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“Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura,
ché la diritta via era smarrita.”
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Streszczenie

W pracy tej rozważane, analizowane i rozwijane są metody z dziedziny złożonych sieci
wielowarstwowych oraz układów dynamicznych. Głównym celem jest opracowanie metod
służących do wykrycia istnienia oraz cech struktur topologicznych, które mogą być
niedostępne bezpośredniej obserwacji, oraz pokazanie, że takie ukryte elementy mogą
mieć znaczący wpływ na zachowanie całego układu.

Odnajdywanie ukrytych warstw w sieciach złożonych jest istotnym i nietrywialnym
problemem współczesnej nauki. Mając do czynienia z procesami propagacji na sieciach,
bardzo istotna może okazać się możliwość oceny jakości obserwacji oraz występowania
potencjalnych ukrytych ścieżek propagacji. Propagacja ta może oddawać różne procesy
(dynamiki), takie jak rozprzestrzenianie się wirusów w epidemiach, czy fałszywych infor-
macji w mediach społecznościowych. Jako że natura takiej dynamiki może przybierać
różne formy, w pracy tej pod uwagę brane są dwa oddzielne podejścia – dobrze ugrun-
towany model epidemiologiczny, tzw. model SI (Susceptible-Infected, podatny-zarażony)
oraz bardziej egzotyczne i współczesne podejście oddające proces propagacji falowej na
grafach metrycznych (tzw. grafy kwantowe).

Modelowanie powyżej wspomnianych układów złożonych, jak również zjawisk inter-
akcji społecznych, wymaga odpowiednich narzędzi wywodzących się z nauk fizycznych.
Pomimo tego, że dane eksperymentalne są zwykle trudne do uzyskania, odkrycie log-
icznych konsekwencji założen i modeli teoretycznych, może być kluczowym elementem
w budowaniu opisu procesów zachodzących w naszych społecznościach. Tzw. komory
echa (echo chambers) i dynamika polaryzacji są ostatnio bardzo istotnym tematem w
środowiskach naukowych na całym świecie. Zjawiska te bezpośrednio wpływają na nasze
życia, w szczególności teraz, w wyniku ewolucji społeczeństwa i sposobów komunikacji
międzyludzkich. Jest zatem kluczowe, abyśmy zrozumieli wszelkie zawiłości współczes-
nych dynamik opinii.

W pracy tej zwrócono uwagę na powyższe problemy oraz przedstawiono propozycje
metod identyfikacji oraz rekonstrukcji ukrytych warstw. Uwzględniono również warunki
topologiczne sieci wielowarstwowej, przy których zadanie to staje się trudniejsze. Metody
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te opierają się na dokładnym wyrażeniu na prawdopodobieństwo pojawienia się kaskady w
modelu SI na dowolnym grafie. Następnie pokazano, że dzięki własnościom rozkładów uni-
modalnych i prostej heurystyki opisującej prawdopodobieństwo łączne serii kaskad można
otrzymać oszacowanie zarówno istnienia, jaki i struktury ukrytych warstw z dokładnością
znacznie wykraczającą poza to, co oferuje model zerowy, tj. naiwne zgadywanie. Analizy
zostały przeprowadzone zarówno na sieciach syntetycznych jak i rzeczywistych, i wskazały,
że przedstawione podejście może mieć praktyczne zastosowanie.

Jak wcześniej wspomniano, rozpatrywano również podejście grafów kwantowych do
określenia, czy istnieją ukryte części wielowarstwowego układu oraz oceny ich ilości. Za-
kładając, że jedyna dostępna informacja o systemie to ewolucja w czasie propagacji fali
na jednej warstwie sieci, okazuje się, że w istocie jest możliwe, aby zaobserwować, to
co jest ukryte, mając do dyspozycji zaledwie obserwacje dynamiki. Zaprezentowane
zostały dowody zarówno na sieciach syntetycznych jak i rzeczywistych na to, że widmo
częstotliwości dynamiki fali posiada charakterystyczne cechy, przejawiające się jako do-
datkowe maksima częstotliwości. Maksima te wykazują zależność od liczby ukrytych
warstw, biorących udział w propagacji i w związku z tym pozwalają na określenie tej
liczby. Pokazane zostało również, że dla wystarczająco długich czasów obserwacji można
w pełni odtworzyć widmo znormalizowanej macierzy połączeń całego grafu. Podejście to
porównano do metod uczenia maszynowego, opierających się na tzw. sygnaturze pakietu
falowego, zmodyfikowanej na potrzeby sieci wielowarstwowych.

W ostatnim rozdziale rozprawy, w celu podkreślenia istotności wykrywania ukry-
tych warstw, zaprezentowany został dwuwarstwowy model dynamiki opinii. Istotność
ta wynika z faktu, że ukryte warstwy mogą mieć znaczący wpływ na zachowanie układu,
prowadząc do zjawisk, które normalnie, tj. w sytuacji jednowarstwowej, nie zachodziłyby.
Rozbudowano istniejący już model komór echa i polaryzacji tak, aby można go było
zastosować na topologii dwuwarstwowej. Ten nowy kontekst topologiczny pozwala na
wskazanie na możliwe konsekwencje oddziałujących grup w ramach tego modelu. Przeanal-
izowano cztery różne scenariusze – (i) symetryczne negatywne oraz pozytywne sprzęże-
nia, (ii) asymetryczne i (iii) antysymetryczne sprzężenie oraz (iv) wpływ zewnętrzny.
Pokazane zostały zarówno symulacje agentowe jak i rozwiązania analityczne w przybliże-
niu średniego pola, nakreślające możliwe konsekwencje takich dynamik w rzeczywistych
społecznościach. Predykcje wynikające z tego modelu opisują warunki, dla których układ
może osiągnąć stan neutralnego lub spolaryzowanego konsensusu, spolaryzowanej opozy-
cji oraz nawet oscylacji opinii. Przejścia między tymi stanami zostały przeanalizowane
za pomocą wyników otrzymanych z modelu średniego pola oraz zidentyfikowane w ujęciu
teorii bifurkacji.
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Abstract

In this work we explore, analyse and develop methods within the field of multi-layered
complex networks and dynamical processes. Our focus here is on finding ways of deter-
mining the existence and features of topological structures that can be hidden from direct
observations and showing that such obscured elements can have a profound impact on
the behaviour of the whole system.

Finding hidden layers in complex networks is an important and a non-trivial problem
in modern science. When dealing with spreading processes on networks, it can be of
the utmost importance to test the reliability of data and identify potential unobserved
spreading paths. This spreading can take on many different forms such as viruses in
epidemics or fake news in social media. As the nature of the dynamics can be so varied we
implore here two different models - a well established epidemiological model of Susceptible-
Infected and a more exotic and contemporary framework of wave propagation on metric
graphs (quantum graphs).

Physics provides tools that allow for deriving models of such complex systems as
mentioned above and even social interactions, and while reproducible experimental data
are scarce, seeing where certain assumptions and models lead to can be a crucial element
in order to build a solid grasp on what transpires in our society. Echo chambers and
polarisation dynamics are as of late a very prominent topic in scientific communities
around the world. As these phenomena directly affect our lives. and seemingly more and
more as our societies and communication channels evolve, it becomes ever so important
for us to understand the intricacies opinion dynamics in modern era.

In this work we address these problems and propose methods for hidden layer identifi-
cation and reconstruction. We also explore the interplay between difficulty of the task and
the structure of the multi-layer network describing the whole system where the spread-
ing process occurs. Our methods stem from an exact expression for the likelihood of a
cascade in the Susceptible-Infected model on an arbitrary graph. We then show that by
imploring statistical properties of unimodal distributions and simple heuristics describing
joint likelihood of a series of cascades one can obtain an estimate of both existence of a
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hidden layer and its content with success rates far exceeding those of a null model. We
conduct our analyses on both synthetic and real-world networks providing evidence for
the viability of the approach presented.

As mentioned before we also explore the framework of quantum graphs to determine
whether concealed parts of a multi-layer system exist and if so then what is their extent,
i.e., how many unknown layers are there. Assuming that the only information available
is the time evolution of a wave propagation on a single layer of a network it is indeed
possible to uncover that which is hidden by merely observing the dynamics. We present
evidence on both synthetic and real-world networks that the frequency spectrum of the
wave dynamics can express distinct features in the form of additional frequency peaks.
These peaks exhibit dependence on the number of layers taking part in the propagation
and thus allowing for the extraction of the said number. We show that in fact, with
sufficient observation time, one can fully reconstruct the row-normalised adjacency matrix
spectrum. We compare our propositions to a machine learning approach using a wave
packet signature method modified for the purposes of multi-layer systems.

Finally, in order to underline the importance of detecting hidden layers we present
a case of a multi(bi)-layer opinion dynamics model. This importance stems from the
fact that a hidden layer can profoundly affect the behaviour of the system leading to
phenomena that are normally absent in the single layer scenario. We build upon an
existing echo chambers and polarisation model and extend it onto a bi-layer topology. This
new topological context allows us to indicate possible consequences of interacting groups
within this model. Four different cases are presented – (i) symmetric negative and positive
couplings, (ii) an asymmetric and (iii) anti-symmetric coupling, and (iv) an external bias.
We show both simulation results and mean field solutions for these scenarios outlining the
possible consequences of such dynamics in real world societies. Our predictions show that
there are conditions in which the system can reach states of neutral consensus, a polarised
consensus, polarised opposition and even opinion oscillations. Transitions between these
states in terms of bifurcation theory are identified and analysed using a mean field model.

This work is the conclusion of the following three articles:

• [1] Gajewski, Ł. G., Chołoniewski, J., & Wilinski, M., Detecting Hidden Lay-
ers from Spreading Dynamics on Complex Networks. Phys. Rev. E 104(2), 2021,
024309. Supported by National Science Centre, Poland Grant
No. 2015/19/B/ST6/02612.

• [2] Gajewski, Ł. G., Sienkiewicz, J., & Hołyst, J. A., Discovering hidden layers in
quantum graphs. Phys. Rev. E 104(3), 2021, 034311. Supported by POB Research
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Centre Cybersecurity and Data Science of Warsaw University of Technology within
the Excellence Initiative Program - Research University (IDUB)

• [3] Gajewski, Ł. G., Sienkiewicz, J., & Hołyst, J. A. (2021). Phase transi-
tions and oscillations in a temporal bi-layer echo chambers model. arXiv preprint
arXiv:2101.03430. Supported by an IDUB against COVID-19 project granted by
Warsaw University of Technology under the program Excellence Initiative: Research
University (IDUB), under review in Phys. Rev. E.

Keywords: network structure, multilayer networks, spreading models, quantum graphs,
nonliniear dynamics, opinion dynamics, agent-based modelling

The following papers are also related to yet not included in this thesis:

• [4] Paluch R., Gajewski Ł. G., Suchecki K., Hołyst J.A., Impact of interactions
between layers on source localization in multilayer networks, Physica A:Statistical
Mechanics and its Applications, 582, 126238, 2021

• [5] Paluch R., Gajewski Ł. G., Suchecki K., Szymański B.K., Hołyst J.A., En-
hancing Maximum Likelihood Estimation of Infection Source Localization, chapter
in Simplicity of Complexity in Economic and Social Systems (ed. D. Grech, J.
Miśkiewicz), p. 21-41, 2020

• [6] Paluch R., Gajewski Ł. G., Hołyst J.A., Szymański B.K., Optimizing sensors
placement in complex networks for localization of hidden signal source: A review,
Future Generation Computer Systems 112, 1070-1092, 2020
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Chapter 1

Introduction

The primary aim of this dissertation is to provide novel approaches to detect and re-
construct the topology (or its features) of hidden layers in multi-layer networks. Multiple
different dynamics are considered, from two distinct families (epidemiological models and
wave propagation), in order to cover a significant range of possible real-world scenar-
ios. These novel methods developed here are of fundamental and theoretical nature and
provide grounds for further applied studies. The secondary goal is to present the im-
portance of multi-layered models and developing methods for reverse engineering. This
is accomplished not only with the use of real-world networks but also with an example of
an opinion dynamics model which exhibits new behaviour when extended onto a layered
topology.

In this section we shall introduce the basic concepts necessary for later parts of the
thesis and also provide some context about the network and dynamical models used.
Before we begin, however, I would like to express my gratitude to all the persons and
institutions that have made this research possible. Support provided by the grants from
Polish National Science Centre, Warsaw University of Technology and European Com-
mission Horizon 2020 was instrumental in this effort. The hospitality of Michał Kosiński
(Stanford University) and Prof. Bolesław Szymański (Rensselaer Polytechnic Institute)
in the USA, during the RENOIR project, allowed me to grow as a researcher and develop
skills that would come to fruition in the later stages of my doctoral programme. I am
also very grateful to Mateusz Wiliński (Los Alamos National Laboratory) for sharing his
insights and expertise without which this thesis’ second chapter would most likely not
have existed. I thank as well my colleagues from the Group of Physics in Economy and
Social Sciences for the collaborations and fruitful discussions that even if they have not
resulted in published articles were always illuminating and most importantly invigorating
on this journey. My thanks extend to all my friends and family who are too many to list
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here in a reasonable fashion, for all their non-academic support and faith in me. Lastly, I
would like to especially express my profound gratitude to both of my supervisors – Prof.
Janusz Hołyst and Julian Sienkiewicz whose guidance, investment and most importantly
- patience were most vital in me becoming not only the researcher but the person I am
today.

Real-world complex systems can often be described by interconnected structures known
as multi-layer networks [7–10]. Transportation, social or economic networks, to name just
a few general examples, can have various types of connections. Each such type of a con-
nection in a network can be represented as a specific sub-system or sub-network. Whether
it is a transportation network (e.g. buses and trams) or a social one (e.g. Twitter and
Facebook) various forms of information propagation or state dynamics can be described
with multi-layer networks. [7–9, 11–14]

Railway, flights and bus connections can all be described with a network but to have
a full description of the transportation system, they need to be joined and described with
a multi-layer network. In reality obtaining full information which would allow to create
a complete multi-layer network is rarely possible. Moreover, in some cases, even the
knowledge about all existing layers is limited. As a result, researchers often have to deal
with uncertainty which arise from dealing with partial information about connectivity
in analysed system. Therefore, as it is not uncommon for certain parts of a system to
remain hidden from observers, it can be crucial to be able to discern what characteristics
are unknown and then to try to obtain them. Such inverse problems have been studied
in various settings in both topology and dynamics parameters reconstruction in mono-
and multi-layer scenarios alike [6, 15–26]. This also posts some specific concerns within
the fundamental problems of network science, the spreading processes on networks [11–14,
27–29] but is also of significance for opinion dynamics [3, 30–32].

In a part of this work we focus on the problem of detecting hidden layers based on ob-
servations of a dynamical processes of an epidemic spread on graphs. We also propose and
explore methods for finding missing connections of different types. By dynamical process
we mean a realisation of a spreading process described by a model of the susceptible-
infected-recovered (SIR) type. Note that such models can describe not only infections,
but also spreading of information, opinions or failures. Furthermore, we assume that the
observation of such a process is limited to the states of the nodes, without the knowledge
of the actual spreading path. In the rest of the text we will refer to a single spreading
realisation as a cascade. Finally, we analyse potential limitations and difficulties as well
as beneficial settings, i.e. when solving the problem is easier, for these methods.

The problem of detecting hidden layers has appeared recently in the literature in a non-
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markovian setting [33] and is also closely related to the problem of network reconstruction
which was extensively analysed in the past [19, 20, 22–24] and also in a partial observation
setting [15, 16, 18]. Our initial setting of epidemic spread is a bit simpler in some regards
but at the same time still fairly realistic and thus should still be viable for real-world
problems. We shall assume a well established epidemic model (Susceptible-Infected) the
effects of which we can observe for a limited time on a single layer only to try to deduce
topology of that which is hidden from us. We feel that our simplifications are justified
since solving the general problem was proved to be limited [20] and previous papers
often approached only limited cases anyway, such as very short cascades [21]. This is
not to say that successful approximations are not possible [22], however, our goal here
is to investigate the challenges associated with detecting hidden layers in interconnected
networks in the context of spreading processes.

Reader should not confuse the problem of finding hidden layers based on observed
spreading with extensively analysed branch of network science called link prediction, where
the hidden connections are estimated using only the network structure. A seminal paper
in this direction is [34]. An extension, including multi-layer networks, can be found in
[35].

While epidemiological approaches to propagation modelling in networks are rather
ubiquitous, they are not unique. In a later chapter of this work we turn our attention
to wave propagation on graphs and the scientific field of the so-called quantum graphs.
To our knowledge, there has not been much done specifically for uncovering the multi-
layer structures in quantum graphs and thus we address this issue. We present two
potentially viable approaches of establishing if hidden layers exist, and in some scenarios to
ascertain the exact count of these layers. Traditionally, graphs are discrete, combinatorial
abstract mathematical objects. If we supply them with a metric and topology we call such
objects metric graphs. Those in turn equipped with a second order differential operator
acting on its vertices and edges - a Hamiltonian - and appropriate boundary conditions
are called quantum graphs [36–39]. The (most likely) first use of this framework can
be traced back to Pauling’s paper in 1936 [40], however, for the most part quantum
graphs have not been widely used until more recently. Nowadays they see many various
applications in dynamical systems, nanotechnology, photonic crystals and many others
[41–46]. A somewhat similar idea to quantum graphs – the topological Dirac equation –
has been introduced lately (with possible application to multi-layer networks) [47]. Its
essence goes in an opposite direction, however. While quantum graphs describe piece-
wise continuous wave functions on each link, the topological Dirac equation describes a
completely discretised wave-function taking a given (constant) value on each node and on
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each link.
Most recently Aziz et al. established a method based on a wave packet propagation on

quantum graphs that allows to distinguish between structures in complex networks [48]
thanks to many well studied properties of the Laplacian (e.g., a finite speed of propagation
[49] as opposed to a discrete Laplacian [28, 29]) and its spectra in quantum graphs [50–56].
The idea of determining the shape of an object based on observable dynamics on it goes
back to the work of Kac in 1966 [57] in which he asks whether it is possible to hear the
shape of a drum. Giraud and Thas showed that the eigenvalues of different shapes can be
identical and therefore answered Kac’s question in the negative. Gutkin and Smilansky,
on the other hand, showed that in quantum graphs specifically, under certain conditions,
one can indeed “hear” the shape as the Hamiltonian uniquely defines the connections
and their lengths when the graph is finite (and simple), the bond lengths are rationally
independent and the vertex scattering matrices are properly connecting. It is also worth
noting that this inverse spectral problem can be extended onto scattering systems as also
stated in the same paper (a so called inverse scattering problem [58]). However, in these
scattering systems it appears that it is not always possible to uniquely find the structure
[59, 60], i.e., there is a way to construct iso-scattering pairs of graphs with identical polar
structure of their scattering matrices, which was also shown experimentally via microwave
networks by Hul et al. [61]. Wave packets specifically have also attracted some attention
in recent years but not for the purposes of what we aim for in this paper [62, 63]. Some
work has been done in the context of sufficient coverage with sensors [64], however, in this
case we will not share all the assumptions and thus those methods are not applicable to
our problem.

