp

E+(d, p)
S xsdp = x0

dp −
∑

e∈E+(d,p)
β(e, s)zedp + ∑

{e,e′}∈E+|2|(d,p)
β(e, s)β(e′, s)zee′dp

G xsdp = z0
dp −

∑
e∈E+(d,p)

β(e, s)zedp + ∑
{e,e′}∈E+|2|(d,p)

β(e, s)β(e′, s)zee′dp

E
S xsdp = x0

dp −
∑
e∈E

β(e, s)zedp + ∑
{e,e′}∈E |2|

β(e, s)β(e′, s)zee′dp

G xsdp = z0
dp −

∑
e∈E

β(e, s)zedp + ∑
{e,e′}∈E |2|

β(e, s)β(e′, s)zee′dp
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As an example, the following LP problem represents the FT formulation with the flow

thinning formula of affine form, simple structure, and path’s links range:

Problem FT/A/S/E(d, p) (P ,S):

F = min ∑e∈E ξ(e)y0
e (2.6a)∑

d∈D
∑
p∈P(d) δ(e, d, p)x0

dp ≤ y0
e , e ∈ E (2.6b)∑

p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (2.6c)∑

d∈D
∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)y0

e , e ∈ E , s ∈ S(e) (2.6d)

xsdp = x0
dp −

∑
e∈E(d,p) β(e, s)zedp, d ∈ D, p ∈ P(d), s ∈ S (2.6e)

y0
e ∈ R+, e ∈ E ; x0

dp, x
s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S; (2.6f)

zedp ∈ R+, d ∈ D, p ∈ P(d), e ∈ E(d, p). (2.6g)

The above formulation differs from the formulation (2.2) in equalities (2.6e), which define

the state-dependent path flows using the flow thinning formula. As variables zedp are

nonnegative, on the right-hand side of (2.6e) a positive quantity is always subtracted

from x0
dp, hence the thinning feature holds in the same way as in (2.2e). For all the

variants of the flow thinning formula with general structure this is not the case, and

thinning constraint (2.2e) should be explicitly added to the formulation.

Note, that introducing flow thinning formula (2.6e) leads to larger linear programs

(due to additional variables zedp) and potentially worse network cost F (due to stricter

thinning) as compared to FT. Still, FT/A/S/E(d, p) is easier to implement in practice

than FT, as flow thinning formula (2.6e) provides a reasonable flow approximation for all

possible network states, also for states s /∈ S. Moreover, the real-time broadcasting of

the current link capacity information also becomes easier, as calculation of the path flow

size no longer requires from demands’ originating nodes knowing current values of link

availability coefficients of all links in the network, but only of the links along the path

(note the summation in (2.6e)).

2.3 State polytope

The link availability states are expressed so far through a predefined explicit list S. Then,

the numbers of constraints and variables in the problem formulations UR, FT, and FT ex-

tended by the flow thinning formula, are proportional to the number of states. Therefore,
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in practice, the list cannot be too large; in particular its size should not grow exponentially

with the size of the network, as otherwise the resulting formulations become non-compact

and contain an excessive number of constraints and variables.

This is a well known drawback of optimization problems under uncertainty where

many states are used to represent the possible values of uncertain parameters. In stochas-

tic programming, this difficulty is alleviated by sampling relevant subset of states and

by predicting future states, which leads to solutions that are good enough with high

probability [39, 79, 24].

In this thesis there is no probability associated with the states. Instead, the robust

optimization paradigm [6] is adopted and the predefined explicit list of states is replaced

with the convex hull of the set of states, which is called the state polytope in what follows.

Considering the convex hull of the set of states does not further restrict the problem, as

one readily verifies that a problem solution is feasible for a set of states if, and only if,

it is feasible for all states in its convex hull (for a formal proof see, e.g., [4]). It turns

out that the state polytope enables considering exponentially many different states in a

compact manner. The state polytope can be formally constructed as follows.

2.3.1 State polytope description

Let K = {1, 2, . . . , K}, K ≥ 1, be a set of link (state) types. Then a binary vector

u = (uke ∈ {0, 1}, e ∈ E , k ∈ K) is a state pattern (vector) that describes the network

state by defining the (state) type of each link, if it satisfies condition

∑
k∈K u

k
e = 1, e ∈ E . (2.7a)

The idea is to make link availability coefficients and demand volumes dependent on state

patterns (instead of states). For each k ∈ K, let a(k) and b(k) be, respectively, the

link availability ratio and the traffic reduction coefficient of link type k, where sequence

a = (a(k), k ∈ K) is strictly decreasing and sequence b = (b(k), k ∈ K) is non-increasing:

1 = a(1) > a(2) > . . . > a(K − 1) > a(K) ≥ 0 (2.8a)

0 = b(1) ≤ b(2) ≤ . . . ≤ b(K − 1) ≤ b(K) < 1. (2.8b)

For state pattern u we define demand (volume) reduction ratio as follows:

B(u) := 1−∑k∈K b(k)Uk. (2.9)
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For each d ∈ D, let H(d) be the reference demand volume of demand d. Then, for state

pattern u link availability coefficients and demand volumes are defined as:

α(e, u) := ∑
k∈K a(k)uke , e ∈ E (2.10a)

h(d, u) := H(d)B(u), d ∈ D. (2.10b)

Thus, the reduction of the demand volume with respect to the reference volume for each

k ∈ K is proportional to the number of links Uk of type k in pattern u and their traffic

reduction coefficients b(k). Note that the demand volumes H(d) are thinned uniformly

according to B(u), which plays a role of a measure of the amount of unavailable capacity

(as a ratio) for state pattern u. Unfortunately, condition (2.9) allows for negative-valued

demand reduction ratios. Hence, in order to fulfil the obvious requirement 0 ≤ B(u) ≤ 1,

the quantities b(k) must satisfy the additional condition:

∑K
k=k(0) b(k)N(k) + b(k(0)− 1)(|E| −∑K

k=k(0) N(k)) ≤ 1, (2.11)

where k(0) is the smallest index k for which either of the two following conditions holds:

∑K
k N(i) = |E| (2.12a)∑K
k) N(i) < |E| ∧ ∑K

k−1 N(i) > |E|. (2.12b)

Now, for each k ∈ K, let N(k) ≥ 0 be an upper bound on the number of links with type

k such that:

1 ≤ N(k) ≤ |E|, k ∈ K (2.13a)∑
k∈KN(k) ≥ |E|. (2.13b)

Then let B(N) be the set of all state pattern vectors u such that for each k ∈ K, the

number Uk of links of type k is bounded by N(k) (note that ∑k∈K U
k = |E|):

∑
k∈K u

k
e = 1, e ∈ E (2.14a)∑

e∈E u
k
e = Uk, k ∈ K. (2.14b)

Uk ≤ N(k), k ∈ K. (2.14c)

Finally, given set K and vectors N = (N(k), k ∈ K), a = (a(k), k ∈ K), b = (b(k), k ∈ K),

and H = (H(d), d ∈ D), we define the set of states B̂(N, a, b,H) = {s(u) : u ∈ B(N)}

determined by the set of state patterns B(N), with each state s(u) ∈ B̂(N, a, b,H) being
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characterized by link availability coefficients α(u) specified by (2.10a), and by demand

volumes h(u) specified by (2.10b).

It turns out that the so defined set of states B̂(N, a, b,H) can be used to model a

variety of particular state lists [50], for example all combinations of simultaneous degra-

dations of at most N(1) links degraded to availability ratio a(1) and at most N(2) links

degraded to availability ratio a(2) and at most N(3) links degraded to availability ratio

a(3). Section 4.2 contains numerical study devoted, among others, to the modeling and

usage of such state lists.

2.3.2 Real-valued state polytope

The state polytope introduced in the previous section is constructed using binary vectors

u. Thus, any LP formulation enhanced with such a state polytope becomes a MILP

formulation. Fortunately, it happens that binary vectors u can be replaced by their real-

valued counterparts without any further elaboration of the state polytope, which enables

solving the LP formulation.

Consider the state polytope Q(N) in the |E||K|-dimensional space of real-valued vectors

with non-negative components defined by conditions (2.14); i.e., u ∈ R|E||K|+ instead of

u ∈ {0, 1}|E||K|. Observe that the vertices of polytope Q(N) are binary since the coefficient

matrix specifying constraints (2.14) is identical to the one of the assignment problem, and

the constraint matrix of the latter problem is known to be totally unimodular [40]. Thus,

Q(N) = conv(B(N)), that is Q(N) is the convex hull of B(N). Therefore the following

property holds:

Property 2.1. Optimization of any linear objective function over B(N) (which is a binary

program) can be solved as a linear program with the same objective function over Q(N):

an optimal vertex solution of the latter is an optimal solution of the former.

Property 2.1 becomes crucial when solving FT optimization problems formulated with

a set of states specified by B̂(N, a, b,H), as will be demonstrated in Section 3.3.1.
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Chapter 3

Solution algorithms

The presented LP problem formulations related to FT and its formula variants are hardly

scalable because of their non-compactness. Recall that for multicommodity flow networks

the size (the number of variables and constraints) of a compact LP problem is polynomially

bounded by the size of the graph, while the size of a non-compact LP problem grows

exponentially with that size. There are two sources of non-compactness of the presented

LP formulations: the number of paths and the number of states. In case of the FT

formulations, both the set of path-flow variables and the set of state-dependent constraints

grow exponentially with the size of the network graph. In order to solve the issue of non-

compactness from the paths and states points of view, one can apply column (path)

generation and row (state) generation, respectively.

3.1 Path Generation

Path Generation (PG, see [1, 43, 56]) is a well-known technique in multicommodity flow

networks related to column generation in LP (see [34]). Instead of directly including all

elementary paths in the formulations, PG enables considering all of them indirectly while

iteratively expanding the list of the paths considered in the problem formulation.

A general idea of PG is the following. Consider the Master Problem (MP) P(P) with

a limited list of paths. Start from some initial path list P and iteratively solve problem

P(P), generate candidate paths (e.g., one per demand) and add them to the path list

P , provided that they are worth adding (i.e., may improve the solution). The so called

Pricing Problem (PP) is used to generate the best candidate path based on an optimal
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solution of the current problem dual to P(P). Adding a new path to the path list P of

problem P(P) results in adding new variables and constraints corresponding to the path

to the problem P’s formulation.

3.1.1 Dual problem to FT

Derivation of the PP for a given problem P starts from formulating the dual problem D

of P. Using the FT formulation (2.2) as an example, let us derive the problem DFT dual

to FT. Recall that the dual to the LP problem min {cTx : Ax ≥ b ∧ x ≥ 0 ∧ x ∈ Rn}

(in matrix notation) is an LP problem max {bTy : ATy ≤ c ∧ y ≥ 0 ∧ y ∈ Rm}; for more

details on the dual theory refer to [31, 56]. After adding the dual variables in square

brackets to the left of the constraints, the FT formulation (2.2) is as follows:

Problem FT(P ,S):

F = min ∑e∈E ξ(e)y0
e (3.1a)

[π0
e ≥ 0] ∑d∈D

∑
p∈P(d) δ(e, d, p)x0

dp ≤ y0
e , e ∈ E (3.1b)

[λsd ≥ 0] ∑p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (3.1c)

[πse ≥ 0] ∑d∈D
∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)y0

e , e ∈ E , s ∈ S(e) (3.1d)

[σsdp ≥ 0] xsdp ≤ x0
dp, d ∈ D, p ∈ P(d), s ∈ S (3.1e)

ye ∈ R+, e ∈ E ; x0
dp, x

s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S. (3.1f)

Thus the dual problem DFT of FT is:

Problem DFT(P ,S):

G = max ∑d∈D
∑
s∈S h(d, s)λsd (3.2a)

[y0
e ≥ 0] π0

e +∑
s∈S(e) α(e, s)πse ≤ ξ(e), e ∈ E (3.2b)

[x0
dp ≥ 0] ∑s∈S σ

s
dp ≤

∑
e∈E δ(e, d, p)π0

e , d ∈ D, p ∈ P(d) (3.2c)

[xsdp ≥ 0] λsd ≤ σsdp +∑
e∈E(s) δ(e, d, p)πse, d ∈ D, p ∈ P(d), s ∈ S (3.2d)

π0
e , π

s
e ∈ R+, e ∈ E , s ∈ S(e); (3.2e)

λsd, σ
s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S. (3.2f)

3.1.2 Pricing problem for FT

Now let us formulate the PP for the FT problem. First, let us fix a demand d ∈ D and

consider a path q ∈ P̂(d) \ P(d) that is not yet in the current path list P . Adding path
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q to the current path list P of the dual (3.2) consists in adding both new dual variables

σs, s ∈ S, and new constraints (3.2c) and (3.2d). It is possible that for all values of the

variables λs, s ∈ S, the optimal dual solution (π∗, λ∗) will violate some of the newly added

constraints. If that is the case, (π∗, λ∗) will no longer be the optimal solution as it will

be separated from the dual polyhedron of DFT(P ∪ {q},S) by the violated constraints.