While detecting and inferring the hidden structures can be exciting in itself it is also
worth noting the potential impact of these unseen layers on the dynamics of the whole
system. It is well established that there is a lot that can be said on how our societies form
and function with techniques and approaches familiar to physicists [65–69]. A particular
interest lately has been the dynamics of opinion formation, especially in the light of
recently better studied phenomena such as echo chambers [70–73] and misinformation
[74–79]. One of the major effects that seems to be strongly connected with echo chambers
and misinformation is that of polarisation. While not every topic is polarising [80, 81]
many certainly can be [71, 82–89]. It seems to have been recognised as dangerous to
the state of democracy around the world by the scientific community and the need for
research in this very topic is rather clear [90–96] especially in the light of a possible event
of democracy backsliding [97, 98].

We recognise that it is of relevance and interest here to study the possible dynamics
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between two clearly defined groups as it often can be in politics (e.g. Democrat vs
Republican in the USA), topics (pro- or anti-) as well as has precedence in socio-physics
[99–105]. In particular we felt inspired by the work of Baumann et al. [70] where the
authors introduce an echo chambers and polarisation model on complex networks. In
this paper we modify the said model so that it operates on a bi-layer temporal network,
as opposed to a mono-layer, where each layer can represent a clearly defined group of
individuals (agents). This transformation is directly driven by the fact that many system
drastically change their physical properties (e.g., phase transition type change) when
considered on a duplex (bi-layer) topology [106, 107]. We show that several complex
behaviours can be acquired by simply changing the nature of the coupling between those
layers. Let us underline that the question of interacting layers is an extremely vivid topic
in the view of COVID-19 epidemic. Recent studies point to a pivotal role played by
risk perception layer in the spreading of a disease [108] or explicitly the attitude toward
vaccination [109]. In this scope examining the dynamics of two coupled opposite groups
(e.g., pro- and anti-vaccination) seems to be highly relevant.

This work is organised into five chapters. We have already established the context and
motivations of the research presented here and what follows is a description of the major
theoretical concepts used. Then, in Chapter 2, we shall inspect whether it is possible
to detect hidden layers and maybe even reverse engineer hidden connections when the
underlying dynamic in the system is that of an epidemic spread. In Chapter 3, similarly
our is to determine whether hidden layers exist and learn something about them, however,
this time within the framework of quantum graphs instead of epidemiology. In Chapter
4, we take a detour into the field of opinion dynamics and more concrete socio-physics as
to bring the point home that the methods established in chapters two and three are of
great significance as adding a layer to a system can have profound consequences on its
behaviour. Finally, in the very last chapter we include a brief summary of what has been
accomplished on this journey.

1.1 Complex networks
What we mean here by complex networks are networks (or graphs) with non-trivial topo-
logical structures or dynamical processes. Historically this field has its roots in graph
theory yet has certainly grown beyond that [110]. A graph is in essence a collection of
points joint together into pairs [111]. These points that can be representative of a wide
variety of real world objects are typically called nodes or vertices while the connections
between them are referred to as links or edges. A standard example of such a network
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would be the Internet. Each computer in the Web is a vertex and all the connections such
as optic fibre cables, telephone lines etc., would be the edges. Applications of complex
networks are many as it is easy to imagine that any information exchange structure would
naturally be modelled with a graph, e.g., social media, author citations or collaborations,
transportation, brain, protein interactions and so on and so forth.

There are also many different properties, metrics and possible dynamical processes on
complex networks and thus here we would only mention the most relevant ones while for
other we refer the Reader to the appropriate literature [14, 66, 110–114].

The usual way of describing the connections within a graph is via a so called adjacency
matrix A. Each element Ai,j represents whether there is a connection Ai,j > 0 or not
Ai,j = 0. While the value of the said element can be indicative of some property, e.g., a
delay of information propagation often it is simply a 1 to indicate the existence of the link.
Adjacency matrix is not the only possible matrix representation of a graph and of note
and relevance here is also a structure called the graph Laplacian as it tends to appear
in many different problems including random walks on networks, dynamical systems and
diffusion. In short the graph Laplacian L is defined as L = D − A where D is a diagonal
matrix with node degrees ki on the diagonal.

We shall now briefly describe the structural models that are well established in the
literature and are often a convenient way of simulating certain aspects of real world
scenarios. One of the simplest models is a square lattice - each vertex is connected to four
other vertices (up, down, left, right). This model’s advantage is of course its simplicity
while still maintaining an intuitive property of relationships between vertices depending
on the distance between them. It of course does not reproduce real world characteristics
such as being scale-free, having the small world property or high clustering coefficient.
One must also decide how to treat the boundary of such a graph and often (as well as in
this book) the so called periodic boundary conditions are chosen, i.e. the graph “wraps
around”. This means that the vertices on the right edge are connected to the vertices on
the left edge, and top to bottom. In essence such a graph is in a shape of a torus.

Another relatively simple model is the Erdős–Rényi (ER) graph where each node has
a certain probability p of making a connection to another vertex [115]. This results is
that the degree (that is the number of connections a node has) distribution is binomial
and the model has a percolation threshold at logN/N where N is number the number of
vertices (i.e., the size of the graph). If p > logN/N the graph is most likely connected
(or percolated, meaning from any node there is at least one path to any other node), and
if p < logN/N then the size of the graph’s largest connected component is smaller than
N .
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As the ER graph has a fairly small clustering coefficient and is not a “small world”
graph we need a different model. A model that addresses both of these issues is a Watts-
Strogratz model [116]. In this model we start with constructing a regular lattice, typically
a ring (or a circle) such that each vertex is connected to k/2 neighbours (where k denotes
the desired node degree) to the left and k/2 to the right. When k > 2 the graph usually
looks like a flower. Then we rewire each edge with probability p such that if p = 0 no
edges are rewired and if p = 1 all edges are rewired. Rewiring is done randomly only so
that we do not double already existing connections. This procedure gives us the small
world property which means that from any node in the graph we can reach any other
node with only a few steps even if the graph is very large. It also has a high clustering
coefficient which can be interpreted as the likelihood that any two neighbours of some
node are also connected to each other. Where this model falls short is with its degree
distribution as it is not a power-law.

In order to address the issue of the scale-free property we can use the Barabási–Albert
model [117]. Its distinct feature that allows for the reproduction of a power-law degree
distribution is the preferential attachment rule stating that the probability of making a
connection p depends on the current degree of a node we consider connecting to. The
procedure to construct such a graph begins with some initial number of nodes m0 and
then in a step-by-step manner we add more nodes. Each time we add a node it makes
exactly m ≤ m0 connections, at random, however, the probability of connecting to the
node i is proportional to its temporary degree, i.e., pi ∼ ki. This results in a power-law
degree distribution P (k) ∼ k−3 and a small world property, unfortunately the clustering
coefficient is usually lower than we would expect from real world networks.

The above models were chosen as they are rather ubiquitous in the literature of com-
plex networks and allow for an easy way of testing hypothesis or comparing to past and
future work. Quite obviously none of them are a perfect representation of real systems
yet that is also what makes them useful as one can sometimes isolate certain phenomena
associated with a particular property of the topology. In order to test whether our pro-
posals later could hold merit in the real world we simply use actual real world networks
from appropriate data sets.

As mentioned in the very beginning, many real-world systems cannot be accurately de-
scribed with traditional graphs. As transportation and communication networks become
more and more complex, multi-layer extensions become necessary. These layered objects
can be described as “networks of networks”[118] or with detailed inter-layer structure [9],
or even sophisticated tensor formulations [7]. In this work we shall use two simple vari-
ants that here we introduce briefly, and in appropriate amount of detail in the chapters
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concerning them.

Figure 1.1: Visualisation of a multi(bi)-layer
network example. Each layer has its own
distinct structure and inter-layer interactions
are also possible.

Let us say that we have N entities
(agents) that can exist in multiple net-
work structures at the same time. Each
of these structures we shall call a layer.
E.g., some person can have an account
on Facebook, Twitter and Instagram. On
each of these platforms they are active in
some, possibly distinct, ways, they inter-
act with their friends or followers, etc. The
set of these connections (friends/followers)
can but need not be (and most often is
not) the same for this person on each of
the platforms. For instance they can use
Facebook to contact their family, Twitter
to talk with strangers about politics and Instagram to share their life with their college
friends. In such a case we have three distinct networks, with different dynamics and
structures that are inter-connected if only by just that one person. Upon receiving some
information on one of these platforms the user can now send it further in other layers or
it will affect how they interact with their connections, etc. We have just described an
example of a multi-layer system and a visual guide is presented in Fig. 1.1.

In this work we shall assume that each layer has N vertices, i.e., given entity has its
representation in every layer (they may not necessarily have any connections but they
exist there) that we can also call a replica rl where l is an index of a layer. We shall also
assume that inter-layer connections (i.e., links between layers) are only of type “replica to
replica”, meaning that we do not allow for “cross” links. Now, we differentiate between two
types of these links: in the first type every replica is connected to every other replica (non-
stratified), and in the second we arbitrarily choose an ordering such that r1 is connected
to r2 which is connected to r3 and so on, but r1 and r3 are not connected (stratified).
Furthermore, we can either have the state of replicas be always identical (non-delayed)
or we can introduce certain physicality to the inter-connection such that the propagation
speed is not infinite (delayed). With these labels we can now specify that in the Chapter 2
we use a non-stratified, non-delayed variant and in Chapter 3 we use a stratified, delayed
one.
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1.2 Epidemiology

Epidemiology in the modern mathematical form has been a vast and constantly developing
field for almost a century [14] and has also been expanded recently onto multi-layer systems
[11, 12, 119]. Quite naturally it would be of little sense for us to describe here this wide
gamut of models and methods and thus we shall focus on one of the simplest models
- Susceptible-Infected (SI) [111]. While simple it is definitely not primitive and most
surely is very useful. While it does not capture many mechanism typical with epidemics
like vaccination, immunisation, death, exposure etc. it is quite apt in capturing the
spreading phenomenon itself. As such we can use it as a model for not only how a disease
would spread but also a rumour, a viral tweet, a meme and so on - in general a piece of
information cascading through a network. This notion of information cascade of course
also includes things like power failure cascades or viral infections – that is exactly why
this simple model can be so useful.

The SI model considers two possible states of agents in the system. An agent here
can be a person, a Twitter account, a computer, a protein, etc. – these are our nodes in
the graph. Each agent can be either susceptible to the disease or already infected. When
agents are infected they have a certain probability β of sending the information they have
to each of their neighbours. A typical phenomenon for this model are the aforementioned
cascades where a single node is initially infected and the information rapidly spreads
through the system like an avalanche. While this can seem obvious for biological systems
or power grids, it has also been recently observed in social media [75, 77–79].

In practice one can either simulate such dynamics with a typical agent-based modelling
approach with a use of Monte Carlo methods where we sample agents and draw probabili-
ties of spreading the infection and so on, or use a more general approach where each edge
has an attributed weight drawn randomly from an appropriate distribution. This weight
corresponds to a time delay, i.e., the time it takes for the information to spread from one
node to another. Then in order to “spread” the virus one simply utilises a path finding
algorithm such as Dijkstra’s in order to find the shortest weighted path from a source to
a target node [25, 120]. In case of the SI model the appropriate distribution is of course
geometric since there we have a series of failed Bernoulli trials followed by a success.

While the SI model is a special case of the more general SIR when the recovery
rate γ = 0, i.e., agents never become “removed” from the dynamics, the other extreme
case is the so called Independent Cascade model which is the special case for γ = 1, i.e.,
immediately after attempting to pass the infection on to its neighbours, the node becomes
removed and no longer takes part in the spreading process [121]. We will consider this
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model as well as the SI in order to try to encompass the whole family of SIR-esque models
without necessarily conducting an obscene amount of computations.

A useful notion for the purposes of our later considerations in this work is that of
likelihood of an SI cascade [15]. Let as assume that we observe C independent cascades
where a cascade Σc is defined as a collection of activation times of nodes in the network
∀i∈V {τ ci }. Here V is the set of nodes in the considered graph G. We also assume that we
have a limited observation time budget, i.e., we do not necessarily see the whole cascade
but only up to time tmax. This parameter naturally introduces a certain trade of for
any reverse problems, i.e., the smaller tmax the more cascades we are going to need to
acquire sufficient amount of information and vice versa. If node i in cascade c does not
get activated at a certain time prior to tmax, we put by definition τ ci = t. In other words,
τ ci = t means that node i changes its state at time t or later. The full information on
all the cascades is Σ = ∪cΣ

c. We can then write out the likelihood of observed Σ on the
graph G:

P (Σ | G) =
∏
i∈V

∏
1≤c≤C

Pi(τ
c
i | Σc, G, {β}), (1.1)

with

Pi(τ
c
i | Σc, G, {β}) =

τci −2∏
t=0

∏
k∈∂i

(1− βki[τ
c
k ≤ t])

×

×

(
1−

(∏
k∈∂i

(1− βki[τ
c
k ≤ τ ci − 1])

)
[τ ci < tmax]

)
, (1.2)

where ∂i denotes the set of neighbours of node i in the graph G, and {β} being the set
of transmission probabilities on the links. The expression (1.2) essentially states that the
probability that node i has been activated at time τi given the activation times of its
neighbours is equal to the probability that the activation signal has not been transmitted
by any infected neighbour of i until the time τi−2 (first term in the product), and that at
least one of the active neighbours actually transmitted the infection at time τi−1 (second
term). Note that we use the Iverson bracket notation here [122] meaning that [♡] is one
when ♡ is true and zero otherwise. Later on in this work we shall extend this approach
onto a multi-layer topology and the Independent Cascade model as well.
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1.3 Quantum graphs

In previous section we have discussed what a graph is. A quantum graph is a special type
of a structure that is characterised by additional properties applied onto a classical graph.
One of these properties is a metric, i.e. each edge e has its length Le and an appropriate
coordinate along it xe. Another property is a second order differential operator acting on
its vertices and edges - a Hamiltonian - with appropriate boundary conditions [36–39]. It
is worth underlining here that with this definition we do not specify the exact nature of
the Hamiltonian and while it is often a quantum mechanical one, it does not need to be
so and thus here we follow the interpretation of taut strings, fused together at the vertices
that can be seen as the “limiting case” of a “quantum wire” [123, 124]. While the roots
of quantum graphs could probably be traced as far as 1936 [40], only now do they begin
to bloom with a plethora of applications in dynamical systems, nanotechnology, photonic
crystals and many others [41–46].

What is of the utmost interest to us here is that the mathematical apparatus of
quantum graphs offers a wave equation that is not unlike the classical, mechanical one
ü = ∆u. A wave described by such an equation would share all the ”nice“ properties from
wave mechanics such as a finite speed of propagation [49] which is in fact not the case
with a typical graph Laplacian approach [28, 29].

Let G = (V,E) be a graph. Let G be its geometric realisation, i.e. we apply a metric
onto G such that each edge e = (u, v), connecting vertices u, v, has length 1, an associate
coordinate xe and is fused at its vertices with other edges. Let V be the vertex counting
measure, and E be the Lebesgue measure on the edges. We can then write the vertex-
based Laplacian (i.e. the one typically seen in graph theory albeit in a slightly different
form) as [123, 125]:

uttdV = −∆u, (1.3)

whereas the edge-based Laplacian would be:

uttdE = −∆u, (1.4)

where u is a square integrable function defined on the graph. Specifically u(n) is the value
of u at the node n, and u(e, xe) is the value of u at the position xe along the edge e [48].
This second equation is the ”proper“ wave equation with finite speed propagation that we
want to utilise. In order to have a wave propagating through the whole systems we also
need to apply suitable boundary conditions. For our purposes we shall use the Neumann
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boundary conditions also called ”natural“:

∀v ∈ G,
∑
e∋v

(−1)1−xe,v∇u(e, xe,v) = 0, (1.5)

and of course we also need the initial conditions. For our purposes we will be sending out
a wave packet from a single edge. This wave packet would be a Gaussian one in the form:

u(e, x) = exp
(
− a(x− µ)2

)
. (1.6)

We choose this particular set up as it has been already studied quite thoroughly [48, 50–
52].

The general solution of the wave equation on graph G, provided that the initial condi-
tion is Gaussian packet fully localised on a given edge f is derived and presented in detail
by Aziz et al. in [48]. Here, we re-write it in terms of integer times, i.e., t = 0, 1, 2, ... so
that it fits the case examined in the later chapter. We additionally assume that the graph
is unweighted, undirected and non-bipartite. In such a setting, we consider an arbitrary
edge e = {u, v} that connects two vertices u and v and can be associated with a variable
xe ∈ [0, 1] that represents coordinate along such an edge. Then the amplitude u of the
wave in the middle of edge e can be expressed as

u(e, f, t) = u1(e, f, t) + u5(e, f, t) +
1

|E|
, (1.7)

where |E| is the number of edges in the graph and u1 and u5 are defined as follows

u1(e, f, t) =
∑
ω∈Ω

C(e, ω)C(f, ω) cos(B(e, ω) + 1
2
ω) cos(B(f, ω) + ω(1

2
+ t))

u5(e, f, t) = 2 cos(πt)
∑
i

Cπ(e, i)Cπ(f, i)
(1.8)

In the above equations ω, C(e, ω) and B(e, ω) come from the edge-based eigenvalues
and eigenfunctions, which are, respectively ω2 and ϕ(e, xe) = ±C(e, ω) cos(B(e, ω)+ωxe)

of the row-normalised adjacency matrix Â of the graph G. Assuming that we know
vertex-based eigenvector-eigenvalues pairs (g(v),λ) of matrix Â we can express C(e, ω)
and B(e, ω) as

C(e, ω)2 = g(v,ω)2+g(u,ω)2−2g(u,ω)g(v,ω) cosω
sin2 ω

tanB(e, ω) = g(v,ω) cosω−g(u,ω)
g(v,ω) sinω

,
(1.9)

while ω = arccosλ. The sign of C(e, ω) needs to chosen in order to match the phase,
in practice it can be achieved by calculating sgn[g(v)]|C(e, ω)| It is always true that one
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of the eigenvalues is equal to 1 (consequently, ω = 0): this value is responsible for the
constant term 1/E in Eq. (1.8) so it is not included in further calculations, i.e., it does
not belong to Ω set in function u1. Although ϕ(e, xe) are orthogonal, they still need to be
normalised. To fulfil this condition for each ω ∈ Ω we calculate normalisation factor ρ(ω)

ρ(ω) =

√∑
e

C(e, ω)2
[
1

2
+

sin(2ω + 2B(e, ω))− sin(2B(e, ω))

4ω

]
(1.10)

where e runs over all edges in graph G. Then, in order to obtain properly normalised
value of C(e, ω) one needs to divide it by ρ(ω).

For calculations of Cπ one first needs to transform the original undirected graph G

into a directed one D(G) by simply replacing each edge e = {u, v} with two arcs (u, v)

and (v, u). In the next step we create a structure called oriented line graph (OLG),
constructed by substituting each arc of D(G) by a vertex (such vertices are connected if
the head of one arc meets the tail of another arc). Using the adjacency matrix Aolg of the
OLG we solve the eigenproblem Aolggolg = λolggolg and then restrict ourselves to λolg = −1

and corresponding eigenvectors (there should be exactly |E| − |V | linearly independent
solutions) that form Cπ.

Let us note that if we decide to measure wave amplitude on nodes instead of edges
the formula is particularly simple as then

un(e, f, t) = u1(e, f, t) +
1

|E|
, (1.11)

and

u1(e, f, t) =
∑
ω∈Ω

C(e, ω)C(f, ω)

{
cos
[(
t− 1

2

)
ω −B(e, ω) +B(f, ω)

]
+

+ cos
[(
t+

3

2

)
ω +B(e, ω) +B(f, ω)

]} (1.12)

If follows that in such a case we do not have to create OLG and thus the calculations are
less consuming in regard to both the computational time and resources.

In order to make the above concise description clear, let us follow a very simple
example of a graph shown in Fig. 1.2a. In such case, knowing the adjacency matrix A
where Aij = 1 if nodes i and j share a link and Aij = 0 otherwise, we can write the
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Figure 1.2: (a) An example of a simple graph consisting of |V | = 4 nodes and |E| = 5
edges. (b) Oriented Line Graph obtained from the graph depicted in panel (a).

row-normalised adjacency matrix Âij = Aij/
∑

k Akj as

Â =


0 1

3
1
3

1
3

1
2

0 0 1
2

1
3

1
3

0 1
3

1
2

0 1
2

0

 . (1.13)

Solving the eigenproblem Âg = λg one obtains in this case the following eigenvectors

g =

ω1 ω2 ω3 ω4


1

√
2
13

√
2
2

0 −1
2

2 − 3√
26

0 −
√
2
2

−1
2

3

√
2
13

−
√
2
2

0 −1
2

4 − 3√
26

0
√
2
2

−1
2

(1.14)

and related eigenvalues λ =
(
−2

3
,−1

3
, 0, 1

)
. Each column of g corresponds to different ω

and consecutive rows are node numbers. As mentioned before, λ = 1 is not taken into
account in further calculations, so ω = {ω1, ω2, ω3} = {arccos(−2

3
), arccos(−1

3
), π

2
}. Now,

having calculated g and ω we are able to obtain C(e, ω and B(e, ω) as described in Eq.
(1.9). To simplify the outcome we show it as matrices with rows denoted by graph edges
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and columns — by ω values:

C =

ω1 ω2 ω3



e12 −3
√
26

26
−3

4

√
2
2

e13 − 1
13

√
6
√
26 −

√
3
2

0

e14 −3
√
26

26
−3

4

√
2
2

e21
3
√
26

26
3
4

−
√
2
2

e23
3
√
26

26
3
4

−
√
2
2

e31 − 1
13

√
6
√
26

√
3
2

0

e32 −3
√
26

26
3
4

√
2
2

e34 −3
√
26

26
3
4

√
2
2

e41
3
√
26

26
3
4

√
2
2

e43
3
√
26

26
3
4

√
2
2

B =

ω1 ω2 ω3



e12 arctan
√
5
2

− arctan
√
2
4

π
2

e13 − arctan
√
5 arctan

√
2
2

0

e14 arctan
√
5
2

− arctan
√
2
4

−π
2

e21 0 −π
2

0

e23 0 π
2

0

e31 − arctan
√
5 arctan

√
2
2

0

e32 arctan
√
5
2

− arctan
√
2
4

π
2

e34 arctan
√
5
2

− arctan
√
2
4

−π
2

e41 0 −π
2

0

e43 0 π
2

0

(1.15)
Each column of matrix C needs to by divided by a corresponding value of ρ(ω) given by
Eq. (1.10), i.e., in the case of the exemplary graph ρ = {15

13
, 3
2
, 1}. In this way we possess

full information needed to evaluate values of u1.
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Figure 1.2b presents an Oriented Line Graph obtained from the graph shown in Fig.
1.2a, its adjacency matrix Aolg being simply

Aolg =

e12 e13 e14 e21 e23 e31 e32 e34 e41 e43



e12 0 0 0 0 1 0 0 0 0 0

e13 0 0 0 0 0 0 1 1 0 0

e14 0 0 0 0 0 0 0 0 0 1

e21 0 1 1 0 0 0 0 0 0 0

e23 0 0 0 0 0 1 0 1 0 0

e31 1 0 1 0 0 0 0 0 0 0

e32 0 0 0 1 0 0 0 0 0 0

e34 0 0 0 0 0 0 0 0 1 0

e41 1 1 0 0 0 0 0 0 0 0

e43 0 0 0 0 0 1 1 0 0 0

. (1.16)

We deliberately refrain from showing the full matrix ðolg of eigenvectors of Aolg as in our
case |E| − |V | = 1 so there is exactly one eigenvector corresponding to λ = −1 namely

Cπ =

e12 e13 e14 e21 e23 e31 e32 e34 e41 e43( )√
2
4

0 −
√
2
4

√
2
4

−
√
2
4

0 −
√
2
4

√
2
4

−
√
2
4

√
2
4
. (1.17)

It is now easy to check that if substitute Eq. (1.8) with the calculated matrices C, B, ω
and Cπ and assume that the wave is initially localised on edge f = {1, 2} and t = 0, the
amplitude u = 1 for e = f = {1, 2} and u = 0 in any other case, as expected. The first
10 steps of propagation are depicted in Fig. 1.3 (the wave moves toward v = 2).
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Figure 1.3: Wave propagation on a graph shown in Fig. 1.2a for the first 10 time steps
(initial condition: a Gaussian wave fully contained on the edge f = {1, 2} moving towards
the vertex v = 2).

1.4 Other tools and methods

Here we shall describe remaining minor topics that each separately do not really merit
their own sections.

For starters let us describe the Principal Components Analysis. These Principal Com-
ponents are a sequence of projections of the set of data in Rp, mutually uncorrelated and
ordered in variance in in Rq where q ≤ p [126]. In other words we transform the feature
space such that it becomes orthogonal and each consecutive feature is aligned in the di-
rection maximising the variance of the data and has more variance than the last. We do
that by minimising the reconstruction error, i.e. solving:

min
Vq

N∑
i=1

||(xi − x̄)− VqVT
q (xi − x̄)||2 (1.18)

where Vq is a p×q matrix with q orthogonal unit vectors as columns. A p×p matrix VqV T
q

is the transformation matrix that maps each p-dimensional observation into its q-rank
reconstruction. In our case specifically p = q = 100 and the examples of transformation
matrices are represented as heat-maps in Fig. 3.3 and 3.4 in Chapter 3. In general the
PCA is known to be a quick and easy method to (i) perform dimensional reduction, (ii)
help to visualise high-dimensional data and (iii) aggregate high-dimensional data into a
possibly single measure (see, e.g., [127–129]).
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The K-NN classification is a method of the class estimation ŷ(x) of a given sample x
taken as a majority vote amongst the members of NK(x) - the neighbourhood of x defined
as K points closest to x [126, 130]. To determine which points are closest a metric must
be chosen and for the purposes of this paper a Euclidean distance was used. In our case
specifically each observation is a graph represented by its WPS, i.e. each graph is a point
in a 100-dimensional space.

Fourier analysis allows us to convert a given time dependent signal f(t) onto a fre-
quency domain into f̂(ω) via a Fourier transform and thus acquire the frequency distribu-
tion of the said signal as it becomes a linear combination of the trigonometric functions
each corresponding to a particular frequency. A discrete Fourier transform is, as name sug-
gests, a discrete version where the integration is replaced by a summation [131]. Therefore
we consider a problem where one wants to express f(t) as a complex Fourier series:

f̂(ω) =
N−1∑
k=0

f(k)e2πiω/N (1.19)

This procedure, as it stands, would require N2 operations (where each operation is a
complex multiplication followed by a complex addition), however, Cooley and Tukey in
[132] presented a method known as the fast Fourier transform that allows us to do it in
less than 2N log2N .

A wavelet transform is an analogous procedure to the Fourier transform in the sense
that we represent a given signal as an orthonormal series [133]. In case of Fourier those
are sine and cosine while in the wavelet those are the eponymous wavelets. A wavelet is
a particularly chosen function that is localised, i.e. it has a finite width, and its family
can compose an orthonormal basis for the signal - s(t).

C(a, b) =

∫
R
s(t)

1√
a
ψ

(
t− b

a

)
dt, a ∈ R+, b ∈ R (1.20)

In our case the wavelet - ψ - was a Morlet (also known as the Mexican hat) one as per
the procedure described in [134] which (simplified) is as follows: perform a continuous
wavelet transform (CWT) on the signal, identify the ridge lines by linking local maxima
of CWT at each scale level, identify the peaks based on the ridge lines with three rules
(quoted verbatim): “(1) The scale corresponding to the maximum amplitude on the ridge
line,which is proportional to the width of the peak, should be within a certain range;(2)
The SNR should be larger than a certain threshold;(3) The length of ridge lines should
be larger than a certain threshold;”. Here SNR is a signal to noise ratio.
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Most simulations, analysis and plotting were conducted with a use of Python and
appropriate libraries [135–141] or R [142]. Some simulations were also implemented in
Rust [143]. Mathematical analysis and plots were supported by Mathematica [144]. Real
world network in Chapter 2 was visualised with Muxviz [145].
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Chapter 2

Detecting hidden layers from
spreading dynamics

Let us embark into multi-layer networks with a well known and established information
propagation model - Susceptible-Infected (SI). While it was originally developed for mod-
elling spreads of viral infections throughout society we choose to say information here
since one can consider information to spread in a very similar way (it is no coincidence
that we call certain videos or memes to have gone viral after all), and viruses can also be
thought of as a piece of information. For details on the SI model we refer the Reader to
the theoretical introduction earlier in this thesis, see Sec. 1.2.

We shall use this particular model because of its simplicity on one hand and the
mechanism of multiple infection opportunities (in comparison with, e.g. an independent
cascade model) on the other. The latter makes the combinatorial analysis much more
difficult as we will see very soon.

The task before us is thus: having observed a cascade (or multiple cascades) of some
spread in a complex network (e.g. a virus in a city or a piece of false information in social
media) can we determine whether there are communication channels that are hidden from
us? And if so then is there a chance to reverse engineer those connections?

2.1 Cascade likelihood and hidden layer detection

It is already known how to measure the likelihood P (Σ|G, β) of a cascade in the Susceptible-
Infected model [15, 23, 146, 147], however, here we formulate it in terms of a multi-layer
graph. Let us have a cascade c from the set of all cascades C represented by a collection
of node activation times Σc, given a topology G, activation times from all the cascades
as Σ = ∪cΣ

c, and assuming edge activation probabilities βj per layer j this likelihood is
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given by:
P (Σ|G, {βj}) =

∏
i∈V

∏
c∈C

Pi(τ
c
i |Σc, G, {βj}) (2.1)

where V is the set of nodes in graph G. Note that we can use our knowledge about the
activation times of each node and compute the probability of node i not being activated
by its neighbour k (from layer j) before τ ci −1 under cascade c, which is equal to

∏τci −2
t=0 (1−

βj[τ
c
k ≤ t]), where [♡] is the Iverson bracket notation[122] with [♡] = 1 when ♡ is true

and [♡] = 0 otherwise. Similarly, the probability of the same node not being activated by
its neighbour exactly at time τ ci − 1 is equal to (1− βj[τ

c
k ≤ τ ci − 1]). Have in mind that

τ ci = tmax is equivalent to node i not being activated at all. Then each element of the
product in Eq. (2.1), being the probability of node activation under a specific cascade,
can be computed as follows:

Pi(τ
c
i |Σc, G, {βj}) =

( τci −2∏
t=0

∏
j

∏
k∈∂ji

(
1− βj[τ

c
k ≤ t]

))
×

×

(
1−

∏
k∈∂ji

(
1− βj[τ

c
k ≤ τ ci − 1]

)
[τ ci < tmax]

)
, (2.2)

where ∂ji represents the neighbourhood of node i in layer j, V the set of all nodes in the
graph G, τi an activation time of node i, t time and tmax the final observation time. That
last parameter means that we do not assume that we have observed the cascades in full.
This is supposed to model the fact that sometimes we are simply unable to continue to
observe the system forever and must seize the measurements even though the propagation
has not yet reached all the vertices of the graph.

As seen from Eq. (2.1), adding more cascades reduces the likelihood. Nevertheless
increased statistics of cascades makes it easier to find hidden edges, as we show later on.
The first major term of Eq. (2.2) represents the probability that the activation signal has
not been transmitted by any of the infected neighbours of some node i up until the time
τi − 2. The second term is the probability that at least one of these neighbours actually
did transmit the signal at time τi − 1. These two terms combined give us the probability
that the node i was activated at a the time τi which is exactly what we need in Eq. (2.1).

In practice it is often more convenient to deal with a log-likelihood which is simply
the logarithm of Eq. (2.1) and so the numerical analyses from now on will reflect that.

An unobserved layer of propagation may lead to a situation where nodes become
active despite not interacting, on the observed network, with any other active node. Such
situation leads to the probability described by Eq. (2.1) being equal to zero (log-likelihood
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Figure 2.1: Log-likelihood - Eq.(2.1) - histograms of 103 independent Susceptible-Infected
cascades. Note: likelihood was computed for each cascade separately and it is 103 runs
per given set of parameters. We used Barabási-Albert graph of size N = 100 with
m ∈ {1, 2, 3, 4}, and infection rate β ∈ {0.0001, 0.3334, 0.6667, 1.0}. (a) shows results
for a single layer network, titles of the subplots represent (k, β). Right column of (a) are
all uniquely zeroes. (b) shows an aggregated histogram of 256 different (k, β) parameters
combinations on a bi-layer system.

→ −∞). In such case one can be sure that there exist spreading paths which are not
present in the observed layers. For example see Fig. 2.1 where we show log-likelihoods
of a mono- (a) and bi-layer (b) Barabási-Albert network [117]. The latter case means
that we assume we only know about one layer, observe a cascade and compute the log-
likelihood with Eq. (2.1). In (a) we show how the distribution of the log-likelihoods
depends on the mean degree (k) and the infection rate (β). Rather intuitively when
the β is large and thus the process more stochastic in nature our measure finds the
cascades less likely whereas when β = 1 its logarithm always returns zero. In (b) we
show a combined histogram of 256 different combinations of parameters (k, β) with the
dashed line representing the count of (negative) infinities. This is what we have just
mentioned - such a result gives us certainty that there is a hidden layer as some observed
transmission is simply impossible with our current knowledge of the topology. As one
can see such cases highly dominate as the bi-layer model here is not strongly correlated
(i.e., there are few overlapping edges between layers). In reality different layers share
certain similarities and may be strongly correlated which would decrease the probability
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Figure 2.2: Heatmaps of (left) number of cases with finite likelihood, (centre) mean log-
likelihood, (right) standard deviation of log-likelihood for the bi-layer case with kvisible = 8
and khidden = 2 (see Fig 2.1b). Y-axes are infection rates in the visible layer βvisible, X-axes
are infection rates in the hidden layers βhidden

of observing a forbidden activation. Real life social networks are a good example of this
because of a significant overlap between connections on different social media platforms.
Moreover, social connectivity is characterised by high clustering [148] which increases
the probability of observed neighbourhood being active, even though the activation came
through an unobserved edge. The two distinct histogram regions in (b) are examples
of such cascades that had a varied chance of occurring according to the log-likelihood
measure. Those are indeed the examples of when it can be ambiguous whether there is a
second layer or not. We shall discuss on how to address this issue later on. The fact that
there are these two separate clusters of values is a coincidence of our choice of the values
of β - the very low values are going to have much lower probabilities attributed to them
as already discussed.

To further emphasise how sensitive the likelihood measure is to hidden topology in
Fig. 2.2 we show its heatmaps for a selected bi-layer case from those presented in Fig. 2.1b.
The likelihood is zero when the cascade contains at least one propagation along an edge
that is present in the hidden layer but absent in the visible layer. When βhidden > 10−4

barely any instances have a non-zero likelihood. We can also see the separation visible
earlier due to the infection rate, i.e. the differences in the means and standard deviations
between predominantly stochastic or deterministic variants of the propagation process.

While the Barabási-Albert graph can be considered a decent model or real world net-
works [149] (although perhaps more of an idealised approximation [150]) we have already
mentioned that these results were for a not strongly correlated cases. It would be of
benefit to analyse scenarios where this correlation is in fact strong. Moreover it would
be best if one could in fact control the level of the said correlation. In order to do that
we shall introduce our own model of a bi-layer network that shall allow for just that.

38



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

45

40

35

30

25

lo
g-

lik
el

ih
oo

d

Tmax = 5

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

160

140

120

100

80

lo
g-

lik
el

ih
oo

d

Tmax = 10

(a) mono-layer

0.2 0.3 0.6 0.7 0.90.1 0.5 0.80.4

70

60

50

40

30

20

10

lo
g-

lik
el

ih
oo

d

Tmax = 5

0.2 0.3 0.4 0.5 0.6 0.7 0.90.1 0.8

175

150

125

100

75

50

25
lo

g-
lik

el
ih

oo
d

Tmax = 10
hidden

0.3
0.7

(b) bi-layer

Figure 2.3: Mean log-likelihood in function of β used in (2.1). Bars indicate the standard
deviation. Orange vertical line at β = 0.5 indicates the βobserved used in all simulations.
Each point on plots of (a) represents 104 simulations while in (b) 10065±2576 for tmax = 5
and 7029± 380 for tmax = 10 after removal of infinities (total for each point in both cases
is 5× 104). Bi-layer graph model was generated with p = 0.01

.

Let us take any graph, e.g. a square lattice as the first layer (also referred to as visible,
observed or top layer) and then apply a rewiring procedure similar to the one introduced
by Watts and Strogatz [116] to produce another (hidden or bottom etc.) layer. We can
start with a square lattice as an equivalent of real relationships (affected by distance) but
we will also explore a scale-free network as a starting layer. The point here is that the
correlation between the two layers can now be parametrised by p - the probability of each
node being rewired to any random (other) node. To see exactly what how Eq. (2.1) be-
haves in Fig. 2.3 we present its logarithm in function of a changing β. In (a) we simulate
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Figure 2.4: The percentage of log-likelihoods resulting with −∞ as a function of the
probability of rewiring p. We investigate two different cases of networks: square lattice
and Barabási-Albert network for different lengths of cascades. The simulations were made
for networks of size N = 100 with periodic boundary conditions in the lattice case. The
inset zooms in on the curves obtained for tmax > 2.

the cascades with β = 0.5 (indicated by an orange vertical line) and then we lie to the
measure by inputting a wrong value of β into the equation. What we expect and indeed
see is that our measure has a maximum for the correct value. Now if we do a similar
experiment with a bi-layer - panel (b) - it becomes very clear what the hidden layer is
actually doing from the perspective of the log-likelihood - it shifts the maximum. Again
it is not very surprising as we would expect the hidden connections to act as a boost to
the propagation - the more connections (or simply faster connections) the higher effective
β. This solidifies that the formulation we are exploring here brings sufficient merit.