The minimum over σs, s ∈ S, of the sum of such violations is expressed as the following

quantity:

V (q) = min
σs∈R+, s∈S

{
max

{∑
s∈S σ

s − |q|0, 0
}

+∑
s∈S max

{
λsd
∗ − σs − |q|s, 0

}}
. (3.3)

In (3.3), |q|0 is the nominal dual length of path q (|q|0 := ∑
e∈E(d,q) π

0
e
∗), and |q|s is the

state-dependent dual length of q for state s (|q|s := ∑
e∈E(d,q)∩E(s) π

s
e
∗, s ∈ S).

The goal of PP is to find for a given demand d ∈ D path q ∈ P̂(d) that maximizes

violation V (q). Arguably, the positive maximum violation V ∗(q) implies that the cor-

responding path does not belong to the current path list P(d). Thus, the path list can

be expanded by path q: P(d) := P(d) ∪ {q(d)}. In fact, finding a path with the most

violation is not necessary, since any path with positive violation is a valid candidate to be

added to the path list. Still, adding paths with the maximum violation can significantly

accelerate the process of path generation, provided that finding each such path is not sig-

nificantly more time consuming as compared to finding any positive-violation path that

is not yet in the path list. The presented PP that maximizes V (q) can be formulated as

the following MILP problem (skipping the superscript ∗ in π∗, λ∗):

Problem PP-FT(d, λ, π):

min ∑e∈E π
0
eue +∑

s∈S

(∑
e∈E(s) π

s
eue − λsd

)
Y s (3.4a)∑

e∈δ(v) ue = 1, v ∈ {o(d), t(d)} (3.4b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {o(d), t(d)} (3.4c)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V \ {o(d), t(d)}; Y s ∈ B, s ∈ S. (3.4d)

An optimal solution (u∗, r∗, Y ∗) of (3.4) defines a path q := {e ∈ E : u∗e = 1} that

maximizes the violation V (q) of (3.3). First, equations (3.4b) and (3.4c) ensure that the

obtained path is indeed a valid path between o(d) and t(d). Second, the objective (3.4a)

is constructed in such a way, that in any optimal solution Y s = 1 when |q|s < λsd and

Y s = 0 when |q|s > λsd: as the objective (3.4a) is of minimization type, all the terms
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∑
e∈E π

s
eue − λsd that are positive will be eliminated, while all the negative terms will be

kept. When the violation is positive, the so defined path q should be added to DFT.

Observe, that formulation (3.4) is nonlinear due to the multiplication of variables ue
and Y s in the objective (3.4a). In order to eliminate such bi-linearities let us rewrite the

formulation (3.4) in the following way:

Problem PP-FT(d, λ, π):

min ∑e∈E π
0
eue +∑

s∈S
∑
e∈E(s) π

s
eZ

s
e −

∑
s∈S λ

s
dY

s (3.5a)∑
e∈δ(v) ue = 1, v ∈ {o(d), t(d)} (3.5b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {o(d), t(d)} (3.5c)

Zs
e ≤ ue, Z

s
e ≤ Y s, Zs

e ≥ 0, Zs
e ≥ ue + Y s − 1, s ∈ S, e ∈ E(s) (3.5d)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V \ {o(d), t(d)}; Y s ∈ B, s ∈ S; (3.5e)

Zs
e ∈ R, s ∈ S, e ∈ E(s). (3.5f)

In (3.5), new binary variables Zs
e , s ∈ S, e ∈ E(s), substitute the product ueY s in the

objective, while constraints (3.5d) force that Zs
e = ueY

s for all s ∈ S, e ∈ E(s). Note,

that as variables ue and Y s are binary, variables Z can be continuous (thus, Zs
e ∈ R is

assumed).

Certainly, it is possible to modify formulation (3.5) for directed networks (with links in

E being directed) using the node-arc formulation with load conservation equations instead

of (3.5b)-(3.5c):

∑
e∈δ−(t(d)) ue −

∑
e∈δ+(t(d)) ue = 1 (3.6a)∑

e∈δ+(v) ue −
∑
e∈δ−(v) ue = 0, v ∈ V \ {o(d), t(d)}. (3.6b)

3.1.3 Path Generation algorithm

Using the derived dual (3.2) and pricing (3.5) problems for FT (2.2), the path generation

algorithm can be stated in the form of the following pseudocode:

Algorithm 1 PGA(P0)
1: iter ← 0

2: repeat

3: (π∗, λ∗)← DFT(Piter)

4: Piter+1 ← Piter
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5: for d ∈ D do

6: (q∗, F ∗)← PP-FT(d, π∗, λ∗)

7: if F ∗ > 0 then

8: Piter+1 ← Piter+1 ∪ {q∗}

9: end if

10: end for

11: iter ← iter + 1

12: until Piter = Piter−1

Algorithm 1 (PGA) accepts initial path list P0 as an input argument. The initial

path list should contain at least one path for each demand. The main loop (lines 2-12)

of the algorithm starts in line 3 from solving problem (3.2) and obtaining its optimal

solution (π∗, λ∗). Next, in lines 5-10, the algorithm tries to find for each demand a

candidate path q∗ by solving PP-FT (formulation (3.5)). In case of success, (i.e, when the

obtained objective function value F ∗ of PP-FT is positive), path q∗ is added to the path

list Piter. The main loop is repeated until the path list has been extended by at least one

path. Otherwise, the algorithm stops and the final path list is sufficient to solve FT (2.2)

optimally. Actually, there is no need to solve FT after PGA as it has already been solved

indirectly in the last iteration of the main loop in line 3.

Note that in the implementation of Algorithm 1 one can use a single path list P instead

of consecutive path lists Piter as there is no real dependence between the path list in a

given iteration and the path lists from previous iteration. Also note, that partial solutions

of the algorithm obtained after every iteration of the main loop in line 3 are valid, though

not optimal, solutions of FT.

The presented algorithm is of a general form and is valid for all the variants of the FT

formula described in Section 2.2.4. In order to apply Algorithm 1 for the FT formulation

with a certain variant of the FT formula, one should replace the dual problem DFT (in

line 3) and the pricing problem PP-FT (in line 6) with their counterparts, appropriately

derived for the considered formulation. The following section is dedicated to derivation

of pricing problems for formulations with selected variants of the FT formula.
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3.2 Pricing problems for FT variants

Pricing problems for formulations with various FT formulae turn out to be more complex

as compared to PP for FT. The derivations are similar to the one already presented,

yet they consist of some additional steps. Since some of the derivations have the same

starting part, that common part is presented first until branching out to specific variants

of FT formula is inevitable. Let us start with deriving the pricing problem for FT with

affine formula, simple structure, and an arbitrary range (i.e., FT/A/S/Ẽ(d, p)), and then

proceed with specific ranges.

3.2.1 PP for FT/A/S/Ẽ(d, p)

The primal and dual LP formulations for FT/A/S/Ẽ(d, p) (P ,S) are as follows:

Problem FT/A/S/Ẽ(d, p) (P ,S):

F = min ∑e∈E ξ(e)y0
e (3.7a)

[π0
e ≥ 0] ∑d∈D

∑
p∈R(d,e) x

0
dp ≤ y0

e , e ∈ E (3.7b)

[λsd ≥ 0] ∑p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (3.7c)

[πse ≥ 0] ∑d∈D
∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)y0

e , e ∈ E , s ∈ S(e) (3.7d)

[ϕsdp] xsdp = x0
dp −

∑
e∈Ẽ(d,p) β(e, s)zedp, d ∈ D, p ∈ P(d), s ∈ S (3.7e)

ye ∈ R+, e ∈ E ; x0
dp, x

s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S; (3.7f)

zedp ∈ R+, d ∈ D, p ∈ P(d), e ∈ Ẽ(d, p). (3.7g)

Problem DFT/A/S/Ẽ(d, p) (P ,S):

G = max ∑d∈D
∑
s∈S h(d, s)λsd (3.8a)

[y0
e ≥ 0] π0

e +∑
s∈S(e) α(e, s)πse ≤ ξ(e), e ∈ E (3.8b)

[x0
dp ≥ 0] ∑s∈S ϕ

s
dp ≤

∑
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (3.8c)

[xsdp ≥ 0] λsd ≤ ϕsdp +∑
e∈E(d,p)∩E(s) π

s
e, d ∈ D, p ∈ P(d), s ∈ S (3.8d)

[zedp ≥ 0] ∑s∈S β(e, s)ϕsdp ≥ 0, d ∈ D, p ∈ P(d), e ∈ Ẽ(d, p) (3.8e)

π0
e , π

s
e ∈ R+, e ∈ E , s ∈ S(e); λsd ∈ R+, d ∈ D, s ∈ S; (3.8f)

ϕsdp ∈ R, d ∈ D, p ∈ P(d), s ∈ S. (3.8g)

Similarly to the derivation of PP in Section 3.1.2, let us fix a demand d, and consider a

path q that is not yet in the current path list P (i.e., q ∈ P̂(d) \ P(d)). Adding path q
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to the current path list P of the dual (3.8) consists in adding both new dual variables

ϕs, s ∈ S, and new constraints (3.8c)-(3.8e). It is possible that for all values of the

variables ϕs, s ∈ S, the optimal dual solution (π∗, λ∗) will violate some of the newly

added constraints. If that is the case, (π∗, λ∗) will no longer be the optimal solution

as it will be separated from the dual polyhedron of DFT/A/S/Ẽ(d, p)(P ∪ {q},S) by

the violated constraints. The minimum over the vector ϕ := (ϕs, s ∈ S) of the sum of

such violations is expressed as the following quantity (recall that |q|0 = ∑
e∈E(d,q) π

0
e
∗ and

|q|s = ∑
e∈E(d,q)∩E(s) π

s
e
∗, s ∈ S):

V (q) = min
ϕs∈R, s∈S

{
max

{∑
s∈S ϕ

s − |q|0, 0
}

+
∑
s∈S max

{
λsd
∗ − |q|s − ϕs, 0

}
+∑

e∈Ẽ(d,q) max
{
−∑s∈S β(e, s)ϕs, 0

}}
. (3.9a)

The following LP allows to evaluate V (q) for a given path q ∈ P̂(d) \ P(d):

V (q) = min
{
Z +∑

s∈S Ys +∑
e∈Ẽ(d,q) Xe

}
(3.10a)

[g ≥ 0] Z ≥ ∑s∈S ϕ
s − |q|0 (3.10b)

[as ≥ 0] Ys ≥ λsd
∗ − |q|s − ϕs, s ∈ S (3.10c)

[be ≥ 0] Xe ≥ −
∑
s∈S β(e, s)ϕs, e ∈ Ẽ(d, q) (3.10d)

Z ∈ R+; Ys ∈ R+, s ∈ S; Xe ∈ R+, e ∈ Ẽ(d, q); ϕs ∈ R, s ∈ S. (3.10e)

We should find a q ∈ P̂(d) \ P(d) that maximizes V (q). Since V (p) is equal to zero for

each path p ∈ P(d), and a new path q is added to the current path list P(d) only when

V (q) is greater than zero, V (q) can be maximized over all paths q ∈ P̂(d). Thus, we

might solve problem (3.10) with the objective (3.10a) replaced with

max
q∈P̂(d)

min
X,Y,Z,ϕ

{
Z +∑

s∈S Ys +∑
e∈Ẽ(d,q) Xe

}
, (3.11)

where vectors X and Y defined as X := (Xe, e ∈ Ẽ(d, q)) and Y := (Ys, s ∈ S), respec-

tively.

Unfortunately, formulation (3.10) with objective (3.10a) replaced with (3.11) cannot

be solved directly. The reason is that our goal is to maximize the value of V (q) over, in

particular, the paths outside the current list, i.e., for q ∈ P̂(d) \ P(d), and this cannot

be achieved with the minimization objective as in (3.10a). This issue can be resolved by
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considering the problem dual to (3.10), formulated using the dual variables specified in

the square brackets in constraints (3.10b)-(3.10d):

V (q) = max
{
− g|q|0 +∑

s∈S(g −∑
e∈Ẽ(d,q) β(e, s)be)(λsd∗ − |q|s))

}
(3.12a)

g ≤ 1 (3.12b)

be ≤ 1, e ∈ Ẽ(d, q) (3.12c)∑
e∈Ẽ(d,q) β(e, s)be ≤ g, s ∈ S (3.12d)

g ∈ R+; be ∈ R+, e ∈ Ẽ(d, q). (3.12e)

Note that dual variables as, s ∈ S, have been eliminated in (3.12). This is possible because

in (3.7) variables xsdp, d ∈ D, p ∈ P(d), s ∈ S, are auxiliary due to the equality type of

constraint (3.7e). Thus, variables xsdp can be expressed through x0
dp and zedp, e ∈ Ẽ(d, p),

provided that xsdp is kept positive, i.e., x0
dp ≥

∑
e∈Ẽ(d,p) β(e, s)zedp.

The next step is to introduce binary variables ue, e ∈ E , that define the set of links that

represent path q: E(d, q) := {e ∈ E : ue = 1}. With those variables, nominal and state-

dependent dual lengths of q take the form of |q|0 = ∑
e∈E π

0
eue and |q|s = ∑

e∈E(s) π
s
eue, s ∈

S, respectively. Therefore, objective (3.12a) can be rewritten as follows (note that from

now on the superscript ∗ in π∗ and λ∗ is skipped):

V (u) = max
{
− g(∑e∈E π

0
eue) +∑

s∈S

(
g −∑

e′∈Ẽ(d,q) β(e′, s)be′)(λsd −
∑
e∈E(s) π

s
eue)

}
.

(3.13)

Finally, adding path-defining constraints (3.4b)-(3.4c) (recall that δ(v) in those con-

straints denotes the set of all links incident to node v ∈ V), treating ue, e ∈ E , as

variables, and transforming objective (3.13) leads to the following formulation of the PP

for FT/A/S/Ẽ(d, p) (formulated as (3.7)):

Problem PP-FT/A/S/Ẽ(d, q)(d, λ, π):

V = max
{
−∑e∈E π

0
egue + (∑s∈S λ

s
d)g −

∑
s∈S

∑
e∈E(s) π

s
egue+∑

s∈S
∑
e′∈Ẽ(d,q)

∑
e∈E(s) β(e′, s)πsebe′ue−∑

s∈S
∑
e′∈Ẽ(d,q) λ

s
dβ(e′, s)be′

}
(3.14a)∑

e∈δ(v) ue = 1, v ∈ {o(d), t(d)} (3.14b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {o(d), t(d)} (3.14c)

g ≤ 1 (3.14d)
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be′ ≤ 1, e′ ∈ Ẽ(d, q) (3.14e)∑
e′∈Ẽ(d,q) β(e′, s)be′ ≤ g, s ∈ S (3.14f)

g ∈ R+; be′ ∈ R+, e
′ ∈ Ẽ(d, q); (3.14g)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V . (3.14h)

An optimal solution (u∗, r∗) of the above formulation defines (through constraints (3.14b)-

(3.14c)) the path q, and more specifically, the set of links and nodes that q consists of:

E(d, q) := {e ∈ E : u∗e = 1} and V(d, q) := {v ∈ V : r∗v = 1}. The so obtained path q

should be added to (3.7) if V (u) > 0.

Note that constraints (3.14b)-(3.14c) ensure that any feasible set U := {e ∈ E : ue =

1} contains an elementary path connecting o(d) and t(d) and, possibly, a set of disjoint

isolated loops. As variables rv, v ∈ V are binary, the path itself is necessarily elementary

(note that making these variables integer-valued would allow the path to visit a certain

node several times and thus to contain loops). The reason isolated loops may appear

in optimal PP solutions is a tradeoff in the number of elements in the set U : the less

elements the lower link capacities are, and the more elements the more flexible are flow

thinning formulae (3.7e).

Paths with isolated loops are not only meaningless in network terms, but potentially

may also prolong the path generation process. In order to eliminate the isolated loops in

{e ∈ E : ue = 1} consider the bi-directed version G ′ = (V ,A) of the original undirected

graph G = (V , E). In G ′, each undirected link e ∈ E is substituted with two oppositely

directed arcs a′(e) and a′′(e), hence defining the set of directed arcs asA := {(v, w), (w, v) :

{v, w} ∈ E}. Adding aggregated arc-flow variables fa ∈ R+, a ∈ A, together with the

following constraints to (3.14) will force that the isolated loops will no longer appear in

the feasible solutions:

∑
a∈δ−(t(d)) fa = ∑

v∈V\{o(d),t(d)} rv (3.15a)∑
a∈δ+(o(d)) fa = ∑

a∈δ−(o(d)) fa (3.15b)∑
a∈δ+(v) fa = ∑

a∈δ−(v) fa + rv, v ∈ V \ {o(d), t(d)} (3.15c)

fa′(e) + fa′′(e) ≤ (|V| − 2)ue, e ∈ E (3.15d)

fa ∈ R+, a ∈ A, (3.15e)
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where δ−(v), v ∈ V , denotes the set of all arcs incoming to node v, and δ+(v) denotes the

set of all arcs outgoing from node v. Note that the number of constraints in (3.15) does

not depend on the number of paths or states, thus adding these constraints to the PP

formulations should not considerably worsen the computational efficiency of the PP’s.

Formulation (3.14) is still incomplete for two reasons: it contains products of variables

in the objective function (such as gue, be′ue), and the range of the flow thinning formula

Ẽ(d, q) is arbitrary. A proper MILP formulation requires specifying the range of the

flow thinning formula and its representation by means of optimization variables. The

products of variables can be appropriately linearized only after the range of the flow

thinning formula is fixed. The following sections contain complete and linearized MILP

formulations of PP for different thinning formula ranges.

3.2.2 PP for FT/A/S/E(d, p)

The proper PP formulation for the range Ẽ(d, p) = E(d, p) is as follows:

V = max
{
−∑e∈E π

0
eGe + (∑s∈S λ

s
d)g −

∑
s∈S

∑
e∈E(s) π

s
eGe+∑

s∈S
∑
e∈E(s)

∑
e′∈E π

s
eβ(e′, s)Te′e −

∑
s∈S

∑
e′∈E λ

s
dβ(e′, s)Be′

}
(3.16a)∑

e∈δ(v) ue = 1, v ∈ {s(d), t(d)} (3.16b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {s(d), t(d)} (3.16c)

g ≤ 1 (3.16d)

be ≤ 1, e ∈ E (3.16e)∑
e∈E β(e, s)Be ≤ g, s ∈ S (3.16f)

Be ≤ ue, Be ≤ be, Be ≥ be + ue − 1, e ∈ E (3.16g)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (3.16h)

Te′e ≤ ue′ , Te′e ≤ ue, Te′e ≤ be′ , Te′e ≥ be′ + ue′ + ue − 2, e′, e ∈ E (3.16i)

isolated-loops-elimination constraints (3.15a)− (3.15e) (3.16j)

g ∈ R+; be, Be, Ge ∈ R+, e ∈ E ; Te′e ∈ R+, e
′, e ∈ E ; (3.16k)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V \ {s(d), t(d)}. (3.16l)

In (3.16), the extra variables are used to eliminate the product of variables (similarly

to what was done in (3.5)) and have the following meaning: Be = beue, Ge = gbe,

Te′e = be′ue′ue.
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3.2.3 PP for FT/A/S/E+(d, p)

For this variant, the PP formulation is obtained using the following equality which is valid

for an arbitrary vector of link-dependent quantities (A(e), e ∈ E), where E(d, q) = {e ∈

E : ue = 1} and V(d, q) = {v ∈ V : rv = 1}:

∑
e∈E+(d,q) A(e) = ∑

v∈V
∑
e∈δ(v) A(e)rv −

∑
e∈E A(e)ue, s ∈ S.

The above equality allows replacing the (undefined beforehand) summation over the set

E+(d, q) with an expression that depends on variables rv and ue. Still, the MILP for-

mulation of PP becomes more complex than its counterpart (3.16) for the simpler range

E(d, p):

V = max
{
−∑e∈E π

0
eGe + (∑s∈S λ

s
d)g −

∑
s∈S

∑
e∈E(s) π

s
eGe+∑

s∈S
∑
e∈E(s)

(∑
v∈V

∑
e′∈δ(v) π

s
eβ(e′, s)Re′ev −

∑
e′∈E π

s
eβ(e′, s)Te′e

)
−∑

s∈S

(∑
v∈V

∑
e′∈δ(v) λ

s
dβ(e′, s)He′v −

∑
e′∈E λ

s
dβ(e′, s)Be′

) }
(3.17a)∑

e∈δ(v) ue = 1, v ∈ {s(d), t(d)} (3.17b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {s(d), t(d)} (3.17c)

g ≤ 1 (3.17d)

be ≤ 1, e ∈ E (3.17e)∑
v∈V

∑
e∈δ(v) β(e, s)Hev −

∑
e∈E β(e, s)Be ≤ g, s ∈ S (3.17f)

Be ≤ ue, Be ≤ be, Be ≥ be + ue′ − 1, e ∈ E (3.17g)

Hev ≤ be, Hev ≤ rv, Hev ≥ be + rv − 1, v ∈ V , e ∈ δ(v) (3.17h)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (3.17i)

Te′e ≤ ue′ , Te′e ≤ ue, Te′e ≤ be′ , Te′e ≥ be′ + ue′ + ue − 2, e′, e ∈ E (3.17j)

Re′ev ≤ be′ , Re′ev ≤ ue, He′e ≤ rv, He′ev ≥ be′ + ue + rv − 2,

v ∈ V , e′ ∈ δ(v), e ∈ E (3.17k)

isolated-loops-elimination constraints (3.15a)− (3.15e) (3.17l)

g ∈ R+; be ∈ R+, e ∈ E ; ue ∈ B, e ∈ E ; (3.17m)

rv ∈ B, v ∈ V \ {s(d), t(d)}; (3.17n)

Be ∈ R+, e ∈ E ; Ge ∈ R+, e ∈ E ; Te′e ∈ R+, e
′, e ∈ E ; (3.17o)

Hev ∈ R+, e ∈ E , v ∈ V ; Re′ev, e
′, e ∈ E , v ∈ V . (3.17p)
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In (3.17), the extra real-valued variables Be, Ge, Te′e, Hev, Re′ev are used to eliminate the

products of pairs of the original variables that appear in the objective function through

constraints (3.17g)-(3.17k). Note that Te′e and Re′ev express the products of three original

variables.

3.2.4 PP for FT/A/S/E

For this variant, the PP formulation becomes simpler than (3.16) since now variables Be′

are equal to be′ rather than to be′ue′ , and variables Te′e express the product be′ue rather

than be′ue′ue.

V = max
{
−∑e∈E π

0
eGe + (∑s∈S λ

s
d)g −

∑
s∈S

∑
e∈E(s) π

s
eGe+∑

s∈S
∑
e∈E(s)

∑
e′∈E π

s
eβ(e′, s)Te′e −

∑
s∈S

∑
e′∈E λ

s
dβ(e′, s)be′

}
(3.18a)∑

e∈δ(v) ue = 1, v ∈ {s(d), t(d)} (3.18b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {s(d), t(d)} (3.18c)

g ≤ 1 (3.18d)

be ≤ 1, e ∈ E (3.18e)∑
e∈E β(e, s)be ≤ g, s ∈ S (3.18f)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (3.18g)

Te′e ≤ ue, Te′e ≤ be′ , Te′e ≥ be′ + ue − 1, e′, e ∈ E (3.18h)

g ∈ R+; be ∈ R+, e ∈ E ; Ge ∈ R+, e ∈ E ; Te′e ∈ R+, e
′, e ∈ E (3.18i)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V \ {s(d), t(d)}. (3.18j)

Note that isolated-loops-elimination constraints (3.15a)-(3.15e) are not required in this

formulation as the loops in the optimal path will not appear due to the maximal (all

links) range of the flow thinning formula.