Let us now see how this correlation between layers affects the values of Eq. (2.1).
In Fig. 2.4 we show the ratio of log-likelihoods that were infinite as a function of the
rewire probability for both a lattice and a Barabási-Albert graph, for three values of
tmax. What becomes immediately apparent is that unless our observation window is
unreasonably small even the tiniest changes to the graph structure result in a vast majority
of measurements returning −∞. Do note that the tested graph size was N = 100 which
means that with a rewire probability p = 0.01 we in fact rewire on average a single
edge. While it is tempting to leave it at that as it would seem that we have succeeded in
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establishing a very reliable way of determining whether a hidden layer exists or not. We
have, however, promised to address the ambiguity of a non-infinite results and so we shall
do so now.

In order to address such a situation and still be able to evaluate whether a given set
of cascades indicates existence of an unobserved layer or not, we assume a single layer
model and utilise the Vysochanskij–Petunin (VP) inequality [151] to evaluate whether a
given cascade could be generated by such a model.

We expect cascades that involved spreading through unobserved edges have signifi-
cantly lower likelihood than those in the assumed null model. In the likely case, the
distribution is unimodal, we can quantify how distant the value of an observed cascade
likelihood is from the value expected from the single-layer model using the VP inequality
which states that assuming X is a random variable with unimodal distribution (mean µ,
finite and positive variance σ) and λ >

√
8
3
, we have:

Pr(|X − µ| ≥ λσ) ≤ 4

9λ2
, (2.3)

which after normalisation X̂ = |X−µ|
σ

gives:

Pr
(
X̂ ≥ λ

)
≤ 4

9λ2
. (2.4)

Inserting λ = x̂:
Pr
(
X̂ ≥ x̂

)
≤ 4

9x̂2
, (2.5)

which means that an upper bound of probability of obtaining a result x̂ or greater from
a normalised unimodal distribution describing X̂ is:

p(x̂) = min
(

4

9x̂2
, 1

)
. (2.6)

for x̂ >
√

8
3
. In our case, x is the likelihood of a cascade given by Eq. (2.1), X is

random variable describing the likelihood values for an assumed single layer model. After
performing simulations, we calculate µ and σ, and normalise the x value obtaining x̂.

In our experience the distributions X in the single-layer case are unimodal and x̂ >
√

8
3

with a sufficient observation time (tmax) thus the assumptions of the VP hold, however,
as we are the ones producing these distributions then it is trivial to inspect whether that
is the case before proceeding with the rest of our method. In the event that it is not true,
an alternative theorem, analogous to the VP inequality (e.g. the Chebyshev’s inequality
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Figure 2.5: Histograms of p(x̂) - the probability that the system has only one layer (see
Eq. (2.6)) for various combinations of tmax and βhidden. Plots on the left are generated
for square lattice with rewiring, while the ones on the right are generated for BA network
with rewiring. Parameters for all the networks are as follows: βobserved = 0.5, N = 100,
p = 0.01 and m = 3 (in case of BA networks). Each histogram was made with 104

realisations.

[152]), can be introduced, or even more general approaches such as bootstrapping [153]
can be used to determine the confidence level of the observation. Here, we use p(x̂) to
measure how surprising given cascades are, assuming they were generated by an SI process
with known β simulated on a visible layer of the network.

In Fig. 2.5 we present distributions of Eq. (2.6) for various cases of a BA network with
rewiring. Aside from the cases where the observation window is small and the infection
rate is smaller than in the visible layer (which also means that the effect the hidden layer
has on the system dynamics can be insignificant) we get unimodal distributions with a
finite standard deviation around a fairly low mean value. What this means is that even
when the situation is ambiguous on the first glance when the likelihood of a cascade
(2.1) is combined with Eq. (2.6) often can provide us with sufficient certainty about the
existence of the hidden layer. On the other hand it can also provide us with the contrary
of course. Do note that p(x̂) is a measure of how likely the observed cascades are given
what we know about the system so no further statistical toolkit is required - one needs
simply to declare with what kind of “gamble” they are comfortable with. We observe that
in most cases a typical significance level of 0.05 would allow to reject the hypothesis of a
singular layer system.
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2.2 Finding links in the hidden layer
Now that we have established how to determine whether a hidden layer exists or not we
shall go onto the topic of reverse engineering the missing connections. We shall assume
to know the topology of the given visible layer and the infection rate of the hidden layer
- βhidden. We will try to find the topology by finding cases of node activation that could
not be explained by the assumed single layer model. Then in each such case all nodes
that were infected in a step preceding the unexplained activation are used to construct a
set of possible edges. The details of the procedure are as follows:

1. Let J c(t) = {i ∈ N : τ ci ≤ t} be a set of nodes that are infected in a simulation step
t of cascade c. N represents the set of nodes in graph G and τ ci is the activation
time of node i in cascade c. ∆J c(t) = {i ∈ N : τ ci = t} will be a set of nodes that
became infected in a simulation step t of cascade c.

2. Using above notation we can introduce a set of nodes that became infected in
simulation step t of cascade c but were not a neighbour of any node infected at
t− 1:

U c(t) = ∆J c(t) \
∪

m∈J c(t−1)

∂m, (2.7)

where ∂m is the known neighbourhood of node m.

3. If the likelihood of a cascade is zero then there is at least one hidden edge in a set:

E(i, c) =

{
(i, k) : k ∈ J c(τ ci − 1), i ∈

tmax∪
t=1

U c(t)

}
. (2.8)

Likelihood of such an edge being the one that was activated to infect i is unknown
and difficult to find. However we can say heuristically that the said likelihood is:

P c(i, k) ∼ (1− βhidden)
|τci −τck |. (2.9)

4. Then we must unify the candidates amongst the cascades. Namely if an edge (a, b)
was detected in c = 1 but not in c = 2 we need to associate it with the likelihood of
not being detected which is similarly non-trivial. Also similarly we can say whatever
that likelihood is it must be ∼ (1− βhidden)

|τci −τck |
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5. Finally, for each edge e we multiply its likelihoods, therefore obtaining a joint like-
lihood J :

J(e) =
∏
c

P c(e). (2.10)

6. Edges that maximise J are most likely the hidden edges we seek.

The Eq. (2.9) is a fairly simple yet effective (as we shall see soon) heuristic. The hope
for a direct expression for the edge likelihood is rather futile as it is quite easy to follow
similar logic as with the derivation of Eq. (2.2) and realise very quickly how complicated
such a formula becomes. Hence we rest here with the said heuristic. We are aware that
there might be a potential way of finding a better approximation of the edge likelihood
via techniques previously utilised by Lokhov et al. [15, 154, 155], however, that goes
beyond the scope of our considerations here.

In order to test our propositions we shall need two more pieces: evaluation metrics
and a null model. We find that a natural way of determining our success would be to use
sensitivity that is the ratio between true-positives and all positives. In other words we
shall look at the fraction of hidden edges that we have successfully found. As we simulate
our systems many times, we take the mean of the sensitivity across all simulations. That
on its own, however, we feel does not tell the whole story. Most trivially we could simply
demand checking all possible connections and for such a proposition the sensitivity would
return 1.0 (or 100% if we so choose). As such we extend upon a metric that the author
of this dissertation had helped develop in some past works: α− CSS [6] which stands for
α−Credible Set Size. It represents the number of candidates one must investigate in order
to have α level of certainty of finding the sought entity. In practice one computes the rank,
i.e., the position of the entity they wish to find in the list of the candidates, which is in a
descending order in accordance to a given measure the said entity should maximise. The
step is repeated many times in order to get a distribution of that rank, and finally, one
takes a quantile q = α of that distribution thus acquiring the α−CSS value. In our case
the measure is the joint likelihood J described above in point 5., and there are multiple
entities - edges - thus we have taken the liberty of adapting the said measure such that we
take the highest recorded rank amongst the hidden edges and follow the rest as usual. I.e.,
here specifically, we compute J for the appropriate edges (see the procedure description
1.-6. above), order these edges by their J(e) (highest to lowest), find the position of the
actual hidden edges (their rank), take the highest recorded rank, repeat 104 times, take
the quantile q = 0.95 of these ranks. We find that this is a good way of evaluating the
practicality of our approach. It effectively tells us how many connections we would have
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Figure 2.6: The number of edges required to check in order to have 95% certainty, accord-
ing to the null model, of testing all hidden edges, as a function of number of hidden edges.
The plot is done for a network with N = 100 nodes but the shape of the curve scales with
the size of the network. Comparison is between the numerical solution of Eq. (2.11) and
the approximation (2.13).

to test, say via some sort of targeted surveillance or measurements, to achieve α level of
certainty of detecting all hidden communication channels.

A null model would quite naturally be random guessing. There are
(
N
2

)
edges to check

in a system with N nodes. So for instance, with N = 100 that is:
(
100
2

)
= 4950 in

which case 95% certainty of finding one hidden link requires checking 0.95× 4950 = 4703

(rounded up) edges. In general the number r of links required to check in order to have
α certainty, according to the null model, can be obtained from:(

r
k

)((N2 )
k

) =
r!

(r − k)!

((
N
2

)
− k
)
!(

N
2

)
!

= α, (2.11)

where k is the number of hidden edges and N is the number of nodes.

The curve representing r as a function of k in the case of N = 100 nodes is shown
in Fig. 2.6. As we show later on our proposition requires substantially less edges to be
checked. Since Eq. (2.11) requires to be solved numerically, we also derive an asymptotic
approximation as follows: Denote

(
N
2

)
as ξ, then
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βhidden βobserved sensitivity 0.5-CSS 0.95-
CSS

0.3 0.5 0.81 108 322
0.7 0.5 0.85 162 422

Table 2.1: Sensitivity and α-CSS for a square lattice with rewiring (N = 100, tmax = 10,
p = 0.01). Results obtained for 104 realisations per scenario where each scenario had 10
independent cascades from (possibly) different sources.

α =
r!

(r − k!)

(ξ − k)!

ξ!

=
(r − 1)(r − 2) . . . (r − k)!

(r − k!)

(ξ − k)!

(ξ − 1)(ξ − 2) . . . (ξ − k)!

=
(r − 1)(r − 2) . . . (r − k + 1)

(ξ − 1)(ξ − 2) . . . (ξ − k + 1)
∼
(
r

ξ

)k

.

(2.12)

We can therefore conclude that

r ∼ 1

2
N(N − 1) k

√
α. (2.13)

The comparison of this result to the numerical solution is shown in Fig. 2.6.

Now we can finally commence testing of our method. Tables 2.1 and 2.2 show the
results of applying our method to both lattice and Barabási-Albert networks with hidden
layers produced by rewiring (with probability p = 0.01). When comparing the two settings
one can observe a certain interplay between sensitivity and α-CSS. For lattice based
network the sensitivity is significantly higher than in Barabási-Albert case but at the
same time scale-free case is characterised by a much lower α-CSS for both α = 0.5 and
α = 0.95. In other words, it is easier to correctly identify hidden edges when we have a
locally connected network (lattice) but at the same time a scale-free network requires a
smaller set to find all hidden edges (despite reaching a lower sensitivity level). Note that
in both cases the observed 0.5-CSS and 0.95-CSS are significantly lower than for the null
model where, depending on the number of rewired links, they would be larger than 2475
and 4703 respectively (see Eq. (2.11) for N = 100 and k = 1 – the higher the k, the more
links need to be checked for the null-model). Full distribution of ranks from which the
α-CSS was computed is shown for both networks at Fig. 2.7.

As already discussed when the layers are not correlated it is easy to identify that there
is a hidden spreading channel. Nevertheless, finding the actual unobserved links may still
be challenging. Both Fig. 2.8 and 2.9 show that density of the observed network is an
important factor. From the sensitivity perspective it is better to have a denser observed
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Figure 2.7: Distribution of ranks of hidden edges with medians as vertical lines. Left:
lattice with rewiring (N = 100, tmax = 10, p = 0.01). Right: BA network with rewiring
(N = 100, tmax = 10, m = 3, p = 0.01). Results obtained with 104 realisations per
scenario where each scenario had 10 independent cascades from different sources. These
results are for those realisations where all hidden edges were detected.

βhidden βobserved sensitivity 0.5-CSS 0.95-
CSS

0.3 0.5 0.53 19 87
0.7 0.5 0.69 30 116

Table 2.2: Sensitivity and α-CSS for a Barabási-Albert network with rewiring (N = 100,
tmax = 10, m = 3, p = 0.01). Results obtained for 104 realisations per scenario where
each scenario had 10 independent cascades from (possibly) different sources.
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Figure 2.8: The sensitivity as a function of mhidden and mobserved for two layer Barabási-
Albert network with βhidden = 0.7, βobserved = 0.5 and tmax = 10. The results are averaged
over 20 independent runs.
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Figure 2.9: The 0.95-CSS as a function of mhidden and mobserved for two layer Barabási-
Albert network with βhidden = 0.7, βobserved = 0.5 and tmax = 10. The results are averaged
over 20 independent runs.

network. Unfortunately the 0.95-CSS also grows with the density of known connections,
making it more demanding to find all the connections. Additionally, although the effect
is weaker, it is beneficial for both measures if the hidden layer is sparser. This aligns with
intuition since more hidden connections can make the observed dynamics much more
complex and unsurprisingly having more data about the cascades also makes the task
easier. The actual dependence between the number of cascades and the sensitivity is
shown in Fig. 2.10. For a relatively big BA network we need around 30-40 cascades to
reach a fairly satisfactory sensitivity level of around 0.8. Depending on the specifics of
the problem such amounts of data may be considered a lot (e.g., in epidemic spreading)
or easily available (e.g. information spreading on social media).

On top of synthetic networks we also use real-world data to build a multi-layer network
and empirically test our methods. For that purpose we choose the data collected among
employees of the Department of Computer Science at Aarhus University [156]. It is
a multi-layer network consisting of Facebook friendships, co-authorships, work, leisure
(repeated leisure activities) and a lunch layer (regularly eating lunch together). Its full
structure is presented in Fig. 2.11 with each layer being shown as a separate network.
The whole network has 61 nodes and 620 (unique) edges in total.

Main results for the Aarhus data are shown in Tables 2.3, 2.4 and 2.5, which use
respectively Facebook, work and lunch layers as the visible parts of the graph. We omit-
ted the other two possible cases because of their low density of connections. We treat
remaining hidden layers as one, aggregated layer as it does not matter how many layers
exactly there are in our detection method. Sensitivity and CSS values are consistent with
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Figure 2.10: The sensitivity as a function of number of cascades for a) two layer Barabási-
Albert network with m = 4 for both layers, βhidden = 0.7, βobserved = 0.5, N = 1000 and
tmax = 10 (red line); b) Aarhus data with different layers as the observed network (lunch
– blue line, facebook – yellow line and work – green line). The results are averaged over
20 independent runs and the error bars represent one standard deviation.

βhidden βobserved sensitivity 0.5-CSS 0.95-
CSS

0.3 0.5 0.78 1392 1434
0.7 0.5 0.78 1423 1468

Table 2.3: Sensitivity and α-CSS for the Aarhus data, with Facebook layer as the observed
network. Results obtained for 10 cascades with tmax = 10.

synthetic results in the sense that they both grow with the density of the visible layer. It
is also apparent that our approach far exceeds the performance of the null model. Inde-
pendently of which layer will be chosen as the visible one, random guessing would require
us to check all possible

(
61
2

)
= 1830 links, see Eq. (2.11), with k ∈ {159, 160, 229} for work,

lunch, facebook as the visible layer respectively. Our method, on the other hand, needs
significantly less than that. Here, k is the number of unique edges in the whole graph
(353) minus the number of edges in the visible layer. Note that in order to account for
the fact that our method does not always find all the links, i.e., sensitivity < 1, one can
adjust Eq. (2.11) such that one multiplies k by the expected sensitivity. That, however,
barely changes the result, i.e., null model requires maybe one or two edges less than all
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Figure 2.11: Visualisation of the multi-layer network representing the Aarhus data [156].
We utilise this network as a real world example of possible application of our methods. It
is quite natural to imagine we know only one of the layers presented here and would like
to infer the existence and possibly structure of others. Note that co-author and leisure
layers are disconnected and thus we do not use them as visible layers in our analyses as
that makes the task of detecting hidden connections potentially much easier.

possible at best. Moreover, our method gets the more successful the more cascades we
can observe. A more detailed dependence between sensitivity and the number of cascades
is shown in Fig. 2.10, where different colours represent different observed layers. In Fig.
2.12a we show the distributions of ranks for the work layer as the visible network and when
comparing them with the synthetic experiments the two distributions for βhidden = 0.3

and βhidden = 0.7 are much more symmetric and separated. The distributions of the other
two analysed visible layers are qualitatively similar further supporting the merit of our
approach, see the results on the “lunch” and “facebook” as observed layer scenarios in
Fig. 2.12b and 2.12c.

βhidden βobserved sensitivity 0.5-CSS 0.95-
CSS

0.3 0.5 0.31 400 536
0.7 0.5 0.42 591 730

Table 2.4: Sensitivity and α-CSS for the Aarhus data, with work layer as the observed
network. Results obtained for 10 cascades with tmax = 10.

We can also test how our layer detection scheme holds for different infection rates
and system sizes. By conducting analogous experiments to those presented in Fig. 2.5 we
can show the mean and standard deviation of p(x̂) from Eq. (2.6) as a function of these
variables. We set the visible infection rate βvisible = 0.5, tmax = 10, and simulate 104 times
per data point.
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Figure 2.12: (a) Distribution of ranks of hidden edges, with medians as vertical lines,
for the Aarhus data, with work layer as the observed network. Results obtained for 10
cascades with tmax = 10, βobserved = 0.5 and two values of βhidden – 0.3 and 0.7, (b) with
lunch layer as the observed network, (c) Facebook layer as the observed network.

βhidden βobserved sensitivity 0.5-CSS 0.95-
CSS

0.3 0.5 0.51 738 837
0.7 0.5 0.56 844 974

Table 2.5: Sensitivity and α-CSS for the Aarhus data, with lunch layer as the observed
network. Results obtained for 10 cascades with tmax = 10.

0.3 0.4 0.60.5 0.7 0.80.1 0.2 0.9 1.0
hidden

0.05

0.00

0.05

0.10

0.15

0.20

0.25

p(
x)

Graph
BA
Lattice

Figure 2.13: Mean probability that the system has only one layer as a function of the
infection rate on the hidden layer - βhidden - see Eq. 2.6 and Fig. 2.5. The colour bands
represent one standard deviation. Results for two graphs are presented - BA (m = 3) and
a square lattice with system size N = 100, βvisible = 0.5, and tmax = 10. Each point is the
results of 104 simulations.

In Fig. 2.13 we show results for a BA graph (m = 3) and a square lattice with the
infection rate of the hidden layer βhidden ∈ [0.1, 1.0]. When βhidden is small we see a
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wide spread of the p(x̂) values which is not surprising as the probability of a hidden
edge being the preferred connection is also small. As the hidden infection rate rises both
the expected value and the variance diminish quickly showing that if the hidden layer is
significant enough to cause an effect in the whole system then our method will detect it.