3.2.5 PP for FT/A/G/Ẽ(d, p)

Now let us consider problem formulation (2.2) extended by the flow thinning formula

with affine form, general structure and an arbitrary range, which results in the following

formulation:
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Problem FT/A/G/Ẽ(d, p) (P ,S):
F = min ∑e∈E ξ(e)y0

e (3.19a)

[π0
e ≥ 0] ∑d∈D

∑
p∈R(d,e) x

0
dp ≤ y0

e , e ∈ E (3.19b)

[λsd ≥ 0] ∑p∈P(d) x
s
dp ≥ h(d, s), d ∈ D, s ∈ S (3.19c)

[πse ≥ 0] ∑d∈D
∑
p∈P(d) δ(e, d, p)xsdp ≤ α(e, s)y0

e , e ∈ E , s ∈ S(e) (3.19d)

[ϕsdp] xsdp = z0
dp −

∑
e∈Ẽ(d,p) β(e, s)zedp, d ∈ D, p ∈ P(d), s ∈ S (3.19e)

[σsdp ≥ 0] xsdp ≤ x0
dp, d ∈ D, p ∈ P(d), s ∈ S (3.19f)

ye ∈ R+, e ∈ E ; x0
dp, x

s
dp ∈ R+, d ∈ D, p ∈ P(d), s ∈ S; (3.19g)

z0
dp, z

e
dp ∈ R, e ∈ Ẽ(d, p), d ∈ D, p ∈ P(d). (3.19h)

Note that thinning constraint (3.19f) cannot be removed from the formulation as thinning

is not guaranteed by constraint (3.19e) due to the general structure of the flow thinning

formula. Recall that in case of simple structure (formulation (3.7)) thinning constraint

was auxiliary and has been removed, thus leading to a simpler problem formulation.

It turns out that PP for such formulations (3.19) (for different ranges) are more com-

plex than for their counterparts described in this section. Moreover, as the initial for-

mulation (2.2) has been changed, the derivation process (similar to the one described in

Section 3.2.1) must be repeated starting all the way from the formulation of the dual to

(3.19):

Problem DFT/A/G/Ẽ(d, p) (P ,S):
G = max ∑d∈D

∑
s∈S h(d, s)λsd (3.20a)

[y0
e ≥ 0] π0

e +∑
s∈S(e) α(e, s)πse ≤ ξ(e), e ∈ E (3.20b)

[x0
dp ≥ 0] ∑s∈S σ

s
dp ≤

∑
e∈E(d,p) π

0
e , d ∈ D, p ∈ P(d) (3.20c)

[xsdp ≥ 0] λsd − ϕsdp ≤ σsdp +∑
e∈E(d,p)∩E(s) π

s
e, d ∈ D, p ∈ P(d), s ∈ S (3.20d)

[zedp]
∑
s∈S β(e, s)ϕsdp = 0, d ∈ D, p ∈ P(d), e ∈ Ẽ(d, p) (3.20e)

[z0
dp]

∑
s∈S ϕ

s
dp = 0, d ∈ D, p ∈ P(d) (3.20f)

π0
e , π

s
e ∈ R+, e ∈ E , s ∈ S(e); (3.20g)

λsd, σ
s
dp ∈ R+, ϕ

s
dp ∈ R, d ∈ D, p ∈ P(d), s ∈ S. (3.20h)

As before, let us fix a demand d ∈ D, and consider a path q ∈ P̂(d) \ P(d). Adding path

q to the current path list P of the dual (3.20) consists in adding both new dual variables

ϕs, s ∈ S, and σs, s ∈ S, and new constraints (3.20c)-(3.20f). It is possible that for all
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values of the variables ϕs and σs the optimal dual solution (π∗, λ∗) will violate some of

the newly added constraints. If that is the case, (π∗, λ∗) will no longer be the optimal

solution as it will be separated from the dual polyhedron of DFT/G/S/Ẽ(d, p)(P∪{q},S)

by the violated constraints. The minimum of the sum of such violations taken over all

feasible dual variables σ := (σs, s ∈ S) and ϕ := (ϕs, s ∈ S) is expressed through the

following quantity (recall that |q|0 = ∑
e∈E(d,q) π

0
e
∗ and |q|s = ∑

e∈E(d,q)∩E(s) π
s
e
∗, s ∈ S):

V (q) = min
σ≥0,ϕ

{
max

{∑
s∈S σ

s − |q|0, 0
}

+
∑
s∈S max

{
λsd − ϕs − σs − |q|s, 0

}
+∑

e∈Ẽ(d,q) |
∑
s∈S β(e, s)ϕs| + |∑s∈S ϕ

s|
}
. (3.21a)

The following LP formulation can be used to evaluate V (q) for a given path q ∈ P̂(d) \

P(d):

V (q) = min
{
Z +∑

s∈S Ys +∑
e∈Ẽ(d,q)(X

′
e +X ′′e ) +W +W ′

}
(3.22a)

[g ≥ 0] Z ≥ ∑s∈S σ
s − |q|0 (3.22b)

[as ≥ 0] Ys ≥ λsd − ϕs − σs − |q|s, s ∈ S (3.22c)

[b′e ≥ 0] X ′e ≥
∑
s∈S β(e, s)ϕs, e ∈ Ẽ(d, q) (3.22d)

[b′′e ≥ 0] X ′′e ≥ −
∑
s∈S β(e, s)ϕs, e ∈ Ẽ(d, q) (3.22e)

[c′ ≥ 0] W ′ ≥ ∑s∈S ϕ
s (3.22f)

[c′′ ≥ 0] W ′′ ≥ −∑s∈S ϕ
s (3.22g)

σs ∈ R+, s ∈ S; ϕs ∈ R, s ∈ S; (3.22h)

Z,W ′,W ′′ ∈ R+; Ys ∈ R+, s ∈ S; X ′e, X ′′e ∈ R+, e ∈ Ẽ(d, q). (3.22i)

While we should find a q ∈ P̂(d)\P(d) that maximizes V (q), the above formulation cannot

be used directly to solve problem max
q∈P̂(d) V (q) for the same reason as in Section 3.2.1.

Thus, proceeding as in that section, let us formulate the problem dual to (3.22), using

the dual variables specified in the square brackets in constraints (3.22b)-(3.22g):

V (q) = max
{
− g|q|0 +∑

s∈S as(λs − |q|s)
}

(3.23a)

g ≤ 1 (3.23b)

as ≤ g, s ∈ S (3.23c)

b′e ≤ 1, b′′e ≤ 1, e ∈ Ẽ(d, q) (3.23d)

35



c′ ≤ 1, c′′ ≤ 1 (3.23e)

as = c′ − c′′ +∑
e∈Ẽ(d,q) β(e, s)(b′e − b′′e), s ∈ S (3.23f)

g, c′, c′′ ∈ R+; as ∈ R+, s ∈ S; b′e, b′′e ∈ R+, e ∈ Ẽ(d, q), (3.23g)

which is as follows after the elimination of auxiliary variables as, s ∈ S:

V (q) = max
{
− g|q|0+∑

s∈S(c′ − c′′ +∑
e∈Ẽ(d,q) β(e, s)(b′e − b′′e))(λs − |q|s)

}
(3.24a)

g ≤ 1 (3.24b)

0 ≤ c′ − c′′ +∑
e∈Ẽ(d,q) β(e, s)(b′e − b′′e) ≤ g, s ∈ S (3.24c)

b′e ≤ 1, b′′e ≤ 1, e ∈ Ẽ(d, q) (3.24d)

c′ ≤ 1, c′′ ≤ 1 (3.24e)

g, c′, c′′ ∈ R+; b′e, b′′e ∈ R+, e ∈ Ẽ(d, q). (3.24f)

Finally, after adding to (3.24) path-defining constraints for undirected links (3.4b)-(3.4c)

and isolated-loops-elimination constraints (3.15a)-(3.15e), treating ue, e ∈ E as variables,

fixing the range of the flow thinning formula to Ẽ(d, p) = E(d, p), and performing proper

linearization we obtain the following MILP formulation of the PP for FT/G/S/E(d, p):

V = max
{
−∑e∈E π

0
eGe +∑

s∈S λ
s(c′ − c′′) +∑

s∈S
∑
e∈E β(e, s)λs(B′e −B′′e )+∑

s∈S
∑
e∈E β(e, s)λs(B′e −B′′e )+∑

s∈S
∑
e′∈E(s)

∑
e∈E β(e, s)πse′(T ′′e′e − T ′e′e)+∑

s∈S
∑
e∈E(s) π

s
e(K ′′e −K ′e)

}
(3.25a)∑

e∈δ(v) ue = 1, v ∈ {s(d), t(d)} (3.25b)∑
e∈δ(v) ue = 2rv, v ∈ V \ {s(d), t(d)} (3.25c)

g ≤ 1 (3.25d)

0 ≤ c′ − c′′ +∑
e∈E β(e, s)(B′e −B′′e ) ≤ g, s ∈ S (3.25e)

c′ ≤ 1, c′′ ≤ 1 (3.25f)

Ge ≤ g,Ge ≤ ue, Ge ≥ g + ue − 1, e ∈ E (3.25g)

B′e ≤ ue, B
′
e ≤ b′e, B

′
e ≥ b′e + ue − 1, e ∈ E (3.25h)

B′′e ≤ ue, B
′′
e ≤ b′′e , B

′′
e ≥ b′′e + ue − 1, e ∈ E (3.25i)

T ′e′e ≤ ue′ , T
′
e′e ≤ ue, T

′
e′e ≤ b′e, T

′
e′e ≥ b′e + ue′ + ue − 2, e′, e ∈ E (3.25j)
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T ′′e′e ≤ ue′ , T
′′
e′e ≤ ue, T

′′
e′e ≤ b′′e , T

′′
e′e ≥ b′′e + ue′ + ue − 2, e′, e ∈ E (3.25k)

K ′e ≤ c′, K ′e ≤ ue, K
′
e ≥ c′ + ue − 1, e ∈ E (3.25l)

K ′′e ≤ c′′, Ke ≤ ue, K
′′
e ≥ c′′ + ue − 1, e ∈ E (3.25m)

isolated-loops-elimination constraints (3.15a)− (3.15e) (3.25n)

B′e, B
′′
e , Ge, K

′
e, K

′′
e ∈ R+, e ∈ E (3.25o)

T ′e′e, T
′′
e′e ∈ R+, e

′, e ∈ E (3.25p)

g, c′, c′′ ∈ R+; b′e, b′′e ∈ R+, e ∈ E (3.25q)

ue ∈ B, e ∈ E ; rv ∈ B, v ∈ V \ {s(d), t(d)}. (3.25r)

In the above formulation, the extra variables that are used to eliminate the products

(bi-linearities and tri-linearities) of the original variables have the following meaning:

Ge = gue, B′e = b′eue, B′′e = b′′eue, T ′e′e = b′eueue′ , T ′′e′e = b′′eueue′ , K ′e = c′ue, K ′′e = c′′ue.

Note that constraints (3.24d) are intentionally missing in (3.25) because they transform

into B′e ≤ 1, B′′e ≤ 1, e ∈ E after adding ue variables and thus these constraints become

redundant as they are guaranteed by constraints (3.25h)-(3.25i).

Similarly to simple structure variants, PP formulations for the two remaining cases of

the flow thinning formula range are analogous to (3.25). As before, the PP formulation for

Ẽ(d, p) = E+(d, p) is more complex (and more time consuming as far as problem solving

computation time is concerned) while the PP formulation for Ẽ(d, p) = E is less complex

(and less time consuming) than (3.25).

3.2.6 PP for FT/Q/S/Ẽ(d, p)

The formulations of pricing problems for the FT formulae containing the quadratic terms

as in the general formula FT/Q/G/Ẽ(d, p) (2.4) or its counterpart with simple structure

FT/Q/S/Ẽ(d, p) can be derived analogously as for the affine variants. Yet, the resulting

PP formulations require much more variables and become computationally inefficient. For

example, products of the form be′′ue′′ue′ue appearing in the non-linear formulations would

have to be eliminated, and this would involve |E|3 auxiliary variables. To resolve this issue

and at the same time keep the advantages of the quadratic form, in the numerical study

we simply use the sets of paths generated for the affine counterparts of the quadratic

problem in question (see Section 4.1.4).
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3.3 Solution for state polytope

Let us consider the FT/A/S/E(d, p) variant of the problem (see formulation (2.6)) as an

example and solve it for the set of states B̂(N, a, b,H), i.e., for all states of the form s(u),

u ∈ B(N). This, as shown below, can be achieved through an iterative procedure based

on the state and path generation algorithms.

3.3.1 Feasibility tests

Consider a given state list S being a sub-list of B̂(N, a, b,H), and let (y0(S), x0(S), z(S))

be a feasible solution of problem (2.6) for S. Clearly, in order to see whether this so-

lution is feasible for all states in B̂(N, a, b,H) one can check if the following constraints

(corresponding to constraints (2.6c), (2.6d), and (2.6e), respectively) are satisfied for each

u ∈ B(N):

h(d, u)−∑p∈P(d) xdp(u) ≤ 0, d ∈ D (3.26a)∑
d∈D

∑
p∈R(d,e) xdp(u)− α(e, u)y0

e(S) ≤ 0, e ∈ E (3.26b)

−xdp(u) ≤ 0, d ∈ D, p ∈ P(d). (3.26c)

Note that flows xs(S) in (3.26) are determined by x0(S) and z(S) through equations

(2.6e): xdp(u) := x0
dp(S)−∑e∈E(d,p) β(e, u)zedp(S), for all d ∈ D, p ∈ P(d), u ∈ B(N).

Satisfiability of constraints (3.26a)-(3.26c) can be checked separately by formulating a

corresponding binary program (called feasibility test) of maximizing the left-hand side of

the appropriate inequality in (3.26) over B(N), where β(e, u) = 1 − α(e, u), and α(e, u)

and h(d, u) are expressed with u as follows (cf. (2.9) and (2.10)):

α(e, u) := ∑
k∈K a(k)uke , e ∈ E (3.27a)

h(d, u) := H(d)
(
1−∑k∈K b(k)∑e∈E u

k
e

)
, d ∈ D. (3.27b)

The so defined feasibility tests can be written in a concise form as:

T (d) = maxu∈B(N)
{
h(d, u)−∑p∈P(d) xdp(u)

}
, d ∈ D (3.28a)

T (e) = maxu∈B(N)
{∑

d∈D
∑
p∈R(d,e) xdp(u)− α(e, u)y0

e(S)
}
, e ∈ E (3.28b)

T (d, p) = maxu∈B(N)
{
− xdp(u)

}
, d ∈ D, p ∈ P(d). (3.28c)

Let us consider test (3.28a) for some d ∈ D and let u∗ be an optimal solution for the

test. Clearly, if the value T (d) obtained from this test is positive, then ∑p∈P(d) xdp(u∗) <
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h(d, u∗), which means that demand d is not satisfied by the considered feasible solution

y0(S), x0(S), z(S) of FT/A/S/E(d, p)(P ,S). The same holds for the other two tests: if

T (e) > 0, then ∑d∈D
∑
p∈R(d,e) xdp(u∗) > α(e, u∗)y0

e(S) (i.e., link e is overflowed); and if

T (d, p) > 0, then xdp(u∗) < 0 (i.e., the flow value is infeasible).

Thus, if either of the conditions

maxd∈D T (d) > 0 or maxe∈E T (e) > 0 or maxd∈D, p∈P(d) T (d, p) > 0 (3.29)

holds, then the solution y0(S), x0(S), z(S) is infeasible for the set of states B̂(N, a, b,H)

(and vice versa).

The feasibility tests (3.28) can be turned onto LP problems since, according to Prop-

erty 2.1, the binary set of feasible solutions B(N) can simply be substituted with its

continuous counterpart Q(N). The appropriate LP problem formulations corresponding

to feasibility tests (3.28a)-(3.28c) are given below. In them, N , a, b, H are vectors of

parameters describing state polytope Q(N) (see Section 2.3.1); y0(S), x0(S), z(S) are

vectors of parameters obtained from solving FT/A/S/E(d, p) for a given state list S; and

u, U , α, β, h, x are vectors of variables.

Problem FEAS-TEST-DEMAND (y0(S), x0(S), z(S), d):
T (d) = max

{
hd −

∑
p∈P(d) xdp

}
(3.30a)∑

k∈K u
k
e = 1, e ∈ E (3.30b)∑

e∈E u
k
e ≤ N(k), k ∈ K (3.30c)

Uk = ∑
e∈E u

k
e , k ∈ K (3.30d)

βe = 1−∑k∈K a(k)uke , e ∈ E (3.30e)

hd = H(d)(1−∑k∈K b(k)Uk) (3.30f)

xdp = x0
dp(S)−∑e∈E(d,p) βez

e
dp(S), p ∈ P(d) (3.30g)

uke , U
k, βe ∈ R+, e ∈ E , k ∈ K; (3.30h)

hd ∈ R+; xdp ∈ R, p ∈ P(d), (3.30i)

Problem FEAS-TEST-LINK (y0(S), x0(S), z(S), e):
T (e) = max

{∑
d∈D

∑
p∈R(d,e) xdp − αey0

e(S)
}

(3.31a)∑
k∈K u

k
e′ = 1, e′ ∈ E (3.31b)∑

e′∈E u
k
e′ ≤ N(k), k ∈ K (3.31c)

αe = ∑
k∈K a(k)uke (3.31d)
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βe′ = 1−∑k∈K a(k)uke′ , e′ ∈ E (3.31e)

xdp = x0
dp(S)−∑e′∈E(d,p) βe′z

e′
dp(S), d ∈ D, p ∈ P(d) (3.31f)

uke′ , βe′ ∈ R+, e
′ ∈ E , k ∈ K; (3.31g)

αe ∈ R+; xdp ∈ R, d ∈ D, p ∈ P(d), (3.31h)

Problem FEAS-TEST-FLOW (y0(S), x0(S), z(S), d, p):

T (d, p) = max
{
− xdp

}
(3.32a)∑

k∈K u
k
e = 1, e ∈ E (3.32b)∑

e∈E u
k
e ≤ N(k), k ∈ K (3.32c)

βe = 1−∑k∈K a(k)uke , e ∈ E (3.32d)

xdp = x0
dp(S)−∑e∈E(d,p) βez

e
dp(S) (3.32e)

uke , βe ∈ R+, e ∈ E , k ∈ K; xdp ∈ R. (3.32f)

3.3.2 State Generation algorithm

The algorithm for solving FT/A/S/E(d, p) (for now, for a fixed path list P) by state

generation based on the introduced feasibility tests is given below.
Algorithm 2 SGA(S0)
1: iter ← 0

2: repeat

3: (y0(Siter), x0(Siter), z(Siter))← FT/A/S/E(d, p)(Siter)

4: Siter+1 ← Siter
5: for d ∈ D do

6: (u(d), T (d))← FEAS-TEST-DEMAND(y0(Siter), x0(Siter), z(Siter), d)

7: if T (d) > 0 then

8: Siter+1 ← Siter+1 ∪ {s(u(d))}

9: end if

10: end for

11: for e ∈ E do

12: (u(e), T (e))← FEAS-TEST-LINK(y0(Siter), x0(Siter), z(Siter), e)

13: if T (e) > 0 then

14: Siter+1 ← Siter+1 ∪ {s(u(e))}

15: end if
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16: end for

17: for d ∈ D do

18: for p ∈ P(d) do

19: (u(d, p), T (d, p))← FEAS-TEST-FLOW(y0(Siter), x0(Siter), z(Siter), d, p)

20: if T (d, p) > 0 then

21: Siter+1 ← Siter+1 ∪ {s(u(d, p))}

22: end if

23: end for

24: end for

25: iter ← iter + 1

26: until Piter = Piter−1

Algorithm 2 requires an initial state list S0 as an input argument, for example a reasonable

subset of B̂(N, a, b,H). However, it is also possible to consider selected states outside of

B̂(N, a, b,H) by simply putting them on the initial state list. The main loop (lines 2-26)

starts in line 3 from solving FT/A/S/E(d, p) (see formulation (2.6)) for the initial state

list and obtaining its optimal solution (y0(S0), x0(S0), z(S0)) (here and in what follows

the superscript ∗ that indicates optimality is skipped). Next, in lines 5-10 for each demand

d ∈ D feasibility test (3.30) is solved, and its optimal solution is stored as (u(d), T (d)).

In case of the positive result of the test (i.e., if T (d) > 0), the obtained state s(u(d))

is added to the state list for the next main iteration Siter+1. In a similar way the state

list Siter+1 can potentially be extended by solving feasibility test (3.31) in lines 11-16 and

feasibility test (3.32) in lines 17-24. If at least one state has been added to the state list

Siter+1, the main loop is repeated for the extended state list. Otherwise, the algorithm

stops (after some n iterations) and the current vectors y0(Sn), x0(Sn), z(Sn) computed

in line 3 form an optimal solution of FT/A/S/E(d, p)(P ,Sn), where Sn contains all the

states from B̂(N, a, b,H) and the states from the initial state list outside B̂(N, a, b,H) (if

any).

3.3.3 Combination of state generation and path generation

In order to find the true minimum of FT/A/S/E(d, p) (when all paths are considered) for

a given state polytope B̂(N, a, b,H), one can combine the state generation algorithm SGA
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with the path generation algorithm PGA. The resulting iterative procedure, referred to

as the SGA+PGA algorithm, is as follows.

Algorithm 3 SGA+PGA(S0,P0)
1: P0 ← P0 ∪ PGA(S0,P0)

2: iter ← 0

3: while true do

4: Siter+1 ← Siter ∪ SGA(Siter,Piter)

5: if Siter = Siter+1 then

6: break

7: end if

8: Piter+1 ← Piter ∪ PGA(Siter+1,Piter)

9: if Piter = Piter+1 then

10: break

11: end if

12: iter ← iter + 1

13: end while

The above algorithm takes an initial state list S0 and an initial path list P0 as input

arguments. The algorithm starts from preliminary extension of the initial path list by

solving PGA. In the main loop (lines 3-13) first SGA is solved for the current state and

path lists. In consequence, state list Siter+1 is in general extended with the new states

returned by SGA. The algorithm stops in case no new states have been added. Next, in a

similar way PGA is solved for the (potentially extended) state list and current path list.

In consequence, path list Piter+1 is in general extended with the new paths returned by

PGA. Similarly, the algorithm stops in case no new paths have been added.

Despite the fact that the while loop in line 3 is of infinite type, the algorithm will

always stop in either line 6 or line 10 after a finite number of steps since in each iteration

at least one path and one state are added, and the number of paths and states are finite.

Moreover, although both the number of paths and the number of states grow exponentially

with the size of the network, a polynomial number of iterations can be expected, just like

when using the simplex algorithm for non-compact linear problems.
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3.3.4 Extension of state generation algorithm to quadratic FT

So far, solving the problem based on state generation algorithm and feasibility tests

was presented for a chosen FT formula, namely FT/A/S/E(d, p). Solving the problem

for the FT formula variants with affine form and other ranges and structures is not

specifically different, it only necessitates some accurate adjustments in the feasibility

tests. However, solving the problem for the FT formula variant with quadratic form

requires separate attention, as certain terms of the objective functions of the feasibility

test problems become bi-linear. More precisely, since the path flows for a given point

u ∈ Q(N) are expressed as

xdp(u) = x0
dp(S)−∑e∈E(d,p) β(e, u)zedp(S) +∑

{e,e′}∈E |2|(d,p) β(e, u)β(e′, u)zee′dp (S),

products of the optimization variables composing vector u (of the form ukeu
k′
e′ ) will appear,

because

β(e, u) = 1−∑k∈K a(k)uke and β(e′, u) = 1−∑k′∈K a(k′)uk′e′ ,

and thus

β(e, u)β(e′, u) = (1−∑k∈K a(k)uke)(1−
∑
k′∈K a(k′)uk′e′ ) =

= 1−∑k∈K a(k)uke −
∑
k′∈K a(k′)uk′e′ +∑

k,k′∈K a(k)a(k′)ukeuk
′
e′ .

Using the above formulae, the linear (bi-linear) formulations of the feasibility tests (3.28)

adjusted for quadratic FT can be easily obtained from formulations (3.30)-(3.32). In the

so obtained adjustments, auxiliary variables xdp can be moved to the respective objective

functions; in effect, the adjusted tests involve formulations in continuous variables with

quadratic (in general neither convex nor concave) objective functions and linear constrains,

and as such can be treated by a quadratic programming solver. It turns out, however,

that this would lead to an excessive number of SGA iterations. Therefore, it is more

efficient to use a Mixed-Integer Quadratic Programming (MIQP) solver for the modified

feasibility tests with the state-polytope-defining variables u assumed to be binary – this

version of SGA is used in the numerical study in Chapter 4.
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Chapter 4

Numerical study

This chapter discusses the results of a numerical study of the optimization problems and

solution algorithms presented in Chapters 2-3. The study consists of three parts. The

first part (Section 4.1) illustrates the efficiency of path generation algorithm. The second

part (Section 4.2) is devoted to SGA+PGA. The third part (Section 4.3) summarizes the

cost efficiency of the FT mechanisms.

All reported computations were executed on a PC-class computer (Windows 10 64-bit,

8 GB RAM, Processor Intel Core i5-3210M, 4 logical processors, 2.5GHz) using CPLEX

[12] optimization software package (version 12.4.0.0 in the first part of the numerical study

and 12.8.0.0 in the second part).

4.1 Path generation algorithm study

In the first part of the numerical study we analyze computational efficiency (in terms of

the computation time) of the PGA and related pricing problems described in Section 3.1.

We also analyze traffic efficiency (in terms of the network cost) of different variants of the

FT formula described in Section 2.2.