In Fig. 2.14 we show how the size of the network, N ∈ [50, 500], affects the p(x̂). On
the left we present results for BA (m = 3) and on the right for a square lattice. In both
cases we choose βhidden = 0.1 as this is the “worst case” scenario from the previous plot.
The blue line shows the mean and one standard deviation of p(x̂) while the red shows
the ratio of infinite log-likelihoods. For the BA graph the statistic is still sufficient in the
tested range, however, for the lattice it is not. On the left we can see that as the size
increases the mean and variance diminish which is due to the fact that the larger the
graph the more potentially “forbidden” links are possible, and thus the detection of the
hidden layer becomes easier. On the right the blue curve shows some wild values and that
is because of how quickly the red curve rises up to virtually being equal 1. By the time
we reach N = 500 only an order of 30 realisations out of 104 are finite, rendering the blue
curve a bit misrepresentative, as the statistic is insufficient and biased towards cascades
very similar to those generated by a single layer model. We show it here for the sake of
completeness.
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Figure 2.14: Mean probability that the system has only one layer as a function of the
system size (blue) - see Eq. 2.6 and Fig. 2.5. The hidden layer infection rate - βhidden = 0.1.
The colour bands represent one standard deviation. Results for two graphs are presented
- BA (m = 3, left) and a square lattice (right) βvisible = 0.5, and tmax = 10. Each point is
the results of 104 simulations. The red curves (Y-axis values on the right side of the plots)
represent the ratio of infinite (−∞) log-likelihoods detected in the data (see Fig. 2.4). The
wide spread and increasing behaviour for the lattice is the result of a very high infinite
log-likelihoods ratio - by the time we reach N = 500 only an order of 30 realisations out
of 104 are finite.
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Our methodology can easily be applied to different spreading processes. One example
of such process is the Independent Cascade (IC) model. The factorised form of the
likelihood, in case of the IC model, is the same as for the Susceptible-Infected model

P (Σ|G, {βj}) =
∏
i∈V

∏
c∈C

Pi(τ
c
i |Σc, G, {βj}). (2.14)

The form of the local probability, however, is different

Pi(τ
c
i |Σc, G, {βj}) =

(∏
j

∏
k∈∂ji

(
1− βj[τ

c
k ≤ τ ci − 2]

))
×

×

(
1−

∏
j

∏
k∈∂ji

(
1− βj[τ

c
k = τ ci − 1]

)
[τ ci < tmax]

)
,

(2.15)

which is only valid for τ ci > 0, otherwise it is equal to one. The plots equivalent to Fig.
2.4 and Fig. 2.7 in the case of the IC model are shown respectively in Fig. 2.15 and Fig.
2.16. Note that these results do not deviate significantly from the SI simulations. This is
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Figure 2.15: The percentage of log-likelihoods resulting with −∞ as a function of the prob-
ability of rewiring p. Simulations were conducted using two different spreading models
- Susceptible Infected (presented in main text) and Independent Cascades for compari-
son. We investigate two different cases of networks: a square lattice (right) and the the
Barabási-Albert network (left) for different lengths of cascades. The simulations were
made for networks of size N = 100 with periodic boundary conditions in the lattice case.

interesting for two reasons. First, one could easily produce artificial examples where either
IC or SI would be very easier to recover. On one hand it should be easier for IC model to
spot any forbidden dynamics, because of the restrictive condition regarding only one time
step where spreading is possible for a single node. SI, on the other hand, ensures more
statistics, because of the opposite situation (nodes can spread at any time once they are
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infected). Second, since these are limiting versions of the SIR model, all other variations
(where recovery probability is between 0 and +∞) will also produce similar results. This
makes the shown results much more universal, than just for the two analysed models.
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Figure 2.16: Distribution of ranks of hidden edges with medians as vertical lines. Simu-
lations were conducted using the Independent Cascade model for comparison against the
results from the main text (which show results for the Susceptible Infected model). Right:
lattice with rewiring (N = 100, tmax = 10, p = 0.01). Left: BA network with rewiring
(N = 100, tmax = 10, m = 3, p = 0.01). Results obtained with 104 realisations per
scenario where each scenario had 10 independent cascades from different sources. These
results are for those realisations where all hidden edges were detected.

Data from synthetic and empirical networks alike confirm that uncovering the hidden
spreading channel is a relatively simple task with our approach - especially when the layers
are uncorrelated. It is, however, more difficult to identify specific hidden connections.
Despite the general similarities there are some quantitative differences between the results
obtained with synthetic and real data. One of the most significant differences is how βhidden

relates to the distribution of ranks of hidden edges, influencing the difficulty of hidden
connections reconstruction. This effect is much stronger in real world networks than in
synthetic ones. It can, however, be explained by the difference in density between hidden
and observed networks. In the corresponding plots for synthetic data (see Fig. 2.7) both
layers have the same density. Here the hidden layer is denser (it is a sum of four hidden
layers) and so changing the hidden spreading probability affects majority of connections.

An important factor in being able to successfully recover the hidden connections turns
out to be the density of both the hidden and the observed transmission layers. Specifically,
we observe that the denser the hidden layer the harder it is to find the exact connections.
An interesting interplay takes place when it comes to the density of the observed layer.
On one hand the sensitivity decreases with the density of observed layer, on the other
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hand, the α-CSS is also decreasing with the density. This observation, confirmed by
both synthetic and real data, means that as the number of connections on a visible layer
increases, we are able to identify less hidden edges on average but we need to take into
account a smaller set of potential edges in order to find all of the hidden connections.

It should be pointed out that we only focus on the hidden connections which are not
overlapping with the observed ones. This means that for correlated layers there might
be only few unknown connections whereas the overlapping edges are also influencing the
dynamics. Focusing on the more general picture and including the overlapping connec-
tions is an interesting subject for future research. Another research direction would be
to focus on further improving the hidden connections identification algorithms. These
improvements should include both the effectiveness and scalability of proposed methods.
The latter is specifically important since real world networks are often quite substantial
in size. From the perspective of empirical data it would also be useful to have a way of
handling a scenario where different layers have different values of β which may or may
not be known. Finally, a more radical generalisations like including temporal networks
could also prove to be an interesting research problem.
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Chapter 3

Discovering hidden layers in
quantum graphs

In the previous chapter we have explored how to detect and reverse engineer hidden
edges in a multi-layer network from observations of a well known epidemiological model -
Susceptible-Infected. In this chapter we shall consider a different (and perhaps less known)
type of propagation model – quantum graphs. Quantum graphs are graphs that have been
equipped with a metric (simply put - there is a measure associated with its elements) and
a second order differential operator (a Hamiltonian). It is worth noting here that we do
not need to use typical Hamiltonians from quantum mechanics - a classical Laplacian also
satisfies that definition. Therefore one can think of quantum graphs as of taut strings,
fused together at the vertices. For details we refer the Reader to the introductory section
1.3.

The primary question now, however, is why quantum graphs? There has been plenty of
examples of their applications yet this field is still fairly fresh and only recently starting
to grow. More importantly the consequences of the mathematical formalism seem to
be perfectly suited for the purposes of modelling information propagation. It allows us
to have a propagating wave through a given complex system whilst the speed of this
propagation is finite as opposed to diffusive or epidemiological models. As such it is of
great interest to us to be able to distinguish amongst mono- and multi-layer topologies
and maybe even deduce something about the hidden structures from measurements on
the visible layer in a similar fashion to what we have already done for the SI model.
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Figure 3.1: Three-layered multiplex representation of the Vickers [157] data.

3.1 Wave definition

Let us begin by defining the details of the system we are going to be studying. We
assume a wave packet propagation dynamics on a quantum graph as our model for the
dynamical system. Each edge e in the graph G has an associated length le = 1 and a
spatial coordinate variable xe ∈ [0, le] along the said edge. We use a special case of a
Hamiltonian - an edge based Laplacian giving us an edge-based wave equation on a graph
in the form:

uttdE = −∆u (3.1)

where E is a Lebesgue measure on the graph’s edges [123, 125], and u is a square integrable
function defined on the graph. Specifically u(n) is the value of u at the node n, and u(e, xe)
is the value of u at the position xe along the edge e [48].

We use the Neumann boundary conditions stating that the sum of the outward point-
ing gradients at every vertex must vanish [48, 123]:

∀v ∈ G,
∑
e∋v

(−1)1−xe,v∇u(e, xe,v) = 0 (3.2)

The initial condition for the wave equation is a Gaussian wave packet:

u(e, x) = exp
(
− a(x− µ)2

)
(3.3)

which is fully contained within a single edge with the highest betweenness centrality[158,
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159] following the conventions of Aziz et al [48]. We simulate the many-layer system
in a multiplex configuration, i.e. we consider a system with a set of L ≥ 1 interacting
layers (mono-layer networks), where each of them has the same set ofN nodes but different
topologies (set of connections), and each node is connected to its reflection (also sometimes
called a replica) in a neighbouring layer (see Fig. 3.1 for a real-world network example
and Fig. 3.2 for a wave propagation example on a simple synthetic graph). In its simplest
form a multi-layer system can be represented with a set of intra-layer adjacency matrices
{Cl} (∀lCl ∈ RN×N), where Cl

i,j = 1 when nodes i, j are connected in the layer l and 0

otherwise. Additionally we need a set of inter-layer adjacency matrices {B} (B ∈ RL×L),
where the elements Bl1,l2 signify whether the layers l1, l2 are connected (i.e., each node
from layer l1 is connected to its replica in layer l2). {Cl} and {B} can then be combined
into a single adjacency matrix A ∈ RLN×LN . For an example of how that can be done
see Sec. 3.5, and for a more elaborate tensor formulation (unnecessary for our purposes
here) see Ref.[7]. While the propagation simulations are computed on full systems, for
the detection purposes we always only use information from a single layer, i.e., all but
one layer are hidden from the perspective of our methods at all times.

Although the idea of travelling waves in the network structure might seem to be
academic and considered artificial as being far from typically considered dynamics such
as epidemic [4] or opinion spreading [106, 107], it is essential to note that the wave
can simply model the information propagating due to interdependences between these
concepts [160]. Also in the case of networks, certain propagation dynamics connected
to shock waves [161] or excitable nodes [162, 163] have been successfully undertaken.
Therefore our study brings very specific applications for a variety of real-world systems.

3.2 Gaussian wave packet signature (WPS)
Gaussian wave packet signature (WPS) is a methodology developed by Aziz et al., [48] that
allows to distinguish between various types of graphs. The procedure starts by initiating
an edge with a Gaussian wave packet that is completely contained on the said edge (see
the left panel in Fig. 3.2). The edge is chosen to be the one with the highest betweenness
centrality to assure fastest possible spread of the wave on the graph (although this can,
of course, be relaxed in general). The choice of the edge from which the propagation
starts does not impact either of the presented methods performance (including our own
Fourier transform based described later). All this does is simply speeding up our testing
set up, while in practice it would even be possible to apply the methods without knowing
(or choosing) the primary edge at all. Additionally this is the choice presented in [48],
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Figure 3.2: Illustration of a wave starting at a specific edge (left, t = 0) and then propa-
gating through the multiplex system (right, t > 0).

and we follow that for the sake of continuity and ease of comparison. Then on each
integer time we measure the amplitude in the centre of every edge 2|E| times in total,
where |E| is the number of edges in the known layer (see the right panel in Fig. 3.2 and
Sec. 1.3 for a detailed description of the way the amplitude is calculated). Again, the
number of measurements has been selected for the sake of comparison with [48] where
such a value had been used. The difference here is that Aziz et al., assume knowledge
of the whole graph and |E| there refers to all edges in the system, whilst for us it refers
only to the visible layer. We measure the centre of each edge because at integer times
the highest value is in the centre. Finally, we create a histogram with 100 bins of these
measurements - this is the WPS of the graph. Aziz et al., show that particular graph
types (say Barabási-Albert, Erdős–Rényi etc.) will have similar WPSs yet different in
comparison to other types (so e.g. one can differentiate an ER from BA). In order to
actually do this differentiation one must build a classifier. In their work a K-nearest
neighbours (K-NN) classifier was chosen. From the perspective of the machine learning
tools we use here (K-NN, PCA) each histogram bin of the WPS is a dimension in the
feature space.

For our purposes we will deviate slightly from this procedure. Namely to us the whole
graph is not known and the graph itself is a multiplex. Additionally we assume that the
wave propagation is an actual process ongoing through some network. Thus, we assume
we have access to a single layer on which a certain spread has happened that can be
modelled with a Gaussian wave packet and we suspect there may be hidden layers in the
network. The question is - can we detect their presence?

The rest of the procedure is similar, i.e. we create a WPS and we train a classifier on
a given type of a graph (e.g. BA) and this time the classes are the number of layers. See
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Figure 3.3: Wave packet signatures (left) for various realisations of a Barabási-Albert
(N = 50, m = 3) graph with 5 and 1 layers (measured on one layer only). WPS projected
onto a 2D space with PCA (centre) where colours and symbols distinguish the no. of
layers. Each point is a different BA graph. PCA transformation matrix (right) showing
the contributions of given WPS bins into principal components.

Figure 3.4: Wave packet signatures (left) for various realisations of a Erdős–Rényi (N =
50, ⟨k⟩ = 6) graph with 5 and 1 layers (measured on one layer only). WPS projected
onto a 2D space with PCA (centre) where colours and symbols distinguish the no. of
layers. Each point is a different ER graph. PCA transformation matrix (right) showing
the contributions of given WPS bins into principal components.

Fig. 3.3 and 3.4 where we compare WPSs of a 5-layer BA graph vs 1-layer and a 5-layer
ER graph vs 1-layer respectively. One can clearly see that the signatures are distinct. To
further illustrate this we use the Principal Component Analysis (PCA, see Sec. 1.4 for
details) to project the WPSs onto a 2D space (see the centre pieces of Fig. 3.3, 3.4). There
one can see that each class takes a distinct region of space and thus we should be able to
discriminate between them. However, it is worth noting that the more layers there are the
more tightly packed the observations become, i.e. discriminating between a mono-layer
and a penta-layer graph is fairly easy but between a tetra- and a penta- not as much. It
is also worth noting that through the PCA we can see that the centre bins carry the most
variance in the feature space (see panels on the right in Fig. 3.3, 3.4) and that there are
certain distinct structures visible in the higher PCs for both BA and ER graphs.

As mentioned before, we follow Aziz et al., and also choose the K-NN for classification
(see Sec. 1.4 for a description of the K-NN method). We build the model on various graphs
with between 1 and 5 layers (with values measured only on one of the layers each time,
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Figure 3.5: K-nearest neighbours classification accuracy of the layer count for a BA and
ER graph as box plots (left) based on single layer WPSs. Contingency table diagonal
values as box plots for a BA (centre) and ER (right). We simulated 400 independent
realisations of a given graph type (BA, N = 50, m = 3; ER, N = 50, ⟨k⟩ = 6). For
each type of graph we conducted 100 rounds of 10-fold cross-validation to determine the
K parameter in K-NN withdrawing 100 realisations (25%) for the purposes of the final
evaluation. The train/test split was random and stratified.

as explained earlier) and then test it to see if it can recognise how many layers there are
in an unknown graph. We conducted our tests for the BA and ER graphs (see Fig. 3.5
for the results of classification). For each type of graph we simulated 500 independent
realisations (100 per each number of layers) with the mean degree ⟨k⟩ = 6 and network
size N = 50. We take out a 100 randomly chosen, in a stratified manner (i.e. classes are
equally represented), realisations out of the data set (this will be the test set). On the
training set we conduct 100 rounds of training and then testing. That is in each round we
do the training/test split, then a 10-fold cross-validation on the training set to find the
best K parameter of the K-NN model and then use that on the test set. We present the
results in a form of box plots. In Fig. 3.5 we show the accuracy of the classifier for both
the BA and ER. We can see that while for the ER the results are slightly lower than for
the BA, in both cases the accuracy is still fairly high with medians of 92 and 89 for BA
and ER respectively.

To additionally illustrate the point made earlier that higher numbers of layers are
more difficult to be discerned amongst one another we show the diagonal values of the
contingency tables from all 100 rounds for the BA (centre panel of Fig. 3.5) and the ER
(the right panel of Fig. 3.5). One can clearly see that identifying mono-layer systems is
practically 100% accurate and it is the more layered systems that cause trouble for the
classifier.

While the classification results seem very promising it is important to note the obvious
major disadvantage of this approach. One must build a training set for it to work. With
synthetic networks (such as BA or ER graphs) it is easy to generate as many as one
wants, therefore creating an extensive training set, and the limitation is purely in the
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computing power. When dealing with real world networks one often does not simply have
the ability to obtain similar enough graphs to the one currently under observation but
with added layers – each real-world network is unique. In such a circumstance perhaps a
combination of many different synthetic networks obtained by introducing noise to a real-
world network, i.e., rewiring some of the links, creating perturbed versions of the original
network could suffice and other, more advanced, classification methods than K-NN could
be utilised.

3.3 Fourier transform of the amplitude signal
Here we introduce a new approach to detecting layers on quantum graphs. This completely
novel way does not share the same issues as the previous one as it does not rely on building
a classifier. Therefore, there is no need to build a training set and deal with all other
aspects of the machine learning approach (like the choice of the classifier, tuning hyper-
parameters etc.). While obviously not without its own problems, we believe that it is a
more powerful and explainable tool while using very similar measurements as the previous
method. Similarly to the previous case we assume we can either produce or observe a
wave propagation on the graph initiated by a Gaussian wave packet. For efficiency’s sake
in the simulations we used the edge with the highest betweenness centrality as before and
we also measure the amplitudes at integer times in the centres of all edges for 2|E| times.
While in the WPS method we simply follow the advice of Aziz et al., for the count of
measurements in the approach discussed here it is usually rather clear if enough data was
collected by a straightforward visual inspection.

Our proposition is as follows, at each integer time compute the sum of all amplitudes
in the visible part of the system and treat it as a time dependent signal S(t). Transform
the signal into frequency a domain via a fast Fourier transform (see Sec. 1.4 and [132]) -
Ŝ(f) - and look at the spectrum of the signal - |Ŝ(f)|2.

A mono-layer system will produce a “flat” signal S(t), whilst multi-layer one will
exhibit periodic behaviour due to energy leaking in and out of the visible layer from and
into other layers. At a sufficiently long measurement time the signal should stabilise and
become stationary as long as no perturbation is introduced to the overall network. This
transfer of energy induces oscillations in the amplitude sum on the visible layer which in
turn create clear peaks in the power spectrum, see Fig. 3.6 for the results from the BA
graphs and 3.7 for the ER. The left column shows the signal S(t), centre |Ŝ(f)|2 and right
|Ŝ(f)|2 in decibels and a log-log scale. Each row has 20 independent realisations plotted
on top of each other, with transparency to show that these peaks are fairly consistent,
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and different number of layers (1st row are mono-layer systems, 2nd row di-layer etc.). It
is quite apparent that there are visible peaks and their count strictly corresponds to the
number of layers in the system.

These results already show the advantage of FFT over WPS as it is simpler and does
not seem to suffer from struggling to differentiate between highly-layered systems as much.
Additionally, it does not require any prior knowledge or learning of the model. It is far
from flawless, however. As it is much easier to test on real networks than WPS we applied
it to three real world networks [157, 164, 165]. Vickers et al., [157] collected data from 29
7th grade students from Victoria, Australia. Students were asked to nominate classmates
in several categories, three of which were used to construct this 3-layer network. These
three categories were determined by questions - Who do you get on with in the class? Who
are your best friends in the class? Who would you prefer to work with? The graph has
29 nodes and 740 edges in total. Krackhardt [164] took a record of relationship between
managers in a high-tech company. The graph has 21 nodes and 312 edges in a 3-layer
form. Each layer represents a relationship (advice, friendship, ”reports to”). Chen et al.,
[165] presented a Caenorhabditis elegans multiplex connectome network with 3 layers, 279
nodes and 5863 edges. Each layer corresponds to a different synaptic junction: electric,
chemical monadic, and polyadic. The results are in Fig. 3.8 where one can see that while
we do get peaks in the spectrum and therefore can confidently state that there are hidden
layers, it is much less clear how many of them there are. This is most likely due to the
fact that these networks are not as clear cut multiplexes as the synthetic systems we
discussed earlier. These networks here have various mean degrees in each layer and that
also implies varied coupling strength between the layers. Moreover, real world networks
can have other characteristics that differ between the layers such as clustering coefficients
or degree distributions and the synthetic systems tested simply do not have this property.
However, we show in the next section that it is possible to reconstruct the full spectrum
of the row-normalised adjacency matrix with this method and therefore determine the
number of layers for any system.
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Figure 3.6: Sum of the amplitudes time evolution as measured on the only visible layer
(left). A fast Fourier transform of this signal (centre) and its power spectrum (right). Each
row represents a different number of layers (1 to 5 going top to bottom). Simulations were
conducted on 20 independent realisations of a BA graph (N = 50, m = 3) per row, overlaid
with transparency.
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Figure 3.7: Sum of the amplitudes time evolution as measured on the only visible layer
(left). A fast Fourier transform of this signal (centre) and its power spectrum (right). Each
row represents a different number of layers (1 to 5 going top to bottom). Simulations were
conducted on 20 independent realisations of an ER graph (N = 50, ⟨k⟩ = 6) per row,
overlaid with transparency.
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Figure 3.8: Sum of the amplitudes time evolution as measured on the only visible layer
(left). A fast Fourier transform of this signal (centre) and its power spectrum (right).
Each row represents a different real world network (as indicated by titles - Vickers[157],
C.Elegans[165], Krackhardt[164]). Each graph is a 3-layered multiplex.
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3.4 Spectrum reconstruction

In this section we show that with a sufficiently long observation it is possible to completely
recover all eigenvalues of the row-normalised adjacency matrix of the full system and thus
trivially determine the number of hidden layers.

We shift slightly from the previous sections as we no longer take the measurements on
the edges but only on the nodes. This makes the problem less computationally intensive
and also, in our opinion, makes for a more practical case as it might be sometimes easier
to observe just the nodes’ states. However, the same analysis here can be applied using
edge measurements and the one in the previous sections could be done with the node
values only - we chose otherwise as we are stemming from the work of Aziz et al.

Similarly as before we observe the sum of the amplitudes, however, in this case it is
important to have enough samples of the signal to provide sufficient resolution in the power
spectrum. How long one needs to observe a system will of course depend on the intricacies
(and mostly size) of the system in question. As the propagation process is not stochastic
the time needed for observation is finite and in our experience not unattainable. The goal
is simply to have the complete power spectrum of the signal. Then one takes note of the
peaks present - we opted for an automated approach using a wavelet transform [134](see
Sec. 1.4). These peaks in the power spectrum are the eigenvalues of the Hamiltonian
(divided by 2π) which in turn are directly related to the eigenvalues of the row-normalised
adjacency matrix - Â - such that each eigenvalue λ /∈ {−1, 1} of Â has the corresponding
Hamiltonian eigenvalues cos−1(λ) and 2π − cos−1(λ). This leads us to two important
results, i) the number of frequencies present in the power spectrum #f is two less than
the count of eigenvalues of the adjacency matrix and since we know the layer sizes (i.e.
node count per layer - N) as a multiplex structure was assumed the number of layers
K = (#f+2)/N , ii) we can in fact recover almost exactly all eigenvalues of Â as cos(2πfi)
for each frequency peak fi in the power spectrum.

We present the result of the full spectrum reconstruction in Fig. 3.9 for a complete,
BA and real world graph. We chose the complete graph as it has a special case due
to the extreme symmetries of the multiplex adjacency matrix and thus the number of
peaks directly corresponds to the number of layers unlike more complex cases where the
eigenvalues multiplicities behave differently. Of course, this does imply that if due to
some particular structures in a given system some eigenvalues have high multiplicity the
simple formula K = (#f + 2)/N will not hold and system specific adjustments would be
needed. The reconstructed eigenvalues give an almost perfect match with those of the row-
normalised adjacency matrix. Note that the performance here is mostly limited by the
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Figure 3.9: Eigenvalues reconstruction from the Fourier spectrum of the nodes’ amplitudes
sum signal. (Left) an example of a complete graph multiplex with layer size N = 20 and
number of layers K = 9. As it is a special case of an extremely symmetric adjacency
matrix there are only as many eigenvalues as there are layers. (Right) a Barabási-Albert
graph with N = 50, m = 3, K = 4 has a much more complex spectrum and so does a
real world network (right) - Vickers[157] - for both of which we attain an almost perfect
match between the recovered and actual eigenvalues. The dashed diagonal line is a visual
aid showing “y = x”.

peak detection method and the resolution in the frequency domain, i.e. the information
is there in the spectrum, the only challenge is to recover it efficiently.

In order to explicitly show the correspondence between the eigenvalues of the Hamilto-
nian and the peaks of the power spectrum we shall now follow in detail (see next section)
the case of a full graph, considering the simplest configurations – a monoplex and a duplex
network. Our exact analytical solutions prove that for the duplex network of N nodes on
each layer, among 2N eigenvalues that characterise the system we have only four distinct
ones λ =

{
− 2

N
, 0, N−2

N
, 1
}

, the first two having multiplicity of N − 1. Figure 3.10 shows
that in such a system one recovers just one eigenvalue, i.e., λ = N−2

N
directly connected to

periodicity of the sum of observed amplitudes on the nodes. On the other hand, observing
a single node allows for the recovery of the full spectrum (see Fig. 3.11).
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Figure 3.10: (a) Sum of the amplitudes over time in a single layer of the duplex full graph:
line comes from Eq. (3.32) and points are numerical simulations. (b) Power spectrum
of the signal shown in panel (a) [the series consists of 10000 elements]. Vertical line is
frequency equal to ω2N−1/2π = (N − 2)/(2πN).

3.5 Exact analytical solutions of wave amplitudes in
mono- and bi-layer full graphs

3.5.1 Monoplex full graph

Here we will consider a wave propagation on the nodes of a full graph (monoplex) topology,
i.e., each node is connected to any other in the network, therefore forming a clique of N
nodes. In such a case the adjacency matrix A is a constant matrix filled with ones except
for the diagonal which is filled with zeroes.

It is well known that the spectrum of the full graph consists of values N − 1 with
multiplicity 1 and −1 with multiplicity N − 1. As we consider the row-normalised matrix
which can be characterised as Â = 1

N−1
A we have

λ = {λ1, ..., λN−1, λN} =

{
− 1

N − 1
, ...,− 1

N − 1
, 1

}
(3.4)

and, consequently, ωi = arccos
(
− 1

N−1

)
for i = 1, ..., N − 1. As the full graph is (N − 1)-

regular then e, i.e., all-ones vector is an eigenvector of A corresponding to λN while the
other vectors can be written as ei − ej for i ̸= j, where ei is the vector with 1 in position
i and 0 elsewhere, e.g.,
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g =



−1 −1 −1 ... −1 −1 1

0 0 0 ... 1 0 1
... ... ... ... ... ... 1

0 0 1 ... 0 0 1

0 1 0 ... 0 0 1

1 0 0 ... 0 0 1


(3.5)

After orthnormalising g with the Gram-Schmidt procedure and renumbering the ma-
trix so that the first row becomes the last one we obtain the following N−1×N eigenvector
matrix gM :

gM =



0 0 0 0 0 0 0
√

N−1
N

... ... ... ... ... 0
√

N−2
N−1

− 1√
(N−1)N

... ... ... ... 0
√

j
j+1

· · · ...
... ... ... 0

... − 1√
j(j+1)

· · · ...
... ... 0

... · · · ... · · · ...
... 0

√
3
4

· · · ... − 1√
j(j+1)

· · · − 1√
(N−1)N

0
√

2
3

− 1√
3·4 · · · ... − 1√

j(j+1)
· · · − 1√

(N−1)N√
1
2

− 1√
2·3 − 1√

3·4 · · · ... − 1√
j(j+1)

· · · − 1√
(N−1)N

− 1√
1·2 − 1√

2·3 − 1√
3·4 · · · ... − 1√

j(j+1)
· · · − 1√

(N−1)N



(3.6)

Note that we deliberately omit the eigenvector corresponding to ωN which consists of
N values 1/

√
N gathered in the column vector

CM =

(
1√
N
, ...,

1√
N

)T

(3.7)

as it does not play any role in further calculations.

Let us now assume, that the wave is initially contained on edge f = euv. We are
bound to obtain two expressions: one showing the amplitude of the wave at the node v
which can be simply calculated as un(f, f, t) and the other one, showing the sum of the
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amplitudes for all nodes which can be expressed as

uall = un(evu, f, t) +
∑

i=1,..,N,i ̸=u

un(eui, f, t). (3.8)

We will further assume, without losing any generality, that f = e12. Such a setting
greatly simplifies further calculations of un as in this case the only non-zero inputs come
from eigenvalues ωN−2 and ωN−1. For any other ωi with i = 1, ..., N−3 we have C(f, ωi) =

0. Respective coefficients C and B for ωN−2 and ωN−1 are gathered in Table 3.1

edge e C(e, ωN−2) B(e, ωN−2) C(e, ωN−1) B(e, ωN−1)

e12

√
N−1
N

−π
2

√
N−1
N

0

e1k

√
N−1
N

1
N−2

π
2

√
N−1
N

0

e21

√
N−1
N

− arctan
(

1√
N(N−2)

)
-
√

N−1
N

arctan
(√

N(N − 2)
)

Table 3.1: Coefficients C and B for the full graph case; in the third row k = 2, ..., N .

As mentioned in the introduction section 1.3, in order to have a proper form of the
eigenfunction ϕ one needs to calculate the normalisation factor ρ(ω). Next we show how
to obtain ρ(ωN−1): Eq. (1.10) states that it is necessary to sum of over all the edges
in the networks, however in the case of ωN−1 there are only two different terms. The
first one ρ1 comes from (N − 1) pairs e12, e13, ..., e1N the second one ρ2 from all the other
1
2
(N − 1)(N − 2) pairs, i.e., e23, ..., e2N , e34, ..., eN−1N so

ρ(ωN−1) =

√
(N − 1)ρ1 +

1

2
(N − 1)(N − 2)ρ2 (3.9)

The values of C and B for ρ1 are shown in Table (3.1) – taking into account that
B = 0, the value of ρ1 simplifies to:

ρ1 =
N − 1

N

[
1

2
+

sin
[
2 arccos

(
− 1

N−1

)]
4 arccos

(
− 1

N−1

) ]
. (3.10)

Substituting sin(2 arccosx) with 2x
√
1− x2 we arrive at

ρ1 =
N − 1

N

1
2
−

2

√
N(N−2)

(N−1)2

4 arccos
(
− 1

N−1

)
 . (3.11)
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In the case of ρ2 the values C and B can be written as

C(eik, ωN−1) = −

√
2

N(N − 2)
(3.12)

B(eik, ωN−1) = − arctan
√

N

N − 2
(3.13)

for i = 2, ..., N − 1 and k = i+ 1, ..., N which results in the following form of ρ2:

ρ2 =
2

N(N − 2)

1
2
+

sin
[
2 arccos

(
− 1

N−1

)
− 2 arctan

√
N

N−2

]
+ sin

(
2 arctan

√
N

N−2

)
4 arccos

(
− 1

N−1

)
 .

(3.14)
Here, making use of the fact that arccosx = 2 arctan

√
1−x2

1+x
we arrive at

ρ2 =
2

N(N − 2)

1
2
+

2

√
N(N−2)

N−1

4 arccos
(
− 1

N−1

)
 . (3.15)

After substituting Eq. (3.9) with ρ1 and ρ2 given by Eqs. (3.11) and (3.15) and performing
some short algebra we arrive simply at

ρ(ωN−1) =

√
N − 1

2
. (3.16)

With similar calculations it possible to show that ρ(ωN−2) = ρ(ωN−1) (in fact, this the
case for any ωi other than ωN).

edge e C(e, ωN−2) B(e, ωN−2) C(e, ωN−1) B(e, ωN−1)

e12
N√

2(N−1)(N+2)

π
2

−
√

N2−2
2(N−1)(N+2)

− arctan
(

1
N−1

√
N−2
N+2

)
e1k

N
N−2

1√
2(N−1)(N+2)

−π
2

−
√

N2−2
2(N−1)(N+2)

− arctan
(

1
N−1

√
N−2
N+2

)
e21 − 1√

2(N−1)(N+2)
− arctan

(
2√

N2−4

) √
N2−2

2(N−1)(N+2)
arctan

(
(N + 1)

√
N−2
N+2

)
Table 3.2: Coefficients C andB for the duplex full graph case; in the third row k = 2, ..., N .

We can now use the above calculated values of C,B and ρ to express the wave ampli-
tude at the nodes of the full graph by the means of Eq. (1.12) in Sec. 1.3 (note that in
order to simplify the equation we use the transformation of time t → t + 1

2
, thus t = 0

means that the wave has arrived at the first node). We shall start with un(e12, e12, t) as
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edge e C(e, ω2N−3) B(e, ω2N−3) C(e, ω2N−2) B(e, ω2N−2) C(e, ω2N−1) B(e, ω2N−1)

e12
√

N−2
2(N−1)

−π
2

√
(N−1)2+1
2N(N−1)

arctan
(

1
N−1

)
−
√

1
2(N−1)

− arctan
(√

1
(N−1)

)
e1k

√
1

2(N−2)(N+1)
π
2

√
(N−1)2+1
2N(N−1)

arctan
(

1
N−1

)
−
√

1
2(N−1)

− arctan
(√

1
(N−1)

)
e21

√
N−2

2(N−1)
0 −

√
(N−1)2+1
2N(N−1)

arctan (N − 1) −
√

1
2(N−1)

− arctan
(√

1
(N−1)

)
Table 3.3: Coefficients C and B for the duplex full graph case (cntd).

the simplest case:

un(e12, e12, t) =
∑

i={N−2,N−1}

C2(e12, ωi)

2ρ2(ωi)
[cos(ωit) + cos( (t+ 2)ω + 2B(e12, ωi) )] +

1

E

=
1

2ρ2(ωN−2)

N − 1

N
[cos tωN−2 + cos[(t+ 2)ωN−2 − π]] +

+
1

2ρ2(ωN−1)

N − 1

N
[cos tωN−1 + cos[(t+ 2)ωN−1]] +

2

N(N − 1)

(3.17)

Making use of Eq. (3.16) and the fact that cos(x − π) = − cos(x) as well as denoting
ωN−2 = ωN−1 = ω we arrive simply at

un(e12, e12, t) =
2

N
cos(tω) + 2

N(N − 1)
(3.18)

with ω = arccos
(
− 1

N−1

)
. In the same manner one can show that

un(e1k, e12, t) =
1

N(N − 2)
((N − 3) cos(tω) + (N − 1) cos((t+ 2)ω))+

2

N(N − 1)
(3.19)

for k = 3, ..., N and

un(e21, e12, t) = − 2

N(N − 1)

(
cos(tω) +

√
N(N − 2) sin((t+ 2)ω)

)
+

2

N(N − 1)
(3.20)

In this way, Eqs. (3.18)-(3.20) fully determine the wave amplitude at every node in
the considered monoplex full graph. They can now be put into Eq. (3.8) to show that

uMall(t) =
2

N − 1
(3.21)

which proves that the sum of the node amplitudes is constant for any value of t.
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3.5.2 Duplex full graph

In this part we consider a full graph duplex, i.e., a network consisting of two cliques (full
graphs) of N nodes each connected in such a way that the node i from the first clique
links with node i+N from the second one (i = 1, ..., N). Assuming that AN is an N ×N

adjacency matrix of a full graph (as in the previous section) and IN is an N ×N identity
matrix, we can describe the topology of a full graph duplex with its 2N × 2N adjacency
matrix Ad

Ad =

(
AN IN
IN AN

)
(3.22)

Owing to the symmetry of the system (each node has exactly N neighbours - N −1 in
the layer it belongs to and one that connects it to the second layer) the row-normalised
matrix can be characterised simply as Âd =

1
N

Ad.
In such a setting we can obtain the following orthonormalised 2N × 2N matrix of the

eigenvectors for the duplex network

gD =
1√
2

(
−gM gM CM CM

gM gM −CM CM

)
(3.23)

where gM and CM are the matrices given by Eqs (3.6) and (3.7), and the corresponding
set of 2N eigenvalues is

λ = {λ1, ..., λN−1, λN , ..., λ2N−2, λ2N−1, λ2N} =

=

{
− 2

N
, ...,− 2

N
, 0, ..., 0,

N − 2

N
, 1

} (3.24)

and, consequently, ω1 = ... = ωN−1 = arccos
(
− 2

N

)
, ωN = ... = ω2N−2 = π

2
, ω2N−1 =

arccos
(
N−2
N

)
As in the previous case we assume that the wave is initially placed on the edge f = e12

and our goal is to find the wave amplitudes on each of the nodes 1, ..., N as well as the total
amplitude on a given layer. Again, the choice of the initial edge is a direct consequence
of the structure of gD as it restricts the set of eigenvalues needed to calculate un to ωN−2,
ωN−1, ω2N−3, ω2N−2 and ω2N−1 – all others result in C(f, ω) = 0. The values of C and
B necessary to compute un(e12, e12, t), un(e1k, e12, t) for k = 2, ..., N and un(e21, e12, t)

obtained from gD are summed up in Tables 3.2 and 3.3. Following similar calculations as
in the monoplex case one can show that the normalisation factor is
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Figure 3.11: (a) the amplitude at the node v = 2 over time in the duplex full graph: lines
come from Eq. (3.26) with coefficients c12 and s12 and points are numerical simulations. (b)
the power spectrum of the signal shown in panel (a) [the series consists of 10000 elements].
The vertical lines are drawn for frequencies equal to ω1/2π, ωN/2π and ω2N−1/2π.