4.1.1 Network instance

This part of the study was carried out for the network described in the SNDlib library

of communication network instances (sndlib.zib.de, see [44]) under the name polska. The

network, depicted in Figure 4.1, is composed of |V | = 12 nodes, |E| = 18 (undirected)

links, and |D| = 66 (undirected) demands. In the study we used the traffic data from
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Figure 4.1: polska network topology.

the first polska instance (i.e., polska–D-B-M-N-C-A-N-N) stored in SNDlib. The as-

sumed link unit capacity cost ξ(e) was computed as the link’s <module_cost> divided by

<module_capacity> for the first pair of these values. Thus, the entire vector ξ of the unit

link capacity costs is as follows: 1.0645, 1.7548, 1.0064, 1.2000, 1.7548, 1.5290, 1.3419,

1.1677, 1.3419, 1.6129, 2.0903, 2.0903, 1.6129, 1.0645, 1.9677, 0.9161, 1.2581, 1.8968 (the

order of the links is the same as in the SNDlib file).

We consider the following three link availability state scenarios:

(SL) Single link degradation scenario: SL contains the nominal state s(0) (all links fully

available), and all states with exactly one degraded link (note that SL contains

|E|+ 1 states). The traffic demands in state s(0), h(d, s(0)), d ∈ D, are specified in

SNDlib. In SL, 100% traffic protection is assumed, i.e., h(d, s) = h(d, s(0)), d ∈ D,

for each single link degradation state s. Link degradation coefficients of the affected

links are assumed to be β(e, s) = 0.5.

(DL) Double link degradation scenario: DL contains SL and all states with exactly two

degraded links (hence DL contains |E|(|E|−1)/2+ |E|+1) states). Link degradation

coefficients in the double link degradation states are assumed to be β(e, s) = 0.4.

For the double link degradation states the demand volumes are reduced to 95% of

h(d, s(0)) for each d ∈ D.

(TL) Triple link degradation scenario: TL contains SL and DL, and all states with exactly

three degraded links (TL contains |E|(|E| − 1)(|E| − 2)/6 + |E|(|E| − 1)/2 + |E| +
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1 states). Link degradation coefficients of the degraded links in the triple link

degradation states are assumed to be β(e, s) = 0.3 and the demand volumes are

reduced to 90% of h(d, s(0)) for each d ∈ D.

The assumed form of the state scenarios is convenient for studying computational

efficiency of the PGA-based optimization process for mesh network topologies. The sce-

narios are easy to generate, do not refer to any particular network operating conditions,

and are sufficiently demanding for comparing PGA’s computational efficiency for differ-

ent variants of the FT formula. In consequence, although the polska instance corresponds

to a long-distance optical transmission network, and not, for example, to a particular

FSO-based MAN (for which FT is destined), its tractable size, mesh topology similar to

MAN, and description available in SNDlib makes it suitable for the conducted experi-

ments. It provides a representative (for a medium size MAN) illustration for quantitative

relations between computational times for different FT variants (that otherwise can be

qualitatively deduced from the corresponding master and pricing problems formulations).

4.1.2 Results for UR and FT

Table 4.1 compares results obtained by means of the PG algorithm for UR and FT. Recall

that UR (see [43, 56]) is a traffic protection mechanism concept that allows restoring the

traffic demands from scratch using the entire capacity of links available in a given network

link availability state. Although UR is hardly implementable in practice, it serves as a

benchmark mechanism since it is the least constrained mechanism and thus the cost of

the network protected by means of UR provides a lower bound for any other protection

mechanism. The results are obtained for FT by solving problem (2.2) and for UR by

solving problem (2.1).

For each state scenario (SL, DL, TL), the rows in Table 4.1 contain the results for UR

and FT, and the consecutive columns describe:

– F 0: cost of unprotected network dimensioned for h(d, s(0)), d ∈ D,

– F ∗: cost of the optimal solution resulting from the PGA,

– ∆F 0: cost increase with respect to unprotected network (∆F 0 = F ∗−F 0

F 0 × 100%),

– ∆F ∗: cost increase of FT with respect to UR (∆F ∗ = F ∗(FT )−F ∗(UR)
F ∗(UR) × 100%),
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– |P∗|: final number of paths in tha path list,

– |Pu|: number of paths used in the final solution (i.e., paths with strictly positive

optimal value of x0
dp),

– number of iterations (iter), total computation time (total), computation time per

iteration (t/iter), computation time spent in the MP (master problem) per iteration

(t/MP), and pricing problem computation time per iteration (t/PP).

Table 4.1: Results for UR and FT.

F 0 F ∗ ∆F 0[%] ∆F ∗[%] |P∗| |Pu| iter total t/iter t/MP t/PP

SL
UR 30275 35858 18 – 189 149 3 2s 0.7s 0.1s 0.6s

FT 30275 40236 33 12 259 123 9 6s 0.6s 0.1s 0.5s

DL
UR 30275 38087 26 – 235 217 3 23s 7.6s 3s 4.6s

FT 30275 40093 32 5 269 143 8 1m12s 8.9s 5.5s 3.4s

TL
UR 30275 36630 21 – 249 249 4 4m13s 1m3s 45s 18s

FT 30275 37200 23 2 294 156 8 24m3s 3m 2m28s 32s

The results show that the lower bound for the cost of protection (achieved with UR) for the

considered network instance is between 18% (SL) and 26% (DL). Certainly, FT requires

more capacity, but the cost increase as compared to UR is not significant (between 2%

for TL and 12% for SL). The number of generated paths is lower for UR than for FT,

but the number of the paths used in the final (optimal) solution is higher (which could

be expected). For both UR and FT the computation times are negligible for SL and low

for DL. For TL, the algorithm applied to UR is still quite fast, while for FT it starts to

be more time consuming, both for MP and for PP. We note here that the PG algorithm

for UR works differently than for FT (and, for that matter, for affine FT and quadratic

FT): in the former case in each iteration a new path is considered for each demand d ∈ D

and each state s ∈ S (see [25]), while for FT only one demand path is considered. This

is why UR requires less iterations than FT. Yet, even for FT the number of iterations is

small and the PG algorithm converges very quickly.
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4.1.3 Results for affine FT

Table 4.2 gives the results for FT/A, i.e., for FT with the affine thinning formula. The

results for FT/A are obtained by solving problem (2.6) with the thinning formula (2.6e)

replaced by its appropriate variant taken from Table 2.1. For each state scenario, all six

combinations of the range and the structure considered for the flow thinning formula of

form A (see Section 2.2.4) are examined (and specified in columns “range” and “struc-

ture”). Now, column “∆F ∗” expresses the increase of the network cost for a given variant

of FT/A with respect to the corresponding solution F ∗ of FT given in Table 4.1. The

meaning of the remaining columns is the same as before.

Regarding the network cost F ∗ achievable by the considered FT/A formula variants,

we first observe that in the SL case, the minimal cost (i.e., the cost of FT) is achieved

already with the simplest form of the FT/A formula, that is with the FT/A/S/E(d, p)

variant. The reason is as follows. Suppose x0
dp
∗ and xsdp

∗ are optimal for FT. Then the

flow thinning formula

xsdp = x0
dp −

∑
e∈E(d,p) β(e, s)zedp, where zedp := x0

dp
∗−xs(e)

dp

∗

β(e,s) , e ∈ E(d, p),

will give the optimal values of xsdp, that is those found for FT. In the formula, s(e) denotes

the particular state s ∈ S in which link e is affected with the degradation coefficient

β(e, s(e)) > 0 (recall that in the considered example β(e, s(e)) = 0.5); in the remaining

states, i.e., for each s ∈ S \ {s(e)}, β(e, s) = 0.

For DL and TL the cost is no longer minimal. For range E(d, p) the increase of F ∗ with

repsect to the cost of FT, given by ∆F ∗, is quite high and is the same for both structures

G (general) and S (simple) – it is equal 18% for DL and 13% for TL. For the two other

ranges E+(d, p) and E the difference between G and S becomes visible. For E+(d, p) the

considered increase for G equals 7% and is roughly 2 times smaller than for S, while for

E it is only 4% and is 3.25 (TL) to 3.6 (DL) times smaller then for S.

Note that for E+(d, p) Table 4.2 reports just one computation time (t/MP). The reason

is that this particular range case was not treated by the path generation algorithm because

of the excessive computation time (of the order of hours) required for the pricing problem.

Thus, instead of using path generation we solved the appropriate variant of the master

problem (2.6) once using the path list P∗ generated for E . For the same reason the number
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Table 4.2: Results for FT/A.

range structure F ∗ ∆F ∗[%] |P∗| |Pu| iter total t/iter t/MP t/PP

SL

E(d, p)
G 40236 0 275 125 8 8m2s 1m 1s 59s

S 40236 0 276 123 9 2m22s 16s 0.2s 15.8s

E+(d, p)
G 40236 0 283 128 – 0.3s – – –

S 40236 0 274 124 – 0.3s – – –

E
G 40236 0 283 125 9 6m28s 43s 0.1s 42.9s

S 40236 0 274 124 9 2m3s 14s 0.2s 13.8s

DL

E(d, p)
G 47174 18 285 161 9 10m13s 1m8s 3s 1m5s

S 47174 18 283 161 9 4m31s 30s 2s 28s

E+(d, p)
G 43543 9 216 159 – 40s – – –

S 47174 18 187 161 – 5s – – –

E
G 42172 5 216 155 8 13m18s 1m39s 25s 1m14s

S 47174 18 187 161 7 2m21s 20s 1.6s 18.4s

TL

E(d, p)
G 41863 13 232 161 10 25m36s 3m34s 27s 3m7s

S 41863 13 223 162 9 12m37s 1m24s 18s 1m6s

E+(d, p)
G 39986 7 191 145 – 4m20s – – –

S 41863 13 165 160 – 1m6s – – –

E
G 38707 4 191 133 7 32m39s 4m39s 2m1s 2m38s

S 41863 13 165 160 6 6m27s 1m5s 20s 45s
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of iterations is not reported in column “iter”. Although this makes the optimization

approach heuristic, the obtained solutions are clearly near-optimal.

The number of paths generated by PGA (column “|P∗|”) and the number of paths

used in the optimal solution (column “|Pu|”) do not exhibit any particular properties,

except that sometimes |Pu| is considerably smaller than |P∗| (even more than two times

for SL and E(d, p)).

The number of iterations performed by the PG algorithm varies from 6 to 10 and this

is a reasonable number indicating fast convergence. The computation time spent solving

PP (pricing problem) is also reasonable although pricing new paths requires solving MILP

problems. The time spent solving MP (master problem) is typically smaller than the time

required for pricing. Certainly, the computation time increases with the number of states

in S, but even for TL the total computation times are acceptable.

It is also worth noting that the case FT/A/S gives the same value of F ∗ for all the

three ranges, and this means that the solution for E+(d, p) is optimal, as it is always

less than or equal to the optimal solution for E(d, p), and greater than or equal to the

optimal solution for E . Let us also note that in all the considered scenarios the costs of

FT/A/S/E(d, p) and FT/A/G/E(d, p) happen to be equal. Yet, this is not always true.

We have found some (randomly generated) state scenarios where the costs for these two

cases are different. The results for these state scenarios are presented in Table 4.3. The

first three columns in the table describe the randomly generated state scenarios: in each

state s ∈ S, each link e ∈ E is affected with degradation coefficient “β” with probability

“prob”, and remains fully available otherwise. Traffic demands are kept at the nominal

level: h(d, s) = h(d). Still, although existent, the difference between the simple and

general structure solutions is small: of the order of 1.5%.

Table 4.3: Results for FT/A/S/E(d, p) and FT/A/G/E(d, p) on random states.

|S| prob β structure F ∗ ∆F total

10 0.25 0.4
G 44512 – 17m23s

S 45213 1.6% 5m5s

10 0.5 0.5
G 57852 – 26m47s

S 58824 1.7% 6m31s
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4.1.4 Results for quadratic FT

Table 4.4 shows the results for FT/Q, i.e., for FT with the quadratic flow thinning formula.

As for the FT/A case, all six combinations of range/structure (see Section 2.2.4) are

considered for each state scenario. All the FT/Q cases were directly optimized through

solving an appropriate version of the master problem (2.6) for the sets of paths obtained for

the corresponding FT/A cases – this is due to excessive pricing time for FT/Q. (Therefore,

Table 4.4 has less columns as compared with Table 4.2.) This near-optimal procedure has

already been applied for the E+(d, p) range of the FT/Q.

Clearly, the FT/Q cost values given in Table 4.4 for SL are the same as for FT/A

(and, for that matter, for FT), since FT/A is a special case of FT/Q and the costs for

FT/A and FT are the same (as explained in Section 4.1.3). Note that the corresponding

total solution times are much shorter since no pricing is involved.

However, for DL and TL, the cost of the FT/Q solutions is considerably smaller than

for the corresponding FT/A solutions. In fact, the case FT/Q/G/E (general quadratic

form with full range) indicates virtually the same cost as FT (arbitrary flow thinning):

the cost increase equals 0.03% for DL, and 0.2% for TL. At the same time, the simplified

quadratic form with full range (FT/Q/S/E) is only marginally worse: cost increase 0.5%

for DL, and 1.3% for TL. Compared to E , the costs obtained with range E+(d, p) are not

much larger. For DL the cost increase is 2.6% for FT/Q/G and 3.0% for FT/Q/S, while

for TL it is equal to 4.5% for FT/Q/G and 6.1% for FT/Q/S. For E(d, p) further cost

increase is observed, reaching 7.6% for FT/Q/S and TL.

As far as computation time is concerned, the SL and DL cases are optimized very

quickly, yet the computation time becomes substantially longer for TL, the reason being

the excessive number of variables and constraints in the LP formulation.

4.1.5 Implementation issues and suggested formula

The flow thinning mechanism assumes that the capacity of each tunnel is controlled at

its source node by a packet admission control mechanism based on the on-line knowledge

of the currently available link capacities. Therefore, some signalling mechanism for in-

terchanging information concerning the current state of link capacities must be applied.

In the case of FT, and of FT/Q and FT/A with the full range E , this requires some

kind of a flooding protocol since the source nodes of the tunnels need to be aware of the
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Table 4.4: Results for FT/Q.

range structure F ∗ ∆F ∗[%] |P∗| |Pu| total

SL

E(d, p)
G 40236 0 275 125 0.2s

S 40236 0 276 124 0.3s

E+(d, p)
G 40236 0 283 124 0.2s

S 40236 0 274 124 0.2s

E
G 40236 0 283 124 0.2s

S 40236 0 274 124 0.3s

DL

E(d, p)
G 41939 4.6 285 176 8s

S 42034 4.8 283 176 12s

E+(d, p)
G 41152 2.6 216 165 6s

S 41278 3.0 187 164 9s

E
G 40104 0.03 216 144 3s

S 40285 0.5 187 147 10s

TL

E(d, p)
G 39939 7.4 232 202 15m59s

S 40044 7.6 223 202 11m36s

E+(d, p)
G 38864 4.5 191 164 38h25m27s

S 39456 6.1 165 147 1h5m14s

E
G 37269 0.2 191 134 15h59m39s

S 37705 1.3 165 132 7h58m31s
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current availability state of all links. Since flooding signalling takes time, the capacity

adjustment process may lead to unprecise tunnel capacity control and, in consequence, to

traffic losses. Moreover, flooding may be excessively complex to implement. This actually

means that feasibility of FT, FT/Q/E and FT/A/E is problematic.

On the other hand, in the case of FT/Q and FT/A with the E(d, p) range, the signalling

in question is simple and fast as it pertains solely to the links of the tunnel: when

availability of a link is changed, an appropriate message is propagated backwards to

the source node of each tunnel traversing the considered link, resulting in efficient and

timely message delivery for link availability state monitoring. For the E+(d, p) range the

signalling is similar, only more information is propagated.

Another issue is how the tunnel capacity control performs for the states not considered

in optimization, i.e., the states not in the set S. In this case the most cost effective flow

thinning mechanism, i.e., FT, is not satisfactory, as it does not provide consistent means

of tunnel control. Thus, since inappropriate setting of tunnel capacity can lead to link

overloads, the FT mechanism is risky in this aspect. On the contrary, the FT/Q and FT/A

mechanisms can simply apply the flow thinning formula also for the unforeseen states,

additionally modifying the tunnel capacity to 0 or x0
dp when necessary, i.e., when the value

obtained from the FT formula is below 0 or above x0
dp, respectively. (Traffic efficiency of

such extended flow thinning is addressed in Section 8.2 of [50] for FT/A/G.). We may

also expect that the larger the range of the FT formula, the better the approximation of

the proper tunnel capacity in the states not considered in optimization – this, however,

still needs to be verified. Here, simple structure S of the FT formula seems more safe

than general structure G because the former does not allow to exceed the nominal tunnel

capacity in any state.

FT is the most general flow thinning mechanism and therefore it results in the low-

est cost of link capacity. In fact, in this aspect FT is quite close to the UR benchmark

mechanism, which provides the lower bound on the link capacity cost for any protec-

tion/restoration mechanism (see [56]). Tables 4.1, 4.2 and 4.4 show that the network cost

achieved with FT/Q/G with range E is almost the same as the cost of FT, while the

cost for FT/Q/G with range E+(d, p) is higher but to a reasonable extent (4.5% of cost

increase with respect to FT at most). The network cost achieved with FT/Q/G with the
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smallest range E(d, p) is up to 7.4% higher than the cost for FT. As far as FT/A is

concerned, the network cost increase is significantly higher than for FT/Q.

Having in mind that the optimization of flow thinning is performed off-line, the total

computation times are acceptable in all the considered cases apart from FT/Q with the

ranges E and E+(d, p), but even that, however, is not a big issue taking into account that

the results shown in the tables were obtained using a plain laptop, and the efficiency

of the optimization algorithm could be improved (if really needed) by exploiting specific

properties of its master problem.

The above observations (summarized in Table 4.5) suggest that FT/Q/G/E+(d, p),

i.e., the FT mechanism with the general quadratic flow thinning formula encompassing

all links incident to the nodes the tunnel, is a reasonable traffic protection mechanism to

be considered for implementation in the network.

Table 4.5: Summary of the results.

range structure implementation states not in S capacity cost optimization time

UR E – infeasible not covered very low very short

FT E – problematic not covered low medium

FT/A

E(d, p)
G feasible covered high medium

S feasible+ covered high short

E+(d, p)
G feasible covered+ medium medium-

S feasible covered+ high medium

E
G flooding covered++ medium medium

S flooding covered++ high short+

F/Q

E(d, p)
G feasible covered medium medium-

S feasible+ covered medium medium-

E+(d, p)
G feasible covered+ low excessive

S feasible covered+ low medium

E
G flooding covered++ low excessive

S flooding covered++ low excessive
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4.2 State generation algorithm study

The second part of the numerical studies illustrates efficiency of the SGA+PGA combined

iterative optimization procedure described in Section 3.3 from the computational efficiency

and the optimized network cost viewpoints for different variants of the flow thinning

formula.

4.2.1 Network instance

This part of the study was performed using an FSO network instance designed for Paris

metropolitan area using realistic data – population distribution data to calculate the traffic

matrix, and historical weather data to calculate typical FSO link degradation ratios. The

considered instance (referred to as PMAN) was introduced in [38]. The network (depicted

in Figure 4.2) is composed of |V| = 12 nodes and |E| = 21 undirected links. Its set of

traffic demands consists of |D| = 66 undirected demands; the reference demand volumes,

expressed in Gbps, are given in the form of a traffic matrix depicted in Table 4.6. The

link capacities are expressed in Gbps as well, while the unit link capacity cost is assumed

to be equal to 1 cost unit per 1 Gbps for all the links (i.e., ξ(e) = 1, e ∈ E).
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Figure 4.2: PMAN network topology.

It is important to note that although in reality traffic demands (modelling the Inter-

net traffic) are directed and FSO links are realized by means of full-duplex FSO systems,

each providing two oppositely directed links of the same capacity, the use of undirected

links and undirected demands is correct provided the traffic matrix is symmetric (as
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Table 4.6: Traffic matrix [Gbps].

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

(1) Paris1 – 74.38 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82

(2) Paris2 – – 5.40 4.26 4.99 5.02 5.24 4.74 5.41 5.26 4.87 3.82

(3) Saint-Denis – – – 0.23 0.34 0.35 0.36 0.33 0.38 0.37 0.29 0.23

(4) Argenteuil – – – – 0.27 0.28 0.29 0.26 0.30 0.30 0.22 0.01

(5) Colombes – – – – – 0.36 0.37 0.34 0.39 0.37 0.34 0.26

(6) Courbevoie – – – – – – 0.37 0.34 0.39 0.38 0.34 0.26

(7) Nanterre – – – – – – – 0.34 0.40 0.39 0.35 0.28

(8) Versailles – – – – – – – – 0.29 0.28 0.23 0.18

(9) Vitry-Sur-Seine – – – – – – – – – 0.31 0.26 0.20

(10) Creteil – – – – – – – – – – 0.25 0.20

(11) Montreuil – – – – – – – – – – – 0.21

(12) Aulnay-Sous-Bois – – – – – – – – – – – –

in PMAN). If that is the case, we can first assume undirected demands with the val-

ues specified in the upper part (i.e., above the diagonal) of the traffic matrix (as in

Table 4.6) and dimension the network using the undirected network model. Then, in

the network dimensioning post-processing phase, we can bring back the directions of

the demands for the upper-part demands and create they directed path flows by di-

recting the optimal (undirected) nominal path flows x0 accordingly. In this way each

link e = {v(e), w(e)} will carry a set of (directed) flows in the v → w direction, and

a set of flows in the w → v direction. The resulting directed link loads (let us de-

note them by Y (v(e), w(e)) and Y (w(e), v(e))) sum up to y0
e (the optimal nominal undi-

rected capacity of link e). After that, in the same way we create directed path flows

for the directed demands from the lower part (below the diagonal) of the traffic ma-

trix that are symmetrical (but oppositely directed) to their counterparts from the upper

part. For link e this will result in link loads Y ′(w(e), v(e)) and Y ′(v(e), w(e)). Clearly,

Y ′(w(e), v(e)) = Y (v(e), w(e)) and Y ′(v(e), w(e)) = Y (w(e), v(e)). Therefore, if we real-

ize loads Y (v(e), w(e)) and Y ′(v(e), w(e)) on arc (v(e), w(e), and loads Y (w(e), v(e)) and
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Y ′(w(e), v(e)) on arc (w(e), v(e), these loads will be carried on full-duplex link e with

capacity y0
e in each direction.

In fact, the optimization model presented in this paper can be easily modified to

directly consider full-duplex links and directed demands. But since for symmetric traffic

optimal solutions of such a modified model are equivalent to the solutions described above,

we prefer to use the above model as it requires two times less flow variables.

4.2.2 Efficiency of SGA+PGA

Table 4.7 presents the results of solving FT/A/S/E(d, p) using SGA+PGA optimization

procedure. Analogous results for FT/A/G/E(d, p) are presented in Table 4.8. We examine

six sets of states B̂(N, a, b,H) (rows 1-6 in Table 4.7). Recall that, considering for example

row no 3, the parameters N = (21, 1, 2), a = (1, 0.75, 0.75), and b = (0, 0, 0.05) imply

that the corresponding state set includes all combinations of simultaneous degradation

of U2 ≤ 1 links that are degraded to availability ratio 0.75, and U3 ≤ 2 links that are

degraded also to availability ratio 0.75 (then U1 := 21−U2−U3 links are fully available).

When state (U1, U2, U3) with respective number of links of each class is observed, the

traffic of each demand d ∈ D is equal to H(d)(1 − 0.05U3) (see (2.10b), (2.9)), thus

the reference demand volumes are reduced only when U3 > 0. The reference demand

values H(d), d ∈ D are taken from Table 4.6 assuming the lexicographical ordering of the

node pairs (1, 2), (1, 3), . . . , (11, 12). It is worth noting that the considered link availability

ratios (i.e., 1.0, 0.75 and 0.5), correspond to the modulation and coding schemes applicable

to FSO links; see the discussion in [38] based on [70, 33].

In the calculations, the initial path lists for the PG algorithm contain only one path

per demand (66 paths in total) – the shortest path with respect to the link unit costs

(thus, these are the shortest paths with respect to the number of hops, as ξ(e) = 1, e ∈ E).

The initial list of states S0 contains the full-availability state (all links fully available),

and all states with exactly one degraded link with link availability coefficient α(e, s) =

0.75; thus, there are 22 states in total. For all the states in the initial list 100% traffic

protection is assumed, i.e., h(d, s) = H(d), d ∈ D, s ∈ S0. Note that assigning the entire

demand volume H(d) for each demand d to its shortest path will result in the optimally

dimensioned network when protection is not considered. For the examined network this

cost turns out to be F ∗ = 246.38.
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Table 4.7: Results of SGA+PGA for FT/A/S/E(d, p).