ρ(ωN−2) = ρ(ωN−1) = ρ(ω2N−3) =

= ρ(ωN−2) = ρ(ω2N−1) =

√
N

2

(3.25)

Using the above-calculated values of C, B and ρ it is possible to give exact solutions
for the amplitude at any node v as

un(euv, e12, t) =
1

N2

[
1 +

∑
i

(cuvi cosωit+ suvi sinωit)

]
(3.26)

where

ω = {ω1, ωN , ω2N−1}

=

{
arccos

(
− 2

N

)
,
π

2
, arccos

(
N − 2

N

)} (3.27)

and the respective coefficients for un(e12, e12, t) are given by
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c12 = {N − 1, N − 1, 1} (3.28)

s12 =
{
−
√
N − 2

N + 2
, 1,− 1√

N − 1

}

while in the case of un(e1k, e12, t), k = 2, ..., N they are

c1k = {−1,−1, 1} (3.29)

s1k =
{√

N + 2

N − 2
, 1,− 1√

N − 1

}

and for un(e21, e12, t), k = 2, ..., N we have

c21 = {−1,−1, 1} (3.30)

s21 =
{
−(N + 1)

√
N − 2

N + 2
,−(N − 1),− 1√

N − 1

}

Finally by calculating

uDall(t) = un(e12, e12, t) + (N − 2)un(e1k, e12, t) + un(e21, e12, t) (3.31)

we arrive at the expression giving the sum of the amplitudes over all nodes in a single
layer in the duplex full graph which reads

uDall(t) =
1

N

[
1 + cos (tω2N−1)−

1√
N − 1

sin (tω2N−1)

]
. (3.32)

Formula (3.26) indicates that in the case of a single node all three eigenvalues
arccos

(
− 2

N

)
, π

2
and arccos

(
N−2
N

)
can be recovered by observing the wave amplitude over

time at such a node. Indeed, the outcomes of the power spectrum shown in Fig. 3.11
confirm this claim. It should be noted, though, that once N is sufficiently large, two
eigenvalues arccos

(
− 2

N

)
and π

2
will tend to merge and N−2

N
shall approach 1, giving in

result two frequencies: 1/4 and 0. On the other hand Eq. (3.26) clearly shows that if the
sum of the amplitudes in a single layer is observed then we are able to recover only one
eigenvalue, namely ω = arccos

(
N−2
N

)
, this fact is depicted in Fig. 3.10.
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In summary, in this chapter we have explored the framework of quantum graphs in
context of detecting hidden layers. The main question we tried to answer was this: what
can we infer about the underlying topological structure by observing an ongoing dynamic
that can be modelled by a propagating wave on a graph? We approached this question
two fold - with i) machine learning and ii) signal processing and analysis of edge-based
Laplacian properties. We have outlined the viability and potential challenges associated
with both propositions and established an answer to the posed question. One can indeed
make deductions about the existence and even topological features of hidden layers in
quantum graphs, however, limitations to what can be reverse engineered do exist and are
discussed further in the last chapter of this work.
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Chapter 4

Bi-layer-induced phenomena in the
echo chambers and polarisation

model

Thus far we have established methods of detecting hidden layers having observed some
sort of information dynamics on a complex network. As we have already discussed in
the introduction the effects of hidden layers in terms of viral propagation are well known
and are also being considered in opinion dynamics. In this chapter we shall look upon an
example of the latter by taking an established model of a social phenomenon and show
the possible implications of introducing an additional layer into the system.

4.1 Echo chambers and polarisation model

Let us begin by introducing the mono-layer model, first described by Baumann et al.,
[70]. This echo chambers and polarisation model consists of N agents each with a real,
continuous opinion variable xi(t) ∈ R. The sign determines the nature of opinion (e.g.
for/against) while the value the magnitude of conviction to it. The opinion dynamics are
driven exclusively by the interactions between agents and are described by a system of
coupled ordinary differential equations presented in [70]:

dxi
dt

= −xi +K
N∑
j=1

Aij(t) tanh (αxj), (4.1)

where K > 0 is the social interaction strength and α > 0 determines the degree of
non-linearity (also called controversialness). The rationale behind this very equation is
built on the mechanism of informational influence theory with guarantees of monotonic
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influence and a cap on extreme opinions while also not being dissimilar to previously used
non-linear functions in chaotic systems [166–169].

The matrix A is an N ×N adjacency matrix in an activity-driven (AD) temporal net-
work model [170–173]. This is a model where there is no statically set social network but
in each time step an agent can become active with propensity ai ∈ [ϵ, 1]. The propensities
are drawn from a power law distribution [170, 172] defined as follows:

F (a) =
1− γ

1− ϵ1−γ
a−γ. (4.2)

Once the agent is activated it makes m random connections with other agents and as is
standard in AD models the connections are uniformly random. In [70] there is additionally
an element of homophily as it is expected to be necessary to create polarisation effects
[174, 175], however, since we will be considering a bi-layer model later on this is not the
case for us.

The interactions in social media can often be asymmetric and so it is not always
true that Aij = Aji. However, in this model there is a mechanism of reciprocity where
each agent j that has received a connection from an active agent i can reciprocate the
connection with probability r.

Main phenomena in this model are three distinct steady state phases and a possibility
of a clustering effect (echo chambers). These three phases are neutral consensus where
all agents’ opinions converge on zero, radicalisation where all agents shift towards one
of two possible extremes and polarisation where two oppositely polarised groups emerge.
Bauman et al., provide a formula for the critical controversialness using the mean field
approximation (in the absence of homophily) as:

αc =
1

(1 + r)Km⟨α⟩
(4.3)

Our goal here is to extend this model such that we have more than one layer interacting
(we shall limit ourselves to a bi-layer scenario) and determine the existence and potentially
the importance of such layered interactions.

4.2 Methodology

First we briefly introduce some assumptions and formulations present in both analytical
and numerical considerations later on. Analytically, we shall approach the problems using
the mean field theory [176, 177]. As such we will replace the summation over neighbours
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with an averaged neighbourhood effect on any given agent. For that we shall need the
average activity which is given by:

⟨a⟩ = 1− γ

2− γ

1− ϵ2−γ

1− ϵ1−γ
. (4.4)

Similarly as in [70] we assume that processes related to topology changes as described
by matrices Aij(t) are much faster than changes of opinions xi(t) (and yi(t) introduced
later in this chapter) and as mentioned before we substitute the summations terms over
Aij mean values of these matrices, denoted further on as c

c
def
= ⟨Aij(t)⟩t,a =

1

2
m(1 + r)⟨a⟩. (4.5)

Note the 1
2

which is a consequence of the existence of two layers and the assumption that
agents do not have an explicit preference to connect with members of either layer.

As far as simulations are concerned, we conduct them, unless stated otherwise, with
these parameter values: network size N = 1000, γ = 2.1, ϵ = 0.01,m = 10, r = 0.5, K =

1, α = 1. Note that as a consequence of these values the parameter c ≈ 0.306. The systems
of equations in the agent based simulations were integrated using an explicit fourth order
Runge-Kutta method with a time step dt = 0.05. The temporal adjacency matrix Aij is
computed at each integration step. Mean field equations where no analytical solution was
possible were integrated using an embedded Runge-Kutta 5(4)[69, 178]. Following the
rationale in [70, 179] the AD network is updated on each integration step as to separate
the timescales of connections and opinion dynamics.

4.3 External Bias
Let us open the bi-layer considerations with a seemingly simple case where the second
layer can be modelled as a linear additive term to Eq. (4.1). This external bias can
represent a cumulative effect of another group or maybe just the medium itself within
which the system operates. Let us denote it as B and that it is either supporting X or
working in opposition to X.

In such case we can say that:

ẋi = −xi +K

N∑
j

Aij(t) tanh(αxj) +B, (4.6)

and by averaging xi and denoting cB = 2c we get (recall Eq. (4.5))
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⟨ẋ⟩ = −⟨x⟩+KcB tanh(α⟨x⟩) +B. (4.7)

For such a system it becomes apparent that if KαcB < 1 then there is only one steady
state solution of (4.7), however, for KαcB > 1 two scenarios are possible. When the
magnitude of the external bias B is smaller than some critical value Bc then equation
(4.7) possesses two stable and one unstable fixed point. It means the group can possess a
polarisation towards or against the external bias B. When B is larger than some critical Bc

then the equation (4.7) possesses only one solution and the polarisation directed against
the external bias is not possible. It means that at some critical Bc a discontinuous
transition takes place (see Fig. 4.1).

The critical value of the external bias - Bc - can be obtained from the stability analysis
[180]. The Jacobian of the system (4.6) can be written as:

J |xi=xc =


−1 KαcB sech2(αxc) . . .

KαcB sech2(αxc) −1 . . .
...

 , (4.8)

with the largest eigenvalue

λmax = −1 +
N − 1

N
KαcB sech2(αxc), (4.9)

Combining the condition for the steady state of (4.7) (i.e. substituting ⟨ẋ⟩ = 0) and the
condition for the sign change of the largest eigenvalue λmax (4.9) we get a solution for the
critical value of the external bias Bc:

Bc = xc −KcB tanh(αxc)

xc =
1
α

cosh−1

(√
N−1
N
KαcB

)
N→∞∼ 1

α
cosh−1

(√
KαcB

)
.

(4.10)

In Fig. 4.1 we show that a phase transition occurs from the system’s state to that of
the bias. E.g. if the system converges on a positive (average) opinion and we set the bias
to a negative and sufficiently large value the system will suddenly jump to the opposite
side. In Fig. 4.1a we present an example of that. We wait until the system reaches its
steady state and then activate the bias with an opposite sign. If the value is below the
critical one the system merely shifts slightly towards zero, however, if |B| > Bc a sudden
jump occurs. In Fig. 4.1b we show this in the (B,α) phase space. The mean field approach
- Eq. (4.10) - allows us to predict this behaviour, however, there is a discrepancy in the
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actual value of the critical point. This is most likely due to finite nature of the simulated
system as is usual for the mean field theory.
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Figure 4.1: Left - bifurcation and hysteresis loop in the system of external bias: for
α > 1/(KcB) the system is bi-stable and once a critical value of Bc is reached there
is a switch from a polarisation against the field to towards it (an vice-versa for −Bc).
Also in such a case, we cannot reach a neutral solution (x = 0) for any B > 0. For
α < 1/(KcB) we have only one stable solution and such effects do not take place. Right -
phase transition under the influence of an external bias. The top panel - (a) - shows two
examples of an average opinion of the system as a function of time. One trajectory is for
a value of external bias above the critical threshold and the other below. A solid vertical
line signifying the moment we enable the external bias is present. The bottom panel - (b)
- shows the (B,α) phase space, where colour is ⟨|opinion|⟩, with a visible phase transition
to an opposite opinion and the mean field approximation - Eq. (4.10).

We can consider this case study as illustrative of how for example a propaganda may
or may not be successful. We use propaganda here as a neutral term without concerning
ourselves whether it is good or bad as one can easily imagine either. Such a scenario
boils down to the strength of the campaign in question, however, it is not simply the
stronger you push the more supporters you get. The dynamics of change are non-linear
and the transition very sudden. This implies that it may be rather difficult to react to
the propaganda machine in time to stop the society from drastically shifting its stance.
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4.4 Symmetric coupling
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Figure 4.2: Phase diagram of system (4.12) - left. Four distinct phases are visible defined
by the signs of the eigenvalues (4.13). On the right corresponding phase portraits of each
phase. In (a) we have the phase represented in pink on the left - a bi-stable phase. It is
a typical case of a source or a repellent. In (b) we have a portrait corresponding to blue
with an apparent saddle (radicalisation), (c) shows the sink or attractor phase (black,
neutral consensus), and (d) another saddle in gold (polarisation).

We have just shown how the second layer even in a simply form of a linear external
bias added can have profound implications for the dynamics of the system. In the next
three sections we shall explore the implications of adding an actual, physical second layer
with its own set of agents and their opinions yi(t). Let us define the bi-layer model as:

ẋi = −xi +K
N/2∑
j

Aij(t) tanh(αxj) + δK
N/2∑
j

Aij(t) tanh(αyj)

ẏi = −yi +K
N/2∑
j

Aij(t) tanh(αyj) + δK
N/2∑
j

Aij(t) tanh(αxj),
(4.11)

where δ is the coupling parameter. In a sense what we create here is a situation where
the layers are either at odds with one another (δ < 0) or are supportive of each other
(δ > 0). One can of course write a more general form with different parameters for within
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and without layer interactions (so e.g. instead of K have Kxx, Kxy, Kyx, Kyy) and we shall
explore some of such scenarios later on, however, since the possibilities are nearly endless
one must choose to stop at some point and so here we opt for more of a “ground up”
approach. In order to make further analysis slightly less cumbersome let us introduce
new coordinates u = α⟨x⟩, v = α⟨y⟩ and parameter ξ = Kαc giving us the mean field
formulas for the expected values for each of the layers as:

u̇ = −u+ ξ tanhu+ δξ tanh v

v̇ = −v + ξ tanh v + δξ tanhu.
(4.12)

This system of equations (4.12) has a fairly trivial Jacobian at (u, v) = (0, 0) with
eigenvalues

λ1,2 = −1 + ξ(1± δ). (4.13)

In Fig. 4.2 we present phase diagram and appropriate portraits. There are four distinct
phases possible in this system depending on the values of (ξ, δ). If both eigenvalues are
negative then we are in region of a stable steady state solution - an attractor or a sink
(black on the phase diagram). The phase portrait of this situation is presented in the
panel (a). What this means is that the system will always reach a consensus and in our
case specifically - a neutral one, i.e. ∀i xi = yi = 0 as t → ∞. When both λ1,2 are
positive we have a case of a repellent (or a source, shown in pink). In this case the
neutral consensus is an unstable solution and the system will escape from it onto one of
two stable solutions - a radicalised consensus or polarisation. Both of these also have their
own respective regions in the phase diagrams and are typical saddles, i.e. one eigenvalue
is positive and the other negative. When λ1 > 0 & λ2 < 0 we are in the blue phase - a
radicalised consensus. While the exact steady state value can vary all agents eventually
fall in line, i.e. ∀i xi = yi ̸= 0 as t → ∞. In gold region we have λ1 < 0 & λ2 > 0

and the stable solution is the polarised state - no consensus at all is possible, each layer
maintains its position opposite to the other layer’s, namely ⟨x⟩ = −⟨y⟩ (̸= 0) as t → ∞.
Example trajectories of these can be seen in Fig. 4.3.

Similarly to the external bias case by looking at when λmax changes signs and the
steady states we can derive the equations for the critical value δc. We can have either
xc = −yc(̸= 0) in the steady state and since sech2(x) is an even function we need not
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Figure 4.3: Example trajectories of the groups’ average opinions as they change in time.
Dashed lines represent agent based simulations and there are 20 independent realisations
shown. Solid lines are the result of the mean field approximation (-MF). In all cases we
start from a polarised state and in (a) we are below the critical value with ξ = 0.26, δ = −1
and both groups converge on a neutral opinion while in - (b) - above it with ξ = 1.2, δ = −1
and groups remain in their respective opinions in opposition to each other. Finally (c) -
ξ = 3.1, δ = 2 and a radicalised consensus forms.

worry about the sign or simply xc = yc( ̸= 0) and thus:δc = ±
(

1
ξ

cosh2(uc)− 1
)

uc = ξ(1∓ δc) tanh(uc),
(4.14)

which is a bit more challenging set of equations than previously and there is no closed
form solution, and therefore needs to be solved numerically.

Alongside the aforementioned Fig. 4.3 showing a reasonable agreement of agent-based
simulations and the mean field approximation in terms of opinion change in time, we also
show the phase transitions in Fig. 4.4. There we present how the steady state of the
system’s opinion changes in function of the control parameter ξ. While the mean field
does not perfectly match the simulations and the critical points are slightly shifted, and
more so for large values of ξ, qualitatively the theory is very successful at describing the
behaviour of the system.

We can interpret the III-IV transition as a case of a typical echo chamber situation
in context of two rivalling groups such as political parties. If the animosity from one to
the other or mutually is strong enough then no consensus is possible - while the groups
may not be as radical as in initially they will always persist in their view opposite to
the other. This essentially shows that prejudice has the potential to lock society into
a predetermined antagonistic state. On the other hand we have the IV-II transition
that stands somewhat in contrast to the opposition scenario described above. Let us
imagine that we can somehow influence the attitudes of the layers such that we soften
the animosities towards more amicable and maybe even eventually slightly cordial side of
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Figure 4.4: (a) Phase transition from the symmetric consensus to the opposite polarisation
of opinions in different layers X and Y with visible small discrepancy between mean field
approximation and agent-based simulations while the asymptotic behaviour having a very
good agreement. ABM simulations are shown with 95% confidence interval as the error
bands. (b) polarisation to radicalisation transition shown as the difference of opinions
between layers in function of the parameter δ. (c) heatmap of (ξ, δ) phase space, with
colour representing |⟨x⟩ − ⟨y⟩|.

things then would that be enough? Or do we need to completely flip peoples attitudes to
make consensus possible. Our model suggests that it can be enough, indeed. This implies
that while prejudice can cause society to split there is also room for hope as not so drastic
changes in attitudes can cause the layers to merge in opinion albeit not a neutral one.
The III-I and III-II transitions somewhat reduce to what has already been described in
[70] and are as such are not of particular interest to us right now.

4.5 Asymmetric coupling

By asymmetric we mean here that we no longer have a single δ like in Eq. (4.11) by
introducing δxy, δyx. Let us proceed straight to the mean field formulation getting:u̇ = −u+ ξ tanhu+ δxyξ tanh v

v̇ = −v + ξ tanh v + δyxξ tanhu.
(4.15)

However, we keep the signs of δxy, δyx to be the same such that
√
δxyδyx ∈ R+. We can

then look at the condition for the largest eigenvalue λmax of the Jacobian changing its
sign giving us:

δyx =

(
1− 1

ξ

)2
1

δxy
, (4.16)

which is the formula for the boundary between the neutral consensus phase and either
radicalised consensus or polarisation depending on the sings of δxy, δyx. Comparison of
this with numerical simulations can be seen in Fig. 4.5 where we present the (δxy, δyx) space
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Figure 4.5: The asymmetric coupling parameters phase space (|δxy|, |δyx|) in a form of a
heat map, where the colour represents ⟨|opinion|⟩, with a visible transition from neutral
consensus to polarisation. MF is Eq. (4.16)

in form of a heatmap where colour represents the mean of the absolute value of opinions
in the system (i.e. ⟨|opinion|⟩). We can see a very satisfactory agreement between the
formula and the agent-based simulations.

4.6 Anti-symmetric coupling

By anti-symmetric we mean the case where δxyδyx < 0 and therefore the eigenvalues:

λ1,2 = −1 + ξ ± ξ
√
δxyδyx (4.17)

are complex with Re(λ1,2) = −1 + ξ and Im(λ1,2) = ±ξ
√

|δxyδyx|. The fact the the eigen-
values are complex with non-zero real parts means that we are dealing with a Poincaré–
Andronov–Hopf bifurcation [180, 181]. Therefore the condition Re(λ1,2) = 0 gives us the
critical value of the control parameter ξ at which the bifurcation occurs. In our case it is
simply ξcrit = 1. Traditionally in the so called normal form the parameter is defined in
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Figure 4.6: Phase portraits of the Eq. (4.15) showing the behaviour below and above
critical point determined by the real part of the Jacobian eigenvalues (4.17). For ξ−1 ≥ 0
the system is attracted to an orbit whilst when ξ− 1 < 0 it collapses into the point (0, 0).

such a way that the bifurcation occurs when the control parameter vanishes, however, we
are not here to delve into the details of the Poincaré–Andronov–Hopf (P-A-H) and thus
shall not trouble ourselves with that. We can see in Fig. 4.6 that the system has a stable
limit cycle above the critical value which means this is a supercritical P-A-H bifurcation.
This tells us that what we expect to see in the system are oscillations (dampened below
the critical value and sustained above) and indeed in Fig 4.7 we can see some example
agent based simulations compared to the mean field approximation. Both show the ex-
pected behaviour, albeit again, the mean field critical point is not exactly right - in (b)
the mean field is still dampened while the ABM is not. It is also informative to look at
some trajectories in the space described before by the portraits - see Fig. 4.8. There we
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Figure 4.7: Example trajectories in the asymmetric coupling parameters scenario for ξ =
{0.31, 0.92, 1.1} respectively left to right. 20 independent agent based simulation results
are shown as dashed lines with solid lines representing the mean field (MF) approximation.
Two distinct behaviours are visible - sustained and dampened oscillations.

can see again the behaviour described above and how qualitatively our analyses are in
very good agreement with simulations.

Another matter we can explore here is that of the oscillations frequency as Hopf the-
orem provides as with the angular frequency of the orbit at the critical point ωcrit =

ξ
√

|δxyδyx|. In our case it corresponds to an ordinary frequency fcrit ≈ 0.159. Since the
system we are analysing is highly non-linear we cannot expect the mean field approxima-
tion (or Hopf theorem for that matter) to give us the exactly right answer, however, in
Fig. 4.9 we can see a good qualitative match yet again. It is worth noting that should the
oscillations be of a linear kind we would expect their frequency to grow with ξ but here
we see it decrease (in the supercritical region). At the same time the amplitude rises with
ξ and this might be the clue as to why the frequency behave in such a way. One could
say that the amplitude here plays the role of a sort of barrier for the system to overcome
and so the higher the barrier the longer it takes to be overtaken thus the frequency of the
oscillations increases.

While this scenario might be slightly less obvious to interpret we do believe there are
certain parallels to be drawn here. It may seem as though one group is a trend setter while
the other represents followers. In such a case there can be a very similar sort of a feedback
dynamic that we observe in our model. One group - the followers - is positively oriented
towards the other - the trend setters - as they look up to them and would like to be, act,
think like them etc. On the other hand, the setters share a negative attitude towards
the followers in this context. While they might appreciate the following they would very
much want to move away from it in terms of the opinion in question. This leads to this
chasing and oscillating behaviour. However, should the attitudes magnitudes within the
groups be not strong enough the dynamic simply dies down as neither the followers are
not as interested in following nor setters in trend setting.
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Figure 4.8: Y(X) trajectories in the asymmetric coupling scenario for ξ =
{0.3, 0.9, 1.2, 3.1} with dashed lines representing 20 independent realisations of the agent
based simulation and solid lines showing the mean field solution. We observe in detail
that the system has two possible attractors - a point (ξ < 1) and an orbit (ξ ≥ 1). For
ξ ≥ 1 the point (0,0) becomes unstable and trajectories starting from it would also end
in an orbit.

To sum up, in this chapter we have explored four different case studies of a bi-layer
temporal echo chambers and polarisation model. We looked upon an existing single layer
model and extended it onto a multi layered paradigm and thus acquired new complex
behaviours that were previously absent. We saw a case that could potentially model how
devastating (or simply effective) a propaganda machine can be as the transitions to a
completely opposite opinion could be very sudden and unexpected. We found evidence
that a seemingly trivial one parameter coupling can lead to many new transitions between
neutral and radical consensus, and a polarised society. We also discovered that even
intricate oscillating behaviours are possible when two separate and anti-symmetrically
coupled layers are present. This underlines the importance of the previous two chapters
that dealt with detecting the layered structure of some hypothetical systems. Real world

91



0 1 2 3
0.0

0.1

0.2

0.3

0.4
am

pl
itu

de
(a)

ξ
0 1 2 3

0.00

0.05

0.10

0.15

fre
qu

en
cy

(b)

ξ

X
Y
X-MF
Y-MF

Figure 4.9: Oscillation frequencies and amplitudes. Dashed lines represent an average
of 20 independent realisations of agent based simulations with a 95% confidence interval
present as the error bands. Solid lines show the mean field solution.

systems are complex and layered and in order to model them appropriately we need to be
able to determine what layers are hidden from us and what implications they can carry.
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Chapter 5

Conclusions

This work is the conclusion of the following three articles:

• [1] Gajewski, Ł. G., Chołoniewski, J., & Wilinski, M., Detecting Hidden Lay-
ers from Spreading Dynamics on Complex Networks. Phys. Rev. E 104(2), 2021,
024309. Supported by National Science Centre, Poland Grant
No. 2015/19/B/ST6/02612.

• [2] Gajewski, Ł. G., Sienkiewicz, J., & Hołyst, J. A., Discovering hidden layers in
quantum graphs. Phys. Rev. E 104(3), 2021, 034311. Supported by POB Research
Centre Cybersecurity and Data Science of Warsaw University of Technology within
the Excellence Initiative Program - Research University (IDUB)

• [3] Gajewski, Ł. G., Sienkiewicz, J., & Hołyst, J. A. (2021). Phase transi-
tions and oscillations in a temporal bi-layer echo chambers model. arXiv preprint
arXiv:2101.03430. Supported by an IDUB against COVID-19 project granted by
Warsaw University of Technology under the program Excellence Initiative: Research
University (IDUB), under review in Phys. Rev. E,

in which we analyse dynamics on complex networks and propose methods of detecting
hidden structures by simply observing the states of agents and their relationships in the
system. We also show how profound can the consequences be if a hidden layer exists using
an example of echo chambers and polarisation model.

More specifically, we focused on identifying both the existence and the structure of a
hidden spreading layer by observing a diffusion process unravelling on a graph. We provide
methods for i) determining whether a hidden layer exists and ii) estimating what links are
present in that layer. Our approach is based on an exact formula for the likelihoods of an
observed cascade given knowledge of the system’s topology. Using the said likelihood and
the fact its distribution can be assumed to be unimodal we established a practical and
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effective way of discerning the existence of a hidden layer. Furthermore using a series of
heuristics we obtain an algorithm for estimating the joint likelihood of a given (hidden)
edge taking part in the observed cascade therefore providing a tool for assessing which
nodes are most likely to exchange information via channel we do not know of that is vastly
superior to random guessing.

We tested our proposition on both synthetic and empirical data sets and found that
detecting hidden spreading channel is a relatively simple task with our approach - espe-
cially when the layers are uncorrelated. On the other hand, reverse engineering of hidden
connections can be a bit more of a challenge yet not impossible. The difficulty of this
task does depend heavily on the densities of both observed and hidden layers and their
relationship. The denser the hidden layer the harder it is to find the exact connections.
An interesting interplay takes place when it comes to the density of the observed layer.
On one hand the sensitivity decreases with the density of observed layer, but the α-CSS is
also decreasing with the density which may be slightly counter intuitive. While our propo-
sitions have their limitations and do not account for several effects like e.g. overlapping
connections neither have we focused on optimising it for very large networks, it does show
a lot of success in synthetic and real data sets alike. Moreover, some generalisations such
as including temporal networks could also prove to be an interesting research problem
for the future. While we do hope to address some of the above topics in the near future
we feel that methods presented here already provide effective and practical tools for real
world applications.

We have also explored the paradigm of quantum graphs as a potential tool for studying
multi-layer networks. The particular problem we are interested in is determining whether
there are hidden layers of communication in the system, that we cannot fully observe, by
taking measurements of the ongoing dynamics in a single layer that we can observe. We
proposed and tested two methods - one based upon a Gaussian wave packet signature
(WPS) that was introduced previously by Aziz et al. to discriminate between various
types of mono-layer systems, and the other on observing the power spectrum of the wave
amplitudes.

WPS is a method where a Gaussian wave packet, either observed or purposefully
produced, initiates the propagation from a single edge and we take the measurements of
the amplitudes at every edge at integer times for a sufficiently large number of times. Such
data is then histogrammed to produce the signature. This signature has the property of
being similar within a category of graphs while varied without. That is, e.g., signatures
of the ER graphs are similar to one another but different from the BA graphs, or for our
purposes, mono-layer graphs have different signatures than multi-layer ones etc. This in
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turn can be utilised by machine learning models, such as K-nearest neighbours, to build
a model capable of discriminating between graphs with different numbers of layers. This
approach suffers from several issues, however. Most prominently, it requires a training
sample. This can be very difficult to obtain in real-world scenarios and while perhaps
a well varied synthetic data set could suffice, at this point it is mere speculation. The
choice of an appropriate machine learning scheme and its construction is also a non-trivial
task. Additionally, as the number of layers grows, differentiating between such networks
becomes increasingly difficult since the signatures become less varied.

We also introduce an approach that utilises a discrete Fourier transform (DFT) instead
of a machine learning model. Instead of histogramming the measurements as before,
one computes the sum of the amplitudes on the visible layer at each integer time. This
constitutes a signal that at sufficient time scales should become stationary. In a mono-layer
system the signal will simply be a constant value due to energy conservation. However,
should other layers be present in the system, from the perspective of the mono-layer there
will be oscillations as the energy will flow out and back into it. We can inspect those
oscillations with the use of the DFT and look at the power spectrum. The spectrum
will exhibit characteristic peaks absent in the mono-layer networks. The number of these
peaks strictly corresponds with the number of layers in the synthetic scenarios tested.
This approach is significantly advantageous over the WPS as it does not require building
a learning sample and is in general much simpler. Furthermore, it does not really suffer
in terms of differentiating, e.g., tetra- from penta-layer systems, etc. Although it shows
much promise in synthetic scenarios, it does not perform as well in real-world networks.
It does indeed indicate clearly that there are hidden layers but the number of them can
be rather tricky to discern. This is perhaps not that surprising considering that real-
world networks are much more “messy” in some way than synthetic examples. Layers
vary in size, degree distribution, clustering coefficients and so on and so forth, while, e.g.,
a penta-layer BA graph shares all characteristics between layers even though the exact
connections are different. Those and other features of real-world systems could also affect
the coupling amongst the layers that most certainly will affect the nature of the amplitude
signal.

In such cases (i.e., where peak count after a brief observation is not enough) we show
that simply a longer observation time is required. As the signal is not stochastic and
oscillation periods are finite it does not seem unfeasible to observe enough of the signal to
determine its power spectrum with sufficient resolution. Then each peak in the spectrum
corresponds to the Hamiltonian eigenvalues that in turn are related to the eigenvalues of
the row-normalised adjacency matrix via a simple formula. With this we showed that it
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is indeed possible to recover all these eigenvalues and thus trivially determine the number
of layers in the system.

It is worth underlining here that a row-normalised adjacency matrix is in fact the so
called right stochastic matrix of a given graph and while it goes beyond the scope of this
thesis, there exist methods of reconstructing the whole matrix from its spectrum [182–
186] which we suspect should be quite feasible considering we already assume knowing
part of it (one layer and inter-layer structure). That in turn could also open the door to
the adjacency matrix itself. Recovering all the connections exactly may not be possible,
however, having a matrix iso-spectral to the adjacency matrix is also very valuable as
having this spectrum allows for determining many important properties of the system
[187, 188].

The issue of – how long the observation time should be – still remains, however. In the
experiments presented in this work, we needed more observation points using the Fourier
approach than with the machine learning one. In the real-world example used in this
work, the necessary measurement time to get the almost perfect match seen at the right
panel of Fig. 3.9 is fairly substantial – we simulated the system for 11520 time steps to
be exact. While lower values would not mean no match at all, the low power components
do become less discernible. This is due to the fact that some frequencies may be difficult
to observe because of the particular intricacies of a given system, while some eigenvalues
are going to be detectable more easily since more power is associated with them. In
order to observe all frequencies, in an idealised scenario, we should observe at least two
periods of the signal (one could also possible suffice but we shall assume two). Therefore,
the total observation time should be 4π/ arccos(λ2), where λ2 is the eigenvalue with the
second largest magnitude of the stochastic matrix. In general, i.e., for any system, for
any stochastic matrix, it is not possible to give one formula for the behaviour of λ2[189].
In special cases it is possible to provide an analytical expression and, e.g., for a full graph
duplex we would need 4π/ arccos((N − 2)/N) measurements which is clearly much fewer
than in case of the machine learning approach – N(N − 1) (note that it does not hold for
networks like Vickers). The latter has also been rather arbitrarily chosen by Aziz et al.,
and further more, one could also ask how big the training test must be to achieve a certain
level of accuracy. This, similarly to assessing the necessary number of measurements, is
rarely, if ever, possible to be known a priori. This points to an another possible advantage
of our Fourier approach (despite requiring more observation time in some systems), which
is that since we do not require training of the model we can in fact start recovering the
spectrum “online”, i.e., with very few measurements and simply keep adding them and
improving the results as the time passes. As we continue our measurements it will also
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usually become clear which frequency peaks are stable and whether all of them are already
expressed via a visual inspection of the signal or the spectrum.

We find that both methods presented here - the WPS and FFT - show enough success
in these simple scenarios we tested to merit further study, such as in noisy (or stochastic)
systems, for instance. They each have their pros and cons that we hopefully managed to
outline clearly as well as the potential room for improvement of their applicability and
understanding of waves on quantum graphs alike.

While we find our approach to be very promising it is also important to outline the
potential further study areas as we could not possibly have covered everything in this
thesis. It would be of substantial interest to investigate how the described system behaves
when distinct community structures (as in, e.g., a stochastic block model [190]) are present.
We suspect that it is feasible to detect the communities themselves, however, discerning
these communities from layers can pose an additional challenge. Furthermore, we have
tested a particular form of multi-layer networks with distinct symmetries, yet other, more
complicated types exist, such as networks of networks [118] and multi-layer graphs with
complex inter-layer connections [9]. These are especially interesting and considerably
more difficult as the inter-layer structures themselves can vary wildly. Finally, there is
also a matter of node membership in specific layers. Depending on the particulars of the
studied real-world scenarios it can be of interest to be able to ascertain where a given node
belongs. We suspect that this may also be possible, as from our experience single-node
time series can also contain a substantial amount of information. We hope to address
these issues in our future work.

Finally, we have presented a temporal bi-layer echo chamber and polarisation model
on complex networks inspired by the mono-layer model introduced by Baumann et al.
We recognise that there is both a precedent and apparent value in studying scenarios
where two clearly cut groups - or layers in a network - are interacting with one another.
Understanding how layered complex networks evolve in various environments in context of
opinion dynamics can help us better prepare for tackling issues that potentially threaten
our democracies such as misinformation campaigns or echo chambers. In the context of
this thesis, the presented socio-physical model serves as an argument for the importance
of the layer detection methods developed in prior chapters since it shows new behaviour
appearing as a consequence of a layered topology.

We formulate the dynamics equations for the bi-layer system and then provide a
mean field analysis that uncovers interesting possible scenarios. The nature of system’s
behaviour is different depending on the coupling between the layers. We can see several
interesting case studies such as opposite polarisation where the groups do not like each
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other, opinion oscillations where one group likes the other, however, the feeling is not
mutual, external bias where we consider the other group as an external bias acting upon
a mono-layer system, and where there is an attraction between the groups, however,
perhaps not as strong as withing them.

In the opposite polarisation scenario we observe that a coexistence of two groups with
different (opposite) opinions is possible. The system undergoes a phase transition from
a neutral consensus - where the two layers’ opinions merge at zero - to a polarised state
- where the two groups coexist each of them having their own opinion, opposite to the
other groups. The details of the transition and asymptotic behaviour of the system are
predicted by a mean field approximation with which we predict the critical values of
control parameter ξ and the coupling parameters δxy, δyx. In both cases the mean field
approach gives us a satisfying fit to agent-based simulations.

When the coupling parameters are set anti-symmetrically, in the sense that one is
positive and one negative, we detect a transition from dampened to sustained oscillations
of the layers’ opinions. In a way one might say that one group is ”chasing” the other
with their opinions, while the other is trying to get away. We additionally find that the
oscillations are highly non-linear as the frequency decreases with control parameter as
opposed to increasing as one would expect from a linear oscillator. At the same time the
amplitude rises with the control parameter. We believe the amplitude here plays the role
of a sort of barrier for the system to overcome and so the higher the barrier the longer it
takes to be overtaken thus the frequency of the oscillations increase.

In the case of a single layer with an external bias present we postulate that it might be
possible to model either a background of some sort or the second layer for that matter as
simply a cumulative effect in the form of such an external bias. We find that there exists
a critical value of the said bias that when the system is subject to it a sudden change to
an opposite opinion is possible. For small values of the control parameter we find a decent
match of mean field approach and agent-based simulations, however, for larger values the
two diverge in the prediction as to when the transition should occur, most likely due to
the finite size of the simulated system.

When the two layers are weakly yet positively coupled we see not very dissimilar
behaviour to the one with the external bias. Namely there exists a critical value of the
coupling parameter that causes the system to experience a sudden shift in the opinions.
In this case we observe that there is a transition from an oppositely polarised state to
a polarised consensus (or a radicalised state) where all agents (from both layers) share
similar and non-zero opinion. Similarly to the previous case the match between the mean
field theory and simulations is qualitatively satisfying, however, for larger values of the
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control parameter the predictions as to when the transition should happen diverge from
the results of numerical experiments.

With each scenario we have drawn parallels to real world to illustrate what these
results could mean for understanding the dynamics of our societies. We understand that
there are limitations with both the model and the approach in general as it can be often
difficult to construct reproducible experiments in sociological context, however, we firmly
believe that seeing where certain assumptions can lead us is an important and crucial
building block of science.

The main achievements of this work are two-fold: i) new tools for uncovering hidden
structures in multi-layer networks, and ii) evidence that these tools are in fact very much
needed. The former is provided for two very distinct families of models that differ not
only in their information dynamic but also the layering structure itself. For this purpose,
we leverage cascade likelihood formulae for epidemiological models, as well as machine
learning and signal analysis tools in the realm of quantum graphs to achieve this goal.
The latter is accomplished by extending an echo chambers and polarisation model onto a
layered topology and showing that this change – adding a layer – can result in a new and
unexpected behaviour, thus arguing that it is crucial to be able to detect such layered
structures. Thus, we have succeeded in what we set out to achieve.

In the end we hold a firm belief that our analyses throughout this text have been thor-
ough, insightful and led to profound observations, and practical, applicable propositions
of tools to be of use in real world scenarios. We sincerely hope that after consuming this
work the dear Reader shares that belief as well.
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“Lo duca e io per quel cammino ascoso
intrammo a ritornar nel chiaro mondo;
e sanza cura aver d’alcun riposo,
salimmo sù, el primo e io secondo,
tanto ch’i’ vidi de le cose belle
che porta ’l ciel, per un pertugio tondo.
E quindi uscimmo a riveder le stelle.”

— Dante Alighieri, Divina Commedia

116


	Introduction
	Complex networks
	Epidemiology
	Quantum graphs
	Other tools and methods

	Detecting hidden layers from spreading dynamics
	Cascade likelihood and hidden layer detection
	Finding links in the hidden layer

	Discovering hidden layers in quantum graphs
	Wave definition
	Gaussian wave packet signature (WPS)
	Fourier transform of the amplitude signal
	Spectrum reconstruction
	Exact analytical solutions of wave amplitudes in mono- and bi-layer full graphs
	Monoplex full graph
	Duplex full graph


	Bi-layer-induced phenomena in the echo chambers and polarisation model
	Echo chambers and polarisation model
	Methodology
	External Bias
	Symmetric coupling
	Asymmetric coupling
	Anti-symmetric coupling

	Conclusions