N(k) a(k) b(k) F ∗ ∆P ∆S iter t [s] t/PGA [s] t/SGA [s]

(21, 1) (1, .75) (0, 0) 312.36 215 0 0 161 160 1

(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 262 168 3 1477 737 740

(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 300 287 3 4288 803 3485

(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 358 541 3 5853 1197 4656

(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 340 534 10 12296 2685 9611

(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 307 465 6 7534 1592 5942

Table 4.8: Results of SGA+PGA for FT/A/G/E(d, p).

N(k) a(k) b(k) F ∗ ∆P ∆S iter t [s] t/PGA [s] t/SGA [s]

(21, 1) (1, .75) (0, 0) 312.36 211 0 0 408 407 1

(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 286 190 4 4544 1433 3111

(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 372 385 12 25891 5241 20650

(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 353 570 4 18668 2619 16049

(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 342 613 8 31459 3987 27472

(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 328 577 10 24725 4130 20595

The meaning of the parameters in the tables is as follows:

– N(k), a(k), b(k): state polytope parameters

– F ∗: cost of the optimal solution

– ∆|P|: number of generated paths

– ∆|S|: number of generated states

– number of iterations of SGA+PGA (iter), total computation time (t[s]); computa-

tion time spent in PGA (t/PGA[s]); computation time spent in SGA (t/SGA[s]).

Tables 4.7 and 4.8 show that the SGA+PGA is computational efficient. It requires

up to 10− 12 iterations and generates a reasonable number of paths and states. In both

tables the first row describes the state set B̂(N, a, b,H) which is equal to the initial state

set S0; therefore no iterations of SGA+PGA are needed since the algorithm stops after
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the first execution of PGA. We notice that computation time spent in SGA is in most

cases larger than in PGA, and the total computation times are typically of the order of

hours. Still, those computation times are acceptable considering the size of the problems

and the fact that the problems are not supposed to be solved online but rather one time

per the network management cycle.

In Table 4.9 we compare performance of FT/A/S and FT/A/G for two ranges: E(d, p)

and E+(d, p). In the table, the asterisks in the computation time columns of E+(d, p) range

denote that the result was obtained through solving the appropriate master problem only

once for the final path lists and state lists obtained for the range E(d, p) (recall that a

similar sub-optimal heuristic approach was used in Section 4.1.3). Note that the network

cost for both FT/A/S variants in Table 4.9 is the same.

Table 4.9: Network cost and computation time of SGA+PGA for FT variants.

E(d, p) E+(d, p)

FT/A/S FT/A/G FT/A/S FT/A/GN(k) a(k) b(k)

F ∗ t [s] F ∗ t [s] F ∗ t [s]∗ F ∗ t [s]∗

(21, 1) (1, .75) (0, 0) 312.36 161 312.36 408 312.36 1 312.36 1

(21, 1, 1) (1, .75, .75) (0, 0, .05) 325.72 1477 325.72 4544 325.72 23 317.59 57

(21, 1, 2) (1, .75, .75) (0, 0, .05) 326.83 4288 326.83 25891 326.83 31 317.91 307

(21, 1, 2, 1) (1, .75, .75, .5) (0, 0, .05, .1) 432.30 5853 432.30 18668 432.30 171 409.38 1553

(21, 1, 2, 2) (1, .75, .75, .5) (0, 0, .05, .1) 448.58 12296 448.58 31459 448.58 150 415.27 1757

(21, 1, 2, 3) (1, .75, .75, .5) (0, 0, .05, .1) 449.98 7534 449.98 24725 449.98 80 416.99 896

A general conclusion is that optimization of FT/A/G is more time consuming than

FT/A/S, especially in the case of the E+(d, p) range, but its cost can be noticeably lower

than that of FT/A/S (there is an up to 8% cost difference between FT/A/S and FT/A/G

for the E+(d, p) range).

Table 4.10 presents results of SGA extended to the quadratic FT formula. The calcu-

lations were performed for fixed path lists obtained from the respective final path lists in

the solutions presented in Table 4.9. As expected, the quadratic formula leads to less ex-

pensive networks in terms of the total link capacity cost (by about 1-4%, see the F ∗ values

in the second row in Tables 4.9 and 4.10). However, due to excessive computation time,
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it was possible to solve the optimization problem only for the first two state polytopes.

Note that the cost values in the first rows of Tables 4.9 and 4.10 are the same, as this case

considers only single link degradations. Note also, that the reason why the network cost

(F ∗ = 313.99) for the FT/Q/S/E+(d, p) case is smaller than the cost (F ∗ = 316.44) for

the FT/Q/G/E+(d, p) case is that the path lists for the quadratic FT were not optimized

but just taken from the corresponding affine FT solutions.

Table 4.10: Results of SGA for FT/Q variants.

E(d, p) E+(d, p)

FT/Q/S FT/Q/G FT/Q/S FT/Q/GN(k) a(k) b(k)

F ∗ t [s] F ∗ t [s] F ∗ t [s] F ∗ t [s]

(21, 1) (1, .75) (0, 0) 312.36 4 312.36 6 312.36 5 312.36 7

(21, 1, 1) (1, .75, .75) (0, 0, .05) 317.53 54 316.52 145 313.99 184 316.44 483

4.3 Network cost efficiency

Below, in Table 4.11, we briefly summarize the cost efficiency of the FT mechanisms, in

particular in comparison with UR. The comparison encompasses UR, FT, FT/A/G and

FT/A/S, and is based on SL, DL, and TL lists of states, described in Section 4.1.1. Note

that the state polytope model is not used here since the SGA+PGA algorithm is not

applicable to UR and FT. The percentages in the FT column express the increase of the

network cost for FT in comparison with the cost for UR, while the percentages in the

FT/A/G/E column show the increase of the cost for FT/A/G/E in comparison with the

cost for FT. In all other columns, the percentages compare the reported cost to the cost

for FT/G/A/E .

Table 4.11: Network cost for FT/A variants for PMAN.

E E+(d, p) E(d, p)
UR FT

FT/A/G FT/A/S FT/A/G FT/A/S FT/A/G FT/A/S

SL 392.90 416.63(6%) 416.63(0%) 416.63(0%) 416.63(0%) 416.63(0%) 416.63(0%) 416.63(0%)

DL 362.80 379.10(4%) 385.13(2%) 407.15(6%) 390.82(1%) 407.15(6%) 407.15(6%) 407.15(6%)

TL 325.03 333.60(3%) 337.46(1%) 350.17(4%) 339.12(1%) 350.17(4%) 350.17(4%) 350.17(4%)
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A general conclusion is that FT/A/G/E+(d, p) performs very well in terms of the

network cost with respect to FT (the cost for FT provides a lower bound for all FT

variants). Also, the cost for FT is not much larger than the cost for UR, and the cost for

FT/A/S (the same for all formula ranges) is acceptable.

Finally, recall that the decrease of the network cost observed when the FT/A formula

is substituted by its FT/Q counterpart for the cases reported in Tables 4.9 and 4.10

was between 1-4%. However, such a decrease can be more prominent, as illustrated in

Table 4.12.

Table 4.12: Network cost for FT/Q variants for polska.

E E+(d, p) E(d, p)

FT/Q/G FT/Q/S FT/Q/G FT/Q/S FT/Q/G FT/Q/S

DL 40104 (+5%) 40285 (+17%) 41152 (+6%) 41278 (+14%) 41939 (+12%) 42034 (+12%)

TL 37269 (+4%) 37705 (+11%) 38864 (+3%) 39456 (+6%) 39939 (+5%) 40044 (+5%)

The above table shows the results obtained for polska network described in Sec-

tion 4.1.1. In Table 4.12 all six variants of the FT/Q formula are considered for the

DL and TL scenarios. Each entry of the table gives the network cost achieved with the

formula specified for its column and the scenario specified for its row, together with the

percentage (given in parenthesis) of the increase of the network cost when the correspond-

ing FT/A formula is applied. This time the gain from FT/Q can be quite substantial,

ranging from 4 to 17%.
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Chapter 5

Summary

Logical Tunnel Capacity Control (LTCC) is a traffic routing and protection strategy de-

signed for communications networks characterized by frequent link capacity fluctuations.

It introduces a novel Flow Thinning (FT) mechanism of controlling the size of the flows

assigned to network tunnels. This thesis studies optimization problem models and op-

timization solution algorithms of designing the network that uses the LTCC strategy

and implements the FT mechanism. The models and the algorithms are essential for

evaluating the efficiency and for effective deployment of the LTCC strategy.

The FT mechanism is based on the FT formula, which might vary with respect to the

form, structure and range. The thesis is a comprehensive study of the network design

problems corresponding to the resulting variants of the FT formula. Additionally, it

studies two classes of problem formulations that differ with respect to the approach of

describing the availability of the links. While the direct approach enumerates all the

considered network states, the indirect approach is based on the notion of the so called

state polytope, which enables considering (potentially) exponentially many network states

in a compact way.

The presented optimization models are, in general, hardly solvable directly by opti-

mization software, due to, in particular, a huge number of network paths and network

states and a potentially complex and non-linear FT formula. Therefore, the thesis presents

and studies the application of optimization solution algorithms that are based on the path

generation and, if the state-polytope-based approach is used, state generation approaches.

The thesis provides a detailed study of the resulting Path Generation Algorithm (PGA)

and State Generation Algorithm (SGA. The formal difficulty of PGA results from the
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fact that the Pricing Problem (PP), being the key component of PGA, is flow-thinning-

formula-dependent. Therefore, a different PP had to be derived for each variant of the

FT formula. The key components of SGA are, in turn, feasibility tests, which were also

derived in this thesis. The thesis presents how the combination of PGA and SGA enables

solving the network design problem models, in particular, the ones based on the state

polytope concept, to optimality.

The effectiveness of the LTCC strategy was analyzed through extensive numerical

studies. They used a real urban network instance based on the FSO technology, for which

the LTCC strategy is especially well suited. The link availability description was prepared

using historical weather data. The goal of the studies was to examine the efficiency of the

developed optimization models and algorithms with respect to the computation time and

the solution quality. They also aim at evaluating the performance of the LTCC traffic

routing and protection strategy, measured, in particular, by means of the total network

cost, and compared to the idealistic reference strategy of unrestricted reconfiguration.

A general conclusion derived from the numerical studies is that the proposed traffic

routing and protection strategy turns out to be a reasonable candidate to be used in

real communications networks. It appears that the flow thinning formula and the state

polytope notion provide much flexibility in network design, as they provide means to loo

k for a balance between implementation feasibility, routing robustness, network cost, and

optimization time.

The use of the flow thinning formulae for tunnel flow adjustment is relatively simple

to implement using existing network protocols. The signalling is fast and simple when

the path’s links and path’s incident links ranges of the flow thinning formula are applied,

while the use of the all links range makes the signalling problematic.

When the robustness of the applied strategy is of the utmost importance, one should

use the flow thinning formula with the simple structure and with the ranges as large as

possible. The models with the general structure are less robust as they do not circumvent

exceeding the nominal tunnel capacity. Still, any flow thinning formula is robust by its

nature, as even for some unforeseen state the traffic is inevitably thinned at the originating

nodes according to a consistent formula dependent on the link degradation coefficients.

Moreover, the robustness could be improved even further by applying the state polytope

model.
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Obviously, the use of the flow thinning formula with the quadratic form, the general

structure and the all links range leads to the most efficient traffic handling and thus

requires the least network capacity cost. In this case the cost is clearly very low, being only

several percent higher than the benchmark mechanism of the unrestricted reconfiguration.

The numerical results show that the elaborated solution algorithms (i.e., PGA, SGA,

and SGA+PGA) are computationally efficient, despite the necessity to solve binary-type

MIP pricing problems in the path generation. The optimization times varied from less

than a second to tens of hours (about one hour on average) on a plain laptop, which is

acceptable as the optimization is supposed to be performed off-line. Clearly, in terms

of the optimization time the most challenging optimization problem models are those

with the flow thinning formula of the quadratic form and with the path’s incident links

range, as the number of optimization variables and constraints needed to formulate those

problem variants may be excessive. In such cases, it is definitely worth to consider the

heuristic approach applied in the thesis. With this approach, the most severe variants are

not treated by PGA. Instead, a single master problem is being solved with the predefined

path lists, taken from the optimal solution of the corresponding less severe variants.

To summarize, the recommended flow thinning formula to be considered for imple-

mentation is the flow thinning formula with quadratic form, the general structure, and

the path’s incident links range, i.e., formula FT/Q/G/E+(d, p). It is worth mentioning

that although the achieved results are acceptable, there is still a lot of room for further

enhancements. Some ideas for future work are adding modularity of link capacity, im-

proving computational efficiency of the most challenging flow thinning formula variants,

testing effectiveness of the heuristic approach, to name a few.
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